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About this document

Scope and purpose
This document explains the architecture and functioning of the PSoC™ 4 high voltage (HV) precision analog (PA)
MCU devices.

Intended audience
Engineers who need to become familiar with the hardware and firmware design principles of PSoC™ 4 HV PA MCU
devices.
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Section A:   Overview
This section encompasses the following chapters:
• “Introduction” on page 12
• “Getting started” on page 19
• “Document construction” on page 20
• “CPU subsystem” on page 27
• “Cortex®-M0+ CPU” on page 28
• “DMA controller modes” on page 35
• “Interrupts” on page 54
• “Flash Memory” on page 67
• “SRAM” on page 79
• “Fault subsystem” on page 87
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1 Introduction
PSoC™ 4 HV Precision Analog is a fully-integrated programmable embedded system for battery monitoring and
management. The system features an Arm® Cortex® M0+ processor and programmable and reconfigurable
analog and digital blocks. The PSoC™ 4 HV PA devices have these characteristics:
• High-performance, 24 to 49.152-MHz Arm® Cortex® M0+ CPU with MPU and DMA controller
• Precision analog channel subsystem
• High-voltage subsystem (tolerant up to 42 V)
• Integrated LIN transceiver
• High-precision clock sources
• Configurable Timer/Counter/PWM block
• Configurable serial communication block with I2C, SPI, and LIN slave operating modes
• Low-power operating modes: Sleep and Deep Sleep
• Functional Safety for ASIL-B as per ISO 26262
• Automotive Electronics Council (AEC) AEC-Q100 Qualified
This document describes each functional block of the PSoC™ HV PA devices in detail. This information will help
designers to create system-level designs.

1.1 Top-level architecture
Figure 1-1 shows the major components of the PSoC™ 4 HV PA architecture.

Figure 1-1.  PSoC™ 4 HV PA block diagram
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1.2 Features
The PSoC™ 4 HV PA device has these major components:
• 32-bit MCU Subsystem

– 24 to 49.152-MHz Arm® Cortex® M0+ CPU with DMA 
– Up to 128KB of code flash with ECC
– Up to 8KB of SRAM with ECC
– Up to 8KB of data flash with ECC

• Precision Analog
– Two precision ΔΣ ADCs (16 to 20+ bits)
– Current channel with automatic gain
– Voltage channel with HV input divider
– Temperature and diagnostic channels
– Digital filtering, accumulators, and threshold comparisons on all channels

• High-voltage subsystem
– Operates directly off 12 V/24 V battery (tolerant up to 42 V)
– Integrated LIN transceiver
– ADC input voltage divider

• Functional Safety for ASIL-B
– Development process of ISO 26262 for ASIL B
– Memory Protection Unit (MPU)
– Challenge-Response Watchdog Timer (CRWDT)
– Detection of overvoltage and brownout events
– Hardware error correction (SECDED ECC) 
– Analog diagnostics 

• Timing and Pulse-Width Modulation
– Four 16-bit timer/counter/PWM (TCPWM) blocks
– Center-aligned, edge, and pseudo-random modes
– Quadrature decoder

• Clock Sources
– ±2% up to 49.152-MHz Internal Main Oscillator (IMO)
– ±1% 2-MHz High-Precision Oscillator (HPOSC)
– 40-kHz Internal Low-speed Oscillator (ILO)
– ±5% or ±7% 32-kHz Precision Low-power Oscillator (PILO) based on the part number

• Communication
– Serial communication blocks (SCBs) with reconfigurable I2C, SPI, UART, or LIN Slave 
– Local Interconnect Network (LIN) block with LIN 2.2A
– Up to 11 GPIOs

1.3 CPU system

1.3.1 Processor
The Cortex®-M0+ CPU in the PSoC™ 4 HV PA is part of the 32-bit MCU subsystem, which is optimized for low-power
operation with extensive clock gating. Most instructions are 16 bits in length and execute a subset of the 
Thumb-2 instruction set. The Infineon implementation includes a hardware multiplier that provides a 32-bit
result in one cycle.Programs can execute from SROM, SRAM, or FLASH memory.
The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a 2-wire form of JTAG;
the debug configuration used for PSoC™ 4 HV PA has four break-point (address) comparators and two watchpoint
(data) comparators.
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1.3.2 Interrupt controller
The CPU subsystem includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and
includes a Wakeup Interrupt Controller (WIC) in the system resources subsystem (SRSS), which can wake the
processor up from the Deep Sleep mode allowing power to be switched off to the CPU when the chip is in the Deep
Sleep mode. The Cortex®-M0+ CPU provides a Non-Maskable Interrupt (NMI) input, which is the highest priority
exception other than reset.

1.3.3 Direct memory access
The DMA engine with eight channels is provided that can do 32-bit transfers and has chainable ping-pong
descriptors. This DMA engine allows data transfer between memory, registers, and peripherals without CPU
intervention. DMA transfers can occur while CPU is sleep. Descriptors identify the data source and destination
along with other information.

1.4 Memory with ECC
Flash and SRAM include Error Correction Code (ECC) circuitry capable of correcting single-bit errors and detecting
2-bit errors. If a single bit error occurs, the data is corrected in-line, error information is stored, and an error flag
is set, which can generate an interrupt. If a multi-bit error is detected, the error information is stored and either
an interrupt or reset is generated.

1.4.1 Flash
The PSoC™ 4 HV PA has a flash module with separate controllers for code flash and data flash. The flash is with an
accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash
accelerator delivers 85% single-cycle SRAM access performance on average. Part of a flash module can be used
to emulate EEPROM.

1.4.2 SRAM
Volatile static memory (SRAM) is used by the processor for storing variables and can program code can be written
and executed in SRAM. SRAM memory is retained in all power modes (Active, Sleep, and Deep Sleep). At power-
up, SRAM is uninitialized and should be written by application code before reading.

1.4.3 SROM
A supervisory read-only memory (ROM) contains boot and configuration routines that cannot be modified.

1.5 System resources

1.5.1 Power system
The power system includes regulators to generate appropriate voltages. The PSoC™ 4 HV PA operates at full
performance from a single supply on VBAT over a voltage range of 3.6 V to 28 V and remains functional up to 42 V.
In addition to an active mode, the PSoC™ 4 HV PA has two low-power modes called Sleep and Deep Sleep.
Transitions between the three power modes are managed by the power system in the SRSS.
The high-voltage regulator generates a 3.3-V supply from VBAT for VDDD and VDDA. VDDA powers analog circuits, while
VDDD provides power for I/Os (GPIOs) and the 1.8-V Core power regulators. There are different internal core
regulators to support the various power modes. These include Active Digital regulator and Deep Sleep regulator.
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1.5.2 Clock system
The PSoC™ 4 HV PA clock system is responsible for providing clocks to all subsystems that require clocks, for
switching between different clock sources without glitching, and for synchronizing clocks operating on different
frequency domains to prevent meta-stable conditions. 
Four oscillators are implemented:
• A internal main oscillator (IMO) for CPU and peripheral clock generation, which is usually configured for 

24-MHz to 48-MHz (in 4-MHz steps) and can support a “special” 49.152-MHz frequency
• A high-precision fixed frequency 2-MHz oscillator for precision timing (HPOSC)
• A low-power 40-kHz low-speed oscillator (ILO)
• A 32-kHz precision low-power oscillator (PILO) for wakeup timers and watchdog timers
There are also provisions for an external clock supplied by a GPIO pin. The ILO and PILO are permanently powered
in all power modes.

1.5.3 GPIO
The PSoC™ 4 HV PA has eight GPIOs arranged in one port. The GPIOs have these features:
• Output drive modes include push-pull (strong or weak), open drain/source, high-z, and pull-up/-down
• Selectable CMOS and low-voltage LVTTL input buffer mode
• Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis
• Individual control of input and output disables
• Hold mode for latching previous state (to retain I/O state in Deep Sleep)
• Selectable slew rates allowing dV/dt control to assist with noise control to improve EMI

1.5.4 Watchdog timers
The watchdog timer (WDT) is used to automatically reset the device in the event of an unexpected firmware
execution path. It is also used as a wakeup source to periodically generate interrupts as a wakeup source in 
low-power modes. 
A challenge-response watchdog (CRWDT) is available, which includes a window watchdog function, generating
timeout events if the challenge-response watchdog is serviced too soon, too late, or with the wrong software key. 
A lifetime counter is also available, which is used to calculate total time the battery is connected.
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1.6 Digital system

1.6.1 Timer/Counter/PWM Block
The TCPWM in PSoC™ 4 HV PA implements 16-bit timer, counter, pulse width modulator (PWM), and quadrature
decoder functionality. The PSoC™ 4 HV PA has four TCPWM blocks. The block can be used to measure the period
and pulse width of an input signal (timer), count several events (counter), generate PWM signals, or decode
quadrature signals.

1.6.2 Serial communication blocks
The serial communication blocks (SCB) supports four serial interface protocols: SPI, I2C, UART, and LIN slave.
Only one of the protocols is supported by an SCB at any given time. The PSoC™ 4 HV PA has one SCB.
This block supports the following features:
• Standard UART transmitter and receiver function
• LIN slave functionality with LIN v1.3 and LIN v2.1/2.2/2.2A specification compliance
• SPI master and slave functionality with Motorola, TI, and NSC protocols
• I2C master and slave functionality
• EZ mode for SPI and I2C, which allows for operation without CPU intervention

1.7 Analog system

1.7.1 Precision analog channel subsystem
The PSoC™ 4 HV PA precision analog channel subsystem (PACSS) is a high-performance data acquisition system
consisting with two delta-sigma analog-to-digital converters (ADCs) and support circuitry. The two ADCs can
quickly switch between input sources to create a third “virtual” ADC. The PACSS includes an analog input
multiplexer, input buffer amplifiers, delta-sigma modulators, decimators, and digital signal processing channels.
The PCASS also has a precision voltage reference, current references, and temperature sensors.

1.8 High-voltage subsystem
The PSoC™ 4 HV PA high-voltage subsystem includes the following functions:
• An AHB bus interface and control/status registers
• VBAT to VDDD/VDDA HV regulator (3.6 V to 28 V input, 3.3-V nominal outputs)
• An input attenuator/voltage divider for VSENSE and VDIAG ADC inputs
• A LIN transceiver (physical interface or PHY)

1.8.1 HV regulator
The high-voltage regulator is always on, supplied by VBAT, and provides VDD and VDDA. It supplies a nominal output
voltage of 3.3 V but may drop as low as 2.7 V when VBAT drops below 4 V.

1.8.2 LIN transceiver
The LIN transceiver meets the requirements of LIN standard 2.2A and is downward compatible with the LIN 2.0.
Data rates of 10 kB/sec and 20 kB/sec are supported. A non-LIN fast slew rates is available providing 100 kB/sec
data rates for fast downloads for factory and field flash program updates using the LIN pin.
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1.9 Program and debug
PSoC™ 4 HV PA devices include extensive support for programming, testing, debugging, and tracing both
hardware and firmware. The Arm® SWD interface supports all programming and debug features of the device.

1.10 Functional overview

Table 1-1.  PSoC™ 4 HV PA device summary

Feature PSoC™ 4 HV PA

CPU

Core 32-bit Cortex® M0+ CPU

Maximum frequency 24 to 49.152 MHz

DMA 8

Interrupt 32

SysTick timer Available

Fault subsystem Available

Memory

Code flash with ECC Up to 128KB

Data flash with ECC Up to 8KB

SRAM with ECC Up to 8KB

Precision analog

Precision ΔΣ ADCs (16–20+ bits) 2

Current channel with automatic gain 2 

Voltage channel with HV input divider 2

Temperature and diagnostic channels Temperature:1, Diagnostic:1

Temperature sensing Internal/External

Digital channel data path 4ch (2 with FIR, 2 without FIR)
Digital filtering, accumulators, threshold comparisons 
on all channels

High-voltage subsystem

Operation voltage 3.6 V to 28 V
Remains functional up to 42 V

High-voltage regulator 3.3 V nominal output

LIN transceiver 1

ADC input voltage divider 2

Digital system

16-bit timer/counter/pulse-width modulator (TCPWM) 4

Serial communication block (I2C, SPI, UART or LIN) 1

Independent LIN block 1

Clock sources

Internal main oscillator (IMO) ±2% up to 49.152 MHz

High-precision oscillator (HPOSC) ±1% 2 MHz
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Precision internal low-power oscillator (PILO) ±5% or ±7% 32 kHz based on the part number

Internal low-speed oscillator (ILO) 40 kHz

Functional safety for ASIL-B

Memory protection unit (MPU) Available

Basic watchdog timer (WDT) 1

Challenge-response watchdog timer (CRWDT) 1

Lifetime counter 1

Power supply monitoring Overvoltage/Brownout

Hardware error correction All safety-critical memories

Analog diagnostics Backup reference voltage, redundancy in voltage, 
current and temperature measurement paths

System

GPIOs 11

Debug interface SWD

Package 32-pin QFN with wettable flanks (6 × 6 mm)

Operating temperature –40°C to +125°C

Table 1-1.  PSoC™ 4 HV PA device summary (continued)

Feature PSoC™ 4 HV PA
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2 Getting started

2.1 Support
Free support for PSoC™ 4 HV Precision Analog products is available online at www.infineon.com. Resources
include training seminars, discussion forums, application notes, PSoC™ consultants, CRM technical support
email, knowledge base, and application support engineers.
For application assistance, visit www.infineon.com/support/.

2.2 Product Upgrades
Infineon provides scheduled upgrades and version enhancements for the sample driver library (SDL) (which can
be used only to evaluate the microcontroller and not for production usage) and PSoC™ Programmer free of
charge. Upgrades are available at www.infineon.com. Critical updates to system documentation are also
provided in the Documentation section.

2.3 Development Kits
The CYHVPA-128K-32-001 kit enables customers to evaluate and design with the PSoC™ 4 HV PA series of devices.
The CYHVPA-128K-32-001 kit is Multi-functional board corresponding to all features. It includes peripherals that
evaluate the key features of the PSoC™ 4 HV PA series of devices. 
To request the kit, contact your local sales representative. 

2.4 Application Notes
See the application note AN230264 - Getting Started with PSoC™ 4 HV PA for additional information on the 
PSoC™ 4 HV PA device capabilities and to quickly create a simple application using development kits.

http://www.cypress.com/
https://www.infineon.com/
https://www.cypress.com/documentation/other-resources/sample-requests
https://www.infineon.com/
https://www.infineon.com/cms/en/about-infineon/company/contacts/support/?redirId=47672
https://www.cypress.com/documentation/other-resources/sample-requests
https://www.infineon.com/
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3 Document construction
This document includes the following sections: 
• “Overview” on page 11
• “System Resources Subsystem (SRSS)” on page 92
• “I/O System” on page 140
• “Digital System” on page 151
• “Analog System” on page 275
• “High-Voltage System” on page 344
• “Program and Debug” on page 360

3.1 Major sections
For ease of use, information is organized into sections and chapters that are divided according to device 
functionality.
• Section – Presents the top-level architecture, how to get started, and conventions and overview information 

of the product.
• Chapter – Presents the chapters specific to an individual aspect of the section topic. These are the detailed 

implementation and use information for some aspect of the integrated circuit.
• Glossary – Defines the specialized terminology used in this technical reference manual (TRM). Glossary terms 

are presented in bold, italic font throughout.
• Registers Technical Reference Manual – Supplies all device register details summarized in the technical 

reference manual. This is an additional document.

3.2 Documentation conventions
This document uses only four distinguishing font types, besides those found in the headings.
• The first is the use of italics when referencing a document title or file name.
• The second is the use of bold italics when referencing a term described in the Glossary of this document.
• The third is the use of Times New Roman font, distinguishing equation examples.
• The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register conventions
Register conventions are detailed in the PSoC™ 4 HV Precision Analog Registers TRM.

3.2.2 Numeric naming
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, 
‘14h’ or ‘3Ah’) and hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary 
numbers have an appended lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by 
an ‘h’ or ‘b’ are decimal.
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3.2.3 Units of measure
This table lists acronyms that might be used in this document.

Table 3-1.  Units of measure

Abbreviation Unit of measure

bps bits per second

°C degrees Celsius

dB decibels

fF femtofarads

Hz Hertz

k kilo, 1000

K kilo, 2^10

KB 1024 bytes, or approximately one thousand bytes

Kbit 1024 bits

kHz kilohertz (32.000)

k kilohms

MHz megahertz

M megaohms

µA microamperes

µF microfarads

µs microseconds

µV microvolts

µVrms microvolts root-mean-square

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

W ohms

pF picofarads

pp peak-to-peak

ppm parts per million

SPS samples per second

s sigma: one standard deviation

V volts
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3.2.4 Acronyms
This table lists the acronyms used in this document.

