

REQUEST FOR CHANEL OF STATUS

TRANSFER AND/OR TITLE CHANGE

DEPT,
COMPANY
Reason/Remarks \qquad

SALARY CHANGE Present Rate \qquad Proposed Rate

Reason/Remarks \qquad
\square CHANGE OF NAME, ADDRESS AND TELEPHONE NUMBER
New Name
Telephone No. \qquad
New Address
Change in Insurance Coverage \qquad

SEPARATIONS

2 -CLEAVE OF ABSENCE, From , To, T,

Reason

FINAL RATING (hourly employees only), 14 ,

Agency Fees
Tools
Equipment

Credit Cards Cash Advances
 No

OTHER CHANGES AND EXPLANATIONS: \qquad

August 3, 1966

Mr. Jerome N. Balash 116 Oakland Avenue Maplewood, New Jersey

Dear Jerry,
At your leisure, would you please return the plant key? It was mentioned friday when you left, but it must have slipped your mind.

Hope everything is going well with you.

Regards,

R. B. Melhoski

RBH:dd

Date Discussed with Employee

1. Date the job description was last reviewed. \qquad
2. Is it correct as it stands? $4 / 25$ If not, make necessary changes or additions
and bring it up to date.
3. Does it adequately list the responsibilities of the job? 0 EAMMNAEANSNA SALES
4. What are the standards of performance by which you will judge performance? Remarks to G HF couvarerk \& DIstr. Products:
(a) Sates increase by Plumcot Line.
(a) Accuracy Of SALes Programs Effecting these Product Lines.
(C) Ability to SEM Rsm/Rep on the program.
(D) Ability to teansmate fiemo nerds.
(8) Sales to Key nets.
(F) Arsmith To guide bT As To new products.
(9) ABMAT A CREDAZ EAFECTIUE PROGRAms wITHIN lite Limits set By mAUBGE-msut.

Does he know them?
 When were they discussed? fie 1966

Job Performance

How has he performed the duties, responsibilities of his job? (List the measures of each key element in the job description.)
Q) Solves are e touniarg ow converters t Down on Boosters, bluet up on coupes.
(a) His \&ANES PROGRAMS HRE TOU COMPNICATED \& THEREFFNCE Loose zffectuvniss
(8) HE SELLS H. 5 peogerm to REp/RSm with sirexigtly.

(2) HE writes A god pRogRAM, BUT CAN NOT STAY WItHIN THE LIMITS SET BY MANAGEMENT.

How well has he accomplished the goals established at the last review?
FiNs

Primariny, hamas asked to
WRITE A THR Walt \& compteJr PROGRAM AE is DONGTHIS. Nom UST NOWLLEARN to LIVEWMGIGIN LIMITS SET 4 to aRETE FAR SIMPLER PROGRAMS.
page 3
A. What is your overall rating of this employee?
good.
Ate is moody a AT TImes VERY HARD TO control. He is an excrement sazesmmu. He knows his market a product but CAN Not create simple uncompaicatero programs.
D. How has his performance changed since his last rating?

He is wertidy format pergerms.
C. What are his major strong points?

$$
\begin{aligned}
& \text { PRODUCT KNOWLEDGE } \\
& \text { MARKET KNOWLEDGE } \\
& \text { SOLES ADINITG }
\end{aligned}
$$

Trinity to tom group meetings
D. What are his major shortcomings?

ToO CREATIVE
No SENSE OF VALUE.
CAN WOT STAY WITHIN LIMITS-PLEFORMANCE
OR DOLLARS

page 5

E. What are the details of the self-improvement plan mutually agreed to?

1. What new areas will he work in?
NoNe -

HE With CONCENTRATE OD NEW UHF MARKESS
2. How are you planning to broaden his experience and knowledge?

$$
N_{0}
$$

3. What special assignments have been scheduled and for what purpose have they been assigned?
SELL EGCH UHF MARK ₹T To MAX POENTIAL.
4. What do you expect him to accomplish during the coming year?

5. What formal training have you agreed upon?-- what courses--schools--programs-will he attend-what special books or magazines, etc?

NoNE
6. What dates have been set for review of progress towards goals?

Jove 1967

BIONDER-TONGUE LABORATORIES, INC. ADVERTISING DEPARTMENT

From AILEEN HAGUE
Date
To
Re

Jack...

Is this on your or Jerry's desk?

WHOLESALE ELECTRONIC SUPPLIES

May 31, 1966

Blonder Tongue
9 Alling St
Newark, N.J.

Gentlemen:

In checking our records, we do not find that we have received your credit memo or replacement for merchandise returned to you on our Debit Memo \# 5040 Dated 4-11-66

We have enclosed a copy of this return for your convenience. Will you please let us have your prompt reply?

Very truly yours,
HAMMOND ELECTRONICS, INC.

W. L. Holbrook

Manager
WLH: jd
Enclosure

Thammonà Electron* es, Inc.
No. 5040

WHOLESALE RADIO, TV AND ELECTRONICS
P. O. BOX 3671

ORLANDO, FLORIDA
PH. 241-6601
Debit Memorandum

Merchandise Returned For

to Blonder Tongue.

Return to \qquad

Via: \qquad

This Number Must Appear on Your Credit Memorandum
golByank

5/3/66

Jerry Blash

Hanmondllectronics claim $\$ 5040$ (MoDuff, March) $\$ 388.90$

On Apri1 18 I advised pou that I couldn't authorlze this further clain as we were already overspent $1 n$ this raarket and sugcested gou diseuss the matter with Dick Helhoski.

What decision wa. resched?

JEL/ah
t. E. Loog
c_{1}

Thammenà̀ Electronics, Inc.
No. 5040

WHOLESALE RADIO, TY AND ELECTRONICS
P O. BOX 3671 ORLANDO, FLORIDA

PH. 241.6601
Debit Memorandum

Merchandise Returned For

Via: \qquad

This Number Must Appear on Your Credit Memorandum

SHIPPING COPY

ANTENNA POLICY
ERNIE SISSON REGION ONLY
2 FREE FOR EACH 12 UNTIL 4/15/66 ONLY APPROVED BY HAG $4 / 6 / 66$

$6 / 8 / 66,-$ Jack: Bid you know about fish At ached is Hst
 more.

BLONDER KTONGUE

Laboratories Inc. / 9 Alling St., Newark, N. J. 07102 / 201 MArket 2-8151
April 13, 1966

Mr. Richard Hyde, Jr.
Hyde Electronics Co., Inc.
888 South Lipan Street
Denver, Colorado 80223
Dear Dick:

There is a policy at B-T which was set up in order to eliminate the confusion of acquiring, demonstrating and returning samples. The policy was written whereby a manufacturer's rep was sold a limited amount of sample equipment at substantial discounts below the best price on our sheet. These discounts varied as they were intended to bring the product "below factory price."

The entire idea was to keep this product from being returned to us after being sent to the field at this "low" discount price. We would only have to resell at further discount price on a "onesy" basis.

The understanding is that when a rep receives a $B-T$ sample at this reduced price he will:

1. Utilize the sample to further the sale of the product
2. Sell the sample off to recoup his investment

Therefore, Richard, may I suggest that you apply your sales talent to this inventory and sell it - don't send it back to me.

> Sincerely,

BLONDER-TONGUE LABORATORIES, ING.

CC: G. Sisson, W. A. Ul1rich
J. N. Balash, S. M. Stone

REQUEST FOR Change OF Status

TRANSFER AND/OR TITLE CHANGE
PROPOSED TITLE
DEPT.
COMPANY
Reason/Remarks
\triangle SALARY CHANGE
Present Rate (4506) Proposed Rate \qquad Reason/Remarks \qquad
\triangle CHANGE OF NAME, ADDRESS AND TELEPHONE NUMBER
New Name
Telephone No.
New Address
Change in Insurance Coverage

SEPARATIONS

LEAVE OF ABSENCE: From To

Reason
\square TERMINATION \square Resignation \square Discharge \square Layoff Last Day Worked
Reason for Termination
FINAL RATING (hourly employees only)
CLEARANCE

Badge $\quad \square$ Tools $\square \quad$ Credit Cards \square
Agency Fees $\square \quad$ Equipment \square
Rehire_ Cash Advances \square
Reason \quad Yo
\qquad
\square OTHER CHANGES AND EXPLANATIONS:
$\xrightarrow{\square}$

APPROVALS
ORIGINATING DEPT. COPY

1

3,150,376
MULTI-BAND LOG PERIODIC ANTENNA Robert L. Carrel, Richardson, Tex, and Pral E. Mayea, Champaign, M1, asidgeners to The University of Imiofts Foundation, a non-proft organdzetion of Illthois

Filed Apr. 3, 1964, Ser. No 357,226
18 Clisins. (CL 343-792.5)
This invention relates to antennas, More particularly it relates to antennas having unidirectional radiation patterns that are essentially independent of frequency over wide bandwidths. Still more particularly, the antennas of the invention are designed to cover intermittent bands of frequencies which covers wide range from the lowest frequency band to the highest.
In the copending application of Dwight E. Isbell, Serial No. 26,589, filed May 3, 1960, and in application of the inventors herein, Serial No. 59,671 , filed September 30, 1960, now U.S. Patent No. 3,108,280, dated October 22, 1963, there are described certain antennas comprising coplanar arrays of dipoles or V-elements having unusually wide bandwidths performance characteristics over which bandwidths the antennas are essentially frequency independent. These antennas have input impedances which are nearly constant with unidirectional patterns and directivities comparable to yagi arrays. As described in the applications above named, the arrays comprise a number of elements which may be linear dipoles of V-elements, arranged in side-by-side relationship in a plane. The lengths of the dipoles or the developed lengths of the V-elements (i.e, the length when the siden of the V-elements are rotated to form a linear dipole) and the spacing between adjacent dipoles or V-elements are designed to vary by approximately chosen scale factors according to a definite mathematical formula, with each of the elements being fed at its midpoint by a common feeder which has appropriate phasing between successive elements. The elements which are used to make up the arrays vary progressively in length in accordance with the scale factor selected.

In the linear dipole version, described in the aforementioned Isbell application, the length of the longest dipole element corresponds to about $1 / 2$ wavelength at the low frequency limit of the antenna's effective range, while the shortest element has a length corresponding to about $3 / 8$ of a wavelength at the upper frequency limit. On the other hand, the antennas described in the present inventors' copending application, Serial No. 59,671, in which the elements are V-shaped, have increased directivity at frequencies above the $1 / 2$ wavelength mode of operation and therefore have effective frequency ranges which are greater than those of a comparable linear dipole antenna.
The antennas of the instant invention are related to those described above, but differ therefrom in that the former are designed so that their effective frequency range is not continuous from the high limit to the low limit but is rather broken up into a number of discrete bands within which bands the antenna performs satisfactorily. There are a number of instances in which antennas of this type will be found particularly usetu, For example, the frequencies assigned to VHF and UHF television transmission are divided into a number of discrete fre quency bands. Thus, television channels 2 . 4 and 48
 72 mcs , the mid-VHF band containing te whon chad nels 5 and 6 extends from 76 to 88 mes and he wnpor VHF band, incliuding tetevision chanch $7+13$, exteng
 of the UHF band extonditimet in to 290 mes .

An antenna made in trowthe

K 1
vention can effectively cover all of the above frequency bands, but not the intervening ranges between the bands of interest, and this antenna is considerably smaller in overall size and weight and, therefore, less expensive than an antenna designed to cover continuously the entire range of television frequencies from 54 to 890 mcs . Furthermore, the directive gain increases in the higher modes which are used to cover the higher frequency bands, thus making more effective use of the size of the structure.
Another application of the invention occurs in antennas designed for use by amateur radio operators whose transmissions are restricted by law to certain frequency bands. The "ham" radio operator is, therefore, interested in an antenna which performs effectively in those ranges in which he is free to operate and which need not be effective in the intervening frequency bands. Such an antenna can also be made in accordance with the invention in a smaller version than has been heretofore possible, without sacrificing bandwidth or directivity.
The invention will be better understood from the following detailed description thereof taken in conjunction with the accompanying drawings, in which:
FIGURE 1 is a schematic plan view of an antenna made in accordance with the principles of the invention;
FIGURE 2 is a perspective view of a practical antenna embodying the invention; and
FIGURE 3 is a fragmentary view of an improved and preferred form of an antenna similar to that shown in FIGURE 2, as seen from a point directly in front of and above the narrow end of the antenna.

Referring to FIGURE 1, it will be seen that the antennas of the invention are composed of a plurality of elements, which may either linear dipoles, e.g., 11 and 12, or V-shaped elements, e.g., 13 and 14, or a combination of both as shown, arranged in side-by-side relationship. The elements are arranged in a number of zones, or groups, e.g., A, B, C, and D. The distinguishing characteristic of the zones found in the antenia is the fact that the ends of the elements within a zone fall on a pair of converging straight lines, as shown in the drawing. It is also characteristic of the antennas of the invention that the converging lines defining the ends of the elements in a given zone are not collinear with the corresponding converging lines associated with another zone of the antenna having the same type (i.e., linear dipole or V-element) of element. Thus, for example, since zones \mathbf{C} and D are both comprised of linear dipoles, the converging lines defining their terminals are not collinear. This is also true of zones A and B which are also composed of similar elements. When adjacent zones: are composed of dissimilar elements, however, as in the case of zones B and C, wherein B has V-elements and C has linear elements, the converging lines passing through the terminals of the elements of the zone may or may not be collinear. Furthermore, the angle formed by these converging lines, eg. α_{A} in FIGURE 1, may or may not be equal for each zone, although all such angles preferably have values between about 20° and about 100\%. In the antenna shown in FIGURE 1, α_{A} is represented as the angle defined by the converging lines pasting through the outer ends of the clements in zone A. This angle might or might not be equal to that angle which would be formed on extending the lines passing through the ends of the elements of zone B to a meeting point. Similar considerations could be had relative to the angle which would result were a line to be drawn past the sid of 11 clements of zones C and D.
HWH be sed from FIGGRe t that zones A and B are composed of a plurality of V-elements, each of which consists of a pati of arms, es 16 and 17 , defining an ept in the fifdile of the Velement, said V-elements
 being antioned in a Eiarriagbonelike paticin. The arma of a siven Whapient are equal in leagth and the related arms of the several V-elemets within a zone, Le., the arms on the same side of a $/$ 童 passins through the aperes of the Velements, are Eferably subitantilly paralid to each other.

In a cimilar manner the linear dipoles which conattute zones C and D of the antenpa of FIGURE 1 are each composed of a pair of arms, ogs, 18 and 19, which are equal in length and which are preferably substantially parallel to the corresponding arms of the other dipoles within the zone. With respect to all zones, i.e, both those consisting of V-elements and those formed of linear dipoles, it is preferred that the antenna be symmetrical about a line passing through the midpoints of the linear dipoles and the apexes of the velements, respectively, as shown.

The antenna is fed at its narrow end from a conventional source of energy, depicted in FIGURE 1 by way of illustration only as alternator 21, by means of a balanced feeder line consisting of conductors 22 and 23. It will be seen that the crossed feeder lines 22 and 23 are twisted between connections to consecutive or adjacent elements of the antenna.

The length of an element (dipole or v-element) in the antenna shown in FIGURE 1 is designated herein as $L_{n}{ }^{\mathrm{x}}$, where n is used to designate any element in the zone which is designated as X. Thus, for example, the longest element in the antenna of FIGURE 1, which is the longest dipole of group D, is designated as $L_{1}{ }^{D}$, meaning element No. 1 of zone D. Thus, in general, the subscript (n) indicates the order of the particular element in the group designated by the superscript (X). It will be further seen that in the case of Velements, melh us those of zone B, the effective length of a V-elemens fin taken to be the langth which the arms of the \checkmark-element have when developed so that these arms are coltitnear. As shown, the tepgh $L_{1}{ }^{*}$ is the developod mayth of V-element 13.

The lengits of the elements in the antennas of the invention, and the spacing between these elements are related by a scale factor r which is constant within a given zone and is defined by the following equations:

$$
\tau X=\frac{L_{(\mathrm{a}+1) x}}{I_{n} X}=\frac{\Delta S_{(n+1) x}}{\Delta S_{\mathrm{s}} X}
$$

where r^{x} is a constant having a value less than $1, L_{0} X$ is the length of a dipole (or the developed length of a V-element) in zone X of the antenna, $L_{(0+1)} \mathbf{X}^{\text {is }}$ the corresponding length of the adjacent smaller element in group $X, \Delta S_{n} X$ is the spacing between the clement having the length L_{2} and the adjacent larger element in group \mathbf{X}, and $\Delta S_{(n+2)}{ }^{\mathbf{n}}$ is the specing between the element having the length L_{n} and the adjacent smalier element in group X.

In the foregoing, it will be observed that the same scale factor, t, may be used to determine both dipole length and spacing. This will, under normal conditions, represent optimum operational conditions. However, if efficiency of a lesser degree can be tolerated, it is, at times, possible to operate with a different scale factor for determining the dipole length from that which determines spacing. At such times, a scale factor r_{1} may be used to determine the dipole length and a scale factor To may be used to control spacing the dipole sections.

Each dipole and the feeder connecting thereto in the region between one dipole pair and the next adjacent dipole pair may be regarded as a "cell." The lengths of dipoles and the spacings then are so selected by the determined scale factors that the combination of dipole lengths and spacings, when combined as here described, provide the desired substantially uniform wideband responses in the desired frequency ranges.

As noted above, the elements comprising the antennas of the invention may be cither linear dipoles or V.
elenents. With reppect to the latier, the arms of the Individual velements are incliped to point in the direction of decreasing celement size so that the apex of each of the Velements points in a direction away from the angle formed by the lines passing through the extremities of the individual elements. The anjie, ψ, formed at the apexes of the V-elements by the artity thereof, preferably has a value between aboet 50°, thd 150°.

It will be noted that in FIGUREE 1 the angle α_{A} is that formed by the lines passing through the extremitios of the elements in zone A. In a similar manner, although not shown in the drawing, the lines passing through the oxtremitios of the elemetts in zones B,C,D, etc., could be extended to form simitar sagles α_{B}, $a_{c}, \alpha_{\mathrm{p}}$, respec. tively. Each of those anglet $-m \omega_{0} \mu_{p}$ etc., may be equal to each other, and in the ppoffrred embodiment of the antenna are equal, but this la vot a necessary condition. In any event, t is preferred that these angles, whether or not they are equal to each other, have values within the range from about 20° to 100°.
The advantages of the antennos of the invention sem from the discovery that when a given antenna is in operation at a certain frequency there are involved only a few of the clements of which the antenna is formed. It has been found possible, therefore, to remove from the antenna structure thoee elements which are not involved at this frequency and bring the adjacent parts of the antenna together to close sthe gap which would exist, and it has been further found that this modification of the antenna is possible without affecting the performance on either side of the excluded region. Taking the antenna of FIGURE 1 as an example, the element which would have formed the fourth element of Zone D is not required whan the antenna is coepted at a frequency which is dependent on the length of elememts 1,2 and 3 . Accordingly, and since the antonan is not intended to operate at a frequency represented by this hypothetical fourth element, the element can be omitted from the antenna with a consequent saving in size, weight, and coot, without, however, adversely affecting the operation of the remaining elements in the antenna at their charac teristic frequencies In a similar manner the elements which would normally have appeared in the antenna between zones A and B have been omitted with no adverse effects on the operation of the antenna at the frequencies corresponding to the elements found in zones A and B.
The antennas of the invention contain a plurality of zones or groups as defined above, all of which may contain linear dipoles and some V-elements as desired. The use of V elements in the antennas of the invention tather than dipoles increases the directivity of the antennas and also permits more effective utilization of a given antenna, since the same structure can be usod in several frequency modes to achieve coverage of different frequency bands. In the case of an antenna zone or group consisting entirely of straight dipoles, the effective frequency range of such a zone is that in which the low limit corresponds to the frequency at which the largest element in the zone is about $1 / 2$ wavelength long, and the upper equency limit to the frequency at which the smallest dipole in the sroup. is about $3 / 8$ wavelength long. In general, therefore, it may be said that the frequency range of a straight dipole group of elements corresponds to the mode of operation in which the lengths of the dipoles in the group are about $1 / 2$ wavelength long. As the frequency is raised above the upper limit of the $1 / 2$ wavelength mode in the group, the elements will also be found to radiate or receive effectively at frequencies in which the dipoles are about $3 / 2$ wavelengths long (the $3 / 2$ wavelengths mode), $5 / 2$ waveleigths long (the $5 / 2$ wavelengths mode), and so on. At frequencies above the $1 / 2$ wavelength mode, however, the pattern of a straight dipole group betomes multilobed and is therefore of limited usefulness. By inclining the arms of the dipoles to form Velements, it has been found
that a single lobe of improved directivity may be obtained as the frequency is raised from the $1 / 2$ wavelength mode through the intervening ranges to the $\%$ wavelengths mode and beyond. For each mode of operation there exists an optimum value for the angle ψ, ranging from about 114° for the $\% / 2$ wavelength mode to about 62° for the $9 / 2$ wavelength mode. By using a compromise value for ψ within this range, however, a zone of V-elements can be made to achievo acceptable performance over several modes of operation, thereby increasing its effective range. This result is possible since many of the elements forming the antenna array are used at more than one frequency.

The construction of a practical antenna made in accordance with the invention is shown in FIGURE 2. In this antenna the balanced line consists of two closely spaced and parallel eleotrically conducting small diameter tubes 24 and 26 , to which are attached the arms which form the V-elements and the straight dipoles. It will be noted that each of the arms making up one straight dipole, e.g., 29 and 31, or one V-element, e.g., 27 and 28, is connected to a different one of said canductors 24 and 26. Moreover, considering either one of conductors 24 and 26, consecutive arms along the length thereof extend in opposite directions. It will be seen that this construction has the effect of alternating the phase of the connections between successive elements, as depicted schematically in FIGURE 1 . Although the elements of the antenna of FIGURE 2 are not precisely coplanat, differing therefrom by the distance between the paralle conductors 24 and 26, in practice this distance is usually small so that the arms of the elements are substantially coplanar and the advantages of the invention are maintained. In some instances, however, it may be advan tageous to bend the individual arms, eg., 32 and 33 in FIGURE 3, close to the poim of attachment to the feeder lines 24^{\prime} and 26^{\prime}, so as to position all the arms in the same plane. The antennas of FIGURES 2 and 3 may be conveniently red by means of a coaxial cable, e.g. 34 and 34^{\prime} positioned within conductor 26 or 26 ', the outer conductor of the cable making electrical contact with the conductor 26 or 26 and the central conductor 36 or 36^{\prime} of the cable extending to and making electrical connection with conduotor 24 or 24 as shown.

In addition to the type of construction shown in FIGURES 2 and 3, practical antennas made in accordance with the invention can use a balanced feeder line which is twisted between connections to successive dipoles or V-elements. Other suitable means for accomplishing the desired phasing, such as transmission line loops or stubs, can also be used

As an example of the invention, an anterna was constructed in a manner similar to that shown in FIGURE 3 containing two zones of elements, a group of V-elements, such as group A in FIGURE 1, and a group of linear dipoles, such as group C. The antenne was made using $0.125^{\prime \prime}$ diameter tubing for the balanced line and $0.050^{\prime \prime}$ diameter wire for the arms of the elements. The arms were soldered to the feeder line and the array was fed by a miniature coaxial cable inserted into one of the conductors of the balanced line. The antenna had a total of 12 elements, of which 6 were contained in a zone of linear dipoles partially defined by $\tau=0.90$. The linear dipoles ranged in length from about 7.5 inches to about 4.4 inches, the zone having a length of about 2 inches. The antenna also contained a group of six. V-elements ($\psi=70^{\circ}$) ranging in developed length from about 3.3 inches to about 2.6 inches, the group of elements having a length of about 1.1 inches, and being further defined by $r=0.95$. This antenna was a scale model of one designed to cover the 15 meter, 10 meter, 6 meter and 2 meter bands of amateur radio transmission. For the 15 and 10 meter bands the antenna was operated in the $1 / 2$ wavelength mode as a linear dipole array. The 6 meter band was covered by the V-elements of the antenna in the

1/2 wavelength mode and the 2 moter band was covered by the same V-elements in the $\%$ wavelength mode. This antenna was found to perform acceptably over this range, although the performance in the 6 mefer band was somewhat inferior to the other bands which were covered. This deficiency, however, could have been rectified by providing an additional large element in the group of \mathbf{v} elements.
It is believed evident from the above description that the antennas of the invention can be designed to cover discrete frequency bands within a wide overall range as desired. By using the principles of the invention, the antenra can be made smaller in length and consequently cheaper to construct that has heretofore been possible, without, however, sacrificing performance within the desired frequency bands.

This application constitutes a continuation-in-part of U.S. patent application Serial No. 76,075, filed by the inventors herein named on December 15, 1960, now abandoned, and a continuation-in-part of U.S. patent application Serial No. 299,715, also filed by the inventors herein named and carries a filing date of August 5, 1963, now abandoned.

The foregoing detailed description has been given for clearness of understanding only, and no unnecessary limitations should be understood therefrom, as modifications will be obvious to those skilled in the art.

