ISADORA GERHEIM DE VASCONCELLOS MOREIRA

REVISÃO TAXONÔMICA E DO REGISTRO FÓSSIL DE TARTARUGAS MARINHAS NÃO-PROTOSTEGIDAE DO CRETÁCEO

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Biologia Animal, para obtenção do título de *Magister Scientiae*.

VIÇOSA MINAS GERAIS – BRASIL 2018

Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa

T M838r 2018	Moreira, Isadora Gerheim de Vasconcellos, 1990- Revisão taxonômica e do registro fóssil de tartarugas marinhas não-Protostegidae do cretáceo / Isadora Gerheim de Vasconcellos Moreira. – Viçosa, MG, 2018. v, 112 f. : il. (algumas color.) ; 29 cm.
	Inclui apêndices. Orientador: Pedro Seyferth Ribeiro Romano. Dissertação (mestrado) - Universidade Federal de Viçosa. Referências bibliográficas: f. 95-112.
	 1. Tartaruga-marinha. 2. Biologia - Classificação. 3. Paleobiogeografia. 4. Tartarugas fósseis. I. Universidade Federal de Viçosa. Departamento de Biologia Animal. Programa de Pós-Graduação em Biologia Animal. II. Título.
	CDD 22. ed. 597.92

ISADORA GERHEIM DE VASCONCELLOS MOREIRA

REVISÃO TAXONÔMICA E DO REGISTRO FÓSSIL DE TARTARUGAS MARINHAS NÃO-PROTOSTEGIDAE DO CRETÁCEO

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Biologia Animal, para obtenção do título de Magister Scientiae.

APROVADA: 09 de maio de 2018.

R 0 Gustavo Ribeiro de Oliveira

Givele Mendes Lessa Del Giudice

44

Pedro Seyferth Ribeiro Romano (Orientador)

Dedico esse trabalho à minha família, Bia, Maria, Dudu, Giovana e Eduardo.

Resumo

GERHEIM, Isadora Vasconcellos Moreira, M.Sc., Universidade Federal de Viçosa, maio de 2018. **Revisão taxonômica e do registro fóssil de tartarugas marinhas não-Protostegidae do Cretáceo**. Orientador: Pedro Seyferth Ribeiro Romano.

O registro fóssil de tartarugas marinhas do Cretáceo são principalmente do clado Pan-Chelonioidea, mas também engloba algumas espécies sem posição filogenética bem definida, consideradas atualmente como Eucryptodira Indeterminadas. O registro mais antigo de Pan-Chelonioidea é datado do Cretáceo Inferior (Aptiano) da Alemanha, o que desafia a hipótese vigente de que Americhelydia (Pan-Chelonioidea+ Chelydroidea) surgiu na América do Norte durante o Campaniano. Registros de fósseis de tartarugas marinhas do Velho Mundo são escassos, mas na América Norte eles são abundantes e são encontrados em toda a costa do Mar Interior Ocidental, desde o Canadá até o sul dos Estados Unidos. Todas as espécies de Pan-Chelonioidea do Cretáceo possuíam os membros apendiculares modificados em nadadeiras como adaptação ao ambiente aquático, e que permitiam a colonização de pequenos e grandes corpos de água. A dieta era variada, e adaptações na mandíbula para tosquiar e quebrar o alimento estavam presentes em stem Chelonioidea desde o Campaniano Superior. Dentre as 45 espécies nominais de tartarugas marinhas não-Protostegidae do Cretáceo, 13 são nomes válidos de Pan-Chelonioidea, 8 são nomes válidos de Eucryptodira, 12 são nomes inválidos, 5 são nomes nulos, 6 são nomes dúbios e 1 é nome vão.

Abstract

GERHEIM, Isadora Vasconcellos Moreira, M.Sc., Universidade Federal de Viçosa, May, 2018. A review of the taxonomy and fossil record of non-Protostegidae sea turtles from Cretaceous. Adviser: Pedro Seyferth Ribeiro Romano.

Fossil records of sea turtles from Cretaceous are found mainly in the clade Pan-Chelonioidea, but it also refers to a few species without a definitive phylogenetic relationship, currently considered Eucryptodira Indeterminate. The oldest record of Pan-Chelonioidea dates from the Aptian (Early Cretaceous) from Germany, which challenges the current hypothesis of the American origin for Americhelydia (Pan-Chelonioidea+ Chelydroidea) during the Campanian (Late Cretaceous). The records of Cretaceous marine turtles from the Old Word are scarce, but the distribution of stem Chelonioidea in North America were very abundant, following the coast of the Western Interior Seaway from Canada to south USA. All species of Pan-Chelonioidea from Cretaceous possessed limbs modified into paddles as adaptation for the marine environment, which allowed them to colonize small and large bodies of water. Their diet was variable, and the jaw specializations to shear and crush the food are present since the Late Campanian in stem Chelonioidea. Among the 45 named non-Protostegidae marine turtles from Cretaceous, 21 are nomina valida of Pan-Chelonioidea, 8 are nomina valida of Eucryptodira, 12 are nomina invalida, 5 are nomina nuda, 6 are nomina dubia, and 1 are nomen vanum.

Sumário

1. Title page	1
2. Introduction	2
3. Skeletal Morphology	5
3.1 Cranium	5
3.2 Shell	9
3.3 Postcranium	12
4. Phylogenetic Relationships	15
5. Paleoecology	18
6. Paleobiogeography	21
7. Systematic Paleontology	
8. Appendix 1 – Institutional Abbreviations	83
9. Appendix 2 – Named non-Protostegidae Sea Turtles from Cretace	ous Genera84
10. Appendix 3 – Biogeographical Summary of non-Protostegidae Se	ea Turtles from
Cretaceous	86
11. Appendix 4 – Hierarchical Taxonomy of non-Protostegidae Sea T	
Cretaceous	
12. Literature Cited	

1	A Review of the Fossil Record of non-Protostegidae Sea Turtles
2	from Cretaceous
3	Isadora Gerheim ^{1*} , Pedro S. R. Romano ^{1**}
4	¹ Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas
5	Gerais, 36570-900, Brazil
6	*Corresponding author; e-mail: isagvm@gmail.com
7	**E-mail: psrromano@gmail.com
8	
9	
10	
11	
12	
13	
14	
15	
16	Acknowledgments: We would like to thank Walter Joyce, Márton Rabi, Püntener
17	Christian, Eric Mulder, Alexander Gehler, Deborah Arbulla, Pernille Richards,
18	Annelise Folie and Cécilia Cousin for all the help during the research and production
19	of this manuscript, and Coordenação de Pessoal de Nível Superior (CAPES) for the
20	scholarship.

21

Introduction

22 Marine turtles refer to groups of Testudines that live in the ocean or in the near-23 shore environment. They can be recognized by the presence of some specializations 24 (such as the paddle-like limbs) and/or by the coastal marine assemblage inferred from the sedimentary matrix found associated to the fossil. Until recently, there was not a 25 26 consensus if sea turtles comprised a monophyletic group. Gaffney (1975) defined all 27 sea turtles (i.e.: Thalassemydidae, Plesiochelyidae, Eurysternidae, Toxochelyidae, 28 Protostegidae, Cheloniidae and Dermochelyidae) as closely related and nested within 29 Chelonioidea. However, the synapomorphies of Chelonioidea were challenged after 30 the description of 'Thalassemys' moseri, leading to the exclusion of the Late Jurassic 31 coastal marine turtles (Plesiochelyidae, Thalassemydidae and Eurysternidae) from this 32 group (Gaffney and Meylan (1988)). Even though Gaffney and Meylan (1988) suggested a common ancestry for the Late Jurassic coastal sea turtles, further cladistic 33 34 analysis did not find support to confirm such monophyly (Joyce 2007).

Currently, the name *Pan-Chelonioidea* refers to the total clade of crown *Chelonioidea*, or the most inclusive clade containing the extant turtle *Dermochelys coriacea* (Vandellius, 1761) and *Chelonia mydas* (Linnaeus, 1758) (Joyce et al. 2004). Within Chelonioidea there are one entirely extinct clade named Protostegidae and two crown clades; *Cheloniidae* and *Dermochelyidae* (their total clades are referred as *Pan-Cheloniidae* and *Pan-Dermochelyidae*). We treat all species previously included in "*Toxochelyidae*" solely as stem *Chelonioidea*.

42 Some of fossil marine turtles were already recognized as such in the 18th 43 century, but the first named non-Protostegidae species was *Allopleuron hofmanni* 44 (Gray, 1831), followed by Chelonia cretacea Keferstein, 1834, Chelone camperi 45 Owen, 1851, and Chelone faujasii Giebel, 1852, all from Europe. After 1852, the 46 majority of the described species were from the USA, mostly thanks to the reviews of 47 Hay (1908) and Zangerl (1953). Hay (1908) provided the first extensive review on the 48 morphology and taxonomy of fossil turtles of North America, which contributed 49 enormously to the knowledge of the marine species, especially of those now 50 recognized as stem Chelonioidea. Hay (1908) proposed to exclude species without the 51 limbs completely modified into flippers from Cheloniidae, and include them into the 52 family Toxochelyidae, which was supported in several cladistics studies later (Zangerl 53 1953; Kear and Lee 2006, Brinkman et al. 2006; Joyce 2007; Cadena and Parham 54 2015). Moreover, Hay (1908) included some genera previously allocated in 55 Cheloniidae into Thalassemydidae, without presenting any reason for it, and declaring 56 it was contrary to the recent studies of that time. This doubtful proposal of Hay (1908) was solved by Zangerl (1953), which invalided some of those genera and transferred 57 others to Toxochelyidae. 58

59 R. Zangerl contributed immensely for the amount of named sea turtles from 60 Cretaceous. From 28 species from USA, Zangerl alone described 12 of them. Whereas 61 the review of Hay (1908) focused on the northern states of USA, Zangerl (1953) 62 explored the southern states, and due to the high concentration of stem Chelonioidea 63 in the country, both studies combined result in a comprehensive knowledge of these 64 species. It is important to stress that the disproportion of named Cretaceous species of 65 stem Chelonioidea over crown Chelonioidea can also be a bias due to the amount of descriptions made by Hay (1905) and Zangerl (1953), and it is not necessarily a matter 66 67 of abundance of the stem lineages.

It was only from 1984 onwards that species of sea turtles from Asia started to be named, thanks to the studies of Nessov and Krassovskaya (1984), Hirayama and Chitoku (1996), Averianov (2002), and Kaddumi (2006). Unfortunately, those species still represent a small portion of the knowledge about Asian sea turtles.

72 A global analysis of Mesozoic Testudines recovered Pan-Chelonioidea as sister 73 group of all remaining Cryptodira (Joyce 2007), whereas some molecular analyses 74 found it to be more inclusive, as sister group of Kinosternoidea (Shaffer et al. 1997; 75 Fujita et al. 2004), of Testudinoidea (Parham et al. 2006), or of Chelydroidea 76 (Chelydridae + Kinosternidae) (Krenz et al. 2005; Barley et al. 2010; Crawford et al. 77 2014). The oldest fossil records of Chelydroidea and the oldest definitive Pan-78 Chelonioidea (Toxochelys spp. and Ctenochelys spp.) were dated from the Late 79 Cretaceous of North America (Parham and Hutchison 2003; Joyce et al. 2013; Joyce 80 et al. 2013), which led Joyce et al. (2013) to name the clade that originated from the 81 most recent common ancestor of Chelonia mydas (Linnaeus, 1758), Chelydra 82 serpentina (Linnaeus, 1758), and Kinosternon scorpioides (Linnaeus, 1766) as 83 Americhelydia, referring to the supposed origin of this group. The abundance of early 84 stem Chelonioidea in the Late Cretaceous of North America would match such 85 hypothesis; however, currently, the oldest occurrence of a definitive non-Protostegidae 86 Pan-Chelonioidea is from the Early Aptian of Germany (Karl et al. 2012), which not 87 only challenges the American origin, but also expands back the minimum age for 88 Americhelydia from 70.0 (Campanian) to 125 million of years (Aptian). Because the 89 placement within Cryptodira as well as its internal phylogenetic relationships (see 90 Phylogenetic Relationship section) are still a matter of debate, Pan-Chelonioidea is 91 considered one of the most problematic clades of fossil turtles (Cadena and Parham92 2015).

93 For institutional abbreviations, see Appendix 1. Named marine turtles from
94 Cretaceous are listed in Appendix 2.

- 95 Skeletal Morphology
- 96 Cranium

97 The following list summarizes the taxa with at least parts of the skull available 98 in the literature: Allopleuron hofmanni (Mulder 2003; Figure 1C), Catapleura repanda 99 (only a fragmentary lower jaw in Wieland 1904), Ctenochelys stenoporus (Hay 1905; 100 Karl and Nyhuis 2012), Ctenochelys acris (Gentry 2017), Corsochelys haliniches (Zangerl 1960; Figure 1B), Kimurachelys slobodae (Brinkman et al. 2015), 101 102 Mesodermochelys undulatus (Hirayama and Chitoku 1996), Mexichelys coahuilaensis 103 (Brinkman et al. 2009), Nichollsemys baieri (Brinkman et al. 2006), Oertelia gigantea (Karl et al. 2012), Toxochelys latiremis (Cope 1875; Case 1898; Hay 1905, 1908; 104 105 Zangerl 1953; Figure 1A), and Toxochelys moorevillensis (Zangerl 1953). Zangerl 106 (1953) provided a detailed description of the skull in stem Chelonioidea and Gaffney 107 (1979) described the general morphology for Chelonioidea.

108The skulls of stem Chelonioidea are massive, as wide as long, with broad and109rounded lateral extremities. The skulls of Cheloniidae and Dermochelyidae are thinner,110and longer than wide (Zangerl 1953). The snout of stem Chelonioidea is generally111rounded, except in *Nichollsemys baieri* (Brinkman et al. 2006), which is pointed as in112Cheloniidae. The orbits face strongly upward in stem Chelonioidea, suggesting a

shallow-water habitat (Hirayama 1997). The orbits of Cheloniidae and
Dermochelyidae face laterally, similar to extant species, which is associated to aquatic
animals adapted to large bodies of water (Hirayama 1997, Kear and Lee 2006).

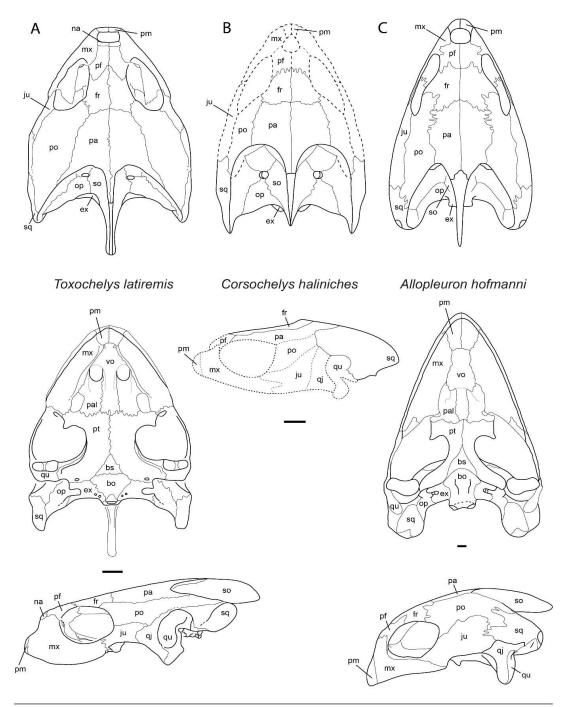


FIGURE 1. Cranial morphology of marine turtles of Cretaceous as exemplified by three species. A, Toxochelys latiremis (redrawn from Gaffney 1979). B, Corsochelys haliniches (redrawn from Zangerl 1960). C, Allopleuron hofmanni (redrawn from Mulder 2003). Abbreviations: bo, basioccipital; bs, basisphenoid; ex, exoccipital; fr, frontal; ju, jugal; mx, maxilla; na, nasal; pa, parietal; pal, palatine; pf, prefrontal; pm, premaxilla; po, prootic; pt, pterygoid; qj, quadratojugal; qu, quadrate; so, supraoccipital; sq, squamosal; vo, vomer. Scale bars approximate 1 cm.

116

117 The nasals are absent in fossil and extant Cheloniidae and Dermochelyidae, but 118

they are present in Toxochelys latiremis (stem Chelonioidea) and Porthochelys

119 laticeps (Eucryptodira Indeterminate). In T. latiremis they are small and rectangular, 120 with an extense posterior contact with the prefrontals and a short lateral suture with 121 the maxilla (Figure 1A). In *P. laticeps* the nasals are wider and circumvented by the 122 expanded prefrontal, preventing the lateral contact with the maxilla. The anterior 123 portion of the nasal contribute to the apertura narina externa and the posterior suture 124 contacts the prefrontals in both species (Figure 1A). The prefrontals of Pan-125 Chelonioidea usually contact one another in the midline (Figure 1). The frontals are 126 prominent in Chelonioidea taxa and the downward displacement of the orbits, as seen 127 in Allopleuron hofmanni, resulting in a lateral expansion of the frontals (Figure 1C). 128 There is no evidence of contact between parietal and squamosal in all Cretaceous Pan-129 Chelonioidea, different from that seen in extant Chelonioidea with a well-developed 130 temporal roof. The jugal is reduced in stem Chelonioidea and it contacts only the prootic laterally and the quadratojugal posteriorly. In A. hofmanni the jugal is greatly 131 expanded, reaching posteriorly the anterior portion of the squamosal and anteriorly the 132 133 prefrontal, preventing the maxilla to contribute to the edge of the orbit. The 134 quadratojugal is more reduced in A. hofmanni than in other species, also because of the expansion of the jugal (Figure 1C). In stem Chelonioidea the quadratojugal 135 136 expands dorsally and contacts the prootic, but in A. hofmanni the expanded squamosal 137 reduced the area occupied by the quadratojugal and prevents its contact with prootic (Figure 1C). Both premaxilla in stem Chelonioidea have a broad suture with the vomer 138 139 and the foramen palatinum posterius is observed in the posterior vomer-palatine 140 contact in T. latiremis and Mexichelys coahuilaensis, but it seems to be lost in crown 141 Chelonioidea. The jugal-palatine contact in crown Chelonioidea prevents the maxilla to contact the pterygoid as seen in stem Chelonioidea. In stem Chelonioidea the 142

maxilla is more expanded, especially in *Mexichelys coahuilaensis*, but a medial contact
was not observed in any species from Cretaceous.

The vomer of *Toxochelys latiremis* and *Nichollsemys baieri* is positioned anteriorly in the ventral view, forming a primary palate. However, in most Pan-Chelonioidea the vomer expanded and dislocated to the midline of the palate and it was incorporated into the triturating surface, contributing to the secondary palate. This secondary palate is well developed in crown Chelonioidea, but it varies among stem Chelonioidea from very incipient (seen in *Ctenochelys*) to very extended (seen in *Mexichelys*).

152 Shell

153 The following list summarizes the non-Protostegidae Pan-Chelonioidea from 154 Cretaceous with at least parts of the shell available in the literature: Allopleuron 155 hofmanni (Winkler 1869; Mulder 2003; Karl et al. 2012), Catapleura repanda (Cope 156 1871a; Hay 1908), Corsochelys haliniches (Zangerl 1960), Ctenochelys acris (Zangerl 157 1953; Gentry 2017), Ctenochelys stenoporus (Hay 1905; Karl and Nyhuis 2012), 158 Mesodermochelys undulatus (Hirayama and Chitoku 1996), Toxochelys latiremis (Zangerl 1953, Gentry 2017), Toxochelvs moorevillensis (Zangerl 1953), and 159 160 Zangerlchelys arkansaw (Schmidt 1944).

161 The carapace of Pan-Chelonioidea is generally more flatted than in other 162 groups, and it varies in shape, from circular to oval or cordiform (Figure 2). In 163 Cretaceous non-Protostegidae marine turtles, the carapace normally consists of a 164 single nuchal, 8 neurals, 1 to 2 suprapygals, a single pygal, 8 pairs of costals, and 11 165 pairs of peripherals. The nuchal is a large, trapezoidal element and do not differ greatly

among Pan-Chelonioidea, but a rectangular-shaped and protruded nuchal is observed 166 in C. haliniches. The neural bones of Pan-Chelonioidea generally are longer than wide, 167 hexagonal and with complete series, i.e. the 8th neural reaches the suprapygal. The 168 number of bones composing the neural series in Cheloniidae are generally 169 170 supernumerary and it varies; and in Allopleuron hofmanni (Figure 2B), for instance, exhibit 9 neural that also differs in shape (square, pentagonal and hexagonal) and in 171 size, with neurals almost with the same width of costal plates, probably due to the 172 reduced ossification of costal series. Among Dermochelyidae, the neurals of 173 Corsochelys haliniches is typical of Pan-Chelonioidea excepted by a reduction of the 174 175 last three posterior bones, and Mesodermochelys undulatus (Figure 2C) presents 7 reduced bones and the 7th do not contact the suprapygal because of the medial contact 176 of 10th and 11th costals. Carapacial keels are observed only in the neural series of 177 Ctenochelys spp. and Allopleuron hofmanni (Figure 2B). 178

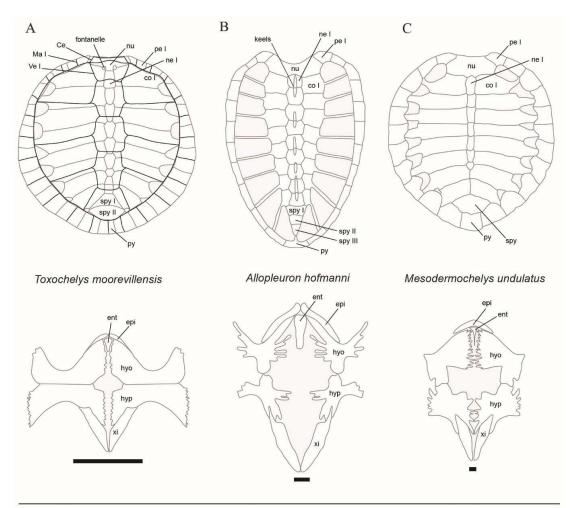


FIGURE 2. Shell morphology of marine turtles from Cretaceous as exemplified by three species. A, *Toxochelys moorevillensis* (redrawn from Zangerl 1953). B. *Allopleuron hofmanni* (redrawn from Mulder 2003). C, *Mesodermochelys undulatus* (redrawn from Hirayama and Chitoku 1996). Gray areas represent fontanelles. *Abbreviations*: Ce, cervical scute; co, costal; epi, epiplastron; ent, entoplastron; hyo, hyoplastron; hyp, hypoplastron; Ma, marginal scute; ne, neural; nu, nuchal; pe, peripheral; py, pygal; spy, suprapygal; Ve, vertebral scute; xi, xiphiplastron. Scale bars approximate 2 cm.

180	Costal fontanelles are always present in the shells in Pan-Chelonioidea, but it
181	varies greatly among the species. In stem Chelonioidea and Dermochelyidae the
182	fontanelles are small, allowing the costals I to VIII to contact the peripherals and
183	suprapygal I, respectively, with broader suture (Figure 2A, C). In A. hofmanni the
184	fontanelles are large, sometimes occupying about half the shell area and restricting the
185	contact of costals and peripherals to a tiny suture (Figure 2B). The peripherals are
186	broad, mostly as wide as long in stem Chelonioidea and Dermochelyidae, but in

187 Cheloniidae they are reduced and elongated throughout. From 6th to 11th peripherals 188 there are a gradual increase in the width of the bones, excepted in *A. hofmanni*, which 189 the peripherals 4th and 5th have the greater width (Figure 2B). The shell scutes sulci of 190 *Mesodermochelys undulatus* are poorly known and can be seen only on the 3th and 5th 191 neural bones.

192 The plastron of stem Chelonioidea are cruciform and well developed, with a relatively small longitudinal fontanelle that expands around the hyo-hypoplastra suture 193 194 (Figure 2A). In the Cheloniidae A. hofmanni the plastron is greatly reduced, with an 195 oval outline and a large medial fontanelle that prevents the right and left hyo- and hypoplastron to contact each other (Figure 2B). The shape of plastron varies among 196 Dermochelyidae; in C. haliniches it is similar to A. hofmanni, and in M. undulatus it 197 is also oval, but the bones are bigger and with a large central fontanelle. The 198 199 epiplastron of Chelonioidea varies from narrow and slender in stem Chelonioidea, intermediary size in Dermochelyidae to very expanded in A. hofmanni (Figure 2). The 200 201 hyo- and hypoplastra are reduced in Chelonioidea and has a spread-hand shape (Figure 2B), varying in the amount of projections. Similar to the carapace, the plastron of *M*. 202 203 undulatus does not preserve evidence of scute sulci.

204 Postcranium

205 Non-shell postcranium remaining of non-Protostegidae Pan-Chelonioidea from
206 Cretaceous is rarely found intact and articulated. The few available materials are
207 described and illustrated in the literature for the following taxa: *Allopleuron hofmanni*208 (Mulder 2003; Karl et al. 2012); *Catapleura repanda* (Hay 1908; Cope 1871a),
209 *Corsochelys haliniches* (Zangerl 1960), *Gigantatypus salahi* (Kaddumi 2006),

Mesodermochelys undulatus (Hirayama and Chitoku 1996), Toxochelys latiremis (Hay
1908; Zangerl 1953), Toxochelys moorevillensis (Zangerl 1953), and Oertelia
gigantea (Karl et al. 2012).

Vertebrae of non-Protostegidae Pan-Chelonioidea from Cretaceous are 213 214 described in detail only for Allopleuron hofmanni (Mulder 2003), Corsochelys 215 haliniches (Zangerl 1960), Mesodermochelys undulatus (Hirayama and Chitoku 1996) and Toxochelys latiremis (Zangerl 1953). M. undulatus possesses a procoelous 216 217 vertebrae from fifth to eighth cervical (Hirayama and Chitoku 1996), whereas in A. 218 hofmanni only the fifth is described as procoelous (Mulder 2003) and in T. latiremis presents biconvex vertebrae from 5th to 8th cervical (Zangerl 1953). A double central 219 220 articulation can be found between the seventh and eighth cervical of most Pan-Chelonioidea, including A. hofmanni and T. latiremis, but not in M. undulatus 221 222 (Hirayama and Chitoku 1996). The caudal vertebrae are generally procoelous in Pan-Chelonioidea, as in T. latiremis, A. hofmanni and M. undulatus. 223

224 The limbs of Pan-Chelonioidea from Cretaceous have been reported only for 225 Gigantatypus salahi (humerus only; Kaddumi 2006), Corsochelys haliniches (almost complete right humerus, carpal bones, tibias, manus and pes; Zangerl 1960), 226 227 Mesodermochelys undulatus (humerus, ulna, carpal bones, femur, tibia, fibula, manus and pes; Hirayama and Chitoku 1996), and Toxochelys latiremis (almost complete 228 229 forelimb; Wieland 1902; Zangerl 1953). Pan-Chelonioidea possess limb bones 230 generally flat and the forelimbs present larger surface than the hindlimbs. In Chelonioidea, the digits also possess great elongation and rigidness, achieved by the 231 232 loss of all articular condyles between the phalanges (e.g., M. undulatus and A. 233 hofmanni). In stem Chelonioidea the digits length resembles more the size seen in 234 Trionychidae, and the articular condyles are present in at least two digits. All Pan-235 Chelonioidea possesses a lateral process in the humerus, which is incipient and located 236 near the caput humeri in stem Chelonioidea (e.g., T. latiremis) and very developed, 237 laterally-oriented and located very distally to the caput humeri in Pan-Dermochelyidae 238 (e.g., C. haliniches and M. undulatus). In Pan-Cheloniidae, the lateral process is 239 moderate and located distally to the caput humeri (e.g., G. salahi), except for 240 Allopleuron hofmanni, which presents a laterally-oriented process, similar to Pan-241 Dermochelyidae.