Table 3-2.  Acronyms 

Acronym Definition

ABUS analog output bus

AC alternating current

A/D analog digital converter

ADC analog-to-digital converter

AES advanced encryption standard

AHB AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm® 
data transfer bus

API application programming interface

APOR analog power-on reset

AXI advanced extensible interface

BC broadcast clock

BDR boot description record

BOD brownout detect

BOM bill of materials

BR bit rate

BRA bus request acknowledge

BRQ bus request

CAN controller area network

CI carry in

CMP compare

CO carry out

COM LCD common signal

CPU central processing unit

CPUSS CPU sub-system

CR CR oscillator

CRC cyclic redundancy check

CSV clock supervisor

CT continuous time

CTB continuous time block

CTBm continuous time block mini

DAC digital-to-analog converter

DAP debug access port

DC direct current

DED dual error detection

DI digital or data input
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DMA direct memory access

DMAC DMA controller

DMIPS Dhrystone million instructions per second

DO digital or data output

DSI digital signal interface

DSM Deep Sleep mode

DW data wire

ECC error correction code (safety)

ECO external crystal oscillator

EEPROM electrically erasable programmable read only memory

EMIF external memory interface

EXT-IRC external interrupt controller

FB feedback

FIFO first in first out

FIQ fast interrupt request

FPU floating point unit

FRT free run timer

FSR full scale range

GPIO general purpose I/O

HCI host-controller interface 

HFCLK high-frequency clock

HPM high-performance matrix

HPMC high performance motor control

HSIOM high-speed I/O matrix

HVSS high-voltage subsystem

HW-WDT hardware watchdog timer

I2C inter-integrated circuit

ICU input capture unit

IDE integrated development environment

ILO internal low-speed oscillator

IPC inter-processor communication

IRC interrupt controller

IRQ interrupt request

ITO indium tin oxide

IMO internal main oscillator

INL integral nonlinearity

I/O input/output

IOSS I/O sub-system

Table 3-2.  Acronyms  (continued)

Acronym Definition
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IOR I/O read

IOW I/O write

IRES initial power on reset

IRA interrupt request acknowledge

IRQ interrupt request

ISR interrupt service routine

IVR interrupt vector read

JTAG joint test action group

LCD liquid crystal display

LFCLK low-frequency clock

LIN local interconnect network

LLPP low-latency peripheral port

LIN local interconnect network

LPCOMP low-power comparator

LRb last received bit

LRB last received byte

LSb least significant bit

LSB least significant byte

LUT lookup table

LVD low-voltage detector

MCU microcontroller unit

MISO master-in-slave-out

MMIO memory mapped input/output

MOSI master-out-slave-in

MPU memory protection unit

MSb most significant bit

MSB most significant byte

MSP main stack pointer

NF noise filter

NMI non-maskable interrupt

NVIC nested vectored interrupt controller

OCU output compare unit

OSC Oscillator

PACSS precision analog channel sub-system

PASS programmable analog sub-system

PC program counter

PCB printed circuit board

PCH program counter high

Table 3-2.  Acronyms  (continued)

Acronym Definition
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PCL program counter low

PD power down

PGA programmable gain amplifier

PLL phase locked loop

PHY physical layer

PM power management

PMA PSoC™ memory arbiter

POR power-on reset

PPC port pin configuration

PPU peripheral protection unit

PPOR precision power-on reset

PRS pseudo random sequence

PSoC™ Programmable System-on-Chip

PSP process stack pointer

PSRR power supply rejection ratio

PSS power saving state

PSSDC power system sleep duty cycle

PWM pulse width modulator

RAM random-access memory

RETI return from interrupt

RF radio frequency

RIC resource input configuration

ROM read only memory

RMS root mean square

RMW read modify write

RTC real-time clock

RW read/write

SAR successive approximation register

SEG LCD segment signal

SC switched capacitor

SCB serial communication block

SCT source clock timer

SEC single-error correction

SHA secure hash algorithm

SHE secure hardware extension

SIE serial interface engine

SIO special I/O

SE0 single-ended zero

Table 3-2.  Acronyms  (continued)

Acronym Definition
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SEooC safety element out of context

SMC stepping motor control

SNR signal-to-noise ratio

SOC state of charge

SOH state of health

SOF start of frame

SOI start of instruction

SP stack pointer

SPD sequential phase detector

SPI serial peripheral interconnect

SPIM serial peripheral interconnect master

SPIS serial peripheral interconnect slave

SRAM static random-access memory

SROM supervisory read only memory

SRSS system resource sub-system

SSADC single slope ADC

SSC supervisory system call

SSCG spectrum spread clock generator

SYSCLK system clock

SWD single wire debug

TC terminal count

TCPWM timer, counter, PWM

TD transaction descriptors

TIA trans-impedance amplifier

TRNG true random number generator

UART universal asynchronous receiver/transmitter

UDB universal digital block

USB universal serial bus

USBIO USB I/O

VIC vectored interrupt controller

VTOR vector table offset register

WCO watch crystal oscillator

WDT watchdog timer

WDR watchdog reset

XRES external reset

XRES_N external reset, active low

ZPD zero point detection

Table 3-2.  Acronyms  (continued)

Acronym Definition
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CPU subsystem

4 CPU subsystem
This section encompasses the following chapters:
• “Cortex®-M0+ CPU” on page 28
• “DMA controller modes” on page 35
• “Interrupts” on page 54
• “Flash Memory” on page 67
• “SRAM” on page 79
• “Fault subsystem” on page 87

Top-level architecture

Figure 4-1.  CPU System block diagram
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5 Cortex®-M0+ CPU
The PSoC™ 4 HV PA Arm® Cortex®-M0+ core is a 32-bit CPU optimized for low-power operation. It has an efficient
two-stage pipeline, a fixed 4-GB memory map, and supports the ARMv6-M Thumb instruction set. The 
Cortex®-M0+ also features a single-cycle 32-bit multiply instruction and low-latency interrupt handling. Other
subsystems tightly linked to the CPU core include a nested vectored interrupt controller (NVIC), a SYSTICK timer,
and debug.
This section gives an overview of the Cortex®-M0+ processor. For more details, see the Arm® Cortex®-M0+ user
guide or technical reference manual, both available at www.arm.com.

5.1 Features
The PSoC™ 4 HV PA Cortex®-M0+ has the following features:
• Easy to use, program, and debug, ensuring easier migration from 8- and 16-bit processors
• Operates at up to 0.9 DMIPS/MHz; this helps to increase execution speed or reduce power
• Supports the Thumb instruction set for improved code density, ensuring efficient use of memory
• NVIC unit to support interrupts and exceptions for rapid and deterministic interrupt response
• Implements design time configurable Memory Protection Unit (MPU)
• Supports unprivileged and privileged mode execution
• Supports optional Vector Table Offset Register (VTOR)
• Extensive debug support including:

– SWD port
– Breakpoints
– Watchpoints

5.2 Block diagram

Figure 5-1.  CPU subsystem block diagram
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5.3 How it works
The Cortex®-M0+ is a 32-bit processor with a 32-bit data path, 32-bit registers, and a 32-bit memory interface. It
supports most 16-bit instructions in the Thumb instruction set and some 32-bit instructions in the Thumb-2
instruction set.
The processor supports two operating modes (see “Operating modes” on page 31). It has a single-cycle 32-bit
multiplication instruction.

5.4 Address map
The Arm® Cortex®-M0+ has a fixed address map allowing access to memory and peripherals using simple memory
access instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 5-1. Note that code
can be executed from the code and SRAM regions.

Table 5-1.  Cortex®-M0+ address map

Address range Name Use

0x00000000–0x0001FFFF Code FLASH 128KB Program code region. You can also place data here. 
Includes the exception vector table, which starts at address 0.

0x0FFFE000–0x0FFFE3FF SFLASH 1KB Supervisory Flash Area (Trim & Wounding Info)

0x0FFFE400–0x0FFFE7FF User SFLASH 1KB User Supervisory Flash Area (User data)

0x10000000–0x10007FFF ROM 32KB ROM (Boot & Test)

0x1F000000–0x1F001FFF Data FLASH 8KB Data region. A common usage is implementing a load 
balanced EEPROM for storing data.

0x20000000–0x20001FFF SRAM 8KB System RAM (Data region)

0x40000000–0x5FFFFFFF Peripheral All peripheral registers. You cannot execute code from this 
region.

0x60000000–0xDFFFFFFF Not used.

0xE0000000–0xE00FFFFF PPB Peripheral registers within the CPU core.

0xE0100000–0xFFFFFFFF Device PSoC™ 4 HV PA implementation-specific.
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5.5 Registers
The Cortex®-M0+ has sixteen 32-bit registers, as Table 5-2 shows:
• R0 to R12 – General-purpose registers. R0 to R7 can be accessed by all instructions; the other registers can be 

accessed by a subset of the instructions.
• R13 – Stack pointer (SP). There are two stack pointers, with only one available at a time. In thread mode, the 

CONTROL register indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP).
• R14 – Link register. Stores the return program counter during function calls.
• R15 – Program counter. This register can be written to control program flow.

Table 5-2.  Cortex®-M0+ Registers

Name Typea)

a) Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Reset value Description

R0–R12 RW Undefined R0–R12 are 32-bit general-purpose registers for data operations.

MSP (R13) RW [0x00000000] The stack pointer (SP) is register R13. In thread mode, bit[1] of the 
CONTROL register indicates which stack pointer to use:
0 = Main stack pointer (MSP). This is the reset value.
1 = Process stack pointer (PSP).

On reset, the processor loads the MSP with the value from address 
0x00000000.

PSP (R13)

LR (R14) RW Undefined The link register (LR) is register R14. It stores the return information 
for subroutines, function calls, and exceptions.

PC (R15) RW [0x00000004] The program counter (PC) is register R15. It contains the current 
program address. On reset, the processor loads the PC with the 
value from address 0x00000004. Bit[0] of the value is loaded into the 
EPSR T-bit at reset and must be 1.

PSR RW Undefined The program status register (PSR) combines:
Application Program Status Register (APSR).
Execution Program Status Register (EPSR).
Interrupt Program Status Register (IPSR).

APSR RW Undefined The APSR contains the current state of the condition flags from 
previous instruction executions.

EPSR RO [0x00000004].0 On reset, EPSR is loaded with the value bit[0] of the register 
[0x00000004].

IPSR RO 0 The IPSR contains the exception number of the current ISR.

PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with 
configurable priority.

CONTROL RW 0 The CONTROL register controls the stack used when the processor 
is in thread mode.
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Table 5-3 shows how the PSR bits are assigned.

Use the MSR or CPS instruction to set or clear bit 0 of the PRIMASK register. If the bit is 0, exceptions are enabled.
If the bit is 1, all exceptions with configurable priority, that is, all exceptions except HardFault, NMI, and Reset, are
disabled. See the Interrupts chapter on page 54 for a list of exceptions.

5.6 Operating modes
The Cortex®-M0+ processor supports two operating modes:
• Thread Mode – used by all normal applications. In this mode, the MSP or PSP can be used. The CONTROL 

register bit 1 determines which stack pointer is used:
– 0 = MSP is the current stack pointer
– 1 = PSP is the current stack pointer

• Handler Mode – used to execute exception handlers. The MSP is always used.
In thread mode, use the MSR instruction to set the stack pointer bit in the CONTROL register. When changing the
stack pointer, use an ISB instruction immediately after the MSR instruction. This action ensures that instructions
after the ISB execute using the new stack pointer.
In handler mode, explicit writes to the CONTROL register are ignored, because the MSP is always used. The
exception entry and return mechanisms automatically update the CONTROL register.

Table 5-3.  Cortex®-M0+ PSR bit assignments

Bit PSR Register Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSR V Overflow flag

27–25 – – Reserved

24 EPSR T Thumb state bit. Must always be 1. Attempting to execute instructions 
when the T bit is 0 results in a HardFault exception.

23–6 – – Reserved

5–0 IPSR N/A Exception number of current ISR:
0 = thread mode
1 = reserved
2 = NMI
3 = HardFault
4 – 10 = reserved
11 = SVCall
12, 13 = reserved
14 = PendSV
15 = SysTick
16 = IRQ0
…
35 = IRQ19
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5.7 Instruction set
The Cortex®-M0+ implements a version of the Thumb instruction set, as Table 5-4 shows. For details, see the
Cortex®-M0+ Generic User Guide.
An instruction operand can be an Arm® register, a constant, or another instruction-specific parameter.
Instructions act on the operands and often store the result in a destination register. Many instructions are unable
to use, or have restrictions on using, the PC or SP for the operands or destination register.

Table 5-4.  Thumb instruction set

Mnemonic Brief description

ADCS Add with carry

ADD{S}a) Add

ADR PC-relative address to register

ANDS Bit wise AND

ASRS Arithmetic shift right

B{cc} Branch {conditionally}

BICS Bit clear

BKPT Breakpoint

BL Branch with link

BLX Branch indirect with link

BX Branch indirect

CMN Compare negative

CMP Compare

CPSID Change processor state, disable interrupts

CPSIE Change processor state, enable interrupts

DMB Data memory barrier

DSB Data synchronization barrier

EORS Exclusive OR

ISB Instruction synchronization barrier

LDM Load multiple registers, increment after

LDR Load register from PC-relative address

LDRB Load register with word

LDRH Load register with half-word

LDRSB Load register with signed byte

LDRSH Load register with signed half-word

LSLS Logical shift left

LSRS Logical shift right

MOV{S}a Move

MRS Move to general register from special register

MSR Move to special register from general register

MULS Multiply, 32-bit result



Reference manual 33 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Cortex®-M0+ CPU

5.7.1 Address alignment
An aligned access is an operation where a word-aligned address is used for a word or multiple word access, or
where a half-word-aligned address is used for a half-word access. Byte accesses are always aligned.
No support is provided for unaligned accesses on the Cortex®-M0+ processor. Any attempt to perform an
unaligned memory access operation results in a HardFault exception.

5.7.2 Memory Endianness
The Cortex®-M0+ uses the little-endian format, where the least-significant byte of a word is stored at the lowest
address and the most significant byte is stored at the highest address.

MVNS Bit wise NOT

NOP No operation

ORRS Logical OR

POP Pop registers from stack

PUSH Push registers onto stack

REV Byte-reverse word

REV16 Byte-reverse packed half-words

REVSH Byte-reverse signed half-word

RORS Rotate right

RSBS Reverse subtract

SBCS Subtract with carry

SEV Send event

STM Store multiple registers, increment after

STR Store register as word

STRB Store register as byte

STRH Store register as half-word

SUB{S}a Subtract

SVC Supervisor call

SXTB Sign extend byte

SXTH Sign extend half-word

TST Logical AND-based test

UXTB Zero extend a byte

UXTH Zero extend a half-word

WFE Wait for event

WFI Wait for interrupt
a) The ‘S’ qualifier causes the ADD, SUB, or MOV instructions to update APSR condition flags.

Table 5-4.  Thumb instruction set (continued)

Mnemonic Brief description
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5.8 Systick timer
The Systick timer is integrated with the NVIC and generates the SYSTICK interrupt. This interrupt can be used for
task management in a real-time system. The timer has a reload register with 24 bits available to use as a
countdown value. The Systick timer uses either the Cortex®-M0+ internal clock or the low-frequency clock
(LF_CLK) as the source.

5.9 Debug
PSoC™ 4 HV PA contains a debug interface based on SWD; it features four breakpoint (address) comparators and
two watchpoint (data) comparators.
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6 DMA controller modes
The DMA controller provides DataWire (DW) and Direct Memory Access (DMA) functionality. The DMA controller
has the following features:
• Supports eight DMA channels
• Four levels of priority for each channel
• Byte (8 bits), half-word (16 bits), and word (32 bits) transfers
• Three modes of operation supported for each channel
• Configurable interrupt generation
• Output trigger on completion of transfer
• Transfer sizes up to 65,536 data elements 
The DMA controller supports three operation modes. These operational modes are different in how the DMA
controller operates on a single trigger signal. These operating modes allow the user to implement different
operation scenarios for the DMA. The operation modes are 
• Mode 0: Single data element per trigger
• Mode 1: All data elements per trigger
• Mode 2: All data elements per trigger and automatically trigger chained descriptor
The data transfer specifics, such as source and destination address locations and the size of the transfer, are
specified by a descriptor structure. Each channel has an independent descriptor structure.
The DMA controller provides Active/Sleep functionality and is not available in the Deep Sleep power mode.

6.1 Block diagram description
The DMA transfers data to and from memory, peripherals, and registers. These transfers occur independent of the
CPU. The DMA can transfer up to 65,536 data elements in one transfer. These data elements can be 8-bit, 16-bit,
or 32-bit wide. The DMA starts each transaction through an external trigger that can come from a DMA channel
(including itself), another DMA channel, a peripheral, or the CPU. The DMA is best used to offload data transfer
tasks from the CPU.
Figure 6-1 gives an overview of the DMA controller at a block level.

Figure 6-1.  DMA Controller block diagram
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The DMA controller has two bus interfaces, the master interface and the slave interface. Master I/F is an AHB-Lite
bus master, which allows the DMA controller to initiate AHB-Lite data transfers to the source and destination
locations. The DMA is the bus master in the master interface. This is the interface through which all DMA transfers
are accomplished.
The DMA configuration registers and descriptors are accessed and reconfigured through the slave interface. Slave
I/F is an AHB-Lite bus slave, which allows the PSoC™ main CPU to access the DMA controller’s control/status
registers and to access the descriptor structure. CPU is generally the master for this bus. 
The receipt of a trigger activates a state machine in the DMA controller that goes through a trigger prioritization
and processing and then initiates a data transfer according to the descriptor setting. When a transfer is complete,
an output trigger is generated, which can be used as trigger condition or event for starting another function.
The DMA controller also has an interrupt logic block. Only one interrupt line is available from the DMA controller
to interrupt the CPU. Individual DMA descriptors can be configured so that they activate this interrupt line on
completion of the transfer.

6.2 Trigger sources and multiplexing
Every DMA channel has an input and output trigger associated with it. The input trigger can come from any
peripheral, CPU, or a DMA channel itself. The input trigger is used to trigger a DMA transfer, as defined by the
“Transfer modes” on page 44. A ‘logic high’, on the trigger input will trigger the DMA channel. The minimum
width of this ‘logic high’ is two system clock cycles. The deactivation setting configures the nature of trigger
deactivation.
The output trigger signals the completion of a transfer. This signal can be used as a trigger to a DMA channel or
as a digital signal to the digital interconnect. The trigger input can come from different sources and is routed
through a “Trigger multiplexer” on page 37.
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6.3 Trigger multiplexer
The DMA channels can have trigger inputs from different peripheral sources in the PSoC™. This is routed to the
individual DMA channel trigger inputs through the trigger multiplexer.
In the DMA trigger, multiplexers are organized in trigger groups. Each trigger group is composed of multiple
multiplexers feeding into the individual DMA channel trigger inputs.
The PSoC™ 4 HV PA device implements a single trigger group (Trigger group 0), which provides trigger inputs to
the DMA. The trigger input options can come from TCPWM, SCB, GPIO, DMA and Precision Analog Channel
Subsystem (PACSS). Figure 6-2 shows the PSoC™ 4 HV PA trigger multiplexer implementation.