What is claimed is:

1. A broadband unidirectional antenna covering an intermittent range of frequencies comprising an array of a plurality of substantially coplanar elements, said elements being arranged in a plurality of zones, the ends of the elements in each of said zones falling on a pair of converging lines, the lines passing through the ends of the elements in any zone being non-collisear with at least one pair of the corresponding linet amociated with any other zone, the elements within any zone being arranged in substantially parallel side-by-side relationship and progressiveIy increasipg in length and spacing, the ratio of the lengths of any two adjacent elements within any one of said zones being given by the formula

$$
\frac{L_{a+1}}{L_{\mathrm{a}}}=r
$$

where L_{n} is the length of the larger of said adjacent elements, L_{n+1} is the length of the adjacent smaller element, and τ is a constant having a value less than 1 , the spacing between the elements of any zone being given by the formula

$$
\frac{\Delta S_{\mathrm{n}+1}}{\Delta S_{\mathrm{n}}}=r
$$

where $\Delta \mathbf{S}_{\mathrm{n}}$ is the spacing between the element having the length L_{D} and the adjacent larger element ΔS_{n+1} is the spacing between the element having the length L_{n} and the adjacent smaller element, and t has the significance previously assigned, said elements being fed by a common feeder which alternates in phase between successive elements.
2. The antenna of claim 1 in which the elements in at least one of said zones are parallel dipoles.
3. The antenna of claim 1 in which the elements in at least one of said zones are V-elements arranged in a herringbonelike arrangement, each of said elements having a pair of equal arms defining an apex, the apexes of said v-elements lying on a straight line, the corresponding arms of said elements being parallel.
4. The antenna of claim 3 wherein the angle formed by the arms of any v-element at the apex thereof has a value within the range from about 50° to about 150°.
5. The antenna of claim 1 wherein the angles formed by the lines passing through the ends of the elements in said zones have values within the range from about 20° to about 100°, and the values of the constant τ associated
wh said zones Hie within the range from about 0.8 to about 0.95 .
6. A broadband unidirectional antenna covering an intormittent range of frequencies comprising an array of a plurality of substantially copianar conducting elements, eaid elements being arranfed in a plarality of zones, the ends of the elements in each of said zones falling substantially on a pair of converging lines, the lines passing substantially through the ends of the elements in any zone being non-collinear with at least one pair of the corresponding lines associated with any other zone, the elements within any zone boing arranged in substantially parallel side-by-side relationship and progressively increasing in length, the ratio of the lengths of any two adjacent elements within any one of said zones being determined by a zonal scale factor established by the ratio of the length of one conducting element to the length of the next adjacent and longer conducting element to establish the length scale factor, the spacings of one conducting element to the next smaller element and the spacing of the same conducting element to the next longer conducting element with each zone establishing the spacing soale factor, and where each scale factor in each zone is a constant, and a common two-conductor feeder connocted to all of the elements with adjacent conductor elements being connected to different conductors of the feeder.
7. The antenna of claim 6 in which the elements in at least one of said zones are parallel dipoles extending in a direction substantially perpendicular to the axis of the feeder.
8. The antenna of claim 6 in which the elements in at least one of said zones comprises V-elements arranged in a herringbonelike arrangement, oach of said elements having a pair of equal arms defining an apex, the apexes of mid V-elements lying on a straight line, the corresponding arms of said elements being parallel, and in which at teat one other zone comprises dipole elements extending substancially normal to the feeder axis.
9. An aerial system for wide-band use over selected intermittent frequency ranges comprising a plurality of substantially coplanar elements arranged in a plurality of zones, at least one zone comprising a plurality of herringbonelike conducting v elements arranged to terminate in planar relationship, at least one other zone comprising a plurality of parallel dipoles, a two-conductor balanced feeder connected to the elements forming each zone at substantially the inner end thereof, each two opposite V-elements and each two opposite parallel dipoles forming a pair constituting dipole halves, the connection from each adjacent conducting element of the dipole sections being to a different feeder, all of said elements being selectively spaced from each other, each element of each pair of conducting V-elements having arms of substantially equal length substantially defining an apex with the apexes of the plurality of V-elements all lying in substantially a straight line and terminating at the feeder, oach of the parallel dipoles all lying in a common plane and also terminating at the feeder, the said V-elements and parallel dipoles of each pair being of different electrical lengths with successive V elements and dipoles differing in electrical length with respect to each other by substantially the same scale factor, each V-element and each dipole and the feeder between successive V-elements and dipoles constituting a cell, and the selective spacings between adjacent dipoles decreasing from one end to the other with the greater spacing being between the longest dipoles and being such that the combination of V-elements and dipole lengths and spacings provides a substantially uniform wide-band response over a plurality of selected frequency bands, the connection between the \checkmark-elements and the dipoles and the feeder being made in such a manner that the directive gain of the antenna increases as operation shifts from one band to an adjacent band of higher frequencies, and means to connect the
feeder to an external circuit at a location substantially removed from the longest of the V-elements and dipole elements and in the direction of the smallest of the elements.
10. An aerial system for wide-band use covering intermittent frequency ranges comprising an array of a plurality of substantially coplanar conducting elements arranged in a plurality of zones, the conducting elements of each zone being similar, at least one zone comprising a plurality of herringbonelike conducting V-elements planarly arranged, at least one other zone comprising a plurality of substantially straight and oppositely positioned conductor elements, a two-conductor balanced feeder connected to each of said conducting elements at substantially the inner end thereof, each two opposite V-elements forming a pair constituting dipole halves, each two oppositely positioned elements also forming a pair constituting dipole halves, the connection from each adjacent dipole section being to a different feeder, said V-elements of the zone being solectively spaced from each other, the elcments of each pair of V-elements and each pair of oppositely positioned olements having arms of substantially equal length, the V -edements of one zone substantially defining an apex with the apexes of the plurality of V -elements all lying in substantially a straight line and terminating at the feeder and the oppositely positioned clements of a second zone also terminating at the feeder, the said dipoles of each pair being of different electrical lengths with successive dipoles in each zone differing in electrical length with respect to each other by substantially the same scale factor, each dipole and the feeder between successive dipoles constituting a cell, and the selective spacings between adjacent dipoles decreasing from one end to the other with the greater spacing being between the longest dipoles and being such that the combination of dipole lengths and spacings provides a substantially uniform wide-band response over a plurality of frequency bands bearing substantially harmonic frequency relationships to each other, the connection between the dipoles and the feeder being made in such a manner that the directive gain of the antenna increases as operation shifts from one band to an adjacent band of higher frequencies, and means to connect the feeder to an external circuit at a location substantially removed from the longest of the V-elements and in the direction of the smallest of the V-elements.
11. An aerial system for wide-band use covering inter mittent frequency ranges comprising a plurality of pairs of substantially coplanar conducting elements, the eleneents being arranged in a plurality of zones, a two-conductor balanced feeder connccted to each of said elements at substantially the inner end thereof, the elements within each zone being arranged in substantially parallel side. by-side relationship and progressively differing length and spacing, the connection from each adjacent element being to a different feeder, each pair of elements having arms of substantially equal length, the ratio of the lengths, of any two adjacent elements within any one of said zones being determined and substantially pro portioned by a length scale factor established by the ratio of the length of one of the conducting elements to the length of the next adjacent longer conducting element s o that the elements of each pair have different electrical lengths and successive elements with each zone differ in electrical length with respect to each adjacent element by substantially the same scale factor, each conductor and the feeder between successive conductors constituting a cell, the ratio of the spacing of one conducting clement in each zone to the next smaller clement and the spacing of the same conducting element in the said zone to the next longer conducting element also establishting a spacing scale factor, each of the scale factors having a value of less than unity so that the selective spacines between adjacent conductors differ from one end to the other with the greater spacing being between the longest cunductors
and beings such that the combination of conductor langths and rymcinge providee a substantially uniform wide-band response over the zone, the connof on between the cosductors and the feader being mite in wuch a mennor that the directive gatin of the antemina incresecs as oporation shifts from one band to an adjacent band of higher frequencies, and means to consect the feeder to an extornal circuit at a location substantially removed from the longest of the conducting elements and in the direction of the smallest of the said elements.
12 The antenna claimed in claim 11 in which the conducting elements of the zones are arraged in V-formation with the open end of the V faced toward the feoder connoction.
13. The antenna claimed in claim 11 in which the conducting elements of the separate zones are parallel dipoles.
14. The antenna claimed in claim 11 in which the conducting clements of each zone are of similar form and the conducting elements of at least one zone are arranged in V-formation with the open end of the v faced toward the feoder coonection and in which the conducting elements of at least one other zone are parallet dipoles.
15. A broad band unidirectional antenna covering intermediate ranges of a wide frequency spectrum comprising a multiplicity of substantially coplanar conductor olements, each conductor element forming half of a dipole, the two elements of each dipole being of submantially the same length the several dipole elements being seloctively spaced along an axis and arrangod in - pluraity of separate zonen, the electrical tength of the dipoles decreasing with distance along the axis, the elooctrical length of adjacent dipote elements of the sep. mine zones diltering by a selected zone seale factor which it mibstantially constant in each zone, the electrical length of each dipole of all zones being approximately an odd multitlo of a balf-wave length at a froquency witbin the operating apectrum over which the antenna is to provide maximum response in each zone, a pair of feeder coo-
ductors for feeding all of the dipole olements, one elemont of oach dipole being connected to one feoder conductor and the other elemient of cach dipote being conocted to the opposite feeder conductor, adjiseent elements of different dipolet being connected to opposite feeder conductorn so that the directional gain of the antenas is maximum in the direction along the feeder from the and with longer dipoles toward the end with shorter dipoles and increases as the operation shifts from one frequency within the spoctrum whereat the element lengths are approximately an odd integral number of half-wave lengths to the pext higher frequency range where the element lengths are once more approximately an odd integral number of hal-wave longiths, the ratio of the lengths of any two adjucent dipole alementh within any one of the zones being deternined by the zonal scale thetor of subtantially constant value within the zone, and means to coanect the foeder conductors to an externel circuit at a location which is substantially re moved from the longeat dipole elenent in the diroction of the shortest dipoke element.
16. The antenna claimed in claim 15 whercin the dipolo elements of at least one of the zones extend in a direc. tion substantially perpendicular to the axis of the feeder conductors.
17. The antenna claimed in cleim 15 in which the dipole elements of at least one of the zones comprise V. shaped elements whose apexes lis on substantially a straight line and between which elementu in tho region of the open portion of the V-formation there is an angular spacing in the range from about 50° and 150°.
18. The antenns clamed in claim 15 wherein the corresponding dipole elaments of each izone extond parallel to each otber and wheroin certinin of the dipoles extend substantially perpendicular to the fooder and wherein other dipoles are V-ehiped elaniente whowe aperes lio on sabstantially a atraight tino with the angular spacing between the alemeats of the open portion of the V-forma. tion being within the angular limite of 30° and 150°.

No references cted.

TEfosta
430 Lexingtatre.
soy wy. 10017
RECEIVED
NOV 291960 C
RINESAND RI.ES
YO. TEN PGST CFFICE SYUARE, ZURTON
detree of commercial cuccess may be of
value in a close or doubtful case, put it be moted means conclusive. It must aiso Go noted that the commercial fuccess
 catits, for which it is understopophey
hate an application pending. Tae plaims haye an application pending. THe glaim
involved in this case are purelf proces
claits and are not directed te a in
 mate ial. To be sure, Mr. Schlati striot the tride are using has propess. He did not indicate how he knoy this. He very ikely bis testimony wo to some his princjpal sales, in an event, were those of the mixture tyat he devised achieved copsistr of safes of that mix${ }_{\text {that }}^{[3]}$
 8145, to securt actions under 85 U.S.C
ent, thant doug of a pat acainst the applefort and in favor of he Patent office There are maver of
 45. There are too rexsons, for this doc
 adnion

Channe: Master Corporation v. JFD Electronics Corporation
65-C-41f Decided Nov. 3, 1966

MTENTS

1. Parties to suit
necessary $(\$ 49.5)$ Indepensable or
itl
Title Assignments - Assign-
ment or license (866.103) One in position of assignee of patment suit without joining patentee; exclusive license to make, use, and vend is in same category as an assign-
ment on theory that licensor holds title to patent in trust for licensee; even though exclusive license is restricted tio a pecified territory or covers less
than full life of patont, this remains that full life of patont, this remains
true; however, exclusive license to make, use abd vetd covering oniy to portion of field of patent monopoly is a mere liense which is msufficient ment andecrese to maintain infringeanothe reasm why inshat icerver whot be venured to defend dewara. has no indopendert risht to institute mangemet ation mastuki ns right ta mothte sut mises omy if icensor

$$
\begin{aligned}
& \text { juspment } \\
& \text { (} 83.303
\end{aligned}
$$

man Rgo in m
 manta magent apinst

mame Mernas. and kainst do waty bu ner, netion iuchment that patont is invaid is dis matroversy; even were it abe of actual patent owners presence is requiref. action sincts there is substantial doubt whe cormoveraty juigment would re-
A Notce and marking patented (s t6)
Complant states canae of action that whent minmarn where of allege morat and pecofer pabic
rumbetion marng patences (846. cuuses of action antonder partiesPatent and acther ismes (is 43. .
nasmebs pleaded misrepresentaaneged to constifute unfar com-Narking (35 U.S.C. 292), jurisdiction may rest upon 28 U.S.C. 1338 (b) fact fact
that 35 U.S.C. 292 is essentially penal in character does not eliminate it as a $\frac{\text { related claim under patent law de- }}{\text { scribed in } 28 \text { U.S.C. } 1338(b) \text { virtual }}$ identity of proof is not required, it being sufficient that there is a considerable overla

TRADEMARKS

5. Fraud

. misrepresentation (867.
Notice of infringenent and marking
goods $(\$ 67.54)$
Prohibition of 15 U.S.C $1125(a)$ with or false description with respect to goods or serviees or containers for goods is not limited to designation and applies to all such false descriptions and designations with lespect to such yoods and servicto betering into intro state eommere: thas, stathur confers jurisdiction as to complant alloging Iolsety represented that its roods
possess certan attributes and are cop possess certan attributes and ane cor
Action by Ghame wast, Cupar- Mh
 seclsadtedatatory of whmen matift dotendat's moton mohts, and mothe and of which phantiff senks damacks
unfair competition by defendant in that it has falsely accused plaintiff of copymade by University and Foundation to dismis the action as against them upon granted leaving JFD Electronics Cor poration as the sole defendant
In Count I the complaint alleges that Fonndation sis the record owner of the entitled "Frequeney Independent Unidirectional Antemas", which it licensed to the defendant under an exclusive 1 cense agreement dated December
1965 ; that defendant is engaged in mal ng and selling antennas under said patent in competition with plaintiff, in of infringing the Isbell patent by mak ang and sellimg, without a license, radi and television antennas embodying the atheged invention of that patent, an
that the Isbell patent is directed to the of antenna known-as log-meriodie Whereas plaintiff manufactures and sell FTRE" (the subject of parintiff's TIS FIRE" the subject of plaintif's TI.
 no bog-peroidic and thereby do not is mipe in incald.
tat detmi if the complaim ather emas when manafactures certary an she ith sojes momotion shaderment urding tio a patentent opeates ma, wheres sad antenmas are iot ke wo suh formma or patent; thot tofend Wh Ma, alised to me mathed noon its at embs fand particulary its LPE
 Whte Pature adempmeng the same th wat they were covored by ceremin is ach or pending paterts, whereas, it ct hey weye not so covered and and finally, the defendan hes unfom ommbed with mastif Dy hbolmgent hmagine mantés CROSECRE
 Dameds matenter was res and ha mantifts doment
Accurding to the bicmee agremen Wich was submitted with the motion mapers, the Foundation granted to the ights: (a) An paclocive no formanefor able right and license to make, ase or ell antennas only the fiela
custing statime and detmos for amareception in the Umied States and in ain toreign countries; (b) an option to acgure a mop-exlusse icense for all sive license; fo the right the excil
 the wigh to institute smit for tringe ment to the fuilire of the Fambe dint to berf suit whan thay hag so iol the right worce tho arem upon eapration of the agreement, a option to renew the same for two had Pefendant moves mam?
?. Fel. Race Giv Proe boter Bat to dismiss Count I for fallare to phin tion, the owner of the matont porder Rule $12(b)$ b), Fed. Rales Cir Ember Y.S.CA, to diamiss tha purtore of Pount If alloging patent momstm tent to sustain the fetion
 CROA to disniss the vemm ninu por tion of count th fleqing unter mone

 and transfer to the Norther! Distrat of hlingis Eastern Divisionern Distrat

Indispensabic rarty

[1] In riew of the fors that the license to the defendant docs not erver Court concludes that Comat I of of the complaint must he dismissed for lack of an indispensable party. The narroy, question here is whether the defendant' enable it to bring the action for in fringement without joining Foundation It is clear that if defendant were in the position of an assignoe of the Isbel patenting suit for infringement without such joinder. The leadirg ase of Wat $11 \mathrm{S.Ct}$ erman , teaches that the monomoly granted by the patent laws cannot be divided into parts, exeept as authorized by those laws, and that the patentee may assign (1) the whole patent.
(2) an undivided part or share of that patent, or-(3) the exclusive right under the patent "to the whole or any specified part of the United States (35 or transfer, short of one of these, is a mere ficense, giving the !icensee mo title
in the patent, and no fight to sue at
law in his own name for an mince-
ment" (Waterman v.
ciples an exclusive licens
and vend is in the same catomo. u assignment on the thory that the an cusime licens is rutriched a andified

 me amane for the and bome mes sutws man mones for amater and croms band tranmassion antre rabar antentas, antenras for militat apptication Enctading emmameatom Ahl bradeamma and rearime an tenma", whith is also edered by the he hicense rester Phantify Hom what ont hamaterind acemase the mome field overed the the sitw eiving in som port herge pratt and Whared ctan Es P.Sum 409.114 US!世 की Wh! that case upholds
Tecino
 and Fore Manui'z Co ve Gommuity $\&$ Teffery Mand'g Co. 1869144 U.S. 248 held that the grate of a himited use under a patent is a mere ilicesse which is irruafficient to enabie the license to maintain an infringement guit withous joinder of the legal title-bolder, con-
cluding that ente great coniusion to permit as pis pit entee to split up his title within the same territory into as many wiferent parts as there are clams. Shemical Paint Company Sin Sind ED.Pa. 1055,131 F.Supp Tht, 10% tween an exclusive hicense under a geographical or time imitation and an exclusive license under a use limitation.
The reason for nermiting a licence The reason for permitting a licensed t
sue alone in the first two cases is loce upon the theory that the ficerisor nu: in substance granted ai assignment the licensee of the whole patent and the
interests of the licensor and licensce in metests of the hicersor and hacense in
${ }^{1}$ The exclusions are hased upon reph resentations in the defendan
which plaintiff does not deny.

21: an
 - \quad н Mum B, reghers rintme bat mambation There shame mo nosmise ar honco
 mot be bum bo the ber wry a the prament wh 10,3 maman the
 criteria for becaling whether the motion should proced or be dismis and rro
vides for avoidine a vides for ayciding or le semperper durion is not at varance viit the
 where : pariy not jomed may be seri-
ountr nefaticed theng onposition oi ousty mendiced throts ampasition on decish arathst the vaidtly of the matcot wout adyovely aftec foundation as to its ramining unlicensed patent
clams and ans ref grated to the plametiti in such a case would not prevent relitigation of the same issue by Foudation. No shaping of relief or other macures would we sach an in
adequas. Fortheme, phamify has an adequate remeny in another frusdetim where all pattes may be werved and bropht hofore the court The adfudi why. wow the present circumstances Foundation is an indispensabe parly and Tule 19 (b) does not require the acfion to proceed without jomber such a party. It simply sharpens the defin to eliminate auy technical approach to the problem, leaving the decision to proof the Court, Cin., Provident Tradesmens Bank and Trust Company et al. Lumbermers Mutual Casualts Company

Where the lack of an mhapmsable narty

Patent Mmarking

[3] The portion of Count in ahore ing maten menawhes to medicued
 under the thatitu tnsolving fake oy with an mant pr papose to mary Pantef ahege that tho mismbrans
 fort at mod cause of athon. Apperentio
 appers: from the ufidavie of Cowari Finke, defendant's we-president, who asserts that he believes that the patent
matking and cepresentations wop acmathmes and remresenators wed acho antanas in conformits with inswothme wemol fom prondathon oder no frumermberment was the at indent no doccume or to dalsely mark the a atemas. Honce, be conterds that the necsary gement of memt wio bete inc. foan be consured ont as a or sommary unymen ons ate
 Hidavit of defendant's vice-presulent, bd wad Finkel, present a penuine ishe as to a material fact (Kule 56, Fed. Rules Eiv. Proc, z8 USGA, smeth Weding Ea. 1956, 21 For. R.D. 196.

Unfair Competition

There remains for disposition the moThere remains for disposition the mo-
II anderimg uns that pertion of Count If alleging mifair competition upon the ground that the Court lacks juristiction ver the subject matter.
intiff this portion of Count if petition into two parts, (i) false yepre entations by defendant to the eifect that its antennas are log-periodic and
are covered by a patented periodie formela and by certain enumerated patents, and (ii) false representations by
defendant that plaintiff "CROSSFIRE", efendant that plaintiff's "CROSSFIRE ntennas were not original but imita riodic antennas. There is no diversity of citizenship to ween the parties and ubiect-matter juriwdition in this Court Wust theretore he founded upon some miscepresentations in this rase relate, in one fym or another to the clain of mismarkine in Count II under the pat.
ent law, 35 U.S.C.A. $\$ 292$ \qquad arisdic-
phich vision of 28 IU

The district counts shall have oris
 Whenthed th a comperation Felater clate mag the copright thadematk laws.
The chame onfab rompetith ine in Faction, wond wen a ans of the aboy betad dama under a mostanting and
 maty perel hatmete dows not an matal hw descrihed in Section 1 the ib. In ouder to avo piecemeal hume thon a brodder view has been taken in this ircuit of the perdant jurisdiction
of erleral courts over non-Federa clains which are joined with substantad Fedeal dams. To ostablish the ex dence of a substantial and related thentity of proof is not required and it os sutheme if thore is a considerable

 IIt USPO 4ne Fo instance the porf That mantift whace to show mismarkvolve the roverace of the Isbel watent as wet as the fefondant's intent. Substantalay the same proof will be neces Chy to establish that defendant falsely chamed that its antennas were logcally numbered patents as set forth in the urst caterory or misrepresentations. Likewise, part of the same proof will
be necessary to estabish that platntiff's be necessary to establish that plaintiff's
CROSSFIRE" antennas were riot log. periulie antennas and were not covered by the Isbell patent and hence not imitations of defendant's antennas as
claimed in the second category of false representations.
[5] Although the complaint does not predicate jurisdiction upon 15 U.S.
: This section reads as follows:
"Any person who shall affix, apply, or annex, or use in connection with any goods or services, or any container or
containers for goods, a false designation oontainers for aods, a false designation
of oricin, or any felse deription or
representation, including words or other representation, including words or other
symbols tending falsely to describe or represent the same, and shall cause
such goods or services to enter into such goods or services to enter into come merce, and any person who shall with
knowledge of the falsity of such desig. nation of origin or description or rep-
jurisdiction may be rested upom that
stection as to tipat eat section as wostathe the ratary of mos.
 grods.
 rapere ernect

\qquad
antron formaner
be dondsed to thet wh andentem be pary by mede monetra rase shegested by the defremat Doment Hilnor, Easterio biviom, have disanpeared. As the che now statels, whe de tencant has that how that the bat ties a \qquad
 atother fursdicton. Hence, the plainamtar heo dis
 3en The intere of hatice therefore segarese orteri: $:=1$ acuordance with the above whem ter 10 , hays on two (2)
 be transported or used. shatl be habie
to a civil action ayy person dong busines in the locality falsely medicatcd

 nat

Disisint Court,
f1. 0

FOR THE
\because NORTHERN DISTRTCN OF TUINOTS

Civil Action File No. $66 \mathrm{C} . . .567$
THE UNIVERSITY OF ILLINOIS FOUNDATION, Plaintiff \& Counterclaim Defendant,
BLONDER-TONGUE LABORATORIES, INC., Defendant \& Counterclaimant,
v.

Tox
JED ELECTRONICS CORPORATION, Counterclaim Defendant.

TO: Paul E. Mayes Room 455, Electrical Engineering Bldg. University of Illinois Urbane, Illinois

YOU ARE HEREBY COMMANDED to produce for inspection and \quad instriatuofx copying at the offices of

 Wostifexabehiliox Merriam, Marshall, Shapiro \& Klose, 30 West Monroe Street, Chicago, Illinois:

1. Photographs of antennas developed by Mayes, Carrel, Ispell or others at the University of Illinois Antenna Laboratory relating to the disclosures of U.S. patents 3,108,280 or 3,210,767 as they existed prior to October 31, 1962, and (if any) subsequent thereto. These photographs should include all photographs of television antennas assembled by Mays, Carrel or others using the funds granted to them by the University of Illinois Foundation.
2. A copy of the results of the survey of applicationsof log periodic antennas.

Qatober 28 \qquad 19.66..

Hofgren, Wegner, Allen, Stellman \& McCord Blonder-Tongue Laboratories, Inc. Attorney for
20 North Wacker Drive. Address Chicago, III. 60606

RETURN ON SERVICE

Received this subpoena at and on served it on the within named by delivering a copy to h and tendering to h allowed by law. ${ }^{\text { }}$

By.
on
at
the fee for one day's attendance and the mileage

Dated:

Service Fees

Total
\$

Subscribed and sworn to before me, a
this
day of $\quad, 19$

[^0]

FOR THE

- NORTHERN DISTRTCT OF IULTNOIS

.october 28, 19...66.
Hofgren, Wegner, Allen, Stellman \& McCord c Lhet 1

Inc.

RETURN ON SERVICE

Received this subpoena at and on served it on the within named by delivering a copy to h and tendering to h allowed by law. ${ }^{1}$

at the fee for one day's attendance and the mileage

By

 Doputy orerk.

Subscribed and sworn to before me, a
this

AXE A: HOFGREN
ERNEST A WEGNEA
JOHN REX ALCEN
WILLAMUSTELLMAN
OHNB MCCORO
日RADFORD WILES
JAMES CWOOO
STANLEY COALTON
RCCHAROS PHILETPS
TED E KILLNGSWO
CHARLES L ROWE
HARLES LYROW
W. E. RECKTENWALD
R.STAPLETON

NILEIAM R MCNAIR
JOHN P MILNAMOW
WHIS.ALCEN W. A VAN SANTEN.J. OHNR HOFFMAN A R OSTRAUSKAS

HOFGREN WEGNER, ALLEN, STELGMAN \& MCCORD

2ONORTH WACKERORIVE
October 28, 1966

Mr. James J. Costelle
Legal Counsel
Oniverstity of Iminnols
258 Adininistration Building Usbana, Milnols

Dear Mr. Costelloi
In aceoxdanch with our telephone convorsation, I have prepared subpoenas Ldentifying the material we wish and have malled them direotly to Prof, Mayes and Mr. Poxter. Copies are onclosed for your information. If thexe is any question regarding the Identification of the materiel requested from Prof, Nayes, oplease oall me.

