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Frustration in spin systems

Frustration - Competmon among several opt|m|zat|on Cond|t|ons

Optlmlza’uon mlnlmlzatlon of the total energy |
H=1J) 8:S; J >0

Antiferromagnetic
(2,7)

Iocal energy minimization : anti-parallel spin pair |

Ismg splns

: A

l T } g v: ¢
! One of three pairs is
All pairs can be anti-parallel ! necessarily parallel

» No frustratlon » Frustration!
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Frustration in spin systems

Frustration - Competltmn among several opt|m|zat|on Cond|t|ons

Optlmlzatlon mlnlmlzatlon of the total energy |
H=1J>» 5, J >0

[\ - C\V Y )

Ising spi P’ Huge degeneracy in the ground state.
SRS, L arge fluctuations!
1
|

One of three pairs is
necessarily parallel

k » Frustration! :

All pairs can be anti-parallel

» No frustratlon



Targets of the study In frustrated spin systems

; Frustrated spin system S, : Spin operator, typically S=1/2 f

H = Z Jz’j SiSj *Spins located on a lattice:
2,7 square, triangular, cubic, ...

- We want to find novel states of the matter
(L. Balents, Nature (2010))

Quantum spin liquids Spin liquid (RVB)
Topological phases -
Valence Bond Solids

We want to investigate phase transition s

(Quantum) critical phenomena
Topological phase transition

O :singlet



Q1N svstems

Targets of the studhaic

A lot of interesting things occur
in the Avogadro scale ~ 1023
—\We need large scale calculations!

We w O TINaT c matter
(L. Balents, Nature (2010))

Quantum spin liquids Spin liquid (RVB)
- Topological phases -
- Valence Bond Solids

DVEC AL U

We want to investigate phase transition ™~ ~

(Quantum) critical phenomena
Topological phase transition

O :singlet



Numerical methods for guantum spin systems

- Numerical diagonalization

Exact and applicable for any systems, but system size is limited.

S=1/2 spin models ~ 50 sites » We need careful extrapolation.
+ Quantum Monte Carlo (QMC)

Within statistical error, solving problem “exactly”!
Easy calculation for very large system.

frustrated interactions are usually
suffered from the sign problem!

- Variational method
Assuming a wave-function ansatz
Variational Monte Carlo: larger systems than ED
Tensor network method: \ery large system size (infinite)

But,



Information compression by tensor networks

We can not treat entire data in the present computers.

» Try to reduce the "effective” dimension of
(Hilbert) space

By considering proper subspace of the Hilbert space,
we can represent a quantum state efficiently.

v

Tensor network guantum states!

Hilbert space

Subspace



When we efficiently compress a vector”?
M

U = Z Ci€; v e CM
1=1

If we can find a basis where the coefficients have a structure (correlation).

All of C; are not necessarily independent.

» We store "structure" and "independent elements”.

102, Ci)}
E.g. Product state ("generalized" classical state)

A vector is decomposed into product of small vectors.
) = |¢1) @ |P2) ® -+ eg.
1) = «|0) + B[1)

structure: "product state" ‘ f > ‘ 01> |1()>
1 —
iIndependent elements: small vectors



Tensor network decomposition of a wave function

Target: Exponentially large Hilbert space
7eC" with M ~ a"

_|_

Total Hilbert space Is decomposed as
a product of “local” Hilbert space.

CM:CQ(X)CG,@...C(L

eg. array of gquantum bits

* Tensor network decomposition

Vi = Vig,ig,...in — ZT(l)[il]wl,wza---T(z) [i2]$17$37-

{x}
i, =0,1,...,a—1: Index of local Hilbert space

Tz, 2,.... . local tensor for "state" i

,,---T(N)[iN]

L35,L1005---



Graphical representations for tensor network
®

| ! o ]
Matrix M: M’L,j +

P
Rl

* n-rank tensor = n-leg object

—

- \Vector UV Vg

- Tensor 1215 5k

When indices are not presented in a graph, it represent a tensor itself.

a:’ T — —’—




Graphical representations for tensor network

Matrix product

Cz',j = (AB)Z’J = ZAi’kBk’j
k

C =AB

Generalization to tensors

Z A’I;,j,()é,ﬁBﬁ,’YC’y,k,Oé

o, 3,7

)
Contraction of a network = Calculation of a lot of multiplications



Graph for a tensor network decomposition

VeCIOr Wiy ,iz,is,ia,is m
*Vector looks like a tensor

11 12 13 14 qp

L2

. TenSOr T[i]xl,xz,xs L1 :
“We treat i as an index
- b o of the tensor.
Tensor network decomposition  *

*“We can consider tensors
iIndependent of i.




Area law of entanglement and tensor network state



—ntanglement entropy

Entanglement entropy:

Reduced density matrix of a sub system (sub space): A B

pa = Trp|¥)(¥ O 00000606060 0

Entanglement entropy = von Neumann entropy of p4

S = —Tr(palogpa)
Schmidt decomposition [¥) =) Aila;) @ |5;)

=) =Y Nlaa
» S=—Y ANlog)?

