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Targets of the study in frustrated spin systems

• We want to find novel states of the matter 
• Quantum spin liquids 
• Topological phases 
• Valence Bond Solids 
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order and/or freezing is observed, by using NMR spectroscopy, at T < 1 K 
(ref. 56). More over, recent experiments show that this compound has a 
complex series of low-temperature phases in an applied magnetic field56. 
Given the exceptionally high purity of Cu3V2O7(OH)2•2H2O, an expla-
nation of its phase diagram should be a clear theoretical goal. 

Theoretical interpretations
I now turn to the theoretical evidence for QSLs in these systems and 
how the experiments can be reconciled with theory. Theorists have 
attempted to construct microscopic models for these materials (Box 2) 
and to determine whether they support QSL ground states. In the case 
of the organic compounds, these are Hubbard models, which account 
for significant charge fluctuations. For the kagomé materials, a Heisen-
berg model description is probably ap propriate. There is general theo-
retical agreement that the Hubbard model for a triangular lattice has 
a QSL ground state for intermediate-strength Hubbard repulsion near 
the Mott transition57–59. On the kagomé lattice, the Heisenberg model 
is expected to have a non-magnetic ground state as a result of frus-
tration60. Recently, there has been growing theoretical support for the 
conjecture that the ground state is, however, not a QSL but a VBS with 
a large, 36-site, unit cell61,62. However, all approaches indicate that many 
competing states exist, and these states have extremely small energy dif-
ferences from this VBS state. Thus, the ‘real’ ground state in the kagomé 
materials is proba bly strongly perturbed by spin–orbit coupling, dis-
order, further-neighbour interactions and so on63. A similar situation 
applies to the hyperkagomé lattice of Na4Ir3O8 (ref. 64).

These models are difficult to connect directly, and in detail, to 
experi ments, which mainly measure low-energy properties at low tem-
peratures. Instead, attempts to reconcile theory and experiment in detail 
have re lied on more phenomenological low-energy effective theories 
of QSLs. Such effective theories are similar in spirit to the Fermi liquid 
theory of interacting metals: they propose that the ground state has a 
certain structure and a set of elementary excitations that are consistent 
with this structure. In contrast to the Fermi liquid case, however, the 
elementary excitations consist of spinons and other exotic par ticles, 
which are coupled by gauge fields. A theory of this type — that is, pro-
posing a ‘spinon Fermi surface’ coupled to a U(1) gauge field — has 
had some success in explaining data from experiments on κ-(BEDT-
TTF)2Cu2(CN)3 (refs 65, 66). Related theories have been proposed for 
ZnCu3(OH)6Cl2 (ref. 67) and Na4Ir3O8 (ref. 68). However, comparisons 

for these materials are much more limited. In all cases, the comparison 
of theory with experiment has, so far, been indirect. I return to this 
problem in the subsection ‘The smoking gun for QSLs’.

Unexpected findings
In the course of a search as difficult as the one for QSLs, it is natural for 
there to be false starts. In several cases, researchers uncovered other 
interesting physical phenomena in quantum magnetism.

Dimensional reduction in Cs2CuCl4
Cs2CuCl4 is a spin-½ antiferromagnet on a moderately anisotropic 
trian gular lattice69,70. It shows only intermediate frustration, with f ≈ 8, 
ordering into a spiral Néel state at TN = 0.6 K. However, neutron-scat-
tering results for this compound reported by Coldea and colleagues 
suggested that exotic physical phenomena were occurring69,70. These 
experiments measure the type of excitation that is created when a neu-
tron interacts with a solid and flips an electron spin. In normal mag-
nets, this creates a magnon and, correspondingly, a sharp resonance is 
observed when the energy and momentum transfer of the neutron equal 
that of the magnon. In Cs2CuCl4, this resonance is extremely small. 
Instead, a broad scattering feature is mostly observed. The interpreta-
tion of this result is that the neutron’s spin flip creates a pair of spinons, 
which divide the neutron’s en ergy and momentum between them. The 
spinons were suggested to arise from an underlying 2D QSL state.

A nagging doubt with respect to this picture was the striking similar-
ity between some of the spectra in the experiment and those of a 1D 
spin chain, in which 1D spinons indeed exist71. In fact, in Cs2CuCl4 the 
exchange energy along one ‘chain’ direction is three times greater than 
along the diagonal bonds between chains (that is, Jʹ ≈ J/3 in Fig. 1a). 
Experimentally, however, the presence of substantial transverse disper-
sion (that is, dependence of the neutron peak on momentum perpendic-
ular to the chain axis in Cs2CuCl4), and the strong influence of interchain 
coupling on the magnetization curve, M(H), seemed to rule out a 1D 
origin, despite an early theoretical suggestion72.

In the past few years, it has become clear that discarding the idea of 
1D physics was premature73,74. It turns out that although the interchain 
coupling is substantial, and thus affects the M(H) curve significantly, 
the frustration markedly reduces interchain correlations in the ground 
state. As a result, the elementary excitations of the system are simi-
lar to those of 1D chains, with one important exception. Because the 

Figure 3 | Valence-bond states of frustrated antiferromagnets. In a VBS 
state (a), a specific pattern of entangled pairs of spins — the valence bonds 
— is formed. Entangled pairs are indicated by ovals that cover two points 
on the triangular lattice. By contrast, in a RVB state, the wavefunction is a 

superposition of many different pairings of spins. The valence bonds may 
be short range (b) or long range (c). Spins in longer-range valence bonds 
(the longer, the lighter the colour) are less tightly bound and are therefore 
more easily excited into a state with non-zero spin. 
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A lot of interesting things occur  
in the Avogadro scale ~ 1023 

　　→We need large scale calculations!



Numerical methods for quantum spin systems

• Numerical diagonalization
Exact and applicable for any systems, but system size is limited.

S=1/2 spin models ~ 50 sites

• Quantum Monte Carlo (QMC)

frustrated interactions are usually 
suffered from the sign problem!

We need careful extrapolation.

Within statistical error, solving problem “exactly”! 
Easy calculation for very large system.

But, 

• Variational method

• Variational Monte Carlo:
• Tensor network method: Very large system size (infinite)

larger systems than ED
Assuming a wave-function ansatz 



Information compression by tensor networks

We can not treat entire data in the present computers.

Try to reduce the "effective" dimension of  
(Hilbert) space

By considering proper subspace of the Hilbert space,  
we can represent a quantum state efficiently.

Tensor network quantum states!

Hilbert space

Subspace



When we efficiently compress a vector?

All of Ci are not necessarily independent.

We store "structure" and "independent elements".

Product state ("generalized" classical state)E.g.

e.g.

A vector is decomposed into product of small vectors.

structure: "product state"
independent elements: small vectors 

If we can find a basis where the coefficients have a structure (correlation).



Tensor network decomposition of a wave function

+

Target:
with 

Exponentially large Hilbert space

Total Hilbert space is decomposed as  
a product of  "local" Hilbert space.

Tensor network decomposition

: index of local Hilbert space

: local tensor for "state" i

eg. array of quantum bits



Graphical representations for tensor network

：

：

：

• Vector

• Matrix

• Tensor

* n-rank tensor = n-leg object

When indices are not presented in a graph, it represent a tensor itself.



Graphical representations for tensor network

＝ A BC

AB

C

Contraction of a network

Matrix product

＝ A BC

Generalization to tensors

= Calculation of a lot of multiplications



Graph for a tensor network decomposition

• Vector

• Tensor

Tensor network  decomposition

v

*We treat i as an index  
of the tensor.

*We can consider tensors 
independent of i.

*Vector looks like a tensor



Area law of entanglement and tensor network state



Entanglement entropy 
Entanglement entropy:

A

B

Reduced density matrix of a sub system (sub space):

Entanglement entropy = von Neumann entropy of ρA

Schmidt decomposition 

Entanglement entropy is calculated through  
the spectrum of Schmidt coefficients

A B



Area law of the entanglement entropy in physics

In the case of one-dimensional system:

General wave functions:

A

B

L

EE is proportional to its volume (# of spins).

Ground state wave functions:
For a lot of ground states, EE is proportional to its area.

A B

J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys, 277, 82 (2010)

Gapped ground state for local Hamiltonian
M.B. Hastings, J. Stat. Mech.: Theory Exp. P08024 (2007)

Ground state are in a small part 
of the huge Hilbert space

(c.f. random vector)



Tensor network state

G.S. wave function:

Vector (or N-rank tensor): # of Elements＝aN

i1 i2 i3 i4 i5``Tensor network” 
decomposition

=

General network

i1 i2

i3

i4

i5

X,Y : Tensors
Tr : Tensor network contraction

Matrix Product State 
(MPS)

：Matrix for state m

=
i1 i2 i3 i4 i5

D: dimension of the matrix A

By choosing a ``good” network, we can express G.S. wave function efficiently.
ex. MPS: # of elements ＝2ND2

Exponential→ Linear *If D does not depend on N…



Examples of TNS

MPS: Good for 1-d gapped systems

Scale invariant systemsRG

PEPS, TPS:

MERA:

For higher dimensional systems
Extension of MPS



Matrix product state (MPS)

：Matrix for state i

MPS

Note:

• A product state is represented by MPS with 1×1 "Matrix" (scalar) 

(U. Schollwöck, Annals. of Physics 326, 96 (2011))
(R. Orús, Annals. of Physics 349, 117 (2014))

Good reviews:

• MPS is called as "tensor train decomposition" in applied mathematics
(I. V. Oseledets, SIAM J. Sci. Comput. 33, 2295 (2011))



Upper bound of Entanglement entropy

A B

:MPS with χ

Reduced density  
matrix of region A:

Structure of ρA:



EE of the 

original vector

Required bond dimension

in MPS representation

Required bond dimension  
in MPS representation

The upper bound is independent of the "length".
length of MPS ⇔ size of the problem



MPS for infinite chains
By using MPS, we can write the wave function of  
a translationally invariant infinite chain

……

Infinite MPS (iMPS) is made by repeating T infinitely.

T is independent of positions!Translationally invariant system

Point!
If the entanglement entropy of a certain state 

satisfies the area low, we efficiently approximate 
infinite system with a finite size matrix (tensor) T.



Higer dimensional system
Transverse field Ising model on square lattice:

:Summation over the  
nearest neighbor pair

Two-dimensional array

Disorder
Ferro

Phase diagram
Even in ferro and disordered phases, 

the entanglement entropy depends on size N.

Area law Lx

Ly



MPS for two-dimensional system
When we apply MPS representation for a square lattice system:

Possible MPS
(Snake form)

Two settings of system and environment

A' B'

A

B

:Satisfying area law?

:Break down of the area law!

(1) (2)

Setting (1)

Setting (2)

MPS cannot cover the area law of the entanglement  
entropy in higher (d =2,3, ...) dimensions.

Lx

Ly



MPS for two-dimensional system: comment

A' B'

A

B

MPS can treat "rectangular" or "quasi one dimensional" lattice.
(1)

(2)

In setting (1), MPS can satisfy the area low partially.

We can increase Lx easily with keeping Ly constant.

Ly

Lx

Quasi one dimensional system ("strip" or "cylinder")



Tensor product states



Entanglement entropy in higher dimensions

A

B

L

Ground state wave functions:
For a lot of ground states, EE is proportional to its area.

J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys, 277, 82 (2010)

In d=1, MPS satisfies the area low.

Area low:

Q. What is a simple generalization of MPS to d > 1?

A. It is Tensor Product State (TPS)!



Tensor Product State (TPS)

PEPS (Projected Entangled-Pair State)
(F. Verstraete and J. Cirac, arXiv:cond-mat/0407066)

d-dimensional tensor network representation 

for the wave function of a d-dimensional quantum system

x,y,x’,y’ = 1,2, ... D D = “bond dimension”

mi= 1,2, ... m m = dimension of the local Hilbert space 
*D can be larger than m.  “Virtual state “

: Rank 4+1 tensor

TPS on square lattice

Tr: tensor network “contraction”

(AKLT, T. Nishino, K. Okunishi, …) TPS (Tensor Product State)

Tensor = Projector

Maximally entangled state

between D-state spins



Entanglement entropy of TPS (PEPS)

Bond dimension = D

# of bonds connecting regions A and B
(square lattice)
(d-dimensional 

hyper cubic lattice)

rank ⇢A  DNc(L) ⇠ D2dLd�1

Nc(L) = 4L

Nc(L) = 2dLd�1
A

B
SA = �Tr ⇢A log ⇢A  2dLd�1 logD

TPS can satisfy the area law even for d >1.
We can efficiently approximate vectors  
in higher dimensional space by TPS.

* Similar to the MPS in 1d, TPS can approximate infinite system!



Difference between MPS and TPS
MPS

TPS 
(PEPS)

Cost of tensor network contraction: 

O(N)

O(eL
d�1

)

MPS:

TPS:

d-dimensional cubic lattice N = Ld

It is impossible to perform  exact  
contraction even if we know  

local tensors in the case of TPS.

In the case of TPS,  
usually we approximately 
calculate the contraction.



Contraction of iTPS

Methods for approximate contraction of iTPS:
• Tensor network renormalizations 

• TRG, HOTRG, SRG, TNR, loop-TNR, ...  
(cf. lecture of T. Xiang) 

• Boundary MPS 
• "  

• Corner transfer matrix 
• T. Nishino and K. Okunishi, JPSJ 65, 891 (1996), R. Orus et 

al, Phys. Rev. B 80, 094403 (2009). 
• Single layer approaches 

• bMPS: H. J. Liao et al, PRL 118, 137202 (2017), Z. Y. Xie 
et al,PRB 96, 045128 (2017). 

• CTM: Chih-Yuan Lee et al, PRB 98, 224414 (2018) .

(Y. Hieida et al (1999) , J. Jordan et al, Phys. Rev. Lett. 101, 250602 (2008))

j!i ¼ lim
p!1

Rpj!0i
jjRpj!0ijj

: (4)

The iMPS for j!i accounts for an infinite half plane of the
environment E½ ~r1; ~r2#. Similarly, we use another iMPS with
tensors fC0; D0g to encode the left dominant eigenvector
h!0j of R, h!0jR ¼ !h!0j, which also accounts for an
infinite half plane. Then F ½ ~r1; ~r2# is built from these two
iMPS and a strip of reduced tensors a and b.

In the second step, a transfer matrix S is defined in terms
of the tensors fa; b; C;D; C0; D0g (Fig. 3). Scan be regarded
as a linear operator acting on three sites with local vector

space dimensions ", D2 and ". Again, its dominant eigen-
vector j"i, encoded in a three-legged tensor X, is com-
puted from an initial state j"0i using the fact that

j"i ¼ lim
q!1

Sqj"0i
jjSqj"0ijj

: (5)

Let X0 be the tensor for the left dominant eigenvector h"0j
of S. Then G½ ~r1 ~r2# is a (circular) MPS consisting of the six
tensors fC;D;C0; D0; X; X0g.
Simulation of time evolution.—We decompose the

Hamiltonian as H ¼ Hr þ Hd þ Hl þ Hu , where the op-
erator Hr ¼

P
ð ~r1; ~r2Þrh

½ ~r1 ~r2# collects all interactions along

r-links (and similarly for d-, l- and u -links), and consider
a Suzuki-Trotter expansion of the time-evolution operator
e' iHt of Eq. (1) in terms of operators e' iHr#t, e' iHd#t,
e' iHl#t and e' iHu #t, where #t is some small time step.
Each of these operators further decomposes into a product
of identical two-site unitary gates g ( e' ih#t acting on all
pairs of sites connected by a link of the proper type. For
instance, for links of type r we have

e' iHr#t ¼
Y

ð ~r; ~r0Þr
g½ ~r~r

0#: (6)

Without loss of generality, we need to address only the
update of tensors A and B after applying e' iHr#t to j#i. Let
us assume that the gate g is applied on just one of the r
links. In that case, in order to update the iPEPS we would
(i) compute the environment for that specific r link follow-
ing Figs. 2 and 3, and (ii) determine the optimal new
tensors A0 and B0 for the link, using the optimization
techniques of [7] (sweeping over just the two sites in-
volved). We notice, however, that the above A0 and B0

already define an iPEPS for e' iHr#j#i—that is, with gates
g acting on all r links. Indeed, this follows from translation
invariance and the fact that a unitary gate g on a given r
link does not affect the environment on any other r link. In
other words, the update of tensors A and B on each r link is
identical and need only be performed once.
The above argumentation fails for an evolution e' H$ in

imaginary time, since the gate g0 ( e' h#$ is no longer
unitary. In this case, a gate applied on, say, an r link
modifies the environment on the rest of the r links.
Nevertheless, as in one-dimensional systems [9], the
same algorithm can still be used to find the ground state
of the system through imaginary-time evolution, provided
that a sufficiently small #$ (leading to almost unperturbed
environments) is used at the last stages of the simulation.
Quantum phase transition.—To demonstrate the per-

formance of the iPEPS algorithm, we have simulated an
evolution in imaginary time to obtain the ground state j#!i
of the quantum Ising model with transverse magnetic field,

Hð!Þ ( '
X

ð ~r; ~r0Þ
%½~r#

z %½~r0#
z ' !

