Tensor network approach to two－dimensional frustrated spin systems

Department of Physics，The University of Tokyo，Tsuyoshi Okubo

CBSM ${ }^{2}$

Computational

The University of Tokyo

Contents

- Introduction
- Frustrated quantum spin systems
- Outline of tensor network quantum states
- Area law of entanglement and tensor network state
- Breakdown of MPS in 2d
- Tensor product states (TPS)
- Contraction
- Potential power of iTPS
- Optimizations
- Summary

Introduction

Frustration in spin systems

Frustration: Competition among several optimization conditions
Optimization: minimization of the total energy

$$
\mathcal{H}=J \sum_{\langle i, j\rangle} S_{i} S_{j} \quad \begin{aligned}
& \text { Antiferromagnetic }
\end{aligned}
$$

local energy minimization : anti-parallel spin pair

Ising spins

All pairs can be anti-parallel
No frustration

One of three pairs is necessarily parallel

Frustration!

Frustration in spin systems

Frustration: Competition among several optimization conditions
Optimization: minimization of the total energy

$$
\mathcal{H}=J \sum S_{i} S_{j}
$$

$$
J>0
$$

Ising spins

Huge degeneracy in the ground state.

Large fluctuations!

All pairs can be anti-parallel
No frustration

Targets of the study in frustrated spin systems

Frustrated spin system $\quad S_{i}$: Spin operator, typically $\mathrm{S}=1 / 2$

$$
\mathcal{H}=\sum_{i, j} J_{i j} S_{i} S_{j}
$$

*Spins located on a lattice: square, triangular, cubic, ...

- We want to find novel states of the matter
(L. Balents, Nature (2010))
- Quantum spin liquids
- Topological phases
- Valence Bond Solids
- We want to investigate phase transition
- (Quantum) critical phenomena
- Topological phase transition

Targets of the studv in frumtrotod cnin svstems

A lot of interesting things occur in the Avogadro scale ~ 10^{23} \rightarrow We need large scale calculations!

- We wantio fina nover states of ine matter
(L. Balents, Nature (2010))
- Quantum spin liquids

Spin liquid (RVB)

- Topological phases
- Valence Bond Solids
- We want to investigate phase transition
- (Quantum) critical phenomena
- Topological phase transition
:singlet

Numerical methods for quantum spin systems

- Numerical diagonalization

Exact and applicable for any systems, but system size is limited.
$S=1 / 2$ spin models ~ 50 sites \quad We need careful extrapolation.

- Quantum Monte Carlo (QMC)

Within statistical error, solving problem "exactly"!
Easy calculation for very large system.
But,
frustrated interactions are usually suffered from the sign problem!

- Variational method

Assuming a wave-function ansatz

- Variational Monte Carlo: larger systems than ED
- Tensor network method: Very large system size (infinite)

Information compression by tensor networks

We can not treat entire data in the present computers.
Try to reduce the "effective" dimension of (Hillbert) space

By considering proper subspace of the Hilbert space, we can represent a quantum state efficiently.

When we efficiently compress a vector?

$$
\vec{v}=\sum_{i=1}^{M} C_{i} \vec{e}_{i} \quad \vec{v} \in \mathbb{C}^{M}
$$

If we can find a basis where the coefficients have a structure (correlation).
All of C_{i} are not necessarily independent.
We store "structure" and "independent elements".

$$
\left\{\left(i, C_{i}\right)\right\}
$$

E.g. Product state ("generalized" classical state)

A vector is decomposed into product of small vectors.

$$
|\Psi\rangle=\left|\phi_{1}\right\rangle \otimes\left|\phi_{2}\right\rangle \otimes \cdots \quad \text { e.g. }
$$

structure: "product state"
independent elements: small vectors

$$
\begin{aligned}
& \left|\phi_{1}\right\rangle=\alpha|0\rangle+\beta|1\rangle \\
& \left|\phi_{1}\right\rangle=|01\rangle-|10\rangle
\end{aligned}
$$

Tensor network decomposition of a wave function

Target:
Exponentially large Hilbert space

$$
\vec{v} \in \mathbb{C}^{M} \text { with } M \sim a^{N}
$$

$+$
Total Hillbert space is decomposed as a product of "local" Hilbert space.

$$
\mathbb{C}^{M}=\mathbb{C}^{a} \otimes \mathbb{C}^{a} \otimes \cdots \mathbb{C}^{a}
$$

eg. array of quantum bits

Tensor network decomposition

$v_{i}=v_{i_{1}, i_{2}, \ldots, i_{N}}=\sum_{\{x\}} T^{(1)}\left[i_{1}\right]_{x_{1}, x_{2}, \ldots} T^{(2)}\left[i_{2}\right]_{x_{1}, x_{3}, \ldots} \cdots T^{(N)}\left[i_{N}\right]_{x_{3}, x_{100}, \ldots}$
$i_{n}=0,1, \ldots, a-1$: index of local Hilbert space
$T[i]_{x_{1}, x_{2}, \ldots .}$: local tensor for "state" i

Graphical representations for tensor network

- Vector $\vec{v}: v_{i}$

$$
M: M_{i, j}
$$

- Matrix
$T: T_{i, j, k}$

* n-rank tensor = n-leg object

When indices are not presented in a graph, it represent a tensor itself.

$$
\vec{v}=\uparrow \quad T=-
$$

Graphical representations for tensor network

Matrix product

$$
\begin{aligned}
C_{i, j}=(A B)_{i, j} & =\sum_{k} A_{i, k} B_{k, j} \\
C & =A B
\end{aligned}
$$

$$
\underline{i} \underline{j}=i_{\mathrm{A}} \underline{\mathrm{C}_{\mathrm{B}} \underline{j}}
$$

$$
-\mathrm{C}-=-\mathrm{A}-\mathrm{B}-
$$

Generalization to tensors

$$
\sum_{\alpha, \beta, \gamma} A_{i, j, \alpha, \beta} B_{\beta, \gamma} C_{\gamma, k, \alpha}
$$

Contraction of a network = Calculation of a lot of multiplications

Graph for a tensor network decomposition

- Vector $v_{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}}$

*Vector looks like a tensor
- Tensor

$$
T[i]_{x_{1}, x_{2}, x_{3}}
$$

Tensor network decomposition

*We treat i as an index of the tensor.