Entanglement entropy is calculated through
the spectrum of Schmidt coefficients




Area law of the entanglement entropy in physics

General wave functions:
EE is proportional to its volume (# of spins).

S = —Tr(palogpa) o L*

. (c.f. random vector)
Ground state wave functions:

For a lot of ground states, EE is proportional to its area.

J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys, 277, 82 (2010)
d—1
S = —Tr(palogpa) o L

In the case of one-dimensional system:

Gapped ground state for local Hamiltonian
M.B. Hastings, J. Stat. Mech.: Theory Exp. P08024 (2007)

S =0(1) A i

Ground state are in a small part
of the huge Hilbert space




Tensor network state

[ "
G.S. wave function: |¥) = Z Wiioinli1%2 .. IN)

Vector (or N-rank tensor): \Ij’il’ig...’iN = m | # of Elements=aN

Tensor network” i1 Q2 I3 i s
decomposition *
* Matrix Product State . .
(MPS) Al[h]z‘b[’@] AN ZN = ? ? ? ? ?

A[m] : Matrix for state m

* General network . . . . .
TI’Xl [Zl]XQ [ZQ]Xg [23]X4 [Z4]X5 [Z5]Y

XY : Tensors

Tr : Tensor network contraction

By choosing a "'good” network, we can express G.S. wave function efficiently.

eX. |MPS: # of elements =2ND2 | D: dimension of the matrix A

L Exponential— Linear  *If D does not depend on N... )




—xamples of TNS

MPS:

A A A ¢

Good for 1-d gapped systems

-

~

For higher dimensional systems
PEPS, TPS: “xtension of MPS
-
/
MERA: & Scale invariant systems
-

/
N

/




Good reviews:

D) (U. Schollwock, Annals. of Physics 326, 96 (2011))
S) (R. Orus, Annals. of Physics 349, 117 (2014))

Matrix product state (M

)= ) Wipaylitie. .. in) MPS

{i1,i2,...iN}

Ui in = A1li1|Aslio] -+ AN[iN]

A[Z] . Matrix for state i

Note:

MPS is called as "tensor train decomposition” in applied mathematics
(I. V. Oseledets, SIAM J. Sci. Comput. 33, 2295 (2011))

A product state is represented by MPS with 1x1 "Matrix" (scalar)

V) = |¢1) @ [p2) ® - -
Wirig.in = Q1]11]P2]i2] - - ON[iN]
Dnlt] = (t]04)




Upper bound of Entanglement entropy

m ~ 99990 =U) MPSwihy
Reduced density
matrix of region A: Y ? ’ ? ?

pa = Trp|¥) (| = I I I I I

Y Structure of pa: H—‘—H

rank pg <
l Sa=—Tr palogpa <logx




Required bond dimension
N MPS representation

Sa=—Tr pplogps <logy ? ? ? * ?

The upper bound is independent of the "length”.

length of MPS & size of the problem

EE of the Required bond dimension
original vector in MPS representation




MPS for infinite chains

By using MPS, we can write the wave function of
a translationally invariant infinite chain

ik T T ik 1

Infinite MPS (IMPS) is made by repeating T infinitely.

Translationally invariant system » T 1s independent of positions!

Point!
If the entanglement entropy of a certain state

satisfies the area low, we efficiently approximate
infinite system with a finite size matrix (tensor) T.




Higer dimensional system

Transverse field Ising model on square attice:
H=->» S;S;—h Z Sy
(2,5)

» " :Summation over the
(i,7)  nearest neighbor pair

Area law

Even in ferro and disordered phases,

the entanglement entropy depends on size N.

Sy~VN=1L

Two-dimensional array

1 0 0000

| o0 ® @@
Y

' 0000

<

Ferro

>

N =L, x L,

Phase diagram

Disorder

he



MPS for two-dimensional system

When we apply MPS representation for a square lattice system:

Setting (1) Sy < L,logy :Satisfying area law?

Setting (2) Sar < logy :Break down of the area law!

=

Possible MPS
(Snake form)

MPS cannot cover the area law of the entanglement
entropy in higher (d =2,3, ...) dimensions.

Two settings of system and environment

(1) (2)
A’ B’




MPS for two-dimensional system: comment

MPS can treat "rectangular” or "quasi one dimensional” |attice.

n setting (1), MPS can satisfy the area low partially. (1) Sa < L, logy

* We can increase L, easily with keeping L, constant. y
x = O(e™)
L, 10,L, > L, B

Quasi one dimensional system ("strip" or "cylinder") 2) Sy <logy

1 00000 00000 000 A’ B’
0000 000600
| ®©® 0 0@ 00 0600
0000 000600
',QC.Q OCQCQQ>




Tensor product states



—ntanglement entropy in higher dimensions

Ground state wave functions:

For a lot of ground states, EE is proportional to its area. B
J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys, 277, 82 (2010)

Area low: L A
S=—Tr(palogpa) oc LO?