Figure 6-2.  Trigger Multiplexer implementation 
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Table 6-1 and Table 6-2 provide the PSoC™ 4 HV PA DMA trigger multiplexers and the multiplexer outputs.

Table 6-1.  DMA Trigger sources

PERI_TR_GROUP0_TR_OUT_CTL x[5:0] Trigger source

0 Software trigger

1 DMA Channel 0 trigger out

2 DMA Channel 1 trigger out

3 DMA Channel 2 trigger out

4 DMA Channel 3 trigger out

5 DMA Channel 4 trigger out

6 DMA Channel 5 trigger out

7 DMA Channel 6 trigger out

8 DMA Channel 7 trigger out

9 Fault structure output #0

10 Fault structure output #1

11 TCPWM 0 overflow

12 TCPWM 1 overflow

13 TCPWM 2 overflow

14 TCPWM 3 overflow

15 TCPWM 0 underflow

16 TCPWM 1 underflow

17 TCPWM 2 underflow

18 TCPWM 3 underflow

19 TCPWM 0 compare match

20 TCPWM 1 compare match

21 TCPWM 2 compare match

22 TCPWM 3 compare match

23 SCB 0 TX request

24 SCB 0 RX request

25 PACSS data valid channel 0

26 PACSS data valid channel 1

27 PACSS data valid channel 2

28 PACSS data valid channel 3

29 GPIO input trigger 0

30 GPIO input trigger 1

31 GPIO input trigger 2

32 GPIO input trigger 3
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6.3.1 Creating software triggers
Every DMA channel has a trigger input and output trigger associated with it. This trigger input can come from any
trigger group, as described in “Trigger multiplexer” on page 37. A software trigger for the DMA channel is
implemented using the trigger input option 0 in the trigger multiplexer settings.
When PERI_TR_GROUP0_TR_OUT_CTLx [5:0] is zero, the DMA trigger is configured for a software trigger. The DMA
channel is then triggered using the PERI_TR_CTL register. 

6.3.2 Pending triggers
When a DMA channel is already operational and a trigger event is encountered, the DMA channel corresponding
to the trigger is put into a pending state. Pending triggers keep track of activated triggers by locally storing them
in pending bits. This is essential, because multiple channel triggers may be activated simultaneously, whereas
only one channel can be served by the data transfer engine at a time. This block enables the use of both level-
sensitive and pulse-sensitive triggers.
The pending triggers are registered in the status register (DMAC_STATUS_CH_ACT).

6.3.3 Output triggers
Each channel has an output trigger. This trigger is high for two system clock cycles. The trigger is generated on
the completion of a data transfer. At the system level, these output triggers can be connected to the trigger
multiplexer component. This connection allows for a DMA controller output trigger to be connected to a DMA
controller input trigger. In other words, the completion of a transfer in one channel can activate another channel
or even reactivate the same channel. 

6.3.4 Channel prioritization
When there are multiple channels with active triggers, the channel priority is used to determine which channel
gets the access to the data transfer engine. The priorities are set for each channel using the PRIO field of the
channel control register (DMAC_CH_CTL), with ‘0’ representing the highest priority and ‘3’ representing the
lowest priority. Priority decoding uses the channel priority to determine the highest priority activated channel. If
multiple activated channels have the same highest priority, the channel with the lowest index ‘i’, is considered
the highest priority activated channel.

Table 6-2.  Trigger Multiplexer outputs

Output Trigger source

0 Triggers to DMA Channel 0

1 Triggers to DMA Channel 1

2 Triggers to DMA Channel 2

3 Triggers to DMA Channel 3

4 Triggers to DMA Channel 4

5 Triggers to DMA Channel 5

6 Triggers to DMA Channel 6

7 Triggers to DMA Channel 7
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6.4 Data transfer engine
The data transfer engine is responsible for the data transfer from a source location to a destination location.
When idle, the data transfer engine is ready to accept the highest priority activated channel. The configuration of
the data transfer is specified by the descriptor. The data transfer engine implements a state machine, which has
the following states. 
• State 0 - Default State: This is the idle state of the DMA controller, where it waits for a trigger condition to 

initiate transfer.
• State 1 - Load Descriptor: When a trigger condition is encountered and priority is resolved, the data transfer 

engine enters the load descriptor state. In this state, the active descriptor (SRC, DST, and CTL) is loaded into 
the DMA controller to initiate the transfer. The DMAC_STATUS, DMAC_STATUS_SRC_ADDR and 
DMAC_STATUS_DST_ADDR, and STATUS_CH_ACT will also reflect the currently active status.

• State 2 - Loading data from source: The data transfer engine uses the master I/F to load data from the source 
location.

• State 3 - Storing data at destination: The data transfer engine uses the master I/F to store data to the 
destination location.

• Depending on the Transfer mode, State 2 and 3 may be performed multiple times.
• State 4 - Storing Descriptor: The data transfer engine updates the channel's descriptor structure to reflect the 

data transfer and stores it in the descriptor.
• State 5 - Wait for Trigger Deactivation: If the trigger deactivation condition is specified as two cycles, this 

condition is met after two cycles of the trigger activation. If it was set to ‘wait indefinitely’, the DMA controller 
will remain in this state until the trigger signal has gone low. 

• State 6 - Storing Descriptor Response: In this phase, the data transfer according to the descriptor is completed 
and an interrupt may be generated if it was configured to do so. The Response field in 
DMAC_DESCR_PING_STATUS or DMAC_DESCR_PONG_STATUS is also populated and the state transitions to 
State 0.

6.5 Descriptors
The data transfer between a source and a destination in a channel is configured using a descriptor. Each channel
in the DMA has two descriptors named PING and PONG descriptors (also called Descriptor 0 and Descriptor 1 in
this document). A descriptor is a set of four 32-bit registers that contain the configuration for the transfer in the
associated channel. 
Figure 6-3 shows the structure of a descriptor.

Figure 6-3.  Descriptor Structure
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6.6 Address configuration
Figure 6-4 demonstrates the use of the descriptor settings for the address configuration of a transfer.
Source and Destination Address: The Source and Destination addresses are set in the respective registers in the
descriptor. These set the base addresses for the source and destination location for the transfer. In case the
descriptor is configured to transfer a single element, this field holds the source/destination address of the data
element. If the descriptor is configured to transfer multiple elements with source address or destination address
or both in an incremental mode, this field will hold the address of the first element that is transferred.
Data Number (DATA_NR): This is a transfer count parameter. DATA_NR is a 16-bit number, which determines the
number of elements to be transferred before a descriptor is defined as completed. In a typical use case, this
setting is the buffer size of a transfer.
Source Address Increment (SCR_ADDR_INC): This is a bit setting in the control register, which determines if a
source address is incremented between each data element transfer. This feature is enabled when the source of
the data is a buffer and each transfer element needs to be fetched from subsequent locations in the memory. In
this case, the Source Address register sets only the base address and subsequent transfers are incremental on
this. The size of address increments are determined based on the SCR_TRANSFER_SIZE setting described in
“Transfer size” on page 43.
Destination Address Increment (DST_ADDR_INC): This is a bit setting in the control register, which determines
if a destination address is incremented between each element transfer. This feature is enabled when the
destination of the data is a buffer and each transfer element needs to be transferred to subsequent locations in
the memory. In this case, the Destination Address register sets only the base address and subsequent transfers
are incremental on this. The size of address increments are determined based on the DST_TRANSFER_SIZE
setting described in “Transfer size” on page 43.
Invalidate Descriptor (INV_DESCR): When this bit is set, the descriptor transfers all data elements and clears the
descriptor's VALID bit, making it invalid. This feature affects the VALID bit in the DMA_DESCRx_STATUS register.
This setting is used in cases where the user expects the descriptor to get invalidated after its transfer is complete.
The descriptor can be made valid again in firmware by setting the VALID bit in the descriptor’s STATUS register.
Preemptable (PREEMPTABLE): If disabled, the current transfer as defined by Operational mode is allowed to
complete undisturbed. If enabled, the current transfer as defined by Operation Mode can be
preempted/interrupted by a DMA channel of higher priority. When this channel is preempted, it is set as pending
and will run the next time its priority is the highest.
Setting Interrupt Cause (SET_CAUSE): When the descriptor completes transferring all data elements, it
generates an interrupt request. This interrupt request is shared among all DMA channels. Setting this bit enables
the corresponding channel to be a source of this interrupt.
Trigger Type (WAIT_FOR_DEACT): When the DMA transfer based on the descriptor is completed, the data
transfer engine checks the state of trigger deactivation. This is corresponding to State 5 of the data transfer
engine. See “Data transfer engine” on page 40. The type of DMA input trigger will determine when the trigger
signal is considered deactivated. The DMA transfer is activated when the trigger is activated, but the transfer is
not considered complete until the trigger state is deactivated. This field is used to synchronize the controller’s
data transfer(s) with the agent that generated the trigger. 
This field is ONLY used on completion of a descriptor execution and has four settings:
• 0 - Pulse Trigger: Do not wait for deactivation.
• 1 - Level-sensitive waits four SYSCLK cycles: The DMA trigger is deactivated after the level trigger signal is 

detected for four cycles. 
• 2 - Level-sensitive waits eight SYSCLK cycles: The DMA transfer is initiated after the level trigger signal is 

detected for eight cycles.
• 3 - Pulse trigger waits indefinitely for deactivation. The DMA transfer is initiated after the trigger signal 

deactivates.
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Figure 6-4.  DMA Transfer: Address Configuration
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6.7 Transfer size
The transfer word width for a transfer can be configured using the transfer/data size parameter in the descriptor.
The settings are diversified into source transfer size, destination transfer size, and data size. The data size
parameter (DATA_SIZE) sets the width of the bus for the transfer. The source and destination transfer sizes, set
by SCR_TRANSFER_SIZE and DST_TRANSFER_SIZE, can have a value of either the DATA_SIZE or 32 bit.
DATA_SIZE can be set to a 32-bit, 16-bit, or 8-bit setting.
The data width of most PSoC™ 4 HV PA peripheral registers is 4 bytes (32 bit); therefore, SCR_TRANSFER_SIZE or
DST_TRANSFER_SIZE should typically be set to 32 bit when DMA is using a peripheral as its source or destination.
The source and destination transfer size for the DMA component must match the addressable width of the source
and destination, regardless of the width of data that needs to be moved. The DATA_SIZE parameter will
correspond to the width of the actual data. For example, if a 16-bit PWM is used as a destination for DMA data, the
DST_TRANSFER_SIZE must be set to 32 bit to match the width of the PWM register, because the peripheral
register width for the TCPWM block (and most PSoC™ 4 HV PA peripherals) is always 32 bit. However, in this
example the DATA_SIZE for the destination may still be set to 16 bit because the 16-bit PWM only uses 2 bytes of
data. SRAM and flash are 8-bit, 16-bit, or 32-bit addressable and can use any source and destination transfer sizes
to match the needs of the application.
Table 6-3 summarizes the possible combinations of the transfer size settings and its description.

Table 6-3.  Transfer Size settings 

DATA_SIZE SCR_TRANSFER_SIZE DST_TRANSFER_SIZE Typical usage Description 

8-bit 8-bit 8-bit Memory to Memory No data manipulation

8-bit 32-bit 8-bit Peripheral to 
Memory

Higher 24 bits from the 
source dropped

8-bit 8-bit 32-bit Memory to 
Peripheral

Higher 24 bits zero padded 
at destination

8-bit 32-bit 32-bit Peripheral to 
Peripheral

Higher 24 bits from the 
source dropped and 
higher 24 bits zero padded 
at destination

16-bit 16-bit 16-bit Memory to Memory No data manipulation

16-bit 32-bit 16-bit Peripheral to 
Memory

Higher 16 bits from the 
source dropped

16-bit 16-bit 32-bit Memory to 
Peripheral

Higher 16 bits zero padded 
at destination

16-bit 32-bit 32-bit Peripheral to 
Peripheral

Higher 16 bits from the 
source dropped and 
higher 16-bit zero padded 
at destination

32-bit 32-bit 32-bit Peripheral to 
Peripheral

No data manipulation

32-bit 32-bit 32-bit Peripheral to 
Memory

No data manipulation
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6.8 Descriptor Chaining
Every channel has a PING and PONG descriptor, which can have a distinct setting for the associated transfer. The
active descriptor is set by the PING_PONG bit in the individual channel control register (DMAC_CH_CTL). The
functionality of the PING and PONG descriptors is to create a link list of descriptors. This helps create a transition
from one transfer configuration to another without CPU intervention. In addition, the two descriptors mean that
the CPU is free to modify the PING register when PONG register is active and vice versa.
The FLIPPING bit in a descriptor, when enabled, links it to its PING/PONG counterpart. This field is used in
conjunction with the OPCODE 2 transfer mode. Therefore, when the FLIPPING bit is enabled in a PING descriptor,
configured for OPCODE 2, the channel automatically executes the PONG descriptor at the end of the PING
descriptor. In case the configuration is for an OPCODE 0 or OPCODE 1, a new trigger is required to start the PONG
descriptor.
The use of PING PONG has more relevance in the context of transfer modes.

6.9 Transfer modes
The operation of a channel during the execution of a descriptor is defined by the OPCODE settings. Three
OPCODEs are possible for each channel of the DMA controller.

6.9.1 Single data element per trigger (OPCODE 0)
This mode is achieved when an OPCODE of 0 is configured. DMA transfers a single data element from a source
location to a destination location on each trigger signal. This functionality can be used in conjunction with other
settings in the descriptor such as Source and Destination increment.
Figure 6-5 shows a typical use case of this transfer. Here a UART receive (RX) register is the source and the
destination is a peripheral register such as an SPI transmit (TX) register. The trigger is from the DMA request signal
of the UART. When the trigger is received, the transfer engine will load data from the UART RX register and store
the lower eight bits to the SPI TX register. Successive triggers will result in the same behavior because the
descriptor will be rerun.
Note how the source and destination data widths are assigned as 32 bit. This is because all accesses to peripheral
registers in PSoC™ must be 32 bit. Because the valid data width is only eight bits, the DATA_SIZE is maintained as
eight bit. 

Figure 6-5.  OPCODE 0: Simple DMA Transfer from Peripheral to Peripheral

PING Descriptor

UART RX
DMA_DESCRx_SRC

SPI TX
DMA_DESCRx_DST

DATA_NR=1
DMA_DESCRx_CTL

SCR_ADDR_INCR=0
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=0
DST_TRANSFER_SIZE=32-bit

DATA_SIZE=8-bit

OPCODE=0
FLIPPING=0 SET_CAUSEPREEMTABLE

INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

Status Registers

Control Registers

Address Registers

DMA Channel

8 bit 32 bit

tr_in

Descriptor 0 
(PING)

SPI32 bitUART

DMA Request



Reference manual 45 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

DMA controller modes

Figure 6-6 describes another use case where the data transfer is between the UART RX register and a buffer. The
use case shows a PING descriptor, which is configured to increment the destination while taking data from a
source location, which is a UART. When the trigger is received, the transfer engine will load data from the UART
RX register and store to the Memory Buffer, Sample 1 memory location. Subsequent triggers will continue to store
the UART data into consecutive locations from Sample 1, until the PING descriptor buffer size (DATA_NR field) is
filled.

Figure 6-6.  OPCODE 0: Transfer with Destination Address Increment feature
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A similar use case is shown in Figure 6-7. This demonstrates the use of the PING and PONG descriptors. On
completion of the PING descriptor, the controller will flip to execute the PONG descriptor. Thus, two buffer
transfers are achieved in sequence. However, note that the transfers are still done at one element transfer for
every trigger. 

Figure 6-7.  DMA Transfer using Flipping feature
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6.9.2 Entire descriptor per trigger (OPCODE 1)
In this mode of operation, the DMA transfers multiple data elements from a source location to a destination
location in one trigger. In OPCODE 1, the controller executes the entire descriptor in a single trigger. This type of
functionality is useful in memory-to-memory buffer transfers. When the trigger condition is encountered, the
transfer is continued until the descriptor is completed.
Figure 6-8 shows an OPCODE 1 transfer, which transfers the entire contents of the source buffer into the
destination buffer. The entire transfer is part of a single PING descriptor and is completed on a single trigger.

Figure 6-8.  DMA Transfer Example with OPCODE 1

DMA Channel

TR_in TR_out

Source Addr 
[SRAM]

Software 
Trigger

Sample 1

Sample 2

Sample 3

Sample 4

Sample N

Destination Addr 
[SRAM]

Sample 1

Sample 2

Sample 3

Sample 4

Sample N

PING Descriptor

Source Addr
DMA_DESCRx_SRC

Destination Addr
DMA_DESCRx_DST

DATA_NR=N
DMA_DESCRx_CTL

SCR_ADDR_INCR=1
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=1
DST_TRANSFER_SIZE=32-bit

DATA_SIZE=32bit

OPCODE=1
FLIPPING=0 SET_CAUSEPREEMTABLE

INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID
 

 

Status Registers

Control Registers

Address Registers

Descriptor 0 
(PING)



Reference manual 48 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

DMA controller modes

6.9.3 Entire descriptor chain per trigger (OPCODE 2)
OPCODE 2 is always used in conjunction with the FLIPPING field. When OPCODE 2 is used with FLIPPING enabled
in a PING descriptor, a single trigger can execute a PING descriptor and automatically flip to the PONG descriptor
and execute that too. If the PONG descriptor is also provided with an OPCODE 2, then the cycling between PING
and PONG will continue until one of the descriptors are invalidated or changed by the CPU. 
Figure 6-9 shows a case where the PING and PONG descriptors are configured for OPCODE 2 operation and on
the second iteration of the PING register, FLIPPING is disabled by the CPU.