Very truly yours,

Rlohard S. Phillipa

RSpilag

Enclosumes
ant Pret, Panl E, Mayes Mis. Ean2 M. Fonter Mr. Robe 2t H, Rine: Mrs. Banil P. Mann Ni. Yywn 0. Cass

Cpper of Drawty
$M D 1551$
$M C 1658$
C
\rightarrow commescial an phidx Arowe
get number.

BLOMDER TOMGUE TO OEM FOR U/T FOUNDATY TON AMD JFD

1. Daxt and Arrow instmetionsheets - earlier
2. Dart and Arrow instruction sheets - most recent
3. Insulator drawing - Dart and Arrow
4. Check schenfeld notebook for data on boom spacing
5. Search for prior publication re periodic or log-periodic antennas
6. Early antennas used in tests - ship out for examination
7. Any other $10 g$ antennas - ship out for examination
8. Cheok BI files for Wlokert, letter of $7 / 25 / 66$
$J F D$

C0 9 \&
9. When did EP buy latest JFD double boom antenna - purchase onder - before or after $9 / 1 / 66$
10. Prosecution Information re fore1gn patents - on Ei antenna
12. LPV-IV - Test results and reports
13. LPV-VU - Test results and reports
14. Schenfeld residence address

**"JFiLPV
TV/FM antena increases your share of the audience by bringing it a brighter, clearer, more enpyable picture

The patented JFD Log Periodic LPY means more effective and complete coverage of your audience. its unique design brings your picture in with studiosharp brilliance in "problem" reception areas.

The LPy-adapted by 10 from the Log Periodic satelite antena concept of the Antema Research Laboratories of the Unversity of llinois-is available in a broad assortment of models to cover every possible VHF, UHF, VHFUHF or FM Stereo location requirement. Write for descrip. tive literature or sample and see why-

Whoter faple (ilustrated) one of 6 gold alodized Log periodic antemas designed for VH chanmeis 2 to 13 plis FM.

 area-zogineered Log Perieutic LPV antemas designed for UHF chamels 14 to 83 plus VHF chamels 7 to 13.

THE WOW-HOW OF THE WORL'S HEWET AWD FWEST

Professor Piul E. Wayes of the Antema Research Laboratories of the University of minois, originator of the log periodic V-dipole antenna contept.

Pablel LPWWU15 (illustrated one of of area-engineered log Periodid LPy antennas for Whf chamels 2 to $1 \mathrm{~S}_{\mathrm{s}}$ UHI channels 14 to 83 , and FM with one downiead First of its kind!

15th Avenue at 62nd Street Erooklyn, N. Y. 11219
Phone 212 DE 1.1000

At the 196465 Nev York Word's Fair, the House of Good Taste Exhibit wh feature the latest and finest advancements in home living. The board of directors of the House of Good Taste selected the 3 Fb Log. Periodic fry as the only belevision anterna to be installed on each of its three homes: the Foward Durrell stone House, the Royal Eary Wills Associates House, and the Jack Pickens Coble House.
The House of Good Taste wili create a lasting intuence on consumer purchasing trends. Fty millon Fair. goers whl see the 1 IFO Log. Periodic, Mihions more, perywhere in Anerica, whil see, hear, and read about the House of Good Taste and its choice of the JFD Log. Periodic andenna.
This new and unoue marketing force will reflect tseth in recond 3 LD Log Periodic sales during 2964 and 1965 for yout

\%

hustated IPM8

Agatim and Again in

 Mamina mpartica the IFD Log Periodic MPV!

Whillons read about the JFD Log-Periodic this past spring. Millions more will be leaming of the antema sensation of the nation, as. JFD continues the biggest antenna advertising campaign ever run in LOOK magazine.
Thein and cash-in with Log. Periodic LPV installations in your area. Promote yoursell as JFD LPV headquarters with Lpy streaners, banners, newspaper mats, mailers and TV/radio commercials.

Avain and Again in Scruct Masaina aterefists the IFD Log Periodic LPV!

Last year, milions in the West and Far West saw the JFO Log. Periodic LPV ad in Sunset magazine. This year, millions more TV antenna owners and prospects will be told the dramatic Log Periodic story. Plus-a variety of Sunset promotion aids to keep the Log. Periodic LPV the Coast's No. I antenna in sales!

no question

abowt it-

"o do BETTER THAN THE BEST?"

Y you are installing fid Log Periodic LeV's, no doubt you will stree with this teport from TH L. Monroo, aleading TV antenna service-dealer of Chardeston, West Vitginia-a puoblen recsption area.
"It beats ail, it beats every thend that Thave ever sem. Not only that but this antenta 5 betce thath 6 abb better than the best that 1 huve matulled $I E$ pullea in a consistently clead pieture from Columbers over 130 miles culcy.
 -turns browns into real reds, foiled: bhwan ereen thto briltant wreena, and completely eliminates the chrontc ghast problens we have been suffering from in thes area.:
** I have been in this bubiness shice 194s, which ts a considerable time, patteularly in the willey, and have yet to see chy antentia, even nuar to this loy pertodic antennc in performaroce of the things 7 have wanted.'

Why the JWD Log Periodic LN Outperforms Every TV Antema Weer Made?

The lof-geriod dit the on cumbersome atrenmas with their "Whinese putzele" womshinatiten of collectoxa, directom sind reflectors. Now a single preciscy y-engineetred an-tenna-the first based on fo ghometrichlly -derived lodarthente scale-astuaty tumez itself to the desirea channel for wriprecedented perfornance in crisp black and white or
多就 any worder Hat never betore have so many ingtallews and techni-
ciars 60 cuably acolamed a Thy ant termas?

 parndent characteristion, have broketa trowngh distance, ghost and anterfor ence barviers to bring clear. bteady pictures inte previongly "innowsible" 3reas. White todog tor ybur log peri-
 your vind divibutor and try one with gum money back guarambee of a better phewre. You will brove th to yourself.

Developed by the University of Ilinois Antemina Labor-atory-Now Serving in Satellite Telemetry-Adopted to TV by JFD! THE LOG PERTODIC LPV ENDS THE ERA OR ANENNA COMPROWISE! FOR TYE HRST TME ONE SCIENIHCLILY FORMULTED ANTENA CONHUUXRAMON SATISHES ANY LOCATON DEMAND: Harmonically resonant V -element operate on the \log Periodic Cellular Principle in the Fundamental and Third Harmonic Modes for unprecedented performance -in color-in black and white-plas FM STEREO

L

ELECTRONICS
25th Abenue tatard sreet, Droobhyn 19, H. Y

In the new Lpyvy capelectronic, the JPD Champaign, Hinois R \& D Laboratories shatter antena design precedent with a remarkable new biectumic primiple-the capacitor coupled dipole.

By introducing unique parallel plate capacitars

 into the dipoles and adiusting precisely their capactance and location, JFD creates more chiven elements than ever before possible. Result the highest gain ever on $\mathrm{VHF}, \mathrm{UHF}$. FM/Stereo-from one antenna.
PLUS

I. Fresuency indeponden heg poriodic. design provides an un precedentad combination af remarkable gain..., fiat, fuli band whith response . . starip directivity . . Tigh front-to-back ratios ., mathod impedarce and law VSWh on all TV and FM bands.
2. Wryy no downeat is recuited \& a JDVU/FM spitter is inctured so leadms can be rum to VHF, UHF and Fh set temmats).
3. Uniqua hownimpestance twh crossarms function as crossed feder harness to increase gain and provide maximum signal transfer on both figh and how band chamels.

BOB PAASCH, Chief Engineer, WCKT Chamnel 7, Miami, Fla. reconmmends: Good Antennas for Best Color and Black and White TV.

AEC Channel 7 of Mami, Forida knows that most reception troubles are caused by poor receiving antennas. To help Dade and Broward County TV service technicians solve their picture problems, Bob Fasch, Chief Engineer of WCKT
tested and reported on the performance of outdoor antemas in Miami and outying areas. JFD Log. Periodic LPV antennas were inchuded in this complete and accurate analysis, excerpts of which are given below.

The attached chart rates the various antennas for different characteristics. Taking all factors into consideration, there is one outstanding antenna for the Miami and outlying areas, and that is the JFD LPV-4. For problems with reflections,
such as on Mami Beach and other large building areas, the JFD LPV-8 is a good antenna.
Use good (new) 300 ohm line and use a good antemna such as JFO LPV-4, By all means don't use a VHF-UHF-VEE or a conical. See chart to make selection."

Professor Path Dayes of the Artenna Betsenvel t.aboratorias of the bilvat sity oi llinois, originator at the log

AND - FH^{2} WI MAY ADD.

Yot will find our [pula (is active celt and Ipvif fla active calb tog*
 fapont was somg mate, puwettas parformers in the deep fringe.
Your owta test mill prove th-mecause in the end gesult: at the mianent

$$
\mathrm{JFOLPV}
$$

Congress oluw go Fin sioumin

 receivers* must use an wherbnand televinion antermat. ${ }^{9}$
Of course, you cant take the law into your own hands-but you can take advantaze of today's ready-made opportwities to sell an 82 -channel antema with each 82 -channel T sy set.
Our Antenna Research Laboratories in Champaign, Hllinois knew what they were doing when they teamed the acclaimed Log Periodic concept of the University of Illinois Antenna Research Laboratones with our new antema design adyance-the capacitor coupled electronic dipole. Proof is the fact that the JFD LPV.VU is America's No. 182 -chamel TV/TM antemna!
Who says you can't have everything
you want ina TV antema-VHE?
UKF?.. FMStereo? - with a single down-lead to boot!
MOST EFTICIENT PERFORMANCE EVER ON VHF, UHF, FM/ STEREO FROM ONE ANTENNA USING ONE DOWN-LEAD!

- Cap-electronic dipole design malres more elements resonate on channels 7 to 13 with a corresponding increase in gain.
Higher mode operation in UHF brad achieves higher gain on channels 14 to 83 -and FM stereo.
\# Narrower beamwidths. . . higher front-to-back ratios step up ghost rejection. . . intensify color.
Patented frequency independent design maintains peak perform-
ance characteristics regardless of channel or band tuned.
- Includes 3 -way splitter so single down-lead can be tied into individual VHF, UHF and FM system inputs.
REMEMBER - AN 82-CHANNEL TV SET ISNOT AN 82 -CHANNEL TV RECEIVER UNLESS IT HAS AN 82-CHANMELTV ANTENNA!
*Lest we forget-every color set is also an 82 -channel set requiring a color-perfect antenna. In fact, many color TV shows are broadcast on UHF channels.

seg your distributor on WRITE FOR BROCHURE BOG

TMY IPFITVU

un thetromiss conpormion

Evopurbroftrithatitia

- ore The JD LVW

 IT THE 1954-65 NEW TORK WORID'S FAR

 IT THE 1954-65 NEW TORK WORID'S FAR
 The Hew Vor Word's Fair House of Good Taste Exhibit will showase today's and fomorrow's finest advances in home hing.

 Its Boand of Divectors selected the IFD Log Periodie LPY as the only felevision antema to be installed on each of the three hones in its axhbit. Howse of Good Taste and its choce of the Jro Log Feriodic lpy. This powerful new marketing force will be at work puiding record H5 Lof Penodic LPV sales and profits for you during 1964 and 1965.

THE LOG-PERIODIC TV ANTENNA BY JTL IS THE BIGGEST ANTENNA STORY IN YEARS. TELL IT AND YOU'LL SELL IT. HERE'S HOW...

Virtually evey TV setowner-which means almos eyerybody-is interested in the better reception he can get with the lognperiodic LPY, thake sure alt the prospects in your area know about tiv. Use the promotion material pictured in This folder to plan a complete, contmuing campaign.

1 Mailers to reach your customers and best prospects.

2 A newspaper ad campaign to cover your entire marketing area-brine eyeybody in.

3 TV slides and radio/TV sctipts to convey the full excitement of the LPY story.
4. Doorknob hangers for "pinpoint" advertising in your immediate locality.

5 Streamer to "stop" street tratfic, create impulse sales, help close the order.

Use the enclosed postcard to order atditional selling kits-conveniently packaged in a handsome file folder phortholio-now.

Sard to your wustomer fists，phone booh or strest chirectory lists，association mhes，etc．（Fossithy the boaro of atections， clennone stopes，hucr deaters．departmont stores or other whirestons in your neightorihood have lists they may let you use．）
 postcarch－to ftinge prospeats．focal prospects．ail prospents

A－\}ege, z-color consumer selinnailer/ervelope stuffer

2 color jumbe postcard $\left(7, x^{-51 / 4}\right.$ ）

F以民解483
2－color jumbo postcard $\left(7 \times 5 \frac{1}{47}\right)$

勒醇 No．WH5
3 cols．x 54 tineszen 252 hines

3 cols． 487 hness 261 hmes

（at No， 257
3 cols．$\times 74$ lines $=222$ lines

HPV AE MAS TO WAME EVETY
 SOHETHMO NEW IN THE ARE?
Consistency is the secret of effective advertising. Alemate these mats on a planed schedule to creato a continuing dampaign and a lasting impresson. Your newspaper rep with be glad to help you with the details. (Mats shown one thita actual size.)

2 cois. $\times 50$ ines= 100 lines

2 chts. 5.52 hnesm 104 thes

2 cols, $x 57$ mes 114 thes

4 cots. 2140 limes 2560 lines

Gocuses yeith Finpondy pretaistrn, to go the ine synd

 my

期栵 HO .2555
2 cols. $\times 55$ ines $=170$ limes

STOP and SELL YOUR ANTEHMA PROSPECTS with these LPY SALESPARKERS！

Sise this axithg material to remind your customers hat they get the newest avances and the complete service at your store．The Leplis cramatic enterimg wedge that can helpy you sell other items as well as antennas．

FORT蛙 42 安
coior streamer， $81 / 2 \times 2 z^{\prime \prime}$ for windows

doorkmoth hanger for homes and atoos

doorknob hanger tor homes and autos

Fकtin 12510 －page color catalog

FC）
color shipping laben

Mo．RLPY 3
HADH AND TV COH Whenclaks
 F＂OTH 460460 second radio script Fock in eq2． 20 second radio script
然解敬 66535 mn ．TV slide

THE LOG．PERIODIC LPV WIL BE EACKED BY THE BIGCEST PROMOTION IN ANTENNA HISTORY． It will generate new attention to TV performance－new buying excitement．Tie in with this excitement to sell not only LPV＇s but installation，color TV，service．
USE ENCLOSED POSTCARD TO ORDER YOUR PROMOTION MATERIALS

Developments in broadband antennas

A survey is presented for the purpose of providing the nonspecialist with a basic understanding of the remarkable advances that have taken place over the past decade in the field of broadband antennas
E. C. Jordan, G. A. Deschamps, J. D. Dyson, R. E. Mayes University of Illinois

Fig. 1. Rhombic antenna. Although this early broadband antenna has a radiation pattern that varies with frequency, it is usable over a frequency range of approximately four to one.

Spectral lines

How Reduce the Damping? In the past two months I have used this space to develop a rationale for the many changes in engineering education that have occurred in the last 25 years. This month it is my intent to close out the trilogy by discussing the work remaining ahead.

It was almost trite last month to say that we were witnessing a technological explosion; explosion seems an inaccurate metaphor, since we usually assume an explosive event to end, after which we take on the job of restoring the status quo, provided that the explosion left us with any status. The technical changes of recent years are also referred to as a technological revolution, but these words also seem to carry an implication of eventual return to a steady state of merely differing characteristics. The past state or a steady state is not to be expected today.

Furthering the thought through technical language, it could be said that the changes of the last quarter century should not be looked upon as a random event, but rather as a series of forcing functions which will produce transient responses in the system to the end of time. The best title that I have yet found to describe our situation seems to be "technical evolution." Such a title implies change; it implies selection of appropriate means and devices; it suggests competition, and conveys the thought of continuing and unending progress under the control of the environment and the forces existing at the time.

If we are in an evolutionary condition, we must accept completely a philosophy of growth, expansion, and new challenge. Any return to past days of ease, to days of stable technology, is both unthinkable and contrary to the purpose of the engineer-a person who must be dedicated to change and progress if he is to improve the lot of man. We must realize that engineering education is for a changing world in which engineers will answer questions by methods now unknown.

A system under forcing can be studied by analysis of its responses. One observation to be made of our engineering manpower system is that, in its response to change, its characteristics show heavy overdamping. This should be no surprise, because it is said that of all engineers ever educated, at least 90 per cent are living today. Major changes have appeared in our curricula in only the past 15 years, and my guess is that less than 15 per cent of our estimated 850000 engineers can be assumed to have rèceived a modern engineering education. Those of age 35 or over graduated from college before most of our new disciplines were visualized, and many years before they were regularly taught. They have not had the opportunity to acquire new skills and knowledge.

To profit from the inherent abilities and experience of these older engineers, continued education seems to be required. Formal programs embracing the new knowl-
edge will allow them to turn the technical corners around which their fields have moved, then to progress to positions of responsibility.

For many years some colleges of engineering have conducted programs in extension or continuing education, but these are not the programs of which I write. In fact these programs all too often pointed in the other direc-tion-toward upgrading a high school graduate to do more adequately the work of a technician. Short courses for such practitioners, review for professional examinations, or undergraduate work on the nondegree level were usual, but little was done for the engineering graduate to allow him to maintain his place in a fast-moving technology. Today we are beginning to recognize the need for both short and long courses, directed not toward graduate degrees but providing modern technology in concise and direct form to the men now in supervising or managerial positions. The Engineers Joint Council is discussing methods, and some schools are already offering seminar series and courses of varying lengths, but much greater availability is needed. Here, perhaps, using closed-circuit television, we can extend the abilities of our thin faculty ranks, and make available experts from the laboratories.
Not all industry is aware of the need for re-educationalthough our electrical industry is largely on board. One large corporation depending upon research for new products has stated that it must undertake such re-education; a second company oriented to production believes it inadvisable to give up the time of the men concerned. Industry must supplyfree time for the men to be benefited; employers must provide part of the motivation to speed the response of the system to technological needs.
Many engineers work with companies too small to undertake their own programs; others work in locations remote from our educational centers. Provision of needed educational media for such men then becomes a responsibility of their technical societies. Engineering journals must become more than technical news magazines; they must pull their members always toward increased technical competence. This is a major tenet of IEEE publications policy; we see incomplete acceptance of the view in other societies.

For the recent graduate there must be opportunity for technical advance through graduate work. Graduate credit programs are already available in our major cities, and are contributing to the employment of new graduates.

We should make good use of short annual seminars for the practicing engineer. At present our job is to reduce the backlog, and to assure that our colleges provide a solid base for today's graduates. Engineering education must drop the concept that it is teaching to earn, and adopt a new philosophy that it is educating for future learning.
J. D. Ryder

Fig. 2. The fishbone (A) and comb (B) antennas, which have a pattern and impedance that are relatively constant over a two-to-one frequency band,

B

Until a few years ago the ultimate limiting factor on the bandwidth of any communication system using radiatedwave propagation was most frequently the antenna. Since the antenna performs the dual functions of an impedance-matching device and a directional radiator, the characteristics of major importance are its impedance and its directional properties. Depending upon the application, one or the other (or both) of these characteristics may limit the useful bandwidth. The required or desired bandwidth also varies markedly with application; for example, the required bandwidth may vary from a few cycles per second for a single-channel VLF system up to about $6 \mathrm{Mc} / \mathrm{s}$ for a single television channel. For multichannel operation, the radio broadcast band covers a three-to-one bandwidth, the VHF television band covers a four-to-one bandwidth, and the high-frequency communication band covers a ten-to-one bandwidth, from 3 to $30 \mathrm{Mc} / \mathrm{s}$. Finally, for countermeasures work it is usual to state that the desired frequency range extends from "dc to light."
Because of the wide variety of operational requirements that exist, there is no unique definition of antenna bandwidth. For our purposes, a broadband antenna will be considered to be one which retains certain desired or specified radiation pattern, polarization, or impedance characteristics over more than an octave (that is, a two-to-one frequency range).

Early broadband antennas

Some of the earliest broadband antennas were longwire types designed to operate in the high-frequency (short-wave) band or in the low-frequency band. For the most part, they were broadband only in the sense that impedance remained relatively constant over the useful
range; in general, no attempt was made to achieve a constant pattern. Among these antennas the well-known rhombic antenna has held a dominant place since the early days of radio. This antenna (Fig, 1) is essentially a resistance-terminated transmission line that has been opened out to form the four sides of a rhombus. Because of the traveling-wave current distribution along the terminated line, the main beam is in the forward direction (toward the termination) at an elevation angle that depends, in a complicated fashion, on the included angle of the rhombus and the lengths of the sides in wavelengths. Fortunately the beam is quite broad in the vertical plane and the angle above ground of the maximum increases as the frequency decreases. This change of angle with frequency is in the correct direction for transmission or reception of ionospherically reflected waves, so a rhombic antenna of fixed dimensions is usable over a wide frequency range (of the order of four to one) in the short-wave band.

The wave antenna, consisting of a long, elevated wire parallel to the ground and resistance-terminated at both ends, is another traveling-wave-type antenna. In contrast with most antennas, which operate best over a highly conducting ground, the wave antenna depends for its operation upon the finite conductivity of the earth beneath it. An incident radio wave traveling along the surface of a finitely conducting earth has a forward tilt and a horizontal component of electric field intensity. It is this horizontal component of electric field, produced by the finite earth conductivity, that induces a traveling wave of voltage in the horizontal wire and the resulting antenna action. Because the antenna has an impedance that is nearly independent of frequency, it is known as an aperiodic antenna. However, the radiation pattern
does vary with the length of the wire in wavelengths, and hence with frequency. Wave antennas are used for long-wave or low-frequency reception.

The fishbone receiving antenna consists of a long resistance-terminated transmission line loosely coupled by capacitors to an array of closely spaced (less than $\lambda / 4$), untuned, horizontal dipoles; see Fig. 2(A). For vertically polarized signals, one half of a fishbone antenna is erected vertically and fed against ground to form a comb antenna; see Fig. 2(B). Tapering the coupling capacitors to larger values towards the termination equalizes the antenna currents and reduces resonance effects. Because the capacitive coupling of the elements to the transmission line is tighter at the higher frequencies, fewer of the elements are strongly excited. Hence, the effective length of the array varies inversely with frequency in such a manner as to maintain a fairly constant pattern, gain, and impedance, over the useful bandwidth of more than two to one. The fishbone and comb antennas have been described chiefly for comparison with the log-periodic dipole and log-periodic monopole types to be described later.

In contrast to the terminated wire and loaded transmission line types just described, there is a class of antennas that owes its broadband properties to broad, specially shaped surfaces. It was recognized quite early that a fat dipole had a much lower antiresonant (full-wavelength) impedance than a thin one, and that in general, fat antennas had smaller impedance variations than thin ones. The importance of broad surfaces was emphasized by Schelkunoff in the treatment of the biconical antenna, and many broad-surfaced specially shaped antennas found early application in television transmitting antennas and countermeasures anteninas. A very successful broadband antenna was the discone ${ }^{1}$ (a cone fed against a disk), which maintained good impedance and pattern characteristics over a four-to-one bandwidth (Fig. 3). For countermeasures work many antennas having surfaces of various shapes were developed, ${ }^{2}$ some of which had remarkably wide impedance bandwidths and usable pattern bandwidths of the order of five to one. It must be admitted, however, that most of these early designs were arrived at by an intuitive or cut-and-try approach.

Another group of antennas, some of which display fairly wide bandwidths, consists of various helical and spiral shapes. When the circumference of a helical antenna is of the order of a free-space wavelength, the antenna radiates in the axial mode--that is, with the maximum radiation along the axis of the helix. In this mode, the helical antenna has desirable impedance, pattern, and circular polarization properties over nearly an octave. ${ }^{3}$ By expanding the diameter of the helix along its length to form a conical monofilar helix fed from the base end, Springer ${ }^{4}$ showed that the bandwidth could be increased. His observation that there appeared to be an effective aperture that moved toward the smaller end of the cone as the operating wavelength decreased was perhaps the first indication of things to come. Later, Chatterjee ${ }^{506}$ also considered monofilar helical antennas formed on a conical surface and fed against a ground plane. He demonstrated that they could be excited from either end, and obtained usable bandwidths of approximately four to one. At about the same time, Turner ${ }^{7}$ proposed a balanced antenna constructed in the form
of an Archimedes spiral. This planar antenna, constructed with narrow constant-width arms and radiating a broad lobe on each side of the structure, gave promise of being usable over the then remarkable bandwidths of between seven and eight to one.

Frequency-independent antennas

In 1954, Rumsey ${ }^{8}$ put forth the idea that a structure entirely definable by angles, without any characteristic length dimension, should have properties that are independent of the frequency of operation. However, all such angle structures extend to infinity, so the key question was which of such structures retained these frequency-independent characteristics when truncated to a finite length. It should be noted that the well-known biconical structure is an angle structure that is not frequency independent when it is truncated to form a practical antenna. Both impedance and pattern vary with frequency for any finite length.