242 The pectoral girdle of Pan-Chelonioidea from Cretaceous consists of the 243 characteristic triradiate structure formed by the coracoid, scapula and acromion. In 244 freshwater turtles (e.g., Chelydridae), the coracoid is generally shorter than the acromion, but in stem Chelonioidea it is longer (e.g., T. latiremis), and in Chelonioidea 245 the coracoid is much more elongated (e.g., A. hofmanni, C. haliniches and M. 246 247 undulatus). The pelvic girdle of stem Chelonioidea is more similar to those of 248 Chelydridae than to Chelonioidea. The ischium of stem Chelonioidea (e.g., T. latiremis 249 and T. moorevillensis) is large and its posterior process is more pronounced than in 250 Chelydridae, whereas in Chelonioidea the ischium is much small, and the posterior 251 process is poorly developed (e.g., *M. undulatus*) or absent (e.g., *Chelonia mydas*). The 252 lateral process of the pubis is generally pronounced in Pan-Dermochelyidae (e.g., M. 253 undulatus), extending anteriorly beyond the medial border, whereas in Pan-254 Cheloniidae the lateral process is much smaller and extends in the same plane as the pubis. In stem Chelonioidea (e.g., T. moorevillensis) such process points ventrally, as 255 256 in Chelydridae.

257 **Phylogenetic Relationships**

Several studies were carried out aiming to explore the phylogenetic 258 259 relationships of sea turtles, but the placement of many fossil species is still poorly resolved. Based on the features in the basicranium, all clades of sea turtles were 260 261 hypothesized to share an exclusive common ancestor, and therefore, the fossil lineages 262 (Thalassemydidae+Plesiochelyidae) were placed as sister group of (Dermochelyidae+Cheloniidae), and Toxochelyidae as sister group of all of them 263 264 (Gaffney 1976). Later, Fastovsky (1985), Hirayama and Suzuki (1985), and Gaffney 265 and Meylan (1988) found that Toxochelyidae are paraphyletic and that some species previously included in this family are closer to (Dermochelyidae+Cheloniidae) than 266 267 Plesiochelyidae. Thalassemydidae and Plesiochelyidae are currently considered related to Eurysternidae (Gaffney and Meylan 1988, Joyce 2007), and these three 268 269 clades are nested as a paraphyletic group stem to the exclusive common ancestor of Cryptodira, not directly related to Pan-Chelonioidea (Joyce 2007). 270

271 Most authors agree that Pan-Chelonioidea is comprised by Toxochelyidae, 272 Cheloniidae, Protostegidae and Dermochelyidae (Zangerl 1953; Hirayama 1994; 273 Hirayama 1997; Hooks 1998; Brinkman et al. 2006; Kear and Lee 2006; Scavezzoni 274 and Fischer 2018). However, Protostegidae was also recovered as an earlier and 275 independent clade, not closely related to Pan-Chelonioidea (Joyce 2007; Sterli and De 276 La Fuente 2011; Anguetin 2012). Since this hypothesis was not supported in more 277 recent studies (Cadena and Parham 2015; Gentry 2017; Scavezzoni and Fischer 2018), we do not challenge nor confirm the placement of Protostegidae within Pan-278

279 Chelonioidea (Figure 3) but follow the most recent contributions that suggest Protostegidae would be closer to Pan-Dermochelyidae.

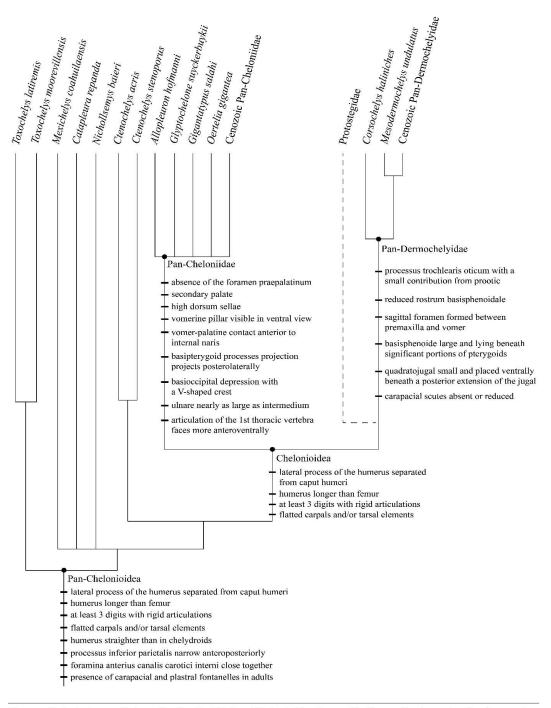


FIGURE 3. A phylogenetic hypothesis of valid Pan-Chelonioidea taxa with diagnostic characters for the most important clades. All valid taxa herein classified as Pan-Chelonioidea Indet. or Eucryptodira Indet. are omitted.

280

282 The fossil record of Toxochelyidae were considered one of the earliest registered among Pan-Chelonioidea and it comprised more than 20 named species, but 283 284 most of them were later synonymized due to the poor state of preservation and/or lack 285 of complete material (Zangerl 1953; Hirayama 1997; see details on Systematic Paleontology section). In some phylogenies, species of Toxochelyidae were formerly 286 287 recovered as stem-Cheloniidae (Hirayama 1994, 1998; Lynch and Parham 2003), but 288 in most of them as stem-Chelonioidea (Zangerl 1953; Brinkman et al. 2006; Kear and 289 Lee 2006; Joyce 2007; Cadena and Parham 2015; Scavezzoni and Fischer 2018) (Figures 3 and 4). Several studies suggested a paraphyly of Toxochelyidae (Fastovsky 290 291 1985; Gaffney and Meylan 1988; Hirayama 1994; Parham and Fastovsky 1997; 292 Hirayama 1998; Gentry 2017; Scavezzoni and Fischer 2018) and therefore, some 293 authors refer those species only as stem-Chelonioidea (Brinkman et al. 2006; Kear and 294 Lee 2006; Brinkman et al. 2015), in agreement with the conversion to phylogenetically defined names (Joyce et al. 2004). The abandonment of Toxochelyidae along with its 295 subfamilies Toxochelyinae and Lophochelyinae, was finally proposed in Gentry 296 297 (2017) and it is followed herein.

298 Cheloniidae is the most diverse clade of Pan-Chelonioidea, but most species 299 are from the Cenozoic (Gaffney and Meylan 1988; Hirayama 1997; Parham and 300 Fastovsky 1997; Parham and Pyenson 2010), leaving only three taxa, here identified 301 as Pan-Cheloniidae Indeterminate from the Cretaceous to be discussed in here. A 302 deeper revision of the phylogenetic relationships of Cheloniidae will be addressed in 303 another chapter (W. Joyce, pers. comm.). 304 Probably due to the pelagic habit and the lack of shell ossification, good fossil 305 records of Dermochelyidae from Mesozoic and Cenozoic are scarce (Hirayama 1997). 306 From the Cretaceous record, Mesodermochelys undulatus has abundant material, and 307 it was recovered closely related to Dermochelys coriacea (Hirayama 1994; Kear and Lee 2006; Joyce 2007; Cadena and Parham 2015). Corsochelys haliniches was first 308 309 considered a very specialized Cheloniidae (Zangerl 1960), but in more recent 310 phylogenetic analyses it was recovered as sister group of Chelonioidea (Gentry 2017; 311 Scavezzoni and Fischer 2018) or, more consistently, as sister group of (Mesodermochelys+Dermochelys) (Hirayama 1994, 1998; Brinkman et al. 2006; Kear 312 313 and Lee 2006; Scavezzoni and Fischer 2018) (Figure 3).

314 The diagnoses of main Pan-Chelonioidea lineages were verified in published 315 analyses of Cadena and Parham (2015), Gentry (2017), Gaffney and Meylan (1988), 316 Kear and Lee (2006), Hirayama (1994), Joyce (2007), Gaffney (1975), Brinkman et al. (2009), and Parham and Pyenson (2010) and are summarized in Figure 3. Given 317 318 that many Mesozoic species were never included in any taxon-character matrix for 319 phylogenetic analyses, we tentatively allocated them based on the diagnoses defined 320 for each clade. To establish the broadest position of clades within Pan-Chelonioidea, we relied mainly on Cadena and Parham (2015) and Scavezzoni and Fischer (2018) 321 322 (Figure 3).

323 Paleoecology

324 Pan-Chelonioidea and Protostegidae are the only turtles highly adapted to the
325 marine habitat (Hirayama 1997). The oldest record of Pan-Chelonioidea are dated from
326 the Cretaceous (Kear and Lee 2006; Cadena and Parham 2015), but the

327 Thalassemydidae, a clade of shallow-water turtles, were already inhabiting the sea in the Late Jurassic (Püntener et al. 2015), suggesting that the invasion from the fresh 328 329 water to the sea occurred independently at least twice between the eucryptodiran turtles 330 (Parham and Fastovsky 1997). The Pan-Chelonioidea species from Cretaceous exhibit greater diversity in their morphology and ecology than the living ones (Hirayama 331 332 1997), and some of them show different specializations to the marine habitat (Zangerl 333 1980). The stem-Chelonioidea seems to display only a few adaptations to the aquatic 334 environment, and they vary in the degree of this specialization (Zangerl 1953, 1980). The forelimbs of Toxochelys, a stem-Chelonioidea, are compared with those of 335 336 Cheloniidae and the freshwater Chelydra serpentina, but more similar to the latter, 337 with three movable digits, but also possessing hindlimbs as reduced as in living sea 338 turtles (Hay 1908). The orbits dorsally-oriented of stem-Chelonioidea resembles more 339 Chelydra than Cheloniidae (Hay 1908) and it suggests a condition of shallow-water and/or benthic habits, whereas in Chelonioidea the orbits face more laterally, which is 340 341 related to a more pelagic habit (Kear and Lee 2006). However, the stem-Chelonioidea 342 show some limb specializations, as a shorter ulna and a longer radius, if compared to 343 Chelvdra (Hay 1908). Also, the third and fourth fingers are greatly elongated, but not 344 as in *Caretta*; on the other hand, the first and second fingers have the same proportion 345 to the humerus as seen in Chelydra (Hay 1908) and it possess movable articulations between the phalanges (Hirayama 1994). The deposition sedimentary environment 346 347 inferred for the rock where Pan-Chelonioidea are found also varies from near shore 348 environments (e.g., Kimurachelys, Toxochelys, Thinochelys, Ctenochelys) to open marine sediments (e.g., Nichollsemys) (Zangerl 1953; Brinkman et al. 2015; Gentry 349 2017). Although stated that the preferred habitat can be inferred from the depositional 350

351 sediments, Zangerl (1980) pointed out that it could be a misinterpretation and the
352 distinction between habitat and burial ground should be investigate, perhaps revealing
353 alternative habitats for those species. However, to our knowledge, up to date no study
354 investigated such scenario.

Despite the long evolutionary history of Cheloniidae, dating back from Cretaceous until present, it presents less morphological variation than seen in other Pan-Chelonioidea (Zangerl 1980). Also, even the extant species do not display many highly specializations to the highly aquatic life, as greatly elongated forelimbs, broad and flat humeri and extremely reduced shell scutes as seen in extinct Protostegidae and extinct and living Dermochelyidae (Hirayama 1994; Parham and Fastovsky 1997).

The forelimbs of the Dermochelyidae *Corsochelys haliniches* possess a similar elongation as the extant Cheloniidae (Zangerl 1960), but it does not show other adaptation to the marine habitat of its closely related species of Dermochelyidae (Zangerl 1960). The limb of *Mesodermochelys undulatus* resembles those of *Dermochelys coriacea* in the nearly straight shaft of the humerus, flattened and immovable metacarpals, suggesting a more pelagic habit than *Corsochelys haliniches* (Hirayama and Chitoku 1996).

The feeding variation within the stem-Chelonioidea have not been extensively studied and little is known about their food habits (Zangerl 1953). However, the inferred shearing jaw of *Toxochelys moorevillensis* based on the presence of a thin dentary with significant symphyseal ridges (Parham and Pyenson 2010), indicates the existence of a feeding apparatus specialized to shear the food. The same jaw morphology is found in *Allopleuron hofmanni* and *Mesodermochelys undulatus*, and

it has been proposed to have evolved independently at least four times within PanChelonioidea (Parham and Pyenson 2010). It is more likely that the shearing jaw is a
specialization for feeding on seagrass, and, in fact, its timing of appearance is highly
associated with the evolution of these plants (Bjorndal et al. 1997; Parham and
Pyenson 2010).

379 The durophagous specialization (adaptation for crushing the food) is supported by the presence of flat and wide jaw, and its oldest record in Pan-Chelonioidea is seen 380 381 in Mexichelys coahuilaensis, from the Late Campanian (Parham and Pyenson 2010). 382 It has been hypothesized that this durophagous niche was previously dominated by the Protostegidae, and its extinction released this ecological opportunity, allowing the 383 384 diversification of Pan-Chelonioidea during the Late Cretaceous (Hirayama 1997; Parham and Pyenson 2010). The evolution of shearing and crushing morphology seen 385 386 in Pan-Chelonioidea is considered a case of iterative evolution, as suggested by the repeated and independently appearance of ecological traits followed by the extinction 387 of similarly adapted species (Parham and Pyenson 2010). 388

389 Paleobiogeography

The fossil record of non-Protostegidae Pan-Chelonioidea from Cretaceous has so far being restricted to the current northern hemisphere of the New and Old Worlds. Except from Japan, the material of the Old World is very scarce. Its diversity is limited to six species confined to Western and Central Europe and four taxa from Asia (see Figures 5 and 6), including the oldest sea turtle, the eucryptodiran *Sontiochelys cretacea* from the Hauterivian-Barremian of Slovenia (Karl et al. 2012) and the oldest Pan-Chelonioidea, *Oertelia gigantea* from the Early Aptian of Germany (Karl et al. 397 2012). In the Netherlands, the only taxon known is the well-represented Allopleuron hofmanni from Maastrichtian (Mulder 2003; Janssen et al. 2011), probably the most 398 399 abundant sea turtle from Europe in that time (Figure 5). If confirmed the identification of A. cf. hofmanni from Karl (2012), the distribution of this species would be expanded 400 401 from Maastrichtian to the Turonian-Late Campanian of Germany. In this case, Germany had at least three Cretaceous taxa, since Ctenochelys stenoporus and Oertelia 402 403 gigantea were also found in the north of the country (Zangerl 1953; Karl and Nyhuis 2012; Karl et al. 2012). Fragments from the Coniacian of France were referred to 404 405 Cheloniidae Indet. (De Lapparent De Broin 2001).

U Thanetian Selandian Selandian U Campanian U Campanian U Ceniacian Turonian Ceniacian U Albian U Albian U Albian U Barremian Hauterivian Barremian Barremian Hauterivian U Tithonian	Toxochelys latiremis	Action of the second seco	Ctenocherlys stenoporus	Cheloniidae	Cildbocretore sulverentiation and the sulverentiation of the sulvere	Corsochelys haliniches	Mesodermochelys undulatus
Tithonian S S S C T T C Tithonian C Tithonian C Tithonian C Tithonian		Pan-Chelonioide	a				

FIGURE 4. The stratigraphic and biogeographic distribution of valid marine turtles taxa. Black lines indicate temporal distribution based on type material. Grey lines indicate temporal distribution based on referred material.

406

407Slovenia and Belgium are represented by the shell material of the eucryptodiran408Sontiochelys cretacea and the Pan-Cheloniidae Glyptochelone suyckerbuykii,409respectively (Dollo 1903; Stache 1905; Dollo 1909). The only record of Cretaceous410Pan-Chelonioidea from the Middle East is a single humerus assigned to Gigantatypus411salahi found in Jordan (Averianov 2002; Kaddumi 2006). The eucryptodiran marine

412 turtles *Thalassemys cava* and *Turgaiscapha kushmurunica* were found in Uzbekistan
413 and Kazakhstan, expanding back the occupation of Asia by marine turtles to possibly
414 Late Albian (Averianov 2002).

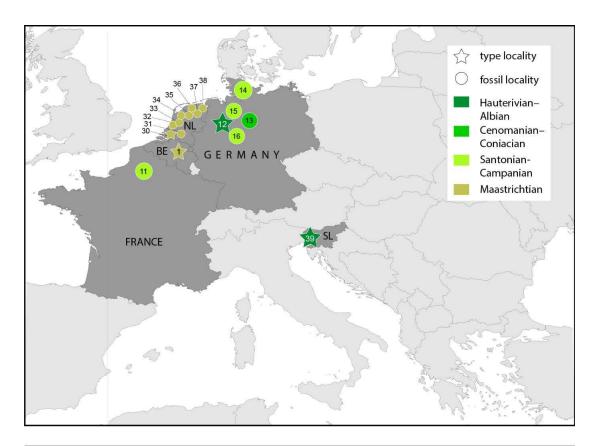


FIGURE 5. The geographic distribution of figured sea turtles non-prototegids from Cretaceous from Europe. Stars mark the type localities of valid taxa. Locality numbers are cross-listed in Appendix 3. *Abbreviations:* BE, Belgium; NL, Netherlands; SL, Slovenia.

416	From Japan, the only described species is Mesodermochelys undulatus, but it
417	has abundant material from Maastrichtian of Central Hokkaido (Hirayama and Chitoku
418	1996). The presence of other Pan-Dermochelyidae from Cretaceous outside Japan is
419	rare, with the only exception of Corsochelys haliniches from North America (Zangerl
420	1960). The abundance of Mesodermochelys undulatus in Japan led Hirayama (1997)
421	to propose a strong endemism of Pan-Chelonioidea during Cretaceous, which would
422	be the cause of a higher diversity of this group in the past compared to today. Hirayama

423 (1996) also proposed Japan as the source of radiation of Pan-Dermochelyidae, but this
424 may be a taphonomic bias of the fossil record, and specially because all specimens
425 belong to the same species. Analyses of endemicity of fossil vertebrates are often
426 weakly supported, because they are more prone to error due to the small sample size
427 (Nicholls and Russell 1990).

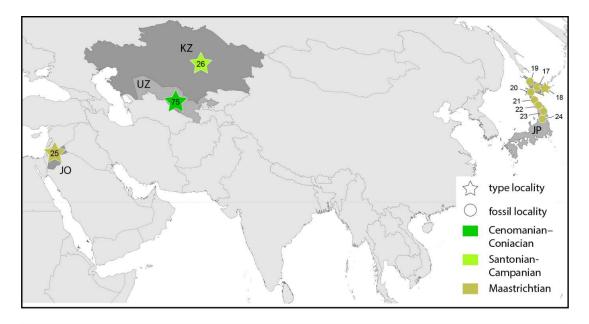


FIGURE 6. The geographic distribution of figured sea turtles non-prototegids from Cretaceous from Asia. Stars mark the type localities of valid taxa. Locality numbers are cross-listed in Appendix 3. *Abbreviations:* JP, Japan; JO, Jordan; KZ, Kazakhstan; UZ, Uzbekistan.

429	In Canada, Manitoba Province has only one record assigned to Chelonioidea
430	Indet. (Nicholls et al. 1990), but Alberta Province has occurrences of Nichollsemys
431	baieri, Toxochelys latiremis, Kimurachelys slobodae, and two Pan-Chelonioidea
432	Indet., all from Late Campanian (Nicholls et al. 1990; Brinkman et al. 2006; Brinkman
433	et al. 2015). In the USA, the non-Protostegidae Pan-Chelonioidea records are most
434	found in assemblages from the Mooreville Chalk of Alabama and the Niobrara Chalk
435	of Kansas (Hay 1908; Zangerl 1953). The peak of diversity and abundance of stem
436	Chelonioidea was during the Late Cretaceous in USA, demonstrated by the amount of

types found in the South-Central states, referred today to Catapleura repanda, 437 Ctenochelys stenoporus, Ctenochelys acris, Toxochelys latiremis and Toxochelys 438 439 moorevillensis. The Eucryptodira Indet. taxa Porthochelys laticeps, Thinochelys 440 lapisossea, Zangerlchelys arkansaw, and Prionochelys nauta, are also found in the South Central of USA. The distribution of those species, summed to those of stem 441 Chelonioidea and the Pan-Dermochelyidae Corsochelys haliniches from Alabama, 442 reveal the South Central of USA as the region of highest concentration of sea turtles 443 during the Cretaceous. The south-most occurrence is Mexichelys coahuilaensis, from 444 the Late Campanian of Mexico (Brinkman et al. 2009). There is no record of non-445 Protostegidae Pan-Chelonioidea from Cretaceous in South America until the date. 446

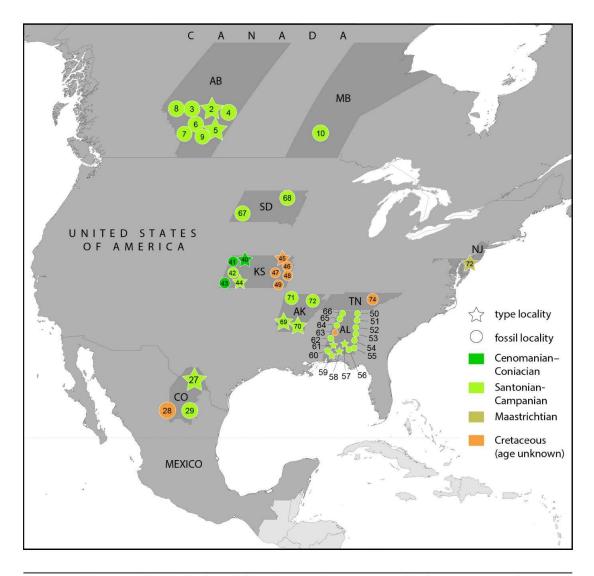


FIGURE 7. The geographic distribution of figured sea turtles non-prototegids from Cretaceous from North America. Stars mark the type localities of valid taxa. Locality numbers are cross-listed in Appendix 3. *Abbreviations:* AL, Alabama; AB, Alberta; AK, Arkansas; CO, Coahuila; KS, Kansas; MB, Manitoba; NJ, New Jersey; SD, South Dakota; TN, Tennessee.

448	The geographical distribution of sea turtles in North America (Figure 7)
449	follows the Western Interior Seaway bank (KWIS), an epicontinental inland seaway
450	with deep marine and shallow estuarine environments, that connected the Artic Ocean
451	with the Gulf of Mexico, passing through the center of North America during the
452	Cretaceous (Gill and Cobban 1973; Petersen et al. 2016). A decrease of abundance and
453	diversity of sea turtles with the increase of latitude in North America was noticed by

454	Nicholls and Russel (1990), and they proposed the existence of two distinct
455	assemblages along the KWIS, the northern and the southern. The north portion of the
456	KWIS had more influence of temperature from the Artic Sea, which limited the
457	occurrence of turtles, whereas the warm to subtropical temperature of the south portion
458	favored the high abundance of Pan-Chelonioidea in the area (Nicholls and Russell
459	1990). The synonymization of stem Chelonioidea from the North America (Hirayama
460	1997) resulted in a reevaluation of the sea turtle diversity in North America, with fewer
461	species richness than previously considered, but those species showing the wider
462	distributions seen in Pan-Chelonioidea (see Appendix 3). This widely-spread nature of
463	sea turtle distribution is common among marine vertebrates, as a result of their ability
464	to migrate long distances and their high tolerance to a variety of conditions (Nicholls
465	and Russell 1990).
466	Systematic Paleontology
466 467	Systematic Paleontology Valid Taxa
467	Valid Taxa
467 468	Valid Taxa See Appendix 4 for the hierarchical taxonomy of non-Protostegidae Sea Turtles from
467 468 469	Valid Taxa See Appendix 4 for the hierarchical taxonomy of non-Protostegidae Sea Turtles from
467 468 469 470	Valid Taxa See Appendix 4 for the hierarchical taxonomy of non-Protostegidae Sea Turtles from Cretaceous as described in this work.
467 468 469 470 471	<i>Valid Taxa</i> See Appendix 4 for the hierarchical taxonomy of non-Protostegidae Sea Turtles from Cretaceous as described in this work. <i>Pan-Chelonioidea</i> Joyce et al., 2004
467 468 469 470 471 472	<i>Valid Taxa</i> See Appendix 4 for the hierarchical taxonomy of non-Protostegidae Sea Turtles from Cretaceous as described in this work. <i>Pan-Chelonioidea</i> Joyce et al., 2004 Phylogenetic definition. Following Joyce et al. (2004), the term <i>Pan-Chelonioidea</i> is
467 468 469 470 471 472 473	Valid Taxa See Appendix 4 for the hierarchical taxonomy of non-Protostegidae Sea Turtles from Cretaceous as described in this work. <i>Pan-Chelonioidea</i> Joyce et al., 2004 <u>Phylogenetic definition</u> . Following Joyce et al. (2004), the term <i>Pan-Chelonioidea</i> is herein referred to the total-clade (stem + crown) of <i>Chelonioidea</i> (see <i>Chelonioidea</i>

477 slightly separated from caput humeri, humerus longer than femur, at least 3 digits
478 with rigid articulations, flatted carpals and/or tarsal elements, humerus straighter than
479 in chelydroids, processus inferior parietalis narrow anteroposteriorly, foramina
480 anterius canalis carotici interni close together, and presence of carapacial and plastral
481 fontanelles in adults. It can be differentiated to crown-Chelonioidea by the orbits
482 facing dorsolaterally, and the lateral process of humerus slightly separated from
483 caput humeri.