Figure 6-9.  DMA Transfer Example with OPCODE 2
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The OPCODE 2 transfer mode can be customized to implement distinct use cases. Figure 6-10 illustrates one
such use case. Here, the source data can come from two different locations which are not consecutive memory.
The destination is a data structure that is in consecutive memory locations. One source is Timer 2, which holds a
timing data and the other source is a PWM compare register. Both the data is stored in consecutive locations in
memory.

Figure 6-10.  OPCODE 2: Multiple sources to Memory
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6.10 Operation and timing
Figure 6-11 shows the DMA controller design with a trigger, data, or interrupt flow superimposed on it.

Figure 6-11.  Operational flow
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When transferring single data elements, it takes 12 clock cycles to complete one full transfer under the
assumption of no wait states on the AHB-Lite bus. The equation for number of cycles to complete a transfer in this
mode is: 
No. of cycles = 12 + LOAD wait states + STORE wait states 
When transferring entire descriptors or chaining descriptor chains, 12 clock cycles are needed for the first data
element. Subsequent elements need three cycles. This is also under the assumption of no wait states on the 
AHB-Lite bus. The equation for number of cycles to transfer ‘N’ elements is:
No. of cycles = (12 + LOAD wait states + STORE wait states) + (N–1) × (3 + LOAD wait states + STORE wait states)

6.11 Arbitration
The AHB bus of the device has two masters: the CPU and the DMA controller. All peripherals and memory connect
to the bus through slave interfaces. There are dedicated slave interfaces for flash memory and RAM with their own
arbiters. The peripheral registers all connect to a single slave interface through a bridge into a dedicated arbiter.
The DMA controller’s slave interface, which is used to access the DMA controller’s control registers, all connect
through another slave interface. Figure 6-12 illustrates this architecture.

Figure 6-12.  PSoC™ Bus Architecture
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The arbitration models are illustrated using the following diagrams.

Figure 6-13.  Arbitration models

6.12 Register list

Table 6-4.  Register list

Register name Comments Features

DMACv3

DMAC_CTL Block Control Register Enable bit for the DMA controller.

DMAC_STATUS Block Status Register Provides status information of the DMA 
controller.

DMAC_STATUS_SRC_ADDR Current Source Address 
Register

Provides details of the source address 
currently being loaded.

DMAC_STATUS_DST_ADDR Current Destination Address 
Register

Provides details of the destination address 
currently being loaded.

DMAC_STATUS_CH_ACT Channel Activation Status 
Register

Software reads this field to get 
information on all actively pending 
channels (either in pending or in the data 
transfer engine).

DMAC_CH_CTLx Channel Control Register Provides channel enable, PING/PONG and 
priority settings for Channel x.

DMAC_DESCRx_PING_SRC PING Source Address Register Base address of source location for 
Channel x.

DMAC_DESCRx_PING_DST PING Destination Address 
Register

Base address of destination location for 
Channel x.

DMAC_DESCRx_PING_CTL PING Control Word Register All control settings for the PING descriptor.

DMAC_DESCRx_PING_STATUS PING Status Word Register Validity, response, and real time Data_NR 
index status.

DMAC_DESCRx_PONG_SRC PONG Source Address 
Register

Base address of source location for 
Channel x. 

DMAC_DESCRx_PONG_DST PONG Destination Address 
Register

Base address of destination location for 
Channel x.

DMAC_DESCRx_PONG_CTL PONG Control Word Register All control settings for the PONG 
descriptor.

 

CPU ack DMA ack

!cpu_req & dma_req

CPU ack DMA ack

cpu_req & !dma_req

CPU priority

DMA priority
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cpu_req | dma_req

cpu_req | dma_req
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DMAC_DESCRx_PONG_STATUS PONG Status Word Register Validity, response, and real time Data_NR 
index status.

DMAC_INTR Interrupt Register The register fields are not retained. This is 
to ensure that they come up as ‘0’ after 
coming out of Deep Sleep system power 
mode.

DMAC_INTR_SET Interrupt Set Register When read, this register reflects the 
interrupt request register.

DMAC_INTR_MASK Interrupt Mask Register Mask for corresponding field in INTR 
register.

DMAC_INTR_MASKED Interrupt Masked Register When read, this register reflects a bit-wise 
and between the interrupt request and 
mask registers. This register allows the 
software to read the status of all mask-
enabled interrupt causes with a single 
load operation, rather than two load 
operations: one for the interrupt causes 
and one for the masks. This simplifies 
firmware development.

PERI

PERI_TR_CTL Trigger Control Register This register provides SW control over 
trigger activation. 

PERI_TR_GROUP0_TR_OUT_CTLx Trigger Control Register This register specifies the input trigger for 
a specific output trigger in trigger group0.

Table 6-4.  Register list (continued)
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7 Interrupts
The Arm® Cortex®-M0+ (CM0+) CPU in PSoC™ 4 HV PA supports interrupts and exceptions. Interrupts refer to those
events generated by peripherals external to the CPU such as timers, serial communication block, and port pin
signals. Exceptions refer to those events that are generated by the CPU such as memory access faults and internal
system timer events. Both interrupts and exceptions result in the current program flow being stopped and the
exception handler or interrupt service routine (ISR) being executed by the CPU. The device provides a unified
exception vector table for both interrupt handlers/ISR and exception handlers.

7.1 Features
PSoC™ 4 HV PA supports the following interrupt features:
• Supports 32 interrupts
• Nested vectored interrupt controller (NVIC) integrated with CPU core, yielding low interrupt latency
• Vector table may be placed in either flash or SRAM
• Configurable priority levels from 0 to 3 for each interrupt
• Level-triggered and pulse-triggered interrupt signals

7.2 How it works

Figure 7-1.  PSoC™ 4 HV PA Interrupts block diagram

Figure 7-1 shows the interaction between interrupt signals and the Cortex®-M0+ CPU. PSoC™ 4 HV PA has up to
32 interrupts; these interrupt signals are processed by the NVIC. The NVIC takes care of enabling/disabling
individual interrupts, priority resolution, and communication with the CPU core. The exceptions are not shown
in Figure 7-1 because they are part of CM0+ core generated events, unlike interrupts, which are generated by
peripherals external to the CPU.
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7.3 Interrupts and exceptions - Operation

7.3.1 Interrupt/exception handling
The following sequence of events occurs when an interrupt or exception event is triggered:
1. Assuming that all the interrupt signals are initially low (idle or inactive state) and the processor is executing 

the main code, a rising edge on any one of the interrupt lines is registered by the NVIC. The interrupt line is 
now in a pending state waiting to be serviced by the CPU. 

2. On detecting the interrupt request signal from the NVIC, the CPU stores its current context by pushing the 
contents of the CPU registers onto the stack. 

3. The CPU also receives the exception number of the triggered interrupt from the NVIC. All interrupts and 
exceptions have a unique exception number, as given in Table 7-1. By using this exception number, the CPU 
fetches the address of the specific exception handler from the vector table. 

4. The CPU then branches to this address and executes the exception handler that follows. 
5. Upon completion of the exception handler, the CPU registers are restored to their original state using stack 

pop operations; the CPU resumes the main code execution.

Figure 7-2.  Interrupt Handling when Triggered

When the NVIC receives an interrupt request while another interrupt is being serviced or receives multiple
interrupt requests at the same time, it evaluates the priority of all these interrupts, sending the exception number
of the highest priority interrupt to the CPU. Thus, a higher priority interrupt can block the execution of a lower
priority ISR at any time. 
Exceptions are handled in the same way that interrupts are handled. Each exception event has a unique
exception number, which is used by the CPU to execute the appropriate exception handler.
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7.3.2 Level and pulse interrupts
NVIC supports both level and pulse signals on the interrupt lines (IRQ0 to IRQ31). The classification of an interrupt
as level or pulse is based on the interrupt source.

Figure 7-3.  Level Interrupts

Figure 7-4.  Pulse Interrupts 

Figure 7-3 and Figure 7-4 show the working of level and pulse interrupts, respectively. Assuming the interrupt
signal is initially inactive (logic low), the following sequence of events explains the handling of level and pulse
interrupts: 
1. On a rising edge event of the interrupt signal, the NVIC registers the interrupt request. The interrupt is now in 

the pending state, which means the interrupt requests have not yet been serviced by the CPU.
2. The NVIC then sends the exception number along with the interrupt request signal to the CPU. When the CPU 

starts executing the ISR, the pending state of the interrupt is cleared.
3. When the ISR is being executed by the CPU, one or more rising edges of the interrupt signal are logged as a 

single pending request. The pending interrupt is serviced again after the current ISR execution is complete 
(see Figure 7-4 for pulse interrupts).

4. If the interrupt signal is still high after completing the ISR, it will be pending and the ISR is executed again. 
Figure 7-3 illustrates this for level triggered interrupts, where the ISR is executed as long as the interrupt 
signal is high.
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7.3.3 Exception vector table
The exception vector table (Table 7-1), stores the entry point addresses for all exception handlers. The CPU
fetches the appropriate address based on the exception number.

In Table 7-1, the first word (4 bytes) is not marked as exception number zero. This is because the first word in the
exception table is used to initialize the main stack pointer (MSP) value on device reset; it is not considered as an
exception. The vector table can be located anywhere in the memory map (flash or SRAM) by modifying the Vector
Table Offset Register (VTOR). This register is part of the System Control Space of CM0+ located at 0xE000ED08.
This register takes bits 31:8 of the vector table address; bits 7:0 are reserved. Therefore, the vector table address
should be 256 bytes aligned. The advantage of moving the vector table to SRAM is that the exception handler
addresses can be dynamically changed by modifying the SRAM vector table contents. However, the nonvolatile
flash memory vector table must be modified by a flash memory write.
Reads of flash addresses 0x00000000 and 0x00000004 are redirected to the first eight bytes of SROM to fetch the
stack pointer and reset vectors, unless the DIS_RESET_VECT_REL bit of the CPUSS_SYSREQ register is set. The
default value of this bit at reset is 0 ensuring that reset vector is always fetched from SROM. To allow flash read
from addresses 0x00000000 and 0x00000004, the DIS_RESET_VECT_REL bit should be set to ‘1’. The stack pointer
vector holds the address that the stack pointer is loaded with on reset. The reset vector holds the address of the
boot sequence. This mapping is done to use the default addresses for the stack pointer and reset vector from
SROM when the device reset is released. For reset, boot code in SROM is executed first and then the CPU jumps
to address 0x00000004 in flash to execute the handler in flash. The reset exception address in the SRAM vector
table is never used.
Also, when the SYSCALL_REQ bit of the CPUSS_SYSREQ register is set, reads of flash address 0x00000008 are
redirected to SROM to fetch the NMI vector address instead of from flash. Reset CPUSS_SYSREQ to read the flash
at address 0x00000008.
The exception sources (exception numbers 1 to 15) are explained in “Exception sources” on page 58. The
exceptions marked as Reserved in Table 7-1 are not used, although they have addresses reserved for them in the
vector table. The interrupt sources (exception numbers 16 to 35) are explained in “Interrupt sources” on
page 59.

Table 7-1.  Exception vector table

Exception 
number

Exception Exception priority Vector Address

– Initial Stack Pointer Value Not applicable (NA) Base_Address - 0x00000000 (start of flash 
memory) or 0x20000000 (start of SRAM)

1 Reset –3, the highest 
priority

Base_Address + 0x04

2 Non Maskable Interrupt (NMI) –2 Base_Address + 0x08

3 HardFault –1 Base_Address + 0x0C

4–10 Reserved NA Base_Address + 0x10 to Base_Address + 0x28

11 Supervisory Call (SVCall) Configurable (0–3) Base_Address + 0x2C

12–13 Reserved NA Base_Address + 0x30 to Base_Address + 0x34

14 PendSupervisory (PendSV) Configurable (0–3) Base_Address + 0x38 

15 System Timer (SysTick) Configurable (0–3) Base_Address + 0x3C

16 External Interrupt(IRQ0) Configurable (0–3) Base_Address + 0x40

… … Configurable (0–3) …

43 External Interrupt(IRQ31) Configurable (0–3) Base_Address + 0xBC
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7.4 Exception sources
This section explains the different exception sources listed in Table 7-1 (exception numbers 1 to 15).

7.4.1 Reset exception
Device reset is treated as an exception in PSoC™ 4 HV PA. It is always enabled with a fixed priority of –3, the highest
priority exception. A device reset can occur due to multiple reasons, such as power-on-reset (POR), external reset
signal on XRES pin, or watchdog reset. When the device is reset, the initial boot code for configuring the device is
executed out of supervisory read-only memory (SROM). The boot code and other data in SROM memory are
programmed by Infineon, and are not read/write accessible to external users. After completing the SROM boot
sequence, the CPU code execution jumps to flash memory. Flash memory address 0x00000004 (Exception#1 in
Table 7-1) stores the location of the startup code in flash memory. The CPU starts executing code out of this
address. Note that the reset exception address in the SRAM vector table will never be used because the device
comes out of reset with the flash vector table selected. The register configuration to select the SRAM vector table
can be done only as part of the startup code in flash after the reset is de-asserted.

7.4.2 Non-maskable interrupt (NMI) exception
Non-maskable interrupt (NMI) is the highest priority exception other than reset. It is always enabled with a fixed
priority of –2. There are two ways to trigger an NMI exception in the device:
• NMI exception by setting NMIPENDSET bit (user NMI exception): An NMI exception can be triggered in 

software by setting the NMIPENDSET bit in the interrupt control state register (CM0P_ICSR register). Setting 
this bit will execute the NMI handler pointed to by the active vector table (flash or SRAM vector table).

• System Call NMI exception: This exception is used for nonvolatile programming operations such as flash 
write operation and flash checksum operation. It is triggered by setting the SYSCALL_REQ bit in the 
CPUSS_SYSREQ register. An NMI exception triggered by SYSCALL_REQ bit always executes the NMI exception 
handler code that resides in SROM. Flash or SRAM exception vector table is not used for system call NMI 
exception. The NMI handler code in SROM is not read/write accessible because it contains nonvolatile 
programming routines that should not be modified by the user.

7.4.3 HardFault exception
HardFault is an always-enabled exception that occurs because of an error during normal or exception processing.
HardFault has a fixed priority of –1, meaning it has higher priority than any exception with configurable priority.
HardFault exception is a catch-all exception for different types of fault conditions, which include executing an
undefined instruction and accessing an invalid memory addresses. The CM0+ CPU does not provide fault status
information to the HardFault exception handler, but it does permit the handler to perform an exception return
and continue execution in cases where software has the ability to recover from the fault situation.
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7.4.4 Supervisor call (SVCall) exception
Supervisor Call (SVCall) is an always-enabled exception caused when the CPU executes the SVC instruction as
part of the application code. Application software uses the SVC instruction to make a call to an underlying
operating system and provide a service. This is known as a supervisor call. The SVC instruction enables the
application to issue a supervisor call that requires privileged access to the system. Note that the CM0+ in PSoC™ 4
HV PA uses a privileged mode for the system call NMI exception, which is not related to the SVCall exception. (See
the “Chip operational modes” on page 111 for details on privileged mode.) There is no other privileged mode
support for SVCall at the architecture level in the device. The application developer must define the SVCall
exception handler according to the end application requirements.
The priority of a SVCall exception can be configured to a value between 0 and 3 by writing to the two bit fields
PRI_11[31:30] of the System Handler Priority Register 2 (SHPR2). When the SVC instruction is executed, the SVCall
exception enters the pending state and waits to be serviced by the CPU. The SVCALLPENDED bit in the System
Handler Control and State Register (SHCSR) can be used to check or modify the pending status of the SVCall
exception.

7.4.5 PendSV exception
PendSV is another supervisor call related exception similar to SVCall, normally being software-generated.
PendSV is always enabled and its priority is configurable. The PendSV exception is triggered by setting the
PENDSVSET bit in the Interrupt Control State Register, CM0P_ICSR. On setting this bit, the PendSV exception
enters the pending state, and waits to be serviced by the CPU. The pending state of a PendSV exception can be
cleared by setting the PENDSVCLR bit in the Interrupt Control State Register, CM0P_ICSR. The priority of a PendSV
exception can be configured to a value between 0 and 3 by writing to the two bit fields PRI_14[23:22] of the
System Handler Priority Register 3 (CM0P_SHPR3). See the Armv6-M Architecture Reference Manual for more
details.

7.4.6 SysTick exception
CM0+ CPU in PSoC™ 4 HV PA supports a system timer, referred to as SysTick, as part of its internal architecture.
SysTick provides a simple, 24-bit decrementing counter for various timekeeping purposes such as an RTOS tick
timer, high-speed alarm timer, or simple counter. The SysTick timer can be configured to generate an interrupt
when its count value reaches zero, which is referred to as SysTick exception. The exception is enabled by setting
the TICKINT bit in the SysTick Control and Status Register (CM0P_SYST_CSR). The priority of a SysTick exception
can be configured to a value between 0 and 3 by writing to the two bit fields PRI_15[31:30] of the System Handler
Priority Register 3 (SHPR3). The SysTick exception can always be generated in software at any instant by writing
a one to the PENDSTSETb bit in the Interrupt Control State Register, CM0P_ICSR. Similarly, the pending state of
the SysTick exception can be cleared by writing a one to the PENDSTCLR bit in the Interrupt Control State
Register, CM0P_ICSR.