Rumsey proposed that an equiagulat-spiral-structure, which satisfies the angle reguirement, might have the desired properties, and Dyson ${ }^{\text {q-TI }}$ undertook a comprehensive experimental study of an antenna based on the equiangular spiral geometry shown in Fig. 4. The equiangular or logarithmic spiral* is defined by

$$
\rho=e^{a(\phi-\delta)} \text { or } \phi-\delta=\frac{1}{a} \ln \rho
$$

where ρ and ϕ are conventional polar coordinates, and a and δ are constants. In Fig. 4 the edges of the metallic arms are defined by

$$
\rho_{1}=k e^{a \phi} \quad \text { and } \quad \rho_{2}=k e^{a(\phi-\delta)}
$$

for one arm, and by

$$
\rho_{3}=k e^{a(\phi-\pi)} \text { and } \rho_{i}=k e^{a(\phi-\pi-\delta)}
$$

for the other arm, where the constants a, k, and δ determine the rate of spiral, size of the terminal region, and arm width, respectively. With this particular spiral the angle between the radius vector and the spiral remains the same for all points on the curve-hence the term "equiangular spiral." Experimental investigation established that this particular geometry did indeed retain its frequency-independent properties after truncation, and this design was the basis for a large class of successful frequency-independent antennas.
When this angular structure is excited in a balanced manner at the origin, the current flows outward with small attenuation along the spiral arms until a region of given size in wavelengths is reached. In this region (the active or radiating region) essentially all of the incident energy transmitted along the spiral arms is radiated, and somewhat beyond this region the presence or absence of the arms is of no consequence. Because the radiating region is of constant size in wavelengths, it moves toward the origin as the wavelength of operation decreases. The size of effective radiating aperture thus automatically adjusts or scales with frequency of operation in such a manner that the antenna behaves the

[^1]- same at all frequencies. Because of the spiraling of the arms, this scaling is accompanied by a rotation of the radiated field about the axis of the antenna.

It is now known that this automatic scaling of the radiating aperture is a condition for operation in a frequency-independent manner. It is interesting to note that Springer observed this phenomenon on the expanding helix, but unfortunately the methods of construction and excitation limited the bandwidth obtainable to something over an octave, so the importance of scaling of effective aperture with frequency was not fully recognized. Chatterjee's measurements also show evidence of scaling with frequency in the near-field amplitude plots from which he calculated radiation patterns; but again, possibly because of the physical configuration and method of feed, the full significance of this scaling does not appear to have been appreciated. In a similar manner, the radiating aperture of the Archimedes spiral antenna tends to scale with frequency; however, because the width and spacing of the spiral arms in the radiating region are not constant in wavelengths, as frequency is varied, the antenna characteristics change (albeit slowly) with frequency.

At this point it is necessary to define the term "frequency independent" when it is used with a practical finite-sized structure. If the antenna-is exeited by-avoltage applied between the two arms at the acigin, it has an impedance and radiation pattern that are essentially constant* (that is, independent-of-frequeney) for all frequencies above that for which the outer diameter of the truncated strueture-is-appreximpatelymhalf a wavelength up to the frequency at which the diameter of the feed region (as determined by the fransmission line feed) is comparable with a half wavelength. Since these two dimensions can be specified maeperdenty; the design bandwidth can be made arbitrarily large; actually it is limited only by practical considerations of con-struction-that is, how large the outer diameter is made and how finely the geometry at the feed region can be modeled.

The equiangular spiral antenna, which is bidirectional, radiates a very broad, circularly polarized beam on both sides of its surface. This bidirectional characteristic severely restricts its utility in practice, but a modified version, to be described later, provides a highly practical, extremely broadband antenna.

Log-periodic antennas

In 1955, working with Rumsey on broadband antenna development, DuHamel ${ }^{12}$ proposed that it should be possible to force radiation from otherwise "angle .structures" by the use of appropriately located discontinuities. One of the first geometries chosen to investigate the validity of this concept was that shown in Fig. 5. Here two wedge-shaped metallic angle structures have teeth cut into them along circular arcs. The radii of the arcs which define the location of successive teeth are chosen to have a constant ratio $\tau=R_{n+1} / R_{n}$. This same ratio τ defines the lengths and the widths of suc-

[^2]

Fig. 3. The discone, a successful early broadband antenna having a useful bandwidth of approximately tour to one.

Fig. 4. Sketch showing the geometry of the equiangular (or logarithmic) spiral antenna with equations of the edges.

Fig. 5. A sheet-metal log-periodic antenna.

cessive teeth. From the principle of modeling it is evident for this structure, extending from zero to infinity and energized at the vertex, that whatever properties it may have at a frequency f will be repeated at all frequencies given by $\tau^{n} f$, where n is an integer. When plotted on a logarithmic scale, these frequencies are equally spaced with a period equal to the logarithm of τ; hence the name "log-periodic" structure. Log-periodicity guarantees only periodically repeating radiation pattern and impedance. However, for certain types of such structures and for values of τ not too far from unity, variation of characteristics over a period can be quite small, and an essentially frequency-independent structure results. It is important to note that only a relatively few of the nearly infinite variety of log-periodic structures will make successful broadband antennas in the sense that the impedance and pattern characteristics will remain constant when the structure is truncated to a finite length. It happens that the geometry of Fig. 5 did result in a successful log-periodic antenna.

The antenna of Fig. 5 was designed to have one other rather special property; namely, that the metal cut away from the plane sheet to form the antenna arms has identical shape with the metal that remains. In other words, the complementary slot antenna has the same size and shape as the metallic dipole antenna. Now by an extension of Babinet's principle it is known that complementary-dipole and slot antennas have impedances Z_{d} and Z_{s}, respectively, related by $Z_{d} Z_{s}=$ $(60 \pi)^{2}$. Because the slot antenna and dipole antenna are the same (for the geometries chosen) it follows that $Z_{d}=Z_{s}=60 \pi \approx 189 \mathrm{ohms}$, a result that is independent of frequency. Hence this particular geometry assured constant impedance, although not constant radiation pattern, independently of the other consideration of logperiodic geometry. In view of this use of Babinet's principle in the design of these planar structures, the next step to be taken was a bigger one than might at first appear.

Unidirectional frequency-independent and \log-periodic antennas. Both the equiangular spiral antenna (Fig. 4) and the \log-periodic antenna (Fig. 5) radiate equally on both sides of the plane of the antennas, a result that severely limits their usefulness. A major step forward was made in extending the range of practical application when Isbell ${ }^{13}$ bent the two arms of the planar $\log _{-}$ periodic structure toward each other (out of the plane) to form the nonplanar V-shaped antenna of Fig. 6. Two rather surprising results were observed. As the angle between the two arms of the antenna was decreased from 180° the radiation pattern changed from bidirectional to undirectional, with the major radiation off the apex of the antenna-that is, in the backward direction. Moreover, although one of the necessary conditions for Babinet's principle (that of a plane surface) was now violated, the impedance continued to remain nearly constant with frequency, but at a different value, which depended upon the angle between the arms. This nonplanar version of the log-periodic structure, radiating a plane-polarized unidirectional beam, greatly increased the utility of the log-periodic structures.

The frequency-independent logarithmic spiral structure also found wider use when Dyson developed a unidirectional version by wrapping the balanced spiral arms on the surface of a cone, as shown in the antenna of Fig.

Fig. 6. Nonplanar, unidirectionallog-periodic antenna.

Fig. 7. Unidirectional conical spiral antenna.

7. For appropriately chosen rates of spiral this modified version continued to yield essentially frequency-independent performance. For cone angles of less than about 45° the pattern became unidirectional with a broad-lobed beam, again in the backward direction off the apex of the cone.
The conical equiangular spiral antenna is a balanced structure, which may be fed (at the apex) by means of a balanced transmission carried up inside and along the axis of the cone. Alternatively, it may be fed as illustrated in Fig. 7 by a coaxial cable carried along and soldered in contact with one of the arms. Because the amplitude of antenna current on the arms, and also on the outside of the coaxial cable, falls off quite rapidly with distance from the apex, the ends of the arms where the cable enters is essentially a field-free region. This type of feed automatically provides a frequency-independent balun (balanced converter), permitting the balanced antenna to be fed by means of an unbalanced coaxial line. To maintain physical symmetry a dummy cable is usually soldered to the other arm. Conical equiangular or log-spiral anteninas have been constructed to operate over bandwidths of higher than 40 to 1 . The bandwidth obtained is at the discretion of the designer. The upper usable frequency is determined by the truncated region at the apex, which must remain small in terms of wavelengths, and the lowest usable frequency is set by the base diameter of the cone, which must be at least $3 / 8$ wavelength at the lowest frequency of operation for spirals that are wrapped fairly tightly.

A further modification of the conical equiangular spiral results in a very practical, easily constructed antenna. If the width of the expanding arms is narrowed and they are allowed to degenerate to constant-width structures, the cables alone can form the arms. For fairly tightly spiraled antennas there is little change in the characteristics from those of an antenna with narrow expanding arms.

Other types of log-periodic antennas. The practical value of the log-periodic approach was enhanced even

Fig. 8. Log-periodic wire antenna for frequencies of 11 to $60 \mathrm{Mc} / \mathrm{s}$. (Photo courtesy Collins Radio Company.)

further when DuHame ${ }^{14}$ and co-workers demonstrated that successful log-periodic antennas could be made with wire structures as well as sheet structures. This development extended the range of application down from microwaves through the high-frequency band. A typical wire version of a log-periodic antenna is shown in Fig. 8. It was also demonstrated that for higher gain a frequency-independent array of log-periodic antennas could be constructed by arranging the antennas like the spokes of a wheel with the origins of the individual antennas at the hub.

Still another application of the log-periodic principle is the log-periodic dipole array ${ }^{15}$ of Fig. 9. As with all log-periodic geometries, all dimensions are increased by a constant ratio in moving outward from the origin. Thus the lengths and spacings of adjacent elements must be related by a constant scale factor τ, as follows:

$$
\frac{l_{n}}{l_{n-1}}=\frac{d_{n}}{d_{n-1}}=\tau
$$

Although at first glance this antenna might appear similar

to the early fishbone antenna with $\tau=1$, there are several essential differences. For successful operation, the logperiodic dípole array must be fed with a transposition of the transmission line between adjacent dipole elements. The antenna is then caused to radiate in the backfire direction (that is, toward the source), a condition which appears to be necessary for successful untictrectional frequency-independent or log-periodic operation. The

Fig. 9. Log-periodic dipole antenna array. A-Lengths and spacings of elements. E-Method of feeding.

B

active portion of the array from which most radiation occurs is centered around those elements near resonance (for which l_{n} is somewhat less than $\lambda / 2$). As the frequency is changed the active region moves back or forth along the array. Because practically all of the input power is absorbed in and radiated by the active portion, the larger elements to the right of the active region are not excited. Moreover, because the beam is directed toward the feed point at the left, these larger elements are in an essentially field-free region, and so do not adversely affect the operation. The shorter elements to the left of the active region are in the beam but, because of their short lengths, close spacings, and alternate phasings, have small influence on the pattern.
Basic principles of operation of \log-periodic and fre-quency-independent antennas. Of the almost unlimited variety of log-periodic structures that can be devised, only a small fraction will produce successful antennas

Fig. 10. Array of equispaced isotropic radiators.
when truncated. It is interesting to search out the essential requirements for successful design. The operation of the log-periodic dipole array of Fig. 9, being simple and easily understood, will be analyzed in some detail. From the understanding so gained it should be possible to extend the analysis to less familiar geometries, and then to frequency-independent antennas in general.

At this point it will be advantageous to recall some of the basic notions of antenna array theory. Consider an n-element array of equispaced isotropic radiators (Fig. 10) having equal current amplitudes and a spacing d less than one-half wavelength. (An isotropic radiator is one that radiates uniformly in all directions; a simple dipole antenna is an isotropic radiator in the H plane perpendicular to its axis.) At a distant point the electric fields from these radiators will add with a phase angle between them which is dependent upon the relative phasings of the radiator currents and the relative phase delays produced by the difference in path lengths to the distant point. For the array shown the phase difference due to path length difference between adjacent elements is $(2 \pi / \lambda) d \cos \phi$ radians. If the elements of the array are fed with a progressive phasing of currents equal to α, where α represents the angle by which the current in a given element leads the current in the preceding element, then at the distant receiving point the phase difference of the fields produced by adjacent elements will be

$$
\begin{equation*}
\psi=\alpha+\frac{2 \pi}{\lambda} d \cos \phi=\alpha+k d \cos \phi \tag{1}
\end{equation*}
$$

where $k=2 \pi / \lambda$ is the free-space phase-shift constant. The total electric field at any distant point will be given by the phasor sum

$$
\begin{equation*}
E_{t}=E_{0} 1+e^{j \psi}+e^{j 2 \psi}+\ldots+e^{j(n-1) \psi} \tag{2}
\end{equation*}
$$

where E_{0} is the field intensity at the reception point produced by current I_{0}. E_{t} can be obtained graphically

from the construction of Fig. 11(A). Using the particular value of α, and computing ψ from (1) for various values of ϕ, the construction of Fig. 11(A) can be used to determine a radiation pattern of the array; see Fig. $11(\mathrm{C})$. It is evident that the total field intensity will be maximum when $\psi=0$, so that all fields add in phase.

Therefore, for a maximum, $\psi=\alpha+k d \cos \phi=0$. The angle ϕ_{m} for maximum radiation is given by

$$
\begin{equation*}
\cos \phi_{m}=-\frac{\alpha}{k d} \quad \text { or } \quad \phi_{m}=\cos ^{-1} \frac{-\alpha}{k d} \tag{3}
\end{equation*}
$$

If the elements are fed in phase, $\alpha=0$, and $\phi_{m}=90^{\circ}$, so the maximum radiation is broadside. If successive elements are fed with a lagging phase of value, $\alpha=-k d$, than $\phi_{m}=0$, so the maximum radiation is endfire in the forward direction. If successive elements are fed with a leading phase of value, $\alpha=+k d$, than ϕ_{m} will equal 180°, and the maximum radiation will be endfire in the backward direction. For values of α between - $k d$ and $+k d$, the angle of maximum radiation is at an angle between 0 and 180° as given by Eq. (3). By symmetry about the axis of the array, there is another maximum at an angle between 0 and -180°, which is also given by (3). When $|\alpha|>k d$, Eq. (3) cannot be satisfied for any real value of ϕ; that is, there is no value of ϕ in the "visible" range between 0 and 180° (hence, also between 180° and 360°) that will produce a maximum-in the sense that all the radiations add in phase. However, if $|\alpha|$ is only slightly greater than $k d$, so that ψ is not much larger than zero, the total field can still be quite strong in the forward direction ($\phi=0$) for negative α, or in the backfire direction ($\phi=180^{\circ}$) for positive α. This case is illustrated by the sketch of Fig. 11(A). On the other
hand, if $|\alpha|$ is considerably greater than $k d$ (that is, the phase shift between elements is large), the phase diagram might be as illustrated in Fig. 11(B), with a resulting small total E_{t} for all values of ϕ.

For these cases of large phase shift, as shown in Fig. $11(\mathrm{~B})$, there is no major lobe anywhere, and the array radiates only feebly, scattering its small radiated energy in various directions.

The elementary notions just discussed can be applied with some slight modification to an analysis of the logperiodic dipole array sketched in Fig. 12. For this purpose, it is helpful to consider separately three main regions of the array.

1. Transmission-line region. The antenna elements in the transmission-line region are short compared with the resonant length (that is, $l \ll \lambda / 2$), so the element presents a relatively high capacitive impedance. The element current is small and leads the base voltage supplied by the transmission line by approximately 90°. The element spacing is small in wavelengths and the phase reversal introduced by transposition of the transmission line means that adjacent elements are nearly 180° out of phase. More precisely, each element current leads the preceding element current approximately by $\alpha=\pi-$ βd, where d is the element separation and $\beta=2 \pi / \lambda=$ ω / v is the phase-shift constant along the line. In general β, λ, and v will differ from their free-space values owing to the loading effect of the elements on the transmission lines. Because of the phasing and close spacing of the elements, radiation from this region will be very smail and in the backfire direction.
2. Active region. In the active region the element lengths approach the resonant length (l slightly less than

Fig. 12. Transmission-line representation of log-periodic dipole array.

$\lambda / 2$), so the element impedance has an appreciable resistive component. The element current is large and more nearly in phase with the base voltage; the current is slightly leading just below resonance and slightly lagging just above resonance. The element spacing is now sufficiently large to allow the phase of current in a given element to lead that in the preceding element by an angle $\alpha=\pi-\beta d$, which may approximate $\pi / 2$ radians. This combination of conditions will produce a strong radiation in the backfire direction.
3. Reflection region. The element lengths in the reflection region are greater than the resonant length ($l \geq \lambda / 2$), so the element impedance becomes inductive and the element current lags the base voltage. The base voltage provided by the transmission line is now quite small, because in a properly designed array nearly all of the energy transmitted down the line has been abstracted and radiated by the active region. The element spacing may now be larger than $\lambda / 4$. However, as will be shown later, the phase shift per unit length along the line in this region is smali, so the resulting phasing between elements (including the phase reversal introduced by the transposition) is such that any small amount of radiation is still in the backfire direction. In addition, it will be demonstrated later that the characteristic impedance of the transmission-line becomes reactive in this region. Thus, any small amount of incident energy transmitted through the active region is not accepted in the reflection region but is reflected back toward the source.

The array as a loaded transmission line. Some of the remarkable properties of log-periodic and frequencyindependent antennas are attributable to the propagation characteristics of the equivalent loaded transmission line that conveys energy from the source to the radiating portion of the antenna. These effects are particularly easy to see in the case of the log-periodic dipole array, shown in Fig. 12. On the feed line to the antenna, region 0 , the series inductance and shunt capacitance per unit length are shown as L and C, respectively. In the transmission region of the antenna, region 1, the transmission line is loaded by a capacitance per unit length C_{a} that represents the loading effect of the short dipoles, which have a capacitance reactance. It is noted that to the first approximation C_{a} is nearly constant throughout this region because at the beginning of the region the capacitance per element is small, but the elements are closely spaced, whereas near the end of the region the capacitance per element is larger, but so is the spacing. The effect of the augmented shunt capacitance of the line $\left(C+C_{a}\right)$ is to increase the phase delay per unit length, and since $\beta=2 \pi / \lambda=\omega / v$, this means a decrease of wavelength λ and a decrease of phase velocity v along the line below the free-space values. This is said to be a "slow wave" region of the transmission line. Note, however; that because of the transposition of the feed line between elements, successive elements are fed with a leading phase shift of $\pi-\alpha$ per section. This rapid phase shift in the reverse direction corresponds to a slow wave in the backward direction along the antenna elements.

In region 2, the element lengths approach the resonant length and the transmission line loading becomes resistive, designated by the shunt resistance R_{u} in series with the antenna capacitance C_{a} and antenna inductance L_{a}. The phase shift per unit length, the wavelength, and the phase velocity all approach their free-space values.

Because of the transposition between elements, and accounting for the fact that the element current leads the base voltage by lesser amounts in successive elements as the resonant length is approached, it turns out that phasing of currents in the elements corresponds to a backward traveling wave having a velocity y somewhat less than c, the velocity of light.

In region 3 the element lengths become longer than the resonant length, the antenna inductive reactance pre-

Fig. 13. Base voltages along a typical 13 -element logperiodic dipole array at a frequency for which element 4 is half of a wavelength.

Fig. 14. Element currents corresponding to Fig. 13.

\because dominates, and the loading effect on the line is represented by the shunt inductance L_{a}. If the parallel combination of L_{a} and C is inductive, we have the equivalent of the attenuation region of a filter. The phase shift per unit length is then zero (for the lossless case) and the phase velocity is infinite; that is, there is no wave motion. The incident energy propagating down the line is no longer accepted but is reflected back toward the source. These results are strictly true only in the case of a lossless filter, but they form the first approximation in the case of a lossy filter.
The general features outlined in the foregoing discussion will be illustrated for a particular log-periodic dipole array, which has been analyzed in considerable detail. ${ }^{16}$ Fig. 13 shows the amplitude and phase of the transmission line voltage along a particular 13 -element log-periodic dipole array. Distance is shown measured from the apex of the array, and the elements are numbered starting with the largest element as number 1 . This set of data is for a frequency f for which element number 4 is $\lambda / 2$ long. Several interesting aspects of the data are immediately apparent: In the transmission region (elements 13 to 7), the amplitude of voltage along the line is approximately constant and the phase shift between element positions increases gradually from about 20° to 30°. (Because of the transposition between elements, this means that adjacent elements are fed with a progressive phase lead 160° to 150°.) In the active region (elements 7 to 4) the amplitude drops sharply because of power absorbed by the strongly radiating elements, and the phase shift averages about 90° between adjacent elements. Finally, in the unexcited or reflection region (elements 3 to 1), the amplitude drops to very low values and the phase shift between element positions is nearly zero (corresponding to the zero phase shift or infinite phase velocity in the attenuation region of a lowpass filter).

The resulting element currents for the log-periodic dipole array of Fig. 13 are shown in Fig. 14, both in amplitude and phase. From the current amplitudes (noting that small contributions from elements 12 through 8 tend to cancel one another because of the nearly 180° phase shift between them), it is evident that the only elements that will contribute appreciably to the radiation are elements 7, 6, 5, and 4. For these elements, the phase difference between adjacent members is approximately 90° leading, so a backfire radiation will be expected. The phasor diagrams for $\phi=0^{\circ}, 90^{\circ}$, and 180° are shown in Fig. 15 and the resulting radiation patterns are shown in Fig. 16. (The E-plane pattern is the Hplane pattern modified by the directivity of the individual elements in this plane.)

As operating frequency is decreased or increased the active region moves up or down the array, but radiation pattern and input impedance remain almost constant.

General properties of log-periodic and frequencyindependent antennas. The manner of operation of the log-periodic dipole array has been described in some detail because of the insight it gives into what are believed to be general requirements for successful frequencyindependent operation. These appear to be as follows:

1. An excitation of the antenna or array from the highfrequency or small end of the antenna.
2. A backfire radiation (in the case of unidirectional radiators), so that the antenna fires through the small

Fig. 15. Phasor sum of radiated fields from currents shown in Fig. 14; for ϕ values of $0^{\circ}, 90^{\circ}$, and 180°.

Fig. 16. Radiation patterns resulting from fields shown in Fig. 15. A-H-plane pattern. B-E-plane pattern.

part of the antenna, with the radiation in the forward direction being zero or at least very small. For bidirectional antennas the backfire requirement is replaced by a requirement for broadside radiation. In any case, the radiation in the forward direction along the surface of the antenna (which theoretically extends to infinity) must be zero or very small.
3. A transmission region formed by the inactive portion of the antenna between the feed point and the active region. This transmission line region should have the proper characteristic impedance and negligible radiation.
4. An active region from which the antenna radiates strongly because of a proper combination of current magnitudes and phasings. The position and phasing of these radiating currents are such as to produce a very small radiation field along the surface of the antenna or array in the forward direction, and a maximum radiation field in the backward direction (broadside for bidirectional antennas). For successful backfire antennas these requirements are frequently met with separations less than a quarter wavelength and phasings near 90° leading, for adjacent elements in the active region. For broadside radiation the phasings must, of course, be zero.
5. An inactive or reflection region beyond the active region. All successful frequency-independent antennas must exhibit a rapid decay of current within and beyond the active region, so that operation will not be affected by truncation of the structure. A major cause of the rapid current decay is, of course, the large radiation of energy from the active region. An additional cause, in at least some types of frequency-independent and logperiodic antennas, is the attenuation resulting from the rejection of incident energy by the reflection region (the filter stop-band effect mentioned previously). The prevalence and importance of this latter filter action are still uncertain.

Finally, two other observations may be made. Although we have tended to think of the structures of Figs. 4, 5, 7, and 8 as single antennas and the structure of Fig. 9 as an antenna array, it appears that most frequencyindependent and log-periodic antennas may be thought of as antenna arrays, with the array factoc playing an important role in the formation of a proper endfire or broadside pattern. The localization of the individual radiating elements may be easier to see for the ease-of the \log-periodic dipole array of Fig. 9, but the array action can also be observed in the other cases; it is particularly evident in the case of the fairly tightly wrapped conical log-spiral.

The second observation relates to the similarity between antennas derived from the angle concept and log-periodic concept. ${ }^{17}$ Both lead to a solution of the unlimited-bandwidth problem and for this reason both have come to be known as frequency independent.

An example of the similarity between these two antenna types can be demonstrated in the case of the log-periodic wire antenna of Fig. 8, which produces a linearly polarized beam off the apex with the electric vector parallel to the transverse elements. If two such antennas are arranged in space quadrature along a common axis, and with a common origin but with one structure scaled a quarter period from the other, the resultant combination
produces a circularly polarized beam with a pattern that rotates about the axis with frequency, exactly as in the case of the conical equiangular spiral antenna. Conversely, of course, if the pattern of a conical equiangular spiral is probed with a linear receiving antenna of fixed plane of polarization, the measured pattern will vary logperiodically with frequency, as does the pattern of the antenna of Fig. 8.
In addition, it is pertinent to note that if a narrow-armed conical equiangular spiral (an angle structure) is flattened sideways (along the axis), it becomes a log-periodic zigzag antenna.

Recent developments

The log-periodic and angle concepts have been used to generate many highly useful antennas of large bandwidth. Fig. 17 shows a very practical two-element array of log-periodic dipole arrays capable of maintaining a nearly constant radiation pattern and a $50-$ ohm input impedance over the frequency range from 450 to $2000 \mathrm{Mc} / \mathrm{s}$. The $50-\mathrm{ohm}$ input impedance results from feeding two 100 -ohm arrays in parallel. Although the dipole array is a balanced structure, it can be fed as shown with a coaxial cable running up the inside of one of the hollow transmission lines, utilizing the frequencyindependent balun effect previously noted in connection with the conical log-spiral antenna.

Fig. 17. Two-element array of log-periodic dipole arrays.

Fig. 18 shows one version of the log-periodic resonantV developed by Mayes and Carrel. ${ }^{18,19}$ This antenna was designed to overcome one of the major shortcomings of the ordinary log-periodic dipole array-namely, the long physical length of array required to cover a very wide band of frequencies. The antenna of Fig. 18 is designed to operate in several modes. In the lowest order $\lambda / 2$ mode, the operation is similar to that of the log-periodic dipole array because the forward tilt of the elements has small effect for this mode. However, as the frequency of operation is increased beyond that at which the shortest elements are resonant-that is, when the active region runs off the front end of the array-the largest elements at the rear become active in the $3 \lambda / 2$ resonance mode. In this mode the forward tilting of the elements ensures a good unidirectional pattern of high directivity. As the frequency is further increased, the active region moves forward through the array in the $3 \lambda / 2$ mode until once again it runs off the front end, to return to the rear in the $5 \lambda / 2$ mode. This scheme makes it possible to obtain large bandwidths of the order of 20 to 1 with a relatively compact array. The pattern and impedance characteristics remain good over the entire frequency spectrum except for intervals about the mode-transition frequencies. Based on these principles, arrays have been designed to cover all of the television channels from 2 through 83, corresponding to a frequency range from 54 to 890 Mc / s.