In d=1, MPS satisfies the area low.

* Q. What is a simple generalization of MPS to d > 17
A. It is Tensor Product State (TPS)!



Tensor Product State (TPS)

~

-
TPS (Tensor Product State) (AKLT. T. Nishino, K. Okunishi, ...)

PEPS (Projected Entangled-Pair State)
(F. Verstraete and J. Cirac, arXiv:cond-mat/0407066)

d-dimensional tensor network representation
for the wave function of a d-dimensional quantum system

@) = Z Tr Ai[mi]Az[ms] -+ An[mn]|mims - - - my)
{mi=1,2,... ,m}" e

~

i Tr:tensor network “contraction”

Az ,alyiy [Mi] @ Rank 4+1 tensor

oY . xyxy =12 ..D D = “bond dimension”
x
S Sm mi= 1,2, ... m m = dimension of the local Hilbert space
\_ *D can be larger than m. “Virtual state “ y

.

TPS on square lattice

Tensor = Projector

v

o—0

Maximally entangled state
between D-state spins

_J




—ntanglement entropy of TPS (PEPS)

L A y

X XL

Bond dimension = D

y m
# of bonds connecting regions 4 and B
N.(L)=4L (square lattice)

N.(L) = 2dL%? (d-dimensional
) hyper cubic lattice)

» rank DA S DNC(L) -~ DQde—l

B

Sa=—Tr palogps <2dL%log D

TPS can satisfy the area law even for d >1.

=

* Similar to the MPS in 1d, TPS can approximate infinite system!

We can efficiently approximate vectors
in higher dimensional space by TPS.




Difference between M

PS and TPS

Cost of tensor network contraction:

d-dimensional cubic lattice N = @

MPS:  O(N)
TPS: O )

MPS

A A0 A A ¢

0i-33333 "

' It Is impossible to perform exact

contraction even If we

local tensors in the case of TPS.

Know

TPS

(PEPS)

o«

In the case of TPS,
usually we approximately
calculate the contraction.

& &

& &

& &

& &

pPPPPES
R
R
D R

« &

A

o =

AT

v

—=—




Contraction of ITPS

Methods for approximate contraction of ITPS:

Tensor network renormalizations
TRG, HOTRG, SRG, TNR, loop-TNR, ...
(cf. lecture of T. Xiang)

Boundary MPS

(Y. Hieida et al (1999) , J. Jordan et al, Phys. Rev. Lett. 101, 250602 (2008))

Corner transfer matrix

T. Nishino and K. Okunishi, JPSJ 65, 891 (1996), R. Orus et L L el £
al, Phys. Rev. B 80, 094403 (2009). 545

Single layer approaches




Corner transfer matrix method

(T. Nishino and K. Okunishi, JPSJ 65, 891 (1996))
FOF (Iﬂflﬂlte) open boundary system (R. Orus et al, Phys. Rev. B 80, 094403 (2009))

= T e e 2 SN S s

| infinite PEPS ,

{ (with a translational invariance)
06060 |
> 00000
900000
> 00000
> 00000
*s000e

Double tensor !
—=— = CI;

Mapping to a "classical" system




Corner transfer matrix method

(T. Nishino and K. Okunishi, JPSJ 65, 891 (1996))
FOF (Iﬂflﬂlte) open boundary system (R Orus et al, Phys Rev. B 80, 094403 (2009))

Inflnlte PEPS Enwronment Corner transfer matrlx

(with a translational invariance) Representatlon

Environment a &) a
+ > g
O ﬂ

Corner transfer matrix Edge ’rensor

Double tensor

- 1

» Mapping to a "classical" system

@ @
X | D? f,

X =bond dimension \ ~ D v."



Original simple CTM renormalization group

Successive "renormalization” method for contracting classicl

tensor network proposed by Nishino and Okunishi.
(J. Phys. Soc. Jpn. 65, 81 (1996); 66, 3040 (1997).)

Corner Transfer Matrix Renormalization Group (CTMRG)

Contract classical tensor network by changing the system
size as L—=L+2, sequentially

Recently, it is also use for environment calculation in two-

dimensional guantum many body system represented by
IPEPS (ITPS)

First, | explain the simplest CTMRG for
2d classical Ising model



Outline of CTMRG

SUPDOSG we have ® Contraction of (L+2)x(L+2)
(approximately) calculated network

contraction of LxL network. A Xm Xm X<m

% Increase system size slightly

CTM representation

C
€  approximation é é
Q@ oo
Increase system size
by keeping the size of C

e
|

Increase system
size slightly

C: DXxD




Meaning of Corner Transfer Matrix

No approximation

HEAR i A

CTM representation

e

Increase system




Cost

contraction: o(p3m?), 0(p?m*)
svd:o(D3m?3), 0(D3*m?)

Recipe of CTMRG

1. SVD

In the case of Ising mode,
M is a real symmetric matrix

M : mD>xmD (VIU)ij = (UV)ij = (=1)"6;
i = 07 1

= ) A(=1)
_ Z}é

Using symmetry Good approximation when we
keep largest singular values!