*We can consider tensors independent of i.

Area law of entanglement and tensor network state

Entanglement entropy

Entanglement entropy:

Reduced density matrix of a sub system (sub space):

$$
\rho_{A}=\operatorname{Tr}_{B}|\Psi\rangle\langle\Psi|
$$

Entanglement entropy $=$ von Neumann entropy of ρ_{A}

$$
S=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)
$$

Schmidt decomposition $|\Psi\rangle=\sum_{i} \lambda_{i}\left|\alpha_{i}\right\rangle \otimes\left|\beta_{i}\right\rangle$

$$
\begin{aligned}
\rho_{A} & =\sum_{i} \lambda_{i}^{2}\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right| \\
S & =-\sum_{i} \lambda_{i}^{2} \log \lambda_{i}^{2}
\end{aligned}
$$

Entanglement entropy is calculated through the spectrum of Schmidt coefficients

Area law of the entanglement entropy in physics

General wave functions:
EE is proportional to its volume (\# of spins).

$$
S=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right) \propto L^{d}
$$

Ground state wave functions:
(c.f. random vector)

For a lot of ground states, EE is proportional to its area.

J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys, 277, 82 (2010)

$$
S=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right) \propto L^{d-1}
$$

In the case of one-dimensional system:
Gapped ground state for local Hamiltonian
M.B. Hastings, J. Stat. Mech.: Theory Exp. P08024 (2007)

$$
S=O(1)
$$

Ground state are in a small part of the huge Hilbert space

Tensor network state

G.S. wave function: $|\Psi\rangle=\sum_{\left\{i_{1}, i_{2}, \ldots i_{N}\right\}} \Psi_{i_{1} i_{2} \ldots i_{N}}\left|i_{1} i_{2} \ldots i_{N}\right\rangle$

Vector (or N-rank tensor):

$$
\Psi_{i_{1} i_{2} \ldots i_{N}}
$$

"Tensor network" decomposition

* Matrix Product State (MPS)

$$
\begin{array}{r}
A_{1}\left[i_{1}\right] A_{2}\left[i_{2}\right] \cdots A_{N}\left[i_{N}\right]= \\
A[m]: \text { Matrix for state } \mathrm{m}
\end{array}
$$

* General network

$$
\begin{gathered}
\operatorname{Tr} X_{1}\left[i_{1}\right] X_{2}\left[i_{2}\right] X_{3}\left[i_{3}\right] X_{4}\left[i_{4}\right] X_{5}\left[i_{5}\right] Y \\
\mathrm{X}, \mathrm{Y}: \text { Tensors } \\
\operatorname{Tr}: \text { Tensor network contraction }
\end{gathered}
$$

By choosing a "good" network, we can express G.S. wave function efficiently.

$$
\begin{array}{cc}
\text { ex. MPS: \# of elements }=2 \mathrm{ND}^{2} & \mathrm{D}: \text { dimension of the matrix A } \\
\text { Exponential } \rightarrow \text { Linear } & \text { *If } \mathrm{D} \text { does not depend on N... }
\end{array}
$$

Examples of TNS

MPS:

Good for 1-d gapped systems

For higher dimensional systems
Extension of MPS

MERA: ©

Matrix product state (MPS)

(U. Schollwöck, Annals. of Physics 326, 96 (2011))
(R. Orús, Annals. of Physics 349, 117 (2014))

$$
\begin{aligned}
& |\Psi\rangle=\sum_{\left\{i_{1}, i_{2}, \ldots i_{N}\right\}} \Psi_{i_{1} i_{2} \ldots i_{N}\left|i_{1} i_{2} \ldots i_{N}\right\rangle} \\
& \Psi_{i_{1} i_{2} \ldots i_{N}} \simeq A_{1}\left[i_{1}\right] A_{2}\left[i_{2}\right] \cdots A_{N}\left[i_{N}\right] \quad \text { IU | I } \\
& A[i]: \text { Matrix for state } i
\end{aligned}
$$

Note:

- MPS is called as "tensor train decomposition" in applied mathematics
(I. V. Oseledets, SIAM J. Sci. Comput. 33, 2295 (2011))
- A product state is represented by MPS with 1×1 "Matrix" (scalar)

$$
\begin{aligned}
& |\Psi\rangle=\left|\phi_{1}\right\rangle \otimes\left|\phi_{2}\right\rangle \otimes \cdots \\
& \Psi_{i_{1} i_{2} \ldots i_{N}}=\phi_{1}\left[i_{1}\right] \phi_{2}\left[i_{2}\right] \cdots \phi_{N}\left[i_{N}\right] \\
& \\
& \quad \phi_{n}[i] \equiv\left\langle i \mid \phi_{i}\right\rangle
\end{aligned}
$$

Upper bound of Entanglement entropy

$$
\simeq \varphi \varphi \varphi \uparrow|\tilde{\Psi}\rangle: \text { MPS with } \chi
$$

\rightarrowReduced density matrix of region A:

$$
\rho_{A}=\operatorname{Tr}_{B}|\tilde{\Psi}\rangle\langle\tilde{\Psi}|=
$$

\star Structure of ρ_{A} :

$$
\begin{aligned}
& \operatorname{rank} \rho_{A} \leq \chi \\
& S_{A}=-\operatorname{Tr} \rho_{A} \log \rho_{A} \leq \log \chi
\end{aligned}
$$

Required bond dimension in MPS representation

$$
S_{A}=-\operatorname{Tr} \rho_{A} \log \rho_{A} \leq \log \chi
$$

The upper bound is independent of the "length". length of MPS \Leftrightarrow size of the problem N a^{N}

$$
\begin{array}{|c|c|}
\hline \begin{array}{c}
\text { EE of the } \\
\text { original vector }
\end{array} & \begin{array}{c}
\text { Required bond dimension } \\
\text { in MPS representation }
\end{array} \\
\hline S_{A}=O(1) & \chi=O(1) \\
\hline S_{A}=O(\log N) & \chi=O\left(N^{\alpha}\right) \\
\hline S_{A}=O\left(N^{\alpha}\right) & \chi=O\left(c^{N^{\alpha}}\right)
\end{array}
$$

MPS for infinite chains

By using MPS, we can write the wave function of a translationally invariant infinite chain

Infinite MPS (iMPS) is made by repeating T infinitely.
Translationally invariant system
T is independent of positions!
Point!
If the entanglement entropy of a certain state satisfies the area low, we efficiently approximate infinite system with a finite size matrix (tensor) T.