Comments. A large number of species described until the middle of the 20th century 484 was placed traditionally into Toxochelyidae. Several phylogenetic analyses failed to 485 486 recover the monophyly of this family (Fastovsky 1985; Gaffney and Meylan 1988; 487 Hirayama 1994; Parham and Fastovsky 1997; Hirayama 1998; Gentry 2017) and the 488 present study also failed to define an exclusive set of diagnostic characters for 489 Toxochelyidae. Thus, even a putative definition of this group seems to be unfeasible. We therefore follow the suggestion of Gentry (2017) in abandon the name 490 491 Toxochelyidae. The species we could assign as the earliest definitive total-group of 492 Chelonioidea, we classified as stem-Chelonioidea in agreement with the conversion of ranking-names to phylogenetically defined names (Joyce et al. 2004). 493

494

495

Catapleura repanda (Cope, 1868)

496	(= Toxochelys atlantica Zangerl, 1953 = Lytoloma angusta Cope 1871 = Lytoloma
497	wielandi Hay 1908; = Dollochelys atlantica (Zangerl, 1953) = Dollochelys casieri
498	Zangerl, 1971 = Dollochelys coatesi Weems, 1988)
499	Taxonomic history. Osteopygis repandus Cope, 1868 (new species); Propleura

500 *repanda* Cope 1868 (new combination and probably change of epithet in agreement

501	for plural flexion); Catapleura repanda Cope 1870 (new combination); Catapleura
502	repanda = Toxochelys atlantica Hirayama 1997 (senior synonym); Catapleura
503	repanda = Dollochelys atlantica = Dollochelys casieri = Dollochelys coatesi
504	Hirayama 2006 (senior synonym).
505	Type material. AMNH 2353 (holotype); part of the nuchal bone, the following three
506	peripherals, part of the fourth (right side), part of the first (left side), four other
507	peripherals, some costal (one nearly complete) and a portion of a femur (Cope 1870;
508	Hay 1908, fig. p. 185–188).
509	Type locality. West Jersey Marl Company Pit, Barnsboro, Gloucester County, New
510	Jersey, USA (Cope 1868, 1870); Navesink or Hornerstown Formation, Late
511	Maastrichtian? - Danian?, Late Cretaceous?- Paleogene?.
512	Referred material and range. Late Cretaceous (Late Maastrichtian), type locality
513	(type material of Toxochelys atlantica; Zangerl 1953); Late Cretaceous (Late
514	Maastrichtian), type formation, Sewell, Gloucester County, New Jersey, USA
515	(Zangerl 1953); Late Paleocene, Landen Formation, Erquelinnes, Hainaut, Belgium
516	(type material of Dollochelys casieri; Zangerl 1971); Late Paleocene, Aquia
517	Formation, Liverpool Point, eastern bank of Potomac River, Charles County,
518	Maryland, USA (type material of Dollochelys coatesi; Weems 1988); Paleogene,
519	Barnersboro Formation, near Barnsboro, New Jersey, USA (type material of
520	Lytoloma angusta; Cope 1870); Paleogene, Hornerstown Formation, Mullica Hill,
521	New Jersey, USA (type material of Lytoloma wielandi; Hay 1908).
522	Diagnosis. Catapleura can be diagnosed as Pan-Chelonioidea by the presence of
523	carapacial and plastral fontanelles in adults and the presence of the lateral process of
524	the humerus separated from caput humeri. Catapleura can be differentiated from

525 Chelonioidea by the lateral process of humerus only slightly separated from caput 526 humeri. *Catapleura* can be differentiated from *Toxochelys* by the mandible with a 527 greater posterior protrusion of chin shelf beyond border of triturating surface and the 528 absence of post-nuchal fontanelles, and it can be differentiated from *Ctenochelys* and 529 *Mexichelys* by the absence of a developed secondary palate, and from *Kimurachelys* 530 by the narrower triturating surface.

Comments. Catapleura repanda is based on several fragments from Barnsboro city, 531 532 New Jersey (Cope 1868, 1870), where two formations can be found, the Navesink 533 and the Hornestown (Gaffney et al. 2006). Both have been reported as Late 534 Cretaceous in the literature and, therefore, C. repanda has been considered from the 535 Maastrichtian of New Jersey (Hay 1908; Hirayama 2006); however, the Hornerstown 536 Formation was reclassified to Paleogene (Miller Jr 1955, 1956). Miller (1956) proposed the "middle greensand" unit between the Navesink and the Hornerstown 537 Formations, to belong to the Red Bank Formation (Cretaceous). The accurate 538 539 formation of C. repanda is unknown, and although it has been tentatively assigned to 540 the Hornerstown Formation (Hirayama 2006), it could be incorrect, since it is almost 541 indistinguishable to the Red Bank Formation (Cretaceous), since both are formed by 542 nearly pure greensand (Miller Jr 1956). We included C. repanda as representative of 543 Cretaceous, but we are aware that this may change with future discoveries. Except 544 for the synonymization, none additional specimens have been referred to this species 545 since its first description. Due to the similarity of Lytoloma angusta and L. wielandi 546 with Toxochelys latiremis, Zangerl (1953) synonymized the first two and erected a 547 new species, *Toxochelys atlantica*, based on the carapace of *L. angusta* as the type and a fragment of mandible as the referred material. The mastigatory surface of this 548

549	mandible resembles Porthochelys laticeps, but because of the confinement of
550	Porthochelys to Kansas and the great variation of this feature in turtles, this
551	similarity was considered result of a convergent specialization of the skull and jaw of
552	T. atlantica and P. laticeps. Later, Zangerl (1971) erected a new genus and species
553	from Early Eocene, Dollochelys casieri, and recognized its similarity to Toxochelys
554	atlantica. Despite the similarity of T. atlantica to Toxochelys spp., the oval outline of
555	the carapace is different from all other species of the genus, which led Zangerl
556	(1971) to erect a new combination, <i>Dollochelys atlantica</i> . The diagnoses that used to
557	distinguish the species D. casieri, D. atlantica and D. coatesi seems to vary
558	according to Parris et al (1986), and since the first costal and the pygal of
559	Dollochelys spp. are similar to those of Catapleura repanda, Hirayama (2006)
560	proposed the subjective synonymization of those species. In the revision of the
561	genera, Hirayama (2006) placed Catapleura within Cheloniidae based on the
562	presence of more than eight neurals, but both this synapomorphy and the inclusion of
563	"Toxochelyidae" into Cheloniidae were not recovered in most of published
564	phylogenies (Kear and Lee 2006; Joyce 2007; Cadena and Parham 2015; Gentry
565	2017), it is not followed herein.
566	
567	Ctenochelys Zangerl, 1953
568	Type species. Ctenochelys stenoporus (Hay, 1905).
569	Diagnosis. Ctenochelys can be diagnosed as Pan-Chelonioidea by most characters of
570	the list given above for that clade. Ctenochelys can be differentiated to crown-
571	Chelonioidea by the presence of orbits facing dorsolaterally, the lateral process of
572	humerus slightly separated from caput humeri (in C. stenoporus), and the presence of

573	the foramen palatinum posterius (in C. acris). Ctenochelys is currently differentiated
574	primarily from other stem-Chelonioidea by the presence of a medially expanded
575	triturating surface of the maxillae, dentary with pronounced labial and lingual ridges,
576	anteroventral portion of the vomer narrow and rugose, triturating surface involving
577	significant contributions from the ventral portions of the palatines, raised articulation
578	for the neural spine of the eighth cervical vertebrae on the visceral surface of the
579	nuchal, the presence of keeled neurals with epineural ossifications between neurals
580	2–3, 4–5 and 6–7; peripherals with a moderately serrated lateral edge; and the
581	presence of significant plastral and costal fontanelles even in juvenile forms.
582	Comments. Ctenochelys has been always considered closer to Cheloniidae than
583	Toxochelys (Fastovsky 1985; Hirayama 1994; Hirayama 1997; Hirayama 1998;
584	Parham and Pyenson 2010; Gentry 2017; Scavezzoni and Fischer 2018), however, in
585	some phylogenetic studies it was recovered within a polytomy of stem-Chelonioidea
586	(Brinkman et al. 2006; Kear and Lee 2006). The placement of Ctenochelys as Pan-
587	Cheloniidae is doubtful, because they share the well-developed secondary palate, but
588	it lacks the diagnosis of Chelonioidea defined herein. The new diagnoses of
589	Ctenochelys found in Gentry (2017) is followed herein.
590	
591	Ctenochelys acris Zangerl, 1953
592	Taxonomic history. Ctenochelys acris Zangerl, 1953 (new species); Ctenochelys
593	stenoporus = Toxochelys serrifer (in part) = Toxochelys procax = Toxochelys elkader
594	= Lophochelys natatrix = Lophochelys venatrix = Ctenochelys tenuitesta =
595	Ctenochelys acris Hirayama 1997 (junior synonym); Ctenochelys acris Gentry 2017
596	(revalidation).

- 597 <u>Type material</u>. FMNH P27354 (holotype); fragmentary carapace and fragments of 598 the plastron (Zangerl 1953, fig. 112).
- 599 <u>Type locality</u>. Moore Brothers Farm, Harrel Station area, Dallas County, Alabama,
- 600 USA; Mooreville Chalk, Selma Formation, Early Campanian, Late Cretaceous
- 601 (Zangerl 1953; Nicholls and Russell 1990).
- 602 <u>Referred material and range</u>. Late Cretaceous (Early Campanian), type locality
- 603 (Zangerl 1953); Late Cretaceous (Early Campanian), Greene County, Alabama, USA
 604 (Gentry 2017).
- 605 Diagnosis. Ctenochelys acris can be diagnosed as Ctenochelys by the full list of 606 characters given to that clade. It can be differentiated from C. stenoporus by the 607 nearly dorsally facing orbits, with length equals about 30% of the total length of the skull, significant contribution to the orbital margin by the lateral edge of the frontals, 608 prominent serrations located at or near the lateral midpoint of peripheral elements 3-609 11, minimal width of pterygoid bridge equal to or greater than the length of the 610 basisphenoid total length in midline, lack of vomer-palatine contact anterior to the 611 612 internal nostril, irregularly pentagonal posterior peripherals with concave lateral margins anterior to the furrow point, and posterior peripherals 8–10 as wide as long. 613 614 Comments. *Ctenochelys acris* were first described based on fragments of carapace 615 and plastron from the Early Campanian of Alabama (Zangerl 1953; Gentry 2017). All species assigned to *Ctenochelys* were later synonymized to *C. stenoporus*, 616 617 resulting in a monotypic genus (Hirayama 1997; Matzke 2007). However, the 618 discovery of nearly complete specimens also from the Campanian of Alabama led to 619 the re-description and revalidation of *C. acris* by Gentry (2017).
- 620

621	Ctenochelys stenoporus (Hay, 1905)
622	(= Toxochelys elkader Hay, 1908 = Toxochelys bauri Wieland, 1905 = Toxochelys
623	procax (in part) Hay, 1905; Ctenochelys tenuitesta Zangerl, 1953 = Toxochelys
624	serrifer Cope, 1875)
625	Taxonomic history. Toxochelys stenoporus Hay, 1905 (new species); Toxochelys
626	stenoporus = Toxochelys serrifer (in part) Hay 1905 (senior synonym); Toxochelys
627	stenoporis Wieland 1905 (misspelled species epithet); Toxochelys stenopora Hay
628	1908 (misspelled species epithet); Ctenochelys stenopora Zangerl 1953 (new
629	combination); Ctenochelys stenopora = Toxochelys elkader = Toxochelys bauri =
630	Toxochelys procax (in part) Zangerl 1953 (senior synonym); Ctenochelys stenoporus
631	= Toxochelys serrifer (in part) = Toxochelys procax = Toxochelys elkader =
632	Lophochelys natatrix = Lophochelys venatrix = Ctenochelys tenuitesta = Ctenochelys
633	acris Hirayama 1997 (senior synonym).
634	Type material. YPM 1786 (holotype); a fragmented skull, marginals and hyoplastron
635	(Hay 1905; Karl and Nyhuis 2012, fig. 8–9).
636	Type locality. Near the Monument Rocks, Gove County, Kansas, USA; Smoky Hill
637	Chalk Member, Niobrara Formation, Turonian, Late Cretaceous (Hay 1902; Wieland
638	1905; Nicholls and Russell 1990).
639	Referred material and range. Late Cretaceous (Turonian), type formation, Gove
640	County, Kansas, USA (Matzke 2007); Late Cretaceous (Ceniacian), type formation,
641	Butte Creek, Logan County, Kansas, USA (Hay 1909); Late Cretaceous (Late
642	Santonian-Early Campanian), Lägerdorf, Lägerdorf Formation, Schleswig-Holstein,
643	Germany (Karl and Nyhuis 2012); Late Cretaceous (Campanian), Mooreville Chalk
644	Formation, Crawford Farm, Hale County, Alabama, USA (Gentry 2017); Cretaceous,

645	type formation, Russell Springs, Logan County, Kansas, USA (Zangerl 1953);
646	Cretaceous, type formation, Smoky Hill River, Kansas, USA (part of type material of
647	Toxochelys procax; Hay 1905); Cretaceous, type formation, near Elkader, Logan
648	County, Kansas, USA (type material of Toxochelys elkader; Hay 1908); Late
649	Cretaceous (Turonian), type locality (type material of Toxochelys bauri; Hay 1908);
650	Late Cretaceous, Selma Formation, Moore Brothers Farm, Harrell Station area,
651	Dallas County, Alabama, USA (type material of Ctenochelys tenuitesta; Zangerl
652	1953).
653	Diagnosis. Ctenochelys stenoporus can be diagnosed as Ctenochelys by the full list
654	of characters given to that clade. It can be differentiated from C. acris by the
655	presence of a skull with slender snout region, mandible foremost pointed, nuchal
656	with a broad emargination, and orbits slight further away from the tip of the snout
657	and facing more dorsally.
658	Comments. Ctenochelys stenoporus was based on fragments of cranial and post-
659	cranial elements that were first assigned to Toxochelys serrifer Cope, 1875 by Case
660	(1898). Hay (1905) recognized they do not belong to the same species and relocated
661	its type material as belonging to a new species named Toxochelys stenoporus.
662	Several new species of Toxochelys, Lophochelys and Ctenochelys were described by
663	Zangerl (1953), but most of them were based on fragmentary and incomplete
664	material. Later, Hirayama (1997) considered all dubia species as junior synonym of
665	Ctenochelys stenoporus, leading to a monotypic genus until the revalidation of C.
666	acris based on new specimens from Alabama (Gentry 2017).
667	
668	Mexichelys coahuilaensis (Brinkman et al., 2009)

669	Taxonomic history. Euclastes coahuilaensis Brinkman et al., 2009 (new species);
670	Mexichelys coahuilaensis Parham and Pyenson 2010 (new combination).
671	Type material. CPC 257 (SEPCP 9/721) (holotype); skull (Brinkman et al. 2009, fig.
672	2).
673	Type locality. La Parrita area, Coahuila State, Mexico; Cerro del Pueblo Formation,
674	Late Campanian, Late Cretaceous (Brinkman et al. 2009).
675	Referred material and range. Late Cretaceous (Late Campanian), type locality
676	(Brinkman et al. 2009); Late Cretaceous, General Cepada area, exact locality
677	uncertain, Mexico (Brinkman et al. 2009); Late Cretaceous (Late Campanian), Turtle
678	Paradise Locality, Cerro del Pueblo Formation, Mexico (Brinkman et al. 2009).
679	Diagnosis. Mexichelys can be diagnosed as Pan-Chelonioidea by the foramina
680	anterior canalis carotici interni close together and the absence of post-nuchal
681	fontanelles and it can be differentiated from crown-Chelonioidea by the presence of a
682	narrow foramen palatinum posterius. Mexichelys can be differentiated from
683	Ctenochelys by the greater extent of the secondary palate, the presence of a narrow
684	foramen palatinum posterius, and orbits facing more laterally.
685	Comments. Mexichelys coahuilaensis is based only on descriptions of a skull from
686	the Late Campanian of Mexico (Brinkman et al. 2009). Since the diagnoses of Pan-
687	Chelonioidea are mostly from the appendicular skeleton, the placement of M .
688	coahuilaensis as stem-Chelonioidea is supported only by the presence of narrow
689	foramen palatinum posterius, as confirmed by Parham and Pyenson (2010) based on
690	a cladistic inference.
691	
A	

Nichollsemys baieri Brinkman et al., 2006

- 693 <u>Taxonomic history</u>. *Nichollsemys baieri* Brinkman et al., 2006 (new species);
- 694 <u>Type material</u>. TMP 97.99.1 (holotype), skull with lower jaws (Brinkman et al. 2006,
 695 fig. 2–5).
- 696Type locality. Chin Coulee Valley, south of the city of Taber, Alberta, Canada;
- 697 Bearpaw Formation, Late Campanian, Late Cretaceous (Brinkman et al. 2006).
- 698 <u>Referred material and range</u>. Late Cretaceous (Late Campanian), type formation,
- 699 South of Lethbridge, Alberta, Canada (Brinkman et al. 2006); Late Cretaceous (Late
- 700 Campanian), type formation, East of Manyberries, Alberta, Canada (Brinkman et al.
- 701 2006); Late Cretaceous (Late Campanian), Pierre Shale Formation, Hyde County,
- 702 South Dakota, USA (Brinkman et al. 2006).
- 703 Diagnosis. *Nichollsemys* can be diagnosed as Pan-Chelonioidea by the foramen 704 anterior canalis carotici interni close together and the presence of the foramen 705 palatinum posterius. Nichollsemys can be differentiated from crown-Chelonioidea by 706 the large orbits facing strongly dorsally. *Nichollsemys* can be differentiated from 707 *Ctenochelys* by the absence of secondary palate and the presence of relatively 708 narrower triturating surfaces of the upper jaw that do not include the vomer and a larger foramen palatinum posterius. Nichollsemys differs also from Porthochelys by 709 710 exhibiting a relatively narrower skull that is more triangular-shaped in dorsal view 711 and by the small exposure of the basisphenoid on the ventral surface of the palate. It can be distinguished from Kimurachelys by the narrow triturating surface of the 712 713 upper jaw and from *Toxochelys* by the absence of nasals.
- 714 <u>Comments</u>. *Nichollsemys baieri* is based on a skull with lower jaw from the Late
- 715 Campanian of Canada (Brinkman et al. 2006). Because of the presence of
- 716 *Lophochelys niobrarae* in the Bearpaw Formation and the sister-group relationship

717	of N. baieri holotype and L. baieri, this skull and jaw were first informally assigned
718	to Lophochelys sp. by Brinkman (2000). However, Lophochelys niobrarae was based
719	solely on shell material, without cranial elements associated to it. Thereafter, the
720	discovery of a carapace of moderate size (indeterminated species) in the Bearpaw
721	Formation indicated that Lophochelys was not the only Pan-Chelonioidea genera
722	from this Formation (Brinkman et al. 2006). To avoid problems by assigning cranial
723	material to a shell-only taxon, Brinkman (2006) attributed these materials to
724	Nichollsemys baieri but recognized that it can belong to one of the shell-based taxa.
725	The phylogenetic analyses of Brinkman (2006) recovered Nichollsemys as sister
726	group of Ctenochelys, mostly because of the derived braincase features.
727	
728	Toxochelys Cope, 1873
729	Type species. Toxochelys latiremis Cope, 1873.
730	Diagnosis. Toxochelys can be diagnosed as Pan-Chelonioidea by most of the
731	characters of the list given above for that clade and it can be differentiated from
732	crown-Chelonioidea by the orbits facing outward and upward, and the lateral process
733	of humerus slightly separated from caput humeri. Toxochelys can be differentiated
734	from other stem-Chelonioidea by the carapace oval or more or less circular, moderate
735	to extensive costo-peripheral fontanelles, a pair of post-nuchal fontanelles, narrow
736	upper mandible triturating surfaces, slightly or not involving the palatine bones,
737	dorsal exposure of nasals although greatly reduced relative to that of the frontals, and
738	absence or little development of secondary palate.
739	
740	Torochebys latiremis Cope 1873

Toxochelys latiremis Cope, 1873

741	(= Toxochelys browni (Hay, 1905) = Toxochelys serrifer Cope, 1875 = Toxochelys
742	brachyrhina Cope, 1898 = Porthochelys browni Hay, 1905 = Toxochelys weeksi
743	Collins, 1951 = Toxochelys barberi Schmidt, 1944; = Lophochelys niobrarae
744	Zangerl, 1953)
745	Taxonomic history. Toxochelys latiremis Cope, 1873 (new species); Toxochelys
746	<i>latiremis</i> = <i>Cynocercus incisus</i> Hay 1908 (senior synonym); <i>Toxochelys latiremis</i> =
747	Toxochelys browni Schultze 1985 (senior synonym); Toxochelys latiremis =
748	Toxochelys browni = Toxochelys serrifer = Toxochelys brachyrhina = Porthochelys
749	browni = Toxochelys weeksi = Toxochelys barberi Nicholls 1988 (senior synonym);
750	Toxochelys latiremis = Lophochelys niobrarae Hirayama 1997 (senior synonym).
751	Type material. AMNH 2362 (holotype); lower jaw, right ilium and a coracoid (Hay
752	1908, fig. 200, 202–206).
753	Type locality. Near the forks of the Smoky Hill River, Saline County, Kansas, USA;
754	Smoky Hill Chalk Member, Niobrara Formation, Early Campanian, Cretaceous
755	(Cope 1873; Wieland 1902; Hay 1908; Nicholls and Russell 1990; Matzke 2009).
756	However, the above type locality is more likely to have been described erroneously
757	by Cope (1873) as the geological structure of the sedimentary matrix is more similar
758	to the Early Campanian of Pierre Shale of Logan County, also Kansas (Nicholls
759	1988; Nicholls and Russell 1990; Brinkman et al. 2006).
760	Referred material and range. Late Cretaceous (Late Santonian – Early Campanian),
761	Niobrara Formation, near Castle Rock, Gove County, Kansas, USA (Nicholls 1988);
762	Late Cretaceous, type formation, two miles south of Russell Springs, Logan County,
763	Kansas, USA (Matzke 2008); Late Cretaceous (Early Campanian), Pierre Shale,
764	Twenty miles southeast of Edgemont, South Dakota, USA (type material of

765	Toxochelys browni; Zangerl 1953); Late Cretaceous, Niobrara Formation, Kansas,
766	USA (type material of Toxochelys serrifer; Cope 1875); Late Cretaceous, Ripley
767	Formation, Dave Weeks place, Coon Creek, McNairy County, Tennessee, USA (type
768	material of Toxochelys weeksi; Zangerl 1953); Late Cretaceous (Campanian),
769	Marlbrook Formation, Cox Farm, road to Arkadelphia, Clark County, Arkansas,
770	USA (type material of Toxochelys barberi; Schmidt 1944; Benson and Tatro 1964);
771	Late Cretaceous (Late Campanian), Pierre Shale Formation, Cardston County,
772	Alberta, Canada (Nicholls et al. 1990; Brinkman et al. 2015); Late Cretaceous (Early
773	Campanian), Mooreville Chalk, Sumter County, Alabama, USA (Gentry and
774	Ebersole 2018).
775	Diagnosis. T. latiremis can be diagnosed as Toxochelys by the full list given above
776	for that taxon. T. latiremis can be differentiated from T. moorevillensis by the well-
777	developed costo-peripheral fontanelles in carapace, the width of peripherals never
778	exceeding their lengths, vertebral scutes wider than long, plastron with well-
779	developed medial and lateral fontanelles, and mastigatory surface of mandible flat,
780	without sagittal or lingual ridges.
781	Comments. The holotype of Toxochelys latiremis was first described based on a lower
782	jaw from the Niobrara Formation (Cope 1873). Later, there was three recognized
783	species of Toxochelys in North America: T. latiremis from Niobrara Formation, T.
784	browni from Pierre Shale Formation and T. moorevillensis from the Mooreville Chalk.
785	Inconsistencies on the geological features on the sedimentary matrix adhered in the
786	type of T. latiremis material suggested that this lower jaw probably came from the
787	Pierre Shale Formation (Schultze et al. 1985; Nicholls 1988; Brinkman et al. 2006).