X

~r

%½ ~r#
x : (7)

Then we have computed the energy per site e and
the transverse and parallel magnetizations mx and mz

FIG. 3 (color online). Transfer matrices R (a) and S (b) for the
vertical or horizontal contraction scheme. Multiplication of an
iMPS by R using the iTEBD algorithm comes at a computational
time that scales as Oð"3D6 þ "2D8dÞ (similar costs apply to
multiplying by S). This cost is lower in diagonal contraction
scheme (c) and (d), namely Oð"3D4 þ "2D6dÞ, but a slightly
larger " is required in order to retain the same accuracy.

FIG. 2 (color online). The environment E½ ~r1 ; ~r2# for a link of
type r is first approximated by an infinite strip F ½~r1; ~r2# and then
by a six-tensor network G½~r1; ~r2#. These reductions can be per-
formed according to either a vertical or horizontal scheme (b) or
a diagonal scheme (c). Tensors A, A?, B, and B? are not part of
the environment.

PRL 101, 250602 (2008) P HY S I CA L R EV I EW LE T T E R S
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Corner transfer matrix method

Infinite PEPS
(with a translational invariance)

(R. Orus et al, Phys. Rev. B 80, 094403 (2009))For (infinite) open boundary system

=
Double tensor

(T. Nishino and K. Okunishi, JPSJ 65, 891 (1996))

Mapping to a "classical" system



Corner transfer matrix method

Infinite PEPS
(with a translational invariance)

(R. Orus et al, Phys. Rev. B 80, 094403 (2009))

C C

CC

e
e

e
e

C

Corner transfer matrix

e

Edge tensor

=bond dimension

Corner transfer matrix 
Representation

For (infinite) open boundary system

=
Double tensor

(T. Nishino and K. Okunishi, JPSJ 65, 891 (1996))

Environment

Environment

Mapping to a "classical" system



Original simple CTM renormalization group

• Successive "renormalization" method for contracting classicl 
tensor network proposed by Nishino and Okunishi. 
(J. Phys. Soc. Jpn. 65, 81 (1996); 66, 3040 (1997).) 

• Corner Transfer Matrix Renormalization Group（CTMRG） 

• Contract classical tensor network by changing the system 
size as L→L+2, sequentially 

• Recently, it is also use for environment calculation in two-
dimensional quantum many body system represented by 
iPEPS (iTPS)

First, I explain the simplest CTMRG for  
2d classical Ising model



Outline of CTMRG

Increase system size slightly

Suppose we have  
(approximately) calculated  

contraction of L×L network.

Contraction of (L+2)×(L+2) 
network

CTM representation

: D×D : D×D
Increase system size  

by keeping the size of C

C C

C C

C C

C C

e

e

e

e
e

ee

e approximationIncrease system  
size slightly

A: m×m×m×m



Meaning of Corner Transfer Matrix

C C

C C Increase system

C C

C C

e

e

e

e
e

ee

e Approximation

C =
4×4

=

No approximation

C e

e
=

e =

6×6

CTM representation



Recipe of CTMRG

C C

C C

e

e

e

e
e

ee

e

1. SVD

C e

e

SVD

M =

=

Using symmetry

In the case of Ising mode, 
M is a real symmetric matrix

=

Good approximation when we  
keep largest singular values!

M : mD×mD

O(D3
m

2), O(D2
m

4)contraction:
svd:O(D3

m
3), O(D3

m
2)

Cost



Recipe of CTMRG

C C

C C

e

e

e

e
e

ee

e

2. Approximation

C e

e

= ≃
approx
imation

 : D×D

 : mD×D

=

Diagonal matrix 

with



Recipe of CTMRG
Summary of renormalization

C e

e=

e
=

3. Make  new conner and edge matrices

C e

e
=

1. SVD of the corner matrix  
for (L+2)×(L+2) system

2. Make projector

Keep the largest  
D singular values

We can calculate tensor network contraction successively 

O(D3
m

2), O(D2
m

4)C,e contraction:
Cost



Accuracy of CTMRG

Free energy error of (infinite) 2D Ising model



Application to quantum system
Difference from the Ising model

"Classical" tensor is represented by product of two "quantum" tensors

=
Double tensor

• Typically, bond dimension "m" becomes much larger  
than that of classical models 

• We can reduce computational cost by using this structure explicitly

The tensor network has larger periodicity than Ising model.  
In addition, the local tensor does not necessarily have rotational symmetry

• We use more complicated renormalization steps 
• left, right, top, bottom moves 

• We use different definition of the projector



Update for quantum model

trices Tai ,Tbi. This time, in order to implement, e.g., a left
move, two new columns are inserted in the system in step !1",
see Fig. 3!c". For each of the inserted columns, we perform
the absorption and renormalization steps !2" and !3". The
renormalization step requires introducing an additional isom-
etry W, which we compute in an analogous way as isometry
Z, see Fig. 3!e". As before, the cost of a move scales as
O!D6!3". Finally, from a converged environment for the
four-site unit cell, an effective environment for any pair of
nearest-neighbor sites is easily obtained with an additional
directional move.

To demonstrate the performance of the approach, we have
computed an infinite PEPS approximation to the ground state
of the spin-1/2 quantum Ising model on a transverse mag-
netic field, HI!""=−#$r!,r!!%#z

&r!!'#z
&r!!'−"#r!#x

&r!', by simulating
an imaginary time evolution. The simulation proceeds as in
Ref. 2, but we use the directional CTM to obtain the effec-
tive environment at each step of the imaginary time evolu-
tion. This evolution is performed with decreasing time steps
$% ranging from 10−1 to 10−5, and until convergence of local
observables and two-point correlators is attained.

Figure 4 shows the order-parameter mz($& )#z)& %as a
function of the transverse magnetic field ", for !D ,!" equal
to !2,20" and !3,30", where the value of ! is chosen so that
the results are converged with respect to this parameter. Re-
markably, an infinite PEPS with bond dimension D=3 al-
ready produces results within less than a percent from the
best quantum Monte Carlo estimates for the critical magnetic
field "c

MC*3.044 and critical exponent for the order-

parameter 'MC*0.327,20 namely with relative errors *0.1%
and *0.3% respectively. Table I contains a comparison with
results obtained with the original version of the iPEPS algo-
rithm and with the TERG algorithm for large systems.6

It is particularly instructive to compare the performance
of the original and present versions of the iPEPS algorithm,
since they are both based on imaginary time evolution and
only differ in how the two-site environment is computed: by
means of the iTEBD and directional CTM approaches, re-
spectively. One finds that when computing environments us-
ing the directional CTM, a significantly better infinite PEPS
approximation to near-critical ground states is obtained, lead-
ing to a more accurate characterization of the quantum phase
transition. As shown in Fig. 5, the resulting infinite PEPS
also displays stronger correlators Szz!l"($& )#z

&r!'#z
&r!+lêx')& %

− !mz"2.
However, further comparison of results involving also

other spin models reveals that, away from the quantum criti-
cal point, both the directional CTM and the iTEBD ap-
proaches yield equivalent accuracies for ground-state prop-
erties. In particular, both versions of the iPEPS algorithm are
equally suited to study first-order phase transitions, a task for

TABLE I. Critical-point "c and exponent ' for the 2D quantum
Ising model as estimated by the new and old versions of the iPEPS
algorithm, as well as the TERG !for a finite lattice of up to
29( 29 spins". For reference, the quantum Monte Carlo estimation
is "c

MC*3.044 and 'MC*0.327 !Ref. 20".

iPEPS with
directional CTM

iPEPS with
iTEBDa TERGb

"c D=2 3.08 3.10 3.08
"c D=3 3.04 3.06
' D=2 0.333 0.346 0.333
' D=3 0.328 0.332

aReference 2.
bReference 6.

FIG. 3. !Color online" !a" Environment of the four-site unit cell;
!b" twelve-tensor effective environment; !c" two new columns are
inserted, and absorbed toward the left and renormalized individu-
ally. The diagram shows the contraction leading to C̃1, C̃4, T̃a4, and
T̃b4 when absorbing the first column, and also to the CTMs Q̃1 and
Q̃4; !d" two isometries Z and W are used to obtain the renormalized
half-row transfer matrices Ta4! and Tb4! ; !e" eigenvalue decomposi-
tion for the sum of squares of CTMs Q̃1 and Q̃4.
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FIG. 4. !Color online" Order-parameter mz as a function of the
transverse field ", computed with the directional CTM approach.
Lines are a guide to the eye. The lower-left inset shows a log plot
!in natural logarithms" of mz versus )"−"c), including our estimates
for "c and '. The continuous lines show the linear fits. The upper-
right inset shows a comparison close to criticality with the results
from Ref. 2 using the original version of the iPEPS algorithm,
which used iTEBD !dashed lines". Results correspond to !D ,!"
equal to !2,20" and !3,30".
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e e

Iterative update of environment tensors

C e =

e

Truncation

=

Absorption New
(ex. left move)

:Projector

C

e

Same ways for right, top, bottom moves.

Repeat until convergence. (Typically several tens steps)

(R. Orus et al, Phys. Rev. B 80, 094403 (2009))
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COMMENTS ON THE IPEPS METHOD

We consider a fermionic infinite projected-entangled
pair state (iPEPS) [1, 2] made of a rectangular super-
cell of size Lx ⇥Ly = NT , containing NT rank-5 tensors,
A

[x,y] labelled by the position [x, y] relative to the super-
cell [3]. For the uniform state described in the main text
we take 2 di↵erent tensors arranged in a checkerboard
order. The W5 stripe state and the W5AP state require
10 and 20 di↵erent tensors, respectively. The diagonal
stripe states in the L ⇥ L cells are obtained by using L

di↵erent tensors, repeated in the cell compatible with the
stripe pattern.

The optimization of the tensors is done via an imagi-
nary time evolution using a second order Trotter-Suzuki
decomposition. For the involved truncation of a bond in
the iPEPS we use the so-called full update (see [2]) which
is more accurate than the simple update [2, 4] used in our
previous study of the t-J model [3].

Contraction scheme

In the present work we adopted the corner-transfer-
matrix (CTM) method [5, 6], generalized to arbitrary
supercell sizes from Ref. [3], to approximately contract
the two-dimensional tensor network. The CTM method
outputs the so-called environment tensors, consisting of
four corner tensors C1, C2, C3, C4, and four edge tensors
T1, T2, T3, T4, for each position [x, y] in the supercell.
These environment tensors e↵ectively account for the in-
finite two-dimensional system surrounding the reduced
bulk tensors a

[x,y] (which are obtained by multiplying
each tensor A[x,y] with its conjugate). For details on the
method we refer to Ref. [3].

The only di↵erence to the scheme in Ref. [3] is how
we renormalize the corner and edge tensors after an ab-
sorption step. Instead of computing isometries based on
a singular value decomposition to absorb a column (or
a row) of tensors into the environment tensors, we use
the projector introduced in Refs. 7 and 8. This choice
of renormalization yields a better convergence of quan-
tities as a function of the boundary dimension �. The
steps of how to perform a left-move (i.e. where the sys-
tem is grown by one column to the left) is explained in
Fig. 1. The other moves (right move, top move, and down
move) are performed in a similar way until convergence
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FIG. 1. Details on the renormalization step in the corner-
transfer-matrix method to perform a left move (cf. Ref. [3]).
(a) A 2 ⇥ 2 block of reduced tensors a surrounded by the
environment tensors. This network of 4 ⇥ 4 tensors is split
into an upper half and a lower half, shown in (b). A QR
decomposition (or SVD) is performed on the upper and lower
half, yielding the tensors R and R̃, respectively. (c) An SVD
is performed on the product of RR̃, where only � singular
values are kept. (d) A resolution of the identity R�1RR̃R̃�1

is approximated by introducing the result from (c), which
yields projectors P̃ = R̃V s�1/2 and P = s�1/2U†R. (e) These
projectors are then used to absorb a column of tensors into
the left environment tensors.

is reached.

A computationally cheaper variant of this (but less ac-
curate) is to compute the QR decomposition shown in
Fig. 1(b) only based on the upper left corner (made of
4 tensors), and lower left corner (made of 4 tensors), in-
stead of the upper and lower half of the 4⇥ 4 network.
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Calculation of projectors

The heaviest part of the iPEPS + CTM

(2) Half-environment contraction: 

*Typically, 
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COMMENTS ON THE IPEPS METHOD

We consider a fermionic infinite projected-entangled
pair state (iPEPS) [1, 2] made of a rectangular super-
cell of size Lx ⇥Ly = NT , containing NT rank-5 tensors,
A

[x,y] labelled by the position [x, y] relative to the super-
cell [3]. For the uniform state described in the main text
we take 2 di↵erent tensors arranged in a checkerboard
order. The W5 stripe state and the W5AP state require
10 and 20 di↵erent tensors, respectively. The diagonal
stripe states in the L ⇥ L cells are obtained by using L

di↵erent tensors, repeated in the cell compatible with the
stripe pattern.

The optimization of the tensors is done via an imagi-
nary time evolution using a second order Trotter-Suzuki
decomposition. For the involved truncation of a bond in
the iPEPS we use the so-called full update (see [2]) which
is more accurate than the simple update [2, 4] used in our
previous study of the t-J model [3].

Contraction scheme

In the present work we adopted the corner-transfer-
matrix (CTM) method [5, 6], generalized to arbitrary
supercell sizes from Ref. [3], to approximately contract
the two-dimensional tensor network. The CTM method
outputs the so-called environment tensors, consisting of
four corner tensors C1, C2, C3, C4, and four edge tensors
T1, T2, T3, T4, for each position [x, y] in the supercell.
These environment tensors e↵ectively account for the in-
finite two-dimensional system surrounding the reduced
bulk tensors a

[x,y] (which are obtained by multiplying
each tensor A[x,y] with its conjugate). For details on the
method we refer to Ref. [3].

The only di↵erence to the scheme in Ref. [3] is how
we renormalize the corner and edge tensors after an ab-
sorption step. Instead of computing isometries based on
a singular value decomposition to absorb a column (or
a row) of tensors into the environment tensors, we use
the projector introduced in Refs. 7 and 8. This choice
of renormalization yields a better convergence of quan-
tities as a function of the boundary dimension �. The
steps of how to perform a left-move (i.e. where the sys-
tem is grown by one column to the left) is explained in
Fig. 1. The other moves (right move, top move, and down
move) are performed in a similar way until convergence
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FIG. 1. Details on the renormalization step in the corner-
transfer-matrix method to perform a left move (cf. Ref. [3]).
(a) A 2 ⇥ 2 block of reduced tensors a surrounded by the
environment tensors. This network of 4 ⇥ 4 tensors is split
into an upper half and a lower half, shown in (b). A QR
decomposition (or SVD) is performed on the upper and lower
half, yielding the tensors R and R̃, respectively. (c) An SVD
is performed on the product of RR̃, where only � singular
values are kept. (d) A resolution of the identity R�1RR̃R̃�1

is approximated by introducing the result from (c), which
yields projectors P̃ = R̃V s�1/2 and P = s�1/2U†R. (e) These
projectors are then used to absorb a column of tensors into
the left environment tensors.

is reached.