Recipe of CTMRG

2. Approximation

A DxD

Diagonal matrix
with (—1)7 )\,

approx
imation




Cost
Recipe of CTMRG C,e contraction: o(m*m?),0(D?m*)

Summary of renormalization

1. SVD of the corner matrix
for (L+2)x(L+2) system 3. Make new conner and edge matrices

8- 710

2. Make projector

Keep the largest
D singular values

G- R ﬂ+@

We can calculate tensor network contraction successively




Accuracy of CTMRG

Fcee energy error of (infinite) 2D Ising model

10 T T

of




Application to quantum system

Difference from the Ising model

"Classical" tensor is represented by product of two "quantum” tensors

Double tensor

-

- Typically, bond dimension "m" becomes much larger
» than that of classical models
- We can reduce computational cost by using this structure explicitly

The tensor network has larger periodicity than Ising model.
In addition, the local tensor does not necessarily have rotational symmetry

- We use more complicated renormalization steps
- left, right, top, bottom moves
- We use different definition of the projector




U pd a'te fo f q U ant Um m Od e‘ (R. Orus et al, Phys. Rev. B 80, 094403 (2009))

8[’1 ):2r3r4 ] (a)

 Iterative update of environment tensors h @ .«)«)@.
Absorption Truncation New |
(ex. left move) *O 3p2) -
@i P
X D> KO(X'D*) X
( (S D \ D® * — s E
X ‘X
X
:Projector
X D?  Same ways for right, top, bottom moves.
J

Repeat until convergence. (Typically several tens steps)



Calculation of projectors

(P. Corboz et al, Phys. Rev. Lett. 113, 046402 (2014))

[x+1,y] [x+2,y] [x+3.y]
(a) Cl[x,y] T1 oLy /Zl M C2x Y (b)
O

@)
O
Q

upper half ’ = R
[x,y+1] [x+1,y+1] [x+2,y+1] [x+3,y+1] ‘
(\T4 La rLa /BTZ | .
o oy N N
cut cut e

T [xay+2]

[x+1,y+2] a[x+2,y+2] T[x+3,y+2]

a
O —0—0 L ()
‘ lower half ’ = R
C [x,y+3] [x+1,y+3] T3[X+2’y+3] C [x+3,y+3] |
4

O O—0O 5

The heaviest part of the iPEPS + CTM
(with naive ways)

(1) Update of the edge tensors: O(x’D?®)

(2) Half-environment contraction: O(y*D®%) O(x*D?®)
(3) SVD of RR matrix: O(x*D°)

*Typically,
2 I a Y
» Naive implementation: x> D" or x=D

O(D12) calculation cost!



Useful techniques to reduce the cost

i) Use internal tensor structure explicitly

In the case of PEPS, the tensor "T" is the product of smaller tensors.

T A .
7.4 _ ﬁ; » In some case, we can reduce the contraction cost.
AT

ii-1) Use partial SVD instead of full SVD
Typically, we need only higher O(D2) mode among O(D*) full SV spectrum.

Full SVD: O(D12) @ Partial SVD: O(D10)
ii-2) Do not create the full matrix at SVD

By using partial SVD algorithms consist of matrix-matrix or matrix-vector products,

we do not need the half environment contraction.
* Same technique reduce the cost of TRG from O( %) to O(5).
*Example  D? D? D?

D2

=)

2 D2 2
D D

Contraction: O(D1?) Contraction: O(D10)

Full SVD: O(D12) Partial SVD: O(D10)



Useful techniques to reduce the cost

i) Use internal tensor structure explicitly

In the case of PEPS, the tensor "T" is the product of smaller tensors.

T A .
7.4 _ ﬁ; » In some case, we can reduce the contraction cost.
AT

ii-1) Use partial SVD instead of full SVD
Typically, we need only higher O(D2) mode among O(D*) full SV spectrum.

Full SVD: O(D12) @ Partial SVD: O(D10)
ii-2) Do not create the full matrix at SVD

By using partial SVD algorithms consist of matrix-matrix or matrix-vector products,

we do not need the half environment contraction.

| (1) Update of the edge tensors: O (y*D?®) mp O(*D%,0(*DY

O(D) |

(2) Half-environment contraction: O(x? Dﬁ),O(X2 D?) » not need
(3) SVD of RR matrix: O(x*D°) » O(x2D%)



Single layer approach for CTMRG

(Chih-Yuan Lee et al, PRB 98, 224414 (2018))

(a)

top layer

/7
OA 0OS5° X —=
(b) &k k (c)
h ]_>7%7J 0}3_535143[57%71 —bIT—é—bIT_ L
ynit cefl |
nl nl dd—HbldHb}-

oo o0 -

We can map double layer TN to a single layer.

» Computation cost is reduced to O(D3).
(x~D’)



Potential power of I'1

PS5




—Xpected entanglement scaling for spin systems

Table 1
Entanglement entropy scaling for various examples of states of matter, either disordered,
ordered, or critical, with smooth boundaries (no corners).