Higer dimensional system

Transverse field Ising model on square lattice:

$$
\mathcal{H}=-\sum_{\langle i, j\rangle} S_{i}^{z} S_{j}^{z}-h \sum_{i=1}^{N} S_{i}^{x}
$$

$\sum_{\langle i, j\rangle}$:Summation over the

Area law

Even in ferro and disordered phases, the entanglement entropy depends on size N.

$$
S_{A} \sim \sqrt{N}=L
$$

Two-dimensional array

Phase diagram

MPS for two-dimensional system

When we apply MPS representation for a square lattice system:
Setting (1) $\quad S_{A} \leq L_{x} \log \chi \quad$:Satisfying area law?
Setting (2) $\quad S_{A^{\prime}} \leq \log \chi \quad:$ Break down of the area law!
MPS cannot cover the area law of the entanglement entropy in higher ($\mathrm{d}=2,3, \ldots$) dimensions.

Possible MPS
(Snake form)

Two settings of system and environment
(1)

(2)

MPS for two-dimensional system: comment
MPS can treat "rectangular" or "quasi one dimensional" lattice.
In setting (1), MPS can satisfy the area low partially.
We can increase L_{x} easily with keeping L_{y} constant.

$$
\begin{gather*}
\chi=O\left(e^{L_{y}}\right) \\
L_{y} \lesssim 10, L_{x} \gg L_{y}
\end{gather*}
$$

(1) $S_{A} \leq L_{x} \log \chi$

A

Quasi one dimensional system ("strip" or "cylinder")

Tensor product states

Entanglement entropy in higher dimensions

Ground state wave functions:
For a lot of ground states, EE is proportional to its area.
J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys, 277, 82 (2010)

Area low:

$$
S=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right) \propto L^{d-1}
$$

In d=1, MPS satisfies the area low.
Q. What is a simple generalization of MPS to $\mathrm{d}>1$?
A. It is Tensor Product State (TPS)!

Tensor Product State (TPS)

TPS (Tensor Product State) (Aklt, t. Nishino, K. Okumishi, ...) PEPS (Projected Entangled-Pair State)
(F. Verstraete and J. Cirac, arXiv:cond-mat/0407066)
d-dimensional tensor network representation for the wave function of a d-dimensional quantum system
$|\Psi\rangle=\sum_{\left\{m_{i}=1,2, \cdots, m\right\}} \operatorname{Tr} A_{1}\left[m_{1}\right] A_{2}\left[m_{2}\right] \cdots A_{N}\left[m_{N}\right]\left|m_{1} m_{2} \cdots m_{N}\right\rangle$
Tr:tensor network "contraction"
$A_{x_{i} x_{i}^{\prime} y_{i} y_{i}^{\prime}}\left[m_{i}\right]:$ Rank $4+1$ tensor

TPS on square lattice

Tensor = Projector

Maximally entangled state between D-state spins

Entanglement entropy of TPS (PEPS)

\# of bonds connecting regions A and B

$$
\begin{aligned}
& N_{c}(L)=4 L \quad \text { (square lattice) } \\
& N_{c}(L)=2 d L^{d-1} \quad \text { (d-dimensional } \\
& \text { hyper cubic lattice) }
\end{aligned}
$$

$$
\operatorname{rank} \rho_{A} \leq D^{N_{c}(L)} \sim D^{2 d L^{d-1}}
$$

$$
S_{A}=-\operatorname{Tr} \rho_{A} \log \rho_{A} \leq 2 d L^{d-1} \log D
$$

TPS can satisfy the area law even for $\mathrm{d}>1$.
We can efficiently approximate vectors in higher dimensional space by TPS.

* Similar to the MPS in 1d, TPS can approximate infinite system!

Difference between MPS and TPS

Cost of tensor network contraction:
d-dimensional cubic lattice $N=L^{d}$

$$
\begin{array}{ll}
\mathrm{MPS}: & O(N) \\
\text { TPS: } & O\left(e^{L^{d-1}}\right)
\end{array}
$$

> It is impossible to perform exact contraction even if we know local tensors in the case of TPS.

In the case of TPS, usually we approximately calculate the contraction.

TPS
(PEPS)

Contraction of iTPS

Methods for approximate contraction of iTPS:

- Tensor network renormalizations
- TRG, HOTRG, SRG, TNR, loop-TNR, ... (cf. lecture of T. Xiang)
- Boundary MPS

- (Y. Hieida et al (1999) , J. Jordan et al, Phys. Rev. Lett. 101, 250602 (2008))
- Corner transfer matrix
- T. Nishino and K. Okunishi, JPSJ 65, 891 (1996), R. Orus et al, Phys. Rev. B 80, 094403 (2009).
- Single layer approaches
- bMPS: H. J. Liao et al, PRL 118, 137202 (2017), Z. Y. Xie et al,PRB 96, 045128 (2017).
- CTM: Chih-Yuan Lee et al, PRB 98, 224414 (2018) .