7.5 Interrupt sources
PSoC™ 4 HV PA supports up to 32 interrupts (IRQ0 to IRQ31 or exception numbers 16–47) from peripherals. The
source of each interrupt is listed in Table 7-2. PSoC™ 4 HV PA provides flexible sourcing options for each interrupt
line. The interrupts include standard interrupts from the on-chip peripherals such as TCPWM and serial
communication block. The interrupt generated is usually the logical OR of the different peripheral states. The
peripheral status register should be read in the ISR to detect which condition generated the interrupt. The
interrupts are usually level interrupts, which require that the peripheral status register be read in the ISR to clear
the interrupt. If the status register is not read in the ISR, the interrupt will remain asserted and the ISR will be
executed continuously.
See the “I/O system” on page 141 for details on GPIO interrupts.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
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Table 7-2.  List of PSoC™ 4 HV PA Interrupt Sources

Interrupt Cortex®-M0+ Exception No. Power Mode Interrupt Source

NMI 2 Active SYSCALL_REQ

IRQ0 16 Deep Sleep SRSS interrupts

IRQ1 17 Deep Sleep WDT interrupt

IRQ2 18 Deep Sleep GPIO interrupt - All Port

IRQ3 19 Deep Sleep GPIO interrupt - Port 0

IRQ4 20 Deep Sleep GPIO interrupt - Port 1

IRQ5 21 – Reserved

IRQ6 22 Deep Sleep HVSS LIN interface interrupt

IRQ7 23 Deep Sleep SCB0 (serial communication block 0)

IRQ8 24 Active DMA interrupt

IRQ9 25 Active SPCIF interrupt, controller 0

IRQ10 26 Active SPCIF interrupt, controller 1

IRQ11 27 Active Fault structure 0 interrupt

IRQ12 28 Active Fault structure 1 interrupt

IRQ13 29 Active LIN interrupt - channel 0

IRQ14 30 Active LIN interrupt - channel 1

IRQ15 31 Active TCPWM0 (Timer/Counter/PWM 0)

IRQ16 32 Active TCPWM0 (Timer/Counter/PWM 1)

IRQ17 33 Active TCPWM0 (Timer/Counter/PWM 2)

IRQ18 34 Active TCPWM0 (Timer/Counter/PWM 3)

IRQ19 35 Active PACSS consolidated interrupt

IRQ20 36 Active PACSS digital channel 0

IRQ21 37 Active PACSS digital channel 1

IRQ22 38 Active PACSS digital channel 2

IRQ23 39 Active PACSS digital channel 3

IRQ24 40 Active PACSS MMIO

IRQ25–31 41–47 – Reserved
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7.6 Exception priority
Exception priority is useful for exception arbitration when there are multiple exceptions that need to be serviced
by the CPU. PSoC™ 4 HV PA provides flexibility in choosing priority values for different exceptions. All exceptions
other than Reset, NMI, and HardFault can be assigned a configurable priority level. The Reset, NMI, and HardFault
exceptions have a fixed priority of –3, –2, and –1 respectively. In PSoC™ 4 HV PA, lower priority numbers represent
higher priorities. This means that Reset, NMI, and HardFault exceptions have the highest priorities. The other
exceptions can be assigned a configurable priority level between 0 and 3.
PSoC™ 4 HV PA supports nested exceptions in which a higher priority exception can obstruct (interrupt) the
currently active exception handler. This pre-emption does not happen if the incoming exception priority is the
same as active exception. The CPU resumes execution of the lower priority exception handler after servicing the
higher priority exception. The CM0+ CPU in PSoC™ 4 HV PA allows nesting of up to four exceptions. When the CPU
receives two or more exceptions requests of the same priority, the lowest exception number is serviced first.
The registers to configure the priority of exception numbers 1 to 15 are explained in “Exception sources” on
page 58.
The priority of the 32 interrupts (IRQ0 to IRQ31) can be configured by writing to the Interrupt Priority registers
(CM0P_IPR). This is a group of 32-bit registers with each register storing the priority values of four interrupts, as
given in Table 7-3. The other bit fields in the register are not used.

Table 7-3.  Interrupt Priority Register Bit Definitions

Bits Name Description

7:6 PRI_N0 Priority of interrupt number N.

15:14 PRI_N1 Priority of interrupt number N+1.

23:22 PRI_N2 Priority of interrupt number N+2.

31:30 PRI_N3 Priority of interrupt number N+3.
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7.7 Enabling and disabling interrupts
The NVIC provides registers to individually enable and disable the 32 interrupts in software. If an interrupt is not
enabled, the NVIC will not process the interrupt requests on that interrupt line. The Interrupt Set-Enable Register
(CM0P_ISER) and the Interrupt Clear-Enable Register (CM0P_ICER) are used to enable and disable the interrupts
respectively. These are 32-bit wide registers and each bit corresponds to the same numbered interrupt. These
registers can also be read in software to get the enable status of the interrupts. Table 7-4 shows the register
access properties for these two registers. Note that writing zero to these registers has no effect.

The CM0P_ISER and CM0P_ICER registers are applicable only for interrupts IRQ0 to IRQ31. These registers cannot
be used to enable or disable the exception numbers 1 to 15. The 15 exceptions have their own support for
enabling and disabling, as explained in “Exception sources” on page 58.
The PRIMASK register in Cortex-M0+ (CM0+) CPU can be used as a global exception enable register to mask all the
configurable priority exceptions irrespective of whether they are enabled. Configurable priority exceptions
include all the exceptions except Reset, NMI, and HardFault listed in Table 7-1. They can be configured to a
priority level between 0 and 3, 0 being the highest priority and 3 being the lowest priority. When the PM bit (bit 0)
in the PRIMASK register is set, none of the configurable priority exceptions can be serviced by the CPU, though
they can be in the pending state waiting to be serviced by the CPU after the PM bit is cleared.

Table 7-4.  Interrupt Enable/Disable Registers

Register Operation Bit value Comment

Interrupt Set Enable Register 
(CM0P_ISER)

Write 1 To enable the interrupt

0 No effect

Read 1 Interrupt is enabled

0 Interrupt is disabled

Interrupt Clear Enable Register 
(CM0P_ICER)

Write 1 To disable the interrupt

0 No effect

Read 1 Interrupt is enabled

0 Interrupt is disabled



Reference manual 63 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Interrupts

7.8 Exception states
Each exception can be in one of the following states.

The Interrupt Control State Register (CM0P_ICSR) contains status bits describing the various exceptions states.
• The VECTACTIVE bits ([8:0]) in the CM0P_ICSR store the exception number for the current executing exception. 

This value is zero if the CPU does not execute any exception handler (CPU is in thread mode). Note that the 
value in VECTACTIVE bit fields is the same as the value in bits [8:0] of the Interrupt Program Status Register 
(IPSR), which is also used to store the active exception number.

• The VECTPENDING bits ([20:12]) in the CM0P_ICSR store the exception number of the highest priority pending 
exception. This value is zero if there are no pending exceptions.

• The ISRPENDING bit (bit 22) in the CM0P_ICSR indicates if a NVIC generated interrupt (IRQ0 to IRQ31) is in a 
pending state.

Table 7-5.  Exception States

Exception State Meaning

Inactive The exception is not active or pending. Either the exception is disabled or the enabled 
exception is not triggered.

Pending The exception request is received by the CPU/NVIC and the exception is waiting to be 
serviced by the CPU. 

Active An exception that is being serviced by the CPU but whose exception handler execution 
is not yet complete. A high-priority exception can interrupt the execution of lower 
priority exception. In this case, both the exceptions are in the active state.

Active and Pending The exception is serviced by the processor and there is a pending request from the 
same source during its exception handler execution.



Reference manual 64 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Interrupts

7.8.1 Pending exceptions
When a peripheral generates an interrupt request signal to the NVIC or an exception event occurs, the
corresponding exception enters the pending state. When the CPU starts executing the corresponding exception
handler routine, the exception is changed from the pending state to the active state.
The NVIC allows software pending of the 32 interrupt lines by providing separate register bits for setting and
clearing the pending states of the interrupts. The Interrupt Set-Pending register (CM0P_ISPR) and the Interrupt
Clear-Pending register (CM0P_ICPR) are used to set and clear the pending status of the interrupt lines. These are
32-bit wide registers and each bit corresponds to the same numbered interrupt.
Table 7-6 shows the register access properties for these two registers. Note that writing zero to these registers
has no effect.

Setting the pending bit when the same bit is already set results in only one execution of the ISR. The pending bit
can be updated regardless of whether the corresponding interrupt is enabled. If the interrupt is not enabled, the
interrupt line will not move to the pending state until it is enabled by writing to the CM0P_ISER register.
Note that the CM0P_ISPR and CM0P_ICPR registers are used only for the 32 peripheral interrupts (exception
numbers 16–47). These registers cannot be used for pending the exception numbers 1 to 15. These 15 exceptions
have their own support for pending, as explained in “Exception sources” on page 58.

7.9 Stack usage for exceptions
When the CPU executes the main code (in thread mode) and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts executing the corresponding exception handler (in
handler mode). The CPU pushes the contents of the eight 32-bit internal registers into the stack. These registers
are the Program and Status Register (PSR), ReturnAddress, Link Register (LR or R14), R12, R3, R2, R1, and R0.
Cortex®-M0+ has two stack pointers - MSP and PSP. Only one of the stack pointers can be active at a time. When
in thread mode, the Active Stack Pointer bit in the Control register is used to define the current active stack
pointer. When in handler mode, the MSP is always used as the stack pointer. The stack pointer in Cortex®-M0+
always grows downwards and points to the address that has the last pushed data.
When the CPU is in thread mode and an exception request comes, the CPU uses the stack pointer defined in the
control register to store the general-purpose register contents. After the stack push operations, the CPU enters
handler mode to execute the exception handler. When another higher priority exception occurs while executing
the current exception, the MSP is used for stack push/pop operations, because the CPU is already in handler
mode. See the “Cortex®-M0+ CPU” on page 28 for details.
The Cortex®-M0+ uses two techniques, tail chaining and late arrival, to reduce latency in servicing exceptions.
These techniques are not visible to the external user and are part of the internal processor architecture. For
information on tail chaining and late arrival mechanism, visit the Arm® Infocenter. 

Table 7-6.  Interrupt Set Pending/Clear Pending Registers

Register Operation Bit value Comment

Interrupt Set-Pending Register 
(CM0P_ISPR)

Write 1 To put an interrupt to pending state

0 No effect

Read 1 Interrupt is pending

0 Interrupt is not pending

Interrupt Clear-Pending Register 
(CM0P_ICPR)

Write 1 To clear a pending interrupt

0 No effect

Read 1 Interrupt is pending

0 Interrupt is not pending

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html
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7.10 Interrupts and low-power modes
PSoC™ 4 HV PA allows device wakeup from low-power modes when certain peripheral interrupt requests are
generated. The Wakeup Interrupt Controller (WIC) block generates a wakeup signal that causes the device to
enter Active mode when one or more wakeup sources generate an interrupt signal. After entering Active mode,
the ISR of the peripheral interrupt is executed.
The Wait For Interrupt (WFI) instruction, executed by the CM0+ CPU, triggers the transition into Sleep and Deep
Sleep modes. The sequence of entering the different low-power modes is detailed in the “Power modes” on
page 113. Chip low-power modes have two categories of fixed-function interrupt sources:
• Fixed-function interrupt sources that are available only in the Active and Deep Sleep modes (watchdog timer 

interrupt,)
• Fixed-function interrupt sources that are available only in the Active mode (all other fixed-function interrupts)

7.11 Exceptions – Initialization and configuration
This section covers the different steps involved in initializing and configuring exceptions in PSoC™ 4 HV PA. 
1. Configuring the Exception Vector Table Location: The first step in using exceptions is to configure the vector

table location as required – either in flash memory or SRAM. This configuration is done by writing bits 31:28 of
the VTOR register with the value of the flash or SRAM address at which the vector table will reside. This register
write is done as part of device initialization code. 
– It is recommended that the vector table be available in SRAM if the application needs to change the vector 

addresses dynamically. If the table is located in flash, then a flash write operation is required to modify the 
vector table contents. 

2. Configuring Individual Exceptions: The next step is to configure individual exceptions required in an 
application.
– Configure the exception or interrupt source; this includes setting up the interrupt generation conditions. 

The register configuration depends on the specific exception required.
– Define the exception handler function and write the address of the function to the exception vector table. 

Table 7-1 gives the exception vector table format; the exception handler address should be written to the 
appropriate exception number entry in the table.

– Set up the exception priority, as explained in “Exception priority” on page 61.
– Enable the exception, as explained in “Enabling and disabling interrupts” on page 62.
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7.12 Registers

7.13 Associated documents
• Armv6-M Architecture Reference Manual – This document explains the Arm® Cortex®-M0+ architecture, 

including the instruction set, NVIC architecture, and CPU register descriptions.

Table 7-7.  List of Registers

Register name Description

CM0P_ISER Interrupt Set-Enable Register

CM0P_ICER Interrupt Clear Enable Register

CM0P_ISPR Interrupt Set-Pending Register

CM0P_ICPR Interrupt Clear-Pending Register

CM0P_IPR Interrupt Priority Registers

CM0P_ICSR Interrupt Control State Register

CM0P_AIRCR Application Interrupt and Reset Control Register

CM0P_SCR System Control Register

CM0P_CCR Configuration and Control Register

CM0P_SHPR2 System Handler Priority Register 2

CM0P_SHPR3 System Handler Priority Register 3

CM0P_SHCSR System Handler Control and State Register

CM0P_SYST_CSR Systick Control and Status Register

CPUSS_CONFIG CPU Subsystem Configuration Register

CPUSS_SYSREQ System Request Register

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html


Reference manual 67 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Flash Memory

8 Flash Memory
The PSoC™ 4 HV PA has a flash module with separate controllers for code flash and data flash. The flash has an
accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash
accelerator delivers 85% single-cycle SRAM access performance on average. 
The flash program and debug interface are explained in the “Program and Debug” on page 360.

8.1 Features
PSoC™ 4 HV PA flash memory has the following features:
• Supports AEC-Q100 Automotive Grade 1 temperature range (Ambient temperature = –40°C to 125°C)
• Up to 128KB of code flash with Error Correction Code (ECC)
• Up to 8KB of data flash with ECC
• 1KB of SFlash available for storing constants with ECC
• Flash macro data: 72-bit width (64-bit data + 8-bit parity)
• ECC parity calculated in hardware

– Erased flash (all zeros) will not cause ECC errors on read
– Eight ECC bits allow a single error correction and double error detection 
– ECC error injection

• Implement flash write protect register
• Support for a second flash controller

– Support for difference sizes for code and data flash
• Flash controller with data buffers to accelerate flash memory accesses
• System Performance Controller Interface (SPCIF) with ECC provides program and erase functionality
• Flash endurance: 100K cycles at 85°C ambient, 10K cycles at 125°C ambient
• Program disturb: 100K cycles at 125°C ambient
• Data retention: Up to 15 years
• Core power supply: VCCD = 1.8 V
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8.2 Block diagram
Figure 8-1 gives an overview of the flash controller and SPCIF data path that supports ECC based on a 64-bit word
along with 8 bits of ECC parity.

Figure 8-1.  Flash controller block diagram

Note that there is a second controller (Controller_1) in PSoC™ 4 HV PA devices, which is the same as Figure 8-1.
Table 8-1 shows the address mapping for each controllers.

Table 8-1.  Address mapping for first and second controllers

Slave Device Memory Region and Flash Macro Notes

Flash memory 
(Controller 0)

0x0000:0000–0x0000:FFFF (Macro 0)
0x0001:0000–0x0001:FFFF (Macro 1)

128KB: Program code region. You can also 
place data here. Includes the exception 
vector table, which starts at address 0.

Supervisory Flash memory 
(Controller 0)

0x0FFF:E000–0x0FFF:E3FF (Macro 0) 1KB: This memory is used for trimming, 
wounding, protection mode information. 

User Supervisory Flash 
memory 
(Controller 0)

0x0FFF:E400–0x0FFF:E7FF (Macro 1) 1KB: This memory is used for user data. 

Flash memory 
(Controller 1)

0x1F00:0000–0X1F00:1FFF (Macro 0) 8KB: Data region. A common usage is 
implementing a load balanced EEPROM for 
storing data.

Flash Controller

BTB0

BTB1

PFB DB

ECC Syndrome

Flash Macro

Memory Interface
SPCIF

ECC Parity

0, 1, 2, 3 
wait states

SPCIF has 
highest priority

Flash write 
path

With ECC, 
64bit write is 

used

ECC error reported 
through faults

LRU support

AHB-Lite Bus Infrastructure

64 64 64 64

32

+8

haddr

hrdata

Flash write 
data(64) + ECC 

parity(8)

Flash read 
data

Flash read 
address

Address 
increment for 
pre-fetch logic
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8.3 Flash controller and SPCIF
The flash controller performs only read accesses to the flash memory and implements a 72-bit (64-bit data + 8-bit
ECC parity) datapath. 
The flash controller includes buffers for flash data (see Figure 8-1). Four buffers are distinguished:
• Pre-Fetch Buffer (PFB). This buffer provides flash data for linear CPU code accesses.
• Data Buffer (DB). This buffer provides flash data for data accesses (from the CPU and the DW/DMA controller).
• Branch Target Buffer 0 (BTB0). This buffer provides flash data for branch/jump target CPU code accesses.
• Branch Target Buffer 1 (BTB1). This buffer provides flash data for recently used branch/jump target CPU code 

accesses.
Note that the flash controller buffers store only 64-bit data and have a depth of 1. They do not store 8-bit ECC
parity.
The ECC functionality provides:
• Correction of single-bit errors in a memory data word.
• Detection of single- and double-bit errors in a memory data word
The SPCIF provides program and erase functionality for the flash macro. 
The flash macro supports a 72-bit width (64-bit data + 8-bit parity) datapath.