Physical state Entropy Example

Gapped (brok. disc. sym.) al’~! + In(deg) Gapped XXZ [143]
d=1CFT 5 InL S = % Heisenberg chain [21]
d > 2 QCP al®! + yocp Wilson-Fisher O(N) [136]
Ordered (brok. cont. sym.) ald1 4 "7G InL Superfluid, Néel order [147]
Topological order al®~1 — Ytop Z, spin liquid [159]

(Nicolas Laflorencie, Physics Reports 646, 1 (2016))

ct. free fermion
S o L% tlog L

For d = 2, leading contribution satisfies area low
even for gapless (critical) systems.




Toric code model

H=—> A,

As =

€T
H%‘

jEstar(s)

- > B, :
p

—xample: Ground state represented by ITPS

[
[
[

(A. Kitaev, Ann. Phys. 303, 2 (2003).

[
[

[ [ [

* [ [ [
[
[

[
[

_ z ]
_HUJ" il

JjE€OD

[
[
[

TA m @ m
‘D

lts ground state is so called Z2 spin liquid state.

=

"Spin liquid" is a novel phase different from conventional magnetic orders.

It can be represented by D=2 TPS.

(F. Verstraete, et al, Phys. Rev. Lett. 96, 220601 (2006).

,
0,1: eigenstate of ox

0 0 1 1
YSED =
0 1
0 0 1 1
YSEb S
0 1

\
(Non-zero elements of tensor)

SR




—xample: Loop gas state for gapless Kitaev SL

Kitaev model A Kitaev, Annals of Physics 321, 2 (2006)

_ Y
H - Z J,y S’;y S] x-bond 2bond
V5 (%57 )~ ;)7

y-bond

”Y :bond direction
Ground states are spin liquids!

Anisotropic region (A) : gapped spin liquid G.S. Phase diagram
J=(0,0,1)
- Excitations of Majorana fermions has finite gap.
- It is adiapatically connected to the toric code. . T = (Ju, Jy, )

gapped Jx _|_ .]y _|_ Jz _ 1

Isotropic region (B) : gapless spin liquid

B
gapless

- Majorana fermions shows gapless excitation.
- The flux excitations is gapped.




—xample: Loop gas state for gapless Kitaev SL

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, arXiv:1901.03614
A simple vortex free state corresponding to the isotropic Kitaev model:

(cf. Lee's seminar )

1 S
1 ss’ __ *
| o o gk k 1,7,k =0,1
Ferromagnetic state pointing (1,1,1) direction.

Non zero elements

1
. 0 1 Y

* This LGS is critical,
with the Ising CFT universality.

LGS) =

DZZ, TPS 111) = J)



—xample: chiral spin liquid on the star lattice

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, arXiv:1907.02268
(cf. Lee's symposium talk)

Entanglement spectrum

¢ (a) ¢ =0.25m, [I) (b) ¢ =0.257, [m)
e
S
; . |3 658 ¢ ¢ 4§
é & g 8§ g &

s 8 g |5 RNy
48 g § o @2 ¢ e o [62 8
e o, s 8 [28 ¢
2 o! ol o © e ol o o o
/ 1 ol ¢ © © o
J/J:ta;n¢ 001 o o o © o o o o

0 s T

Similar LG construction gives us both of abelian and non-abelian chiral SL.




I TPS as variational wave function

A lot of two-dimensional spin systems satisfy
the area law of the entanglement entropy.

* 't indicate, iTPS can be good variational
wave function for infinite systems.

However, optimization of ITPS for a given Hamiltonian
IS not an easy task.

Difficulties:

Optimization of infinitely repeated tensors a highly non-linear problem.
Contraction of iTPS is performed only approximately.




Optimization of IT

PS




Typical optimization methods for ITPS

1. Imaginary time evolution

M
§ —TH = d stat
Jim (e77) " |¢) = ground state

Truncation

(Suzuki-Torotter decomposition: ¢ 77 ~ e THe e Hy T HL oo H, 0(72))

* By operating the time evolution operator,
the bond dimension increases from original D.

» We need a “truncation.” \ y

cf. iTEBD for iMPS

- Full update : consider global environment — Accurate but higher cost (O(D8)~0O(D19))

- Simple update: consider only local environment —lower cost (O(D%))
2. Variational optimization P. Corboz, Phys. Rev. B 94, 035133 (2016).

minE(A) — min <\IJ(A)‘H|\IJ(A)> L. Vanderstraeten ef al , Phys. Rev. B 94, 155123 (2016).
A A (U(A)|T(A4)) H.-J. Liao ef al, Phys. arXiv:1903:09650

cf. DMRG for MPS



Truncations in [T

- Full update

Minimize the difference between two wave functions:
W) — [¥)|]? = (¥]¥) + (U'|T') — 2Re (V|T)

W) : wave function (after ITE)

\\If’> - wave function after truncation

Ideal approximation for finite TPS
We need tensor network contractions, O(D?®) ~ O(D')

* Slmple Upd ate (H. G. Jiang et al, Phys. Rev. Lett. 101, 090603 (2008))

Truncation by using local information

Low computation cost : O(D®)
ITPS tends to represent only short range correlations

Truncation




Simple update

Extended iTPS:

Insert (positive) diagonal matrix representing "weight" of bonds.