Another interesting development is that of a logperiodic folded-dipole array. At first thought it would appear that such an array could not work because the short elements at the front of the array present a very low impedance, thus short-circuiting the transmission
region leading to the active region. This difficulty is circumvented ${ }^{20}$ by connecting the folded dipoles in series with the transmission line, rather than in shunt, and recognizing that the active region will occur near first resonance, that is near the element length $(\lambda / 4<l<$ $\lambda / 2$) where the capacitive reactance of the short antenna resonates with the inductive reactance of the folded dipole viewed as a short-circuited transmission line. This unusual operating mode for the folded dipole results in a shorter element length for resonance, and consequently a narrow width for the resulting foldeddipole array.

A major problem with log-periodic structures has been the design of an antenna that will operate successfully when fed against a ground plane to produce vertical polarization. One half of the antenna of Fig. 8 can be operated over ground to produce horizontal polarization, as can an inclined horizontal log-periodic dipole array. For vertical polarization, particularly in the highfrequency band ($3-30 \mathrm{Mc} / \mathrm{s}$), it is desirable to use the equivalent of a log-periodic monopole array that has a height of only approximately $\lambda / 4$ at the lowest operating frequency, rather than $\lambda / 2$. Because of the necessity for introducing a transposition between elements (or otherwise producing the required phase difference between elements) it is not possible simply to use one half of a log-periodic dipole array fed against ground.

Several solutions to this problem, having varying degrees of success for different applications, have been developed by a number of workers in the field. ${ }^{21-23}$ A quite recent development ${ }^{24}$ using folded monopoles with added phasing elements promises to be very useful.

Three versions of this antenna are shown in Fig. 19.

Fig. 18. Log-periodic resonant-V array, for operation in several modes.

C

D

2 Fig. 19. Log-periodic arrays of folded elements.
A-Log-periodic folded-dipole array. B-Log-periodic folded-monopole array. C-Log-periodic folded-slot array. D-Duals: folded slot and folded dipole.

Fig. 20. Model of wide-aperture log-periodic array for high-frequency radio direction finding ($3-30 \mathrm{Mc} / \mathrm{s}$).

The log-periodic folded-slot array (A) was conceived first; but by duality, the log-periodic folded-dipole array (B) is obtained automatically. Because this array possesses the proper image symmetry about the horizontal axis (horizontal currents in opposite directions, vertical currents in the same direction), one half of the array can be fed against a ground plane to produce the folded monopole array of (C). The duals, folded slot and folded dipole, are illustrated in (D). The dimensions of the phasing slots in (A), or phasing strips in (B) and (C), are adjusted experimentally to provide the required phasing between successive dipoles or monopoles to produce a good backfire beam.

For greater directivity than can be achieved with a single frequency-independent antenna (or array) it is possible to use the frequency-independent structure as the broadband feed of a large paraboloid. Although the resultant combination is no longer frequency independent, high-gain antennas having a usable bandwidth as high as ten to one have been built by use of this approach.

Some of the high-gain paraboloid tracking antennas for the Atlantic Missile Range have been modified to use two conical log-spiral antennas as a circularly polarized broadband feed in a conical scan system. This application covers a frequency band of 215 to 1000 Mc / s, but the feed elements themselves are capable of operating continuously to $2300 \mathrm{Mc} / \mathrm{s}$.

An alternative approach to the high-gain broadband problem is illustrated in the model of a broadband ($3-30 \mathrm{Mc} / \mathrm{s}$) wide-aperture radio-direction-finding array shown in Fig. 20. For frequency-independent arraying, the individual elements should lie along radials and be arranged to fire inward toward the common origin (toward the hub of the wheel). Unfortunately this arrangement requires opposite elements to fire through each other, and severe pattern deterioration results. In the array of Fig. 20 the log-periodic antennas fire outward. A 100° sector of elements is connected together through an appropriate phasing network and rotating switch or goniometer to form a narrow beam, which rotates with the goniometer as the latter connects in elements on one side of the sector and disconnects them on the other side. Again, this arrangement is far from being frequency independent, but the use of broad-band log-periodic structures as array elements is an improvement over the earlier use of frequency-sensitive elements.
This last example indicates that although truly remarkable progress has been made in the past decade in achieving broadband antenna operation there still remain some challenging problems for the future. Among these challenges are the design of broadband antennas having very high gain, and the design of frequency-independent antennas to produce specified radiation patterns.

REFERENCES

1. Kandoian, A. G., "Three New Antenna Types and Theír Applications," Proc.1RE, vol. 34, Feb. 1946, pp. 70W-77W.
2. Nash, C. C., and Martin Chase, "Antennas for High Speed Aircraft," Rept. TR-5, Univ. of Illinois Antenna Lab., Urbana, USAF Contract W33-038-AC20778, Feb. 1949.
3. Kraus, J. D.," "Helical Beam Antenna for Wide-Band Applications,"Proc.IRE, vol. 36, Oct. 1948, pp. 1236-1242.
4. Springer, P. S., "End-Loaded and Expanding Helices as Broadband Circularly Polarized Radiators," Proc. Nat'l Electronics Conf., vol. 5, 1949, pp. 161-171.
5. Chatterjee; J. S., "Radiation Field of a Conical Helix," J. Appl. Phys., vol. 24, May 1953, p. 550.
6. Chatterjee; J. S., "Radiation Characteristics of a Conical Helix of Low Pitch Angles," Ibid., vol. 26, Mar. 1955, pp. 331335.
7. Turner, E. M., "Spiral Slot Antenna," Tech. Note WCLR 55-8, Wright Air Development Center, Dayton, Ohio, June 1955.
8. Rumsey; V. H., "Frequency Independent Antennas," IRE Nat'l Convention Record, pt. I, 1957, pp. 114-118; also Rept. TR-20, Univ. of Illinois Antenna Lab., Contract AF33(616)-3220, Oct. 1957.
9. Dyson, J. D., "The Equiangular Spiral Antenna," Proc. Fifth Symp. on USAF Antenna Res. and Dev. Program, Allerton Park, Monticello, Ifl., Oct. 1955 (classified).
10. Dyson, J. D., "The Equiangular Spiral Antenna," Rept. TR-21, Dept. of Elec. Eng., Univ. of Illinois, Contract AF33 (616)-3220, Sept. 15, 1957.
11. Dyson, J: D., "The Equiangular Spiral Antenna," $1 R E$ Trans. on Antennas and Propagation, vol. AP-7, Apr. 1959, pp. 181-187.
12. DuHamel, R. H., and D. E. Isbell, "Broadband Logarithmically Periodic Antenna Structures," IRE 1957 Nat'l Convention Record, pt. I, pp. 119-128.
13. Isbell, D. E., "Non-planar Logarithmically Periodic Antenna Structure," Rept. No. 30, Univ. of Illinois Antenna Lab., Feb. 1958.
14. DuHamel, R. H., and F. R. Ore, "Logarithmically Periodic Antenna Designs," IRE 1958 Nat'l Convention Record, pt. I, pp. 139-151.
15. Isbell, D. E., "Log-Periodic Dipole Arrays," IRE Trans. on Antennas and Propagation, vol. AP-8, May 1960, pp. 260-267.
16. Carrel, R. L., "Analysis and Design of the Log-Periodic Dipole Antenna," Rept. No. 52, Univ. of Illinois Anterna Lab, Contract AF33(616)-6079.
17. Deschamps, G. A., and R. H. DuHamel, "Frequency Indspendent Antennas," Chap. 18 in Antenna Engineering Handbook, Henry Jasik, ed. New York; McGraw-Mill Book Co., Inc., 1960.
18. Mayes, P. E., and R. L. Carrel, "Log-Periodic Resonant-V Arrays," presented at Wescon, San Francisco, Calif., Aug, 22-25, 1961.
19. Mayes, P. E., "Broadband Backward Wave Antennas," Microwave J., yol. 6, no. 1, Jan. 1963, p. 2.
20. Balmain, K. G., and J. D. Dyson, "The Series-Fed, LogPeriodic Folded Dipole Array," Digest IEEE PTG-AP Internat'l Symp., Boulder, Colo., 1963, pp. 143-148.
21. Ore, F: R., "Investigation of the Log-Periodic Coaxial Fed Monopole Array," Tech. Note No. 1, Univ. of Illinois Radiolocation Research Lab., Contract NOBSR 85243, Oct. 1963.
22. Berry, D. G., and F. R. Ore, "Log-Periodic Monopole Array," IRE 1961 Internat' Convention Record, pt. I, pp. 76-85.
23. Wickersham, A. F., R. F. Franks, and R. L, Bell, "Further Developments in Tapered Ladder Antennas," Proc. IRE, vol. 49, Jan. 1961, p. 378 .
24. Greiser, John, "Research on Log-Periodic Arrays of Slots," Tech. Rept. No. 3, Univ. of Illinois Antenna Lab, Conteact NOBSR 85243 . Feb- 1964.

The original work on the logarithmic spiral and logarithmic periodic antennas at the University of Illinois was made possible by the sponsorship of the Aeronautical Systems Division, Wright Air Development Division, U.S. Air Force. Current work is being supported by Wright Air Development Division, Wright-Patterson Air Force Base, The Naval Electronics Laboratory, and the U.S. Army Signal Supply Agency.

Thin-film circuit technology

Miniaturization requirements have brought about the integral fabrication of many components. The thin-film approach permits the integration of numerous precision circuit elements and their interconnections. Part I of this three-part series deals mainly with the two deposition techniques of cathode sputtering and vacuum evaporation, and with their use in the fabrication of film resistors, capacitors, and R-C networks. Subsequent articles will discuss thin-film transistors and cryogenic thin films

E. C. Jordan (F) received the B.Sc. and M.Sc. degrees in electrical engineering from the University of Alberta in 1934 and 1936, respectively, and the Ph.D. degree from Ohio State University in 1940. He was control operator at radio station CKUA for seven years, electrical engineer for International Nickel Company for two years, and since 1940 has taught electrical engineering at Worcester Polytechnic Institute, Ohio State University, and the University of Illinois. At the latter two universities he supervised research on antennas and radio direction finding. At present he is a professor and head of the Department of Electrical Engineering at the University of Illinois. Dr. Jordan is author, coauthor, or editor of several books on antennas, electromagnetic theory, and radio and electronics. He is a member of the U.S. National Committee of URSI and past chairman of U.S. Commission VI on Radio Waves and Circuits.

G. A. Deschamps (F) was born and educated in France. He was graduated from the Ecole Normale Supérieure, Paris, in 1934, and received advanced degrees in mathematics and physics from the Sorbonne. He taught mathematics and physics for about ten years at the Lycée Francais de New York. In 1947 he joined the Federal Telecommunication Laboratories, where he worked as a project engineer on direction-finding systems, design of highfrequency and microwave antennas, microstrip development, and radio and inertial navigation. In 1956 he was appointed a senior scientist of the ITT Laboratories. He joined the University of Illinois in 1958 as professor of electrical engineering and director of the Antenna Laboratory.

Prof. Deschamps is a member of the American Physical Society and the International Scientific Radio Union (URSI). He was chairman of the IRE Committee on Antennas and Waveguides from 1957 to 1958 and editor of the IRE Transactions on Information Theory from 1958 to 1960.

J. D. Dyson (SM) received the B.S. degree in economics from South Dakota State College in 1940, was employed for one year as a statistician, and then served on active duty with the U.S. Army from 1941 to 1946. He received the B.S. degree in electrical engineering from South Dakota State College, where he also was a part-time instructor, in 1949, and the M.S. and Ph.D. degrees in electrical engineering from the University of Illinois in 1950 and 1957, respectively. He was on the research staff of the Sandia Corporation, Albuquerque, N. Mex., from 1951 to 1952. Since October 1952 he has been on the faculty of the Electrical Engineering Department of the University of Illinois, where he is now a research associate professor, devoting half time to research work in the Antenna Laboratory and half time to teaching courses in electromagnetic theory and microwave measurements. He is a member of Sigma Xi, Eta Kappa Nu, Sigma Tau, and Pi Mu Epsilon.
P. E. Mayes (M) joined the electrical engineering faculty at the University of Illinois in 1954 and is now a professor, teaching graduate courses in electromagnetic theory and supervising research in the Antenna Laboratory. He received the B.S.E.E. degree from the University of Oklahoma in 1950. He was employed as a graduate assistant and research associate in the Microwave Laboratory at Northwestern University while a graduate student there from 1950 to 1954. He received the M.S. degree in 1952 and the Ph.D. degree in 1955, both from Northwestern. His graduate research work was related to electromagnetic wave propagation along open waveguides and reflection from curved surfaces. At the University of Illinois he has worked on slot antennas, pattern synthesis, and several kinds of frequency-independent antennas. Dr. Mayes has served as consultant to a number of antenna firms and holds several patents in the antenna field.

A. E. Lessor received the B.S. degree in chemistry from Union College in 1949 and the Ph.D. degree in chemistry from Indiana University in 1955 . After working as a consultant on analytical and physical chemical problems at General Electric Co., he joined IBM in 1959 as manager of crystallographic services. He conducted Xray diffraction and optical measurements and also directed independent studies of tin and indiuin films. He was later appointed manager of thin-film materials development, and subsequently of evaporated film development. As manager of film electronics development he is responsible for thin-film network materials and processes.

L. I. Maissel (M) was born in Cape Town, South Africa, in 1930. He received the $\mathrm{B} . \mathrm{Sc}$. degree in physics and chemistry and the M.Sc. degree in physics in 1949 and 1951, respectively, from the University of Cape Town. In 1955 he received the Ph.D. degree from the Imperial College of Science and Technology, London, for work in optical spectroscopy. During 19561960, he was a project physicist with the Philco Corporation, where he worked on semiconductor materials and microminiaturization. He joined IBM in 1960, and is now a senior physicist, directing work on tantalum integrated circuits and exploring new types of sputtered films and techniques.

R. E. Thun (SM), manager of components development at the IBM Space Guidance Center, Owego, N.Y., is responsible for the development of thin-film technologies, magnetic-film storage devices, and integrated circuits. Since joining IBM in 1959, he has worked on problems related to physics of thin films, vacuum technology, electron optics, and computers. He received the Ph.D. in physics from the University of Frankfort-on-the-Main, Germany, and was subsequently engaged in research in metal physics and electron diffraction in Germany. He later worked as a research physicist at the U.S. Army Research and Development Laboratories.

S. M. Fine (M) is an associate professor of electrical engineering at Northeastern University. He received the B.A.Sc. degree from the University of Toronto in 1946 and the S.M. degree from the Massachusetts Institute of Technology in 1953, both in electrical engineering, and the M.D. degree from the University of Toronto in 1957. He interned at the Edward J. Meyer Memorial Hospital, Buffalo, N.Y. He has been associated with MIT's Research Laboratory of Electronics, the National Institutes of Health, and Brookhaven National Laboratory. His interests are in biomedical engineering and effects of radiation on biological systems. He is a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu, and the Society of Nuclear Medicine.
E. Klein received the B.A. degree in plysiology and biochemistry from University College, Toronto, in 1947 and the M.D. degree from the University of Toronto in 1951. He was awarded a two-year National Research Council fellowship at the Laboratories for Physical Chemistry at Harvard University and the Cilhdrens' Cancer Research Foundation, Boston. He was a research associate at that ingititution from 1953 to 1961 and has been a consultant since then. He has been associated with Harvard Medical School, Massachusetts General Hospital, and Tufts University. He is now chief of dermatology, Roswell Park Memorial Institute, and associate professor of experimental pathology at the N.Y. State University at Buffalo.

R. E. Scott (M) received the B.A.Sc. degree in 1943 and the M.A.Sc. degree in 1946, both from the University of Toronto, and the Sc.D. degree from MIT in 1950. From 1943 to 1945 he served as a radar officer in the Royal Canadian Navy. He has held the positions of instructor at the University of Toronto, and research assistant, research associate, and assistant professor at MIT. From 1954 to 1955 he was employed at Trans-Sonics, Inc., and then returned to the field of education to become an associate professor, later a professor, at Northeastern University. At present he is dean of the College of Engineering at Northeastern. Dr. Scott is a member of Beta Gamma Epsilon, Eta Kappa Nu, Tau Beta Pi, and Sigma Xi.

LAW OFFICES

AXEL A. HOFGREN
ERNEST A.WEGNER
JOHN REX ALLEN
WTLLIAM J. STELLMMAN
JOHN 日. MCCORD
GRADFORD WILES
JAMES C. WOOD STANLEY C. DALTON RICHARD S. PHILLIPS LLOYD W. MASON
TEOE E. KILLINGSWORTH
CHARLES L.ROWE \because. JAMES R.SWEENEY
W. E.RECKTENWALD J.R.STAPLETON WILLIAM R. MENAIR JOHN P. MILNAMO W.A.VAN SANTEN, W.A.VAN SANTEN, JR JOHN R.HOFFMAN

Hofgren, Wegner, Allen, Stellman \& McCord

November 23, 1966

Mr. Robert H. Rines
Rines and Rines
No. Ten Post Office Square Boston, Massachusetts 02109

RE: IUF V. BT V. JFD
Dear Bob:
I have had an opportunity to read the transcript of Mr. Finkel's deposition. I enclose a copy of a list of material to be produced by JFD.

Very truly yours,

Richard S. Phillips

RSP:iag

* Enclosure
cc: Mr. I. S. Blonder
Mr. Basil P. Mann
Mr. Myron C. Cass

RECEIVED

NOV 281966
RINESANDRINES
NO. TEN POST CFFICE SOUAEE, EQSTON

1. Date of purchase of Blonder-Tongue ARROW or DART antenna. (Page 48)
2. Results of comparison tests of Blonder-Tongue antenna. (Page 49)
3. Tests or other evidence of infringement supplied to the Foundation with regard to Blonder-Tongue DART and ARROW antennas and correspondence between Mayes and JFD or any other writings bearing on the relationship between the Blonder-Tongue antennas and the Isbell work. (Page 51)
4. All drawings, notebooks or other writings showing dual boom construction and the earliest dates of dual boom construction at JFD. (Page 54)
5. The names of all people who worked with Mr. Grant on any dual boom construction at JFD Laboratories in the spring of 1963. (Page 56)
6. Any documents bearing on the request to JFD from Sears for a VHF-UHF antenna or relating to the initiation of the development project in response to the Sears request. (Page 59)

B \quad Bit
 log-periodic
 FOR CANERALENS SHARPNESS IN EVERY LOCATION

 brackets that align and double-lock elements permanently in place. . . $1^{\prime \prime}$ square oluminum crossarm. . . solia aluminum rod hamess sieevereinforced elements that prevent accidentait bending, kesp alignment true tithore wh he welk
 *Atractive, Anti-corrosive Armor
 -PROVED-OUT IN AIR FORCE SATELITE TELEMETRYEXCLUSIVE FROM, THE LOGPERIOIC \square LM $\frac{4 n}{4}$ T ENDS THE 'ERA OF COMPRCIMISE' IN TV ANTENNA DESIGN

LPV CONSTRUCTION FEATURES

L

a new high-gain all-channel anenna comparable to a yagi acrossthe entire band
 evitopeci to

(1)

0

5

 wixwimixiw
 and finixy
 man andexamix

The esestlis is tar speriar gain, fietedituts,

 mavilochion liochi,

为

You win All ways When You rewure The IFD LOG PRMODIC IPVI

 proor mill losprapoc spy woras asst

衾: 4no 38

Hote is the hotest provit mportumity

great performance and acceptance of the JFD LPV a big part of your 1964-1965 merchandising plans.
 3. Show you all the promotion and display material that
makes your Word's Fair LPV headquarters.
 Antenna Research \& Development Labs.

 Fair by converting it into cash in the till, now

- 6

まut
MTR

 ม!
 3 2 NHM NOM M3IM

AXEL A HOFOREN
ERNEST A WEGNER
JOHNREX ALLEN
WILLAM STELLMAN
JOHNB MCCORD
BRADFORD WILES
JAMES C WOO SAMESCEYC OALTON RICHARD S PHILLLIPS RICHARD S RHILL TED E KILINGSWORT CHARLES L ROWE JAMES R SWEENEY

WERECKTENWALO
WIL.STAREETON JOHNO MILNAMOW DHLIS VALLEN
W. A VAN SANTEN-JR

TELEPHONE
FINANCIAL O-1630 AREACOOE 342 CHICAGOOOEOG

October 7, 1966 Merrian, Marshall, Shapiro \& Klose 30 West Monrce Street Chicago, Illinots 60603

Re: University of Illinois Poundation v. Blonder-Tongue Laboratorles v. JFD Electronics Corporation

Dear Blll:
On October 24 th we would like to take the deposition of HJalmar U. Johnson and whatever other offlcer or employee of the Foundation that is responsible for the following documents, all of which we would like to have brought to the deposition:

1. Coples of all news releases, public announcements, and advertisements emanating from University of Illinois and University of Illinols Foundation relating to the log-periodic antennas covered by the patent in suit and relating to any and $a 11$ licenses under such patent and any and all 11 tigation or intended litigation involving the patent in suit including, but not 11 mited to, the present 11 tigation with Blonder-Tongue.
2. Coples of all writings authorizing the news releases, announcements, and/or advertisements referred to in paragraph 1 and relating to the use of the same.
3. Coples of all corporate by-1aws, minutes and other documents authorizing University of Illinois and University of Illinois Foundation to grant licenses under the patent in suit, including, but not limited to, the commitment of University of Ilinois Foundation with regard to policing said patent, the percentage of sales to be received by University of ILlinois Foundation and the establishment of the policy relating to such pollcing.
4. Coples of any and all requests for exemptions from state and federal taxes by University of IL1inois and

Mr. Willlam A. Marshall
October 7, 1966
Page No. 2

Univeraity of ILInois Foundation during the period of the 11 cense under the patent in suit to JFD, and copies of all other documents that set forth the scope of activities engaged In by University of Illinois and University of Illinois Poundation and/or the sources of income that qualify for such tax exemption.
5. Copies of all agreements including, but not 11 mited to, employment agreements between the inventor of the patent in suit and each of University of Illinois and University of Illinois Foundation.
6. Coples of al1 correspondence, memoranda, corporate records and other documents of University of ILlinois and University of Illinois Foundation authorizing University of Ilinois Foundation to hold title to and to license the patent in suit.
7. Coples of the 11 cense agreement and all other agreements, memoranda and writings relating to the 11 censing and commercialization with JFD and all others in connection with the patent in suit.
8. Coples of all correspondence, memoranda, corporate records and other documents granting permission to or bearing upon the right of JFD to use the name of any of University of Illinois, University of Illinois Foundation or 1 ts employees or the inventor of the patent in suit in connection with advertising, selling and otherwise promoting the antennas IIcensed by University of Illinois Poundation to JFD under the patent in suit.

JRA:DB
bcc: Mr. Robert H. Rines

Merriam, Marshall, Shapiro \& Klose

 THIRTY WEST MONROE STREET CHICAGO.ILLINOIS 60603TELEPHONE
Financial 6-5750
October 14, 1966

Richard S. Phillips, Esquire Hofgren, Wegner, Allen,

Stellman \& McCord
Sutie 2200
20 North Wacker Drive
Chicago, Illinois 60606
Re: University of Illinois Foundation v. Blonder-Tongue Laboratories, Inc. and Allied Radio Corporation Civil Action No. 66 C 567

Dear Dick:
Enclosed is a copy of the first contract
between the Foundation and JFD which has been edited to remove confidential information.

BPM/mto
Enclosure

RECEIVED

OCT19 1966
RINESAND RINES

THIS LICENSE AGREEMENT entered into this 3116 day of May, 2962, by and between the UNIVERSITY op ILEINOIS FOUNDATION, a non-profit corporation organized and existing under and by virtue of the Laws of the State of Illinois, hereinafter referred to as "LICENSOR," and JFD ELECTRONICS CORPORATION, a corporation organized and existing under and by virtue of the laws of the State of New York, hereinafter referred to as MICENSEE."

WIMNESSETH:

WHEREAS, IICENSOR is the owner of the entire ricint, title and interest in and to Letters Patent of the United States as Follows:
i2,958, v81, dated October 25, 1950 J. D. Dyson - entitled "Unidirectional Broadband Antennas,"

2,985,879, dated May 23, 2961R. H. DuHamel - entitled "Frequency Independent Antennas,"

3,011,168, dated November 28, 1961~ D. E. Ispell - entitled "Frequency Independent Unidirectional Antemas,"
as well as U.S. applications for Letters Patent of the
United States, Serial No. 26,589, ivied May 3, 2960 by D. E. Ispell entitled "Frequency Independent Unidirectional 2 Antennas," serial No. 59,671, a11ed September 30, 2960 . by. P. E. Nayes and R. Y. Camel entitled "Frequency Inde-
pendent Unidirectional Antennas," Serial No. 79,432, Eiled December 29, 2960 by J. D. Dyson and P. E. Mayes entitied "Circularlv Polarized Omnidipectional Antema." and Serial No.
as well as the invention set forth and described in and by each of the aforesaid Letters Patent of the United States and appications for Letters Patent of the United States; and

WHEREAS, IICENSOR holds the sole right to grant the ilcense right herein granted and agread to be granted; and

WHEREAS, IICENSEE is desirous of securing, for the term of years hereinafter set forth, an exclusive license to manufacture, use or sell, or to have made for lits use on sale, apparatus of the type described and claimed in and by each of the aforesaid Letters Patent of the United States and applications for Letters Patent of the united States as the same is therein disclosed. and set forth.