788 Schultze et al. (1985) agreed with this new Formation attributed to *T. latiremis*, and

789	since it equals the one of <i>T. browni</i> and the species are morphologically very similar,
790	he proposed their synonymization. In that case, the name Toxochelys latiremis Cope,
791	1873 has priority over Toxochelys browni (Hay, 1905) (Schultze et al. 1985) and the
792	morphological differences between the specimens should be considered a plastic
793	variation rather than a differential feature (Nicholls 1988). However, even if they
794	belong to the same Formation, Brinkman et al. (2006) questioned if the type of T .
795	latiremis and T. browni belong to the same species. The solution for this issue requires
796	a deeper look into the sedimentary matrix of T. latiremis and a morphological
797	comparation between the types, so we reinforce the need for a species-level revision
798	of Toxochelys suggested by Brinkman et al. (2006).
799	
800	Toxochelys moorevillensis Zangerl, 1953
001	
801	Taxonomic history. Toxochelys moorevillensis Zangerl, 1953 (new species).
801 802	<u>Taxonomic history</u> . <i>Toxochelys moorevillensis</i> Zangerl, 1953 (new species). <u>Type material</u> . FMNH P27330 (holotype), almost complete shell, girdle and vertebral
802	Type material. FMNH P27330 (holotype), almost complete shell, girdle and vertebral
802 803	<u>Type material</u> . FMNH P27330 (holotype), almost complete shell, girdle and vertebral fragments (Zangerl 1953, fig. 76).
802 803 804	<u>Type material</u> . FMNH P27330 (holotype), almost complete shell, girdle and vertebral fragments (Zangerl 1953, fig. 76). <u>Type locality</u> . Moore Brothers Farm, Harrel Station area, Dallas County, Alabama,
802 803 804 805	 <u>Type material</u>. FMNH P27330 (holotype), almost complete shell, girdle and vertebral fragments (Zangerl 1953, fig. 76). <u>Type locality</u>. Moore Brothers Farm, Harrel Station area, Dallas County, Alabama, USA; Mooreville Chalk, Selma Formation, Early Campanian, Late Cretaceous
802 803 804 805 806	 <u>Type material</u>. FMNH P27330 (holotype), almost complete shell, girdle and vertebral fragments (Zangerl 1953, fig. 76). <u>Type locality</u>. Moore Brothers Farm, Harrel Station area, Dallas County, Alabama, USA; Mooreville Chalk, Selma Formation, Early Campanian, Late Cretaceous (Zangerl 1953).
802 803 804 805 806 807	 <u>Type material</u>. FMNH P27330 (holotype), almost complete shell, girdle and vertebral fragments (Zangerl 1953, fig. 76). <u>Type locality</u>. Moore Brothers Farm, Harrel Station area, Dallas County, Alabama, USA; Mooreville Chalk, Selma Formation, Early Campanian, Late Cretaceous (Zangerl 1953). <u>Referred material and range</u>. Late Cretaceous (Santonian), Eutaw Formation, Eutaw
802 803 804 805 806 807 808	Type material.FMNH P27330 (holotype), almost complete shell, girdle and vertebralfragments (Zangerl 1953, fig. 76).Type locality.Moore Brothers Farm, Harrel Station area, Dallas County, Alabama,USA; Mooreville Chalk, Selma Formation, Early Campanian, Late Cretaceous(Zangerl 1953).Referred material and range.Late Cretaceous (Santonian), Eutaw Formation, Eutawarea, Greene County, Alabama, USA (Zangerl 1953); Late Cretaceous, type
802 803 804 805 806 807 808 809	 Type material. FMNH P27330 (holotype), almost complete shell, girdle and vertebral fragments (Zangerl 1953, fig. 76). Type locality. Moore Brothers Farm, Harrel Station area, Dallas County, Alabama, USA; Mooreville Chalk, Selma Formation, Early Campanian, Late Cretaceous (Zangerl 1953). Referred material and range. Late Cretaceous (Santonian), Eutaw Formation, Eutaw area, Greene County, Alabama, USA (Zangerl 1953); Late Cretaceous, type formation, Burkville area, Lowndes County, Alabama (Zangerl 1953); Late
802 803 804 805 806 807 808 809 810	Type material. FMNH P27330 (holotype), almost complete shell, girdle and vertebralfragments (Zangerl 1953, fig. 76).Type locality. Moore Brothers Farm, Harrel Station area, Dallas County, Alabama,USA; Mooreville Chalk, Selma Formation, Early Campanian, Late Cretaceous(Zangerl 1953).Referred material and range. Late Cretaceous (Santonian), Eutaw Formation, Eutawarea, Greene County, Alabama, USA (Zangerl 1953); Late Cretaceous, typeformation, Burkville area, Lowndes County, Alabama (Zangerl 1953); LateCretaceous, type formation, Clinton area, Greene County, Alabama, USA (Zangerl

813	formation, Crawford Farm, Hale County, Alabama, USA (Zangerl 1953); Late
814	Cretaceous, type formation, West Greene area, Greene County, Alabama, USA
815	(Zangerl 1953); Late Cretaceous, type formation, Mt. Hebron area, Greene County,
816	Alabama, USA (Zangerl 1953); Late Cretaceous, type formation, Boligee area,
817	Greene County, Alabama, USA (Zangerl 1953).
818	Diagnosis. T. moorevillensis can be diagnosed as Toxochelys by the full list given
819	above for that taxon. T. moorevillensis can be differentiated from T. latiremis by the
820	small costo-peripheral fontanelles in carapace, peripherals wider than lengthy,
821	vertebral scutes as wider as long, small plastral fontanelles, and mastigatory surface
822	of mandible with sharp sagittal ridge.
823	Comments. Despite the doubts concerning Toxochelys latiremis and T. browni
824	discussed above, the validity of <i>T. moorevillensis</i> has never been challenged.
021	
825	
	Chelonioidea Baur, 1893
825	
825 826	Chelonioidea Baur, 1893
825 826 827	<i>Chelonioidea</i> Baur, 1893 <u>Phylogenetic definition</u> . Following Joyce et al., (2004), the term <i>Chelonioidea</i> is
825 826 827 828	<i>Chelonioidea</i> Baur, 1893 <u>Phylogenetic definition</u> . Following Joyce et al., (2004), the term <i>Chelonioidea</i> is herein referred to the most inclusive clade that includes the last common ancestor of
825 826 827 828 829	<i>Chelonioidea</i> Baur, 1893 <u>Phylogenetic definition</u> . Following Joyce et al., (2004), the term <i>Chelonioidea</i> is herein referred to the most inclusive clade that includes the last common ancestor of <i>Chelonia mydas</i> (Linnaeus, 1758) and <i>Dermochelys coriacea</i> (Vandellius, 1761).
825 826 827 828 829 830	<i>Chelonioidea</i> Baur, 1893 <u>Phylogenetic definition</u> . Following Joyce et al., (2004), the term <i>Chelonioidea</i> is herein referred to the most inclusive clade that includes the last common ancestor of <i>Chelonia mydas</i> (Linnaeus, 1758) and <i>Dermochelys coriacea</i> (Vandellius, 1761). <i>Chelonioidea</i> is the crown clade of Pan-Chelonioidea.
825 826 827 828 829 830 831	<i>Chelonioidea</i> Baur, 1893 <u>Phylogenetic definition</u> . Following Joyce et al., (2004), the term <i>Chelonioidea</i> is herein referred to the most inclusive clade that includes the last common ancestor of <i>Chelonia mydas</i> (Linnaeus, 1758) and <i>Dermochelys coriacea</i> (Vandellius, 1761). <i>Chelonioidea</i> is the crown clade of Pan-Chelonioidea. <u>Diagnosis</u> . Representatives of <i>Chelonioidea</i> are currently differentiated relative to
 825 826 827 828 829 830 831 832 	Chelonioidea Baur, 1893 Phylogenetic definition. Following Joyce et al., (2004), the term Chelonioidea is herein referred to the most inclusive clade that includes the last common ancestor of Chelonia mydas (Linnaeus, 1758) and Dermochelys coriacea (Vandellius, 1761). Chelonioidea is the crown clade of Pan-Chelonioidea. Diagnosis. Representatives of Chelonioidea are currently differentiated relative to stem Chelonioidea by the orbits facing laterally, small or absent lateral process of
 825 826 827 828 829 830 831 832 833 	Chelonioidea Baur, 1893 Phylogenetic definition. Following Joyce et al., (2004), the term Chelonioidea is herein referred to the most inclusive clade that includes the last common ancestor of Chelonia mydas (Linnaeus, 1758) and Dermochelys coriacea (Vandellius, 1761). Chelonioidea is the crown clade of Pan-Chelonioidea. Diagnosis. Representatives of Chelonioidea are currently differentiated relative to stem Chelonioidea by the orbits facing laterally, small or absent lateral process of ischium or metischial process, lateral process of humerus located away from the

Pan-Cheloniidae Joyce et al., 2004

838	Phylogenetic definition. Following Joyce et al. (2004), the term Pan-Cheloniidae is
839	herein referred to the total clade that includes crown-Cheloniidae and stem-
840	Cheloniidae. The crown-Cheloniidae refers to the clade arising from the last
841	common ancestor of Chelonia mydas (Linnaeus, 1758), Caretta caretta (Linnaeus,
842	1758), Eretmochelys imbricata (Linnaeus, 1758); Lepidochelys kempii (Garman,
843	1880); L. olivacea (Eschscholtz, 1829); Natator depressus (Garman, 1880).
844	Diagnosis. Pan-Cheloniidae can be diagnosed as Chelonioidea by the full list of
845	characters given above for that taxon. Representatives of Pan-Cheloniidae can be
846	distinguished to other Chelonioidea by the absence of the foramen praepalatinum,
847	basioccipital depression with a V-shaped crest, high dorsum sellae, vomerine pillar
848	visible in ventral view, sometimes obscured by the posterior extension of the
849	triturating surface of the vomer (absent in A. hofmanni), vomer-palatine contact
850	anterior to internal naris (apertura narium interna) (absent in A. hofmanni),
851	basipterygoid processes of basisphenoid projection projecting posterolaterally,
852	anterior articulation of the first thoracic vertebra ventrally or anteroventrally faced,
853	ulnare nearly as large as intermedium and presence of secondary palate.
854	Comments. Cheloniidae is a diverse clade, specially considering the Cenozoic record
855	(Gaffney and Meylan (1988); Parham and Pyenson (2010)). The fossil species
856	assigned to Cheloniidae revel abundant shell-only material, but only fragments of
857	limbs and skull and even more rare vertebra (Parham and Fastovsky 1997), unlike
858	other Pan-Chelonioidea. Given that most of the diagnoses features of Pan-
859	Chelonioidea are found on the skull, the inclusion of Allopleuron hofmanni,
860	Gigantatypus salahi and Glyptochelone suyckerbuyki as and within Cheloniidae is

861	merely tentatively, because such species do not possess all diagnostic features of the
862	group. Therefore, we assign those species from the Cretaceous as Pan-Cheloniidae
863	Indet., to avoid overlap with the diagnoses proposed for Cheloniidae in the review of
864	the Cenozoic Pan-Cheloniidae.
865	
866	Allopleuron hofmanni (Gray, 1831)
867	(= <i>Chelone faujasii</i> Giebel, 1852)
868	Taxonomic history. Chelonia Hofmanni Gray, 1831 (new species); Allopleuron
869	Hoffmanni Baur 1888 (new combination and misspelled species epithet); Chelone
870	<i>Hofmanni</i> = <i>Chelone Faujasii</i> = <i>Chelone cretacea</i> Winkler 1869 (senior synonym);
871	Allopleuron hoffmanni = Chelone camperi Lydekker 1889 (senior synonym and
872	misspelled species epithet); Allopleuron hoffmanni Hay 1908, Dollo 1909, Hirayama
873	1997 (misspelled species epithet).
874	Type material. MNHNP AC 8324, 8556 (types), NHMM 000001 (cotype by Mulder
875	2003; fragmentary carapace (Mulder 2003, pl. 5–6).
876	Type locality. Limburg, southern of Netherlands; Maastrichtian, Late Cretaceous
877	(Janssen et al. 2011).
878	Referred material and range. Late Cretaceous (Late Maastrichtian), type locality
879	(Mulder 2003); Late Cretaceous (Late Maastrichtian), Nekum Member, Maastricht
880	Formation, Maastricht, Limburg, Netherlands (Mulder 2003); Late Cretaceous (Late
881	Maastrichtian), Maastricht Formation, Kanne, Limburg, Belgium (Mulder 2003);
882	Late Cretaceous (Late Maastrichtian), Lanaye Member, Maastricht Formation, Visé,
883	Liège, Belgium (Mulder 2003); Late Cretaceous (Late Maastrichtian), Maastricht
884	Formation, Neerkanne, Limburg, Belgium (Mulder 2003); Late Cretaceous (Late

885	Maastrichtian), Lanaye Member, Gulpen Formation, Eben Emael, Belgium (Mulder
886	2003); Late Cretaceous (Late Maastrichtian), Maastricht Formation, Gülickerberg
887	Quarry, Voerendaal, Limburg, Belgium (Mulder 2003); Late Cretaceous (Late
888	Maastrichtian), Nekum Member, CBR-Romontbos, Eben-Emael, Belgium (Mulder
889	2003); Late Cretaceous (Maastrichtian), Kunrade Chalk, Benzenrade, Limburg,
890	Belgium (Mulder 2003); Late Cretaceous (Late Maastrichtian), Maastricht
891	Formation, Nederkanne, Limburg, Belgium (Mulder 2003); Late Cretaceous
892	(Turonian), Oerlinghausen Formation, Raunschweig-Broitzem, Germany
893	(Allopleuron cf. hofmanni) (Karl et al. 2012); Late Cretaceous (Late Campanian),
894	Quarry "Heidelberg Nord" (former "Teutonia Nord") of "Heidelberg Zement" in
895	Hannover-Misburg, Lower Saxony, Germany (Allopleuron cf. hofmanni) (Karl et al.
896	2012); Late Cretaceous (Early Campanian), Sehnde-Höver, SE Hanover, Lower
897	Saxony, Germany (Allopleuron cf. hofmanni) (Karl et al. 2012); Late Cretaceous
898	(Maastrichtian), Limburg, Netherlands (type material of Chelone faujasii, Winkler
899	1869).
900	Diagnosis. Allopleuron hofmanni can be diagnosed as Pan-Cheloniidae by most of
901	the list given for that clade. Allopleuron can be differentiated from other Pan-
902	Cheloniidae by the loss of the vomer-palatine anterior contact to internal naris,
903	vomerine pillar not visible in ventral view, pterygoid do not contributing to form the
904	foramen palatinum posterius, absence of shell scutes, first peripherals with a curved
905	anterior edge protruding prominently beyond the suture with the strongly incurved
906	nuchal, distinct delimitations between pleurals and ribs, fourth to seventh peripherals
907	with marginal keel and distinct vertical rim.

908	Comments. Allopleuron shows many adaptations for the marine life, and it indicates
909	the presence of a very specialized sea turtle by the Late Cretaceous, when the
910	Cheloniidae are starting their radiation into the sea (Hay 1908; Parham and Pyenson
911	2010). For this reason, Hay (1908) argued that the timing of the rise of Allopleuron
912	does not match the inferred time for the emergence of the Cheloniidae. Gaffney and
913	Meylan (1988), Weems (1988) and Hirayama (1992) suggested that Allopleuron
914	share more resemblance with Protostegidae and Dermochelyidae, but according to
915	Pritchard (1979), Zangerl (1980), Hirayama (1994; 1997), Hirayama and Chitoku
916	(1996), Lapparent de Broin (2001) and Mulder (2003) it shares more similarities with
917	Cheloniidae. The placement of this taxon is still a matter of debate, but since the
918	most comprehensive and recent phylogenetic hypotheses (cited above) has been
919	recovering closer affinities to Cheloniidae, A. hofmanni is currently placed into Pan-
920	Cheloniidae.
920 921	Cheloniidae.
	Cheloniidae. Gigantatypus salahi Kaddumi, 2006
921	
921 922	Gigantatypus salahi Kaddumi, 2006
921 922 923	Gigantatypus salahi Kaddumi, 2006 <u>Taxonomic history</u> . Gigantatypus salahi Kaddumi, 2006 (new species).
921 922 923 924	<i>Gigantatypus salahi</i> Kaddumi, 2006 <u>Taxonomic history</u> . <i>Gigantatypus salahi</i> Kaddumi, 2006 (new species). <u>Type material</u> . Deposited in the private collection of H. Kaddumi under the number
921 922 923 924 925	Gigantatypus salahi Kaddumi, 2006 <u>Taxonomic history</u> . Gigantatypus salahi Kaddumi, 2006 (new species). <u>Type material</u> . Deposited in the private collection of H. Kaddumi under the number ERMNH 1076; right humerus (Kaddumi 2006, fig. 3–7).
921 922 923 924 925 926	Gigantatypus salahi Kaddumi, 2006 Taxonomic history. Gigantatypus salahi Kaddumi, 2006 (new species). Type material. Deposited in the private collection of H. Kaddumi under the number ERMNH 1076; right humerus (Kaddumi 2006, fig. 3–7). Type locality. Muwaqqar town, 30 km west of AlHarrana area, Jordan, Asia;
 921 922 923 924 925 926 927 	Gigantatypus salahi Kaddumi, 2006 Taxonomic history. Gigantatypus salahi Kaddumi, 2006 (new species). Type material. Deposited in the private collection of H. Kaddumi under the number ERMNH 1076; right humerus (Kaddumi 2006, fig. 3–7). Type locality. Muwaqqar town, 30 km west of AlHarrana area, Jordan, Asia; Muwaqqar Chalk Marl Formation, Maastrichtian, Late Cretaceous (Kaddumi 2006).
921 922 923 924 925 926 927 928	Gigantatypus salahi Kaddumi, 2006 Taxonomic history. Gigantatypus salahi Kaddumi, 2006 (new species). Type material. Deposited in the private collection of H. Kaddumi under the number ERMNH 1076; right humerus (Kaddumi 2006, fig. 3–7). Type locality. Muwaqqar town, 30 km west of AlHarrana area, Jordan, Asia; Muwaqqar Chalk Marl Formation, Maastrichtian, Late Cretaceous (Kaddumi 2006). <u>Referred material and range</u> . No material has been referred to date.

932	the lateral process of humerus located away from the caput humeri. Gigantatypus can
933	be distinguish from Pan-Dermochelyidae by the small anterior projection of lateral
934	process of humerus and from other Pan-Cheloniidae by the more prominently
935	enlarged lateral process of humerus, and capitellum ventrally situated.
936	Comments. Gigantatypus salahi is based on a single humerus from the Maastrichtian
937	of Jordan (Kaddumi 2006). The placement of this species as Chelonioidea is
938	supported by the lateral process, but its affinities within Cheloniidae is difficult to
939	establish since the lack of preserved material. We agree with Kaddumi (2006) to
940	recognize G. salahi as Cheloniidae given the lack of prominent anterior process of
941	the humerus, a diagnostic feature of Dermochelyidae.
942	
943	Oertelia gigantea (Oertel, 1914)
944	Taxonomic history. Toxochelys gigantea Oertel, 1914 (new species); "Toxochelys"
	<u>Taxonomic instory</u> . Toxocherys gigunied Octor, 1914 (new species), Toxocherys
945	gigantea Nicholls 1988 (incertae sedis); Oertelia gigantea Karl et al. 2012 (new
945	gigantea Nicholls 1988 (incertae sedis); Oertelia gigantea Karl et al. 2012 (new
945 946	<i>gigantea</i> Nicholls 1988 (incertae sedis); <i>Oertelia gigantea</i> Karl et al. 2012 (new combination).
945 946 947	<i>gigantea</i> Nicholls 1988 (incertae sedis); <i>Oertelia gigantea</i> Karl et al. 2012 (new combination). <u>Type material</u> . Holotype is lost, fragments of the skull (Karl et al. 2012, pl. 1);
945 946 947 948	<i>gigantea</i> Nicholls 1988 (incertae sedis); <i>Oertelia gigantea</i> Karl et al. 2012 (new combination). <u>Type material</u> . Holotype is lost, fragments of the skull (Karl et al. 2012, pl. 1); GZG.V.5000 (lectotype), trunk vertebra (Karl et al. 2012, pl. 2).
945 946 947 948 949	 <i>gigantea</i> Nicholls 1988 (incertae sedis); <i>Oertelia gigantea</i> Karl et al. 2012 (new combination). <u>Type material</u>. Holotype is lost, fragments of the skull (Karl et al. 2012, pl. 1); GZG.V.5000 (lectotype), trunk vertebra (Karl et al. 2012, pl. 2). <u>Type locality</u>. Near Garbsen close to Hannover, Germany; <i>Hoplites Deshayesi</i>–Zone
945 946 947 948 949 950	 <i>gigantea</i> Nicholls 1988 (incertae sedis); <i>Oertelia gigantea</i> Karl et al. 2012 (new combination). <u>Type material</u>. Holotype is lost, fragments of the skull (Karl et al. 2012, pl. 1); GZG.V.5000 (lectotype), trunk vertebra (Karl et al. 2012, pl. 2). <u>Type locality</u>. Near Garbsen close to Hannover, Germany; <i>Hoplites Deshayesi</i>–Zone of Kastendamm, Early Aptian, Late Cretaceous (Oertel 1914; Zangerl 1953; Karl et
945 946 947 948 949 950 951	 <i>gigantea</i> Nicholls 1988 (incertae sedis); <i>Oertelia gigantea</i> Karl et al. 2012 (new combination). <u>Type material</u>. Holotype is lost, fragments of the skull (Karl et al. 2012, pl. 1); GZG.V.5000 (lectotype), trunk vertebra (Karl et al. 2012, pl. 2). <u>Type locality</u>. Near Garbsen close to Hannover, Germany; <i>Hoplites Deshayesi</i>–Zone of Kastendamm, Early Aptian, Late Cretaceous (Oertel 1914; Zangerl 1953; Karl et al. 2012).
945 946 947 948 949 950 951 952	 gigantea Nicholls 1988 (incertae sedis); Oertelia gigantea Karl et al. 2012 (new combination). Type material. Holotype is lost, fragments of the skull (Karl et al. 2012, pl. 1); GZG.V.5000 (lectotype), trunk vertebra (Karl et al. 2012, pl. 2). Type locality. Near Garbsen close to Hannover, Germany; Hoplites Deshayesi–Zone of Kastendamm, Early Aptian, Late Cretaceous (Oertel 1914; Zangerl 1953; Karl et al. 2012). Referred material and range. Late Cretaceous (Early Aptian), type locality (Karl et al.

956	presence of vomer extending further posteriorly to the level of the developed
957	pterygoidal processus, smaller exoccipital angle, relatively long skull in relation to
958	the width of mandibular joints. Oertelia can be differentiated from Toxochelys
959	latiremis by the absence of palatinate contact of the vomer and it can be
960	differentiated from Ctenochelys acris by the ratio of vomer/condylobasal length of 3
961	(in <i>C. acris</i> it is lesser than 3). Although the similarity of palate area between them,
962	the roughness on the anterior choanal edge is much stronger pronounced in Oertelia
963	gigantea. Oertelia gigantea can be diagnosed as Pan-Cheloniidae by the basioccipital
964	depression with a V-shaped crest.
965	Comments. Oertelia gigantea is based on an incomplete and crushed skull from the
966	Early Aptian of Germany (Karl et al. 2012). Oertelia gigantea was never included in
967	a phylogenetic analysis and we tentatively place it as Pan-Chelonioidea based on the
968	presence of one diagnosis of this group.
968 969	presence of one diagnosis of this group.
	presence of one diagnosis of this group. Pan-Dermochelyidae Joyce et al., 2004
969	
969 970	Pan-Dermochelyidae Joyce et al., 2004
969 970 971	Pan-Dermochelyidae Joyce et al., 2004 Phylogenetic definition. Following Joyce et al. (2004), the term Pan-Dermochelyidae
969 970 971 972	<i>Pan-Dermochelyidae</i> Joyce et al., 2004 <u>Phylogenetic definition</u> . Following Joyce et al. (2004), the term <i>Pan-Dermochelyidae</i> is herein referred to the Panstem clade that includes the crown <i>Dermochelyidae</i> but
969 970 971 972 973	Pan-Dermochelyidae Joyce et al., 2004 Phylogenetic definition. Following Joyce et al. (2004), the term Pan-Dermochelyidae is herein referred to the Panstem clade that includes the crown Dermochelyidae but not the lineages that contain the Protostega gigas Cope, 1871 nor Chelonia mydas
969 970 971 972 973 974	Pan-Dermochelyidae Joyce et al., 2004 Phylogenetic definition. Following Joyce et al. (2004), the term Pan-Dermochelyidae is herein referred to the Panstem clade that includes the crown Dermochelyidae but not the lineages that contain the Protostega gigas Cope, 1871 nor Chelonia mydas (Linnaeus, 1758).
969 970 971 972 973 974 975	Pan-Dermochelyidae Joyce et al., 2004 Phylogenetic definition. Following Joyce et al. (2004), the term Pan-Dermochelyidae is herein referred to the Panstem clade that includes the crown Dermochelyidae but not the lineages that contain the Protostega gigas Cope, 1871 nor Chelonia mydas (Linnaeus, 1758). Diagnosis. Pan-Dermochelyidae can be diagnosed as Chelonioidea by the full list of
969 970 971 972 973 974 975 976	Pan-Dermochelyidae Joyce et al., 2004 Phylogenetic definition. Following Joyce et al. (2004), the term Pan-Dermochelyidae is herein referred to the Panstem clade that includes the crown Dermochelyidae but not the lineages that contain the Protostega gigas Cope, 1871 nor Chelonia mydas (Linnaeus, 1758). Diagnosis. Pan-Dermochelyidae can be diagnosed as Chelonioidea by the full list of characters given above for that taxon. Representatives of Pan-Dermochelyidae can

980	significant portions of pterygoids, quadratojugal small and ventrally placed beneath a
981	posterior extension of the jugal, prominent anterior projection of lateral process of
982	humerus, and carapacial scutes absent or reduced.
983	
984	Corsochelys haliniches Zangerl, 1960
985	Taxonomic history. Corsochelys haliniches Zangerl, 1960 (new species).
986	Type material. FMNH PR249 (holotype), fragments of the skull, partial shell, three
987	ribs, parts of plastron, portions of shoulder girdle, pelvis, hindlimbs and forelimbs,
988	possibly a young individual (Zangerl 1960, fig. 126-145).
989	Type locality. Near West Greene, Greene County, Alabama, USA; Mooreville Chalk,
990	Selma Formation, Early Campanian, Late Cretaceous (Zangerl 1960).
991	Referred material and range. No material has been referred to date.
992	Diagnosis. Corsochelys haliniches can be diagnosed as Pan-Chelonioidea by the
993	presence of carapacial and plastral fontanelles, lateral process of the humerus
994	separated from caput humeri, and diagnosed as Chelonioidea by the presence of
995	lateral process of humerus located away from the caput humeri and the orbits facing
996	laterally. C. haliniches can be diagnosed as Pan-Dermochelyidae by the reduced
997	rostrum basisphenoidale, but it can be differentiated from other Pan-Dermochelyidae
998	by the unusual small size of the skull and the nuchal with a strongly forward
999	projection. C. haliniches can be differentiated from Dermochelyidae by the absence
1000	of the crista supraoccipitalis.
1001	Comments. Corsochelys haliniches is based on several fragments from the Early
1002	Campanian of Alabama (Zangerl 1960). At the time of its description, C. haliniches
1003	was classified as Cheloniidae and some putative synapomorphies of this clade, as the
1005	was classified as chefolindae and some putative synapomorphies of this clade, as the

1004	basioccipital depression with a V-shaped crest and a high dorsum sellae, can be seen
1005	in this holotype. However, it is currently placed as a stem-Dermochelyidae because it
1006	also possesses synapomorphies of this group, as reduced rostrum basisphenoidale
1007	and very reduced carapacial scutes, leading Weems (1988) to suggest that the
1008	similarity with Cheloniidae would have been due to convergence for the marine
1009	specialization and not closer phylogenetic affinities. Supporting the uncertainty,
1010	Gentry (2017) found low statistical support for its placement, since the strict
1011	consensus indicated affinities with stem Chelonioidea whereas the 50% majority-rule
1012	consensus suggested more proximity with stem Dermochelyidae. Gentry (2017)
1013	suggested that the placement of C. haliniches as Pan-Chelonioidea might not be
1014	accurate and limiting the analysis with characters specific to sea turtles led C .
1015	haliniches to group with those taxa, causing low support of its affinities. However, as
1016	it shares sinapomorphies with Chelonioidea and we do not have evidences yet to
1017	exclude it from Pan-Chelonioidea, we placed C. haliniches based on the phylogenetic
1018	trees available, which found closer affinities with Dermochelyidae (Hirayama 1994,
1019	1998; Kear and Lee 2006).
1020	
1021	Mesodermochelys undulatus Hirayama and Chitoku, 1996
1022	Taxonomic history. Mesodermochelys undulatus Hirayama and Chitoku, 1996 (new
1023	species).
1024	Type material. HMG 5 (holotype); supraoccipital, series of vertebrae from 4 th
1025	cervical to caudal, fragments of anterior and posterior limbs, posterior portion of the
1026	carapace and plastron (Hirayama and Chitoku 1996, fig. 2–3, 7–17).

1027	Type locality. Shirafunenosawa River, Inasato, Hobetsu district of Mukawa Town,
1028	Hokkaido, Japan, Asia; Hakobuchi Group, Early sandy Siltstone Formation, Late
1029	Maastrichtian, Late Cretaceous (Hirayama and Chitoku 1996).
1030	Referred material and range. Late Cretaceous (Early Campanian), Osoushinai
1031	Formation, Nakagawa-cho, Hokkaido, Japan (Hirayama and Hikida 1998); Late
1032	Cretaceous (Early Maastrichtian), type formation, Ohmagarinosawa River, Hiraoka,
1033	Hobetsu, Japan (Hirayama and Chitoku 1996); Late Cretaceous (Early
1034	Maastrichtian), type formation, Pankerusanosawa River, Hiraoka, Hobetsu, Japan
1035	(Hirayama and Chitoku 1996); Late Cretaceous (Early Maastrichtian), type
1036	formation, Pankerusanosawa River, Tomiuchi, Hobetsu, Japan (Hirayama and
1037	Chitoku 1996); Late Cretaceous (Early Maastrichtian), type formation, Hobetsu
1038	River, Mobetsu, Hobetsu, Japan (Hirayama and Chitoku 1996); Late Cretaceous
1039	(Campanian-Maastrichtian), Hobetsu River, Kiusu, Hobetsu, Japan (Hirayama and
1040	Chitoku 1996); Late Cretaceous (Early Maastrichtian), Sososhisawa, Inasato,
1041	Hobetsu, Japan (Hirayama and Chitoku 1996).
1042	Diagnosis. Mesodermochelys undulatus can be diagnosed as Pan-Chelonioidae by
1043	the presence of flatted carpals and/or tarsal elements and presence of carapacial and
1044	plastral fontanelles in adults. It can be diagnosed as Chelonioidea by the presence of
1045	a small lateral process of ischium (metischial process), and a lateral process of
1046	humerus located away from the caput humeri. M. undulatus can be differentiated
1047	from other Pan-Dermochelyidae by the combination of the following characters
1048	states: lateral process of the humerus distally located, but still more proximal to caput
1049	humeri than all other Pan-Dermochelyidae, well developed bony shell, lower
1050	triturating surface with isolated symphyseal and lingual ridges, undulating medial

1051 margin of broader peripherals, narrow neurals, and elongate iliac blade with outward1052 curvature.