(cf.iTEBD)

1€A,j€B

‘% xxyymz ‘k mjxyjy /Im;] —O— = A

xyx,y =12, ..

(H. G. Jiang ef al, Phys. Rev. Lett. 101, 090603 (2008))

Extended PEPS




Simple update with naive SVD

e”THe | W) = Tr H Z <mfzm;“€_THij|mimj>)‘xi)‘w;)‘yiAygAwim;yiyg [mi]Ba:gw iy [my][mim g>

iEA,jE’i-l—x ™m;,m;

Truncation by SVD

e | . p\
1. Define a matrix “S”

* T
2- DO S\/D Syzx;y;mz7'ij;y;mj Z U zx y m;,x x xT ij yng *

3. Truncate the matrix leaving upper D singular values

Axyzxy [ ] _)‘ 1)‘ 1)\ _1Uy:cymz,ac
Bxyja:;.y [ ] — )\ 1)\ 1)\ _1Vy x’ y m;,x
\_ J

* Meaning of A
At SVD, A provides information of local environment.

«

In the case of IMPS, A give us global information,
thanks to the canonical form.




Simple update with QR decompositions

QR decomposition before SVD

i e

4 .
Calculation cost

Direct SVD: %‘1 O(DYmg3 )

QR decomposition:

=4 :q O(D5mg? )
*S O(D3myb )

Usually D > mg | QR method is cheaper.

J

—@=°
| SVD*

As
Uj tv
A §< 7§ B



Full update

AN . .
Minimize the difference between wave functions

IEn T — A
[9) — [0)[|* = (¥]P) + (U|¥) — 2Re(V|¥) = [ /
[ W) : wave function just operated an ITE operator

L |ﬁ!> . wave function after truncation
. e 0 0
Necessary conditions for minimization f =0, ,:f O\\
O A OB~ 0\ /0
[ Iterative calculation by solving inear equation A B
*O(Dumg’l)
=0 + NA A W 4
8A* *Environment: O(D®) ~ O(D'Y)
— + N B %4
8 B* =0 B B - *Alternatively, we can also use the CG.
- “Environment is fixed during the iteration

N4, N : Matrices” Wa, Wp  Vectors” | -

E * QR decomposition method:
= B =

Dimensions of vectors and matrices
are reduced into )22 -

' Y linear equation
D6md




Additional approximation for infinite system

Even in full update, we actually consider ITPS locally:

We evaluate ||T) — |0)||2 = (U|U) + (U|F) — 2Re(T|F)
with fixing environment (CTMS).

Then, from translational invariance of the iTPS,
we copy the "local” solution to whole system.

Thus, In the case of infinite systems,
it is not the ideal projection (truncation) of ITE.

*P‘PH?Y = frePrIOI™HOPIOPIOIPTY

local o
problem Py



Applications of ITE updates



Kagome lattice Heisenberg model

/Hamiltonian N

H=J) Si-S;—h> Si.
( (

6,5)

. J

Ground state at zero field

Classical GS:  All states satisfying “120 degree structure”

» Macroscopic degeneracy

Effect of thermal fluctuation: “order by disorder” mechanism
—selection of coplanar structure: g=0, /3 x /3

Quantum fluctuation: S
Spin liquid?

S=1/2 quantum spin Z» spin liquid

U(1) spin liquid

“

g=0 state

jE

-

J3 x /3 state

PN

e




Magnetization by DMRG
(S.Nishimoto, et al, (2013)

Magnetization process (S5=1/2)

17/9

“Grand canonical” DMRG

(C. Hotta, et al, (2012, 2013), S.Nishimoto, et al, (2013)

Finite size system with modulation
— Quantities in the thermodynamic limit

v

Four magnetization plateaus

( M/Msat = 1/9, 1/3, 5/9, 7/9 )

Magnetization by ED
(H. Nakano, et al, (2014)

5/9

1/3

41 1/9

Exact diagonalization (N < 42) T “ramp”.

(H. Nakano, and T. Sakai (2012, 2014)

( M/Msat=1/3 is a “ramp” )

- Anomalous critical exponents at the edge

- Plateau width could be infinitesimal




Magnetization process (S=1/2)

“Grand ca

Exac 1zation

(H. Nakano, and T. Sakai (2012, 2014)

( M/Msat=1/3 is a “ramp”

- Anomalous critical exponents at the edge

- Plateau width could be infinitesimal

Magnetization by DMRG
(S.Nishimoto, et al, (2013)