Corner transfer matrix method

For (infinite) open boundary system

(T. Nishino and K. Okunishi, JPSJ 65, 891 (1996))
(R. Orus et al, Phys. Rev. B 80, 094403 (2009))

Infinite PEPS

(with a translational invariance)

Double tensor

Mapping to a "classical" system

Corner transfer matrix method

For (infinite) open boundary system

(T. Nishino and K. Okunishi, JPSJ 65, 891 (1996))
(R. Orus et al, Phys. Rev. B 80, 094403 (2009))

Infinite PEPS

(with a translational invariance)
 Double tensor

Environment

Corner transfer matrix
Corner transfer matrix Representation

Edge tensor

Mapping to a "classical" system

$$
\chi=\text { bond dimension } \chi \sim D^{2}
$$

Original simple CTM renormalization group

- Successive "renormalization" method for contracting classicl tensor network proposed by Nishino and Okunishi.
(J. Phys. Soc. Jpn. 65, 81 (1996); 66, 3040 (1997).)
- Corner Transfer Matrix Renormalization Group (CTMRG)
- Contract classical tensor network by changing the system size as $L \rightarrow L+2$, sequentially
- Recently, it is also use for environment calculation in twodimensional quantum many body system represented by iPEPS (iTPS)

First, I explain the simplest CTMRG for 2d classical Ising model

Outline of CTMRG

Suppose we have (approximately) calculated contraction of $L \times L$ network.

A: $m \times m \times m \times m$

Increase system size slightly

Contraction of $(L+2) \times(L+2)$ network

CTM representation

$C: D \times D$

Increase system size by keeping the size of C

Meaning of Corner Transfer Matrix

Cost

Recipe of CTMRG

contraction: $O\left(D^{3} m^{2}\right), O\left(D^{2} m^{4}\right)$

Svd: $O\left(D^{3} m^{3}\right), O\left(D^{3} m^{2}\right)$

1. SVD

$$
M: m D \times m D
$$

In the case of Ising mode,
M is a real symmetric matrix

$$
\left(V^{\dagger} U\right)_{i, j}=\left(U^{\dagger} V\right)_{i, j}=(-1)^{\eta_{i}} \delta_{i, j}
$$

$$
\eta_{i}=0,1
$$

Using symmetry

$$
\begin{aligned}
& =\sum_{i} \lambda_{i}^{4}(-1)^{4 \eta_{i}} \\
& =\sum_{i} \lambda_{i}^{4}
\end{aligned}
$$

Good approximation when we keep largest singular values!

Recipe of CTMRG

2. Approximation

$$
\tilde{U}: m D \times D
$$

$\tilde{\Lambda}: D \times D$
Diagonal matrix with $(-1)^{\eta_{i}} \lambda_{i}$

Cost

Recipe of CTMRG C, e contraction: $O\left(D^{3} m^{2}\right), O\left(D^{2} m^{4}\right)$

Summary of renormalization

1. SVD of the corner matrix for $(L+2) \times(L+2)$ system

2. Make projector

Keep the largest
D singular values

3. Make new conner and edge matrices

We can calculate tensor network contraction successively

Accuracy of CTMRG

Application to quantum system

Difference from the Ising model

"Classical" tensor is represented by product of two "quantum" tensors

- Typically, bond dimension "m" becomes much larger than that of classical models
- We can reduce computational cost by using this structure explicitly

The tensor network has larger periodicity than Ising model. In addition, the local tensor does not necessarily have rotational symmetry

- We use more complicated renormalization steps
- left, right, top, bottom moves
- We use different definition of the projector

Update for quantum model

Iterative update of environment tensors

Truncation

$\prod_{\chi}^{\chi}:$ Projector
$\chi \quad D^{2} \quad$ Same ways for right, top, bottom moves.
$\varepsilon^{\left[\vec{r}_{1} \vec{r}_{2} \vec{r}_{3} \vec{r}_{4}\right]}$
(a)

Repeat until convergence. (Typically several tens steps)

Calculation of projectors

(P. Corboz et al, Phys. Rev. Lett. 113, 046402 (2014))

(b)

(c)

The heaviest part of the iPEPS + CTM (with naive ways)
(1) Update of the edge tensors: $O\left(\chi^{2} D^{8}\right)$
(2) Half-environment contraction: $O\left(\chi^{3} D^{6}\right), O\left(\chi^{2} D^{8}\right)$
(3) SVD of RR matrix: $O\left(\chi^{3} D^{6}\right)$

Naive implementation:
$\mathrm{O}\left(\mathrm{D}^{12}\right)$ calculation cost!
*Typically,

$$
\chi \geq D^{2} \quad \text { or } \quad \chi \simeq D^{2}
$$

Useful techniques to reduce the cost

i) Use internal tensor structure explicitly

In the case of PEPS, the tensor "T" is the product of smaller tensors.

In some case, we can reduce the contraction cost.
ii-1) Use partial SVD instead of full SVD
Typically, we need only higher $\mathrm{O}\left(\mathrm{D}^{2}\right)$ mode among $\mathrm{O}\left(\mathrm{D}^{4}\right)$ full SV spectrum.

$$
\text { Full SVD: } \mathrm{O}\left(\mathrm{D}^{12}\right) \quad \square \text { Partial SVD: } \mathrm{O}\left(\mathrm{D}^{10}\right)
$$

ii-2) Do not create the full matrix at SVD
By using partial SVD algorithms consist of matrix-matrix or matrix-vector products, we do not need the half environment contraction.

* Same technique reduce the cost of TRG from $\mathrm{O}\left(\chi^{6}\right)$ to $\mathrm{O}\left(\chi^{5}\right)$.

Contraction: $\mathrm{O}\left(\mathrm{D}^{12}\right)$
Full SVD: $O\left(D^{12}\right)$

Contraction: $O\left(D^{10}\right)$
Partial SVD: $O\left(D^{10}\right)$

Useful techniques to reduce the cost

i) Use internal tensor structure explicitly

In the case of PEPS, the tensor "T" is the product of smaller tensors.

In some case, we can reduce the contraction cost.
ii-1) Use partial SVD instead of full SVD
Typically, we need only higher $O\left(D^{2}\right)$ mode among $O\left(D^{4}\right)$ full SV spectrum.
Full SVD: $\mathrm{O}\left(\mathrm{D}^{12}\right) \quad \rightarrow$ Partial SVD: $\mathrm{O}\left(\mathrm{D}^{10}\right)$
ii-2) Do not create the full matrix at SVD
By using partial SVD algorithms consist of matrix-matrix or matrix-vector products, we do not need the half environment contraction.