NOW, THEREFORE, in consideration of the foregoing and the mutual terms and conditions of this License Agreement and other good and valuable consideration, the receipt and sufficiency of all of which is hereby duly acknowiedged, the parties hereto agree as follows:

1. LICENSOR hereby grants and agrees to grant - to IICENSEE an exclusive non-transferable right and license in the United States to make, use or sell or have made for its use or sale any inverition described in any or the afore-
mentioned Letters Patent as well as the aforesaid applicatrons Ion Letters patent, the components so manufactured, used on sola being referred. to hereafter as "Incensed Anticies.":Sald exclusive License shall extend for the , 子 term on $\because \therefore \quad \therefore \quad \therefore$ from the date of allowance of one on more claims in either application
 define LICENSEE's manufactured Licensed Articles. Thereafter, IICENSOR shall have the right to grant other Incenses. In the Licensed Articles, but in such event shall give at least ninety (90) days' notice thereof to LICENSEE, and. IICENSEE's royalties, hereinanten provided, shall be no
rogecta;

herein provided

shall hereafter not be in effect. The Incense granted hereunder shall extend also to any continuation, division, or continuation-in-part of any on said applications for Letters Patent and to any reissues of any of the Incensed patents.
2. All Licensed Articles manufactured and sola by LICENSEE under the terms on this License Agreement sham camry such reasonable notice as IICENSOR shall from time to time request in writing and which shall comply with the provisions of Title 35 United States code, section. 287.
3. IICENSEE agrees to make the following paygents to IICENSOR:
Rogathe:

The precentage royalty rate shall be computed upon: the net selling price of such Licensed Articles made, used or sola by LICENSEE on made by others for Its use or sale. Such royalty, however, shall be payable only upon sale of: the article except in those cases th which the article is consumed by on for LICENSEE Without sale. In such oases, royalties shall be computed at the normal selling price of the device. Licensed Articles made during the lire of a Licensed patent covering the same, but not sold until the expiration of said patent, shall be subject to royalty. In the event of cancellation on this Agreement, LICENSEE shall make a report i of Licensed Articles on hand and shall pay the appropriate royalties with respect thereto. In

Royalties
4." IICENSEE may cancel this Agreement at any time upon ninety (90) days' notice in whiting to IICENSOR.: \therefore Semination on this Agreement pursuant to this or any. other paragraph shall: not relieve LICENSEE of the 0011gation to pay accrued royalties.
5. After termination of this Agreement LICENSE N shall not be subject to any estoppel by reason of ts having been a IICENSEE.
6. LICENSES agrees that it will render to IICENSOR with each such royalty payment, a report showing the period for which said payment is made, and the net sales upon which the royalty payment is computed. LICENSEE agrees to keep accurate accounts in sufficient detail to enable the royalties payable hereunder to be determined, and LICENSEE further agrees to permit a Certified public Accountant selected by IICENSOR and acceptable to IICENSEE to inspect such records at reasonable times during regular business hours for the sole purpose on verinytigs the accuracy of the reports submitted and payments made under this Incense Agreement, subject to the condition that
'IICENSOR shall give written notice to IICENSEE, WIthin 'six (6) months following the receipt by LICENSOR of each such quarterly report and royalty payment concerning winch Verification is desired, and IICENSOR, through iss designmated Certified Public Accountant, shall proceed promptly with the inspection of said records.
7. Royalties at rates specified $1 n$ paragraph 3 hereon shall be due and payable quarterly on or before the sixtieth (60th) day following the first day of each of the month's of January, April, July and October for the corresponding preceding quarterly period. IICENSEE shall. IUMMISh IICENSOR, with each royalty payment, a written statement setting forth the net sales value oi the Incensed Articles sold by IICENSEE during the preceding quarterly period and the amount of royalty due and payable to - IICENSOR under the terms of this Incense Agreement, as provided by paragraph 3: hereof.

8. IICENSEE may grant sublicenses hereunder providing the License payments due IICENSOR ane'no less
than those provided herein. In such event LICENSEE shall be responsible for royalty payments by Lts sublicensees. Any granted sublicenses shall terminate concurrentiy with this Ifcense. IICENSER shall pay over to IICENSOR as royalty payments computed at the rates specified in subparasraphs b and c of paragraph 2 computed upon the same basis as if IICENSEE had manufactured che Licensed Articie.: Q. IICENSOR may cancel this Agreement upon cianalt of IICENSEE by giving ninety (90) days' notice to do so, and unless IICENSEE cures the default complained of curing such ninety (90) day period; but no such termi-' nation shail affect the obllgation or LICENSEE to day royalties or other obligations accrued before the effective date of such notice.
10. ELCENSEE shail not use, publish or circulate any advertising matter or literature (other than the foregoing patent marking statement oi paragraph 2 hereor upon its Izcensed Articles and labels used therewith) containing a reierence to the University of Illinois or to the University of IIIinois Foundation except with the prior written authorization of IICENSOR as to such reference: Such written authorization may be obtained from the Executive Directory; of the University of Ininnois Foundation, which authorization will not be unreasonably watrineld.
11. IICENSOR does not warrant the vailidity on any Ietters Patent of the United States heroin Iloensed
and acread to be liccnsed as issued upon the application fon Letters patent of the United States hereinabove identiried, or any Letters Patent of the United States resulting from the filing of any divisional, reissue or. continuation appication thereof, nor does IICENSOR accept any liability with respect to enforcement of the said Iicensed Letters Patent of the United States, as herein. provided, against third party infringers on any liability With respect to defending LICENSEE against infringement oi any United States or foreign Letters Patent which may at any time be asserted against IICENSEE. IICENSOR agrees to hold one-hali (1/2) of the royalties received in a iund to be employed for protection and enforcement of the licensed patents against infringers, such accumuLation to be made until such fund reaches ten thousand dolitars ($\$ 20,000.00$) and thereafter for a period of five (5) years from the date hereof or until no substantial iniringement exists, whichever date shall be later. at the end of the aforesaid period, IICENSOR may at its discretion disburse said fund into its own account. In the event that LICENSOR does not reasonably enforce said Letters Patent, IICENSEE shall have the right, in it desires and at its own expense, to institute and prosecite claims against thira゙parties for infringement and may apply one-half ($1 / 2$) of royalties to apply against the expense oi the same, and may recain any recoveries therein.
12. If any licensed claim is hela invalid by
the innal decision of a court or appropriate tribunal, IICENSEE shald not be required to pay royaltfes hereunder with respect to the subject matter of that clafm unless anc until the final decision of another appropriate court inncis such claim patentable.
33. In the event of breach of this Incense Agreament by either party hereto, the party not in default may at its election teminate the same by ninety (90) days 'Written notice to such èfect served upon the other party, the notice to briefly set forth the breacin or default relied upon to erfect termination. In the event the party in default makes full restitution for the breach or default relied upon within said ninety (90) day period, then this Ifcense Agreement shall continue in full force and eiさect.
14. It is agreed that the rights herein granted and agreed to be granted and the obligations and liabilities here imposed and incurred shali apply with equal force and effect to any wholly owned subsidiary now or hereafter directly owned on controlled by IICENSEE and that the acts done by or on behalf of such subsidiary shall, for the purpose of this Agreement, be deemed to be the acts cone by the LICENSEE, as the party drectly owning or controliling such subsiaiary, but nothing contained herein shall bo constmued as granting to any subsidiany
any rights or advantages which shall continue arter euch subsidiary has ceased to be a subsidiary, or has ceased to be directiy or indirectiy owned on controlied by IICENSEE as herein contemplated. In the event of a sale between LICENSEE or any subsidiamy of LICENSEE and a copporation acting otherwise than at arms length, the net selinng price shall be computed with respect to the ifrst uncontrolled sale to a person who is acting at arms lengta. 15. It is further agreed that if IICENSEE becomes bankmpt on insolvent on enters into any composition with creditors, or invokes the provisions of any bankruptcy or insolvency statute, or any law for the relief of debtors now in force or hereafter enacted, this Ifcense Agreement and the licenses and rights here granted to IICENSEE shall forthwith terminate and cease.
16. It. Is further understood and agreed that tinis License Agreement is not assignable by LICENSEE Without the written consent of LICENSOR and that IICENSE camot release atselffrom the obligations hereunder by any assignment or transfer of any hereunder licensed United States Letters Patent on any applications for Letters Patent of the United States, and that, subject to the iimitations hereinbefore set forth; this Ifcense Agreement, the benefits thereor and the obligations and 21abilities 1mposed thereby shail extend to the successors in business of each of the parties hereto.
27. In the event that this Iicense Agreement is terminated prior to the expiration date of any Letters Patent of the United States under which a richt and Incense is herein granted, IICENSOR agrees that IICENSER shall have the right to seli or otherwise alspose of, within a period os one (1) year, any stock of Licensed Articies on hama as of the date of termination subject to the payment to IICENSOR of royality as provided in parasraph 3 nereor.
18. Notices called for hereunder shall be ceemed properiy given if duly sent by united states first-class mail and addressed, in the case of IICENSOR, to the University of Illinois Foundation, Illimi Union. Building, Urbana, Ininois, and in the case of IICENSEE, to JFD Electronics Corporation, σ liol Sixteenth Avenue, Brookiyn 4, New York.
29. This Agreement is considered to have been executed and delivered within the State of Ilinnois and it is the intention of the parties that it shall be construed and interpreted in the light of the laws of the State of IIlinois and the patent laws of the unitea States of America, whichever shall be ayplicable under the circumstances.

IN WITNESS WHEREOF, each of the parties hereto has caused this document to be executea by its duly authorized officers and with full authorizstion of its
managing Board of Governors or Board of Directors, as the. case may be, and Its corporate seal to be affixed hereon on the day, month and year first above written.

UNIVERSITY OF ILLINOIS FOUNDATION.

Attest:

JED ELECTRONICS CORPORATION

Attest:

Secretary
 (login \& , ween

SEyMOUR W. GELLER
Notary public, State of Now York
No. 24-1300350
Qualified in Kinos County
Commission Expires Larch 20, 1883

LAW OFFICES

AXE A. HOFGREN ERNEST A.WEGNER JOHN REX ALLEN
WILLIAM J. STELLMAN JOHN 日. MCCORD BRADFORD WILES JAMES C. WOOD STANLEY C. DALTON RICHARD S. PHILLIPS LLOYD W. MASON TED E.KILLINGSWORTH CHARLES L. ROWE JAMES R. SWEENEY
W. E. RECKTENWALD J. R.STAPLETON WILLIAM R.MCNAIR JOHN P. MILNAMOW DILL.15 V. ALLEN W. A. VAN SANTEN, JR JOHN R. HOFFMAN

Hofgren, Wegner, Allen, Stellman \& McCord 20 NORTH WACKER DRIVE

October 17, 1966

Mr. Robert H. Rines
Rines and Kines
No. Ten Post Office Square Boston, Mass. 02109

Re: University of Illinois Foundation v. Blonder-Tongue Laboratories Etc.

Dear Mr. Kines:
Attached please find copy of revised answers to plaintiff's first set of interrogatories. Sorry I neglected to send you this before I left on my trip.

Yours very truly,
HOFGREN, WEGNER, ALLEN, STELLMAN \& MCCORD

JRA: DB

Enc.

RECEIVED

OCT 181966
RINESAMDRIMES

THIS LICENSE AGREENENT entered into this lst day of December, 2965 , by and between the UNIVERSITX OF ILIINOIS FOUNDATION, a non-profit corporation organized and existing under and by virtue of the laws of the State of Illinois, hereinafter referred to as "IICENSOR," and JFD EIECTRONICS CORPORATION, a corporation organized and existing under and by virtue of the laws of the State of New York, hereinaiter referred to as "LICENSEE."

WITNESSETH:

WHEREAS, LICENSOR is the owner of the entire righti, title and interest in and to Letters. Patent of the United States as Collows:
Inventor(s)
Dyson $\quad \frac{\text { Patent NO. }}{2,958,081} \quad \frac{\text { Issued }}{10-25-60,}$

as well as applications for United States Lettens Patent as follows:

Inventor(s) Serial No, Filed , Mitle

Pendong pateat alpucations

as well as the inventions set forth and described in and by each of the aforesaid Letters Patent of the United States and applications for Letters Patent of the United States; and

WHEREAS, IICENSOR also is the owner of the entire right titie and interest in and to Letters patent of countries other than the United States as follows:

WHEREAS, IICENSOR also is the owner of the entire right titie and interest in and to applications for patent in countries other than the United States as follows:

Corresponding U.S. Pat. Country Inventor, Serial No. Filing Date, or Application or Titie

PENDNAS founcga patear appucations

WHEREAS, IICENSOR may from time to time after the date on which this agreement comes into force and during the term thereof, acquire additional patents and applications for U.S. Letters Patent and adaitional applications for patent in countries other than the United States; and

WHEREAS, IICENSOR holds the sole right to grant the IICENSE herein granted and agreed to be granted; and

WHEREAS, the parties hereto did on May 24,2962 enter into a license agreement related to the said patents and applications for patent and the then applications for patent . Which have now issued and the said parties, now that patents have issued and experience has been obtained under the prior Iicense agreement, now desire to enter into a more extended license agreement, which'will insure a reasonable income to IICENSOR for a period of years and make it possible for LICENSEE to undertake a reasonable investment in anticipation of saies over a reasonable number of years; and

WHEREAS, LICENSEE desires to secure and IICENSOR desires to grant, for the term of years hereinafter set forth an exciusive Ifcense to manufacture, use or sell, or to have made for its use or sale, apparatus of the type described in and by each of the aforesaid Letters Patent of the United States and appilcation for Letters Patent of the United States and by each of the applications and patents in each country other than the United States.

NOW, THEREFORE, in consideration of the foregoing and the mutual terms and conditions of this LICENSE AGREENENT and other good and valuable consideration, the receipt and sufficiency of all of which is hereby duly acknowledge, the parties hereto agree as follows:
1.. This AGREEVENT is a substitute for and replaces and terminates ail prior agreements between the parties including specifically the prior IICENSE AGREEMENT of May 24, 2962 and any extensions and modifications thereof.
2. LICENSOR hereby grants and agrees to grant to IICENSEE an exclusive non-transferable right and license oniy th the fiela of receiving antennas fort television and $F M$ broadcasting stations
and antennas for amateur and citizens band transmission and reception in the United States and in all countries other than the United States to make, use or sell or have made for Its use or sale any invention described in any of the aforementioned Letters Patient as well as the aforesaid applications for Letters Patent and any invention, acquired by IICENSOR, prior" to or during the term or extended term of this agreement which invention shall be subsidiary, auxiliary, useful or necessary to practice or use the inventions herein ilcensed or which shall be an improvement thereof and any continuation, division, Utility model, design or continuation-in-part application relating to said licensed patents or applications and to any reissues of any licensed patents. The components so manufactured, used or sold are herein referred to as "LICENSED ARTICTES".
a. IICENSEE is also granted an option to acquire a non-exclusive IIcense under the Iicensed patents and inventions for all fields other than the field of the exclusive ifeense granted heref at the same royalty rates but subject to equal treatment with the most favored IICENSEE.
3. LICENSEE shall make the following payments to

IICENSOR:

a. With respect to "LICENSED ARTICLES" covered by the claims of any issued patent in the country where made or

b: With respect to "IICENSED ARMICIES" covered by the claims a pending application in the country where made or sold, but not oovered by the olaims of any issued
patent (provided that said claims reasonabiy stem from the disclosure of the pending application and provided that LICENSOR'S attorney shall state to LICENSEE his opinion that the claims should reasonably be allowed), (ooldefy
c. No more than a single royalty shall be paid with respect to any "LICENSED ARTICLE" regardless of the number of patents of the LICENSOR in the United States and countries other than the United States which may be applicable thereto.
d. The percentage royalty rate shall be computed upon the net selling price by LICENSEE of such LICENSED ARTICLES made, and or sold by LICENSEE or made by others for its use or sale, the selling price shall be the invoicing price less discounts, allowance, and returns. Such royalty, however, shald be payable only upon sale of the article except in those cases in which the articie is consumed by or for LICENSEE without sale; in such latter cases, royalties shall be computed at LICENSEE'S usuad selling.price of the article.
O. 0 LICENSED ARTXCLES made during the life of a licensed patent covering the same, but not sold until the expiration of said patent, shall be subject to royalty.
f. On termination of this agreement at the end of its term or renewed terms or onitermination for any other Cause, LICENSEE shall mako areport of LICENSED ARTTCLES on hand and shall pay royalties with sespect thesoto.
g. Royalties as provided herein shall be due and payable quarterly on or before tho sixtieth (60 ch) day following the first day of each of the months. of January, April. July and October for tho corresponding preceding quartorly period. LICENSEE shall furnish LICENSOR, with each royalty payment, a written statement setting forth the actual sales of the LICENSED ARTICLES sold by LICENSEE during the preceding quarterly period and the amount of royalty due and payable under the terms of this LICENSE AGREEMENT.
h. The royalty payments shall be made by the LICENSEE together with reports for each quarteriy period.
i. LICENSEE agrees to keep accurate accounts in rufficient detail to enable the royalties payable hereunder To be determined, and LICENSEE further agrees to permit a Certified Public Accountant selected and paid by LICENSOR and acceptable to LICENSEE to inspect such records at reasonable times during reguiar business hours for tho sole purpose of verifying the accuracy of the reports submitted and payments made under this LICENSE AGREEMENT, subject to the condition that LICENSOR shall give written notice to LICENSEE within six (6) months following the receipt by LICENSOR of each such quarterly report and royadty payment concerning which verifiCation is desired and LICENSOR through its designaced Certified Public Accountant. shall proceed promptiy with the inspection of said records during regular business hours adjusting his inspection timos co the reasonablo convonienco of EICENSEE'S persomnol.
4. The LICENSE herein granted is and shall be and remain exclusive to LICENSEE during the term of this AGREEMENT and any renewal thereof under the following terms and condicions:
a. There is established below a schedule of minimum annual royalties together with a method for varying the said minimum royalties.
b. In the event that, for any annual period, the payments of royalty by LICENSEE to LICENSOR on account of LICENSEE'S and sublicensees sales shall fall below the minimum scheduled annual royalties for said annual period, then LICENSOR shall have the following option exercisable by LICENSOR by notice in writing to LICENSEE not more than sixty (60) days after the receipt by. LICENSOR of the report and payment by LICENSEB with respect to the fourth quarter for each annual period;
i. to maintain the exclusive nature of this License but to require that LICENSEE grant sublicenses under this AGREEMENT to such antenna manufacturers of LICENSEE'S selection as will bring the total of licensed articles sold in the United States to seventy-five percent (75\%) of the cotal of all antennas sold in the United States and infringing at least one non-adjudicated ciaim or one adjudicated valid claim of a iicensed patent,
and to require that LICENSEE sub-license one competitive manufacturer in each foreign country ip which LICENSOR'S iicensed patents have issuod and are subject to this agreement and where LICENSEE'S share of tho market for "infringing" antennas is less than 30% of the market in that country.
A. In the event that LICENSOR shall olect to exercise this option, LICENSEE shall make overy reasonable effort to effect such sublicense(s), and LICENSOR agrees to render such assistance as LICENSEE may require in effecting such sublicenses.
c. The schedule of minimum annual royalties as the basis for the option set forth in sub-paiagraph b hereof shall be as follows: \qquad

SACEOUEE OF NDNANUN RONDETY
d. In the event of renewal of this agreement beyond as hereinafter provided, then the minimum annuai royalties shall be at per year as a base; if, at any

annual royalty should, in fairness, be adjusted and the other party does not on request agree to the adjustment, the partios agreo that either party may submit to the American Arbitration Society, New York, for determination, the establishment of a different.minimum annual royalty rate, and the decision of the arbitrators will be binding. Either party may make such a request for adjustment and require such arbitration not more often than once each year; and the decision of the arbitrators may, whenever mado; be retroactive to cover tho calendar year in which the initial request for adjustment was made. Among the factors which the arbitrators are expected to consider are the mumer of color tolevision sets sold each year which are presently believed to particularly benefit from and require the enhanced quality of reception afforded by antennas made in accordance with the licensed invention: the; possibly growing, impact of increased use of portable color television sets which are not presently expected to use antennas made in accordance with the licensed invention and, therefore, may decrease the market for licensed antennas; the possibly growing, impact of C.A.T.V. type of reception which substitutes a community antenna for individual antennas and, therefore, may further decrease the market for dicensed antennas; and other factors Which at the time of arbitration are then known or believed to have an effect on the market for licensed antemas.
5. AL1 LICENSED ARTICLES Manufactured and sold
by LICENSEE under tho tarms of chis LICENSE AGREEMENT shail
carry such reasonable notice as LICENSOR shall from time to rime request in writing which notice LICENSOR warrants will comply with the"law.
6. LICENSEE shali have the right to grant subIicenses hereunder; in such event, LICENSEE shall be responsible for transmission to LICENSOR of its share of the royalty payments received from its sublicensees. Any sublicenses shall terminate concurrently with the termination of this License. All of the applicable terms of this License Agreement for the protection of LICENSOR with respect to marking and times of payment, default and termination; reports and payments shall be deemed to be incorporared by reference in such subiicenses and a copy of this AGREEMENT shall be atrached to such subIicenses with cercain areas blocked our at tho discretion of IICENSEE.
a. LICENSEE shall charge any sublicensee a royalty race no Iess than that required to be paid by IICENSEE to LICENSOR.

Reynaty

7. This AGREEMENT shall be effective as 02 Jamuary 2, 2966 and shall, reminate ${ }^{2}$ undess renewed.

Renevie pagans meverga.
a. LICENSEE shall have the option during the
period \qquad To notify LICENSOR Of irs desire ri renew the AGREEMENT for an additional要

On sending of such notice by LICENSEE, this AGREEMENT sham chareatcer be extended to terminate䖰 ana shall operate wader the conditions herein set forth and specie. Eicaliy the minimum royalty conditions oz paragraph 4.
b. LICENSEE shaII, if chis AGREEMENA has been extended so $\because 5$ renew the same to expire -2 \square by sending a notice to IICENSOR during the period \% In such event, che LICENSE shall remain exclusive but there shall be no minimum royalty provision.
c. \because This LICENSE shall be deemed to be a paid-up License (and no further royalties shall be due) with respect to any licensed parents or applications for patent which have been issued or are currently pending as of * and with respect to any divisional, continuation or reissue patents of such chen issued or pending applications on tho occuronco of etcher of the following: \qquad
\qquad

1. * \qquad
\qquad
2 .h The payment by or chough LICENSEE so \qquad IICENSOR ©
d. With respect to any patent or patents of LICENSOR which may become subject to this LICENSE other than those set forth above, royalties, under this AGREENENT shail, arter b be resumed by LICENSEE with respect to such patents and such products of IICENSEE as fall within the claims of such patents.
2. IICENSEE shall not use, publish or circulate any advertising matter or interature (other than the foregoing patent maricing statement of paragraph 2 hereof upon its Licensed Articles and labels used therewith) containing a reference to the Univerisity of IIlinois or to the University of Iliinois Foundation except with the prior written authorization of IICENSOR as to such reference. It is understood that authorization previously granted shall stand. Such written authorization may be obtained from the Executive Secretary of the Universityt of Illinois Foundation, which authorization will not be unreasonably withineld.
3. IICENSEE may cancel this AGREEMENT at any time upon ninety (90) days' notice in writing to LICENSOR. Termination of this AGREENENT pursuant to this or any other paragraph shall not relieve LICENSEE of the obligation to pay accrued royalties.
4. After termination of this AGREEVENT, IICENSEE: shall not be subject to any estoppel by reason of its having been a IICENSEE.

1i. LICENSOR may cancel this AGREENENT upon defauit of LICENSEE by giving ninety (90) days notice to do so,
and unless LICENSEE cures the defaule complained of during such nincty (90) day period; but no such termination shall affect the obligation of LICENSEE to pay royalties or other obligations accrued before the effective date of such notice.
12. LICENSOR does not warrant the validity of any Letters Patent of the United States herein iicensed and agreed to be licensed as issued upon the application for Letters Patent of the United States hereinabove identified, or any Letters Patent of the United States resulting from the filing of any divisional, reissue or continuation application thereof, nor does LICENSOR accept any liability with respect to enforcement of the said licensed Letters Patent of the United Stares, as herein provided, against third party infringers or any Iiability with respect to defending LICENSEE against infringement of any United States or foreign Letters patent which may. at any time be asserted against LICENSEE.
13. LICENSOR agrees to hold one-half (2/2) of the royalties received in a fund to be employed for protection and enforcement of the licensed patents against infringers, such accumulation to be made until such fund reaches ten thousand dollars ($\$ 10,000.00$), and thereafrex for a period of Eive (5) years from the dare hereof or until no substantial infringement exists, whichever date shaliberaater. At the end of che ajoresaid period, LICENSOR may atizts discroiion disbunse said Eund into irs own account.
14. In the event that LICENSEE shail call the attention of LICENSOR in writing to an infringing device made and sold by a competitor of LICENSEE and shall demand that an action for infringement be brought by LICENSOR with respect thereto and in the event that LICENSOR shall fail to institute such action within thirty (30) days after sending of such notice, then LICENSEE shall have the right at its own expense to institute and prosecute an action with respect to such infringement and may apply one-half ($1 / 2$) of royalties to the expense of the same, and payment shall be reduced accoraingly. From any such recovety, LICENSEE may further reimburse itself for its expenses; if any funds are then left. then from such funds in said recovery, LICENSEE shall pay LICENSOR the royalties previousiy withheld with respect to or on account of such action; if thereafter, any funds remain from such recovery, that shall be divided evenly. Detween LICENSOR and LICENSEE.