1053 Comments. *Mesodermochelys undulatus* is based on fragmentary cranial and several 1054 post-cranial materials, with more than 10 referred specimens (Hirayama and Chitoku 1055 1996). The type specimens are from the Early Maastrichtian of Japan, but the 1056 discovery of a right humerus, also from Japan, extends back the geological range of M. undulatus to the Early Campanian (Hirayama and Hikida 1998). Due to the 1057 1058 fragmentary nature of the skull remains of *Mesodermochelys*, its phylogenetic relationships within Pan-Dermochelyidae are still unclear, but it is likely that this 1059 1060 genus is more related to the Cenozoic species (Eosphargis, Psephophorus and 1061 Dermochelys) than Corsochelys (Hirayama and Chitoku 1996). 1062 1063 Pan-Chelonioidea Indet. 1064 Comments. Only one sea turtle fossil species can be assigned as Pan-Chelonioidea, 1065 but due to the lack of diagnostic features, the phylogenetic placement within major 1066 clades is not well supported, thus we considered this species as Pan-Chelonioidea Indeterminate. We followed the last reviewer rule and keep the use of current 1067 1068 nomenclature in order to avoid proposing useless nomenclatural acts that inflate the 1069 number of names applied to one species or genus. 1070 1071 Zangerlchelys arkansaw (Schmidt, 1944) 1072 Taxonomic history. Catapleura arkansaw Schmidt, 1944 (new species); Catapleura 1073 arcansaw Hirayama 1997 (misspelled species epithet); Zangerlchelys arkansaw 1074 Hirayama 2006 (new combination).

1075	Type material. FMNH P27045 (holotype), nearly complete carapace and plastron
1076	(Schmidt 1944, fig. 24).
1077	Type locality. Gather Brothers Farm, one-mile northeast of Okolona, Clark County,
1078	Arkansas, USA (Schmidt 1944); Marlbrook Marl Formation, Late Campanian, Late
1079	Cretaceous (Hirayama 2006).
1080	Referred material and range. No material has been referred to date.
1081	Diagnosis. Zangerlchelys arkansaw can be diagnosed as Pan-chelonioid by the
1082	presence of carapacial and plastral fontanelles in adults.
1083	Comments. Zangerlchelys arkansaw is based on a carapace and plastron from the
1084	Late Campanian of Arkansas (Schmidt 1944; Hirayama 2006). It was first described
1085	as Cheloniidae, named Catapleura arkansaw, but the only diagnostic feature pointed
1086	out by Schmidt (1944) (a triangular first peripheral with narrow contact with first
1087	costal) to include it to Catapleura varies within Cheloniidae (Hirayama 2006).
1088	Hirayama (2006) detected more differential features and proposed a new
1089	combination, Zangerlchelys arkansaw. We agree with Hirayama (2006) that due to
1090	the lack of cranial and humeral information, the phylogenetic relationship of Z.
1091	arkansaw within Pan-Chelonioidea still unknown and it is considered as Pan-
1092	Chelonioidea Indet. herein.
1093	
1094	Eucryptodira Indet.
1095	Comments. In this section, we assigned the marine species from Cretaceous
1096	previously allocated within Pan-Chelonioidea and Thalassemydidae but currently do
1097	not correspond to the diagnosis proposed for these groups (see each taxon for

1098	details). Therefore, we allocate these species to the most conservative related clade
1099	formerly assigned, i.e., Eucryptodira Indeterminate.
1100	
1101	Cynocercus incisus Cope, 1871
1102	Taxonomic history. Cynocercus incisus Cope, 1871 (new species); Toxochelys
1103	latiremis = Cynocercus incisus Hay 1908 (junior synonym); Cynocercus incisivus
1104	Zangerl 1953 (incertae sedis and misspelled species epithet).
1105	Type material. AMNH 1582 (holotype); two caudal vertebrae and a metapodial
1106	(Cope 1871, no figures; Hay 1908).
1107	Type locality. Near to Butte's Creek, south of Fort Wallace, Wallace County,
1108	Kansas, USA; probably Niobrara Formation, Late Cretaceous (Cope 1871).
1109	Comments. Cynocercus incisus was based on vertebrae and metapodial probably
1110	from the Late Cretaceous of Kansas (Cope 1871). It was assigned to Toxochelyidae
1111	by Cope (1871), but Zangerl (1953) pointed that its vertebrae differ significantly
1112	from those of Toxochelys and Ctenochelys, suggesting that C. incisus might not be
1113	Toxochelyidae. Due to the lack of additional material to confirm its phylogenetic
1114	relationship, we cannot recognize it as Pan-Chelonioidea, and we consider it as a
1115	Eucryptodira Indeterminate.
1116	
1117	Kimurachelys slobodae Brinkman et al., 2015
1118	Taxonomic history. Kimurachelys slobodae Brinkman et al., 2015 (new species).
1119	Type material. TMP 2010.85.17 (holotype), mandible with both dentaries, partial left
1120	angular, and left coronoid (Brinkman et al. 2015, fig. 3); TMP 2012.39.24 (paratype),

1122

1123

mandible with both dentaries, articulars and left coronoid (Brinkman et al. 2015, fig. 3).

Type locality. Sage Creek area, southeast of Manyberries, Alberta, Canada; 1124 uppermost part of the Dinosaur Park Formation, Campanian, Late Cretaceous 1125 (Brinkman et al. 2015). 1126 Referred material and range. Late Cretaceous (Campanian) from the Lethbridge Coal 1127 Zone, Dinosaur Park Formation, Alberta, Canada (Brinkman et al. 2006). 1128 Diagnosis. Kimurachelys slobodae can be differentiated from Nichollsemys and 1129 Toxochelys by possessing expanded triturating surface, and it can be differentiated 1130 from Chelonioidea by the posterior end of the dentary rising sharply and forming a 1131 tall coronoid process, and lingual edge of the triturating surface is significantly 1132 higher than the labial edge when seen in lateral view. *Kimurachelys* resembles 1133 *Ctenochelys* by the expanded triturating surface and well-developed symphyseal 1134 ridge but differs by having symphyseal ridge restricted to the posterior third of the 1135 symphysis (similar to the Eocene Chelonioidea Argillochelys) rather than extending 1136 the full length of the symphysis. The dentary of Kimurachelys also resembles the 1137 living taxa, and it shares with *Lepidochelys olivacea* a deeply concave triturating surface with a distinctive scoop shape and both have a lingual edge that is higher 1138 1139 than the labial.

1140 Comments. Kimurachelys slobodae is based on mandibles from the Campanian of 1141 Canada (Brinkman et al. 2015). Despite the similarities between the triturating 1142 surface of *Kimurachelys* with other species (pointed out above), none of them are 1143 diagnostic features used to identify major clades. Also, the morphology of triturating 1144 surfaces has been related with diet preference (Parham and Pyenson 2010), and such

1145	similarities might be due to convergence and, therefore, it is not necessarily related
1146	with phylogenetic proximity (Brinkman et al. 2015).
1147	
1148	Prionochelys nauta Zangerl, 1953
1149	(= Prionochelys matutina Zangerl, 1953)
1150	Taxonomic history. Prionochelys nauta Zangerl, 1953 (new species); Prionochelys
1151	nauta = Prionochelys matuina (misspelled species epithet) = Prionochelys
1152	galeotergum Hirayama 1997 (senior synonym).
1153	Type material. FMNH P26237 (holotype), partial shell, fragments of plastron,
1154	costals, neurals and peripheral fragments (Zangerl 1953, fig. 115-117).
1155	Type locality. Devil's Backbone area, Saratoga municipality, Howard County,
1156	Arkansas, USA; Marlbrook Marl Formation, Late Campanian, Late Cretaceous
1157	(Zangerl 1953).
1158	Referred material and range. Late Cretaceous (Late Campanian), type locality
1159	(Zangerl 1953); Late Cretaceous (Late Campanian), type formation, Nick Gaither
1160	Farm, road to Arkadelphia, Clark County, Arkansas, USA (Zangerl 1953); Cox
1161	Farm, type formation, Clark County, Arkansas, USA (Zangerl 1953); Late
1162	Cretaceous (Early Campanian), Selma Formation, Moore Brothers Farm, Harrel
1163	Station area, Dallas County, Alabama, USA (type material of Prionochelys matutina;
1164	Zangerl 1953).
1165	Diagnosis. Prionochelys possessed only one differential diagnose of Pan-
1166	Chelonioidea, the presence of carapacial and plastral fontanelles in adults.
1167	Prionochelys can be differentiated from other species by the carapace with keeled
1168	neurals (elevations between the neurals 2-3, 5-6 and 8-9).

1169	Comments. Prionochelys nauta is based on fragments of carapace and plastron from
1170	the Late Campanian of Arkansas (Zangerl 1953). Due to the lack of complete skull
1171	material and limbs, the phylogenetic affinity of this species is unknown. The features
1172	present in the referred material suggests great resemblance with the pelvic girdle of
1173	Toxochelys and the xiphiplastra and the skull of Ctenochelys, which might stand for a
1174	putative placement of Prionochelys within stem-Chelonioidea. However, we did not
1175	find more diagnoses feature to confirm its assignment as Pan-Chelonioidea, and
1176	therefore we consider it as Eucryptodira Indeterminate.
1177	
1178	Porthochelys laticeps Williston, 1901
1179	Taxonomic history. Porthochelys laticeps Williston, 1901 (new species).
1180	Type material. KU 1204 (holotype), almost complete skull and left side of the
1181	carapace, the plastron and right humerus (Williston 1901, pls. 19-21; Hay 1908, fig.
1182	231–233; Zangerl 1953).
1183	Type locality. Saline River, Trego County, Kansas, USA; Niobrara Formation, Late
1184	Cretaceous (Williston 1901; Hay 1908).
1185	Referred material and range. No material has been referred to date.
1186	Diagnosis. Porthochelys possessed only one differential diagnose of Pan-
1187	Chelonioidea, the retention of carapacial and plastral fontanelles in adults, which can
1188	also be seen in Pleurodiras. Porthochelys can be differentiated from crown-
1189	Chelonioidea by the orbits facing dorsally and it can be distinguished from stem-
1190	Chelonioidea by the highly ossified carapace and, specially, the plastron, with only
1191	small fontanelles, the stoutness of the skull with broad and flattened maxillae, and
1192	the curved appendicular elements.

1193	Comments. Porthochelys laticeps is based on skull and parts of the post-cranial
1194	elements, from the Late Cretaceous of Kansas (Williston 1901; Hay 1908). Despite
1195	the similarity with the skull of Toxochelys latiremis, P. laticeps has little
1196	resemblance with Pan-Chelonioidea, and the almost complete shell ossification,
1197	summed with the curved appendicular elements, challenge its identification as Pan-
1198	Chelonioidea. A detailed revision of its remains with further inclusion in a
1199	phylogenetic analysis is needed, and for now we consider it as a Eucryptodira
1200	Indeterminate.
1201	
1202	"Thalassemys" cava (Nessov, 1984)
1203	Taxonomic history. Parathalassemys cava Nessov, 1984 (new species); Thalassemys
1204	carva Karl et al. 2012 (new combination and misspelled species epithet).
1205	Type material. CCMGE 1/12086 (holotype) (Averianov 2002), fragments of
1206	carapace and plastron (Nessov and Krassovskaya 1984, pls. 3-4).
1207	Type locality. Itemir, Bukhara Viloyat, Uzbekistan, Asia; Kulbecke Formation, Late
1208	Albian? – early Cenomanian, Early? – Late Cretaceous (Averianov 2002).
1209	Referred material and range. No material has been referred to date.
1210	Diagnosis. "Thalassemys" cava can be differentiated from other eucryptodirans by
1211	the presence of a deep sulci of horny shields, broad centrals, with folds crossed by
1212	concentric lines in the borders, last costal plates with two widely separated free
1213	ribheads, two metaneurals, heads of the trunk ribs are strongly developed, and
1214	plastron in large specimens moderately developed and shows central fontanelles.
1215	Comments. "Thalassemys" cava were originally identified as a Thalassemydidae,
1216	but later it was reallocated to Macrobaenidae (Sukhanov et al. 2000), and then

1217	considered as Testudines incertae sedis sharing similarities to Plesiochelyidae
1218	(Averianov 2002). More recently, it was recognized once again as Thalassemydidae
1219	(Karl et al. 2012). However, according to the diagnosis of Thalassemydidae and
1220	Thalassemys proposed by Püntener (2015), it cannot be identified as belonging to
1221	this genus neither this family because their diagnostic features are not seen in " T ".
1222	cava. It is hence treated as Eucryptodira Indet. herein.
1223	
1224	Thinochelys lapisossea Zangerl, 1953
1225	Taxonomic history. Thinochelys lapisossea Zangerl, 1953 (new species).
1226	Type material. FMNH P27453 (holotype), almost complete carapace, partial
1227	plastron, posterior shell and anterior caudal vertebrae, and fragments of the girdle
1228	(Zangerl 1953, fig. 82).
1229	Type locality. Harrel Station area, one mile east of Harrel Station, south of railroad
1230	tracks, Dallas County, Alabama, USA; Mooreville Chalk, Selma Formation, Early
1231	Campanian, Late Cretaceous (Zangerl 1953).
1232	Referred material and range. Late Cretaceous (Early Campanian), type locality
1233	(Zangerl 1953).
1234	Diagnosis. Thinochelys possessed only one differential diagnose of Pan-
1235	Chelonioidea, the retention of carapacial and plastral fontanelles in adults.
1236	Thinochelys can be differentiated from stem-Chelonioidea by the almost complete
1237	ossification of the carapace, similar to Porthochelys, but it can be distinguished from
1238	this genus by the less fontanellization of the plastron and posterior peripherals much
1239	longer than wide.

1240	Comments. Thinochelys lapisossea is based on parts of post-cranial material from the
1241	Early Campanian of Alabama (Zangerl 1953). This species was never included into a
1242	phylogenetic analysis, and similarly to Porthochelys, the almost complete
1243	ossification of carapace and plastron challenge the identification as Pan-
1244	Chelonioidea. A detailed review of the type material is necessary, but until that we
1245	consider Thinochelys as Eucryptodira Indeterminate.
1246	
1247	Turgaiscapha kushmurunica Averianov, 2002
1248	Taxonomic history. Turgaiscapha kushmurunica Averianov, 2002 (new species)
1249	Type material. ZISP PH 1/37 (holotype), pygal (Averianov 2002, fig. 11).
1250	Type locality. Kushmurun, northern Kazakhstan, Asia (Averianov 2002); lower part
1251	of
1252	Eginsai Formation, Late Campanian-early Maastrichtian?, Late Cretaceous
1253	(Averianov 2002).
1254	Referred material and range. No material has been referred to date.
1255	Diagnosis. Turgaiscapha do not possess any diagnoses of Pan-Chelonioidea nor of
1256	any clade within it.
1257	Comments. Turgaiscapha kushmurunica is based on a single pygal from the Late
1258	Cretaceous of Kazakhstan (Averianov 2002). Its placement could not be determined,
1259	and it was treated as cf. Dermochelyidae by the similarity with Corsochelys and
1260	Mesodermochelys. Its small size and the presence of well developed shell
1261	ossification can be explained as less specialized features (Averianov 2002), but it
1262	also makes it dubious to consider this species as a Dermochelyidae. For this reason,
1263	it is considered here as Pan-Chelonioidea Indeterminate.

1264	
1265	Sontiochelys cretacea Stache, 1905
1266	Taxonomic history. Sontiochelys cretacea Stache, 1905 (new species).
1267	Type material. MCST 9959 (plastotype; the holotype is lost); carapace (Karl et al.
1268	2012, fig. 1).
1269	Type locality. Mrzlek, near to Salcano/Solkan at the south-eastern flank of Monte
1270	Santo, Nova Gorizia, Slovenia; Hauterivian – Barremian, Early Cretaceous (Stache
1271	1905; Karl et al. 2012).
1272	Referred material and range. No material has been referred to date.
1273	Diagnosis. Sontiochelys cretacea can be differentiated to other eucryptodirans by the
1274	absence of a neural row, the presence of a metaneural single and wide, free rib end of
1275	pleural I alternating between peripheral II and III, presence of a nuchal notch not
1276	very deep, and pygal much wider than long.
1277	Comments. This species is considered herein because it displays a high degree of
1278	adaptation to the marine life (Karl et al. 2012), although those adaptations are not
1279	clearly pointed. After the original description, Sontiochelys was scarcely cited in the
1280	literature (e.g. Kuhn 1964), until Karl et al. (2012c) figured its plastotype and re
1281	described the species, presenting a diagnosis for the genus. Kuhn (1964) and Karl et
1282	al. (2012c) classified Sontiochelys as Thalassemydidae but following the revised
1283	diagnosis of Thalassemydidae (Püntener et al. 2015), this genus does not exhibit
1284	diagnostic characters for the group and therefore are classified herein as Eucryptodira
1285	Indeterminate.
1286	

1287 Invalid and Problematic Taxa

1289Chelone camperi Owen, 18511290nomen nudum1291Taxonomic history. Chelone camperi Owen, 1851 (new species); Chelone hoffmanni1292= Chelone camperi Lydekker 1889 (junior synonym); Chelone camperi this study1293(nomen nudum).1294Type material. Sedgwick Museum of Earth Sciences, unnumbered (Danise and Higgs12952015); two costal bones (Owen 1851, pl. 5).1296Type locality. Burham, Kent, United Kingdom; Cenomanian, Late Cretaceous (Owen12971851; Danise and Higgs 2015).1298Comments. Chelone camperi was based on two costals from the Late Cretaceous of1299Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of1300Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1302junior synonyms of Puppigerus camperi, and C. camperi are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.1306Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni1311= Chelone Faujasii = Chelone createcea Winkler 1869 (junior synonym).	1288	
1291Taxonomic history. Chelone camperi Owen, 1851 (new species); Chelone hoffmanni1292= Chelone camperi Lydekker 1889 (junior synonym); Chelone camperi this study1293(nomen nudum).1294Type material. Sedgwick Museum of Earth Sciences, unnumbered (Danise and Higgs12952015); two costal bones (Owen 1851, pl. 5).1296Type locality. Burham, Kent, United Kingdom; Cenomanian, Late Cretaceous (Owen12971851; Danise and Higgs 2015).1298Comments. Chelone camperi was based on two costals from the Late Cretaceous of1299Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of1300Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.1306Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1289	Chelone camperi Owen, 1851
1292 = Chelone camperi Lydekker 1889 (junior synonym); Chelone camperi this study 1293 (nomen nudum). 1294 Type material. Sedgwick Museum of Earth Sciences, unnumbered (Danise and Higgs 1295 2015); two costal bones (Owen 1851, pl. 5). 1296 Type locality. Burham, Kent, United Kingdom; Cenomanian, Late Cretaceous (Owen 1297 1851; Danise and Higgs 2015). 1298 Comments. Chelone camperi was based on two costals from the Late Cretaceous of 1299 Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of 1300 Allopleuron hofinanni by Lydekker (1889) and later of Puppigerus camperi (Karl et 1301 al. 2012), but the latter information could not be confirmed. Moody (1974) listed the 1302 junior synonyms of Puppigerus camperi, and C. camperi are not between them, 1303 which raises the possibility of confusion due to the name of the epithet. As suggested 1304 by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the 1305 misinformation about its senior synonyms, we proposed to consider it nomen nudum. 1306 Chelone faujasii Giebel, 1852 1307 Chelone faujasii Giebel, 1852 1308 nomen invalidum 1309 (junior synonym of Allopl	1290	nomen nudum
1293(nomen nudum).1294Type material. Sedgwick Museum of Earth Sciences, unnumbered (Danise and Higgs12952015); two costal bones (Owen 1851, pl. 5).1296Type locality. Burham, Kent, United Kingdom; Cenomanian, Late Cretaceous (Owen12971851; Danise and Higgs 2015).1298Comments. Chelone camperi was based on two costals from the Late Cretaceous of1299Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of1300Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1302junior synonyms of Puppigerus camperi, and C. camperi are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.1306Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1291	Taxonomic history. Chelone camperi Owen, 1851 (new species); Chelone hoffmanni
1294Type material. Sedgwick Museum of Earth Sciences, unnumbered (Danise and Higgs12952015); two costal bones (Owen 1851, pl. 5).1296Type locality. Burham, Kent, United Kingdom; Cenomanian, Late Cretaceous (Owen12971851; Danise and Higgs 2015).1298Comments. Chelone camperi was based on two costals from the Late Cretaceous of1299Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of1300Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1302junior synonyms of Puppigerus camperi, and C. camperi are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.1306Implement invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1292	= Chelone camperi Lydekker 1889 (junior synonym); Chelone camperi this study
12952015); two costal bones (Owen 1851, pl. 5).1296Type locality. Burham, Kent, United Kingdom; Cenomanian, Late Cretaceous (Owen12971851; Danise and Higgs 2015).1298Comments. Chelone camperi was based on two costals from the Late Cretaceous of1299Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of1300Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1302junior synonyms of Puppigerus camperi, and C. camperi are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.1306Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1293	(nomen nudum).
1296Type locality. Burham, Kent, United Kingdom; Cenomanian, Late Cretaceous (Owen12971851; Danise and Higgs 2015).1298Comments. Chelone camperi was based on two costals from the Late Cretaceous of1299Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of1300Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1302junior synonyms of Puppigerus camperi, and C. camperi are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.1306Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1294	Type material. Sedgwick Museum of Earth Sciences, unnumbered (Danise and Higgs
12971851; Danise and Higgs 2015).1298Comments. Chelone camperi was based on two costals from the Late Cretaceous of1299Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of1300Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1302junior synonyms of Puppigerus camperi, and C. camperi are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.130613071307Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1295	2015); two costal bones (Owen 1851, pl. 5).
1298Comments. Chelone camperi was based on two costals from the Late Cretaceous of1299Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of1300Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1302junior synonyms of Puppigerus camperi, and C. camperi are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.1306Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1296	Type locality. Burham, Kent, United Kingdom; Cenomanian, Late Cretaceous (Owen
1299Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of1300Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1302junior synonyms of Puppigerus camperi, and C. camperi are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.1306Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1297	1851; Danise and Higgs 2015).
1300Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1302junior synonyms of Puppigerus camperi, and C. camperi are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.130613071307Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1298	Comments. Chelone camperi was based on two costals from the Late Cretaceous of
1301al. 2012), but the latter information could not be confirmed. Moody (1974) listed the1302junior synonyms of <i>Puppigerus camperi</i> , and <i>C. camperi</i> are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), <i>Chelone camperi</i> should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.130613071307 <i>Chelone faujasii</i> Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1299	Kent (Owen 1851; Danise and Higgs 2015). It was assigned as junior synonym of
1302junior synonyms of Puppigerus camperi, and C. camperi are not between them,1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.1306Chelone faujasii Giebel, 18521307Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1300	Allopleuron hofmanni by Lydekker (1889) and later of Puppigerus camperi (Karl et
1303which raises the possibility of confusion due to the name of the epithet. As suggested1304by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.130613071307Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1301	al. 2012), but the latter information could not be confirmed. Moody (1974) listed the
 by Mulder (Karl et al. 2012), <i>Chelone camperi</i> should be avoided, and provided the misinformation about its senior synonyms, we proposed to consider it nomen nudum. <i>Chelone faujasii</i> Giebel, 1852 nomen invalidum (junior synonym of <i>Allopleuron hofmanni</i> [Gray, 1831]) <u>Taxonomic history</u>. <i>Chelone Faujasii</i> Giebel, 1852 (new species); <i>Chelone Hofmanni</i> 	1302	junior synonyms of Puppigerus camperi, and C. camperi are not between them,
1305misinformation about its senior synonyms, we proposed to consider it nomen nudum.130613071307130813081309(junior synonym of Allopleuron hofmanni [Gray, 1831])13101310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1303	which raises the possibility of confusion due to the name of the epithet. As suggested
 1306 1307 <i>Chelone faujasii</i> Giebel, 1852 1308 nomen invalidum 1309 (junior synonym of <i>Allopleuron hofmanni</i> [Gray, 1831]) 1310 <u>Taxonomic history</u>. <i>Chelone Faujasii</i> Giebel, 1852 (new species); <i>Chelone Hofmanni</i> 	1304	by Mulder (Karl et al. 2012), Chelone camperi should be avoided, and provided the
1307Chelone faujasii Giebel, 18521308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1305	misinformation about its senior synonyms, we proposed to consider it nomen nudum.
1308nomen invalidum1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1306	
1309(junior synonym of Allopleuron hofmanni [Gray, 1831])1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1307	Chelone faujasii Giebel, 1852
1310Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni	1308	nomen invalidum
	1309	(junior synonym of Allopleuron hofmanni [Gray, 1831])
1311 = <i>Chelone Faujasii</i> = <i>Chelone cretacea</i> Winkler 1869 (junior synonym).	1310	Taxonomic history. Chelone Faujasii Giebel, 1852 (new species); Chelone Hofmanni
	1311	= <i>Chelone Faujasii</i> = <i>Chelone cretacea</i> Winkler 1869 (junior synonym).

1312	Type material. Unknown; carapace (Winkler 1869).
1313	Type locality. Limburg, southern of Netherlands; Maastrichtian, Late Cretaceous
1314	(Winkler 1869).
1315	Comments. The nuchal of Chelone faujasii presents a strong notch above the neck
1316	that led Giebel (1847) to differentiate it from Allopleuron hofmanni and refer to a
1317	new species (apud Mulder 2003). Later, this difference was considered age-related
1318	and C. faujasii was synonymized to A. hofmanni (Winkler 1869; Mulder 2003).
1319	
1320	Chelonia cretacea Keferstein, 1834
1321	nomen nudum
1322	Taxonomic history. Chelonia cretacea Keferstein, 1834 (new species); Chelone
1323	<i>Hofmanni = Chelone Faujasii = Chelone cretacea</i> Winkler 1869 (junior synonym
1324	and misspelled species genera); Chelonia cretacea this study (nomen nudum).
1325	Type material. Unknown; incomplete plastron and carapace (Faujas De Saint-Fond
1326	1798, pl. 12–14).
1327	Type locality. Montagne Saint-Pierre, Limburg, Netherlands (Faujas De Saint-Fond
1328	1798); Maastrichtian, Late Cretaceous (Keferstein 1834).
1329	Comments. The literature concerning Chelonia cretacea is very scarce. After coined
1330	the name without a proper description nor figures, Keferstein (1834) mentioned
1331	"Cuvier Vol. 2, p. 239, tab 12, fig. 1", which seems to be an illustration of the type
1332	material, but such reference could not be found. Winkler (1869) compared and
1333	synonymized it to A. hofmanni, but again without a description and associated
1334	figures. Because of the lack of a morphological description of this species and proper
1335	identification of the holotype, we propose to consider it a nomen nudum.