8.3.1 System performance controller interface (SPCIF)
The SPCIF provides interface to the on-chip flash memory. SPCIF features include:
• Program and erase functionality for flash memory.
• A timer triggered interrupt signal, which allows the CPU to enter the Sleep power mode or execute code from 

SRAM during long program/erase operations.

Figure 8-2.  SPCIF block diagram

The SPCIF implements a 32-bit timer. The timer is configured to run on a clock, which can be either synchronous
or asynchronous to clk_sys (SYSCLK). The timer is used to generate the necessary high-voltage program/erase
pulses for the flash memory. The SPCIF can be configured to directly drive the Pump Enable (PE) signal to the High
Voltage (HV) pumps to achieve the correct HV pulse as defined by the timer period. For more information on SPCIF
registers, see the PSoC™ 4 HV PA Registers TRM.
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8.4 ECC implementation
ECC protection is included to the flash for functional safety. The ECC implements a Single Error Correction, Dual
Error Detection (SECDED) scheme. In the flash controller, 64 bits of data are covered by eight ECC bits. Note that
the PSoC™ 4 HV PA device does not support a disable of ECC functionality for Flash memory. 
Single-bit error correction is done in-line, without the need to stall the data returning to the flash controller.
Figure 8-3 shows an overview of the data path of the flash with ECC.

Figure 8-3.  Data Path overview for Flash ECC

Programming Code Flash
For a 64-bit program:
• The first data input is stored in a flash macro page latch and not written to flash.
• When the last data input arrives, ECC is calculated, including the buffered data; 64-bit data + 8-bit ECC are 

programmed to flash.
ECC (Single-Bit Errors)
When the ECC logic detects a single-bit error, the error bit can be corrected. The error correction is inline, without
the need to stall the data from returning to the flash controller. This is because the flash read delay is long and
the corrected data will be returned with no significant delay. The fault is reported through the regular fault
structure. ECC syndrome logic is used to correct the recoverable single-bit errors.
ECC Uncorrectable Errors
If the ECC logic detects that the data has more than one bit wrong then the data cannot be corrected. In this case,
the flash returns zero data to the bus master, and returns a bus error response. 
Bus Error status
The flash controller reports bus error causes for flash bus transactions.
Fault reporting
Both the correctable and non-correctable ECC errors are reported to the central fault structure in the same way.
All data correction and recovery are left to the ISR. There is no hardware support for writing corrected data back
to flash (See the “Fault subsystem” on page 87 for more information).
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8.4.1 ECC error injection
The ECC error injection functionality is enabled or disabled using FLASH_ECC_INJ_EN bit of CPUSS_FLASH_CTL
/ CPUSS_FLASHC1_CTL. When “1”, the parity (PARITY[7:0]) is used for a load from the FLASH_WORD_ADDR[23:0]
word address.

The ECC error injection is implemented in the read path for flash memories. The ECC error injection is not
implemented in the write path due the reasons listed below:
• Writing to flash memory is a time-consuming task.
• The location at which the ECC error is injected remains corrupted until the next “erase” operation is 

performed.
When error injection is enabled, the read address is compared to the device address. If they are equal, only the 
8-bit parity is over-written.

Table 8-2.  Flash ECC Error Injection Control Registers

Register Bit Field and Bit Name Description

CPUSS_FLASH_CTL / 
CPUSS_FLASHC1_CTL

FLASH_ECC_INJ_EN Enable error injection for Flash main interface.
When “1”, the parity (ECC_CTL.PARITY[7:0]) is used for 
a load from the ECC_CTL.WORD_ADDR[23:0] word 
address.

CPUSS_FLASHC_ECC_CTL / 
CPUSS_FLASHC1_ECC_CTL

PARITY ECC parity to use for ECC error injection at address 
WORD_ADDR. 
- For Flash interface ECC, the 8-bit parity PARITY[7:0] is 
for a 64-bit word.

CPUSS_FLASHC_ECC_CTL / 
CPUSS_FLASHC1_ECC_CTL

FLASH_WORD_ADDR Specifies the word address where an error will be 
injected.
- For Flash interface ECC, the word address 
WORD_ADDR[23:0] is device address A[26:3]. On a Flash 
main interface read and when 
FLASH_CTL.MAIN_ECC_INJ_EN bit is “1”, the parity 
(PARITY[7:0]) replaces the Flash macro parity (Flash 
main interface read path is manipulated).
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8.4.2 ECC parity generation by software

This section describes an algorithm to generate the correct ECC parity value with software. Note that this
algorithm is not implemented in the hardware. Because the actual algorithm is optimized for hardware
performance, it is different from the software algorithm described in this section.

“Value” in this algorithm represents the flash 64-bit data value.

CODEWORD_SW[63:0] = {64 {1'b0}};
CODEWORD_SW[63:0] = Value;

ECC_P0_SW = 0x4484_4A88_952A_AD5B;
ECC_P1_SW = 0x1108_9311_26B3_366D;
ECC_P2_SW = 0x0611_1C22_38C3_C78E;
ECC_P3_SW = 0x9821_E043_C0FC_07F0;
ECC_P4_SW = 0xE03E_007C_00FF_F800;
ECC_P5_SW = 0xFFC0_007F_FF00_0000;
ECC_P6_SW = 0xFFFF_FF80_0000_0000;
ECC_P7_SW = 0xD442_2584_4BA6_5CB7;

parity[0] = ^ (CODEWORD_SW & ECC_P0_SW);
parity[1] = ^ (CODEWORD_SW & ECC_P1_SW);
...
parity[7] = ^ (CODEWORD_SW & ECC_P7_SW);

parity[7:0] gives eight bits parity for flash 64-bit data value.

Note: “^” means reduction XOR. For example, ^(4’b0011) = 0^0^1^1.
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8.4.3 8-bit ECC syndrome logic
The ECC syndrome logic detects and corrects single-bit ECC errors. This logic can be deployed system wide
wherever data protected by an 8-bit ECC parity needs to be read, checked for errors, and corrected.
The syndrome is encoded as follows (see Table 10-16 Fault Reporting Assignments for more details):
• syndrome[7] is ‘0’ and syndrome [6:0] is “0”: no error is detected

– “cpuss.fault_flashcx_c_ecc” = ‘0’, “cpuss.fault_flashcx_nc_ecc” = ‘0’
• syndrome [7] is ‘0’ and syndrome [6:0] is not “0”: a double error is detected.

– “cpuss.fault_flashcx_c_ecc” = ‘0’, “cpuss.fault_flashcx_nc_ecc” = “1”,
• syndrome[7] is ‘1’: a single error is detected and syndrome[6:0] specifies the bit error location: 

(syndrome[6:0] - 1) is the bit error location within CW[127:0] (See CW code below).
– “cpuss.fault_flashcx_c_ecc” = “1”, “cpuss.fault_flashcx_nc_ecc” = ‘0’. 

• CW code
W[63:0] = ACTUALWORD[63:0];
P[7:0] = parity[7:0];
A[55:0] = ADDRESS[ADDR_WIDTH-1:0]
CW[127:0] = 
            {   P[7], A[55], A[54], A[53], A[33], A[52], A[30], A[29],
             W[63], A[51], A[35], A[40], A[1], A[44], A[8], W[62],
             W[61], A[50], A[42], A[47], A[22], A[38], W[60], A[3],
             W[59], A[28], A[0], W[58], W[57], A[19], W[56], W[55],
             W[54], A[49], A[46], A[43], A[10], A[37], A[5], A[17],
             W[53], A[32], A[23], A[7], W[52], A[12], W[51], W[50],
             W[49], A[36], A[16], A[14], W[48], A[26], W[47], W[46],
             W[45], A[20], W[44], W[43], W[42], W[41], W[40], W[39], 
                P[6], A[48], A[39], A[34], A[18], A[45], A[24], A[21],
             W[38], A[41], A[15], A[25], W[37], A[13], W[36], W[35],
             W[34], A[31], A[11], A[9], W[33], A[6], W[32], W[31],
             W[30], A[4], W[29], W[28], W[27], W[26], W[25], W[24],
                P[5], A[27], W[23], A[2], W[22], W[21], W[20], W[19],
             W[18], W[17],W[16], W[15], W[14], W[13], W[12], W[11],
                P[4], W[10], W[9], W[8], W[7], W[6], W[5], W[4], 
                P[3], W[3], W[2], W[1], P[2], W[0], P[1], P[0] };



Reference manual 74 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Flash Memory

8.4.4 Bus error status
The flash controller generates a bus error under the following conditions: 
• An occurrence of a Flash macro interface internal error (INTERNAL_ERROR) 
• An Uncorrectable Read error occurred when accessing a Flash macro (FLASH_UNCORRECTABLE)
• An access to a non-existent flash address occurred (FLASH_MEMORY_HOLE)
• A protection violation occurred in flash controller (FLASH_PROT_VIO)
Non-correctable errors will also be reported back to the bus master as a bus error. The bus error back to the CPU
itself can be disabled by register control. If FLASH_ERR_SILENT = 1, then a bus transfer will not generate a bus
error back to the CPU.

Table 8-3.  Flash Error Silent Register

Register Bit Field and Bit Name Description

CPUSS_FLASH_CTL / 
CPUSS_FLASHC1_CTL

FLASH_ERR_SILENT Specifies bus transfer behavior for a non-recoverable error on 
the Flash macro main interface (either a non-correctable ECC 
error, a Flash macro main interface internal error, a Flash 
macro main interface memory hole access, a protection 
violation error):
0: Bus transfer has a bus error.
1: Bus transfer does not have a bus error; the error is “silent”

Table 8-4.  Flash Bus Error Status Registers

Register Bit Field and Bit Name Description

CPUSS_FLASHC_BERR_STATUS / 
CPUSS_FLASHC1_BERR_STATUS

INTERNAL_ERROR Specifies/registers the occurrence of a Flash 
macro interface internal error (typically the 
result of a read access while a program erase 
operation is ongoing) as a result of a CM0+ 
access. 
SW clears this field to “0”. HW sets this field to 
“1” on a Flash macro interface internal error. 
Typically, SW reads this field after a code 
section to detect the occurrence of an error.

CPUSS_FLASHC_BERR_STATUS / 
CPUSS_FLASHC1_BERR_STATUS

FLASH_UNCORRECTABLE An Uncorrectable Read error occurred when 
accessing a Flash macro.
SW clears this field to “0”. HW sets this field to 
“1” on a Flash macro uncorrectable error. 
Typically, SW reads this field after a code 
section to detect the occurrence of an error.
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8.4.5 ECC error reporting
Table 8-5 provides different actions taken based on the type of ECC error and FLASH_ERR_SILENT. These
scenarios are also reported to the central fault structure; the details of fault reporting are explained in the “Fault
subsystem” on page 87.

CPUSS_FLASHC_BERR_STATUS / 
CPUSS_FLASHC1_BERR_STATUS

FLASH_MEMORY_HOLE An access to a non-existent Flash address 
occurred. 
SW clears this field to “0”. HW sets this field to 
“1” on a Flash macro access to a non-existent 
address. Typically, SW reads this field after a 
code section to detect the occurrence of an 
error.

CPUSS_FLASHC_BERR_STATUS / 
CPUSS_FLASHC1_BERR_STATUS

FLASH_PROT_VIO A protection violation occurred in Flash 
controller.
SW clears this field to “0”. HW sets this field to 
“1” on a M0S8 protection violation occurred 
in Flash controller. Typically, SW reads this 
field after a code section to detect the 
occurrence of an error.

Table 8-5.  Action taken based on different Error Scenarios

FLASH_ERR_SILENT Detected Error type Action taken Comments

Bus Error Fault 
reporting

0 1-bit No Yes Bus Error is not generated for 
1-bit error.

0 2-bit Yes Yes For a 2-bit error, bus error is 
reported. Along with the 
appropriate fault.

0 Flash Read while Flash 
program/erase is busy

Yes Yes –

0 Memory hole during Flash 
read/write

Yes Yes –

1 1-bit No Yes Bus error is not generated for 
1-bit error.

1 2-bit No Yes Bus error is suppressed as 
FLASH_ERR_SILENT is ‘1’.1 Flash Read while Flash 

program/erase is busy
No Yes

1 Memory hole during Flash 
read/write

No Yes

Table 8-4.  Flash Bus Error Status Registers (continued)

Register Bit Field and Bit Name Description
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8.5 Flash wait states
The access time of flash memories with ECC is around 60 ns. Hence, flash read operation cannot be performed in
a single clock cycle at 48-MHz system clock frequency. Wait states will be added when reading data from flash
memories. 
The FLASH_WS bit of the CPUSS_FLASH_CTL/CPUSS_FLASHC1_CTL registers can be used to configure the wait
states required for flash read operation depending on the flash memory used and the system clock frequency.
The actual number of cycles for these wait states depends on the system clock frequency (See Table 8-6 and
Table 8-7).

Table 8-6.  Flash Wait States

Flash Memory type System Frequency [MHz] Wait States

Flash with ECC SYSCLK ≤ 1/4 × FMAX 0

SYSCLK ≤ 1/2 × FMAX 1

SYSCLK ≤ 3/4 × FMAX 2

SYSCLK ≤ FMAX 3

Table 8-7.  FLASH Wait States Register

Register Bit Field and Bit Name Description

CPUSS_FLASH_CTL / 
CPUSS_FLASHC1_CTL

FLASH_WS Amount of ROM wait states:
For Flash With ECC.
0: 0 wait states (SYSCLK ≤ 1/4 × FMAX)
1: 1 wait state (SYSCLK ≤ 1/2 × FMAX)
2: 2 wait states (SYSCLK ≤ 3/4 × FMAX)
3: 3 wait states (SYSCLK ≤ FMAX)
4–15: Future Use - To be used, if three wait states are 
not sufficient.
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8.6 Implement Flash Write Protect Register
The functionality of Flash Write Protect is supported through the following registers in SPCIF.
• SPCIF_FLASH_LOCK
• SPCIF_FLASH_MACRO_WE
SPCIF_FLASH_MACRO_WE.MAC_WRITE_EN controls the Flash macro’s write access. This is a bit mask where each
bit controls program/erase access to the corresponding macro. When the bit is set to “1”, the macro may be
programmed/erased; when the bit is set to “0”, the macro content is locked.
If the bit transitions from 1 to 0 while the corresponding macro is being erased or programmed, the pumps are
immediately disabled where the Flash macro’s Pump Enable (pe) is set to low. This may cause the Flash macro
memory cells to move to the invalid or unknown state. 
Due to this, the software should check for MAC_WRITE_EN before starting any write operation and avoid
changing MAC_WRITE_EN during an ongoing write operation. If changing MAC_WRITE_EN during an ongoing
write operation is unavoidable, make sure the Flash macro memory cells are not in an unknown state. An erase
operation to the same memory location must be issued after MAC_WRITE_EN is changed to unprotected again.
This is to ensure the memory cells are transitioned back to a valid state. 
• The content of SPCIF_FLASH_MACRO_WE.MAC_WRITE_EN may be changed only when 

SPCIF_FLASH_MACRO_WE.LOCKED is “0”.
• When SPCIF_FLASH_MACRO_WE.LOCKED is “1”, hardware will prevent software access to 

SPCIF_FLASH_MACRO_WE.MAC_WRITE_EN. 
• To toggle the value of SPCIF_FLASH_MACRO_WE.LOCKED, a unique 32-bit value of “0xF56B3A81” must be 

written to SPCIF_FLASH_LOCK.KEY by software. 
• The content of SPCIF_FLASH_LOCK.KEY is hidden and not readable by software. 
Software can read the toggle of SPCIF_FLASH_MACRO_WE.LOCKED to know the correct key write on this
SPCIF_FLASH_LOCK.KEY register.

Table 8-8.  Flash Write Protect Registers

Register Bit Field and Bit Name Description

SPCIF_FLASH_LOCK KEY Write-only register that locks/unlocks access to the 
FLASH_MACRO_WE register by writing a key value to the 
register. The key is the 32-bit value 0xF56B3A81. When this 
bit pattern is written to the register, write access to 
FLASH_MACRO_WE is toggled between locked and 
unlocked. The bit FLASH_MACRO_WE.LOCKED toggles 
upon receipt of the required key value.

SPCIF_FLASH_MACRO_WE LOCKED When set, it indicates that write access to 
FLASH_MACRO_WE.MAC_WRITE_EN is blocked. The value 
of this bit toggles when the key value is written into 
FLASH_LOCK.KEY.