This right of LICENSEE to send norice and demand for action and to bring action for infringement shall not be Limited to a single action for infringement but shall extend to such actions against such parties as LICENSEE deems necessary, not in excess of \mathbb{K}^{2} ac any one time, provided that at no one time shail such actions involve dupiacation of issues against che same ultimate party in interest. In the event, however, that LICENSEE shail olect to bring an action which shall increase che number of pending actions brought by LICENSES

above the said number，it may do so；but in such latter event， it may withhold oniy such part of the royalty as will leave The LICENSOR
due LICENSOR in any one year，after deduction of LICENSEE＇S and LICENSOR＇S expenditures and commitments for expendicures for Iitigation；it being understood，however，that LICENSOR＇S such expenditures and commitments for expenditures will not for chis purpose exceed 慮湾 due in any one year．

15．If any licensed claim is held invalid by the final decision of a court or appropriate cribunal，LICENSEE shall not be required to pay royalties thereunder with respect to products covered by that claim unless and until the final decision of another appropriate court finds such claim parentable．

16．In the event of breach of this Iicense Agree－ ment by either party hereto，the party not in default may at its election terminate the same by ninety（90）days＇written notice to such effect served upon the other party，the notice to briefly set forth the breach or default relied upon to effect temination．In，the event the party in derault makes full Testi－ tution for the breach or default relied upon within said ninety （90）day period，then this License Agreement shall concinue in fux1 EOrce and effect．

17．It is agreed that the rights herein granted and agreed to be granced and the obligations and Iiabilicies here imposed and incurred shall apply wich equal force and
effect to any wholly owned subsidiary now or hereafter directly owned or controlled by LICENSEE and that the acts done by or on behalf of such subsidiary shall, for the purpose of this AGREEMENT, be deemed to b'e the acts done by the LICENSEE, as the party directly owning or controlling such subsidiary, but nothing contained herein shall be construed as granting to any subsidiary any rights or advantages which shall continue after such subsidiary has ceased to be a subsidiary, or has ceased to be directiy or indirectly owned or controlied by IICENSEE as herein contemplated. In the event of a sale between LICENSEE or any subsidiary or LICENSEE and a corporation acting ocherwise than at arms length, the net selling price shall be computed With respect co the first unconcrolled sale to a person who is acting at arms length.
18. It is further agreed that if LICENSEE becomes. bankrupt or insolvent or enters into any composition with creditors, or invokes the provistons of any bankrupicy or insolvency statuce, or any law for the rellef of debtors now in Force or hereafter enacted, this License Agreement and the Licenses and rights here granted to LICENSEE shall forthwith terminate and cease.
19. It is further understood and agaeed that this License Agreement is not assignable by LICENSEE without the writcen consent of LICENSOR except to a successor of the entire business of LICENSEE related to television antemas and that myCENSEE Cannot release itself Erom the obiigations horeundor by any assignmenc or transfor of any horounder.

Licensed United States Letters Patent or any applications for Letters Patent of the United States, and that, subject to the limitations herènbefore set forth, this, License Agreement, the benefits thereof and the obligations and liabilities imposed thereby shall extend to the successors in business of each of the parries hereto.
20. In the event that this License Agreement is terminated prion to the expiration date of any Letters patent Of the United States under which a right and license is herein granted, LICENSOR agrees that LICENSEE shall have the right to sell or otherwise dispose of, within a period of one (1) year, any stock of Licensed Articles on hand as of the date of certmination subject to the payment to LICENSOR of royalty as provided in paragraph 3 hereof.
21. University Parents Inc. of M11inois, Chicago, Illinois, is hereby appointed by LICENSOR as administrator of this AGREEMENT on behalf of LICENSOR. Notices and payments required hereunder shall be deemed properly given if duly sent by United States first-class mail and addressed, in the case of LICENSOR: University Patents Inc of IIIinots, 30 West Monroe Street, Chicago; T1Iinois; and in the case of LICENSEE: JFD Electronics Corporation, 25 Avenue ar 62 street, Brooklyn New York 11219.
22. This AGREEMENT is considered to rave been executed and delivered within the State of rl2inois, and ic is the intention oz the parties that ic shams be construed
and interpreted in the light of the laws of the state of Illinois and the patent laws of the United States of America, whichever shall be applicable under the circumstances.
23. If IICENSOR shall acquire after the date on Which this agreement comes into force and during the term thereof, any patent rights which fall within the field of receiving antennas for television and FN broadcasting stations and antennas for amateur ard citizens band transmission and reception in the United States or in any other country, IICENSEE shaid have the opportunity to include those afteracquired inventions in this agreement. If the acquisition of said after-acquired inventions obligate IICENSOR to impose tems and conditions over and above those of this agreement or shail require IICENSOR to pay to or share royalties with, the person. from whom such patent rights are acquired by IICENSOR, IICENSEE shall have an option to have such after-acquired patent rights included with the ilcenses granted in paragraph 2 hereof. Within sixty (60). days after such acquisition IICENSOR shaiz advise IICENSEE of the general nature thereof and of the additional terms and conditions, if any, involved in the acquisititon of such rights, and shall forward to IICENSEE copies of any and all issued Letters Patent or patent applications Involved in the acquisition. LICENSEE shall then have the ragnt, within sixty (60) days of the notice frcm IICENSOR to inciude such patent rights in the Ifcenses above granted by efthen tendering to IICENSOR a reimbursement of the expenses incurred in such acquisition or by agreeing to assume the
additional obligations of IICENSOR. If, at any time durins said sixty (60) day period LICENSEE so requests LICENSOR in Writing, IICENSOR will forward to LICENSEE all pattent appiication papers and other material in its possession which relate to the patent rights in question, in which case the termination date of the period will be extended when necessary to that IICENSEE Will have no less than sixty (60) days after. receipt as such applications and other material to make its election. Failure of LICENSEE to elect within the applicable time period shaIl exclude such patent rights from the IICENSES herein granted. This paragraph 23 is not intended to require any additional obligation consideration when it pertains to any after-acquired inventions that emanate from the University of Illinois. The same sixty (60) day provision shall apply but IICENSEE shail not be required to assume any adaitional obligation in order to elect to include after-acquired inventions emanating from the University of Illinois.

IN WITNESS WFEREOF, each of the parties hereto has caused this document to be executed by its duly authorized officers and with full authorization of its managing Board of Govemors or Board of Directors, as the case may be, and its corporate seal to be affixed hereon on the day, month and year first above written.

UNIVERSITY OF ILLINOIS FOUNDAIION

JFD EIECMRONICS CORPORATION

axela hofgren
ERNESTA: WEGNEA
OHNREXALEEN,
JOHN M MCCORD.
ONE.
BRAOFORD WILES
JAMES C. WOOD
RICAARD S PHILLLIPS
LOYDW, MASON
TEDEKILUNGSWORT
CHARLESLROWE JAMES R SWEENEY -
W ERECKTENWACD R STAPLETO WILLIAM R MCNAIR OHN P MLENAMO DLLIS V. ALLEN
WA VAN SANTEN JOHN H HOFFMAN

HOFGREN WEGNER, ALLEN, STELLMAN \& MCCORD
zO NORTH WACKER DRIVE

$$
\text { CHICAOO } 60606
$$

October 24, 1966

Mr. I. Irvine Silverman
Silverman a cass
105 Weat Adama Street
Chicage: H1linols 60603
FE: University of Dilinois Foundation
V. Blonder-fongue Laboratorles
V. JPD E1ectronies Corporation

Dear Mr. Silverman:
This supplements our letter of Oatober 7, 1966, In connection with the depositions of Prof, Mayes and Mr. Finkel to be taken on Oetober 24. We request that you produce:

1. Copies of all advertisements, circulars, catalogs, news releases, brochures, instructions to aistributors and saiesmen, memorande, and other writings dealing with logperiodic antennas manufactured by JFD under its ilicense from University of Ilino1s Foundation under Isbel1 3,210, 767 ard/or Mayes et a1 Re. 25,740 (hereinafter, "satd patente") and the patent applications that matured into said patents.
2. Coples of all correspondence, documents, and other writings between miversity of milnois and/or Univer= sity of IIlinols foundation and JFD and others relating to all 1ioense agreements under seid patents, all negotiationí for such lieensea and the adininistration of such lieenses, including but not limited to, the poiloing of said patents by way of suits against alleged infringers of the patent in suit including Blisnder-Tongue.
3. Coples of all oorrespondence, memoranda, doeuments and other writings ralating to the authorization of JFD to use the name of any and all of Univeraity of Ilinots, University of Ilinnois Foundation, the inventor of said patents or other employees of University of nlinois and university
of Iliinois Foundation in connection with log-periodic antemnas, advertisements relating thereto and said patents.
4. Copies of all correspondence, documents and other writings relating to the hiring by JFD of the former Blonder-Tongue antenna department manager.
5. Any employment contract n ith such former manager.
6. Coples of the drawings of all JFD log-periodie antennas ombodying the invention of said patents together with the dates that such antennas were first manufactured including but not 11 mited to JFD antema models set forth in paragraph 14 of the eounterclain herein. (LPV-vth8, 15, 12, 9 and 6, LPV-TV 19, 16, 13 and 10)

In addition we mish:
7. Any employment agreement between Paul Mayes and JFD.
8. Any other agreement between paul Mayes and JFD relating to the antemnas manufactured by JFD.

Blonder-Tongue has no objection to the addition to the lawsuit of Mayes et al Re, 25, 740 provided the University of Inlinois Foundation and JFD agree that any Blonder-Tongue patent which issues subsequently hereto may also be added.

Very truly yours,

Richard S. Fhillips

RSP: lag
ce: Mr. W1111am A. Marahall
Mr. Robert H. Rines.

Dear Sam:

With reference to our conversation of this morning, I am indicating below the status of our present line of Log Periodic antennas and referencing them, for your information, to the patents both issued and pending.

JFD No.	Frequency Range	Patent Reference
LPV-4	$54-88 \mathrm{mc}$	Mayes \& Carrell
LPV-6	$88-108 \mathrm{mc}$	Reissue Application
LPV-8	$174-216 \mathrm{mc}$	
LPV-11	Channels 2-6	
LPV-14	Channels 7-13	
LPV-17	FM	
LPV-U5	470-890 mc	Mayes \& Carrell
LPV-U9	Channels 14-83	Patent \#3,108, 280
LPV-U15		
LPV-U21		
LPV-ZU10	$470-890 \mathrm{mc}$	Mayes - Zig Zag
LPV-ZU20	Channels 14-83	Patent Pending
	(1)	

JFD LECTRONICS CORPORATION

15th Avenue at 62nd Street, Brooklyn N. Y. 11219 - Phone 212 DE 1-1000 • TwX-FrY25040
(Mrs.) Sam Smith (Cont.)

15th Avenue at 62nd Street, Brooklyn N. Y. 11219 • Phone 212 DE 1-1000 • TWX-NY25040

Mr. Sam Smith (Cont.))

In the future, as a matter of procedure, we will notify you in the above manner, of any new antennas designed at our laboratory.

Sincerely,

$\mathrm{EF} / \mathrm{ss}$ cc-S. Saber

November 22, 1966

Richard S. Phillips, Esquire
Hofgren, Wegner, Alien, Steliman \& MeCord 20 North Wacker Drive Chicago 60606, Ililinols

Dear Dick:
Thank you for your letter of November 21 informing us that the Poundation hopes to set the material within the next week or so.

We had intended to meet last week at Bionder-Tongue to complete the collection of their material, but this was thwarted by Court depositions in another action.

We hope to be able to get at this next week.
Cordially,
RINES AND RINES

RHR/BD
By \qquad
cot Tsaae S. Bionderl

ARELA HOFGREN
ERNESTA WEGNER
JOHNREXALEEN
WILLIAM STELEMAN
BRHNEMCCORD.
BRADFORA WHES
JAMESE WOOP,
STANEY COALTON
RICHARD S,PHLERS
TEDEKILGIGSWORTS
CHAREESLROWE,
JAMES R. SWEENEY
W. ERECKTENWACD

WERECKTENWA
$J R S T A P L E O N$
WRLIAM R MCNAIR
WOLIAM R MENAIR
OHELSE MLLNAMO
WA VANSANTENS
WA VANSANTENE
UOHN RHOFEMAN
OHNR ROFEMAN

HOTGREN, WEGNER, ALLEN, STELLMAN\& MCCORD
2O NORTKWACKERRDR1VE
CHEAGOSOSOK
November 23, 1966

Mr. Nyron C. Cass
SIIverman \& Cass 105 West Adams Street chicate, Iniinois 60603

TRI. UNE Y, SN Y, JHD
Dear Mike:
I have your letter of Noveriber 21 regarding the matertal to be produced. I have checked this against the 11st I sent you with my letter of October 31 and find oniy one item on your 1ist which was not on mine. This is the Iisting of the prion art resulting from a searoh. I had not included it in my list as there was some question at the time regarding the propriety of the xequest. We have had subsequent corsespondence on this.

I bellieve that item 8 of $\boldsymbol{H} y$ list vas olayified In the Hev York depositions of Mr. Finiel. Item 11 vas covered orally during the chieage deposition.

Very truly yours,

Richard S. Phillips

RSPilas
ce: Mr. Robert H. Rinea
Mr. 1. S. Blonder
Mr. Basil P. Mam
bass
PATENTS • TRADEMARKS • COPYRIGHTS

105 W. ADAMS STREET. CHIGAGO, HLINOIS, U.S.A.GOGOB

1. IRVING SILVERMAN

MYRON C.CASS
SIDNEY N. FOX
November 21, 1966
JAMES L. KNIGHT
GERALD R.HIBNICK, IND. GAR

Richard S. Phillips, Esq. Hofgren, Wegner, Allen, Stellman \& McCord 20 N. Wacker Drive - S. 2200 Chicago, Illinois

Re: U. of I. Foundation v. Blonder-Tongue v. JFD Civil Action No. 66 C 567.

Dear Dick:
To expedite discovery in compliance with the local rules, there is itemized below a list of items which were culled from Mr. Blonder's deposition as desired to be produced by you. The listing below also identifies the page of the transcript of Mr. Blonder's deposition on which reference is made to the item.

Page No.
Item

1254

12234
$13 \quad 2236$
$14-273 \quad$ Schenfeld's residence address.

Richard S. Phillips, Esq. - 2 - November 21, 1966

Page No.
Item

278

293

293-4

299

301

304

304

20304

21 313-314

21315

Search results "in Washington", listing of prior art located in this search.

Specific information and documents or tie-in sales and things of this sort.

Blueprints, specifications, notebooks, memoranda and technical reports, i.e., COLOR RANGER series with bracket portions omitted of blueprints.

Copies of all letters of indemnification that BT provided.

All documents relating to the adoption of the RANGER name on all of the antenna products of BT.

Date of publication of the instruction sheets for COLOR RANGER series antennas.

Invoices pertaining to the first commercial sale of the GOLDEN ARROW, GOLDEN DART and COLOR RANGER antennas.

Invoices and documents with respect to the mold produced for making the insulation parts of the GOLDEN DART and GOLDEN ARROW antennas.

Identification of antenna manufacturers other than JFD which make antennas believed to infringe the Blonder patent in suit, exhibit $\mathrm{J}-1$, and identification of the specific antemnas believed to infringe.

Identification of the model of the Finney UHF section that did not infringe the Blonder patent because it is a double boom made to have a substantially co-planar arrangement by putting " S " shaped devices in the dipoles.

Richard S. Phillips, Esq. \quad - 3 -

Page No. Item

30,31365

23376
377
$30 \quad 382-3$

24,25 404-5

25405

26,27 405-6

27 406-7 Does false marking charges apply to LPV VU or LPV TV series?

Reports on field tests of BT GOLDEN DART and GOLDEN ARROW antennas.

29411
$30 \quad 425-6$
Salesmen, distributors, service people and everyone else involved in allegations of anti-trust events, names, and specific evidence particularly relating to "drop your line or else be sued by JFD' communicated to BT by parts distributors.

Address of Jerry Cohn.
Last known address of John Lineman.
Data concerning customers who were threatened with suit if JFD's entire line was not handled exclusively.
"Identify, in any JFD advertising or any releases or advertising of the Foundation wherein the Foundation or JFD have publicized the features of the manner in which the transmission line is connected to the feed end of the antenna, that is, the end adjacent the rigid insulating means you referred to, and also the strain relief that we are referring to."
"Also in connection with the manner in which the antenna is mounted to the mast."

Identification of specific advertisements of JFD which show false marking. Also, cartons of JFD which have patent numbers that do not apply to actual antennas shipped in them.
$28 \quad 408$

Listing of patent infringement suits brought by BT.
Information as to loss of sales and customers lost

Any requests for licenses under $J-1$. (names, addresses, dates and descriptive details with respect to each instance which will be relied upon) paragraph 7(i) of the Counterclaim and the antitrust count. Also, a complete description of damages sustained in each instance and explanation of how goodwill was damaged or lost in connection with each instance and identification of the potential customers referred to.

I appreciate that you have supplied me with a list of items that you were going to produce pursuant to Mr. Blonder's deposition and that there will be items common to both lists. May I go on record as stating that one production of the requested item common to both lists will be acceptable to me?

I look forward to your early compliance with the foregoing request.

Sincerely yours,
SILVERMAN \& GAS

Myron C. Gas
MCC/gm
cc: Robert H. Kines, Esq. Basil P. Mann, Esq.
P.S. The list which you supplied with your letter of October 31 , 1966 refers to items Nos. 1 through 8 and 11 which have not been repeated on the above list. I presume that you will supply these items also.

AXELA HOEGREN ERNESTA WEGNER WHERREX AELEN WILLIAM STELO ORNBMCCORD RRADFORD WILES SAMESC WOOD RICHARD SPARES RICHARP PSHELP TEDE KILLINESWORT CHAREES LROWE AMES R SWEENE
WHRECKTENWALD
UR,STADEETO
WL LIAM M MCNAIR
JOLN O MILNAMO
DLLS Y ALEEN
W.A VANSANTEN.
OHNR-HOFFMAN
ORNOSTRAUSKAS

Mr. Robert H. Rtines Rines and Rines No. Ten Post Office Square Boston, Massachusetts, 02109

RE: TOF V. EN V. JFD
Dear Bob:
I had hoped to talk with you this afternoon, but as you have not retumed my call, I am writing so that you W111 have up-to-date Information on Friday morning.

Pete Mann has advised me that they have collected evergthing which has been requested, with the exception of a few notebooks that are of questionable relevance and can be examined at Champaign. The other documents and materials are now at their offlice in chlcago.

Cass tells me they have the things which were requested during the Chicago depositions. He had not been advised of the material which JHD agreed to produce at the New York deposition of Finkel. He doea not know what progress has been made on this. Mr, Grant vill be available for depositions in Champaign the week of December 5. He nould prefer that the deposittions be taken Tuesday os Wednesday.

Both Mann and Cass inquired again regarding the materiala to be provided by Blonder-tongue., I hope that Jou will be able to get most of this together and send it to me next week. Pete Mami is partheularly interested in technical Information regarding the effeot of changes in boon spacing. Presumably this data is in Mr. Shenfeld's notebook.

Call me when you get a chance so that we may discuss the schedule of the depositions.

Very truly joums,

AXELA HOFGREN
ERNESTA WEGNER
JOHNREXALLEN ,
WILLAMMSTELLM
OOHEMCCORD
ORADFORD WUES
GRADFORD WUES
SAMESC WOOD K OLO
STANGEMCALTON: RICHARD S PHIL
TEDE KIGENGSWORTA CEDEKLLNGSWO CHARLES GROWE

WE RECKTENWALD GRSSTAPLETON WILLAMR MCNAIR DILEH PMILNAM W, A VAN SANTEN, WA VAN SANTENTR 1OHNR HOFEMAN

HOFGREN, WEONER ALLEN, STELLMAN \& MCCORD

November 23, 1966

Mir. Robert/it. Rines Rines and Rines
No. Ten fost Office square Boston, Massachusetts, O2109

RE: IUF V. BR V. JFD
Dear Bob:
I have had an opportunity to read the transor1pt of Mr. PInkel's deposition. I enclose a oopy of a I ist of material to be produced by JTD.

Very truly vours,

Rienard S. Phillips

RSP:1ag

Enclosure
ce: Mr. I. S. Blonder
Nr. Easin P. Marn
Mr. Myren C. Cass

1. Date of purchase of Blonder-Tongue ARROW or DART antenna. (Page 48)
2. Results of comparison tests of Blonder-Tongue antenna. (Page 49)
3. Tests or other evidence of infringement supplied to the Foundation with regard to Blonder-Tongue DART and ARROW antennas and correspondence between Mayes and JFD or any other writings bearing on the relationship between the Blonder-Tongue antennas and the Isbell work. (Page 51)
4. All drawings, notebooks or other writings showing dual boom construction and the earliest dates of dual boom construction at JFD. (Page 54)
5. The names of all people who worked with Mr. Grant on any dual boom construction at JFD Laboratories in the spring of 1963. (Page 56)
6. Any documents bearing on the request to JFD from Sears for a VHF-UHF antenna or relating to the initiation of the development project in response to the Sears request. (Page 59)

AXED. HOFGREN
ERNEST A. WEGNER JOHN REX ALLEN WILLIAM J. STELLMAN JOHN B. MCCORD BRADFORD WILES JAMES C. WOOD STANLEY G. DALTON RICHARD S. PHILLIP TED E.KILLINGSWORTH CDERKILLINGSWOR CHARLES L. ROWE JAMES R. SWEENEY
W. E.RECKTENWALD J. R.STAPLETON WILLIAM R. MENAIR JOHN P. MILNAMOW DILLS V. ALLEN W. A. VAN SANTEN, JOHN F. HOFFMAN

Hofgren, Wegner, Allen, Stellman \& McCord
$2 O$ NORTH WACKER DRIVE
CHICAGO 60606

November 22, 1966

VIA AIR MAIL

Mr. I. S. Blonder Blonder Tongue Laboratories, Inc. 9 AIling Street Newark, New Jersey 07102

Dear Ike: attorney for JFD, with regard to some minor changes in the transcript of your deposition. If you have any objections to these changes, let me know by the second of December so that I can check with Mr. Cass and the reporter.

Sincerely yours,

Richard S. Phillips

RSP:iag

* Enclosure
ce: Mr. Robert H. Rines

PATENTS • TRADEMARKS • COPYRIGHTS

Mrs. Helen K. Thomas
Official Court Reporter
United States District Court
219 South Dearborn Street - R. 2328A
Chicago, Illinois
Re: U. of I. Foundation V. Blonder-Tongue Laboratories v. JFD Electronics, Civil Action No. 66 C 567

Dear Mrs. Thomas:
With respect to the deposition of Isaac S. Blonder taken on October 25, 26 and 28,1966 by Lucile E. Moore in the above entitled cause, I wish to call attention to the corrections in the transcripts which are to be made prior to filing with the Court. A copy of this letter is being sent to Mr. Richard Phillips, counsel for defendant, for his approval.

Page 156, Iine 5, change "UHF" to --VHF--.
Page 170, line 23, change "BT-49" to --J-3--.
Page 176, line 12, change "I" to --one--.
Page 184, line 20, change "spacing" to --facing--.
Page 185, lines 8 and. 10, change "specifications" to --specification--.

Page 186, Iines 3, 8, and 12, change "expediential" to --exponential-.

Page 195, line 18, change "do" to --are-- and change "extend" to --extant--;
line 21 , delete semi-colon (;) and insert a period (.); change "among" to --Among--.

Page 197, line 10, change "portion" to --position--.
Page 201, line 2, change "Cass" to --Blonder--.
Page 210, line 18, change "laboratories" to --laboratory-and insert --vehicles-- after "laboratory" and before the period (.).

Page 213, line 15, delete the word "between".
Page 236, line 18, insert --tests-- after "to".
Page 238, line 21, change "on" to --in--.
Page 246, line 14, after the word "themselves", delete the comma (,) and insert a period (.); change "when" to --Then--.

Page 266, line 21, delete question mark (?) and insert two hyphens (--);
line 23, insert two hyphens (--) before "Of" and change "Of" to --of--.

Page 268, line 8, after the word "Yes", change the period (.) to a comma (,);
line 20, insert --In-- before "J-1-a" and insert a comma (, after "J-1-a".

Page 271, line 12, change "Then" to --In--.
Page 280, line 1, delete the words "in your possession".
Page 287, line 8, change "he" to --we--.

Mrs. Helen K. Thomas

Page 301, line 22, change "And" to --On--.
Page 308, line 17, change "that" to --an--
Page 311, line 19, change "antenna" to --Antenna-..
Page 316, line 10 , change "of the" to --other--.
Page 332, line 20, change "normance" to --norance--.
Page 359, line 9, after "displacement", insert a comma (,).
Page 367, line 6, delete "57,"; line 7, delete "61,".

Page 414, line 22, change "method" to --means--.
If no objections to these corrections are received from Mr. Phillips within two weeks from the date hereof, I request that these corrections be made with the understanding that Mr. Phillips approves and the transcripts filed with the Court.

Very truly yours,
SILVERMAN \& CASS

MCC/gm
cc: Richard S. Phillips, Esq. Attorney for Defendant and Counterclaimant

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF ILLINOIS EASTERN DIVISION

THE UNIVERSITY OF ILLINOIS FOUNDATION,
Plaintiff,

> v.

JERROLD ELECTRONICS CORPORATION,
\&
R. COOPER JR.; INC.

SECOND DEFENSE

The plaintiff's assignors were not the first inventors of the articles covered by the patents specified in the Complaint.

THIRD DEFENSE

The acquisition and assertion of rights by the plaintiff under the patents specified in the Complaint are ultra vires under its charter and as a non-profit corporation organized under the laws of the State of Illinois.

FOURTH DEFENSE

This suit is brought as a result of a conspiracy in violation of the federal antitrust laws between the plaintiff and JFD Electronics Corporation, a competitor of the defendant, Jerrold Electronics Corporation, and Its affillate, Technical Appliance Corporation.

FIFTH DEFENSE

The patents specified in the Complaint are invalid because they do not involve inventions.

SIDIEY, AUSTIN, BURGESS \& SMITH

By
Attorneys for Defendants

I CEFITHY that a copy of the foregoing Answer was served upon the attomeys for the plaintiff by mall on the day of June, 1966.

Name of Presiding Judge, Honorable
Julius J. Hoffman
Cause No...-66 C567 Date April 26,1966

Title of Cause

Brief Statement of Motion

THE UNIVERSITY_OF ILLINOIS FOUNDATION V.
BLONDER-TONGUE LABORATORIES, INC. and ALIIED RADIO CORPORATION
Stipulation extending time to answer or otherwise plead to and including May 25, 1966

The rules of this court require counsel to furnish the names of all parties entitled to notice of the entry of an order and the names and addresses of their attorneys. Please do this immediately below (separate lists may be appended).

Names and Addresses of moving counsel

Representing

Names and Addresses of opposing counsel (if any) and names of parties they represent.