1336	
1337	Ctenochelys procax (Hay, 1905)
1338	nomen invalidum
1339	(junior synonym of Ctenochelys stenoporus [Hay, 1905])
1340	Taxonomic history. Toxochelys procax Hay, 1905 (new species); Ctenochelys procax
1341	Zangerl 1953 (new combination); <i>Ctenochelys stenoporus = Toxochelys elkader =</i>
1342	Toxochelys bauri = Toxochelys procax (in part) Zangerl 1953 (junior synonym);
1343	Ctenochelys stenoporus = Toxochelys serrifer (in part) = Toxochelys procax =
1344	Toxochelys elkader = Lophochelys natatrix = Lophochelys venatrix = Ctenochelys
1345	tenuitesta = Ctenochelys acris Hirayama 1997 (junior synonym).
1346	Type material. AMNH 234 (holotype), skull, lower jaw (Hay 1905, fig. 13-14).
1347	Type locality. Along the Smoky Hill River, Kansas, USA; Smoky Hill Chalk
1348	member, Niobrara Formation, Early Campanian, Late Cretaceous (Hay 1905;
1349	Nicholls and Russell 1990).
1350	Comments. Ctenochelys procax was based on a crushed skull and lower jaw from the
1351	Niobrara Formation of Kansas (Hay 1905). It was first assigned to Toxochelys, but
1352	when Ctenochelys was coined by Zangerl (1953), mainly because of the features of
1353	the lower jaw, T. procax and many other Toxochelys spp. were transferred to this
1354	new genus. Later, Hirayama (1997) synonymized all of them to Ctenochelys
1355	stenoporus, considering the observed morphological variation as intraspecific.
1356	
1357	Ctenochelys tenuitesta Zangerl, 1953
1358	nomen invalidum
1359	(junior synonym of Ctenochelys stenoporus [Hay, 1905])

- 1360 <u>Taxonomic history</u>. Ctenochelys tenuitesta Zangerl, 1953 (new species); Ctenochelys
- 1361 *stenoporus = Toxochelys serrifer* (in part) *= Toxochelys procax = Toxochelys elkader*
- 1362 = Lophochelys natatrix = Lophochelys venatrix = Ctenochelys tenuitesta =
- 1363 *Ctenochelys acris* Hirayama 1997 (junior synonym).
- 1364 <u>Type material</u>. FMNH P27361 (holotype); partial carapace and plastron, bones of the
- 1365 girdle and the limbs, and vertebrae (Zangerl 1953, fig. 101).
- 1366 <u>Type locality</u>. Moore Brothers farm, Harrell Station area, Dallas County, Alabama,
- 1367 USA; Mooreville Chalk, Selma Formation, Early Campanian, Late Cretaceous
- 1368 (Zangerl 1953; Nicholls and Russell 1990).
- 1369 <u>Comments</u>. *Ctenochelys tenuitesta* was based on several fragments, probably the
- 1370 most well-represented specimen of the genus, from the Early Campanian of Alabama
- 1371 (Zangerl 1953; Nicholls and Russell 1990). It was first assigned as the type species
- 1372 of *Ctenochelys* by Zangerl (1953), but later it was synonymized by Hirayama (1997),
- 1373 who also assigned *Ctenochelys stenoporus* (Hay, 1905) as the type of this genus
- 1374 because its description precedes *C. tenuitesta* Zangerl, 1953.
- 1375

1376	Dollochelys atlantica (Zangerl, 1953)
1377	nomen invalidum
1378	(junior synonym of Catapleura repanda Cope, 1868)
1379	Taxonomic history. Toxochelys atlantica Zangerl, 1953 (new species); Toxochelys
1380	atlantica = Lytoloma angusta = Lytoloma wielandi Zangerl 1953 (senior synonym);
1381	Toxochelys atlantica = Dollochelys atlantica Zangerl 1971 (new combination);
1382	Catapleura repanda = Toxochelys atlantica Hirayama 1997 (junior synonym);

1383	Catapleura repanda = Dollochelys atlantica = Dollochelys casieri = Dollochelys
1384	coatesi Hirayama 2006 (junior synonym).
1385	Type material. YPM 625 (holotype); carapace (Zangerl 1953, fig. 79).
1386	Type locality. Barnsboro, Gloucester County, New Jersey, USA (Zangerl 1953);
1387	Greensand beds, Late Maastrichtian, Late Cretaceous (Baird 1967).
1388	Comments. Toxochelys atlantica was based on an almost complete carapace from the
1389	Late Maastrichtian of New Jersey (Zangerl 1953). When Zangerl (1971) erected a
1390	new genus, Dollochelys, he noticed the resemblance in the carapace of T. atlantica
1391	and proposed a new combination, D. atlantica. Later, the presence of a second
1392	suprapygal, a differential diagnosis of Dollochelys, was considered a variable feature
1393	(Parris et al. 1986; Hirayama 2006) and D. atlantica was considered a junior
1394	synonym of Catapleura repanda Cope, 1868 (Hirayama 1997).
1395	
1395 1396	Glaucochelone lonzeensis Dollo, 1909
	Glaucochelone lonzeensis Dollo, 1909 nomen nudum
1396	
1396 1397	nomen nudum
1396 1397 1398	nomen nudum <u>Taxonomic history</u> . <i>Glaucochelone lonzeensis</i> Dollo, 1909 (new species);
1396 1397 1398 1399	nomen nudum <u>Taxonomic history</u> . <i>Glaucochelone lonzeensis</i> Dollo, 1909 (new species); <i>Glaucochelone lonzeensis</i> Zangerl 1971 (nomen nudum).
1396 1397 1398 1399 1400	nomen nudum <u>Taxonomic history</u> . <i>Glaucochelone lonzeensis</i> Dollo, 1909 (new species); <i>Glaucochelone lonzeensis</i> Zangerl 1971 (nomen nudum). <u>Type material</u> . IRSNB Vert-00-494 (holotype); mandible (Dollo 1909, no figures).
1396 1397 1398 1399 1400 1401	nomen nudum <u>Taxonomic history</u> . <i>Glaucochelone lonzeensis</i> Dollo, 1909 (new species); <i>Glaucochelone lonzeensis</i> Zangerl 1971 (nomen nudum). <u>Type material</u> . IRSNB Vert-00-494 (holotype); mandible (Dollo 1909, no figures). <u>Type locality</u> . Lonzée village, province of Namur, near Gembloux, Belgium; "Dark
1396 1397 1398 1399 1400 1401 1402	nomen nudum <u>Taxonomic history</u> . <i>Glaucochelone lonzeensis</i> Dollo, 1909 (new species); <i>Glaucochelone lonzeensis</i> Zangerl 1971 (nomen nudum). <u>Type material</u> . IRSNB Vert-00-494 (holotype); mandible (Dollo 1909, no figures). <u>Type locality</u> . Lonzée village, province of Namur, near Gembloux, Belgium; "Dark green glauconitic clayey sand", Turonian – Maastrichtian, Late Cretaceous (Dollo
1396 1397 1398 1399 1400 1401 1402 1403	nomen nudum <u>Taxonomic history</u> . <i>Glaucochelone lonzeensis</i> Dollo, 1909 (new species); <i>Glaucochelone lonzeensis</i> Zangerl 1971 (nomen nudum). <u>Type material</u> . IRSNB Vert-00-494 (holotype); mandible (Dollo 1909, no figures). <u>Type locality</u> . Lonzée village, province of Namur, near Gembloux, Belgium; "Dark green glauconitic clayey sand", Turonian – Maastrichtian, Late Cretaceous (Dollo 1909).

1407	recognize it as such. Because of the short and vague description and the lack of
1408	figures, G. lonzeensis was treated as nomen nudum in Zangerl (1971) and it is
1409	followed herein.
1410	
1411	Lophochelys natatrix Zangerl, 1953
1412	nomen dubium
1413	Taxonomic history. Lophochelys natatrix Zangerl, 1953 (new species); Ctenochelys
1414	stenoporus = Lophochelys natatrix = Lophochelys venatrix = Ctenochelys tenuitesta
1415	= Ctenochelys acris Hirayama 1997 (junior synonym); Lophochelys natatrix this
1416	study (nomen dubium).
1417	Type material. FMNH PR220 (holotype); partial carapace and plastron, scapulae,
1418	coracoid, limb bones, and vertebrae (Zangerl 1953, fig. 91).
1419	Type locality. One mile north of the Pyramids, Logan County, Kansas, USA;
1420	Niobrara Formation, Late Cretaceous (Zangerl 1953).
1421	Comments. Lophochelys natatrix was based on several fragments from the Late
1422	Cretaceous of Kansas (Zangerl 1953). Lophochelys natatrix and Lophochelys
1423	niobrarae were described based on juvenile individuals and the features that appear
1424	to differentiate them from Lophochelys venatrix are the degree of ossification of the
1425	shell, which is related to difference of age between the individuals (Zangerl 1953).
1426	As suggested by Hirayama (1997), it is probably a young individual of a valid
1427	species, but the evidences for synonymization have low support because of the
1428	difference in size of the specimens (Zangerl 1953). Because it is juvenile, and its
1429	features do not match with any other adult species, we propose to consider
1430	Lophochelys natatrix a nomen dubium.

1431	
1432	Lophochelys niobrarae Zangerl, 1953
1433	nomen dubium
1434	Taxonomic history. Lophochelys niobrarae Zangerl, 1953 (new species); Toxochelys
1435	latiremis = Lophochelys niobrarae Hirayama 1997 (junior synonym); Lophochelys
1436	niobrarae this study (nomen dubium).
1437	Type material. FMNH UR1 (holotype); partial carapace (Zangerl 1953, fig. 94).
1438	Type locality. Kansas, USA; Niobrara Formation, Coniacian-Santonian, Late
1439	Cretaceous (Zangerl 1953).
1440	Comments. Lophochelys niobrarae was based on a partial carapace of a juvenile
1441	specimen from the Late Cretaceous of Kansas (1953). See comments for L. natatrix.
1442	Because the holotype is a juvenile individual (Hirayama 1997) and the diagnostic
1443	features do not match with any other adult species, we propose to consider
1444	Lophochelys niobrarae a nomen dubium. As result, the small shell found in Alberta,
1445	Canada and assigned as referred material of L. niobrarae by Nicholls (1990) requires
1446	careful examination.
1447	
1448	Lophochelys venatrix Zangerl, 1953
1449	nomen dubium
1450	Taxonomic history. Lophochelys venatrix Zangerl, 1953 (new species); Ctenochelys
1451	stenoporus = Lophochelys natatrix = Lophochelys venatrix = Ctenochelys tenuitesta
1452	= Ctenochelys acris Hirayama 1997 (junior synonym).
1453	Type material. FMNH P27355 (holotype), fragments of the carapace and plastron
1454	(Zangerl 1953, fig. 95).

- 1455 <u>Type locality</u>. Moore Brothers Farm, Harrel Station area, Dallas County, Alabama,
 1456 USA; Mooreville Chalk, Selma Formation, Early Campanian, Late Cretaceous
 1457 (Zangerl 1953; Nicholls and Russell 1990).
- 1458 <u>Comments</u>. *Lophochelys venatrix* was based on fragments of carapace and plastron
- 1459 from the Late Cretaceous of Alabama (Zangerl 1953). Hirayama (1997) suggested

the holotype would consist on a juvenile specimen and considered this species as a

- 1461junior synonym of *Ctenochelys stenoporus*. The broadly oval, rounded posteriorly
- shell, and the degree of specialization in the extremes of the shell differs from those
- 1463 of *Ctenochelys*, *Mexichelys* and *Toxochelys* species, so we do not agree with
- 1464 Hirayama (1997) synonym. On the other hand, we agree that the holotype and only
- 1465 known material is a juvenile specimen, lacking proper diagnostic features to hold a
- 1466 valid species. Therefore, we suggest considering *Lophochelys venatrix* a nomen
- 1467 dubium. Given that the three recognized *Lophochelys* species are nomina dubia and 1468 that those species have been diagnosed based on juvenile specimens, this genus is
- 1469 probably inappropriate.

1460

1470

1471 Lytoloma angusta Cope, 1870 1472 nomen invalidum 1473 (junior synonym of Catapleura repanda Cope, 1868) 1474 Taxonomic history. Lytoloma angusta Cope, 1870 (new species); Lytoloma angusta 1475 = Chelone sopita [in part] Cope 1870 (senior synonym); Lytoloma wielandi = 1476 Lytoloma angusta Hay 1908 (junior synonym); Toxochelys atlantica = Lytoloma 1477 angusta = Lytoloma wielandi Zangerl 1953 (junior synonym); Toxochelys atlantica = 1478 Dollochelys atlantica Zangerl 1971 (junior synonym); Catapleura repanda =

1479	Toxochelys atlantica Hirayama 1997 (junior synonym); Catapleura repanda =
1480	Dollochelys atlantica = Dollochelys casieri = Dollochelys coatesi Hirayama 2006
1481	(junior synonym).
1482	Type material. AMNH 1133 (lectotype, Spamer et al. 1995), three peripherals, a
1483	fragment of a costal and a lower jaw (Hay 1908, no figures); ANSP 9223
1484	(paralectotype, Spamer et al. 1995), three marginal plates and fragments of a fourth
1485	plate (Leidy 1865, plate 19, fig. 5; Spamer et al. 1995).
1486	Type locality. Near Barnsboro, New Jersey, USA; Barnsboro Formation, Late
1487	Cretaceous (Cope 1870).
1488	Comments. Lytoloma angusta was based on a specimen firstly described as the type
1489	of Chelone sopita (Leidy, 1865) (ANSP 9223), collected in the Mullica Hill,
1490	Gloucester County, New Jersey (Leidy 1865). Later, Hay (1908) declared the
1491	AMNH 1133 specimen as the lectotype of L. angusta, and the ANSP 9223 the
1492	paralectotype (Spamer et al. 1995). Zangerl (1953) revised the Toxochelys genus and
1493	synonymized several species to Toxochelys latiremis, expanding the geographical
1494	range of this species. Given the widespread nature of Toxochelys latiremis, he
1495	concluded that other genera described for the same formations probably belong to
1496	Toxochelys, and he synonymized L. angusta and L. wielandi to the latter genus and
1497	proposed a new combination, Toxochelys atlantica. Later, based on a second
1498	suprapygal, Zangerl (1971) erected a new genus for T. atlantica, named Dollochelys.
1499	Such differencial feature was considered variable (Parris et al. 1986), and
1500	Dollochelys spp. were synonymized to Catapleura repanda without further
1501	explanation (Hirayama 1997), but possibly because they were found in the same

1502	locality. We suggest following Hirayama (1997) and consider Lytoloma angusta as a
1503	junior synonym of Catapleura repanda Cope, 1868.
1504	
1505	Osteopygis sopitus (Leidy, 1865)
1506	nomen vanum
1507	Taxonomic history. Chelone sopita Leidy, 1865 (new species); Chelone sopita [in
1508	part] = Lytoloma angusta Cope 1870 (junior synonym); Propleura sopita Cope 1870
1509	(new combination); Osteopygis sopitus Cope 1875 (new combination); Osteopygis
1510	borealis = Osteopygis sopitus [in part] = Propleura borealis Hay 1908 (junior
1511	synonym); Osteopygis sopitus [in part] = Rhetechelys platyops Hay 1908 (junior
1512	synonym); Osteopygis emarginatus = Osteopygis sopita = Osteopygis borealis =
1513	Propleura sopita Zangerl 1953 (junior synonym); Chelone sopita Zangerl 1953
1514	(nomen vanum).
1515	Type material. RUGM unnumbered (lectotype), four peripherals (Leidy 1865, no
1516	figures; Hay 1908, fig. p. 149); ANSP 9223 (paralectotype), three marginal plates
1517	and fragments of a fourth plate (Leidy 1865, plate 19, fig. 5; Spamer et al. 1995);
1518	AMNH 2361 (paralectotype; Cope 1870), two marginal bones, part of a costal, half a
1519	femur, a tarsal and two phalanges (Cope 1870, no figures); AMNH 2351
1520	(paralectotype, Cope 1870), several peripherals, the nuchal, a few costals costal, a
1521	number of plastral bones, parts of both humeri, and a complete left femur.
1522	Type locality. Tinton Falls, Monmouth County, New Jersey, USA (Leidy 1865;
1523	Spamer et al. 1995); Late Cretaceous (Leidy 1865).
1524	Comments. Chelone sopita was based on two specimens from New Jersey (Leidy
1525	1865). The first specimen (RUGM unnumbered) was described unsatisfactorily and

1526	without figures by Leidy (1865), until Hay (1908) provided a drawing. The second
1527	specimen (ANSP 9223), collected in the Mullica Hill, Gloucester County, was
1528	assigned as type of a new species, Lytoloma angusta in Cope (1870). More two
1529	specimens were referred to Chelone sopita in Cope (1870). The first one was
1530	collected at the quarry of Barclay Edwards, near Harrisonville, Salem County, and it
1531	is under the identification AMNH 2361. Cope (1870) transferred it to Propleura and
1532	then to Osteopygis in Cope (1875). However, Hay (1908) affirmed it does not belong
1533	to Osteopygis and transferred it to Rhetechelys due to the proximity of localities. The
1534	second specimen, AMNH 2351, was transferred to Osteopygis in Cope (1868), but
1535	Hay (1908) compared Osteopygis sopita to Osteopygis borealis and concluded that
1536	they do not present differential features and he considered O. sopita (AMNH 2351) a
1537	junior synonym of O. borealis. Zangerl (1953) considered Osteopygis sopitus,
1538	Propleura sopita, Lytoloma angusta and Osteopygis borealis as junior synonym of
1539	Osteopygis emarginatus. It is not clear if the type specimen (RUGM unnumbered)
1540	was reviewed and synonymized in one of those studies. Given the inconsistency and
1541	uncertainty of this species and the remaining type material, we agree with Zangerl
1542	(1953) to consider it nomen vanum.
1543	
1544	Platychelone emarginata Dollo, 1909
1545	nomen nudum
1546	Taxonomic history. Platychelone emarginata Dollo, 1909 (new species);
1547	Platychelone emarginata Mulder et al. 1998 (nomen nudum).
1548	Type material. IRSNB Vert-00000-01681 (holotype); carapace (Dollo 1909, no
1549	figures).

1550	Type locality. Belgian Limburg, Belgium; Maastrichtian, Late Cretaceous (Dollo
1551	1909).
1552	Comments. Platychelone emarginata was based on a single carapace from the
1553	Maastrichtian type area (Mulder et al. 1998). Mulder (1998) proposed to consider it a
1554	nomen nudum because it was not formally described nor illustrated.
1555	
1556	Prionochelys matutina Zangerl, 1953
1557	nomen dubium
1558	Taxonomic history. Prionochelys matutina Zangerl, 1953 (new species);
1559	Prionochelys nauta = Prionochelys matuina = Prionochelys galeotergum Hirayama
1560	1997 (junior synonym and misspelled species epithet); Prionochelys matutina this
1561	study (nomen dubium).
1562	Type material. FMNH P27561 (holotype); a portion of carapace and plastron and
1563	elements of the pelvis (Zangerl 1953, fig. 118-120).
1564	Type locality. Moore Brothers Farm, Harrel Station area, Dallas County, Alabama,
1565	USA; Mooreville Chalk, Selma Formation, Early Campanian, Late Cretaceous
1566	(Zangerl 1953; Nicholls and Russell 1990).
1567	Comments. Prionochelys matutina was based on a fragmentary carapace, plastron
1568	and pelvis of a juvenile individual from the Early Campanian of Alabama (Zangerl
1569	1953). Apart from the ossification of the carapace keel, it is very similar to
1570	Prionochelys nauta, which led Hirayama (1997) to identify the holotype of P.
1571	matutina as young individuals of P. nauta. However, Hirayama (1997) did not
1572	considered Zangerl (1953)'s observation that younger individuals have more
1573	conspicuous ornamental processes than adults, and the young P. matutina possess a

1574	keel elevation much smaller than the adult of <i>P. nauta</i> . There are also differences in
1575	the proportions of the neural elements and the plastron of <i>P. nauta</i> and <i>P. matutina</i> .
1576	We, therefore, do not agree with the synonymization of <i>P. matutina</i> and <i>P. nauta</i> . In
1577	addition, because this specimen is a juvenile, very fragmented, and do not present
1578	total similarity with another species, it is not appropriated to consider P. matutina a
1579	valid species. Thence, we propose to consider it a nomen dubium.
1580	
1581	Prionochelys galeotergum Zangerl, 1953
1582	nomen dubium
1583	Taxonomic history. Prionochelys galeotergum Zangerl, 1953 (new species);
1584	Prionochelys nauta = ?Prionochelys matuina = Prionochelys galeotergum Hirayama
1585	1997 (junior synonym); Prionochelys galeotergum this study (nomen dubium).
1586	Type material. FMNH PR125 (holotype); portion of the carapace (Zangerl 1953, fig.
1587	122).
1588	Type locality. Gove County, Kansas, USA; Niobrara Formation, Late Cretaceous
1589	(Zangerl 1953).
1590	Comments. Prionochelys galeotergum was based on a fragmentary carapace of a
1591	young individual from the Late Cretaceous (Zangerl 1953). This material was
1592	purchased, and the specific locality is unknown, but according to Zangerl (1953) the
1593	label seems to indicate it came from Cove County [sic] which we believe is actually
1594	Gove County, Kansas. Hirayama (1997) suggested it as junior synonym of P. nauta
1595	without pointing out a proper justification for the synonym. P. galeotergum possess
1596	an anal elevation and post-nuchal fontanelles, and both could be an age-dependent
1597	feature. The remaining morphological features are also found in other Prionochelys

1598	species, and therefore are not enough to diagnose a different species. Because the
1599	synonymization was not properly justified, the holotype belongs to a juvenile
1600	individual, and a keeled carapace formed only by the epithecal ossicles is also seen in
1601	Ctenochelys spp., we propose to consider it a nomen dubium.
1602	
1603	Tomochelone lonzeensis Dollo, 1909
1604	nomen nudum
1605	Taxonomic history. Tomochelone lonzeensis Dollo, 1909 (new species);
1606	Tomochelone lonzeensis Zangerl 1971 (nomen nudum).
1607	Type material. IRSNB Vert-00-493 (holotype); mandible (Dollo 1909, no figures).
1608	Type locality. Lonzée village, province of Namur, near Gembloux, Belgium; Dark
1609	green glauconitic clayey sand, Turonian – Maastrichtian, Late Cretaceous (Dollo
1610	1909).
1611	Comments. Tomochelone lonzeensis was based on a single mandible from the Late
1612	Cretaceous of Lonzée (Dollo 1909). Despite the mandible resembles those of stem-
1613	Chelonioidea, it could not be truly recognized as such, and, in fact, according to
1614	Zangerl (1971) there are some features that are not found in stem-Chelonioidea.
1615	Because of the short and vague description and the lack of figures, T. lonzeensis was
1616	treated as nomen nudum in Zangerl (1971) and it is followed herein.
1617	
1618	Toxochelys bauri Wieland, 1905
1619	nomen invalidum
1620	(junior synonym of Ctenochelys stenoporus [Hay, 1905])

1621	Taxonomic history. Toxochelys bauri Wieland, 1905 (new species); Ctenochelys
1622	stenoporus = Toxochelys stenoporus = Toxochelys bauri = Toxochelys procax =
1623	Toxochelys elkader Zangerl 1953 (junior synonym).
1624	Type material. YPM 2823 (holotype); complete carapace and plastron (Wieland
1625	1905, fig. 1–4, 6–7 and pl. 10).
1626	Type locality. Three miles north of Monument Rocks, Gove County, Kansas, USA
1627	(Wieland 1905; Karl and Nyhuis 2012); Smoky Hill Chalk Member, Niobrara
1628	Formation, Early Campanian, Late Cretaceous (Hay 1902; Wieland 1905; Nicholls
1629	and Russell 1990).
1630	Comments. Toxochelys bauri was based on a complete plastron and a keeled
1631	carapace from the Early Campanian of Kansas (Wieland 1905). Zangerl (1953)
1632	recognized that it is possible they actually belong to <i>Ctenochelys procax</i> , but since <i>C</i> .
1633	procax has no associated shell, the synonymization could not be made. Zangerl
1634	(1953) argues that it is unlikely that three different species (Toxochelys latiremis,
1635	Ctenochelys stenoporus and Toxochelys bauri) coexisted in the Niobrara area, given
1636	the wide distribution of the marine turtles in general. Because Ctenochelys are the
1637	only known genus with a keeled shell, Zangerl (1953) synonymized T. bauri with C.
1638	stenoporus and we agree with this decision.
1639	
1640	Toxochelys barberi (Schmidt, 1944)
1641	nomen invalidum
1642	(junior synonym of Toxochelys latiremis Cope, 1873)

- 1643 Taxonomic history. Phyllemys barberi Schmidt, 1944 (new species); Toxochelys 1644 *barberi* Zangerl 1953 (new combination); *Toxochelys latiremis = Toxochelys barberi* 1645 Nicholls 1988 (junior synonym).
- Type material. FMNH P27047 (holotype); a portion of the carapace and a nearly 1646 1647 complete plastron (Schmidt 1944, fig. 20-22).
- 1648 Type locality. Marlbrook Marl, Gulf Series, Cox Farm, one-mile northeast of the
- 1649 junction of the Hollywood-Okolona road to Arkadelphia, Clark County, Arkansas,
- 1650 USA; Campanian, Late Cretaceous (Schmidt 1944; Benson and Tatro 1964).
- 1651 Comments. Toxochelys barberi was based on a carapace and plastron from the
- 1652 Campanian of Arkansas (Schmidt 1944). T. barberi could be differentiated from T.
- 1653 latiremis by the size of the vertebral scutes, which according to Nicholls (1988), are
- 1654 poorly preserved in the holotype of *T. barberi*. They could also be differentiated by
- 1655 the size of carapacial fontanelles, but Zangerl (1953) had already pointed that this
- 1656 feature is probably age-dependent. Therefore, due to the lack of differential
- 1657 diagnoses, Nicholls (1988) considered T. barberi as junior synonym of T. latiremis.

Toxochelys brachyrhinus Case, 1898

nomen invalidum

- 1658
- 1659
- 1660

1661 (junior synonym of *Toxochelys latiremis* Cope, 1873)

Taxonomic history. Toxochelys brachyrhinus Case, 1898 (new species); Toxochelys 1662

latiremis = *Toxochelys brachyrhina* Hay 1953 (junior synonym and misspelled 1663

1664 species epithet).