A computationally cheaper variant of this (but less ac-
curate) is to compute the QR decomposition shown in
Fig. 1(b) only based on the upper left corner (made of
4 tensors), and lower left corner (made of 4 tensors), in-
stead of the upper and lower half of the 4⇥ 4 network.
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(3) SVD of RR matrix:

or 

,

(with naive ways)
(1) Update of the edge tensors:

Naive implementation:
O(D12) calculation cost!

(P. Corboz et al, Phys. Rev. Lett. 113, 046402 (2014))



Useful techniques to reduce the cost

Typically, we need only higher O(D2) mode among O(D4) full SV spectrum.
ii-1) Use partial SVD instead of full SVD

ii-2) Do not create the full matrix at SVD
Full SVD: O(D12) Partial SVD: O(D10) 

By using partial SVD algorithms consist of  matrix-matrix or matrix-vector products,
we do not need the half environment contraction.

i) Use internal tensor structure explicitly

In some case, we can reduce the contraction cost.=

In the case of PEPS, the tensor "T" is the product of smaller tensors.

*Example

Contraction: O(D12)
Full SVD: O(D12)

Contraction: O(D10)
Partial SVD: O(D10)

* Same technique reduce the cost of TRG from O(!6) to O(!5).



Useful techniques to reduce the cost

Typically, we need only higher O(D2) mode among O(D4) full SV spectrum.
ii-1) Use partial SVD instead of full SVD

ii-2) Do not create the full matrix at SVD
Full SVD: O(D12) Partial SVD: O(D10) 

By using partial SVD algorithms consist of  matrix-matrix or matrix-vector products,
we do not need the half environment contraction.

i) Use internal tensor structure explicitly

In some case, we can reduce the contraction cost.=

In the case of PEPS, the tensor "T" is the product of smaller tensors.

(2) Half-environment contraction: 

(3) SVD of RR matrix:
,

(1) Update of the edge tensors:

not need

The heaviest part of the iPEPS + CTM

O(D10)



Single layer approach for CTMRGGAPLESS SPIN LIQUID IN THE KAGOME HEISENBERG … PHYSICAL REVIEW B 98, 224414 (2018)
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FIG. 2. (a) Representation of a bilayer of 2D infinite tensor
networks, whose repeat units may be combined into a single ten-
sor, a, and whose contraction is required in the calculation of a
physical expectation value. (b) Illustration of the square lattice of
a tensors and the blocking scheme adopted in the CTM approach.
(c) Approximation to the environment of a single a tensor on the
square lattice by four C and four T tensors, each with boundary bond
dimension χCTM.

evaluations of the two-triangle unit are actually performed
on the square lattice, as depicted schematically in Fig. 2(a).
We verify the restoration of threefold symmetry in the limit
of small τ and large χ during our calculations of physical
expectation values [52].

The projection operators e−τHα act on the full triangular
simplex (schematically SαA0A1A2) to produce a contracted
tensor with dimension (dχ )3 at each step. For the truncation
of this tensor, we work exclusively at the level of the simple-
update method [49,56,59], based on local tensor contractions
and explained in detail for the kagome lattice in Ref. [52]; this
approach has been found to yield the optimal PESS ground
states based on efficiency of convergence and accessible
χ values. We comment that the simple-update treatment is
essentially complete on the Husimi lattice [55], where the
simplex tensors have no connection other than their local
bonds, and we will exploit this property in Sec. III to assist
in interpreting our kagome calculations.

B. Computing expectation values by CTM

The PESS wave function we obtain is an infinite two-
dimensional (2D) tensor network. For the calculation of phys-
ical expectation values, ⟨!|Q|!⟩, it is necessary to contract
this network, or more specifically its “square,” represented in
Fig. 2(a). A number of approaches exist for this procedure,
specifically the use of boundary matrix-product states (bMPS)
[57,58], which are used to perform successive 1D contractions
[18,52], of corner-transfer-matrix (CTM) methods [60,61],
which proceed directly in 2D, and the hybrid method of
channel environments [62]. Here we have adopted the CTM
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FIG. 3. Representation of the dimension-reduction procedure.
(a) The calculation of an expectation value is the contraction of two
tensor networks whose minimal unit is b† in the top layer and b in the
bottom layer, the two being connected by contraction of the physical
bond. To adopt the one-layer CTM method, we introduce additional
contraction tensors, c and d . (b) Pictorial definition of the tensors
c and d . (c) Resulting reduction of the tensor network in Fig. 2(b),
which has bond dimension χ 2 and one-tensor unit cell, to a network
with bond dimension χ and four-tensor unit cell.

scheme, in which the original problem based on tensors a
[Fig. 2(b)] is approximated by C and T tensors as shown in
Fig. 2(c), and the accuracy of the approximated environment is
controlled by the boundary bond dimension, χCTM. The C and
T tensors are deduced from a and from isometry operations
[63–65] by constructing an iterative renormalization scheme
based on the invariance of the system under the addition of
rows and columns. Technically, it is necessary to store the
environments for all tensors within the unit cell during the
iteration.

To maximize the χ value for which we can compute
physical quantities, we follow a recent proposal [66] for opti-
mizing the tensor contraction process. This method, originally
proposed to optimize bMPS contractions and employed in
Ref. [18] to extend the maximum χ attainable on the kagome
lattice from 15 to 25, can also be applied within a CTM
approach. Its essence is to transform the original calculation,
which is the contraction of a double-layer tensor network with
bond dimension χ2 and a one-tensor unit cell [Fig. 3(a)], to the
contraction of a single-layer network with a 2 × 2 unit cell, as
represented in Fig. 3(c). The upper (b†) and lower (b) tensor
networks are combined by introducing the tensors [Fig. 3(b)]

cijklmn = δijδklδmn, dijkl = δijδkl .

Because CTM is an approximate contraction method, in
which the error is controlled by χCTM, the variational principle
is not applicable and any physical expectation value may
increase or decrease with increasing χCTM. The expectation
values on which we focus here are the ground-state energy
per site, E = 1

6 (E" + E∇ ), and the staggered magnetization

224414-3

We can map double layer TN to a single layer.

(Chih-Yuan Lee et al, PRB 98, 224414 (2018))

Computation cost is reduced to O(D8).
(χ~D2)
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Expected entanglement scaling for spin systems
N. Laflorencie / Physics Reports 646 (2016) 1–59 7

Table 1
Entanglement entropy scaling for various examples of states of matter, either disordered,
ordered, or critical, with smooth boundaries (no corners).

Physical state Entropy Example

Gapped (brok. disc. sym.) aLd�1 + ln(deg) Gapped XXZ [143]
d = 1 CFT c

3 ln L s = 1
2 Heisenberg chain [21]

d � 2 QCP aLd�1 + �QCP Wilson–Fisher O(N) [136]
Ordered (brok. cont. sym.) aLd�1 + nG

2 ln L Superfluid, Néel order [147]
Topological order aLd�1 � �top Z2 spin liquid [159]

Fig. 5. Difference of entanglement entropies for d = 2 relativistic spin-waves (free bosons) between square and strip geometries, yielding the logarithmic
corrections Eq. (2.7). Fits (full lines) to the form 8lq(⇡/2) ln(L) + bq + cq/L + dq/L2 are shown by full lines. Exact diagonalization results (symbols) are
displayed for two different aspect ratios of the strips and various Rényi parameters q = 1, 2, 3, 4.
Source: Reprinted from [163].

where the sum is taken over sharp corner angles.With smooth boundaries, such a logarithmic divergence occurs only for odd
dimensions [10,169]. For even values of d, sharp angles lead to logarithmic corrections which are expected to be universal
for all systems with the same type of symmetry breaking/phase transition. In d = 2 it has been studied in several situations,
such as CFT, or Lifshitz with z 6= 1, where the prefactor was shown to be directly proportional to the central charge [141].
For free scalar field theory, Casini and Huerta have provided an analytical solution [160] for integer q � 2 while it involves
a tricky numerical solution of a set of non-linear differential equations, valid for 'c 2 [0, ⇡] (lq(') = lq(2⇡ � ')). Below in
Fig. 5we shownumerical results obtained in Ref. [163] for non-interacting relativistic bosons on a square lattice, reproducing
the free scalar field results of Casini and Huerta.

In order to extract the corner corrections, we study square subsystems (having 4 corners, each with ' = ⇡/2) of
perimeter 2L (embedded in a L ⇥ L torus) at which one subtracts the entropies from corner-free strips ` ⇥ L having the
same perimeter so that the area law contribution cancels, as well as other potential corrections (e.g. Goldstone modes for
continuous symmetry breakings, see also below in Section 2.4).

Working with spin-wave (SW) corrections of an SU(2) model [163], there are two Nambu–Goldstone modes fromwhich
we expect the leading term of this difference to be given by

Ssquareq � Sstripq = 8lq(⇡/2) ln L + · · · . (2.7)

Numerical diagonalization results of the non-interacting SWs Hamiltonian [163] are plotted in Fig. 5 where we clearly
see that the above difference Eq. (2.7) is clearly dominated by a logarithmic scaling which allows us to extract lq(⇡/2).
Small variations of the results for different aspects ratios of the strips (see left and right panels of Fig. 5) can be used
as a measure of the error due to finite size effects and fitting procedure. Our results, in perfect agreement with those of
Casini and Huerta [160], are displayed in Table 2 together with other estimates for interacting field theories obtained from
numerical simulations using series expansion [170], numerical linked cluster expansion [138,151,152] or QMC [171]. Note
that extracting such small log corrections is very challenging for interacting fixed points and series or numerical linked
cluster expansion turns out to be more controlled than QMC for this task.

The fact that universality emerges in the corner logarithmic terms is remarkable. It was then proposed that the prefactor
of the logarithmic correction is an effective measure of the degrees of freedom of the underlying CFT [151,160,169]. Using

(Nicolas Laflorencie, Physics Reports 646, 1 (2016))

cf. free fermion
S / Ld�1 logL

<latexit sha1_base64="rseAQV0zAoJOHxW8C+b+Ij90CWQ="></latexit>

For d ≥ 2, leading contribution satisfies area low  
even for gapless (critical) systems.



Example: Ground state represented by iTPS 

Toric code model

3

The two-dimensional toric code

The toric code is an exactly solvable spin 1/2 model on the square lattice. It exhibits a
ground state degeneracy of 4g when embedded on a surface of genus g and a quasiparti-
cle spectrum with both bosonic and fermionic sectors. Although we will not introduce
it as such, the model can be viewed as an Ising gauge theory at a particularly simple
point in parameter space (see Sec. 4.5). Many of the topological features of the toric
code model were essentially understood by Read and Chakraborty (1989), but they
did not propose an exactly solved model. A more detailed exposition of the toric code
may be found in Kitaev (2003).

We consider a square lattice, possibly embedded into a nontrivial surface such as
a torus, and place spins on the edges, as in Fig. 3.1. The Hamiltonian is given by

HT = −Je

∑

s

As − Jm

∑

p

Bp (3.1)

where s runs over the vertices (stars) of the lattice and p runs over the plaquettes.
The star operator acts on the four spins surrounding a vertex s,

Bp

As

Fig. 3.1 A piece of the toric code. The spins live on the edges of the square lattice. The

spins adjacent to a star operator As and a plaquette operator Bp are shown.

The two-dimensional toric code

As =
∏

j∈star(s)

σx
j (3.2)

while the plaquette operator acts on the four spins surrounding a plaquette,

Bp =
∏

j∈∂p

σz
j . (3.3)

Clearly, the As all commute with one another, as do the Bp. Slightly less trivially,

AsBp = BpAs (3.4)

because any given star and plaquette share an even number of edges (either none or
two) and therefore the minus signs arising from the commutation of σx and σz on
those edges cancel. Since all of the terms of HT commute, we expect to be able to
solve it term by term.

In particular, we will solve HT working in the σz basis. Define classical variables
sj = ±1 to label the σz basis states. For each classical spin configuration {s}, we can
define the plaquette flux

wp(s) =
∏

j∈∂p

sj . (3.5)

If wp = −1, we say that there is a vortex on plaquette p.

3.1 Ground states

To find the ground states |Ψ
〉

of HT , we need to minimize the energy, which means
maximize the energy of each of the As and Bp terms. The plaquette terms provide the
condition

Bp|Ψ
〉

= |Ψ
〉

(3.6)

which holds if and only if

|Ψ
〉

=
∑

{s:wp(s)=1 ∀p}

cs|s
〉

(3.7)

. That is, the ground state contains no vortices. The group of star operators act on
the configurations s by flipping spins. Thus, the star conditions

As|Ψ
〉

= |Ψ
〉

(3.8)

hold if and only if all of the cs are equal for each orbit of the action of star operators.
In particular, if the spin flips of As are ergodic, as they are on the plane, all cs must
be equal and the ground state is uniquely determined.

On the torus, the star operators preserve the cohomology class of a vortex-free spin
configuration. In more physical terms, we can define conserved numbers given by the
Wilson loop like functions

wl(s) =
∏

j∈l

sj , l = l1, l2 (3.9)

where l1 and l2 are two independent non-trivial cycles on the square lattice wrapping
the torus (Fig. 3.2). Any given star will overlap with a loop l in either zero or two

The two-dimensional toric code

As =
∏

j∈star(s)

σx
j (3.2)

while the plaquette operator acts on the four spins surrounding a plaquette,

Bp =
∏

j∈∂p

σz
j . (3.3)

Clearly, the As all commute with one another, as do the Bp. Slightly less trivially,

AsBp = BpAs (3.4)

because any given star and plaquette share an even number of edges (either none or
two) and therefore the minus signs arising from the commutation of σx and σz on
those edges cancel. Since all of the terms of HT commute, we expect to be able to
solve it term by term.

In particular, we will solve HT working in the σz basis. Define classical variables
sj = ±1 to label the σz basis states. For each classical spin configuration {s}, we can
define the plaquette flux

wp(s) =
∏

j∈∂p

sj . (3.5)

If wp = −1, we say that there is a vortex on plaquette p.

3.1 Ground states

To find the ground states |Ψ
〉

of HT , we need to minimize the energy, which means
maximize the energy of each of the As and Bp terms. The plaquette terms provide the
condition

Bp|Ψ
〉

= |Ψ
〉

(3.6)

which holds if and only if

|Ψ
〉

=
∑

{s:wp(s)=1 ∀p}

cs|s
〉

(3.7)

. That is, the ground state contains no vortices. The group of star operators act on
the configurations s by flipping spins. Thus, the star conditions

As|Ψ
〉

= |Ψ
〉

(3.8)

hold if and only if all of the cs are equal for each orbit of the action of star operators.
In particular, if the spin flips of As are ergodic, as they are on the plane, all cs must
be equal and the ground state is uniquely determined.

On the torus, the star operators preserve the cohomology class of a vortex-free spin
configuration. In more physical terms, we can define conserved numbers given by the
Wilson loop like functions

wl(s) =
∏

j∈l

sj , l = l1, l2 (3.9)

where l1 and l2 are two independent non-trivial cycles on the square lattice wrapping
the torus (Fig. 3.2). Any given star will overlap with a loop l in either zero or two

(A. Kitaev, Ann. Phys. 303, 2 (2003).

Its ground state is so called Z2 spin liquid state.
"Spin liquid" is a novel phase different from conventional magnetic orders. 
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(Non-zero elements of tensor)0,1: eigenstate of σx

(F. Verstraete, et al, Phys. Rev. Lett. 96, 220601 (2006).It can be represented by D=2 TPS.



Example: Loop gas state for gapless Kitaev SL

x-bond

y-bond

z-bond

Kitaev model

:bond direction

Quasiparticle statistics in the gapped phase

gapped

B

Ax Ay

Az

J⃗ = (0, 0, 1)

J⃗ = (1, 0, 0) J⃗ = (0, 1, 0)

gapless

gapped

gapped

Fig. 5.3 Phase diagram of honeycomb model. This is a slice through the positive octant in
J⃗ coupling space along the Jx + Jy + Jz = 1 plane. The other octants are analogous.

n⃗1 q⃗1 q⃗2

−q⃗∗ q⃗∗n⃗2

Fig. 5.4 Direct and reciprocal lattices of the honeycomb. The points ±q⃗∗ are the two Dirac

points of the gapless phase B.