SPCIF_FLASH_MACRO_WE MAC_WRITE_EN Access control to Flash Macros Write Access register. This 
is a bit mask where each bit controls program/erase 
access to the corresponding macro. When the bit is set to 
‘1’ the macro may be programmed/erased; when the bit is 
set to ‘0’, the macro content is locked. The content of this 
register may only be changed when 
FLASH_MACRO_WE.LOCKED is ‘0’.
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8.7 Register List

Table 8-9.  Flash Memory Register List

Register name Description

CPUSS

CPUSS_FLASH_CTL Flash Control Register

CPUSS_FLASHC1_CTL Flash Control1 Control Register

CPUSS_FLASHC_BERR_STATUS Flash Bus Error Status Register

CPUSS_FLASHC1_BERR_STATUS Flash 1 Bus Error Status Register

CPUSS_FLASHC_ECC_CTL Flash ECC Control Register

CPUSS_FLASHC1_ECC_CTL Flash 1 ECC Control Register

SPCIF

SPCIF_GEOMETRY Flash/NVL Geometry Information Register

SPCIF_FLASH_LOCK Flash Lock Register

SPCIF_FLASH_MACRO_WE Flash Macro Write Enable Register

SPCIF_INTR SPCIF Interrupt Request Register

SPCIF_INTR_SET SPCIF Interrupt Set Request Register

SPCIF_INTR_MASK SPCIF Interrupt Mask Register

SPCIF_INTR_MASKED SPCIF Interrupt Masked Request Register

SPCIF1_GEOMETRY Flash/NVL Geometry Information Register

SPCIF1_FLASH_LOCK Flash Lock Register

SPCIF1_FLASH_MACRO_WE Flash Macro Write Enable Register

SPCIF1_INTR SPCIF1 Interrupt Request Register

SPCIF1_INTR_SET SPCIF1 Interrupt Set Request Register

SPCIF1_INTR_MASK SPCIF1 Interrupt Mask Register

SPCIF1_INTR_MASKED SPCIF1 Interrupt Masked Request Register
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9 SRAM
The PSoC™ 4 HV PA has a volatile static random access memory (SRAM) with Error Correction Code (ECC). The
SRAM is used by the processor for storing variables and can program code, which can be written and executed in
SRAM. SRAM memory is retained in all power modes (Active, Sleep, and Deep Sleep). At power-up, SRAM is
uninitialized and should be written by application code before reading. 

9.1 Features
PSoC™ 4 HV PA SRAM has the following features:
• Up to 8 KB of SRAM with ECC
• SRAM macro data: 40-bit width (32-bit data + 7-bit parity)
• Synchronous read/write
• ECC parity calculated in hardware

– Seven ECC bits allows a single error correction and double error detection 
– ECC error injection

• Separate power supplies for core and periphery
Note that there is a redundancy of 1-bit on MSB (sram_data_in/out[39]) in SRAM. This redundant bit is ignored
during the read cycle and does not participate in ECC. For the completion of 40-bits, fixed value ‘1’b0’ is written
to this redundant bit.

9.2 Block diagram
Figure 9-4 gives an overview of the SRAM controller block diagram with ECC support.

Figure 9-4.  SRAM Controller block diagram
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9.3 SRAM read/write accesses with ECC functionality
SRAM accesses originate from one of the following paths:
• AHB-Lite transfers.
• Write buffer requests (only when CPUSS_RAM_CTL.ECC_ENABLE is ‘1’). 
• SRAM repair requests (only when CPUSS_RAM_CTL.ECC_ENABLE is ‘1’).
Each path has dedicated ECC parity logic. The paths are evaluated in the following priority (from high to low
priority):
• SRAM repair requests
• Write buffer requests, when the write buffer is full
• AHB-Lite requests
• Write buffer requests, when the write buffer is not empty
The AHB-Lite transfers are the origin for all SRAM accesses; that is, the write buffer and SRAM repair requests
result from AHB-Lite transfers. The SRAM controller differentiates between the following three types of AHB-Lite
transfers:
• AHB-Lite read transfers
• 32-bit AHB-Lite write transfers
• 8-bit and 16-bit AHB-Lite write transfers (partial AHB-Lite write transfers)

Table 9-10.  AHB-Lite transfers

AHB-Lite Access Action taken

AHB-Lite read transfers with 
ECC

• If address matches in write buffer, and valid = 1, AHB data is read from write 
buffer and data is not read from SRAM.

• If address does not match in write buffer, OR valid = 0; AHB data is read from 
SRAM.

32-bit write access • If address matches in write buffer, and valid = 1; write buffer is invalidated 
and AHB data is directly written to SRAM

• If address does not match in write buffer, OR valid = 0; AHB data is directly 
written to SRAM

Partial AHB-Lite write 
transfers with ECC

• If address matches in write buffer, and valid = 1, AHB data is merged with 
data read from write buffer and data is not read from SRAM. Merged data is 
written back to write buffer.

• If address does not match in write buffer, OR valid = 0; AHB data is read from 
SRAM and merged data is written back to write buffer.
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9.3.1 32-bit AHB-Lite write transfers with ECC
A 32-bit AHB-Lite write transfer is translated into an SRAM write access. The ECC parity logic is used. If the write
address matches in the write buffer, the matching write buffer entries have stale data and these entries are
invalidated. The ECC is computed and written to SRAM.

9.3.2 Partial AHB-Lite write transfers with ECC
A partial AHB-Lite write transfer is translated into an SRAM read access and an SRAM write access. 
A partial write transfer requires an SRAM read access to retrieve the “missing” data bytes from the SRAM. If the
read address matches in the write buffer, the SRAM has stale data and the write buffer provides the requested
read data. The requested read data is merged with the partial write data to provide a complete 32-bit data word.
The address and the merged write data are written to the write buffer. A future write buffer request results in an
SRAM write access with the merged write data. Only the partial AHB-Lite write transfers use the write buffer.
Since partial write transfers involve SRAM read accesses the following ECC error scenarios are possible:
• No ECC Error: No action taken
• Correctable Error (1-bit error): 

– This scenario requires an SRAM update. The corresponding SRAM address needs to be written/repaired 
with the corrected code word. This additional SRAM write access is performed through the SRAM repair 
request path. This functionality is only enabled when CPUSS_RAM_CTL.ECC_AUTO_CORRECT is ‘1’. 

– This corrected 32-bit data word is then merged with the write data with appropriate mask and stored in the 
write buffer. A future write buffer request results in an SRAM write access with the merged write data.

• Uncorrectable Error (2-bit error): 
– Since there are 2-bit errors, no correction is made to the data word read from the SRAM and no merged data 

is stored in the write buffer.

9.3.3 AHB-Lite read transfers with ECC
An AHB-Lite read transfer is translated into an SRAM read access. The ECC syndrome logic is used, which corrects
recoverable (1-bit) errors. If the read address matches in the write buffer, the SRAM has stale data and the write
buffer provides the requested read data. 
Following are the possible ECC error scenarios with AHB-Lite read transfers:
• No ECC Error: No action taken
• Correctable Error (1-bit error): 

– This scenario requires an SRAM update. The corresponding SRAM address needs to be written/repaired 
with the corrected code word. This additional SRAM write access is performed through the SRAM repair 
request path. This functionality is only enabled when CPUSS_RAM_CTL.ECC_AUTO_CORRECT is ‘1’. 

• Uncorrectable Error (2-bit error): 
– Since there are 2-bit errors, no correction is made to the data word read from SRAM and no merged data is 

stored in the write buffer.
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9.4 Write buffer functionality
The write buffer component is used only during 8-bit and 16-bit AHB-Lite write transfers (partial AHB-Lite write
transfers) with CPUSS_RAM_CTL.ECC_ENABLE enabled. 
The buffer allows partial AHB-Lite SRAM write accesses with ECC to be postponed, allowing for more performance
critical AHB-Lite requests to “overtake” write buffer requests. This means the a partial AHB-Lite write data is first
stored in write buffer and then stored in the SRAM when there are no new or outstanding AHB-Lite transfers.
Note 1: In case of 1-bit ECC error during SRAM read operation, the corrected data is directly written back to SRAM.
(Write buffer is not used to hold the corrected data).
Note 2: The 7-bit parity generated during the partial AHB-Lite SRAM accesses with ECC is not stored in the write
buffer.
Memory consistency is guaranteed by matching the SRAM access address with the entries in the write buffer: 
• “matching” address during SRAM read access means the SRAM has stale/old data and the data from write 

buffer should be used.
• “matching” address during SRAM write access means the entry in write buffer needs to be invalidated. 
A valid and invalid bit in the write buffer is used to convey the above information.
The write buffer is constructed as a FIFO with four entries, as shown below.

Each entry consists of: 
• A valid field.
• An invalidated field.
• A word address.
• A 32-bit data word.
Note 1: A FIFO structure is one where the order in which entries are written is the same as the order in which
entries are read. 
Note 2: The merged write data that is written to the write buffer is always a 32-bit data word. Therefore, no byte
mask is required.
The following actions are taken when the write buffer is accessed:
• When an entry is added to write buffer:

– Valid bit is set “1”
– Invalid bit is set “0”
– Address and data are stored in respective fields.

• When an entry is read from write buffer:
– If valid bit is “0” (invalid bit is “1”), the write buffer data is ignored, and no SRAM access is performed.
– If valid bit is “1”, the write buffer data is transferred to SRAM at the location mentioned in write buffer 

address field. After the transfer is complete the valid bit is set to “0”.
The state of the write buffer is reflected by CPUSS_RAM_STATUS.WB_EMPTY, which determines the priority of
when a valid write buffer data can be transferred to SRAM. This priority decision is elaborated in “SRAM
read/write accesses with ECC functionality” on page 80.
The write buffer is not retained in Deep Sleep power mode. Therefore, when transitioning to system Deep Sleep
power mode, the write buffer should be empty. This requirement is typically met, as a transition to Deep Sleep
power mode also requires that there are no outstanding AHB-Lite transfers. 
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9.5 ECC implementation
The ECC engine provides supports for Hamming code with an additional parity bit. This code supports single error
correction, double error detection (SECDED). The ECC is applied to the SRAM data and the SRAM address.
• The ECC corrects single bit errors in an SRAM data (stored in SRAM memory).
• The ECC detects single and double bit errors in an SRAM data (stored in SRAM memory) and the SRAM address 

logic.
As mentioned earlier the SRAM stores 40-bit of data: a 32-bit data word, a 7-bit parity, and redundant 1-bit. The
32-bit SRAM data word allows 8-bit, 16-bit and 32-bit AHB-Lite bus transfers in a single cycle. The 7-bit parity
provides error correction and error detection.
A 7-bit SECDED parity covers up to 57 data bits, which also provides space for an additional 57 – 32 = 25 data bits.
These 25 additional data bits will be used for the SRAM address.

9.5.1 ECC enable and disable
The ECC functionality can be disabled or enabled using CPUSS_RAM_CTL.ECC_ENABLE. When ECC functionality
is enabled following components are used to implement the desired ECC functionality:
• ECC Parity
• ECC Syndrome
• Write Buffer
Note: With ECC functionality, SRAM read/write data path is changed from 32-bit to 39-bits (including 7 bits of
ECC).

9.5.2 ECC error injection
The ECC error injection functionality is enabled or disabled using CPUSS_RAM_CTL.ECC_INJ_EN. 
The ECC error injection is implemented in the write path for the SRAM memories. The ECC error injection is
implemented only for 32-bit AHB write requests. There is no ECC error injection for partial AHB write requests. 
When ECC_INJ_EN = 1, the ECC ERROR is injected by writing the corrupted ECC parity to the
ECC_TEST.SYND_DATA at the desired location specified by ECC_TEST.WORD_ADDR.
After writing the above registers, since the ECC is injected on the write path, the SW needs to issue an SRAM write
to that location. This results in the corrupted parity is being written to the SRAM.

Table 9-11.  SRAM ECC Error Injection Registers

Register Bit Field and Bit Name Description

CPUSS_RAM_CTL ECC_INJ_EN Enable error injection.
0: Syndrome is source from ECC Syndrome hardware.
1: ECC_TEST.SYND_DATA is used when a full 32-bit write is done 
to the ECC_TEST.WORD_ADDR word address of SRAM.

CPUSS_ECC_TEST SYND_DATA ECC syndrome to use for error injection at address WORD_ADDR.

CPUSS_ECC_TEST WORD_ADDR Specifies the word address where an error will be injected.
On a write transfer to this SRAM address and when the 
corresponding RAM_CTL.ECC_INJ_EN bit is ‘1’, the SYND_DATA 
is injected into the corresponding SRAM.



Reference manual 84 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

SRAM

9.5.3 ECC parity generation by software

To inject the ECC error for fault generation, ECC parity must be generated by software. Follow this procedure to
generate a 7-bit ECC parity. 

CODEWORD_SW[63:0] = {64 {1'b0}};
CODEWORD_SW[31:0] = ACTUALWORD[31:0];
ADDR_WIDTH = log2(RAM_SIZE);
CODEWORD_SW[ADDR_WIDTH+29:32] = ADDR[ADDR_WIDTH-1:2];

Note: RAM_SIZE is the size of RAMx, where “x” is the RAM unit number. 

ECC_P0_SW = 0x037F_36DB_2254_2AAB;
ECC_P1_SW = 0x05BD_EB5A_4499_4D35;
ECC_P2_SW = 0x09DD_DCEE_08E2_71C6;
ECC_P3_SW = 0x11EE_BBA9_8F03_81F8;
ECC_P4_SW = 0x21F6_D775_F003_FE00;
ECC_P5_SW = 0x41FB_6DB4_FFFC_0000;
ECC_P6_SW = 0x8103_FFF8_112C_965F;

As shown here, reduction XOR of the ANDed result of CODEWORD_SW[63:0] and respective ECC constants will
give a single parity bit.
parity[0] = ^ (CODEWORD_SW[63:0] & ECC_P0_SW);
parity[1] = ^ (CODEWORD_SW[63:0] & ECC_P1_SW);
…
parity[6] = ^ (CODEWORD_SW[63:0] & ECC_P6_SW);
parity[6:0] gives seven bits parity for 32 bits ACTUALWORD[31:0].

Note: “^” means reduction XOR. For example, ^(4’b0011) = 0^0^1^1.

9.5.4 7-bit ECC syndrome logic
The ECC syndrome logic detects and corrects single-bit ECC errors. This logic can be deployed system wide
wherever data protected by a 7-bit ECC parity needs to be read, checked for errors, and corrected.
The syndrome is encoded as follows (see Table 10-16 Fault Reporting Assignments for more details):
• syndrome[6] is ‘0’ and syndrome [5:0] is “0”: no error is detected

– “cpuss.fault_ramc_c_ecc” = ‘0’, “cpuss.fault_ramc_nc_ecc” = ‘0’
• syndrome [6] is ‘0’ and syndrome [5:0] is not “0”: a double error is detected.

– “cpuss.fault_ramc_c_ecc” = ‘0’, “cpuss.fault_ramc_nc_ecc” = ‘1’,
• syndrome[6] is ‘1’: a single error is detected and syndrome[5:0] specifies the bit error location: 

(syndrome[5:0] - 1) is the bit error location within CW[63:0] (See CW code below).
– “cpuss.fault_ramc_c_ecc” = ‘1’, “cpuss.fault_ramc_nc_ecc” = ‘0’. 

• CW code
W[31:0] = ACTUALWORD[31:0];
P[6:0] = parity[6:0];
A[24:0] = ADDRESS[ADDR_WIDTH-1:0];
CW[63:0] = { P[ 6], A[24], A[23], A[22], A[ 5], A[21], A[8], A[17],
                   W[31], A[20], A[14], A[10], A[ 2], A[ 4], W[30], W[29],
                   W[28], A[19], A[11], A[ 7], W[27], A[13], W[26], W[25],
                   W[24], A[16], W[23], W[22], W[21], W[20], W[19], W[18],
                     P[ 5], A[18], A[15], A[12], W[17], A[ 9], W[16], A[ 0],
                   W[15], A[ 6], W[14], W[13], W[12], W[11], W[10], W[ 9],
                     P[ 4], A[ 3], W[ 8], W[ 7], W[ 6], W[ 5], W[ 4], W[ 3],
                     P[ 3], A[ 1], W[ 2], W[ 1], P[ 2], W[ 0], P[ 1], P[ 0] };
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9.5.5 ECC error reporting status
The SRAM controller indicates a correctable/uncorrectable error in ECC_CAPTURE_ADDR_SYNDROME_VALID bit
of CPUSS_RAM_ECC_STATUS0 register. 
If either a correctable or non-correctable error occurs, ECC_CAPTURE_ADDR_SYNDROME_VALID bit will be set.
This register should be cleared by FW. ECC_CAPTURE_ADDR_31_2 and ECC_CAPTURE_SYNDROME registers will
store the first such occurrence of the address and syndrome causing the ECC error. 
If the error occur, ECC_CAPTURE_ADDR_31_2 will store the CPUSS address that caused the first
correctable/uncorrectable error interrupt. And ECC_CAPTURE_SYNDROME will store the CPUSS Syndrome that
caused the first error interrupt.

Table 9-12.  SRAM ECC Status Registers

Register Bit Field and Bit Name Description

CPUSS_RAM_ECC_STATUS0 ECC_CAPTURE_ADDR_
SYNDROME_VALID

ECC capture address and syndrome valid. 
0: ECC_CAPTURE_ADDR_31_2 not valid
1: ECC_CAPTURE_ADDR_31_2 valid - SW writes a 
1 to clear

CPUSS_RAM_ECC_STATUS0 ECC_CAPTURE_ADDR_31_2 Snapshot of the CPUSS address that caused the 
first correctable/uncorrectable error interrupt. 
When first correctable/uncorrectable error 
interrupt is generated, 
ECC_CAPTURE_ADDR_SYNDROME_VALID is 
transitioned from 0 to 1, and this register 
captures the first error address. The register only 
captures bits 31–2 of the address.

CPUSS_RAM_ECC_STATUS1 ECC_CAPTURE_SYNDROME Snapshot of the CPUSS syndrome that caused 
the first correctable/uncorrectable error 
interrupt. When first correctable/uncorrectable 
error interrupt is generated, 
ECC_CAPTURE_ADDR_SYNDROME_VALID is 
transitioned from 0 to 1, and this register 
captures the first Syndrome corresponding to 
the Error.
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9.5.6 ECC error reporting
Table 9-13 provides the different actions taken based type of ECC error for Partial AHB-Lite write transfers, and
Table 9-14 provides in case of AHB-Lite read transfers. The details of fault reporting are explained in the “Fault
subsystem” on page 87.