1665 Type material. KU 1212 (holotype); skull and mandible (Case 1898, fig. 1–2).

1666 Type locality. Kansas, USA; Late Cretaceous (Hay 1902).

1667	Comments. Toxochelys brachyrhinus was based on a skull from the Cretaceous of
1668	Kansas (Hay 1902). Hay (1905) listed the blunter snout, more parallel lateral outlines
1669	of the skull and size differences of Toxochelys brachyrhinus as differential features
1670	from Toxochelys latiremis. Later, those differences were considered a flattening
1671	effect due to the poor preservation of the material and Zangerl (1953) assigned T .
1672	brachyrhinus as junior synonym of T. latiremis.
1673	
1674	Toxochelys browni (Hay, 1905)
1675	nomen invalidum
1676	(junior synonym of Toxochelys latiremis Cope, 1873)
1677	Taxonomic history. Porthochelys browni Hay, 1905 (new species); Toxochelys
1678	browni Zangerl 1953 (new combination); Toxochelys latiremis = Toxochelys browni
1679	Schultze et al. 1985 (junior synonym).
1680	Type material. AMNH 6080 (holotype); nearly complete skull, lower jaw, shoulder
1681	girdle, humerus, ulna, radius, pelvis, femur, tibia (Hay 1905, fig. 15–16).
1682	Type locality. Twenty miles south of Edgemont, South Dakota, USA; Pierre Shale
1683	Formation, Campanian, Late Cretaceous (Hay 1905).
1684	Comments. Porthochelys browni was based of several fragments and one almost
1685	complete skull from the Campanian of South Dakota (Hay 1905). The skull is large
1686	and broad in the line of the orbits and it becomes narrower around the snout, similar
1687	to the skull of Porthochelys laticeps. However, the skull of P. laticeps is broader than
1688	longer, and in <i>P. browni</i> it is longer than broader. Zangerl (1953) transferred <i>P</i> .
1689	browni to Toxochelys because the slender snout might be because of the bad
1690	preservation of the specimens and its skull is similar to T. latiremis. Zangerl (1953)

1691	also noticed that the large size of T. browni exceeds the size range of all T. latiremis
1692	from the Niobrara Formation, which led him to retain both as separated species.
1693	However, Schultze et al. (1985) proposed their synonymization because they
1694	probably belong to the same Formation (see T. latiremis's section) and Nicholls
1695	(1988) suggested that the differences of sizes can be a plastic variation in the
1696	individuals, rather than a differential feature.
1697	
1698	Toxochelys elkader Hay, 1908
1699	nomen invalidum
1700	(junior synonym of Ctenochelys stenoporus [Hay, 1905])
1701	Taxonomic history. Toxochelys elkader Hay, 1908 (new species); Ctenochelys
1702	stenoporus = Toxochelys elkader = Toxochelys bauri = Toxochelys procax (in part)
1703	Zangerl 1953 (junior synonym).
1704	Type material. AMNH 6137 (holotype); a nearly complete skull and plastron,
1705	shoulder girdles, fragments of the pelvis, a few peripherals (Hay 1908, fig. 221-222).
1706	Type locality. Near Elkader, Logan County, Kansas, USA; Niobrara Formation, Late
1707	Cretaceous (Hay 1908).
1708	Comments. Toxochelys elkader was based on an adult individual with shell and post-
1709	cranial elements associated, from the Late Cretaceous of Kansas (Hay 1908). The
1710	skull and post-cranial elements of a juvenile specimen from the referred material of
1711	C. stenoporus do not differ to those of T. elkader, which led Zangerl (1953) to
1712	consider T. elkader a junior synonym of C. stenoporus. The shell from the holotype
1713	specimen of C. stenoporus is, in fact, similar to those of T. elkader, but the skull
1714	differs (Zangerl 1953). Since the skull and shell from the holotype of C. stenoporus

1715	were not found associated, there are doubts if the skull really belongs to the same
1716	individual or even species (Zangerl 1953). Given the similarity of the post-cranial
1717	elements, we agree to consider T. elkader a junior synonym of C. stenoporus.
1718	
1719	Toxochelys serrifer Cope, 1875
1720	nomen invalidum
1721	(junior synonym of Toxochelys latiremis Cope, 1873)
1722	Taxonomic history. Toxochelys serrifer Cope, 1875 (new species); Toxochelys
1723	stenoporus = Toxochelys serrifer (in part) Hay 1905 (junior synonym); Toxochelys
1724	latiremis = Toxochelys serrifer Zangerl 1953 (junior synonym); Toxochelys latiremis
1725	= Toxochelys browni = Toxochelys serrifer = Toxochelys brachyrhinus =
1726	Porthochelys browni = Phylemys barberi = Toxochelys weeksi = Toxochelys barberi
1727	Nicholls 1988 (junior synonym).
1728	Type material. AMNH 1835 (holotype); skull and mandible (two individuals) (Cope
1729	1875; Hay 1908, fig. 207–213; Zangerl 1953).
1730	Type locality. Niobrara beds, Kansas, USA; Late Cretaceous (Cope 1875).
1731	Comments. Toxochelys serrifer was based on a skull, lower jaw and two peripheral
1732	plates from the Late Cretaceous of Kansas (Cope 1875). Case (1898) had also
1733	assigned the specimen YPM 1786 to Toxochelys serrifer Cope, 1875, but Hay (1905)
1734	recognized they do not belong to the same species and made it the type of a new
1735	species, Toxochelys stenoporus (now Ctenochelys stenoporus). Zangerl (1953) and
1736	Nicholls (1988) considered T. serrifer a junior synonym of T. latiremis because their
1737	cranial features are identical. However, since the mandible is much smaller than the

1738	skull, Zangerl (1953) concluded they do not belong to the same individual. Zangerl
1739	(1953) also pointed out that the peripherals were not under the AMNH 1835
1740	identification by the time he examined the specimen, but he did not detail where it
1741	could be. However, since serrated peripherals do not correspond with those of neither
1742	Toxochelys nor Ctenochelys, Zangerl (1953) suggested that it belonged to another
1743	species and it was mixed with the bones of T. serrifer before handed to Professor
1744	Cope. Based on the similarity of the skull, we agree with Zangerl (1953) that T .
1745	serrifer is a junior synonym of T. latiremis.
1746	
1747	Toxochelys weeksi Collins, 1951
1748	nomen invalidum
1749	(junior synonym of Toxochelys latiremis Cope, 1873)
1750	Taxonomic history. Toxochelys weeksi Collins, 1951 (new species); Toxochelys
1751	latiremis = Toxochelys weeksi Nicholls 1988 (junior synonym).
1752	Type material. UT K20 (holotype); a partial plastron and three peripherals (Collins
1753	1951, pls. 1–2).
1754	Type locality. Dave Weeks place, Coon Creek, McNairy County, Tennessee, USA;
1755	Coon Creek Tongue of Ripley Formation, Late Campanian, Late Cretaceous
1756	(Zangerl 1953; Cobban and Kennedy 1994).
1757	Comments. Toxochelys weeksi was based on a fragmentary plastron and a few
1758	peripherals from the Late Campanian of Tennessee (Zangerl 1953). The diagnostic
1759	features that distinguish T. weeksi from T. latiremis are based on measurements that,
1760	according to Nicholls (1988), could have been taken erroneously. Moreover, those
1761	variations seem to represent intra-specific variation, and therefore does not

1762	characterize a d	liagnostic feature to support a different species, leading Nicholls
1763	(1988) to sugge	est T. weeksi as junior synonym of T. latiremis.
1764		
1765		
1766		Appendix 1
1767		Institutional Abbreviation
1768	AMNH	American Museum of Natural History, New York, New York,
1769	USA	
1770	ANSP	Academy of Natural Sciences of Philadelphia, USA
1771	CPC	Coleccion Paleontologica de Cohuila, Museo del Desierto,
1772	Saltillo, Coahui	ila, Mexico
1773	ERMNH	Eternal River Museum of Natural History, Jordan, privately
1774	owned by Hani	F. Kaddumi
1775	FMNH	Field Museum of Natural History, Chicago, USA
1776	GZG	Geoscience Centre of Göttingen, Germany
1777	HMG	Hobetsu Museum at Hobetsu-cho, Hokkaido, JaPan
1778	IGPS	Institut für Geologie und Paläontologie der Universität Salzburg
1779	IRSNB	Institut Royal des Sciences Naturelles de Belgique, Belgium
1780	KU	Property of Kansas University, Kansas, USA
1781	MCST	Museo Civico di Storia Naturale di Trieste, Italy
1782	MIWG	Museum of Isle of Wight Geology, Sandown, Isle of Wight,
1783	England	
1784	MPEF	Museo Paleontológico Egidio Feruglio de Trelew, Argentina
1785	MSNM	Museo Civico di Storia Naturale di Milano, Italy

1786	OCP	Office Chérifiendes Phosphates, Service Géologique,	
1787	Khouribga, Morocco		
1788	RUGM	Rutgers University Geology Museum, New Jersey, USA	
1789	SEPCP	Secretaria de Educacion y Cultura, Coleccion Paleontologica	
1790	(formerly Secretaria	de Educacion Publica de Coahuila), Mexico	
1791	TMP	Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta,	
1792	Canada		
1793	UT	University of Tennessee	
1794	YPM	Yale Peabody Museum, USA	
1795			
1796		Appendix 2	
1797	Named not	n-Protostegidae Sea Turtles from Cretaceous Genera	
1798			
1799	Allopleuron Baur, 1	388	
1799 1800	-	888 euron hofmanni (Gray, 1831))	
	-	euron hofmanni (Gray, 1831))	
1800	(type species: Allopi Catapleura Cope, 18	euron hofmanni (Gray, 1831))	
1800 1801	(type species: Allopi Catapleura Cope, 18	euron hofmanni (Gray, 1831)) 870 Ieura repanda (Cope, 1868))	
1800 1801 1802	(type species: Alloph Catapleura Cope, 18 (type species: Catap Corsochelys Zanger	euron hofmanni (Gray, 1831)) 870 Ieura repanda (Cope, 1868))	
1800 1801 1802 1803	(type species: Alloph Catapleura Cope, 18 (type species: Catap Corsochelys Zanger	euron hofmanni (Gray, 1831)) 870 leura repanda (Cope, 1868)) , 1960 chelys haliniches Zangerl, 1960)	
1800 1801 1802 1803 1804	(type species: Alloph Catapleura Cope, 18 (type species: Catap Corsochelys Zanger (type species: Corso Ctenochelys Zanger	euron hofmanni (Gray, 1831)) 870 leura repanda (Cope, 1868)) , 1960 chelys haliniches Zangerl, 1960)	
1800 1801 1802 1803 1804 1805	(type species: Alloph Catapleura Cope, 18 (type species: Catap Corsochelys Zanger (type species: Corso Ctenochelys Zanger	euron hofmanni (Gray, 1831)) 370 leura repanda (Cope, 1868)) , 1960 chelys haliniches Zangerl, 1960) , 1953 chelys stenoporus (Hay, 1905))	
1800 1801 1802 1803 1804 1805 1806	(type species: Alloph Catapleura Cope, 18 (type species: Catap Corsochelys Zanger (type species: Corso Ctenochelys Zanger (type species: Cteno Gigantatypus Kaddu	euron hofmanni (Gray, 1831)) 370 leura repanda (Cope, 1868)) , 1960 chelys haliniches Zangerl, 1960) , 1953 chelys stenoporus (Hay, 1905))	

- 1810 (type species: *Glyptochelone suyckerbuyki* (Ubagh, 1879))
- 1811 *Kimurachelys* Brinkman et al., 2015
- 1812 (type species: *Kimurachelys slobodae* Brinkman et al., 2015)
- 1813 Mesodermochelys Hirayama and Chitoku, 1996
- 1814 (type species: *Mesodermochelys undulatus* Hirayama and Chitoku, 1996)
- 1815 *Mexichelys* Parham and Pyenson, 2010
- 1816 (type species: *Mexichelys coahuilaensis* (Brinkman et al., 2009))
- 1817 *Nichollsemys* Brinkman et al., 2006
- 1818 (type species: *Nichollsemys baieri* Brinkman et al., 2006)
- 1819 *Oertelia* Karl et al., 2012
- 1820 (type species: *Oertelia gigantea* (Oertel, 1914))
- 1821 Porthochelys Williston, 1901
- 1822 (type species: *Porthochelys laticeps* Williston, 1901)
- 1823 Prionochelys Zangerl, 1953
- 1824 (type species: *Prionochelys nauta* Zangerl, 1953)
- 1825 Sontiochelys Stache, 1858
- 1826 (type species: *Sontiochelys cretacea* Stache, 1905)
- 1827 Thalassemys Rütimeyer, 1873
- 1828 Thalassemys hugii Rütimeyer, 1873
- 1829 Thinochelys Zangerl, 1953
- 1830 (type species: *Thinochelys lapisossea* Zangerl, 1953)
- 1831 *Toxochelys* Cope, 1873
- 1832 (type species: *Toxochelys latiremis* Cope, 1873)
- 1833 *Turgaiscapha* Averianov, 2002

1834	(type species: Turgaiscapha kushmurunica Averianov, 2002)
1835	Zangerlchelys Hirayama, 2006
1836	(type species: Zangerlchelys arkansaw (Schmidt, 1944))
1837	
1838	Appendix 3
1839	Biogeographical Summary of non-Protostegidae Sea Turtles from Cretaceous
1840	
1841	Numbers in brackets reference Figures 5–7. TL, type locality.
1842	Belgium
1843	[1] Late Cretaceous, Maastrichtian; Belgium, Limburg; Glyptochelone suyckerbuykii
1844	(TL) (Dollo 1903; 1909)
1845	
1846	Canada
1847	[2] Late Cretaceous, Late Campanian; Alberta, Taber; Nichollsemys baieri (TL)
1848	(Brinkman et al. 2006)
1849	[3] Late Cretaceous, Late Campanian; Alberta, Lethbridge; Nichollsemys baieri
1850	(Brinkman et al. 2006)
1851	[4] Late Cretaceous, Late Campanian; Alberta, Manyberries; Nichollsemys baieri
1852	(Brinkman et al. 2006)
1853	[5] Late Cretaceous, Campanian; Alberta, Manyberries; Kimurachelys slobodae (TL)
1854	(Brinkman et al. 2015)
1855	[6] Late Cretaceous, Campanian; Alberta, Lethbridge; Kimurachelys slobodae
1856	(Brinkman et al. 2006)

1857	[7] Late Cretaceous, Late Campanian; Alberta, Cardston County; Toxochelys latiremis
1858	(Nicholls et al. 1990; Brinkman et al. 2015)
1859	[8] Late Cretaceous, Campanian; Alberta, Lethbridge; stem-Chelonioidea indet.
1860	(Brinkman et al. 2015)
1861	[9] Late Cretaceous, Campanian; Alberta, Manyberries; Chelonioidea indet.
1862	(Brinkman et al. 2015)
1863	[10] Late Cretaceous, Early Campanian; Manitoba; Chelonioidea indet. (Nicholls et
1864	al. 1990)
1865	
1866	France
1867	[11] Late Cretaceous, Coniacian; Hellèmes; Cheloniidae indet. (De Lapparent De
1868	Broin 2001)
1869	
1869 1870	Germany
	Germany [12] Late Cretaceous, Early Aptian; near to Hannover; <i>Oertelia gigantea</i> (TL) (Zangerl
1870	•
1870 1871	[12] Late Cretaceous, Early Aptian; near to Hannover; <i>Oertelia gigantea</i> (TL) (Zangerl
1870 1871 1872	[12] Late Cretaceous, Early Aptian; near to Hannover; <i>Oertelia gigantea</i> (TL) (Zangerl 1953; Karl et al. 2012)
1870 1871 1872 1873	 [12] Late Cretaceous, Early Aptian; near to Hannover; <i>Oertelia gigantea</i> (TL) (Zangerl 1953; Karl et al. 2012) [13] Late Cretaceous, Turonian; Raunschweig-Broitzem; <i>Allopleuron</i> cf. <i>hofmanni</i>
1870 1871 1872 1873 1874	 [12] Late Cretaceous, Early Aptian; near to Hannover; <i>Oertelia gigantea</i> (TL) (Zangerl 1953; Karl et al. 2012) [13] Late Cretaceous, Turonian; Raunschweig-Broitzem; <i>Allopleuron</i> cf. <i>hofmanni</i> (Karl et al. 2012)
1870 1871 1872 1873 1874 1875	 [12] Late Cretaceous, Early Aptian; near to Hannover; <i>Oertelia gigantea</i> (TL) (Zangerl 1953; Karl et al. 2012) [13] Late Cretaceous, Turonian; Raunschweig-Broitzem; <i>Allopleuron</i> cf. <i>hofmanni</i> (Karl et al. 2012) [14] Late Cretaceous, Late Santonian–Early Campanian; Schleswig-Holstein;
1870 1871 1872 1873 1874 1875 1876	 [12] Late Cretaceous, Early Aptian; near to Hannover; <i>Oertelia gigantea</i> (TL) (Zangerl 1953; Karl et al. 2012) [13] Late Cretaceous, Turonian; Raunschweig-Broitzem; <i>Allopleuron</i> cf. <i>hofmanni</i> (Karl et al. 2012) [14] Late Cretaceous, Late Santonian–Early Campanian; Schleswig-Holstein; <i>Ctenochelys stenoporus</i> (Karl and Nyhuis 2012)
1870 1871 1872 1873 1874 1875 1876 1877	 [12] Late Cretaceous, Early Aptian; near to Hannover; <i>Oertelia gigantea</i> (TL) (Zangerl 1953; Karl et al. 2012) [13] Late Cretaceous, Turonian; Raunschweig-Broitzem; <i>Allopleuron</i> cf. <i>hofmanni</i> (Karl et al. 2012) [14] Late Cretaceous, Late Santonian–Early Campanian; Schleswig-Holstein; <i>Ctenochelys stenoporus</i> (Karl and Nyhuis 2012) [15] Late Cretaceous, Late Campanian; Hannover-Misburg; <i>Allopleuron</i> cf. <i>hofmanni</i>

1882 Japan 1883 [17] Late Cretaceous, Campanian–Maastrichtian; Hobetsu, Mobetsu, Hobetsu River; 1884 Mesodermochelys undulatus (Hirayama and Chitoku 1996) [18] Late Cretaceous, Late Maastrichtian; Hokkaido; Mesodermochelys undulatus 1885 1886 (TL) (Hirayama and Chitoku 1996) [19] Late Cretaceous, Early Maastrichtian; Hobetsu, Ohmagarinosawa River; 1887 1888 Mesodermochelys undulatus (Hirayama and Chitoku 1996) [20] Late Cretaceous, Early Maastrichtian; Hobetsu, Hiraoka, Pankerusanosawa River; 1889 1890 Mesodermochelys undulatus (Hirayama and Chitoku 1996) 1891 [21] Late Cretaceous, Early Maastrichtian; Hobetsu, Tomiuchi, Pankerusanosawa 1892 River; *Mesodermochelys undulatus* (Hirayama and Chitoku 1996) 1893 [22] Late Cretaceous, Early Maastrichtian; Hobetsu, Inasato; Mesodermochelys undulatus (Hirayama and Chitoku 1996) 1894 1895 [23] Late Cretaceous, Early Maastrichtian; Hobetsu, Kiusu, Hobetsu River; 1896 Mesodermochelys undulatus (Hirayama and Chitoku 1996) [24] Late Cretaceous, Early Campanian; Nakagawa-cho, Hokkaido, Japan; 1897 Mesodermochelys undulatus (Hirayama and Hikida 1998) 1898 1899 1900 Jordan [25] Late Cretaceous, Maastrichtian; Muwaqqar town; Gigantatypus salahi (TL) 1901 1902 (Kaddumi 2006) 1903

1904 Kazakhstan

1905	[26] Late Cretaceous, Late Campanian-early Maastrichtian?; Kushmurun;
1906	Turgaiscapha kushmurunica (TL) (Averianov 2002)
1907	
1908	Mexico
1909	[27] Late Cretaceous, Late Campanian; Coahuila State; Mexichelys coahuilaensis (TL)
1910	(Brinkman et al. 2009)
1911	[28] Late Cretaceous; General Cepada area, Mexico; Mexichelys coahuilaensis
1912	(Brinkman et al. 2009)
1913	[29] Late Cretaceous, Late Campanian; Turtle Paradise, Mexico; Mexichelys
1914	coahuilaensis (Brinkman et al. 2009)
1915	
1916	Netherlands
1917	[30] Late Cretaceous, Maastrichtian; Limburg; Allopleuron hofmanni (TL) (Janssen et
1918	al. 2011)
1919	[31] Late Cretaceous, Maastrichtian; Limburg, Maastricht; Allopleuron hofmanni
1920	(Mulder 2003)
1921	[32] Late Cretaceous, Maastrichtian; Limburg, Kanne; Allopleuron hofmanni (Mulder
1922	2003)
1923	[33] Late Cretaceous, Maastrichtian; Limburg, Neerkanne; Allopleuron hofmanni
1924	(Mulder 2003)
1925	[34] Late Cretaceous, Maastrichtian; Limburg, Nederkanne; Allopleuron hofmanni
1926	(Mulder 2003)
1927	[35] Late Cretaceous, Maastrichtian; Limburg, Voerendaal; Allopleuron hofmanni
1928	(Mulder 2003)

1929	[36] Late Cretaceous, Maastrichtian; Limburg, Benzenrade; Allopleuron hofmanni
1930	(Mulder 2003)
1931	[37] Late Cretaceous, Maastrichtian; Liège; Allopleuron hofmanni (Mulder 2003)
1932	[38] Late Cretaceous, Maastrichtian; Eben Emael; Allopleuron hofmanni (Mulder
1933	2003)
1934	
1935	Slovenia
1936	[39] Early Cretaceous, Hauterivian–Barremian; Nova Gorizia; Sontiochelys cretacea
1937	(TL) (Stache 1905; Karl et al. 2012)
1938	
1939	United States of America
1940	[40] Late Cretaceous, Turonian; Kansas, Gove County; Ctenochelys stenoporus (TL)
1941	(Hay 1902; Wieland 1905)
1942	[41] Late Cretaceous, Coniacian; Kansas, Logan County, Butte Creek; Ctenochelys
1943	stenoporus (Hay 1909)
1944	[42] Late Cretaceous, Late Santonian-Early Campanian; Kansas, Gove County;
1945	Toxochelys latiremis (Nicholls 1988)
1946	[43] Late Cretaceous, Coniacian-Santonian; Kansas; Toxochelys latiremis (Zangerl
1947	1953)
1948	[44] Late Cretaceous, Early Campanian; Kansas, Logan County; Toxochelys latiremis
1949	(TL) (Nicholls 1988; Nicholls and Russell 1990)
1950	[45] Late Cretaceous; Kansas; Porthochelys laticeps (TL) (Williston 1901; Hay 1908)
1951	[46] Cretaceous; Kansas, Smoky Hill River; Ctenochelys stenoporus (Hay 1905)
1952	[47] Cretaceous; Kansas, Logan County, Elkader; Ctenochelys stenoporus (Hay 1908)

1953 [48] Cretaceous; Kansas, Logan County, Russell Springs; Ctenochelys stenoporus 1954 (Zangerl 1953) 1955 [49] Late Cretaceous; Kansas, Logan County, Russel Springs; Toxochelys latiremis 1956 (Matzke 2008) [50] Late Cretaceous, Santonian; Alabama, Greene County, Eutaw area; Toxochelys 1957 1958 moorevillensis (Zangerl 1953) [51] Late Cretaceous, Early Campanian; Alabama, Greene County, West Greene area; 1959 1960 Toxochelys moorevillensis (Zangerl 1953) [52] Late Cretaceous, Early Campanian; Alabama, Dallas County, Harrel Station area; 1961 1962 Toxochelys moorevillensis (Zangerl 1953) 1963 [53] Late Cretaceous, Early Campanian; Alabama, Greene County, Clinton area; 1964 Toxochelys moorevillensis (Zangerl 1953) 1965 [54] Late Cretaceous, Early Campanian; Alabama, Greene County, Mt. Hebron area; Toxochelys moorevillensis (Zangerl 1953) 1966 1967 [55] Late Cretaceous, Early Campanian; Alabama, Greene County, Boligee area; 1968 Toxochelys moorevillensis (Zangerl 1953) [56] Late Cretaceous, Campanian; Alabama, Hale County; Ctenochelys stenoporus 1969 1970 (Gentry 2017) 1971 [57] Late Cretaceous, Early Campanian; Alabama, Greene County; Corsochelys haliniches (TL) (Zangerl 1960) 1972 1973 [58] Late Cretaceous, Early Campanian; Alabama, Dallas County; Thinochelys 1974 *lapisossea* (TL) (Zangerl 1953) [59] Late Cretaceous, Early Campanian; Alabama, Dallas County; Ctenochelys acris 1975 1976 (TL) (Zangerl 1953)

- 1977 [60] Late Cretaceous, Early Campanian; Alabama, Greene County;
 1978 *Ctenochelys acris* (Gentry 2017)
- 1979 [61] Late Cretaceous, Early Campanian; Alabama, Dallas County; *Toxochelys* 1980 *moorevillensis* (TL) (Zangerl 1953)
- 1981 [62] Late Cretaceous, Early Campanian; Alabama, Dallas County; *Prionochelys nauta*1982 (Zangerl 1953)
- 1983 [63] Late Cretaceous; Alabama, Dallas County; *Ctenochelys stenoporus* (Zangerl
 1984 1953)
- 1985 [64] Late Cretaceous, Early Campanian; Alabama, Lowndes County; *Toxochelys*1986 *moorevillensis* (Zangerl 1953)
- 1987 [65] Late Cretaceous, Campanian; Alabama, Hale County; *Toxochelys moorevillensis*1988 (Zangerl 1953)
- 1989 [66] Late Cretaceous, Early Campanian; Alabama, Sumter County; *Toxochelys*1990 *latiremis* (Gentry and Ebersole 2018)
- 1991 [67] Late Cretaceous, Early Campanian; South Dakota, Edgemont; *Toxochelys*1992 *latiremis* (Zangerl 1953)
- 1993 [68] Late Cretaceous, Late Campanian; South Dakota, Hyde County; *Nichollsemys*1994 *baieri* (Brinkman et al. 2006)
- 1995 [69] Late Cretaceous, Late Campanian; Arkansas, Clark County; *Zangerlchelys*1996 *arkansaw* (TL) (Schmidt 1944; Hirayama 2006)
- 1997 [70] Late Cretaceous, Late Campanian; Arkansas, Howard County; *Prionochelys* 1998 *nauta* (TL) (Zangerl 1953)
- 1999 [71] Late Cretaceous, Late Campanian; Arkansas, Clark County; *Prionochelys nauta*2000 (Zangerl 1953)

2001	[72] Late Cretaceous, Campanian; Arkansas, Clark County; Toxochelys latiremis
2002	(Schmidt 1944; Benson and Tatro 1964)
2003	[73] Late Cretaceous?, Late Maastrichtian?; New Jersey; Catapleura repanda (TL)
2004	(Cope 1868; Hay 1908)
2005	[74] Late Cretaceous; Tennessee, McNairy County; Toxochelys latiremis (Zangerl
2006	1953)
2007	
2008	Uzbekistan
2009	[75] Early–Late Cretaceous, Albian?–Cenomanian; Bukhara Viloyat; "Thalassemys"
2010	cava (TL) (Averianov 2002)
2011	
2012	Appendix 4
2013	Hierarchical Taxonomy of non-Protostegidae Sea Turtles from Cretaceous
2013 2014	Hierarchical Taxonomy of non-Protostegidae Sea Turtles from Cretaceous
	Hierarchical Taxonomy of non-Protostegidae Sea Turtles from Cretaceous Pan-Chelonioidea Joyce et al. 2004
2014	
2014 2015	Pan-Chelonioidea Joyce et al. 2004
2014 2015 2016	Pan-Chelonioidea Joyce et al. 2004 Catapleura Cope, 1870
2014 2015 2016 2017	Pan-Chelonioidea Joyce et al. 2004 Catapleura Cope, 1870 Catapleura repanda (Cope, 1868)
2014 2015 2016 2017 2018	Pan-Chelonioidea Joyce et al. 2004 Catapleura Cope, 1870 Catapleura repanda (Cope, 1868) Ctenochelys Zangerl, 1953
2014 2015 2016 2017 2018 2019	Pan-Chelonioidea Joyce et al. 2004 Catapleura Cope, 1870 Catapleura repanda (Cope, 1868) Ctenochelys Zangerl, 1953 Ctenochelys acris Zangerl, 1953
2014 2015 2016 2017 2018 2019 2020	Pan-Chelonioidea Joyce et al. 2004 Catapleura Cope, 1870 Catapleura repanda (Cope, 1868) Ctenochelys Zangerl, 1953 Ctenochelys acris Zangerl, 1953 Ctenochelys stenoporus (Hay, 1905)
2014 2015 2016 2017 2018 2019 2020 2021	 Pan-Chelonioidea Joyce et al. 2004 Catapleura Cope, 1870 Catapleura repanda (Cope, 1868) Ctenochelys Zangerl, 1953 Ctenochelys acris Zangerl, 1953 Ctenochelys stenoporus (Hay, 1905) Mexichelys Parham and Pyenson, 2010

2025	Toxochelys Cope, 1873
2026	Toxochelys latiremis Cope, 1873
2027	Toxochelys moorevillensis Zangerl, 1953
2028	Chelonioidea Baur, 1893
2029	Pan-Cheloniidae Joyce et al., 2004
2030	Allopleuron Baur, 1888
2031	Allopleuron hofmanni (Gray, 1831)
2032	Gigantatypus Kaddumi, 2006
2033	Gigantatypus salahi Kaddumi, 2006
2034	Glyptochelone Dollo, 1909
2035	Glyptochelone suyckerbuykii (Ubagh, 1879)
2036	Oertelia Karl et al., 2012
2037	Oertelia gigantea (Oertel, 1914)
2038	Pan-Dermochelyidae et al., 2004
2039	Corsochelys Zangerl, 1960
2040	Corsochelys haliniches Zangerl, 1960
2041	Mesodermochelys Hirayama and Chitoku, 1996
2042	Mesodermochelys undulatus Hirayama and Chitoku, 1996
2043	Pan-Chelonioidea Indet.
2044	Kimurachelys Brinkman et al., 2015
2045	Kimurachelys slobodae Brinkman et al., 2015
2046	Zangerlchelys Hirayama, 2006
2047	Zangerlchelys arkansaw (Schmidt, 1944)
2048	Eucryptodira Indet.