5.4 Quasiparticle statistics in the gapped phase

It appears that there are two particle types: fermions and vortices (hexagons with
wp = −1). The vortices are associated with a Z2 gauge field, where ujk plays the role
of vector potential. Taking a fermion around a vortex results in the multiplication of
the state by −1 (compared to the no-vortex case). However, the details such as the
fusion rules are not obvious.

Let us look at the model from a different perspective. If Jx = Jy = 0, Jz > 0,
the system is just a set of dimers (see Fig. 5.5). Each dimer can be in two states: ↑↑
and ↓↓. The other two states have 2Jz higher energy. Thus, the ground state is highly
degenerate.

If Jx, Jy ≪ Jz, we can use perturbation theory relative to the noninteracting dimer
point. Let us characterize each dimer by an effective spin:

| ⇑
〉

= | ↑↑
〉

; | ⇓
〉

= | ↓↓
〉

. (5.18)

At 4th order of perturbation theory, we get:

H(4)
eff = const−

J2
xJ2

y

16J3
z

∑

p

Qp (5.19)

G.S. Phase diagram

Isotropic region (B) : gapless spin liquid

Anisotropic region (A) : gapped spin liquid

Ground states are spin liquids!

• Majorana fermions shows gapless excitation. 
• The flux excitations is gapped.

• Excitations of Majorana fermions has finite gap. 
• It is adiabatically connected to the toric code.

A. Kitaev, Annals of Physics 321, 2 (2006) 



Example: Loop gas state for gapless Kitaev SL
H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, arXiv:1901.03614

A simple vortex free state corresponding to the isotropic Kitaev model:
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Non zero elements:

This LGS is critical, 
with the Ising CFT universality.

(cf. Lee's seminar )



Example: chiral spin liquid on the star  lattice
H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, arXiv:1907.02268

Abelian and Non-Abelian Chiral Spin Liquids in a Compact Tensor Network
Representation

Hyun-Yong Lee,1, ⇤ Ryui Kaneko,1, † Tsuyoshi Okubo,2, ‡ and Naoki Kawashima1, §

1Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
2Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

(Dated: July 5, 2019)

We provide new insights into the Abelian and non-Abelian chiral Kitaev spin liquids on the
star lattice using the recently proposed loop gas (LG) and string gas (SG) states[arXiv:1901.05786].
Those are compactly represented in the language of tensor network. By optimizing only one or two
variational parameters, accurate ansatze are found in the whole phase diagram of the Kitaev model
on the star lattice. In particular, the variational energy of the LG state becomes exact (within
machine precision) at two limits in the model, and the criticality at one of those is analytically
derived from the LG feature. It reveals that the Abelian CSLs are well demonstrated by the
short-ranged LG while the non-Abelian CSLs are adiabatically connected to the critical LG where
the macroscopic loops appear. Furthermore, by constructing the minimally entangled states and
exploiting their entanglement spectrum and entropy, we identify the nature of anyons and the chiral
edge modes in the non-Abelian phase with the Ising conformal field theory.

Introduction. Discovery of the fractional quantum
Hall (FQH) e↵ect[1] had brought a paradigm shift in un-
derstanding of condensed phases of matter. Exotic quan-
tum liquid states, i.e., chiral spin liquids (CSL), were pro-
posed as the ground states of the FQH system[2, 3], which
cannot be featured by Landau’s symmetry breaking the-
ory but the so-called topological order. The topological
order can be interpreted as the pattern of long-range en-
tanglement which leads to the ground state degeneracy
depending only on the topology of system[4]. Those CSL
ansatze successfully explained the nature of the FQH flu-
ids such as the fractional statistics of quasiparticles (or
anyons)[5, 6]. Furthermore, the anyons obeying the non-
Abelian braiding statistics were theoretically realized in
the FQH system[7, 8]. Due to the robust topological
degeneracy against the local perturbations and exotic
statistics of anyons, the non-Abelian topological states
have been proposed as a promising platform for fault-
tolerant quantum computing[9] and thus attracted lots
of attention in the field of quantum information for the
last decade[10]. Another interesting feature of the FQH
fluids and CSLs is that the chiral gapless edge modes
appear at the boundary of the system, and it leads to
perfect heat conduction at the edge[11]. The edge states
are described by the conformal field theories (CFT) which
also characterize and hence have been employed to iden-
tify the topological order[12–18]. By solving the Kitaev
model[19] on the star lattice (KSM), Yao and Kivelson
showed the existence of the CSL as an exact ground state
of local Hamiltonian and found Abelian and non-Abelian
phases characterized by the topological degeneracies four
and three on the torus, respectively[20, 21].

The aim of this Letter is to understand the Abelian
and non-Abelian Kitaev CSLs without referring to the
Majorana fermion. Recently, a particular LG state and
its extension, which is referred to as SG state, have been
proposed as ansatze for the Kitaev spin liquid (KSL) on

FIG. 1. Schematic figures of (a) the star lattice and (b)
four exemplary local loop configurations on the triangle pla-
quette where q and r denote the local weight of loop along
the dodecagon and triangle plaquettes, respectively. The x-,
y- and z-bonds defined in the model [Eq. (1)] are specified by
red, blue and yellow colors, respectively.

the honeycomb lattice[19] in a compact tensor product
state (TPS) representation[22]. The LG ansatz was found
to reflect most qualitative features of the KSL, and SG
provides a quantitatively accurate approximation to the
KSL while keeping the qualitative features intact. In
what follows, we reinterpret the CSLs as the LG and
SG states and provide direct evidences identifying the
topological order in each phase.
Model. The KSM is defined as[20]

Ĥ = �
J

4

X

hiji2�

�̂
�

i
�̂
�

j
�

J
0

4

X

hiji2�0

�̂
�
0

i
�̂
�
0

j
, (1)

where �̂
�

i
stands for the Pauli matrix with �, �

0 =
x, y, z, while hiji� and hiji�0 denote the nearest-neighbor
pair respectively on the intra-triangle (�) and inter-
triangle (�0) bonds connecting sites i and j as defined
in Fig. 1 (a). Note that the Hamiltonian commutes
with two types of flux operators defined on the tri-
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FIG. 3. The EE of | LGi on the infinitely long cylnder at
(a) � = 0.02⇡ and (b) � = 0.4⇡ as a function of Ly. Here, |Ii
and |mi denote two degenerate MESs (see text), and the black
solid lines are the fitting curves. Plots of the TEE � extracted
from (c) the LG and (d) SG ansatze at each �, and the green
dotted line denotes the critical point (�c = ⇡/3), where L⇤

y

denotes the largest circumference for fitting the data. For
instance, the TEE � of L⇤

y = 6 is extracted by fitting the EE
of Ly = 4 and 6.

log
p
2) of Ising anyon model[10, 19]. On the other hand,

at � = 0.4⇡ [Fig. 3 (a)], both EEs almost perfectly fit to
(↵, �i) = (log 2, log 2), which is consistent with the one
from the toric code[9, 19]. Similarly, we have extracted
�i at each �, and the results obtained from | LGi and
| SGi are shown in Fig. 3 (c) and (d), respectively. Those
of | LGi are in an excellent agreement with the ones of
Ising anyon model around � = 0 and with the ones of the
toric code mostly in the Abelian phase [Fig. 3 (c)]. Mean-
while, the SG ansatz gives almost consistent TEEs even
in the non-Abelian phase agreeing with the ones of Ising
anyon model and predicts the transition point rather cor-
rectly [Fig. 3 (d)].

Furthermore, the identification of the topological ex-
citations becomes even clearer from characteristic struc-
tures in the ES[12]. Figure 4 (a) and (b) present the ESs
of |Ii and |mi obtained by the SG ansatze at � = 0.25⇡.
Here, the circumference is Ly = 6, and the horizontal
axis ky denotes the momentum. It is found that there
are four branches of two distinct chiral modes in the I-
sector, which linearly disperse in one direction. Those are
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FIG. 4. The ES [12] of two topologically degenerate ansatze
|Ii and |mi with Ly = 6 at � = 0.25⇡. The level spacings
and degeneracy patterns of chiral modes in (a) and (b) are
consistent with three primary fields and their descendants in
the Ising CFT (see text for details).

highlighted by the red and blue solid lines in Fig. 4 (a).
Assuming the close ESs (dashed boxes) as degenerate lev-
els, the degeneracy pattern is consistent with the ones
of the primary fields 1 (blue) and  (blue) and their de-
scendants in the Ising CFT[40, 41], respectively. On
the other hand, in the m-sector, we find six branches
of a single chiral mode of which the degeneracy counting
obeys {1, 1, 1, 2, 2, 3, 4, 5, 7, · · · }[41], i.e., the characteris-
tic of the primary field � and its descendants in the Ising
CFT. In addition, the level spacings in the low-lying spec-
trum are in excellent agreement with the exact ones (see
SM for details). From our MES setup, the state |mi is
expected to accommodate the vortex at each boundary
and thus can identify the vortex with the �-anyon. The
ES in the Abelian phase is discussed in SM.

Conclusion. In this Letter, we show that the Abelian
and non-Abelian CSL ground states of the KSM are well
represented by the LG and SG states. In particualr, at
both limits � = 0 and ⇡/2, the LG states become ex-
act. Further, the gap closing at � = 0 is understood by
mapping the norm of ansatz into the partition function
of the critical LG model. In addition, the fate of long-
ranged loops is found to determine the Abelianess and
non-Abelianess of CSL. By constructing the MES and
measuring its TEE, we directly show that our ansatze
host indeed the non-Abelian vortex with the quantum di-
mension dm =

p
2. On the other hand, it becomes trivial,

i.e., dm = 1, as the ansatz enters into the Abelian phase.
We also identify the chiral edge modes in the non-Abelian
phase with the Ising CFT, not the SU(2)2 Wess-Zumino-
Witten theory conjectured in Ref. [20] by exploiting the
level spacing and their degeneracy patterns[18, 42]. We
believe that the LG ansatze are the simplest CSLs in a
compact representation, and therefore it could provide a
platform bridging the quantum loop models[43] with the

J 0/J = tan�
<latexit sha1_base64="4+rSqiffIt/XroS81KrcXq/d2IM="></latexit>

Entanglement spectrum

(cf. Lee's symposium talk)

Similar LG construction gives us both of abelian and non-abelian chiral SL.



iTPS as variational wave function

A lot of two-dimensional spin systems satisfy 
the area law of the entanglement entropy.

Difficulties:

However, optimization of iTPS for a given Hamiltonian 
is not an easy task.

• Optimization of infinitely repeated tensors a highly non-linear problem. 
• Contraction of iTPS is performed only approximately.

It indicate, iTPS can be good variational  
wave function for infinite systems.



Optimization of iTPS



Typical optimization methods for iTPS

1. Imaginary time evolution

Suzuki-Torotter decomposition:

Truncation

* By operating the time evolution operator,

the bond dimension increases from original D.

We need a “truncation.”

• Full update : consider global environment
• Simple update: consider only local environment

→Accurate but higher cost (O(D8)~O(D10))

→lower cost (O(D5))

2. Variational optimization
L. Vanderstraeten et al , Phys. Rev. B 94, 155123 (2016).
P. Corboz, Phys. Rev. B 94, 035133 (2016).

3

(CTM) renormalization group method,29,30 for arbitrary
unit cell sizes20,32 which is summarized in the following.

Consider the problem of computing the norm of an
iPEPS h | i, which boils down to contracting the in-
finite 2D square lattice network of the reduced tensors
a[x,y], shown in Fig. 1(c), where each a[x,y] is obtained
from contracting A[x,y] with its conjugate tensor A†[x,y],
see Fig. 1(b). The goal of the CTM approach is to com-
pute the four corner tensors C1, C2, C3, C4, and the four
edge tensors T1, T2, T3, T4 for each coordinate [x, y] in
the unit cell, where each corner tensor represents a quad-
rant and the edge tensors a half-row (or half-column) of
the infinite 2D network. All these tensors together form
the so-called environment, representing the infinite sys-
tem surrounding a bulk site (or several bulk sites), as
shown in Fig. 1(c). Once the environment has been com-
puted, one can easily evaluate expectation values of local
observables by introducing the corresponding operators
in between the physical legs of the iPEPS tensors.

The environment tensors are computed iteratively by
letting the system grow in all directions. One starts from
an initial guess for the boundary tensors, either by initial-
izing them randomly, or alternatively one can initialize
them with the bulk tensors (by tracing out the auxiliary
bonds on the edges). In the directional CTM approach30

one first performs a growth step on e.g. the left side of
the system (called a left move), by introducing a new col-
umn of tensors, multiplying them onto the left boundary
tensors, followed by a renormalization step, see Fig. 1(d).

In the renormalization step a bond dimension � is kept
at the boundary which controls the accuracy of the ap-
proximate contraction. There are di↵erent ways how to
perform this renormalization step. Here we use a set of
projectors P and P̃ , introduced in Refs. 33 and 34 and
first applied in the CTM method in Ref. 20, to project
from the enlarged space �D2 down to a dimension �.
These projectors are then used to compute the renormal-
ized corner- and edge tensors, C 0

1, C
0
4, and T 0

4, as shown
in Fig. 1(e).

For a unit cell of size Lx ⇥ Ly one proceeds in the
following way for a full left move (i.e. an absorption of
the entire unit cell into the left boundary):

• Do for all x 2 [1, Lx]

– Do for all y 2 [1, Ly]

⇤ Compute the projectors P [x�1,y] and
P̃ [x�1,y] (see Ref. 20 for details)

– Do for all y 2 [1, Ly]

⇤ Compute the new renormalized corner

tensors C 0[x,y]
1 , C 0[x,y]

4 , and edge tensor

T 0[x,y]
4 , as shown in Fig. 1(e)

After a full left move one proceeds with a full right-,
top-, bottom-move in a similar way, and reiterates until
convergence is reached (e.g. by checking the convergence
of the energy with CTM iterations).

C. Optimization based on imaginary time evolution

In order to get an approximate representation of the
ground state of a given Hamiltonian Ĥ, the tensors need
to be optimized, i.e. one needs to find the best variational
parameters stored in the tensors. In previous iPEPS sim-
ulations this has been done based on an imaginary time
evolution (ITE) of an initial (e.g. random) state. Using a
Trotter-Suzuki decomposition the imaginary time evolu-
tion operator is split into a product of two-site operators,

e��Ĥ = e��
P

b Ĥb ⇡
 
Y

b

Ûb

!n

, Ûb = e�⌧Ĥb , (1)

where the product goes over all nearest-neighbor bonds b
in the unit cell (assuming a Hamiltonian with only
nearest-neighbor terms), Ĥb is the Hamiltonian term on
bond b, and ⌧ = �/n is a small imaginary time step. The
error of the Trotter-Suzuki decomposition decreases with
the size of the time-step ⌧ .35 The ITE is then performed
by sequentially multiplying the two-site operators Ûb to
the iPEPS and representing the resulting wave function
again as an iPEPS with the same bond dimension, until
convergence is reached. There exist di↵erent schemes to
truncate of a bond. In the so-called simple update scheme
the truncation is done based on a local singular value
decomposition,26,27,36 whereas in the full-update10,27 (or
fast-full update28) the entire 2D wave function is taken
into account for the truncation of a bond index. The sim-
ple update is computationally cheaper, but less accurate
than the full update.

III. VARIATIONAL OPTIMIZATION

A. Basic idea

Variational optimization schemes are commonly used
in MPS based algorithms,1,3 and have already been ap-
plied to finite PEPS,2,5,6 but not yet to iPEPS. The main
idea is to iteratively optimize one tensor after the other
until convergence is reached. Optimizing a single ten-
sor A (while keeping all other tensors fixed) boils down
to minimizing the energy with respect to tensor A,

min
A

E(A) = min
A

h (A)|Ĥ| (A)i
h (A)| (A)i = min

~A

~A†
H ~A

~A†N ~A
(2)

where the tensor A and its conjugate have been reshaped
into vectors. The matrices N and H correspond to the
(reshaped) tensor network representing the norm and the
expectation value of Ĥ excluding the tensor A and its
conjugate A†, respectively, see Fig. 2. Minimizing with
respect to A† yields a generalized eigenvalue problem,

@

@ ~A†

 
~A†
H ~A

~A†N ~A

!
= 0, ! H ~A = EN ~A. (3)

H.-J. Liao et al, Phys. arXiv:1903:09650

cf. iTEBD for iMPS

cf. DMRG for MPS



Truncations in ITE

Truncation

• Full update
Minimize the difference between two wave functions:

: wave function (after ITE)

• Ideal approximation for finite TPS 
• We need tensor network contractions, 

• Low computation cost： 
• iTPS tends to represent only short range correlations

(H. G.  Jiang et al, Phys. Rev. Lett. 101, 090603 (2008))

: wave function after truncation

O(D8) ⇠ O(D10)
<latexit sha1_base64="3/z9Y6nx7aPmT2T2M8NzOD2fJLc="></latexit>

• Simple update
Truncation by using local information



Simple update

Extended iTPS:

= =

x,y,x’,y’ = 1,2, ... D

=

Extended PEPS
Insert (positive) diagonal matrix representing "weight" of bonds.