The heaviest part of the iPEPS + CTM
(1) Update of the edge tensors: $O\left(\chi^{2} D^{8}\right)$
$\leadsto O\left(\chi^{2} D^{6}\right), O\left(\chi^{3} D^{4}\right)$
(2) Half-environment contraction: $O\left(\chi^{3} D^{6}\right), O\left(\chi^{2} D^{8}\right)$
\square not need

Single layer approach for CTMRG

(a)

$$
\begin{aligned}
& \text { (b) } \\
& \stackrel{i}{m} \xlongequal[\eta_{n l}]{\text { b) }_{n}^{k}} j \rightarrow \stackrel{i}{m} \stackrel{\prod_{n l}^{c}}{\stackrel{k}{c}}-j=\delta_{i j} \delta_{k l} \delta_{m n} \\
& i \xrightarrow[l]{\left.\right|_{l} ^{k}} j \rightarrow i-\underset{l}{\stackrel{k}{d}}-j=\delta_{i j} \delta_{k l}
\end{aligned}
$$

(c)

We can map double layer TN to a single layer.
Computation cost is reduced to $O\left(D^{8}\right)$.
$\left(\chi \sim D^{2}\right)$

Potential power of iTPS

Expected entanglement scaling for spin systems

Table 1

Entanglement entropy scaling for various examples of states of matter, either disordered, ordered, or critical, with smooth boundaries (no corners).

Physical state	Entropy	Example
Gapped (brok. disc. sym.)	$a L^{d-1}+\ln (\mathrm{deg})$	Gapped XXZ [143]
$d=1$ CFT	$\frac{c}{3} \ln L$	$s=\frac{1}{2}$ Heisenberg chain [21]
$d \geq 2$ QCP	$a L^{d-1}+\gamma_{\mathrm{QCP}}$	Wilson-Fisher O(N) [136]
Ordered (brok. cont. sym.)	$a L^{d-1}+\frac{n_{\mathrm{G}}}{2} \ln L$	Superfluid, Néel order [147]
Topological order	$a L^{d-1}-\gamma_{\text {top }}$	\mathbb{Z}_{2} spin liquid [159]

(Nicolas Laflorencie, Physics Reports 646, 1 (2016)) cf. free fermion

$$
S \propto L^{d-1} \log L
$$

For $d \geq 2$, leading contribution satisfies area low even for gapless (critical) systems.

Example: Ground state represented by iTPS

Toric code model
(A. Kitaev, Ann. Phys. 303, 2 (2003).

$$
\begin{aligned}
\mathcal{H} & =-\sum_{s} A_{s}-\sum_{p} B_{p} \\
A_{s} & =\prod_{j \in \operatorname{star}(s)} \sigma_{j}^{x} \quad B_{p}=\prod_{j \in \partial p} \sigma_{j}^{z} .
\end{aligned}
$$

Its ground state is so called Z_{2} spin liquid state.
"Spin liquid" is a novel phase different from conventional magnetic orders.
It can be represented by D=2 TPS.
(F. Verstraete, et al, Phys. Rev. Lett. 96, 220601 (2006).

Example: Loop gas state for gapless Kitaev SL

Kitaev model
A. Kitaev, Annals of Physics 321, 2 (2006)

$$
\mathcal{H}=-\sum_{\gamma,\langle i, j\rangle_{\gamma}} J_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}
$$

Ground states are spin liquids!
Anisotropic region (A) : gapped spin liquid

- Excitations of Majorana fermions has finite gap.
- It is adiabatically connected to the toric code.

Isotropic region (B) : gapless spin liquid

- Majorana fermions shows gapless excitation.
- The flux excitations is gapped.

G.S. Phase diagram

Example: Loop gas state for gapless Kitaev SL

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, arXiv:1901.03614

A simple vortex free state corresponding to the isotropic Kitaev model:

$$
|\mathrm{LGS}\rangle=\hat{Q}_{L G} \prod \otimes|111\rangle_{i}
$$

Ferromagnetic state pointing $(1,1,1)$ direction.

$D=2, \mathrm{TPS}$

$$
|111\rangle=\mathrm{l}
$$

Example: chiral spin liquid on the star lattice

(cf. Lee's symposium talk)

Entanglement spectrum

Similar LG construction gives us both of abelian and non-abelian chiral SL.

iTPS as variational wave function

A lot of two-dimensional spin systems satisfy the area law of the entanglement entropy.

It indicate, iTPS can be good variational wave function for infinite systems.

However, optimization of iTPS for a given Hamiltonian is not an easy task.

Difficulties:

- Optimization of infinitely repeated tensors a highly non-linear problem.
- Contraction of iTPS is performed only approximately.

Optimization of iTPS

Typical optimization methods for iTPS

1. Imaginary time evolution

$$
\lim _{M \rightarrow \infty}\left(e^{-\tau \mathcal{H}}\right)^{M}|\psi\rangle=\text { ground state }
$$

Suzuki-Torotter decomposition: $\quad e^{-\tau H} \simeq e^{-\tau H_{x}} e^{-\tau H_{y}} e^{-\tau H_{x}^{\prime}} e^{-\tau H_{y}^{\prime}}+O\left(\tau^{2}\right)$

* By operating the time evolution operator, the bond dimension increases from original D .