2049	Prionochelys Zangerl, 1953
2050	Prionochelys nauta Zangerl, 1953
2051	Porthochelys Williston, 1901
2052	Porthochelys laticeps Williston, 1901
2053	"Thalassemys" Rütimeyer, 1873
2054	"Thalassemys" cava (Nessov, 1984)
2055	Thinochelys Zangerl, 1953
2056	Thinochelys lapisossea Zangerl, 1953
2057	Sontiochelys Stache, 1905
2058	Sontiochelys cretacea Stache, 1905
2059	Turgaiscapha Averianov, 2002
2060	Turgaiscapha kushmurunica Averianov, 2002
2061	
2062	
2063	Literature Cited
2064	
2065	Anquetin, J. 2012. Reassessment of the phylogenetic interrelationships of basal turtles
2066	(Testudinata). Journal of Systematic Palaeontology 10(1):3-45.
2067	
2068	Averianov, A.O. 2002. Review of Mesozoic and Cenozoic sea turtles from the former
2069	USSR. Russian Journal of Herpetology 9(2):137-154.
2070	

2071	Baird, D. 1967. Age of fossil birds from the greensands of New Jersey. The Auk
2072	84(2):260-262.
2073	
2074	Barley, A.J.; Spinks, P.Q.; Thomson, R.C.; Shaffer, H.B. 2010. Fourteen nuclear genes
2075	provide phylogenetic resolution for difficult nodes in the turtle tree of life. Molecular
2076	phylogenetics and evolution 55(3):1189-1194.
2077	
2078	Baur, G. 1888. Unusual dermal ossifications. Science 11(268):144-144.
2079	
2080	Benson, R.H.; Tatro, J.O. 1964. Faunal description of Ostracoda of the Marlbrook
2081	Marl (Campanian), Arkansas. Paleontological Contributions 7:1-32.
2082	
2083	Bjorndal, K.A.; Lutz, P.; Musick, J. 1997. Foraging ecology and nutrition of sea turtles.
2084	In: Lutz, P. L. e Musick, J., eds. The biology of sea turtles. I. Boca Raton, Florida: CRC
2085	Press pp.199-231.
2086	
2087	Brinkman, D. A primitive cheloniid from the Campanian (Late Cretaceous) of Alberta,
2088	Canada. Sixtieth Annual Meeting, Society of Vertebrate Paleontology. Mexico:
2089	Journal of Vertebrate Paleontology. 20: 31A p. 2000.
2090	
2091	Brinkman, D.; Aquillon-Martinez, M.; De Leon Dávila, C.; Jamniczky, H.; Eberth, D.;
2092	Colbert, M. 2009. Euclastes coahuilaensis sp. nov., a basal cheloniid turtle from the

2093	late Campanian Cerro del Pueblo Formation of Coahuila State, Mexico. PaleoBios
2094	28(3):76-88.
2095	
2096	Brinkman, D.; Hart, M.; Jamniczky, H.; Colbert, M. 2006. Nichollsemys baieri gen. et
2097	sp. nov, a primitive chelonioid turtle from the late Campanian of North America.
2098	Paludicola 5(4):111-124.
2099	
2100	Brinkman, D.B.; Densmore, M.; Rabi, M.; Ryan, M.J.; Evans, D.C. 2015. Marine
2101	turtles from the Late Cretaceous of Alberta, Canada. Canadian Journal of Earth
2102	Sciences 52(8):581-589.
2103	
2104	Cadena, E.A.; Parham, J.F. 2015. Oldest known marine turtle? A new protostegid from
2105	the Lower Cretaceous of Colombia. PaleoBios 32(1):1-42.
2106	
2107	Case, E.C. 1898. Toxochelys. The University Geological Survey of Kansas IV(6):370-
2108	385.
2109	
2110	Cobban, W.; Kennedy, W. 1994. Upper Cretaceous ammonites from the Coon Creek
2111	Tongue of the Ripley Formation at its type locality in McNairy County, Tennessee.
2112	US Geological Survey Bulletin 2073(B):
2113	

2114	Collins, R. 1951. A new turtle, Toxochelys weeksi, from the Upper Cretaceous of west
2115	Tennessee. Journal of the Tennessee Academy of Science 26:262-269.
2116	
2117	Cope, E. 1868. On some Cretaceous reptilia. Proceedings of the Academy of Natural
2118	Sciences of Philadelphia. 147 pp.
2119	
2120	1868. Synopsis of the extinct Reptilia found in the Mesozoic and Tertiary
2121	strata of New Jersey. Appendix B of Geology of New Jersey, George H. Cook, State
2122	geologist, Newark 1868:733-742.
2123	
2124	1870. Synopsis of the extinct Batrachia, Reptilia and Aves of North America.
2125	Transactions of the American Philosophical Society 14:1-252.
2126	
2127	1873. [Remarks on additional specimens of <i>Toxochelys latiremis</i> .].
2128	Philadelphia:Proceedings of the Academy of Natural Sciences of Philadelphia. 10 pp.
2129	
2130	1875. The Vertebrata of the Cretaceous formations of the West.
2131	Washington:Report of the United States Geological Survey of the Territories. 303 pp.
2132	
2133	Cope, E.D. 1871. On a New Testudinate from the Chalk of Kansas. Proceedings of the
2134	American Philosophical Society 12(86):308-310.
2135	

2136	Crawford, N.G.; Parham, J.F.; Sellas, A.B.; Faircloth, B.C.; Glenn, T.C.; Papenfuss,
2137	T.J.; Henderson, J.B.; Hansen, M.H.; Simison, W.B. 2014. A phylogenomic analysis
2138	of turtles. Molecular phylogenetics and evolution 83:250-257.
2139	
2140	Danise, S.; Higgs, N.D. 2015. Bone-eating Osedax worms lived on Mesozoic marine
2141	reptile deadfalls. Biology Letters 11(4):20150072.
2142	
2143	De Lapparent De Broin, F. 2001. The European turtle fauna from the Triassic to the
2144	Present. Dumerilia 4(3):155-217.
2145	
2146	Dollo, L. 1903. Sur l'évolution des chéloniens marins (considérations bionomiques et
2147	phylogéniques). Bull. Cl. Sci., Acad. Roy. Belg.,(1903):801-850.
2148	
2149	Dollo, L. 1903. Eochelone brabantica, tortue marine nouvelle du Bruxellien (Eocène
2150	Moyen) de la Belgique et l'évolution des chéloniens marins. Bulletins de l'Académie
2151	Royale des Sciences, des Lettres et des Beaux-Arts de Belgique:792-850.
2152	
2153	1909. The fossil vertebrates of Belgium. Annals of the New York Academy
2154	of Sciences 19(1):99-119.
2155	
2156	Fastovsky, D.E. 1985. A skull of the Cretaceous chelonioid turtle Osteopygis and the
2157	classification of the Osteopyginae. New Jersey State Museum. pp.

2158	
2159	Faujas De Saint-Fond, B. 1798. Histoire naturelle de la Montagne de Saint-Pierre de
2160	Maestricht. Paris:Chez HJ Jansen. 263 pp.
2161	
2162	Fujita, M.K.; Engstrom, T.N.; Starkey, D.E.; Shaffer, H.B. 2004. Turtle phylogeny:
2163	insights from a novel nuclear intron. Molecular phylogenetics and evolution
2164	31(3):1031-1040.
2165	
2166	Gaffney, E.S. 1975. A phylogeny and classification of the higher categories of turtles.
2167	Bulletin of the American History Museum 155(5):387-436.
2168	
2169	1976. Cranial morphology of the European Jurassic turtles <i>Portlandemys</i> and
2170	Plesiochelys. Bulletin of the American Museum Natural History 157(6):
2171	
2172	Gaffney, E.S.; Meylan, P.A. 1988. A phylogeny of turtles. In: Benton, M. J.,eds. The
2173	phylogeny and classification of the tetrapods. 1. Oxford: Clarendon Press pp.157-219.
2174	
2175	Gaffney, E.S.; Tong, H.; Meylan, P.A. 2006. Evolution of the side-necked turtles: the
2176	families Bothremydidae, Euraxemydidae, and Araripemydidae. Bulletin of the
2177	American Museum of Natural History 300:1-698.
2178	

2179	Gentry, A.D. 2017. New material of the Late Cretaceous marine turtle Ctenochelys
2180	acris Zangerl, 1953 and a phylogenetic reassessment of the 'toxochelyid'-grade taxa.
2181	Journal of Systematic Palaeontology 15(8):1-22.
2182	
2183	Gentry, A.D.; Ebersole, J.A. 2018. The first report of Toxochelys latiremis Cope 1873
2184	(Testudines: Panchelonioidea) from the early Campanian of Alabama, USA.
2185	PaleoBios 35:
2186	
2187	Gill, J.R.; Cobban, W.A. 1973. Stratigraphy and geologic history of the Montana
2188	Group and equivalent rocks, Montana, Wyoming, and North and South Dakota.
2189	
2190	Hay, O.P. 1902. Bibliography and catalogue of the fossil Vertebrata of North America.
2191	Buletin of the United States Geological Survey 179:1-868.
2192	
2193	1905. A Revision of the Species of the Family of Fossil Turtles Called
2194	Toxochelyidae: With Descriptions of Two New Species of Toxochelys and a New
2195	Species of Porthochelys. Bulletin of the American Museum of Natural History.
2196	pp.177-185.
2197	
2198	1908. The fossil turtles of North America. Carnegie Institution of Washington
2199	75:1-568.
2200	

2201	1909. Description of two species of fossil turtles, <i>Toxochelys stenopora</i> and
2202	Christernon? interpositum, the latter hitherto unknown. Proceedings of The United
2203	States National Museum 36:
2204	
2205	Hirayama, R. 1994. Phylogenetic systematics of chelonioid sea turtles. Island Arc
2206	3(4):270-284.
2207	
2208	Hirayama, R. 1997. Distribution and diversity of Cretaceous chelonioids. In:
2209	Callaway, J. M. e Nicholls, E. L., eds. Ancient marine reptiles. Academic Press pp.225-
2210	241.
2211	
2212	Hirayama, R. 1998. Oldest known sea turtle. Nature 392(6677):705-708.
2213	
2214	Hirayama, R. 2006. Revision of the Cretaceous and Paleogene sea turtles Catapleura
2215	and Dollochelys (Testudines: Cheloniidae). PaleoBios 26(2):1-6.
2216	
2217	Hirayama, R.; Chitoku, T. 1996. Family Dermochelyidae (Superfamily Chelonioidea)
2218	from the Upper Cretaceous of North Japan. 日本古生物学會報告・紀事 新編
2219	(184):597-622.
2220	

2221	Hirayama, R.; Hikida, Y. 1998. Mesodermochelys (Testudines, Chelonioidea,
2222	Dermochelyidae) from the Late Cretaceous of Nakagawa-cho, Hokkaido, North Japan.
2223	Bulletin of the Nakagawa Museum of Natural History 1:69-76.
2224	
2225	Hooks, G. 1998. Systematic revision of the Protostegidae, with a redescription of
2226	Calcarichelys gemma Zangerl, 1953. Journal of Vertebrate Paleontology 18(1):85-98.
2227	
2228	Janssen, R.; Van Baal, R.; Schulp, A. 2011. On the taphonomy of the late
2229	Maastrichtian (Late Cretaceous) marine turtle Allopleuron hofmanni. Netherlands
2230	Journal of Geosciences 90(2-3):187-196.
2231	
2232	Joyce, W.G. 2007. Phylogenetic relationships of Mesozoic turtles. Bulletin of the
2233	Peabody Museum of Natural History 48(1):3-102.
2234	
2235	Joyce, W.G.; Parham, J.F.; Gauthier, J.A. 2004. Developing a protocol for the
2236	conversion of rank-based taxon names to phylogenetically defined clade names, as
2237	exemplified by turtles. Journal of Paleontology 78(5):989-1013.
2238	
2239	Joyce, W.G.; Parham, J.F.; Lyson, T.R.; Warnock, R.C.; Donoghue, P.C. 2013. A
2240	divergence dating analysis of turtles using fossil calibrations: an example of best
2241	practices. Journal of Paleontology 87(04):612-634.
2242	

2243	Kaddumi, H. 2006. A new genus and species of gigantic marine turtles (Chelonioidea:
2244	Cheloniidae) from the Maastrichtian of the Harrana Fauna-Jordan. PalArch 3:1-13.
2245	
2246	Karl, HV.; Gröning, E.; Brauckmann, C. 2012. New materials of the giant sea turtle
2247	Allopleuron (Testudines, Chelonioidea) from the marine Late Cretaceous of Central
2248	Europe and the Paleogene of Kazakhstan. Studia Geologica Salmanticensia 9:153.
2249	
2250	Karl, HV.; Nyhuis, C.J. 2012. Ctenochelys stenoporus (Hay, 1905) (Testudines:
2251	Toxochelyidae) and Clidastes sp. (Squamata: Mosasauridae) from the Upper
2252	Cretaceous of NW-Germany. Studia Geologica Salmanticensia 9:129.
2253	
2254	Karl, H.; Biermann, S.; Tichy, G. 2012. The oldest true sea turtle of the world, Oertelia
2255	gigantea (Oertel, 1914) n. gen. from the Aptian of Kastendamm near Hanover,
2256	Germany Studia Geologica Salmanticensia 9:107.
2257	
2258	Karl, H.; Tichy, G.; Valdiserri, D. 2012. Sontiochelys cretacea Stache, 1905 y
2259	redescripción de las familias Eurysternidae Dollo, 1886 y Thalassemydidae
2260	Rütimeyer, 1873 (Testudines: Cryptodira). Studia Geologica Salmanticensia (48):45-
2261	76.
2262	
2263	Kear, B.P.; Lee, M.S.Y. 2006. A primitive protostegid from Australia and early sea
2264	turtle evolution. Biology Letters 2(1):116-119.

2265	
2266	Keferstein, C. 1834. Die Naturgeschichte des Erdkörpers in ihren ersten Grundzügen.
2267	Zweiter Theil. Die Geologie und Paläontologie. Leipzig: pp.869.
2268	
2269	Krenz, J.G.; Naylor, G.J.; Shaffer, H.B.; Janzen, F.J. 2005. Molecular phylogenetics
2270	and evolution of turtles. Molecular phylogenetics and evolution 37(1):178-191.
2271	
2272	Kuhn, O. 1964. Testudines. In, eds. Fossilium Catalogus. 107. Netherland: Ysel Press,
2273	Deventer.
2274	
2275	Leidy, J.M.D. 1865. Cretaceous Reptiles of the United States. Smithsonian
2276	Contributions to knowledge 192:135.
2277	
2278	Lydekker, R. 1889. Part III – Containing the order Chelonia. In,eds. Catalogue of the
2279	fossil Reptilia and Amphibia in the British Museum. pp.1-239.
2280	
2281	Lynch, S.C.; Parham, J.F. 2003. The first report of hard-shelled sea turtles
2282	(Cheloniidae sensu lato) from the Miocene of California, including a new species
2283	(Euclastes hutchisoni) with unusually plesiomorphic characters. PaleoBios 23(3):21-
2284	35.
2285	

2286	Matzke, A.T. 2007. An almost complete juvenile specimen of the cheloniid turtle
2287	Ctenochelys stenoporus (Hay, 1905) from the upper Cretaceous Niobrara Formation
2288	of Kansas, USA. Palaeontology 50(3):669-691.
2289	
2290	2008. A juvenile Toxochelys latiremis (Testudines, Cheloniidae) from the
2291	Upper Cretaceous Niobrara Formation of Kansas, USA. Neues Jahrbuch für Geologie
2292	und Paläontologie-Abhandlungen 249(3):371-380.
2293	
2294	Matzke, A.T. 2009. Osteology of the skull of <i>Toxochelys</i> (Testudines, Chelonioidea).
2295	Palaeontographica Abteilung a-Palaozoologie-Stratigraphie 288(4-6):93-150.
2296	
2297	Miller Jr, H.W. 1955. A check-list of the Cretaceous and Tertiary vertebrates of New
2298	Jersey. Journal of Paleontology:903-914.
2299	
2300	1956. Correlation of Paleocene and Eocene formations and Cretaceous-
2301	Paleocene boundary in New Jersey. AAPG Bulletin 40(4):722-736.
2302	
2303	Moody, R.T.J. 1974. The taxonomy and morphology of Puppigerus camperi (Gray),
2304	an Eocene sea-turtle from northern Europe. Bulletin of the British Museum (Natural
2305	History), Geology 25:153-186.
2306	

2307	Mulder, E. 2003. Comparative osteology, palaeoecology and systematics of the Late
2308	Cretaceous turtle Allopleuron hofmanni (Gray 1831) from the Maastrichtian type area.
2309	Publicaties van het Natuurhistorisch Genootschap in Limburg Reeks XLIV (afl. 1):23-
2310	92.
2311	
2312	Mulder, E.; Jagt, J.; Kuypers, M.; Peeters, H.; Rompen, P. 1998. Stratigraphic
2313	distribution of Late Cretaceous marine and terrestrial reptiles from the Maastrichtian
2314	type area. Oryctos 1:55-64.
2315	
2316	Nessov, L.; Krassovskaya, T. 1984. Changes in the composition of turtles assemblages
2317	of Late Cretaceous of Middle Asia. Vestnik Leningradskogo Gosudarstvennogo
2318	Universiteta 3:15-25.
2319	
2320	Nicholls, E.L. 1988. New material of <i>Toxochelys latiremis</i> Cope, and a revision of the
2321	genus Toxochelys (Testudines, Chelonioidea). Journal of Vertebrate Paleontology
2322	8(2):181-187.
2323	
2324	Nicholls, E.L.; Russell, A.P. 1990. Paleobiogeography of the Cretaceous Western
2325	Interior Seaway of North America: the vertebrate evidence. Palaeogeography,
2326	Palaeoclimatology, Palaeoecology 79(1-2):149-169.
2327	

2328	Nicholls, E.L.; Tokaryk, T.T.; Hills, L.V. 1990. Cretaceous marine turtles from the
2329	Western Interior Seaway of Canada. Canadian Journal of Earth Sciences 27(10):1288-
2330	1298.
2331	
2332	Oertel, W. 1914. Toxochelys gigantea nov. sp.; eine neue Schildkröte aus dem Aptien
2333	von Hannover. Jahresber. Niedersachs. geol. Ver. 7:91-106.
2334	
2335	Owen, R. 1851. Monograph on the fossil Reptilia of the Cretaceous Formations-Part
2336	I. Monographs of the Palaeontographical Society 1:80-104.
2337	
2338	Parham, J.; Fastovsky, D. 1997. The phylogeny of cheloniid sea turtles revisited.
2339	Chelonian Conservation and Biology 2:548-554.
2340	
2341	Parham, J.F.; Feldman, C.R.; Boore, J.L. 2006. The complete mitochondrial genome
2342	of the enigmatic bigheaded turtle (Platysternon): description of unusual genomic
2343	features and the reconciliation of phylogenetic hypotheses based on mitochondrial and
2344	nuclear DNA. BMC Evolutionary Biology 6(1):11.
2345	
2346	Parham, J.F.; Hutchison, J.H. 2003. A new eucryptodiran turtle from the late
2347	cretaceous of North America (Dinosaur Provincial Park, Alberta, Canada). Journal of
2348	Vertebrate Paleontology 23(4):783-798.
2349	

2350	Parham, J.F.; Pyenson, N.D. 2010. New sea turtle from the Miocene of Peru and the
2351	iterative evolution of feeding ecomorphologies since the Cretaceous. Journal of
2352	Paleontology 84(2):231-247.
2353	
2354	Parris, D.C.; Detample, C.; Benton, R.C. 1986. Osteological notes of the fossil turtle
2355	?Dollochelys atlantica (Zangerl). The Mosasaur 3:97-108.
2356	
2357	Petersen, S.V.; Tabor, C.R.; Lohmann, K.C.; Poulsen, C.J.; Meyer, K.W.; Carpenter,
2358	S.J.; Erickson, J.M.; Matsunaga, K.K.; Smith, S.Y.; Sheldon, N.D. 2016. Temperature
2359	and salinity of the Late Cretaceous Western Interior Seaway. Geology 44(11):903-906.
2360	
2361	Püntener, C.; Anquetin, J.; Billon-Bruyat, JP. 2015. Thalassemys bruntrutana n. sp.,
2362	a new coastal marine turtle from the Late Jurassic of Porrentruy (Switzerland), and the
2363	paleobiogeography of the Thalassemydidae. PeerJ 3:e1282.
2364	
2365	Scavezzoni, I.; Fischer, V. 2018. Rhinochelys amaberti (Moret 1935), a protostegid
2366	turtle from the Early Cretaceous of France. PeerJ 6:e4594.
2367	
2368	Schmidt, K.P. 1944. Two new thalassemyd turtles from the Cretaceous of Arkansas.
2369	Field Columbian Museum, Geological series. 8:63-74.
2370	

2371	Schultze, HP.; Hunt, L.; Chorn, J.; Neuner, A.M. 1985. Type and figured specimens
2372	of fossil vertebrates in the collections of the University of Kansas Museum of Natural
2373	History. Part II. Fossil amphibians and reptiles. Miscellaneous Publications of the
2374	University of Kansas - Museum of Natural History 77:66.
2375	
2376	Shaffer, H.B.; Meylan, P.; Mcknight, M.L. 1997. Tests of turtle phylogeny: molecular,
2377	morphological, and paleontological approaches. Systematic Biology 46(2):235-268.
2378	
2379	Spamer, E.E.; Daeschler, E.; Vostreys-Shapiro, L.G. A study of fossil vertebrate types
2380	in the academy of natural sciences of philadelphia: taxonomic, systematic, and
2381	historical perspectives. 1995, Academy of Natural Sciences.
2382	
2383	Stache, G. 1905. Sontiochelys, ein neuer Typus von Lurchschildkröten (Pleurodira)
2384	aus der Fischschieferzone der ünteren Karstkreide des Monte Santo bei Görz.
2385	Verhandlungen der K. K. geologischen Reichsanstalt 13:285-292.
2386	
2387	Sterli, J.; De La Fuente, M.S. 2011. A new turtle from the La Colonia Formation
2388	(Campanian-Maastrichtian), Patagonia, Argentina, with remarks on the evolution of
2389	the vertebral column in turtles. Palaeontology 54(1):63-78.
2390	

2391	Sukhanov, V.B.; Benton, M.; Shishkin, M.; Unwin, D.; Kurochkin, E. 2000. Mesozoic
2392	turtles of middle and central Asia. The age of dinosaurs in Russia and Mongolia
2393	17:309-367.
2394	
2395	Wieland, G.R. 1902. Notes on the Cretaceous turtles Toxochelys and Archelon, with a
2396	classification of the marine Testudinata. American Journal of Science (80):95-108.
2397	
2398	1904. Structure of the Upper Cretaceous turtles of New Jersey: Adocus,
2399	Osteopygis and Propleura. American Journal of Science 17(98):112-132.
2400	
2401	1905. A new Niobrara <i>Toxochelys</i> . American Journal of Science (119):325-
2402	343.
2403	
2404	Williston, S. A new turtle from the Kansas Cretaceous. Transactions of the Annual
2405	Meetings of the Kansas Academy of Science, 1901, Kansas, USA. JSTOR. p.195-
2406	199.
2407	
2408	Winkler, T.C. 1869. Des tortues fossiles conservées dans le Musée Teyler et dans
2409	quelques autres Musées. Héritiers Loosjes. pp.
2410	
2411	Zangerl, R. 1953. The vertebrate fauna of the Selma Formation of Alabama. The turtles
2412	of the family Toxochelyidae. Fieldiana: Geology Memoirs 3(4):57-132.

1960. The vertebrate fauna of the Selma Formation of Alabama: An advanced
cheloniid sea turtle. Chicago:Chicago Natural History Museum. pp.281-312.
1971. Two toxochelyid sea turtles from the Landenian sands of Erquelinnes
Hainaut of Belgium. Bruxelles:Institut Royal des Sciences Naturelles de Belgique. 1-
32 pp.
1980. Patterns of phylogenetic differentiation in the toxochelyid and cheloniid
sea turtles. American Zoologist 20(3):585-596.