(H. G.  Jiang et al, Phys. Rev. Lett. 101, 090603 (2008))

(cf. iTEBD)



Simple update with naive SVD

Truncation by SVD

1. Define a matrix “S”

2. Do SVD

3. Truncate the matrix leaving upper D singular values

* Meaning of λ
At SVD, λ provides information of local environment.

SVD

In the case of iMPS, λ give us global information, 
thanks to the canonical form. 



Simple update with QR decompositions

SVD

QR decomposition before SVD

Q R R Q

R R

Calculation cost 

Direct SVD: O(D9md3 )

QR decomposition:
Q R O(D5md2 )

O(D3md6 )

Usually D > md QR method is cheaper.



Full update
Minimize the difference between wave functions

: wave function just operated an ITE operator
: wave function after truncation

Iterative calculation by solving linear equation

Necessary conditions for minimization

:``Matrices” :``Vectors”

E E

*Environment is fixed during the iteration

*Environment: 

＊QR decomposition method:
Dimensions of vectors and matrices 
are reduced into

linear equation

O(D8) ⇠ O(D10)
<latexit sha1_base64="3/z9Y6nx7aPmT2T2M8NzOD2fJLc="></latexit>

*Alternatively, we can also use the CG.



Additional approximation for infinite system
Even in full update, we actually consider iTPS locally:

We evaluate
with fixing  environment (CTMs).

Then, from translational invariance of the iTPS,   
we copy the "local" solution to whole system.

Thus, in the case of infinite systems, 
it is not the ideal projection (truncation) of ITE.

local  
problem copy



Applications of ITE updates



√3 × √3 state

Kagome lattice Heisenberg model
q=0 state

Macroscopic degeneracy

Spin liquid?

All states satisfying “120 degree structure”

• Ground state at zero field
Classical GS:

S=1/2 quantum spin：

Hamiltonian

Effect of thermal fluctuation:“order by disorder” mechanism
→selection of coplanar structure: q=0, √3 × √3

Quantum fluctuation:

• Z2 spin liquid

• U(1) spin liquid 

• …



Magnetization process (S=1/2)
“Grand canonical” DMRG

(S.Nishimoto, et al, (2013)
Magnetization by DMRG

Finite size system with modulation

→ Quantities in the thermodynamic limit

(C. Hotta, et al, (2012, 2013), S.Nishimoto, et al, (2013)

Four magnetization plateaus

M/MSat = 1/9, 1/3, 5/9, 7/9

Exact diagonalization

M/Msat=1/3 is a “ramp”

(H. Nakano, and T. Sakai (2012, 2014)

（N ≤ 42）

3. Results and Discussion

3.1 Case of undistorted kagome lattice
Let us first observe the magnetization process of the

Ns ¼ 42 clusters in the undistorted case. The result is shown
in Fig. 2 together with the magnetization process for the
Ns ¼ 39 cluster, that for the Ns ¼ 36 cluster, and that for the
Ns ¼ 27 cluster. Note here that although the clusters for
Ns ¼ 27, 36, and 39 are rhombic, the Ns ¼ 42 cluster is not
rhombic. Even in such a situation of the anisotropy in a two-
dimensional lattice, it is sufficiently worth examining the
result of a size that has not been reached in previous studies.
In particular, the Ns ¼ 42 cluster suits the investigation of the
behavior at approximately m ¼ 1=3, although it does not suit
the study of the behavior at m ¼ 1=9, 5/9, and 7/9 because
Ns=9 is not an integer. The width of the Ns ¼ 42 step at
m ¼ 1=3, namely, M ¼ 1

3 Ms, seems large. The width at
M ¼ 1

3 Ms " 1 is quite small. On the other hand, the width at
M ¼ 1

3 Ms þ 1 is large even if one compares it with the width
at M ¼ 1

3 Ms. These features are common with the clusters of
Ns ¼ 39, 36, and 27; one finds that the features do not depend
on the system size.

To examine the position of the edges of the state at
m ¼ 1=3 in more detail, we plot its system size dependence
as a function of 1=Ns; the result is shown in Fig. 3. This
figure was originally presented as Fig. 4 in Ref. 9; however,
the plotted data were limited to cases up to Ns ¼ 33. We
additionally plotted the results for larger clusters Ns ¼ 36, 39,
and 42. The new datum of hc" for Ns ¼ 42 is quite close to
the data for a smaller Ns. The situation is the same as that for
hc+. The data for Ns $ 21 seem almost independent of Ns and
seem to converge to different values with each other. In this
sense, our new data for Ns ¼ 42 are not the results which
suggests that the width hc+ " hc" decays and vanishes in
the thermodynamic limit. However, there certainly exists a
discontinuous size dependence between Ns ¼ 18 and 21. The
present new data for Ns ¼ 42 cannot guarantee that a similar
discontinuous behavior never happens for Ns > 42. It may be
premature to conclude from the numerical-diagonalization
data whether the width at m ¼ 1=3 survives or vanishes in the
thermodynamic limit. Another important feature is that, at
least for Ns $ 21, the size dependence of data in the case
when Ns=9 is an integer is in agreement with that in the case
when Ns=9 is not an integer. If the quantum state at m ¼ 1=3
forms a nine-site structure, the state becomes stable from the
viewpoint of its energy. In the case when Ns=9 is not an
integer, on the other hand, the nine-site structure is partly
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Fig. 2. (Color) Magnetization process for the undistorted kagome-lattice
antiferromagnet. The results of finite-size clusters for Ns ¼ 42, 39, 36, and 27
are illustrated by red circles, blue triangles, black squares, and green reversed
triangles, respectively.
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Fig. 3. System size dependence of the position of the edges at the height of
m ¼ 1=3 in the magnetization process for the undistorted kagome-lattice
antiferromagnet.
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Fig. 1. (Color) Finite-size clusters of the kagome-lattice antiferromagnet
with and without the
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distortion. In (a), a cluster with Ns ¼ 42 on

the undistorted kagome lattice is illustrated by the parallelogram of red
broken lines. The

ffiffiffi
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p
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ffiffiffi
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p
distorted kagome lattice is shown in (b) and

(c) by the green thick lines and black thin lines. The finite-size clusters of
Ns ¼ 36 and Ns ¼ 27 are presented by the rhombus of red broken lines in
(b) and (c), respectively.
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(H. Nakano, et al, (2014)

・Anomalous critical exponents at the edge

・Plateau width could be infinitesimal

Magnetization by ED

“ramp”

M=Msat ! 0:6 in Fig. 4(b), ! is enhanced irrespective of the
system size except for the case of the green cluster (E) for
N ¼ 36, in which ! cannot be obtained near M=Msat ! 0:6;
the enhancement suggests the existence of some anomaly
around M=Msat ! 0:6. It should be clarified in future studies
whether this anomaly is a jump in the magnetization process
or another.

Finally, let us discuss the relationship between our
observation of the magnetization process of the ideal S¼
1=2 kagome-lattice Heisenberg antiferromagnet and the
magnetization measurement of the actual compounds vol-
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Fig. 5. Schematic shape of the magnetization ramp.
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Fig. 4. Results for the kagome-lattice antiferromagnets. (a) Magnetization
processes shown for the N ¼ 36 cluster (D) and the N ¼ 33 cluster
(C) with circles and squares, respectively. (b) Field-derivative of the
magnetization ! as a function of the magnetization divided by the
saturation. Circles and squares in (b) denote the results of ! correspond-
ing to the cases in (a). Crosses correspond to the N ¼ 36 cluster (E). Note
that part of ! for the N ¼ 36 cluster (E) is missing because ! cannot be
defined when the lowest-energy state in the subspace does not become the
ground state of the system in the magnetic field. Diamonds represent the
case of the N ¼ 30 cluster investigated in ref. 12.

(C) (D) (E)

Fig. 3. Shapes of the finite-size clusters in the kagome lattice. Cluster (C)
is the same as that for N ¼ 33 in ref. 12. Cluster (D) is the new cluster for
N ¼ 36, while cluster (E) is that for N ¼ 36 in ref. 15.
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Fig. 2. Field-derivative of the magnetization ! of the one- and two-
dimensional systems of interacting S¼ 1 dimers, denoted by crosses and
circles, respectively. Insets (a) and (b) show the magnetization process of
the one-dimensional case (A) in Fig. 1 for J2=J1 ¼ 0:15 and that of the
two-dimensional case (B) for J2=J1 ¼ 0:05, respectively. The main panel
shows ! as a function of the magnetization divided by the saturation with
corresponding colors and symbols.

(A) (B)

Fig. 1. Cluster shapes of the (A) one- and (B) two-dimensional systems
of interacting S¼ 1 dimers. Our calculations have been carried out for
N ¼ 20 in both cases. In (B), the tilted square of
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#
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is shown
with dotted lines. The thick green and thin black bonds denote the intra-
and interdimer interactions, respectively.
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Magnetization process (S=1/2)
“Grand canonical” DMRG

(S.Nishimoto, et al, (2013)
Magnetization by DMRG

Finite size system with modulation

→ Quantities in the thermodynamic limit

(C. Hotta, et al, (2012, 2013), S.Nishimoto, et al, (2013)

Four magnetization plateaus

M/MSat = 1/9, 1/3, 5/9, 7/9

Exact diagonalization

M/Msat=1/3 is a “ramp”

(H. Nakano, and T. Sakai (2012, 2014)

（N ≤ 42）

3. Results and Discussion

3.1 Case of undistorted kagome lattice
Let us first observe the magnetization process of the

Ns ¼ 42 clusters in the undistorted case. The result is shown
in Fig. 2 together with the magnetization process for the
Ns ¼ 39 cluster, that for the Ns ¼ 36 cluster, and that for the
Ns ¼ 27 cluster. Note here that although the clusters for
Ns ¼ 27, 36, and 39 are rhombic, the Ns ¼ 42 cluster is not
rhombic. Even in such a situation of the anisotropy in a two-
dimensional lattice, it is sufficiently worth examining the
result of a size that has not been reached in previous studies.
In particular, the Ns ¼ 42 cluster suits the investigation of the
behavior at approximately m ¼ 1=3, although it does not suit
the study of the behavior at m ¼ 1=9, 5/9, and 7/9 because
Ns=9 is not an integer. The width of the Ns ¼ 42 step at
m ¼ 1=3, namely, M ¼ 1

3 Ms, seems large. The width at
M ¼ 1

3 Ms " 1 is quite small. On the other hand, the width at
M ¼ 1

3 Ms þ 1 is large even if one compares it with the width
at M ¼ 1

3 Ms. These features are common with the clusters of
Ns ¼ 39, 36, and 27; one finds that the features do not depend
on the system size.

To examine the position of the edges of the state at
m ¼ 1=3 in more detail, we plot its system size dependence
as a function of 1=Ns; the result is shown in Fig. 3. This
figure was originally presented as Fig. 4 in Ref. 9; however,
the plotted data were limited to cases up to Ns ¼ 33. We
additionally plotted the results for larger clusters Ns ¼ 36, 39,
and 42. The new datum of hc" for Ns ¼ 42 is quite close to
the data for a smaller Ns. The situation is the same as that for
hc+. The data for Ns $ 21 seem almost independent of Ns and
seem to converge to different values with each other. In this
sense, our new data for Ns ¼ 42 are not the results which
suggests that the width hc+ " hc" decays and vanishes in
the thermodynamic limit. However, there certainly exists a
discontinuous size dependence between Ns ¼ 18 and 21. The
present new data for Ns ¼ 42 cannot guarantee that a similar
discontinuous behavior never happens for Ns > 42. It may be
premature to conclude from the numerical-diagonalization
data whether the width at m ¼ 1=3 survives or vanishes in the
thermodynamic limit. Another important feature is that, at
least for Ns $ 21, the size dependence of data in the case
when Ns=9 is an integer is in agreement with that in the case
when Ns=9 is not an integer. If the quantum state at m ¼ 1=3
forms a nine-site structure, the state becomes stable from the
viewpoint of its energy. In the case when Ns=9 is not an
integer, on the other hand, the nine-site structure is partly
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Fig. 2. (Color) Magnetization process for the undistorted kagome-lattice
antiferromagnet. The results of finite-size clusters for Ns ¼ 42, 39, 36, and 27
are illustrated by red circles, blue triangles, black squares, and green reversed
triangles, respectively.
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Fig. 3. System size dependence of the position of the edges at the height of
m ¼ 1=3 in the magnetization process for the undistorted kagome-lattice
antiferromagnet.
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Fig. 1. (Color) Finite-size clusters of the kagome-lattice antiferromagnet
with and without the
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distortion. In (a), a cluster with Ns ¼ 42 on

the undistorted kagome lattice is illustrated by the parallelogram of red
broken lines. The
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p
distorted kagome lattice is shown in (b) and

(c) by the green thick lines and black thin lines. The finite-size clusters of
Ns ¼ 36 and Ns ¼ 27 are presented by the rhombus of red broken lines in
(b) and (c), respectively.
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(H. Nakano, et al, (2014)

・Anomalous critical exponents at the edge

・Plateau width could be infinitesimal

Magnetization by ED

Aim: 
Investigate magnetization process 
using tensor network method 

for infinite system

“ramp”

M=Msat ! 0:6 in Fig. 4(b), ! is enhanced irrespective of the
system size except for the case of the green cluster (E) for
N ¼ 36, in which ! cannot be obtained near M=Msat ! 0:6;
the enhancement suggests the existence of some anomaly
around M=Msat ! 0:6. It should be clarified in future studies
whether this anomaly is a jump in the magnetization process
or another.

Finally, let us discuss the relationship between our
observation of the magnetization process of the ideal S¼
1=2 kagome-lattice Heisenberg antiferromagnet and the
magnetization measurement of the actual compounds vol-
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Fig. 5. Schematic shape of the magnetization ramp.
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Fig. 4. Results for the kagome-lattice antiferromagnets. (a) Magnetization
processes shown for the N ¼ 36 cluster (D) and the N ¼ 33 cluster
(C) with circles and squares, respectively. (b) Field-derivative of the
magnetization ! as a function of the magnetization divided by the
saturation. Circles and squares in (b) denote the results of ! correspond-
ing to the cases in (a). Crosses correspond to the N ¼ 36 cluster (E). Note
that part of ! for the N ¼ 36 cluster (E) is missing because ! cannot be
defined when the lowest-energy state in the subspace does not become the
ground state of the system in the magnetic field. Diamonds represent the
case of the N ¼ 30 cluster investigated in ref. 12.

(C) (D) (E)

Fig. 3. Shapes of the finite-size clusters in the kagome lattice. Cluster (C)
is the same as that for N ¼ 33 in ref. 12. Cluster (D) is the new cluster for
N ¼ 36, while cluster (E) is that for N ¼ 36 in ref. 15.
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Fig. 2. Field-derivative of the magnetization ! of the one- and two-
dimensional systems of interacting S¼ 1 dimers, denoted by crosses and
circles, respectively. Insets (a) and (b) show the magnetization process of
the one-dimensional case (A) in Fig. 1 for J2=J1 ¼ 0:15 and that of the
two-dimensional case (B) for J2=J1 ¼ 0:05, respectively. The main panel
shows ! as a function of the magnetization divided by the saturation with
corresponding colors and symbols.
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Fig. 1. Cluster shapes of the (A) one- and (B) two-dimensional systems
of interacting S¼ 1 dimers. Our calculations have been carried out for
N ¼ 20 in both cases. In (B), the tilted square of
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is shown
with dotted lines. The thick green and thin black bonds denote the intra-
and interdimer interactions, respectively.
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1. Optimization: optimize the tensor elements

	 	 Truncation: Simple update (for two sites)


2. Evaluation of physical quantities: 

	 	 Approximation：Corner Transfer Matrix method

Extended PEPS for kagome lattice model
Infinite system with 18-sites unit cellExtended PEPS (PESS)

D
D

D

D
D

D

D

D

m

m: Sz = ±1/2D: Bond dimension

Tensors without spin

Tensors with spin

Z. Y. Xie et al, PRX 4, 011025(2014))
D. Poilblanc et al, PRB 87, 140407(R) (2012) 

(Commensurate with √3 × √3 structure)

Differences from 
T. Picot et al, PRB 93, 060407(R) (2016).