RECEIVED

APR 291965
RIMES AN DRIN ES
NO. TEN POST OFFICE SQUARE. EOSTRM
Hand this memorandum to the Clerk.
Counsel will not rise to address the Court until motion has been called.

人
Nonvedre can ure -
A

BT deym is theies

- Inctat fincis thandbats-1966
popita Eatrici

$$
k_{1}{ }_{6} \overline{3}
$$

May 18, 1966

```
Mr. Dick Relhoskt
Blonder Tongue Labs, Inc*
9 Alling Street
Newark, New Jersey 07102
```


Dear Diek:

```
Per our telephone conversation regarding sutennas, I have enclosed copies of the Inm formation that we recetved from JFD.
See you at the showt
```

Yours truly
SACRAMEXTO ELECTRONIC SUPPLY CO.
C. E. Bohmbach, Jr* (Skip)

Manager

Encls.

```
ce: Rines & Rines
    10 Post Office square
    Boston, Mase.
```

AXIL A. HOFGREN ERNEST A.WEGNER
JOHN REX ALLEN
WILLIAM J. STELLMAN JOHN B. MCCORD bRADFORD WILES JAMES C. WOOD STANLEY C. DALTON RICHARD S. PAIL TED E.KILLINGSW ED E.KILLINGSWORTH GABLES L- ROWE AMES RES
W. E. RECKTENWALD J. R.STAPLETON W. R.STAPLETON WILLIAM R.MCNAIR DILLS V. ALLEN W. A. VAN SANTEN, JR. W. A. VAN SANTEN,

Hofgren, Wegner, Allen, Stellman \& McCord

20 NORTH WACKER DRIVE
CHICAGO 60606

May 31, 1966

RECEIVED

JUN -1 1965
RINESANDRINES NO. TEN POST OFFICE SQUARE, BOSTON

Mr. Robert H. Kines
Rives and Rives
No. Ten Post Office Square Boston, Mass. 02109

Re: University of Illinois Foundation v. Blonder-Tongue Laboratories, Inc. and Allied Radio Corporation Civil Action No. 66 C 567

Dear Mr. Rines:
Your letter of May 26 and the brief were received this morning. I think you have a good chance of having your motion granted as I reviewed most of the cases you cited and found them to support your position.

It was my understanding from our phone conversation that you had the brief substantially done and your letter accompanying the motion likewise so indicated. If I had known that you needed more time I might have obtained a couple more days for you to file the brief but Judge Hoffman is a stickler for prompt filings and I therefore felt it was not wise to ask for more time. In my opinion the brief is very well done and I do not see any reason for you to apologize for it.

We served and filed the brief today. We will keep you advised of developments.

Yours very truly,
HOFGREN, WEGNER, ALLEN, STELLMAN \& Mc CORD

JR: DB

Hay 2, 1966

VIA AIR MAIL

```
John Rex Allen, Eisq,
Hofgren, Wegner, Allen, stellman se Mccord
20 North Nacker Drive
Chicago I111no1s 60606
```

Re: C.A. 66 c 567 -Univ, of I111no1s Foundation Y. Blonder-fongue Labs, et al

Dear Mr. Allen:
We acknonledge recelpt and thank you for your letter of April 28th with copy of the court order enclosed, and your letter of Apr11 29th.

We are ordering coples of the two additional patents to which you refer so that my son may have the complete picture before him upon his return.

Very bruly yours,
RINES AND RINES

DR:H

By

AXEL A. HOFGREN
ERNEST A. WEGNER
ERNEST A. WEGNE
JOHN REX ALLEN JOHN REX ALLEN
WILLIAM J. STELLA WILLIAM J. STELE
JOHORE BRADFORD WILES BRADFORD WILE
JAMES C. WOOD STANLEY C. DALTON RICHARD S. PHILLIPS LLOYD W. MASON TED E. KILLINGSWORTH CHARLES L. ROWE JAMES R. SWEENEY W. E.RECKTENWALD J. R.STAPLETON WILLIAM R, MENAIF JOHN P. MILNAMOW DILLS V.ALEEN W. AJVAN SANTEN, JR. JOHN R. HOFFMAN

Hofgren, Wegner. Allen. Stellman \& Mc Cord

IO North Wacker drive
CHICAGO SO EOE

April 29, 1966

TELEPHONE
FINANCIAL 6-1630 AREA CODE 312

RECEIVED

MAY -2 1965
R INES AN DEN POST Office square, boston

Mr. David Kines Rines and Kines No. Ten Post Office Square Boston, Mass. 02109

Re: The University of Illinois Foundation v. Blonder-Tongue Labs., Inc. and Allied Radio Corporation
Civil Action No. 66 C 567
Dear Mr. Rines:
I am sorry that my letter of April 26 was not clear. What I intended to say was that our client had been sued in another case by the University of Illinois Foundation on two patents other than Patent No. 3,210,767. The patents were Nos. 3,150,376 and Re. 25,740. The manufacturer in that case, The Finney Manufacturing Company of Bedford, Ohio, entered its appearance and took over the defense of the suit whereupon our client Allied Radio Corporation was dismissed as a party defendant. We did no work whatsoever on that case other than to arrange for the manufacturer to come in and defend and then arrange for our client to be dismissed.

What I intended to say by the last paragraph of my above letter was that Patent No. $3,210,767$ may be added to the former suit by supplemental complaint and, if it is, your case may be transferred from Judge Hoffman, to whom it is now assigned, to Judge Marovitz, to whom the earlier case is assigned.

I hope that this clears up any difficulty you might have in the matter.

Yours very truly,
HOFGREN, WEGNER, ALLEN, STELLMAN \& McCORD

JRA:DB

AXEL A. HOFGREN
ERNEST A. WEGNER
JOHN REX ALLEN
WILLIAM J. STELLMAN
JOHN B. MCCORD BRADFORD WILES JAMES C. WOOD STANLEY C. DALTON RICHARD S. PHILLIIPS
LLOYD W. MASON
TED E. KILLINGSWORTH
CHARLES L. ROWE
JAMES R. SWEENEY
W. E. RECKTENWALD」.R.STAFLETON WILLIAM R.MCNAIR HOHN P. MILNAMOW DILLIS V. ALLEN W. A.VAN SANTEN, JR. JOHN R. HOFFMAN

Hofgren, Wegner. Allen, Stellman \& McCord $2 O$ NORTH WACKER DRIVE

CHICAGO GOGOG

April 28, 1966

Mr. David Rines Rines \& Rines lo Post Office Square Boston, Mass.

Re: The University of Illinois Foundation v. Blonder-Tongue Laboratories, Inc. and Allied Radio Corporation Civil Action No. 66 C 567

Dear Mr. Rines:
Attached please find copy of order entered in the above case extending time to answer etc.

Yours very truly,
HOFGREN, WEGNER, ALLEN, STELLMAN \& McCORD

JRA:DB
 Enc.

APR 291963
RINESANOAAB:

ary

Hi Bob:
We thought the enclosed copy of Jfd ad which appeared in the May 23rd issue of Radio \& Television Weekly would be of interest to you. We had a call in to your office today so that I could read those parts which Harry Gilbert wanted you to be aware of.

Take care.

Hofgren. Wegner, Allen, Stellman \& McCord

Mr. Robert H. Rines
Rines and Rines
No. Ten Post Office Square Boston, Mass. 02109

Re: University of Illinois Foundation v. Blonder-Tongue Laboratories, Inc.

Dear Mr. Rines:
This will confirm today's phone conversation in which I advised you that counsel for the Foundation are unwilling to enter into the stipulation to extend your time to answer the second set of interrogatories, now due next Wednesday. They agreed, however, that if we file the answers by the 19 th , no objection would be made to the late filing.

We agreed that you would send me the answers in time to file them on the 19th rather than have me go in and ask Judge Hoffman for an extension of time which would surely lead to his criticism.

JRA: DB
Sincerely,
 BRADFORD WILES JAMES C. WOOD
STANLEY C. DALTON STANLEY C. DALTON
RICHARD S. PHILLIPS LLOYD W. MASON TED E.KILIINGSWORTH CHARLES L. ROWE JAMES R. SWEENEY
W. E.RECKTENWALD J. R.STAPLETON WILLIAM R.McNAIR JOHN P. MILNAMOW DILLS V. ALLEN W.A. VAN SANTEN, JR. JOHN R. HOFFMAN

Hofgren, Wegner, Allen, Stellman \& McCord
$2 O$ NORTH WACKER DRIVE

September 7, 1966

Mr. Robert H. Fines Rines and Kines No. Ten Post Office Square Boston, Mass. 02109

Re: University of Illinois Foundation v. Blonder-Tongue Laboratories, Inc.

Dear Mr. Kines:
Judge Hoffman is not sitting this week, and we therefore presented the judgment and motion to Judge Will who signed the judgment and granted the motion after counsel for the University of Illinois said they had no objection to it.

After leaving the courtroom I discussed the matter with plaintiff's counsel and asked if he would be willing to enter an appearance on behalf of JFD. He advised me that he has been very careful all along in these matters not to represent JFD who have counsel here in Chicago. He thought that the firm of Silverman and Cass would probably represent them in our case. In any event, I have arranged for service of the counterclaim on JFD. I am hopeful that the service will be made this week.

I might add that the University of Illinois Foundation was given twenty days to reply to the counterclaim. When do you want me to serve notice of taking the deposition of Dr. Johnson?

JR: DB

RECEIVED SEP - 81986

Mr. Isaac S. Blonder Blonder-Tongue Laboratorfe os, Inc. 9 Alling street
Newark 2, New Jersey

> Re: Univexsity of IL11nols Foundation, v. Blonder-fongue Laboratories, Ine, et, al

Dear Ike:
The Univeraity of Illinois is asking further questLons of us by way of a second set of Interrogatories and we propose to anawer these, and then hit them with our own notice for taking oral deposition of the staff of the University of L111noLs Foundation and JFD Electronies.

Would you please prepare notes of the answers to these questions so that when I come to your plant some time next week (we shall call for a deflnite mutual agreeable time) we can complete this matter.

RHR:H
Cordially,
RIMES AND RTNES

Enclosures
co. Mr. H. Gilbert

September 7, 1966

VIA AIR MAII

John Rex Allen, Esq.
Hofgren, Wegner, Allen, Stellman \& NeCord 20 Nerth Wacker Drive CHICArO, ILHMOIS 60606

Re: University of 111 nols Foundation Y. Blonder-Tongue Laboratories, et al

Dear Mo, Allen:
Thank you for revising and retyping the draft of the answer and counterclatn and the motion to join FJD Electronics.

We have received the second set of interrogatories and have forwarded a copy to our cllent for commencing the preparatlon of the answers.

We note this cannot be completed befare September 10 th and would therefore pequest the. you arrange for an extengion of time, say, to the end of the month for the filing of the answers.

In the weantime, we shall prepare taterial rela ting to our own notice to take depositions and shall communicate With you further in this regard.

Agaln, thank you for your very able attention to these mattera.

Cordially,
RIMES AND RINES

FRE: H
By \qquad
ce: Harry GLIbert
ce: Isaae S, Blonder

Hofgren. Wegner, Allen, Stellman \& McCord

20 NORTH WACKER DRIVE
CHICAGO EOEOE

September 1, 1966 Ex

Mr. Robert H. Rines Rines and Rines No. Ten Post Office Square Boston, Mass. 02109

Re: University of Illinois Foundation v. Blonder-Tongue Laboratories, Inc.

Dear Mr. Rines:
Attached please find copy of the following documents in the above case:

1. Order on Stipulation dismissing Allied Radio Corporation.
2. Answer and Counterclaim.
3. Notice of Motion to Join JFD Electronics Corporation as a Party Counterclaim Defendant.
4. Motion to Join JFD Electronics Corporation as a Party Counterclaim Defendant.

We have made some changes in the counterclaim draft that you sent us.

Probably the major change is in eliminating Allied Radio as a counterclaimant. We have just had a case for unfair competition before Judge Hoffman where there were multiple parties involved and because one of the parties plaintiff and one of the parties defendant were citizens of Illinois the complaint was dismissed. To make sure that this problem would not arise we arranged with counsel for plaintiff to dismiss the complaint so far as Allied Radio is concerned.

Mr. Robert H. Nines
September 1, 1966
Page No. 2

Our time to object to plaintiff's second set of interrogatories expires on September th. I am assuming \qquad that you do not intend to file objections to these interrogatories.

At one time we thought of adding to the counterclaim the usual boilerplate defenses to patent infringement. It was decided that we did not know enough about the case to warrant this. Such defenses if they appear proper can always be added by an amended answer.

The answer and counterclaim were filed with the Clerk of the Court today. As Judge Hoffman is not sitting now the motion and stipulation cannot be presented until next Wednesday.

I tried but without success to sound out plaintiff's counsel as to whether or not they would oppose the motion. It seems that they had not been advised that JFD had offices here or, if they were so advised, they pretended they were not. In any event, apparently somebody else has to make the decision so I won't know until Wednesday.

JRA:DB

Enc.

Hofgren, Wigner, Allen, Stellman \& McCord 20 NORTH WACKER DRIVE

CHICAGO GOGOG

September 26, 1966

Mr. Robert H. Rines
Rines and Kines
No. Ten Post Office Square
Boston, Mass. 02109
Re: University of Illinois Foundation v. Blonder-Tongue Laboratories, Inc.

Dear Mr. Kines:
Attached please find copy of Plaintiff's Reply to Counterclaim of Defendant Blonder-Tongue Laboratories, Inc. in the above action.

I just received a call from Irv Silverman of Silverman \& Cass stating that he had just learned from plaintiff's counsel that his client JFD had been served and asking if I would agree to a thirty day extension for his answer. I told him. I would enter into a stipulation but I would not guarantee what Judge Hoffman would do. In view of the fact that his client neglected to tell him about service, I assume that Judge Hoffman will probably go along with the stipulation.

Yours very truly,
HOFGREN, WEGNER, ALLEN, STELLMAN \& AcCORD

JRA:DB
Enc.

John Rex Allen
P.S. Since the above was written, I have received a copy of the appearance of Silverman's firm and of the stipulation which they will file tomorrow. A copy of each is attached.

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF ILLINOIS EASTERN DIVISION

THE UNIVERSITY OF ILLINOIS FOUNDATION
Plaintiff and Counterclaim Defendant,
V.

BLONDER-TONGUE LABORATORIES, ING.,
Defendant and Counterclaimant,

Civil Action
No. 66 C 567

JFD ELECTRONICS CORPORATION, Counterclaim Defendant.)

APPEARANCE

We hereby enter the appearance of JFD ELECTRONICS CORPORATION as counterclaim defendant in the above entitled case and that of SILVERMAN \& CASS, I. IRVING SILVERMAN, MYRON C. CASS, and SIDNEY N. FOX, as attorneys for said counterclaim defendant.

September 27, 1966

Attorneys for Counterclaim Defendant 105 West Adams Street Chicago, Illinois 60603

STIPQLITIOX

IT IS HEREBY STIPULATED AND AGREED by and between the parties to the above entitled suit, through their respective counsel, that the Honorable Court consent the counterclaim defendant, JFD ELECTRONICS CORPORATION, to have until November 1, 1966 within which to answer or otherwise plead to the Counterclaim filed in the above case by defendant and counterclaimant, BLONDER-TONGUE LABORATORIES, INC.

Counterclaim defendant represents to the Court in support of its request for this extension of time as follows:

1. The counterclaim defendant is a corporation of New York and primarily operates in New York and its principal patent counsel are Ostrolenk, Faber, Gerb \& Soffen of

10 East 40th Street, New York, New York.
2. The undersigned firm, Silverman \& Cass, were asked to represent the counterclaim defendant by the above-mentioned New York law firm but first learned of service of the counterclaim on September 21, 1966.
3. Arrangements are being made to meet with principal counsel for the counterclaim defendant to discuss the nature of the counterclaim.
4. For the Court's information, the said counterclaim alleges unfair competition, conspiracy, false representation, violations of the anti-trust law, patent infringement, declaratory judgment for invalidity of patent and is a highly complex document, difficult to answer or plead to without careful and complete consideration of its allegations and certainly, improper to answer by mere denial without due consultation with the client and client's principal counsel.

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT: OF ILLINOIS EASTERN DIVISION

SEP 61966
RINESANDRINES vo. TEN POST OFFICE DQUARE, BOSTON

THE UNIVERSITY OF ILLINOIS FOUNDATION,
Plaintiff and Counterclaim Defendant,
v.

BLONDER-TONGUE LABORATORIES, INC.,
Defendant and Counterclaimant,
V.

JFD ELECTRONICS CORPORATION, Counterclaim Defendant.

CIVIL ACTION
NO. $66 \quad \mathrm{C} 567$

NOTICE OF MOTION

TO: Merriam, Marshall, Shapiro \& Klose 30 West Monroe Street
Chicago, Illinois 60603

PLEASE TAKE NOTICE that on Wednesday, September 7, 1966, at 10 A.M. Central Daylight Saving Time, or as soon thereafter as counsel may be heard, we shall appear before the Honorable Julius J. Hoffman, in the room occupied by him as a courtroom in the Federal Building, Chicago, Illinois, and then and there present the attached Motion to Join JFD Electronics Corporation as a Party Counterclaim Defendant.

AIR MAIL

SEECIAL vKCIVERX

30 August 1966

John Rex A21en, Ena,
Hotfgren, Yegnery Ailen, Stellman and Mocord
20 North Hacker brive
Chieage, Tlisnola 60606
Re: Univereter of ILIinote Youndation *. Byonier-hangue Laboratoxies Ine., ot al 10. 660567

Dear My, Allent
It wan a pleasure mating wath you jant ueet to dascuse the above 1itigitich. Thank you for z wondexful lunchech.
Enolosed are the promised asarts of the answer and counterclatin and a metion to add dFD, whioh we dratted in the Waine woods and whioh are being bransexibed and sent to you for finalising without our having ohecked them.
Upon owe weturn, we chail suggest the notioing of depositicns of at least the Foundation prepident, Hjalnar Y, Johnacn, who issued the newtreleases, and Eaward prinez, the 5 sD vicepresident, whe filied an afridavit se the 1ieanse with the Foundetion in opposition to aur motion to dismiss.
cordially.
nINES AnD RINBS
By \qquad
Ruithe
Enclosureat Duare or Anguer and Counterolaim, Motien to Add SFO

cot Measxs, Gilbert and slonder Blonden-qungue Labonaterlee

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF ILLINOIS EASTERN DIVISION
THE UNIVERSITY OF ILLINOIS FOUNDATION,
Plaintiff,
V.
BLONDER-TONGUE LABORATORIES, INC.
ALLIED RADIO CORPORATION,
Defendants.

CIVIL ACTION No. 66 C 567

ORDER ON STIPULATION

It is hereby stipulated and agreed by and between the parties hereto, through their respective counsel, that Allied Radio Corporation may be dismissed as one of the defendants herein.

MERRIAM, MARSHALL, SHAPIRO \& KLOSE

Sept. \qquad 1966

Sept. \qquad 1966

By

HOFGREN, WEGNER, ALLEN, STELLMAN \& ACCORD

By

SO ORDERED:
U.S. District Judge

AXEL A. HOFGREN
ERNEST A.WEGNER
JOHN REX ALLEN
WILLIAM J. STELLMAN
JOHN B. MCCORD
GRADFORD WILES
JAMES C. WOOD
STANLEY C. DALTON
RICHARD S. PHILLIPS
RICHARD S. PHILLIF
LLOYD W. MASON
TED E, KILLINGSWORTH
CHARLES L ROWE JAMES R SWEENEY
W. E. RECKTENWALD
J. R. STAPLETON
W. R.STAPLETON

WILLIAM R-MENAIR
JOHN P. MILNAMO
DILLIS V. ALLEN
W.A.VAN SANTEN, JR.

JOHN R. HOFFMAN

Hofgren, Wegner, Alten, Stellman \& McCord
$2 O$ NORTH WACKER DRIVE
CHICAGO 60606

September 23, 1966

Mr. Robert H. Rines
Rines and Rines
No. Ten Post Office Square Boston, Mass. 02109

Re: University of Illinois Foundation v. Blonder-Tongue Laboratories, Inc. Civil Action No. 66 C 567

Dear Mr. Rines:
Attached please find copy of Plaintiff's Third
Set of Interrogatories to Defendant Blonder-Tongue which
I assume you can answer.

> Yours very truly,

HOFGREN, WEGNER, ALLEN, STELLMAN \& McCORD

JRA: DB
Enc.

John Rex Allen

Says 2-Gun Tube Interests Motorola

DALLAS - Motorola has shown some interest in the two-gun tube under study by Texas Instruments and Polarod, according to Robert W. Galvin, chairman of Motorola. Mr. Galvin said that Motorola had been in conversation with the firms but was "not privy to all developments." He feels Polaroid Is not yet convinced that the tube Will be marketable but finds the concept interesting and worthy of further study, lie said.
At the same time, Motorola's color TV Drices are not expected to climb any hyger during the

next year, Mr, Galvin said in an interview here that he felt that Motorola's prices would remain at present levels for the next several months to a year

Drops Allied Radio From Patent Suit

CHICAGO, - Allied Radio Corp., here, was dismissed on agreement as a defendant to a suit by the University of Illinois Foundation charging Infringemont of a patent for frequency Indepentent, unidrectlonal antennas.

Blonder ~ Tongue Tra., Newark, N. J. Is theratories Ing defendant to the Federal Court suit involving Patent No, 3,210,767. As previously reported, it has filed an antitrust counterclaim against the foundation and JFD Elec. tronics Corp, Brooklyn, $\mathrm{N}_{\mathrm{s}} \mathrm{Y}$, Hofgren, Wegner, Allen, Stellman \& McCord represents BlonderTongue and represented Allied Merriam, Marshall, Shapiro \& Klose represents the foundation.

Motorola For Mon

 BIRMINGHAM, Ala - TL of Motorola Consumer PD Inc, is : :bullish about the of monochrome television sfS. R. Ted' Herkes, pre the Motorola sales si speaking before a dealer of Boma Distributors, Motorola oonsumer pro rubiton, stated that the cllioe in black and whites could be the resuld of tw, The inablity of the production establishmen port demand for certain A resultant lack of motional effort on all screen-size categorles
As for Motorola's ence with monochre Mr. Herkes stated black and white AV ning well ahead of las

HARRY A. GILBERT
BLONDER-TONGUE LABORATORIES, INC. 9 fALLING STREET, NEWARK, NEW JERSEY 07102
 4 4 4 TO

Oct. 4, 1966

Message

Dear Bob:
Here are fax copies of JFD antenna ads.
The other things that you asked for on the U / V will follow.

originator - do not write below this line
Reply

OCT 51966
Rinesandrines vo. ten post office square, boston
"JFD Electroncs Cop 6330 W Hermione distrules div 6139 W Touky
p. 718

Ielinaws Bel Telephan Rerictoz 1965-66 p,724

$$
\text { I. } \quad \text { '. 'c cheaso-sul, } 1966
$$

DRAFT
RHR: jg
23 May 1966

UNITED STATES DISTRICT COURT
FOR THE
EASTERN DISTRICT OF NEW YORK

Civil Action No.
vt

JED ELECTRONICS CORPORATION,
THE UNIVERSITY OF ILTINOIS FOUNDATION and
THE UNIVERSITY OF ILLINOIS

COMPLAINT

1. Plaintiff, Blonder-Tongue Laboratories, Inc., is a corporation duly organized and existing under the laws of th 15014509
State of New Jersey, having a principal place of business at

9 Alling Street, Newark, New Jersey.
2. Defendant, JFD Electronics Corporation, on information and belief, is a corporation duly organized and existing under the laws of the State of New York, having a principal place of business at 1462 62nd Street, Brooklyn, New York, within the Eastern District of New York, wherein, and elsewhere within the United States, the acts of unfair competition, anti-trust law

RHR: jg

JED ELECTRONICS CORPORATION,
THE UNIVERSITY OF ILLINOIS FOUNDATION and
THE UNIVERSITY © ILITNOIS

COMPLAINT

1. Plaintiff, Blonder-Tongue Laboratories, Inc., is a corporation duly organized and existing under the laws of th $1 J 0$ USER
Y89 State of New Jersey, having a principal place of business at 9 Ailing Street, Newark, New Jersey.
2. Defendant, JFD Electronics Corporation, on information and belief, is a corporation duly organized and existing under the laws of the State of New York, having a principal place of business at 1462 62nd Street, Brooklyn, New York, within the Eastern District of New York, wherein, and elsewhere within the United States, the acts of unfair competition, anti-trust law
violations and patent infringement conplained of herein were and are presently being committed, unless and until restrained by this Honorable Court.
3. Defendants, The University of Illinois and the University
of Illinois Foundation, on information and belief, representing themselves as a non-profit educational institution and a nonprofit mand research foundation, respectively, and exempted from federal taxation upon such representation, and having principal offices at 224 Illini Union, Urbana, Illinois, are doing business jointly with said Defendant, JFD Electronics Corporation at said 14626 2nd Street, Brooklyn, New York, within the Eastern District of New York, where, and elsewhere within the United States, they have committed and are presently continuing to commit the acts of unfair competition, anti-trust law violations and patent infringement complained of herein.
4. This action arises under the patent, anti-trust and
unfair competition laws of the United States (

Lanham Act),

[^0]: Fees and mileage need not be tendered to the witness upon service of a subpoena issued in behalf of the United States or an officer or agency thereof. 28 USS 1825.
 NOTE_—Affdavit required only if service is made by a person other than a United States Marshal or his deputy.

[^1]: * The logarithmic spiral was first discussed by Descartes (1638) and later (1691-1693) studied by Jacques Bernouilli, who gave it its name. Bernouilli was so delighted by the property of the spiral reproducing itself under various transformations that he requested that the spiral be engraved on his tomb with the inscription "Eadem Mutata Resurgo."

[^2]: * The pattern actually rotates with frequency about an axis perpendicular to the plane of the spiral. If the pattern-measuring coordinate system is allowed to rotate at the same rate, the measured pattern remains constant; otherwise there will be a (generally smali) periodic variation of magnitude proportional to the rotational asymmetry of the pattern.