Q=3

17/9

N 1 5/9

1/3

ED
H. Nakano, et al, (2014)
L




—xtended PEPS for kagome lattice model

Tensors without spin

D D
*D *D
D D

Tensors with spin

Extended PEPS (PESS) h

D. Poilblanc et al, PRB 87, 140407(R) (2012)
Z.Y. Xie et al, PRX 4, 011025(2014))

"\i
rrlnfinite system with 18-sites unit cell

(Commensurate with /3 x /3 structure)

A AA_/A

| -
n =
™ n
E R R R R FEEE R R FEN VAR R R R R R\VAT T tll
u
n
n

/
m +D
] / ......................
. D: Bond dimension ~ m: Sz=+1/2 L )
Two steps in the calculation N
{ Differences from A

1. Optimization: optimize the tensor elements
Truncation: Simple update (for two sites)
2.  Evaluation of physical quantities:

Approximation : Corner Transfer Matrix method

T. Picot et al, PRB 93, 060407(R) (2016).
- Unit cell size

They considered up to 9 sites

- Evaluation of physical quantities

They used mean-field environment
\.. S




Results - Magnetization curve

(R. Okuma, D. Nakamura, T. Okubo, et al, Nat. Commun. 10, 1229 (2019))

T Magnetization curve by iTPS
[ Magnetization plateau ] 1 I I .
- Almost converged data up to D=7 Bj:} - %7/“
1/9, 1/3, 5/9 :clear plateaus - 0.8F- Bzg """""";g‘m 7/9Q
7/9: weak anomaly (g
:/ .
» Consistent with DMRG 2 0'6-____________________7;};»5____5/9
\ bl al
E 04 - =~ .
- Weak anomaly at 2/9, 6/9 S ] T, — — — — — = = -~ 1/3
/,
02t [ :
» They seem to vanish . 171/9
as D is increased. o




Result - 1/3 plateau state

"

{ Semi-classical UpUpDown
( Also observed in the study of T. Picot et al )

Depending on “initial states”
several types of pattern appear

Local minimal
» (Lowest energy: /3 x 4/3)

. S

4 ™
In DMRG, plaguette resonated state
Within D < 7 and simple update, 1/3

It did not stabilized O
AV
» More sophisticated ‘9’

optimization? 1/2

(S.Nishimoto, et al, (2013)
.. v

<Sz>

®
@ down

Radius=
amplitude of
<Sz>

J3 x /3




Hexagonal cluster update

Can we stabilize the resonated state observed in DMRG?

Correlation within a hexagon might be important.

T

Simple update: only two (or three) sites are updated simultaneously

» v Treat many-body correlations more accurately!

1/3

1/2



Hexagonal cluster update

Can we stabilize the resonated state observed in DMRG?

Correlation within a hexagon might be important.

T

Simple update: only two (or three) sites are updated simultaneously

1/3

1/2

» v Treat many-body correlations more accurately!
4

Imaginary time evolution for a hexagon

Update 12 tensors
simultaneously

=

Higher cost than the simple update,

Lower cost than the environment calculation )




Hexagonal cluster update - Basic idea

1 dimensional “MPS” with PBC.

=

QO

" Minimize: )
[10) = [Pnew) |7
Whew) : MPS

TYTrYTYTYTYY

| |
V), [Wnew)

MPO representation

¥

) = ™| T)

[olaalelata




Hexagonal cluster update: Details i

1. Insert A into outside virtual bonds /e v/ A\

A is important to obtain
better energies

2. eHis approximated
by Suzuki-Trotter Decomposition

3. Minimization is performed iteratively ( || ‘¢1> — ‘\Ifnew> ‘ ||2)

MO -

W new)

Solve linear equation: N T~ = W * Cost= O(D6)



Result of hexagonal cluster update

(R. Okuma, D. Nakamura, T. Okubo, et al, Nat. Commun. 10, 1229 (2019))

-0.521- T T T T T T T
0.522 i
\ Energy at 1/3 plateau
0523 \ . A
1 \ (ITE from different initial
o8| |5 0324\ wave functions)
§ 0.6 2 -0.525 |
= o4l 2
-0.526 |-
0.2 \y |
0.527 |- | +
00 05 1 15 2 25 3 >\"“------____‘><_\_
hiJ -0.528 |- SV
05291 .\ ] Resonated
_0.53 1 1 1 1 1 1 1
3 4 5 6 7
D

- By using the hexagonal cluster update,
the resonated state is stabilized for D >= 4.

- Its energy becomes lower than up-up-down
states, when we increase D.




Result of hexagonal cluster update

(R. Okuma, D. Nakamura, T. Okubo, et al, Nat. Commun. 10, 1229 (2019))

| ......
9.8,

-0.521¢ r r

)
0.522 s

I |

1

0.8} ;

= 06;
S 0.4

02t

Sat

Energy

00 05 1 15 2 25 3

h)J

-0.529 N

Y The resonated state Is
the leading candidate of
the 1/3 plateau state! ...

9.8.8.
X XX

x\/3
\‘ —
o

8.8,
— XXX

Resonated

-0.53 | ] | ] | ] ..\

- By using the hexagonal cluster update,
the resonated state is stabilized for D >= 4.