Two steps in the calculation

• Unit cell size

They considered up to 9 sites
• Evaluation of physical quantities

They used mean-field environment



Results：Magnetization curve

Magnetization plateau 

・Almost converged data up to D=7

1/9, 1/3, 5/9 :clear plateaus

7/9: weak anomaly

Consistent with DMRG

・Weak anomaly at 2/9, 6/9

They seem to vanish 

as D is increased.

7/9

Magnetization curve by iTPS
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(R. Okuma, D. Nakamura, T. Okubo, et al, Nat. Commun. 10, 1229 (2019))



Result：1/3 plateau state <Sz>

:up
:down

Semi-classical UpUpDown

Depending on “initial states”

several types of pattern appear

Local minima!

In DMRG, plaquette resonated state

At these fillings, a finite field range representing the spin gap is
formed, which is the magnetization plateau.

It is known that the magnetization plateau emerges only when
the quantity, Qmag S(1!M/Msat), is an integer26,27, where Qmag is
the number of sites included in the unit period of the ground
state and S is the spin quantum number, which is 1/2 for the
present case.

With this in mind, let us discuss the nature of our plateaus. We
first examine the magnetic structures of M/Msat¼ 0 and 1/9
plateaus, and find that they are possibly structureless in real space
(see Supplementary Note 3). Namely, the period of the ground
state is the same as that of the lattice unit cell, Qmag¼Q¼ 3,
which gives, Qmag S(1!M/Msat)¼ 3/2 and 4/3, respectively. As
they are not integers but fractional numbers, the above
conventional condition to have a plateau is not fulfilled. However,
in two dimensions there is another way to form a spin-gapped
state (plateau) other than the above mentioned interplay with the
lattice; it is to form a structureless spin liquid. The elementary
excitation of such spin liquids by the magnetic field is no longer a
magnon, but a deconfined spinon, carrying spin 1/2. Although
such exotic spin-liquid plateaus could emerge at a fractional value
of Qmag S(1!M/Msat), as discussed in field theoretical study28, it
had been observed neither in theoretical models nor in materials.
In fact, the calculations on the entanglement entropy indicate that
zero-th and the 1/9 plateau form the spin-liquid phases of
topological dimension D¼ 2 and 3, respectively.

In contrast, in the latter three plateaus we find Qmag S(1!M/
Msat)¼ 3, 2 and 1 (integers) for 1/3, 5/9 and 7/9 plateaus,
respectively, all of which clearly fulfill the above conventional
condition. Let us now discuss the origin of these solid
plateaus.

In the 1/3 plateau, each triangular unit should hold a net
magnetization of 1/2, which consists of one up spin 1/2 and two
spins forming a singlet (see Fig. 4a). Similar to the zero-field Ising
ground state, there are massive numbers of configuration of the
1/2-magnetized triangular units29, which is in fact a typical
characteristic of the frustrated system. If these configurations are
mixed-up quantum mechanically, a liquid phase should emerge.
To realize instead the solid state actually observed, one needs to
select a particular configuration, and the problem reduces to how
we pave this triangular unit on the kagome lattice to maximally
gain energy.

In each configuration, one could draw a string along the singlet
bonds of the triangular units as shown in the left panel of Fig. 4a.
As every triangle shares its corners with the neighbouring
triangles, the string never crosses with other strings, but continues
until it meets itself again (otherwise it will extend toward infinity).
In addition to the random configuration of strings, the
representative two regular patterns are shown in Fig. 4a: a long
string forming stripes and a shortest closed loop around the
hexagon. One then needs to know which gains the energy, the
longer string or the shorter loop, towing to the quantum
mechanical resonance of spins along the string. The answer
is the latter (see Supplementary Fig. S3a)—the kagome is fully
tiled with hexagrams—a symmetry-breaking plaquette order is
formed30.

Once all the vertices of the hexagram (three sites/nine unit) are
filled with a fully polarized up-spin moment (Sz¼ 1/2) at
M/Msat¼ 1/3, a further simplified picture may work, focusing
on each hexagonal plaquette and isolating it by effectively
neglecting the quantum fluctuation between the plaquette and the
vertices of the hexagram, as shown in Fig. 4b. This approximation
is valid as far as the vertices of the hexagram are fully polarized.
The interactions (J Sz Sz-term) between the plaquette and vertices
work as an internal magnetic field, Hint¼ ! J per site on a
plaquette. Figure 4c shows the magnetization process of the
isolated plaquette in an effective field, HþHint, namely the
doping of magnons by the effective chemical potential. Each step
of the big staircases corresponds to the increasing Sz-value or the
number of magnons in the isolated plaquette. Now, notice that
the point where the upshift of the staircases crosses the bulk
magnetization curve coincides with the inflection point of the
curve. This indicates the following scenario: if we condense the
massive numbers of hexagrams, the quantum fluctuations
between them become coherent throughout the system and
works to destroy the staircases from the edge toward the centre of
the step. The curve above/below the inflection point is the ruin of
the edge of upper/lower staircase. This result thus supports the
picture that a hexagon works as a self-organized pseudo atomic
orbital consisting of three discrete energy levels. Doping magnons
to each level yields a series of plateaus starting from 1/3.

At present, the only other quantum magnet that possibly
reveals comparably rich phase transitions is the SrCu2(BO3)2
(refs 31,32). However, the spin-gapped phases of this material are
based on a conventional singlet. In forming solids, they expand
the unit cell in several ways to allocate the singlets in a regular
period in a sea of doped magnons. In contrast, in our kagome a
single non-trivial unit based on a hexagram is self-organized by
the quantum many-body effect. The doped magnons come into
this cell in such a way that the electrons go into the quantum dots
in an artificial semiconductor device.

The above picture then gives a strategy to design a system that
could control the degree of frustration by the doping of particles;
First, prepare an unfrustrated unit that could store several numbers
of particles (in a kagome, this corresponds to a hexagon that could
hold three magnons). Then connect them by the frustrated bonds.
For example, this rule gives us a checkerboard lattice and its
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Figure 3 | Density plot of the magnetization in the long-range-ordered
plateau states. The diameter of the blue circle on each lattice site scales
the magnetization density. Hexagram consisting of nine sites indicate
the magnetic unit cell, extended from the original one by three times
(Qmag¼9). Hexagons in light yellow colour are the guide to the eye.
(d) Schematic alignment of spins on a hexagram, where the numbers
indicate the magnetic density (Sz) on each vertices and on hexagons.
Numerically, the exact magnetic density of the vertices of hexagram of a
and b are shrunk because of quantum fluctuation by about 2–5% from the
fractional values given in d, which is not the case for the 7/9 plateau in c.
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(S.Nishimoto, et al, (2013)

Within  D ≤ 7 and simple update,

It did not stabilized 

More sophisticated 
 optimization?

Radius＝ 
amplitude of  
<Sz>

(Lowest energy: √3 × √3) 

q=0

√3 × √3

( Also observed in the study of T. Picot et al )



Hexagonal cluster update
Can we stabilize the resonated state  observed in DMRG?

Treat many-body correlations more accurately!

At these fillings, a finite field range representing the spin gap is
formed, which is the magnetization plateau.

It is known that the magnetization plateau emerges only when
the quantity, Qmag S(1!M/Msat), is an integer26,27, where Qmag is
the number of sites included in the unit period of the ground
state and S is the spin quantum number, which is 1/2 for the
present case.

With this in mind, let us discuss the nature of our plateaus. We
first examine the magnetic structures of M/Msat¼ 0 and 1/9
plateaus, and find that they are possibly structureless in real space
(see Supplementary Note 3). Namely, the period of the ground
state is the same as that of the lattice unit cell, Qmag¼Q¼ 3,
which gives, Qmag S(1!M/Msat)¼ 3/2 and 4/3, respectively. As
they are not integers but fractional numbers, the above
conventional condition to have a plateau is not fulfilled. However,
in two dimensions there is another way to form a spin-gapped
state (plateau) other than the above mentioned interplay with the
lattice; it is to form a structureless spin liquid. The elementary
excitation of such spin liquids by the magnetic field is no longer a
magnon, but a deconfined spinon, carrying spin 1/2. Although
such exotic spin-liquid plateaus could emerge at a fractional value
of Qmag S(1!M/Msat), as discussed in field theoretical study28, it
had been observed neither in theoretical models nor in materials.
In fact, the calculations on the entanglement entropy indicate that
zero-th and the 1/9 plateau form the spin-liquid phases of
topological dimension D¼ 2 and 3, respectively.

In contrast, in the latter three plateaus we find Qmag S(1!M/
Msat)¼ 3, 2 and 1 (integers) for 1/3, 5/9 and 7/9 plateaus,
respectively, all of which clearly fulfill the above conventional
condition. Let us now discuss the origin of these solid
plateaus.

In the 1/3 plateau, each triangular unit should hold a net
magnetization of 1/2, which consists of one up spin 1/2 and two
spins forming a singlet (see Fig. 4a). Similar to the zero-field Ising
ground state, there are massive numbers of configuration of the
1/2-magnetized triangular units29, which is in fact a typical
characteristic of the frustrated system. If these configurations are
mixed-up quantum mechanically, a liquid phase should emerge.
To realize instead the solid state actually observed, one needs to
select a particular configuration, and the problem reduces to how
we pave this triangular unit on the kagome lattice to maximally
gain energy.

In each configuration, one could draw a string along the singlet
bonds of the triangular units as shown in the left panel of Fig. 4a.
As every triangle shares its corners with the neighbouring
triangles, the string never crosses with other strings, but continues
until it meets itself again (otherwise it will extend toward infinity).
In addition to the random configuration of strings, the
representative two regular patterns are shown in Fig. 4a: a long
string forming stripes and a shortest closed loop around the
hexagon. One then needs to know which gains the energy, the
longer string or the shorter loop, towing to the quantum
mechanical resonance of spins along the string. The answer
is the latter (see Supplementary Fig. S3a)—the kagome is fully
tiled with hexagrams—a symmetry-breaking plaquette order is
formed30.

Once all the vertices of the hexagram (three sites/nine unit) are
filled with a fully polarized up-spin moment (Sz¼ 1/2) at
M/Msat¼ 1/3, a further simplified picture may work, focusing
on each hexagonal plaquette and isolating it by effectively
neglecting the quantum fluctuation between the plaquette and the
vertices of the hexagram, as shown in Fig. 4b. This approximation
is valid as far as the vertices of the hexagram are fully polarized.
The interactions (J Sz Sz-term) between the plaquette and vertices
work as an internal magnetic field, Hint¼ ! J per site on a
plaquette. Figure 4c shows the magnetization process of the
isolated plaquette in an effective field, HþHint, namely the
doping of magnons by the effective chemical potential. Each step
of the big staircases corresponds to the increasing Sz-value or the
number of magnons in the isolated plaquette. Now, notice that
the point where the upshift of the staircases crosses the bulk
magnetization curve coincides with the inflection point of the
curve. This indicates the following scenario: if we condense the
massive numbers of hexagrams, the quantum fluctuations
between them become coherent throughout the system and
works to destroy the staircases from the edge toward the centre of
the step. The curve above/below the inflection point is the ruin of
the edge of upper/lower staircase. This result thus supports the
picture that a hexagon works as a self-organized pseudo atomic
orbital consisting of three discrete energy levels. Doping magnons
to each level yields a series of plateaus starting from 1/3.

At present, the only other quantum magnet that possibly
reveals comparably rich phase transitions is the SrCu2(BO3)2
(refs 31,32). However, the spin-gapped phases of this material are
based on a conventional singlet. In forming solids, they expand
the unit cell in several ways to allocate the singlets in a regular
period in a sea of doped magnons. In contrast, in our kagome a
single non-trivial unit based on a hexagram is self-organized by
the quantum many-body effect. The doped magnons come into
this cell in such a way that the electrons go into the quantum dots
in an artificial semiconductor device.

The above picture then gives a strategy to design a system that
could control the degree of frustration by the doping of particles;
First, prepare an unfrustrated unit that could store several numbers
of particles (in a kagome, this corresponds to a hexagon that could
hold three magnons). Then connect them by the frustrated bonds.
For example, this rule gives us a checkerboard lattice and its
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Figure 3 | Density plot of the magnetization in the long-range-ordered
plateau states. The diameter of the blue circle on each lattice site scales
the magnetization density. Hexagram consisting of nine sites indicate
the magnetic unit cell, extended from the original one by three times
(Qmag¼9). Hexagons in light yellow colour are the guide to the eye.
(d) Schematic alignment of spins on a hexagram, where the numbers
indicate the magnetic density (Sz) on each vertices and on hexagons.
Numerically, the exact magnetic density of the vertices of hexagram of a
and b are shrunk because of quantum fluctuation by about 2–5% from the
fractional values given in d, which is not the case for the 7/9 plateau in c.
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Simple update:  only two (or three) sites are updated simultaneously

Correlation within a hexagon might be important.



Hexagonal cluster update
Can we stabilize the resonated state  observed in DMRG?

Treat many-body correlations more accurately!

Imaginary time evolution for a hexagon

Update 12 tensors 
 simultaneously

* Higher cost than the simple update, 
* Lower cost than the environment calculation

At these fillings, a finite field range representing the spin gap is
formed, which is the magnetization plateau.

It is known that the magnetization plateau emerges only when
the quantity, Qmag S(1!M/Msat), is an integer26,27, where Qmag is
the number of sites included in the unit period of the ground
state and S is the spin quantum number, which is 1/2 for the
present case.

With this in mind, let us discuss the nature of our plateaus. We
first examine the magnetic structures of M/Msat¼ 0 and 1/9
plateaus, and find that they are possibly structureless in real space
(see Supplementary Note 3). Namely, the period of the ground
state is the same as that of the lattice unit cell, Qmag¼Q¼ 3,
which gives, Qmag S(1!M/Msat)¼ 3/2 and 4/3, respectively. As
they are not integers but fractional numbers, the above
conventional condition to have a plateau is not fulfilled. However,
in two dimensions there is another way to form a spin-gapped
state (plateau) other than the above mentioned interplay with the
lattice; it is to form a structureless spin liquid. The elementary
excitation of such spin liquids by the magnetic field is no longer a
magnon, but a deconfined spinon, carrying spin 1/2. Although
such exotic spin-liquid plateaus could emerge at a fractional value
of Qmag S(1!M/Msat), as discussed in field theoretical study28, it
had been observed neither in theoretical models nor in materials.
In fact, the calculations on the entanglement entropy indicate that
zero-th and the 1/9 plateau form the spin-liquid phases of
topological dimension D¼ 2 and 3, respectively.

In contrast, in the latter three plateaus we find Qmag S(1!M/
Msat)¼ 3, 2 and 1 (integers) for 1/3, 5/9 and 7/9 plateaus,
respectively, all of which clearly fulfill the above conventional
condition. Let us now discuss the origin of these solid
plateaus.

In the 1/3 plateau, each triangular unit should hold a net
magnetization of 1/2, which consists of one up spin 1/2 and two
spins forming a singlet (see Fig. 4a). Similar to the zero-field Ising
ground state, there are massive numbers of configuration of the
1/2-magnetized triangular units29, which is in fact a typical
characteristic of the frustrated system. If these configurations are
mixed-up quantum mechanically, a liquid phase should emerge.
To realize instead the solid state actually observed, one needs to
select a particular configuration, and the problem reduces to how
we pave this triangular unit on the kagome lattice to maximally
gain energy.