We need a "truncation."

cf. iTEBD for iMPS

- Full update : consider global environment \rightarrow Accurate but higher cost $\left.\left(O_{(} D^{8}\right) \sim O\left(D^{10}\right)\right)$
- Simple update: consider only local environment \rightarrow lower cost ($\mathrm{O}\left(\mathrm{D}^{5}\right)$)

2. Variational optimization

$$
\min _{A} E(A)=\min _{A} \frac{\langle\Psi(A)| \hat{H}|\Psi(A)\rangle}{\langle\Psi(A) \mid \Psi(A)\rangle}
$$

P. Corboz, Phys. Rev. B 94, 035133 (2016).
L. Vanderstraeten et al , Phys. Rev. B 94, 155123 (2016).
H.-J. Liao et al, Phys. arXiv:1903:09650
cf. DMRG for MPS

Truncations in ITE

- Full update

Minimize the difference between two wave functions:

$$
\| \Psi\rangle-\left|\Psi^{\prime}\right\rangle \|^{2}=\langle\Psi \mid \Psi\rangle+\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle-2 \operatorname{Re}\left\langle\Psi \mid \Psi^{\prime}\right\rangle
$$

$|\Psi\rangle$: wave function (after ITE)
$\left|\Psi^{\prime}\right\rangle$: wave function after truncation

- Ideal approximation for finite TPS
- We need tensor network contractions, $O\left(D^{8}\right) \sim O\left(D^{10}\right)$
- Simple update
(H. G. Jiang et al, Phys. Rev. Lett. 101, 090603 (2008))

Truncation by using local information

- Low computation cost : $O\left(D^{5}\right)$

- iTPS tends to represent only short range correlations

Simple update

Extended iTPS:

Insert (positive) diagonal matrix representing "weight" of bonds. (cf. iTEBD)

$$
\begin{aligned}
& |\Psi\rangle=\operatorname{Tr} \prod_{i \in A, j \in B} \lambda_{x_{i}} \lambda_{x_{i}^{\prime}} \lambda_{y_{i}} \lambda_{y_{i}^{\prime}} A_{x_{i} x_{i}^{\prime} y_{i} y_{i}^{\prime}}\left[m_{i}\right] B_{x_{j} x_{j}^{\prime} y_{j} y_{j}^{\prime}}\left[m_{j}\right]\left|m_{i} m_{j}\right\rangle \\
& \underbrace{x^{\prime}}_{y^{\prime} \mid}=A_{x_{i} x_{i}^{\prime} y_{i j} y_{i}^{\prime}}\left[m_{i}\right] \quad \underbrace{y^{y}}_{y}=B_{x_{j} x_{j}^{\prime} y_{j}^{\prime} y_{j}^{\prime}}\left[m_{j}\right]-\bigcirc-=\lambda \\
& x, y, x^{\prime}, y^{\prime}=1,2, \ldots D
\end{aligned}
$$

Extended PEPS

Simple update with naive SVD

$e^{-\tau H_{x}}|\Psi\rangle=\operatorname{Tr} \prod_{i \in A, j \in i+x} \sum_{m_{i}, m_{j}}\left\langle m_{i}^{\prime} m_{j}^{\prime}\right| e^{-\tau H_{i j}}\left|m_{i} m_{j}\right\rangle \lambda_{x_{i}} \lambda_{x_{i}^{\prime}} \lambda_{y_{i}} \lambda_{y_{i}^{\prime}}^{\prime} A_{x_{i} x_{i}^{\prime} y, y_{i},}\left[m_{i}\right] B_{x_{j} x_{j}^{\prime} y_{j y y}, y_{j}^{\prime}}\left[m_{j}\right]\left|m_{i}^{\prime} m_{j}^{\prime}\right\rangle$
Truncation by SVD

1. Define a matrix "S"
$S_{y_{i} x_{i}^{\prime} y_{i}^{\prime} m_{i}, y_{j} x_{j}^{\prime} y_{j}^{\prime} m_{j}}=\sum_{m_{i}, m_{j}} \sum_{x}\left\langle m_{i}^{\prime} m_{j}^{\prime}\right| e^{-\tau H_{i j}}\left|m_{i} m_{j}\right\rangle \lambda_{y_{i}} \lambda_{x_{i}^{\prime}}^{\prime} \lambda_{\lambda_{i}^{\prime}} A_{x y_{i} x_{i} y_{i}^{\prime}}\left[m_{i}\right] \lambda_{x} B_{x y_{j} x_{j}^{\prime} y_{j}^{\prime}}\left[m_{j}\right] \lambda_{y_{j}} \lambda_{x_{j}^{\prime}} \lambda_{y_{j}^{\prime}}$
2. Do SVD 人

$$
S_{y_{i} x_{i}^{\prime} y_{i}^{\prime} m_{i}, y_{j} x_{j}^{\prime} y_{j}^{\prime} m_{j}}=\sum_{x} U_{y_{i} x_{i}^{\prime} y_{i}^{\prime} m_{i}, x} \tilde{\lambda}_{x} V_{x, y_{j} x_{j}^{\prime} y_{j}^{\prime} m_{j}}^{T}
$$

3. Truncate the matrix leaving upper D singular values

$$
\begin{aligned}
& \tilde{A}_{x y_{i} x_{i}^{\prime} y_{i}^{\prime}}\left[m_{i}\right]=\lambda_{y_{i}}^{-1} \lambda_{x_{i}^{\prime}}^{-1} \lambda_{y_{i}^{\prime}}^{-1} U_{y_{i} x_{i}^{\prime} y_{i}^{\prime} m_{i}, x} \\
& \tilde{B}_{x y_{j} x_{j}^{\prime} y_{j}^{\prime}}\left[m_{j}\right]=\lambda_{y_{j}}^{-1} \lambda_{x_{j}^{\prime}}^{-1} \lambda_{y_{j}^{\prime}}^{-1} V_{y_{j} x_{j}^{\prime} y_{j}^{\prime} m_{j}, x}
\end{aligned}
$$

* Meaning of λ

At SVD, λ provides information of local environment.
In the case of iMPS, λ give us global information, thanks to the canonical form.

Simple update with QR decompositions

QR decomposition before SVD

Calculation cost
Direct SVD:

$\mathrm{O}\left(\mathrm{D}^{9} \mathrm{~m}_{\mathrm{d}^{3}}\right)$

QR decomposition:

$$
\begin{gathered}
\equiv \mathrm{Q}=\mathrm{R}-\mathrm{O}\left(\mathrm{D}^{5} \mathrm{~m}_{\mathrm{d}^{2}}\right) \\
\equiv=^{S} \mathrm{O}\left(\mathrm{D}^{3} \mathrm{~m}_{\mathrm{d}^{6}}\right)
\end{gathered}
$$

Usually $D>m_{d} \Rightarrow$ QR method is cheaper.