- Its energy becomes lower than up-up-down
states, when we increase D.




Importance of variational optimization



Problems In iImaginary time evolution

- States obtained by ITE tend to biased by the initial states.

* It is not easy to obtain quantum spin liquid (QSL) state even in
the case of Kitaev model, whose GS is exact QSL.
(cf. Kaneko's symposium talk)

- For frustrated spin systems, it is also difficult to obtain the GS
among several candidates of magnetically ordered states with
small energy differences.

- Due to the projection onto ITPS, energy can increases along ITE.

- |t might be troublesome to pick up the lowest energy state.



More sophisticated optimization: variational optimization

Nariational method: (P. Corboz, Phys. Rev. B 94, 035133 (2016)) N

(L. Vanderstraeten, et al., Phys. Rev. B 94, 155123 (2016))
(H.-J. Liao, et al. arXiv:1903:09650)

—

T (H)

minimize cost function: F = ﬁw‘

Advantage:

Energies strictly decrease along optimization.
It seems to avoid to be trapped at local
Minimum for several models.



Variational optimization by using CTMRG

(P. Corboz, Phys. Rev. B 94, 035133 (2016))

"Minimize Energy"”

H
N

(U (A)|H|(A))

min F(A) = min = min

A A (U(A)[T(A)) A

_ ATHA
ATNA




How to obtain H matrix in CTM

(P. Corboz, Phys. Rev. B 94, 035133 (2016))

Systematic summation of Hamiltonian terms




How to obtain H matrix in CTM

(P. Corboz, Phys. Rev. B 94, 035133 (2016))
Systematic summation of Hamiltonian terms
(V| H|Y) =




Applications: S=1/2 Heisenlberg model

Hamiltonian

H=> S-S
(i.5)

GS energy (from QMC):
E = —0.6694421(4)

A. W. Sandvik, AIP Conf. Proc. No. 1297, pp. 135 (2010)
Spontaneous magnetization

mg = 0.3074

For D=3 iTPS
Me = 0.3769 (Simple update)

ms ~ 0.35
m., = 0.3393 (Variational)

10

Relative error of energy for D=3

0.1

AE

0.01

e T

|

| | |
D=3: Variational

D=3: Simple update

0.001

|

|

|

|

1

50

100

150

Iteration

200

250

(Full update from P. Corboz, Phys. Rev. B 94, 035133 (2016))

300



Application: Honeycomb lattice Kitaev Model

Kitaev model 4 Kitaev, Annals of Physics 321, 2 (2006)

H== 2 150S]
Y <Za.7>’7

1 z-bond
o =
) y-bond

Depending on the bond direction,
only specific spin components interact.

"Y:bond direction

Phase diagram

—

T =(0,0,1)

Exactly solvable by introducing Majorana fermion

4

Isotropic region (B) : gapless spin liquid
Anisotropic region (A) : gapped spin liquid




Applications: Kitaev model

At D=

0.35

. The lowest energy state is a ferromagnetic pointing (1,0,0) direction.
' Starting from (1,1,1) FM state, it converges to (1,0,0) FM.

Variational optimization seems to have faster convergence.

03|

0.25

02

0.15

<Sa>

0.1

0.05

Simple update

<S> —+—

200

T (imaginary time)

300

e E—————

500

<Sa>

0.45
04
0.35
03
0.25
02
0.15
0.1
0.05

-0.05

-0.1

R —

Variational

|

|

|

|

|

|

0

10 20 30 40 50 60 70 80 90 100

Iteration

P



Applications: Kitaev model Rt H-. Lee. R Kaneko, T. Okubo and N. Kawashima

arXiv: 1901.05/86

At D=3,4: For D=3, (1,1,1) FM seems to be the lowest energy state.

—>

For D=4, starting from the final state of D=3,
we obtain very good Kitaev spin liquid state for after steps.

Energy Flux
-0.191 : : : — |
Chi=16 —a—
Chi = 30 095
Chi =40 —e—
0.192 String-Gas —---- 7 00
Exact )
0.193 0.85
08
M -0.194 5 075
=
0.7
-0.195
0.65
0.6
-0.196
055
-0.197 . - 1 - 05 ! ! ! !
0 5 10 15 20 25 0 5 10 15 20 25

# of iteration # of iteration




Summary

- By choosing proper tensor network structure, ground state wave functions can be
approximated accurately.

- To search good tensor networks, the area low of the entanglement entropy is
important.

- For one dimensional quantum system, matrix product states (MPS) works very well.

- For two or higher dimensional systems, MPS breaks down. In these case, instead,
tensor product states are good tensor networks.

- Owing to developments of algorithms and computers, tensor network methods become
powerful method to investigate frustrated spin system in two dimensions.

- iTPS can reproduce the Kitaev spin liquid accurately.
- ITPS can be applicable to Kagome Heisenberg model.
- Optimization of iTPS is important to investigate (difficult) frustrated spin systems.

- Variational optimization seems to be necessary to investigating non-trivial problems.

- Automatic differentiation might be a good tool to implement VO.