In each configuration, one could draw a string along the singlet
bonds of the triangular units as shown in the left panel of Fig. 4a.
As every triangle shares its corners with the neighbouring
triangles, the string never crosses with other strings, but continues
until it meets itself again (otherwise it will extend toward infinity).
In addition to the random configuration of strings, the
representative two regular patterns are shown in Fig. 4a: a long
string forming stripes and a shortest closed loop around the
hexagon. One then needs to know which gains the energy, the
longer string or the shorter loop, towing to the quantum
mechanical resonance of spins along the string. The answer
is the latter (see Supplementary Fig. S3a)—the kagome is fully
tiled with hexagrams—a symmetry-breaking plaquette order is
formed30.

Once all the vertices of the hexagram (three sites/nine unit) are
filled with a fully polarized up-spin moment (Sz¼ 1/2) at
M/Msat¼ 1/3, a further simplified picture may work, focusing
on each hexagonal plaquette and isolating it by effectively
neglecting the quantum fluctuation between the plaquette and the
vertices of the hexagram, as shown in Fig. 4b. This approximation
is valid as far as the vertices of the hexagram are fully polarized.
The interactions (J Sz Sz-term) between the plaquette and vertices
work as an internal magnetic field, Hint¼ ! J per site on a
plaquette. Figure 4c shows the magnetization process of the
isolated plaquette in an effective field, HþHint, namely the
doping of magnons by the effective chemical potential. Each step
of the big staircases corresponds to the increasing Sz-value or the
number of magnons in the isolated plaquette. Now, notice that
the point where the upshift of the staircases crosses the bulk
magnetization curve coincides with the inflection point of the
curve. This indicates the following scenario: if we condense the
massive numbers of hexagrams, the quantum fluctuations
between them become coherent throughout the system and
works to destroy the staircases from the edge toward the centre of
the step. The curve above/below the inflection point is the ruin of
the edge of upper/lower staircase. This result thus supports the
picture that a hexagon works as a self-organized pseudo atomic
orbital consisting of three discrete energy levels. Doping magnons
to each level yields a series of plateaus starting from 1/3.

At present, the only other quantum magnet that possibly
reveals comparably rich phase transitions is the SrCu2(BO3)2
(refs 31,32). However, the spin-gapped phases of this material are
based on a conventional singlet. In forming solids, they expand
the unit cell in several ways to allocate the singlets in a regular
period in a sea of doped magnons. In contrast, in our kagome a
single non-trivial unit based on a hexagram is self-organized by
the quantum many-body effect. The doped magnons come into
this cell in such a way that the electrons go into the quantum dots
in an artificial semiconductor device.

The above picture then gives a strategy to design a system that
could control the degree of frustration by the doping of particles;
First, prepare an unfrustrated unit that could store several numbers
of particles (in a kagome, this corresponds to a hexagon that could
hold three magnons). Then connect them by the frustrated bonds.
For example, this rule gives us a checkerboard lattice and its
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Figure 3 | Density plot of the magnetization in the long-range-ordered
plateau states. The diameter of the blue circle on each lattice site scales
the magnetization density. Hexagram consisting of nine sites indicate
the magnetic unit cell, extended from the original one by three times
(Qmag¼9). Hexagons in light yellow colour are the guide to the eye.
(d) Schematic alignment of spins on a hexagram, where the numbers
indicate the magnetic density (Sz) on each vertices and on hexagons.
Numerically, the exact magnetic density of the vertices of hexagram of a
and b are shrunk because of quantum fluctuation by about 2–5% from the
fractional values given in d, which is not the case for the 7/9 plateau in c.
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Simple update:  only two (or three) sites are updated simultaneously

Correlation within a hexagon might be important.



Hexagonal cluster update：Basic idea
1 dimensional “MPS” with PBC.

MPO representation

Minimize:

: MPS

,



Hexagonal cluster update: Details
1. Insert λ into outside virtual bonds

λ is important to obtain  
better energies

2. eτH is approximated  
by Suzuki-Trotter Decomposition

3. Minimization is performed iteratively

MPO

=Solve linear equation: * Cost= O(D6)



Result of hexagonal cluster update

Hz = 1.1

q=0

√3 × √3

Resonated

• By using the hexagonal cluster update,  
the resonated state is  stabilized for D >= 4. 

• Its energy becomes lower than up-up-down 
states, when we increase D.

Energy at 1/3 plateau
(ITE from different initial  

wave functions)
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(R. Okuma, D. Nakamura, T. Okubo, et al, Nat. Commun. 10, 1229 (2019))



Result of hexagonal cluster update

Hz = 1.1

q=0

√3 × √3

Resonated

• By using the hexagonal cluster update,  
the resonated state is  stabilized for D >= 4. 

• Its energy becomes lower than up-up-down 
states, when we increase D.

Energy at 1/3 plateau
(ITE from different initial  

wave functions)
The resonated state is  

the leading candidate of  
the 1/3 plateau state!
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Importance of variational optimization



Problems in imaginary time evolution

• States obtained by ITE tend to biased by the initial states. 

• It is not easy to obtain quantum spin liquid (QSL) state even in 
the case of Kitaev model, whose GS is exact QSL. 
(cf. Kaneko's symposium talk) 

• For frustrated spin systems, it is also difficult to obtain the GS 
among several candidates of magnetically ordered states with 
small energy differences. 

• Due to the projection onto iTPS, energy can increases along ITE. 

• It might be troublesome to pick up the lowest energy state.



More sophisticated optimization: variational optimization

Variational method: (P. Corboz, Phys. Rev. B 94, 035133 (2016))
(L. Vanderstraeten, et al., Phys. Rev. B 94, 155123 (2016))

minimize cost function:

(H.-J. Liao, et al. arXiv:1903:09650)

Advantage:

• Energies strictly decrease along optimization. 
• It seems to avoid to be trapped at local 

minimum for several models.



Variational optimization by using CTMRG

"Minimize Energy"

3

(CTM) renormalization group method,29,30 for arbitrary
unit cell sizes20,32 which is summarized in the following.

Consider the problem of computing the norm of an
iPEPS h | i, which boils down to contracting the in-
finite 2D square lattice network of the reduced tensors
a[x,y], shown in Fig. 1(c), where each a[x,y] is obtained
from contracting A[x,y] with its conjugate tensor A†[x,y],
see Fig. 1(b). The goal of the CTM approach is to com-
pute the four corner tensors C1, C2, C3, C4, and the four
edge tensors T1, T2, T3, T4 for each coordinate [x, y] in
the unit cell, where each corner tensor represents a quad-
rant and the edge tensors a half-row (or half-column) of
the infinite 2D network. All these tensors together form
the so-called environment, representing the infinite sys-
tem surrounding a bulk site (or several bulk sites), as
shown in Fig. 1(c). Once the environment has been com-
puted, one can easily evaluate expectation values of local
observables by introducing the corresponding operators
in between the physical legs of the iPEPS tensors.

The environment tensors are computed iteratively by
letting the system grow in all directions. One starts from
an initial guess for the boundary tensors, either by initial-
izing them randomly, or alternatively one can initialize
them with the bulk tensors (by tracing out the auxiliary
bonds on the edges). In the directional CTM approach30

one first performs a growth step on e.g. the left side of
the system (called a left move), by introducing a new col-
umn of tensors, multiplying them onto the left boundary
tensors, followed by a renormalization step, see Fig. 1(d).

In the renormalization step a bond dimension � is kept
at the boundary which controls the accuracy of the ap-
proximate contraction. There are di↵erent ways how to
perform this renormalization step. Here we use a set of
projectors P and P̃ , introduced in Refs. 33 and 34 and
first applied in the CTM method in Ref. 20, to project
from the enlarged space �D2 down to a dimension �.
These projectors are then used to compute the renormal-
ized corner- and edge tensors, C 0

1, C
0
4, and T 0

4, as shown
in Fig. 1(e).

For a unit cell of size Lx ⇥ Ly one proceeds in the
following way for a full left move (i.e. an absorption of
the entire unit cell into the left boundary):

• Do for all x 2 [1, Lx]

– Do for all y 2 [1, Ly]

⇤ Compute the projectors P [x�1,y] and
P̃ [x�1,y] (see Ref. 20 for details)

– Do for all y 2 [1, Ly]

⇤ Compute the new renormalized corner

tensors C 0[x,y]
1 , C 0[x,y]

4 , and edge tensor

T 0[x,y]
4 , as shown in Fig. 1(e)

After a full left move one proceeds with a full right-,
top-, bottom-move in a similar way, and reiterates until
convergence is reached (e.g. by checking the convergence
of the energy with CTM iterations).

C. Optimization based on imaginary time evolution

In order to get an approximate representation of the
ground state of a given Hamiltonian Ĥ, the tensors need
to be optimized, i.e. one needs to find the best variational
parameters stored in the tensors. In previous iPEPS sim-
ulations this has been done based on an imaginary time
evolution (ITE) of an initial (e.g. random) state. Using a
Trotter-Suzuki decomposition the imaginary time evolu-
tion operator is split into a product of two-site operators,

e��Ĥ = e��
P

b Ĥb ⇡
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b

Ûb

!n

, Ûb = e�⌧Ĥb , (1)

where the product goes over all nearest-neighbor bonds b
in the unit cell (assuming a Hamiltonian with only
nearest-neighbor terms), Ĥb is the Hamiltonian term on
bond b, and ⌧ = �/n is a small imaginary time step. The
error of the Trotter-Suzuki decomposition decreases with
the size of the time-step ⌧ .35 The ITE is then performed
by sequentially multiplying the two-site operators Ûb to
the iPEPS and representing the resulting wave function
again as an iPEPS with the same bond dimension, until
convergence is reached. There exist di↵erent schemes to
truncate of a bond. In the so-called simple update scheme
the truncation is done based on a local singular value
decomposition,26,27,36 whereas in the full-update10,27 (or
fast-full update28) the entire 2D wave function is taken
into account for the truncation of a bond index. The sim-
ple update is computationally cheaper, but less accurate
than the full update.

III. VARIATIONAL OPTIMIZATION

A. Basic idea

Variational optimization schemes are commonly used
in MPS based algorithms,1,3 and have already been ap-
plied to finite PEPS,2,5,6 but not yet to iPEPS. The main
idea is to iteratively optimize one tensor after the other
until convergence is reached. Optimizing a single ten-
sor A (while keeping all other tensors fixed) boils down
to minimizing the energy with respect to tensor A,

min
A

E(A) = min
A

h (A)|Ĥ| (A)i
h (A)| (A)i = min

~A

~A†
H ~A

~A†N ~A
(2)

where the tensor A and its conjugate have been reshaped
into vectors. The matrices N and H correspond to the
(reshaped) tensor network representing the norm and the
expectation value of Ĥ excluding the tensor A and its
conjugate A†, respectively, see Fig. 2. Minimizing with
respect to A† yields a generalized eigenvalue problem,
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FIG. 2. (a) The H-shaped tensor is obtained by contract-
ing the entire network representing h |Ĥ| i except tensors
A, and A†. (b) Similarly, the N-shaped tensor contains all
tensors representing the norm h | i except tensors A, and
A†, and can be obtained by contracting all environment ten-
sors in Fig. 1(c) together. Minimizing the energy with respect
to tensor A boils down to solving the generalized eigenvalue
problem shown in (c), by reshaping the H- and N-tensors into
matrices, and A into a vector.

The eigenvector ~̃A with lowest eigenvalue Ẽ provides the
solution to the local minimization problem, and the up-

dated tensor A0 is obtained by reshaping ~̃A back to a
tensor.

The main challenge of such a scheme for iPEPS is the
computation of the matrix H which consists of an infinite
sum of the expectation values of all Hamiltonian terms.
In the following we explain how to obtain H using the
CTM method, in a similar way as we computed the en-
vironment for the norm, N, discussed in Sec. II B. The
second complication comes from the fact that in iPEPS
a tensor A is not appearing only once in the ansatz (un-
like in finite PEPS), but actually H and N also depend
on A, making each step a highly-nonlinear optimization
problem. We present a practical scheme dealing with this
issue in Sec. III C further below.

B. Systematic summation of Hamiltonian terms
with the CTM method

The CTM method discussed in II B provides a conve-
nient way to compute the norm (and local expectation
values) by using the environment tensors, as shown in
Fig. 1(c). The expectation value h |Ĥ| i, which is an
infinite sum, can be computed in a similar way by in-
troducing new type of environment tensors which we call
H-environment tensors, shown in dark blue in Fig. 3.

Each H-environment tensor consist of a sum of Hamil-
tonian contributions. For example, the corner tensor C̃1

contains all contributions from Hamiltonian terms act-
ing on the infinite upper-left part of the system (see
lower panel in Fig. 3). Similarly, T̃4 contains all Hamilto-
nian terms acting on the corresponding infinite half-row.
We further introduce horizontal and vertical corner ten-
sors, denoted by C̃h1 and C̃v1, respectively, for the upper
left corner. These tensors take into account Hamiltonian
terms which connect sites located in the corner C1 and
edges T1 or T4, respectively (see bottom of Fig. 3). Simi-
lar tensors are also defined for the other corners. Finally,
we also have to sum up the local Hamiltonian terms con-
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FIG. 3. (Color online) Representation of the expectation
value of the Hamiltonian, where the blue tensors contain sums
of local Hamiltonian terms. For example, the corner tensor
C̃1 contains all contributions of local Hamiltonian terms in
the upper left corner of the infinite system, whereas the edge
tensor T̃4 contains all contributions from an infinite half-row,
as depicted in the bottom part of the figure. The vertical
corner tensor C̃v1 takes into account all Hamiltonian terms
located between the corner C1 and the edge tensor T4, see
bottom image (a similar definition holds for the horizontal
corner tensors C̃h1). All the other dark-blue tensors on the
other corners/edges are defined in a similar way. Finally, there
are four remaining Hamiltonian terms (light blue) between
the center site and its nearest neighbors. The ’x’ on top of
a tensor indicates that the Hamiltonian term is connected to
the corresponding physical legs which are not shown in this
top-view.

necting the center site with its four nearest neighbors
(located on the four edge tensors). With this, the sum
represented in Fig. 3 takes into account all Hamiltonian
terms.
The H-environment tensors can be computed in a sys-

tematic way within the regular CTM method, as shown
in Fig. 4 for a left-move. Importantly, the H-environment
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necting the center site with its four nearest neighbors
(located on the four edge tensors). With this, the sum
represented in Fig. 3 takes into account all Hamiltonian
terms.
The H-environment tensors can be computed in a sys-

tematic way within the regular CTM method, as shown
in Fig. 4 for a left-move. Importantly, the H-environment
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(CTM) renormalization group method,29,30 for arbitrary
unit cell sizes20,32 which is summarized in the following.

Consider the problem of computing the norm of an
iPEPS h | i, which boils down to contracting the in-
finite 2D square lattice network of the reduced tensors
a[x,y], shown in Fig. 1(c), where each a[x,y] is obtained
from contracting A[x,y] with its conjugate tensor A†[x,y],
see Fig. 1(b). The goal of the CTM approach is to com-
pute the four corner tensors C1, C2, C3, C4, and the four
edge tensors T1, T2, T3, T4 for each coordinate [x, y] in
the unit cell, where each corner tensor represents a quad-
rant and the edge tensors a half-row (or half-column) of
the infinite 2D network. All these tensors together form
the so-called environment, representing the infinite sys-
tem surrounding a bulk site (or several bulk sites), as
shown in Fig. 1(c). Once the environment has been com-
puted, one can easily evaluate expectation values of local
observables by introducing the corresponding operators
in between the physical legs of the iPEPS tensors.

The environment tensors are computed iteratively by
letting the system grow in all directions. One starts from
an initial guess for the boundary tensors, either by initial-
izing them randomly, or alternatively one can initialize
them with the bulk tensors (by tracing out the auxiliary
bonds on the edges). In the directional CTM approach30

one first performs a growth step on e.g. the left side of
the system (called a left move), by introducing a new col-
umn of tensors, multiplying them onto the left boundary
tensors, followed by a renormalization step, see Fig. 1(d).