Full update

Minimize the difference between wave functions

$$
\| \Psi\rangle-|\tilde{\Psi}\rangle \|^{2}=\langle\Psi \mid \Psi\rangle+\langle\tilde{\Psi} \mid \tilde{\Psi}\rangle-2 \operatorname{Re}\langle\Psi \mid \tilde{\Psi}\rangle=f
$$

$|\Psi\rangle$: wave function just operated an ITE operator

$|\tilde{\Psi}\rangle$: wave function after truncation
Necessary conditions for minimization $\quad \frac{\partial f}{\partial \tilde{A}^{*}}=0, \frac{\partial f}{\partial \tilde{B}^{*}}=0$

$$
\begin{aligned}
& \text { Iterative calculation by solving linea } \\
& \frac{\partial f}{\partial \tilde{A}^{*}}=0 \\
& \frac{\partial f}{\partial \tilde{B}^{*}}=0
\end{aligned}
$$

*Environment is fixed during the iteration
$\star O\left(D^{12} m_{d}^{3}\right)$
*Environment: $O\left(D^{8}\right) \sim O\left(D^{10}\right)$
*Alternatively, we can also use the CG.
N_{A}, N_{B} : "Matrices"

W_{A}, W_{B} :"Vectors"

Additional approximation for infinite system

Even in full update, we actually consider iTPS locally:
We evaluate $||\Psi\rangle-| \tilde{\Psi}\rangle\left|\left.\right|^{2}=\langle\Psi \mid \Psi\rangle+\langle\tilde{\Psi} \mid \tilde{\Psi}\rangle-2 \operatorname{Re}\langle\Psi \mid \tilde{\Psi}\rangle\right.$ with fixing environment (CTMs).

Then, from translational invariance of the iTPS, we copy the "local" solution to whole system.

Thus, in the case of infinite systems, it is not the ideal projection (truncation) of ITE.

 O-

Applications of ITE updates

Kagome lattice Heisenberg model

Hamiltonian

$$
\mathcal{H}=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}-h \sum_{i} S_{i, z}
$$

- Ground state at zero field

Classical GS: All states satisfying "120 degree structure"
Macroscopic degeneracy

Effect of thermal fluctuation:"order by disorder" mechanism \rightarrow selection of coplanar structure: $\mathrm{q}=0, \sqrt{ } 3 \times \sqrt{ } 3$

Quantum fluctuation:
Spin liquid?
$S=1 / 2$ quantum spin :

- Z_{2} spin liquid
- $\quad U(1)$ spin liquid

Magnetization process ($\mathrm{S}=1 / 2$)

"Grand canonical" DMRG

(C. Hotta, et al, (2012, 2013), S.Nishimoto, et al, (2013)

Finite size system with modulation
\rightarrow Quantities in the thermodynamic limit

Four magnetization plateaus

$$
\mathrm{M} / \mathrm{M}_{\text {sat }}=1 / 9,1 / 3,5 / 9,7 / 9
$$

Exact diagonalization ($N \leq 42$)
(H. Nakano, and T. Sakai $(2012,2014)$
$M / M_{\text {sat }}=1 / 3$ is a "ramp"

- Anomalous critical exponents at the edge
- Plateau width could be infinitesimal

Magnetization by DMRG
(S.Nishimoto, et al, (2013)

Magnetization by ED

Magnetization process (S=1/2)

Aim:
 Investigate magnetization process using tensor network method for infinite system

Extended PEPS for kagome lattice model

Extended PEPS (PESS)

D. Poilblanc et al, PRB 87, 140407(R) (2012)

Tensors without spin

Tensors with spin

D: Bond dimension
$\mathrm{m}: \mathrm{Sz}= \pm 1 / 2$

Infinite system with 18-sites unit cell
(Commensurate with $\sqrt{ } 3 \times \sqrt{ } 3$ structure)

Two steps in the calculation

1. Optimization: optimize the tensor elements Truncation: Simple update (for two sites)
2. Evaluation of physical quantities:

Approximation: Corner Transfer Matrix method

Differences from
T. Picot et al, PRB 93, 060407(R) (2016).

- Unit cell size

They considered up to 9 sites

- Evaluation of physical quantities

They used mean-field environment

Results: Magnetization curve

(R. Okuma, D. Nakamura, T. Okubo, et al, Nat. Commun. 10, 1229 (2019))

Magnetization plateau

- Almost converged data up to $\mathrm{D}=7$

1/9, 1/3, 5/9 :clear plateaus 7/9: weak anomaly

Consistent with DMRG

- Weak anomaly at 2/9, 6/9

They seem to vanish as D is increased.

Magnetization curve by iTPS

Result : 1/3 plateau state

Semi-classical UpUpDown

(Also observed in the study of T. Picot et al)
Depending on "initial states" several types of pattern appear Local minima!
(Lowest energy: $\sqrt{ } 3 \times \sqrt{ } 3$)

In DMRG, plaquette resonated state
Within $\mathrm{D} \leq 7$ and simple update, $1 / 3$ It did not stabilized

More sophisticated optimization?

(S.Nishimoto, et al, (2013)

Hexagonal cluster update

Can we stabilize the resonated state observed in DMRG?
Correlation within a hexagon might be important.

Simple update: only two (or three) sites are updated simultaneously
Treat many-body correlations more accurately!

Hexagonal cluster update

Can we stabilize the resonated state observed in DMRG?
Correlation within a hexagon might be important.