In the renormalization step a bond dimension � is kept
at the boundary which controls the accuracy of the ap-
proximate contraction. There are di↵erent ways how to
perform this renormalization step. Here we use a set of
projectors P and P̃ , introduced in Refs. 33 and 34 and
first applied in the CTM method in Ref. 20, to project
from the enlarged space �D2 down to a dimension �.
These projectors are then used to compute the renormal-
ized corner- and edge tensors, C 0

1, C
0
4, and T 0

4, as shown
in Fig. 1(e).

For a unit cell of size Lx ⇥ Ly one proceeds in the
following way for a full left move (i.e. an absorption of
the entire unit cell into the left boundary):

• Do for all x 2 [1, Lx]

– Do for all y 2 [1, Ly]

⇤ Compute the projectors P [x�1,y] and
P̃ [x�1,y] (see Ref. 20 for details)

– Do for all y 2 [1, Ly]

⇤ Compute the new renormalized corner

tensors C 0[x,y]
1 , C 0[x,y]

4 , and edge tensor

T 0[x,y]
4 , as shown in Fig. 1(e)

After a full left move one proceeds with a full right-,
top-, bottom-move in a similar way, and reiterates until
convergence is reached (e.g. by checking the convergence
of the energy with CTM iterations).

C. Optimization based on imaginary time evolution

In order to get an approximate representation of the
ground state of a given Hamiltonian Ĥ, the tensors need
to be optimized, i.e. one needs to find the best variational
parameters stored in the tensors. In previous iPEPS sim-
ulations this has been done based on an imaginary time
evolution (ITE) of an initial (e.g. random) state. Using a
Trotter-Suzuki decomposition the imaginary time evolu-
tion operator is split into a product of two-site operators,

e��Ĥ = e��
P

b Ĥb ⇡
 
Y

b

Ûb

!n

, Ûb = e�⌧Ĥb , (1)

where the product goes over all nearest-neighbor bonds b
in the unit cell (assuming a Hamiltonian with only
nearest-neighbor terms), Ĥb is the Hamiltonian term on
bond b, and ⌧ = �/n is a small imaginary time step. The
error of the Trotter-Suzuki decomposition decreases with
the size of the time-step ⌧ .35 The ITE is then performed
by sequentially multiplying the two-site operators Ûb to
the iPEPS and representing the resulting wave function
again as an iPEPS with the same bond dimension, until
convergence is reached. There exist di↵erent schemes to
truncate of a bond. In the so-called simple update scheme
the truncation is done based on a local singular value
decomposition,26,27,36 whereas in the full-update10,27 (or
fast-full update28) the entire 2D wave function is taken
into account for the truncation of a bond index. The sim-
ple update is computationally cheaper, but less accurate
than the full update.

III. VARIATIONAL OPTIMIZATION

A. Basic idea

Variational optimization schemes are commonly used
in MPS based algorithms,1,3 and have already been ap-
plied to finite PEPS,2,5,6 but not yet to iPEPS. The main
idea is to iteratively optimize one tensor after the other
until convergence is reached. Optimizing a single ten-
sor A (while keeping all other tensors fixed) boils down
to minimizing the energy with respect to tensor A,

min
A

E(A) = min
A

h (A)|Ĥ| (A)i
h (A)| (A)i = min

~A

~A†
H ~A

~A†N ~A
(2)

where the tensor A and its conjugate have been reshaped
into vectors. The matrices N and H correspond to the
(reshaped) tensor network representing the norm and the
expectation value of Ĥ excluding the tensor A and its
conjugate A†, respectively, see Fig. 2. Minimizing with
respect to A† yields a generalized eigenvalue problem,
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@ ~A†

 
~A†
H ~A

~A†N ~A

!
= 0, ! H ~A = EN ~A. (3)

(P. Corboz, Phys. Rev. B 94, 035133 (2016))
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FIG. 2. (a) The H-shaped tensor is obtained by contract-
ing the entire network representing h |Ĥ| i except tensors
A, and A†. (b) Similarly, the N-shaped tensor contains all
tensors representing the norm h | i except tensors A, and
A†, and can be obtained by contracting all environment ten-
sors in Fig. 1(c) together. Minimizing the energy with respect
to tensor A boils down to solving the generalized eigenvalue
problem shown in (c), by reshaping the H- and N-tensors into
matrices, and A into a vector.

The eigenvector ~̃A with lowest eigenvalue Ẽ provides the
solution to the local minimization problem, and the up-

dated tensor A0 is obtained by reshaping ~̃A back to a
tensor.

The main challenge of such a scheme for iPEPS is the
computation of the matrix H which consists of an infinite
sum of the expectation values of all Hamiltonian terms.
In the following we explain how to obtain H using the
CTM method, in a similar way as we computed the en-
vironment for the norm, N, discussed in Sec. II B. The
second complication comes from the fact that in iPEPS
a tensor A is not appearing only once in the ansatz (un-
like in finite PEPS), but actually H and N also depend
on A, making each step a highly-nonlinear optimization
problem. We present a practical scheme dealing with this
issue in Sec. III C further below.

B. Systematic summation of Hamiltonian terms
with the CTM method

The CTM method discussed in II B provides a conve-
nient way to compute the norm (and local expectation
values) by using the environment tensors, as shown in
Fig. 1(c). The expectation value h |Ĥ| i, which is an
infinite sum, can be computed in a similar way by in-
troducing new type of environment tensors which we call
H-environment tensors, shown in dark blue in Fig. 3.

Each H-environment tensor consist of a sum of Hamil-
tonian contributions. For example, the corner tensor C̃1

contains all contributions from Hamiltonian terms act-
ing on the infinite upper-left part of the system (see
lower panel in Fig. 3). Similarly, T̃4 contains all Hamilto-
nian terms acting on the corresponding infinite half-row.
We further introduce horizontal and vertical corner ten-
sors, denoted by C̃h1 and C̃v1, respectively, for the upper
left corner. These tensors take into account Hamiltonian
terms which connect sites located in the corner C1 and
edges T1 or T4, respectively (see bottom of Fig. 3). Simi-
lar tensors are also defined for the other corners. Finally,
we also have to sum up the local Hamiltonian terms con-
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FIG. 3. (Color online) Representation of the expectation
value of the Hamiltonian, where the blue tensors contain sums
of local Hamiltonian terms. For example, the corner tensor
C̃1 contains all contributions of local Hamiltonian terms in
the upper left corner of the infinite system, whereas the edge
tensor T̃4 contains all contributions from an infinite half-row,
as depicted in the bottom part of the figure. The vertical
corner tensor C̃v1 takes into account all Hamiltonian terms
located between the corner C1 and the edge tensor T4, see
bottom image (a similar definition holds for the horizontal
corner tensors C̃h1). All the other dark-blue tensors on the
other corners/edges are defined in a similar way. Finally, there
are four remaining Hamiltonian terms (light blue) between
the center site and its nearest neighbors. The ’x’ on top of
a tensor indicates that the Hamiltonian term is connected to
the corresponding physical legs which are not shown in this
top-view.

necting the center site with its four nearest neighbors
(located on the four edge tensors). With this, the sum
represented in Fig. 3 takes into account all Hamiltonian
terms.
The H-environment tensors can be computed in a sys-

tematic way within the regular CTM method, as shown
in Fig. 4 for a left-move. Importantly, the H-environment
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necting the center site with its four nearest neighbors
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Systematic summation of Hamiltonian terms
(P. Corboz, Phys. Rev. B 94, 035133 (2016))
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A, and A†. (b) Similarly, the N-shaped tensor contains all
tensors representing the norm h | i except tensors A, and
A†, and can be obtained by contracting all environment ten-
sors in Fig. 1(c) together. Minimizing the energy with respect
to tensor A boils down to solving the generalized eigenvalue
problem shown in (c), by reshaping the H- and N-tensors into
matrices, and A into a vector.

The eigenvector ~̃A with lowest eigenvalue Ẽ provides the
solution to the local minimization problem, and the up-

dated tensor A0 is obtained by reshaping ~̃A back to a
tensor.

The main challenge of such a scheme for iPEPS is the
computation of the matrix H which consists of an infinite
sum of the expectation values of all Hamiltonian terms.
In the following we explain how to obtain H using the
CTM method, in a similar way as we computed the en-
vironment for the norm, N, discussed in Sec. II B. The
second complication comes from the fact that in iPEPS
a tensor A is not appearing only once in the ansatz (un-
like in finite PEPS), but actually H and N also depend
on A, making each step a highly-nonlinear optimization
problem. We present a practical scheme dealing with this
issue in Sec. III C further below.

B. Systematic summation of Hamiltonian terms
with the CTM method

The CTM method discussed in II B provides a conve-
nient way to compute the norm (and local expectation
values) by using the environment tensors, as shown in
Fig. 1(c). The expectation value h |Ĥ| i, which is an
infinite sum, can be computed in a similar way by in-
troducing new type of environment tensors which we call
H-environment tensors, shown in dark blue in Fig. 3.

Each H-environment tensor consist of a sum of Hamil-
tonian contributions. For example, the corner tensor C̃1

contains all contributions from Hamiltonian terms act-
ing on the infinite upper-left part of the system (see
lower panel in Fig. 3). Similarly, T̃4 contains all Hamilto-
nian terms acting on the corresponding infinite half-row.
We further introduce horizontal and vertical corner ten-
sors, denoted by C̃h1 and C̃v1, respectively, for the upper
left corner. These tensors take into account Hamiltonian
terms which connect sites located in the corner C1 and
edges T1 or T4, respectively (see bottom of Fig. 3). Simi-
lar tensors are also defined for the other corners. Finally,
we also have to sum up the local Hamiltonian terms con-
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FIG. 3. (Color online) Representation of the expectation
value of the Hamiltonian, where the blue tensors contain sums
of local Hamiltonian terms. For example, the corner tensor
C̃1 contains all contributions of local Hamiltonian terms in
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other corners/edges are defined in a similar way. Finally, there
are four remaining Hamiltonian terms (light blue) between
the center site and its nearest neighbors. The ’x’ on top of
a tensor indicates that the Hamiltonian term is connected to
the corresponding physical legs which are not shown in this
top-view.
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FIG. 4. All relevant diagrams to perform a left-move to up-
date the H-environment tensors in the CTM method. Coordi-
nates of the tensors relative to the unit cell have been omitted
for simplicity. The projectors to perform the renormalization
step (yellow triangles) are the same as the ones computed for
the norm. The tensor T̃ T 4 contains Hamiltonian terms con-
necting the sites between two edges T4. The tensor T o

4 is an
edge where the physical legs of the right-outermost bulk ten-
sors are left open (such that a Hamiltonian term can be con-
nected to it). Similar diagrams are defined for a right-move,
top-move and bottom-move. In this way one keeps track of
all nearest-neighbor Hamiltonian terms in a systematic way.

tensors are renormalized in the same way as the norm-
environment tensors, i.e. using the same projectors P
and P̃ . In this way the indices of the H-environment
tensors match with the ones from the norm-environment
tensors.

We end this section with a two additional remarks:
(1) It is convenient to store also the edge tensors where
the physical legs of the outermost site are kept open, e.g.

T 0o
4 shown in Fig. 4. These tensors can then be used to

compute the local Hamiltonian terms (connecting to the
center site) shown in Fig. 3. (2) The computation of the
T̃ T edge terms has a relatively large computational cost
of O(�3D6) compared to the other terms. This is the
same complexity37 as for the computation of the projec-
tors P and P̃ .20 One way to reduce the complexity of the
T̃ T term is to split it in the middle into two parts us-
ing an SVD, and keeping only a bond dimension of O(�)
between the two parts.

C. Practical schemes

With the CTM approach discussed in the previous sec-
tions we can compute theH and theNmatrices and solve
the generalized eigenvalue problem (3) for the eigenstate
Ã[x,y] with lowest energy eigenvalue. In finite PEPS,
where each tensor appears only once, this provides the
best solution at the current iteration. In iPEPS, however,
each tensor A[x,y] appears infinitely many times, and thus
replacing each tensor A[x,y] by the solution Ã[x,y] might
not be the optimal choice. This is because both H and N

also depend on A[x,y], making Eq. (2) a highly-nonlinear
problem (instead of a quadratic one).
One could solve the minimization problem (2), e.g.,

by a conjugate-gradient method. Here we use a di↵erent
strategy, which turns out to work well in practice: we
solve the generalized eigenvalue problem, but instead of
using the solution Ã[x,y] we take a linear combination
with the previous tensor A[x,y],

A0(�)[x,y] = Ã[x,y] sin�⇡ �A[x,y] cos�⇡. (4)

We then optimize the energy E(�) with respect to the
single parameter � 2 [0.5, 1.5], which in principle can be
done by standard minimization solvers. For each evalu-
ation of E(�) one has to recompute the environment for
the norm (typically a few iterations starting from the pre-
vious environment is accurate enough), and evaluate all
local Hamiltonian terms. For this reason it is desirable
to keep the number of function evaluations of E(�) low.
We made good experience with the following scheme:

• Compute E(1) (corresponding to the previous en-
ergy with the old tensor A0 = A), and E(0.5) (cor-
responding to the energy with A0 = Ã).

• If E(0.5) < E(1), take A0 = Ã as solution and exit

• Define an initial step size �0 (e.g. �0 = 0.1), and
a tiny step size h (e.g. h = 10�4)

• If E(1 + h) < E(1), set � = �0, else � = ��0

• For iter = 1 to maxiter

– If E(1 + �) < E(1) accept solution with
� = 1 +� and exit

– else � = �/2

* Update is similar to standard CMT 5
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(P. Corboz, Phys. Rev. B 94, 035133 (2016))



Applications: S=1/2 Heisenberg model

<latexit sha1_base64="CK7AUVeUN26CK/zNqwEPdMZ4sss="></latexit>

Hamiltonian

GS energy (from QMC): 

A. W. Sandvik, AIP Conf. Proc. No. 1297, pp. 135 (2010)

<latexit sha1_base64="jSfasGx1KCl/2vyv0yWL2x+sR2w="></latexit>

Spontaneous magnetization

<latexit sha1_base64="PP3BwlaKf4NVx9UGRztdgw0MOWs="></latexit>

For D=3 iTPS

(Variational)

(Simple update)

(Full update from P. Corboz, Phys. Rev. B 94, 035133 (2016))

Relative error of energy for D=3

<latexit sha1_base64="Gv/Y4RMRy6b1c2VBILxwy2BP2D8="></latexit>
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Application: Honeycomb lattice Kitaev Model

Kitaev model

Phase diagram

x-bond

y-bond

z-bond

:bond direction

Depending on the bond direction,  
only specific spin components interact.

Exactly solvable by introducing Majorana fermion 

Isotropic region (B) : gapless spin liquid
Anisotropic region (A) : gapped spin liquid

A. Kitaev, Annals of Physics 321, 2 (2006) 

gapped

gapped gapped

gapless

<latexit sha1_base64="YoDhTzLVC6kCVibdFC/8I23RIjI="></latexit>



Applications: Kitaev model

At D=2: The lowest energy state is a ferromagnetic pointing (1,0,0) direction.

Variational

Simple update

Starting from (1,1,1) FM state, it converges to (1,0,0) FM.
Variational optimization seems to have faster convergence.



Applications: Kitaev model

At D=3,4: For D=3, (1,1,1) FM seems to be the lowest energy state.

For D=4, starting from the final state of D=3,  
we obtain very good Kitaev spin liquid state for after steps.

Energy Flux

Ref. H.-Y. Lee, R. Kaneko, T. Okubo and N. Kawashima, 
arXiv: 1901.05786



Summary

• By choosing proper tensor network structure, ground state wave functions can be 
approximated accurately. 
• To search good tensor networks, the area low of the entanglement entropy is 

important. 
• For one dimensional quantum system, matrix product states (MPS) works very well. 
• For two or higher dimensional systems, MPS breaks down. In these case, instead,  

tensor product states are good tensor networks. 
• Owing to developments of algorithms and computers, tensor network methods become 

powerful method to investigate frustrated spin system in two dimensions. 
• iTPS can reproduce the Kitaev spin liquid accurately. 
• iTPS can be applicable to Kagome Heisenberg model. 

• Optimization of iTPS is important to investigate (difficult) frustrated spin systems. 
• Variational optimization seems to be necessary to investigating non-trivial problems. 
• Automatic differentiation might be a good tool to implement VO.