Simple update: only two (or three) sites are updated simultaneously

Treat many-body correlations more accurately!
Imaginary time evolution for a hexagon

Update 12 tensors simultaneously

* Lower cost than the environment calculation

Hexagonal cluster update : Basic idea

Hexagonal cluster update: Details

3. Minimization is performed iteratively

$$
\left.\||\tilde{\Psi}\rangle-\left|\Psi_{\text {new }}\right\rangle \mid \|^{2}\right\}
$$

Solve linear equation: $\quad N \uparrow=\vec{W}$

\vec{W}

Result of hexagonal cluster update

(R. Okuma, D. Nakamura, T. Okubo, et al, Nat. Commun. 10, 1229 (2019))

Result of hexagonal cluster update

(R. Okuma, D. Nakamura, T. Okubo, et al, Nat. Commun. 10, 1229 (2019))

 states, when we increase D.

Importance of variational optimization

Problems in imaginary time evolution

- States obtained by ITE tend to biased by the initial states.
- It is not easy to obtain quantum spin liquid (QSL) state even in the case of Kitaev model, whose GS is exact QSL. (cf. Kaneko's symposium talk)
- For frustrated spin systems, it is also difficult to obtain the GS among several candidates of magnetically ordered states with small energy differences.
- Due to the projection onto iTPS, energy can increases along ITE.
- It might be troublesome to pick up the lowest energy state.

More sophisticated optimization: variational optimization

Variational method:

(P. Corboz, Phys. Rev. B 94, 035133 (2016))
(L. Vanderstraeten, et al., Phys. Rev. B 94, 155123 (2016))
(H.-J. Liao, et al. arXiv:1903:09650)
minimize cost function: $F=\frac{\vec{\psi}^{\dagger}(\mathcal{H} \vec{\psi})}{\vec{\psi}^{\dagger} \vec{\psi}}$

Advantage:

- Energies strictly decrease along optimization.
- It seems to avoid to be trapped at local minimum for several models.

Variational optimization by using CTMRG

(P. Corboz, Phys. Rev. B 94, 035133 (2016))

"Minimize Energy"

$$
\begin{aligned}
& \min _{A} E(A)=\min _{A} \frac{\langle\Psi(A)| \hat{H}|\Psi(A)\rangle}{\langle\Psi(A) \mid \Psi(A)\rangle}=\min _{\vec{A}} \frac{\vec{A}^{\dagger} \mathbf{H} \vec{A}}{\vec{A}^{\dagger} \mathbf{N} \vec{A}} \\
& \vec{A}^{\dagger} \mathbf{H} \vec{A}= \\
& \frac{\vec{A}^{\dagger} \mathbf{N} \vec{A}=}{\partial \vec{A}^{\dagger}}\left(\frac{\vec{A}^{\dagger}+\mathbf{H} \vec{A}}{\vec{A}^{\dagger} \mathbf{N} \vec{A}}\right)=0, \quad \rightarrow \mathbf{H} \vec{A}=E \mathbf{N} \vec{A} .
\end{aligned}
$$

(c)

$$
H=E \cdot R
$$

How to obtain H matrix in CTM

Systematic summation of Hamiltonian terms
$\langle\Psi| \hat{H}|\Psi\rangle=$

How to obtain H matrix in CTM

Systematic summation of Hamiltonian terms
$\langle\Psi| \hat{H}|\Psi\rangle=$

Update is similar to standard CMT

$$
\begin{aligned}
& \tilde{T}_{4}= \\
& \tilde{C}_{h 1}^{\prime}=T^{-}=\underbrace{T_{0}^{-}}_{T_{0}^{-}}
\end{aligned}
$$

Applications: $\mathrm{S}=1 / 2$ Heisenberg model

Hamiltonian

$$
\mathcal{H}=\sum_{\langle i, j\rangle} S_{i} \cdot S_{j}
$$

GS energy (from QMC):

$$
E=-0.6694421(4)
$$

A. W. Sandvik, AIP Conf. Proc. No. 1297, pp. 135 (2010)

Spontaneous magnetization

$$
m_{s}=0.3074
$$

For $\mathrm{D}=3$ iTPS
$m_{s}=0.3769$ (Simple update)

$m_{s} \simeq 0.35 \quad$ (Full update from P. Corboz, Phys. Rev. B 94, 035133 (2016))
$m_{s}=0.3393 \quad$ (Variational)

Application: Honeycomb lattice Kitaev Model

Kitaev model
A. Kitaev, Annals of Physics 321, 2 (2006)

$$
\mathcal{H}=-\sum_{\substack{\gamma,\langle i, j\rangle_{\gamma} \\ \gamma_{\text {:bond direction }}}} J_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}\left(S=\frac{1}{2}\right)
$$

Depending on the bond direction, only specific spin components interact.

Exactly solvable by introducing Majorana fermion

Isotropic region (B) : gapless spin liquid Anisotropic region (A) : gapped spin liquid

Applications: Kitaev model

At $\mathrm{D}=2$: The lowest energy state is a ferromagnetic pointing $(1,0,0)$ direction. Starting from $(1,1,1)$ FM state, it converges to $(1,0,0)$ FM.

Variational optimization seems to have faster convergence.

Applications: Kitaev model Ref. H.-Y. Lee, R. Kaneko, T. Okubo and N. Kawashima, arXiv: 1901.05786

At $D=3,4$: For $D=3,(1,1,1)$ FM seems to be the lowest energy state.
For $D=4$, starting from the final state of $D=3$, we obtain very good Kitaev spin liquid state for after steps.

Energy

Flux

Summary

- By choosing proper tensor network structure, ground state wave functions can be approximated accurately.
- To search good tensor networks, the area low of the entanglement entropy is important.
- For one dimensional quantum system, matrix product states (MPS) works very well.
- For two or higher dimensional systems, MPS breaks down. In these case, instead, tensor product states are good tensor networks.
- Owing to developments of algorithms and computers, tensor network methods become powerful method to investigate frustrated spin system in two dimensions.
- iTPS can reproduce the Kitaev spin liquid accurately.
- iTPS can be applicable to Kagome Heisenberg model.
- Optimization of iTPS is important to investigate (difficult) frustrated spin systems.
- Variational optimization seems to be necessary to investigating non-trivial problems.
- Automatic differentiation might be a good tool to implement VO.