9.6 Register list

Table 9-13.  Error Scenarios for Partial AHB-Lite write transfers

Detected Error type Action taken Comments

Bus Error Fault 
reporting

1-bit No Yes Bus error is not generated for 1-bit error.

2-bit No Yes In case of 2-bit error of write transfers, bus error is not 
reported.

Table 9-14.  Error Scenarios for AHB-Lite read transfers 

Detected Error type Action taken Comments

Bus Error Fault 
reporting

1-bit No Yes Bus error is not generated for 1-bit error.

2-bit Yes Yes In case of 2-bit error of read transfers, bus error is 
reported. Along with an appropriate fault.

Table 9-15.  SRAM Memory Register list

Register name Description

CPUSS_RAM_CTL RAM Control Register

CPUSS_RAM_STATUS RAM Controller 0 Status Register

CPUSS_RAM_ECC_STATUS0 RAM ECC Status 0 Register

CPUSS_RAM_ECC_STATUS1 RAM ECC Status 1 Register

CPUSS_ECC_TEST ECC Test Register
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10 Fault subsystem
The fault subsystem contains information about faults that occur in the system. The subsystem can cause a reset,
give a pulse indication, or trigger another peripheral. The PSoC™ 4 HV PA uses a centralized fault report structure.
The centralized nature allows for a system-wide, consistent handling of faults, which simplifies software
development as follows:
• Only a single fault interrupt handler is required
• The fault report structure provides the fault source and additional fault-specific information from a single set 

of Memory Mapped Input/Output (MMIO) registers; that is, no iterative search is required for the fault source 
and fault information

• All pending faults are available from a single set of MMIO registers
The fault subsystem captures faults related to:
• SRAM controller ECC errors
• FLASH controller ECC errors
• CRWDT fault output
• HVREG fault output
Note that some of the above faults also result in errors on the bus infrastructure. 
These faults are communicated as a bus error to the master of the faulting bus transfer. The fault subsystem only
captures faults. It does not take any action to correct it.

10.1 Fault report structure
Figure 10-5 gives an overview of the fault report structure.

Figure 10-5.  Fault reporting structure
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The number of faults reporting structures (FAULT_NR) is up to 2. Each structure has a dedicated set of control and
status registers, and captures a single fault. The captured fault information includes:
• A validity bit field that indicates a fault is captured (FAULT_STRUCTx_STATUS.VALID). 
• A fault index that identifies the fault source (FAULT_STRUCTx_STATUS.IDX).
• Additional fault information describing fault specifics (FAULT_STRUCTx_DATA0 and 1). This additional 

information is fault type-specific. Most fault types use only a few of the FAULT_STRUCTx_DATA0 and 1 
registers.

In addition to the captured fault information, each fault report structure supports a signaling interface to notify
the rest of the system of the captured fault. This interface supports the following:
• A fault interrupt (interrupts_fault[i]). This interrupt is supported by the platform interrupt registers: 

FAULT_STRUCTx_INTR, FAULT_STRUCTx_INTR_SET, FAULT_STRUCTx_INTR_MASK, and 
FAULT_STRUCTx_INTR_MASKED. Only a single interrupt cause is present: FAULT (indicating that a fault is 
detected). The FAULT_STRUCTx_INTR_MASK register provides a mask/enable for the cause. The interrupt 
cause is set to ‘1’ when a fault is captured.

• A trigger (tr_fault[i]). An enabled trigger is activated (generating a two-cycle ‘1’ pulse) when 
FAULT_STRUCTx_STATUS.VALID is set to ‘1’. The trigger is enabled by FAULT_STRUCTx_CTL.TR_EN. The 
trigger can be connected to a DMA controller, for example, which can transfer captured fault information from 
the fault report structure to memory and can clear the FAULT_STRUCTx_STATUS.VALID field. For failure 
analysis, a memory location that is retained during warm/soft reset is desirable.

• An output signal (fault_out[i]). An enabled output signal is active ‘1’ when FAULT_STRUCTx_STATUS.VALID is 
‘1’. The output signal is enabled by FAULT_STRUCTx_CTL.OUT_EN. It can be used to communicate 
non-recoverable faults, for example, to off-chip components (possibly resulting in a device reset).

• A fault reset request (fault_reset_req[i]). An enabled request is active ‘1’ when 
FAULT_STRUCTx_STATUS.VALID is ‘1’. The request is enabled by FAULT_STRUCTx_CTL.RESET_REQ_EN. The 
reset request feeds into the logic that generates a warm/soft reset.

The four different signaling interfaces provided have their own ‘enable’ functionality. Each enabled interface is
activated when FAULT_STRUCTx_STATUS.VALID is ‘1’.
As the system resources subsystem (SRSS) has a single fault_reset_req input signal, the individual
fault_reset_req[i] signals are combined (logical OR’d) into a single fault_reset_req signal.

Figure 10-6.  Fault reset
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A central structure, shared by all fault report structures, keeps track of all pending faults in the system. The
FAULT_STRUCTx_PENDING0 registers reflect which of the fault sources are pending. These registers provide a
dedicated pending bit for up to 32 fault sources. The FAULT_STRUCTx_PENDING0 registers are mirrored in each
of the fault report structures. The fault source numbering scheme follows the numbering scheme of
FAULT_STRUCTx_STATUS.IDX.
The fault sources corresponding to a pending bit (which is set) are the ones that are not yet captured by any of
the fault structures. When a pending fault is captured by a fault structure, the associated pending bit is cleared to
‘0’. Each fault report structure is selective in the faults it captures.FAULT_STRUCTx_MASK0 reflect which pending
fault source is captured by a fault structure. These faults are referred to as “enabled” faults. The
FAULT_STRUCTx_MASK0 registers are unique to each fault structure. This allows for the following:
• One fault report structure is used to capture recoverable faults and another is used to capture 

non-recoverable faults. The former can be used to generate a fault interrupt and the latter can be used to 
activate a chip output signal or a reset request.

• Two fault report structures are used to capture the same faults. This first fault is captured by the structure with 
the lower index (for example, fault structure 0) and the second fault is captured by the structure with the 
higher index (for example, fault structure 1).
Note: FAULT_STRUCTx_STATUS.VALID bits are different for each of the fault structures. As an example, 
consider that the CRWDT lower threshold is linked to Fault Structure#0 and higher threshold is linked to Fault 
Structure#1.
Fault Structure#0 occurs first to give a warning; then, Fault Structure#1 occurs to trigger a reset.

A fault structure only captures “enabled” faults when FAULT_STRUCTx_STATUS.VALID is ‘0’. 
When a fault is captured, the hardware sets FAULT_STRUCTx_STATUS.VALID to ‘1’. In addition, the hardware
clears the associated pending bit to ‘0’. When a fault structure is processed, the software (if the fault is processed
by an interrupt handler) or a DMA transfer (if a triggered DMA transfer copied the captured fault information)
should clear FAULT_STRUCTx_STATUS.VALID to ‘0’. 
Note that fault capturing does not consider FAULT_STRUCTx_INTR.FAULT:
• Fault capturing is only conditioned by FAULT_STRUCTx_STATUS.VALID being ‘0’.
• If an interrupt handler is used to process the fault structure, software should clear 

FAULT_STRUCTx_INTR.FAULT to ‘0’. 

10.2 Fault reporting assignments
The fault subsystem captures faults related to:
• SRAM controller correctable and non-correctable ECC errors
• FLASH controller correctable and non-correctable ECC errors for both FLASH0 and FLASH1
• FLASH0/1 controller bus error related fault output
• CRWDT fault output
• HVREG fault output
The 10 fault sources in the PSoC™ 4 HV PA device are listed in Table 10-16.
As mentioned previously, a central structure shared by all fault report structures keeps track of all pending faults
in the system (FAULT_STRUCTx_PENDING0). The Fault column in Table 10-16 provides the “bit mask” of source
causing the fault (FAULT_STRUCTx_PENDING0 and FAULT_STRUCTx_MASK0);  the Data0/Data1 in Description
column indicate FAULT_STRUCTx_DATA0/DATA1.
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Table 10-16.  Fault reporting assignments

Fault Source Description

0 cpuss.fault_ramc_c_ecc System memory controller 0 correctable ECC violation:
DATA0[31:0]: Violating address.
DATA1[6:0]: Syndrome of 32-bit SRAM code word.

1 cpuss.fault_ramc_nc_ecc System memory controller 0 non-correctable ECC violation.
DATA0[31:0]: Violating address.
DATA1[6:0]: Syndrome of 32-bit SRAM code word. 

2–3 Reserved –

4 cpuss.fault_flashc_c_ecc Flash controller 0 correctable ECC violation
DATA0[31:0]: Violating address
DATA1[7:0]: Syndrome of 64-bit FLASH code word.

5 cpuss.fault_flashc_nc_ecc Flash controller 0 non-correctable ECC violation.
DATA0[31:0]: Violating address
DATA1[7:0]: Syndrome of 64-bit FLASH code word. 

6 cpuss.fault_flashc_bus_err Flash controller 0 Bus Error.
DATA1[31]: Flash Read during Write operation (INTERNAL_ERROR)
DATA1[30]: Memory Hole (FLASH_MEMORY_HOLE)
DATA1[29]: Protection Violation (FLASH_PROT_VIO)
DATA1[9:8]: Master Identifier 

7 cpuss.fault_flashc1_c_ecc Flash controller 1 correctable ECC violation.
DATA0[31:0]: Violating address
DATA1[7:0]: Syndrome of 64-bit FLASH code word.

8 cpuss.fault_flashc1_nc_ecc Flash controller 1 non-correctable ECC violation.
DATA0[31:0]: Violating address
DATA1[7:0]: Syndrome of 64-bit FLASH code word.

9 cpuss.fault_flashc1_bus_err Flash controller 1 Bus Error
DATA1[31]: Flash Read during Write operation (INTERNAL_ERROR)
DATA1[30]: Memory Hole (FLASH_MEMORY_HOLE)
DATA1[29]: Protection Violation (FLASH_PROT_VIO)
DATA1[9:8]: Master Identifier

10 srss.fault_crwdt Fault output for CRWDT
DATA0[0]: CRWDT LOWER_LIMIT
DATA0[1]: CRWDT UPPER_LIMIT
DATA0[2]: CRWDT WARN_LIMIT

11 hvss.fault_pwr Fault output for HVREG
DATA[0]: HVREG power not good

12–31 Reserved –
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10.3 Fault and reset
As mentioned, a captured fault may result in a warm/soft reset. This type of reset brings regular MMIO registers
to their default/reset state. This is not acceptable for the registers that capture fault information; for failure
analysis, fault information should be retained during a warm/soft reset. Therefore, the FAULT_STRUCTx_STATUS
and FAULT_STRUCTx_DATA0 and 1 registers are connected to a cold reset. This illustrates another benefit of
centralized fault report structures: only the centralized structure is connected to a cold reset. The multiple fault
sources that are scattered throughout the system can use the regular reset, as a copy of the fault information is
captured by the fault structure.
Note: When the fault is configured to trigger reset, then debugging of the configured fault structure is not
possible.

10.4 Fault and power modes
The fault report structure functionality is available only in Active/Sleep power modes (it is an Active
functionality):
• Deep Sleep fault sources are not supported. These fault sources require dedicated solutions.
• The interfaces between the active fault sources and the centralized fault report structures is reset in Deep 

Sleep power mode. Note that the fault information is retained.
As the fault report structure is an active functionality, pending faults (in the FAULT_STRUCTx_PENDING0
registers) are not retained when transitioning to Deep Sleep power mode. This is acceptable, because the fault
source itself is an active functionality. 

10.5 Register list

Table 10-17.  Fault subsystem register list

Register name Description

FAULT_STRUCTx_CTL Fault Control Register

FAULT_STRUCTx_STATUS Fault Status Register

FAULT_STRUCTx_DATA0 Fault Data 0 Register

FAULT_STRUCTx_DATA1 Fault Data 1 Register

FAULT_STRUCTx_PENDING0 Fault Pending 0 Register

FAULT_STRUCTx_MASK0 Fault Mask 0 Register

FAULT_STRUCTx_INTR Interrupt Register

FAULT_STRUCTx_INTR_SET Interrupt Set Register

FAULT_STRUCTx_INTR_MASK Interrupt Mask Register

FAULT_STRUCTx_INTR_MASKED Interrupt Masked Register
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Section B:   System Resources Subsystem (SRSS)
This section encompasses the following chapters:
• “Clocking system” on page 93
• “Power supply and monitoring” on page 107
• “Chip operational modes” on page 111
• “Power modes” on page 113
• “Watchdog timer” on page 117
• “Reset system and interrupts” on page 133
• “Device security and register protection” on page 137

Top Level Architecture

Figure 10-1.  System-Wide Resources block diagram
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11 Clocking system
The PSoC™ 4 HV PA clock system includes four internal clocks and one external clock:
• Four internal clock sources:

– ±2% up to 49.152 MHz Internal Main Oscillator (IMO)
– ±1% 2 MHz High-Precision Oscillator (HPOSC) 
– 40-kHz Internal Low-speed Oscillator (ILO)
– ±5% or ±7% 32-kHz Precision Internal Low-speed Oscillator (PILO) based on the part number

• ±1% or ±1.5% accuracy on IMO and PILO when software calibrated to the HPOSC based on the part number
• One external clock source

– External clock (EXTCLK) generated using a signal from an I/O pin
• PUMP clock (clk_pump) of 44 MHz to 49.152 MHz, sourced by IMO or HFCLK
• clk_hf (HFCLK) with divider by IMO, HPOSC or EXTCLK
• clk_lf (LFCLK) by ILO or PILO
• Dedicated prescaler for system clock (SYSCLK) allowing power vs. performance optimization
• Calibration counters to compare the frequency of two clock sources
• Four 16-bit and two 16.5 fractional dividers for accurate peripheral clocking
• Eight digital and analog peripheral clock destinations

11.1 Block diagram
Figure 11-1 gives a generic view of the clocking system in PSoC™ 4 HV PA devices.

Figure 11-1.  Clocking system block diagram

The five clock sources in the device are IMO, HPOSC, EXTCLK, ILO, and PILO, as shown in Figure 11-1. Note that
ECO is not available as a clock for PSoC™ 4 HV PA device. PSoC™ 4 HV PA handles basic clock generation and safe
clock switching for the main system high-speed clock (HFCLK). The HFCLK can be selected between the internal
main oscillator (IMO), a high-precision oscillator (HPOSC), an external clock (EXTCLK). An included internal 
low-speed oscillator (ILO) and a precision internal low-speed oscillator (PILO) provides the low speed clock
(LFCLK). 
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1 ECO is not available as a clock for PSoC 4 HV PA device. It will be available for the future product.
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11.2 Clock sources

11.2.1 Internal main oscillator
The IMO is an accurate, high-speed internal (crystal-less) oscillator that is available as the main clock source
during Active and Sleep modes. It is the default clock source for the device. Its frequency can be changed in 4-MHz
steps between 24 MHz and 48 MHz. The 48-MHz setting can be boosted to 49.152 MHz using “special” calibration
data stored in SFlash.
The IMO frequency is changed using the CLK_IMO_SELECT register. The default frequency is 24 MHz.

To get the accurate IMO frequency, trim registers are provided: 
• OFFSET field in CLK_IMO_TRIM1 provides coarse trimming with a step size of 120 kHz. 
• FSOFFSET field in CLK_IMO_TRIM2 is for fine trimming with a step size of 15 kHz.
• TCTRIM field in CLK_IMO_TRIM2 is for temperature compensation. 
• STEPSIZE field in CLK_IMO_TRIM3 is to tune the step size of the FSOFFSET and OFFSET trims. These bits are 

determined at manufacturing time.
Trim settings are generated during manufacturing for every frequency that can be selected by CLK_IMO_SELECT.
The 49.152 MHz is generated as “special” calibration data. These trim settings are stored in SFlash. 
The trim settings are loaded during device startup; however, firmware can load new trim values and change the
frequency in run time. Follow the algorithm in Figure 11-2. Note that the SFLASH trim data of 49.152 MHz is
stored in SFLASH_IMO_xxx_LT7.

Table 11-1.  IMO frequency

CLK_IMO_SELECT[2:0] Nominal IMO Frequency

0 24 MHz

1 28 MHz

2 32 MHz

3 36 MHz

4 40 MHz

5 44 MHz

6 48 MHz/49.152 MHz
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Figure 11-2.  Change IMO Frequency

To dynamically trim the IMO frequency, they should program both OFFSET field (120-kHz step size) in
CLK_IMO_TRIM1 and FSOFFSET field (15-kHz step size) in CLK_IMO_TRIM2 via software.
Note that software must update the trim code properly when changing the clock frequency. Because there is no
hardware safeguard that prevents the clock from exceeding the maximum frequency supported by the logic.

11.2.1.1 Startup behavior
After reset, the IMO is configured for 24-MHz with a prescaler of divide by 4 enabled. The system clock is 6 MHz
after boot. During the “boot” portion of startup, trim values are read from flash and the IMO is configured to
achieve datasheet specified accuracy.

11.2.1.2 Flash programming clock (PUMP)
PUMP clock is required for flash programming. This clock must be set to 48 MHz ± 4 MHz to program the flash. It
is used to drive the charge pumps of the flash and for program/erase timing purposes. Pump clock allows setting
the IMO at ~49.152 MHz while running the system at a slower frequency (divided by 2, 4, or 8). 
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11.2.1.3 High-precision oscillator
The high-precision internal oscillator (HPOSC) provides ±1% accuracy at 2 MHz. This oscillator is intended to trim
other blocks to maintain 1% accurate timing throughout the chip. The calibration can be achieved using on-chip
counters to compare clock rates and make appropriate adjustments via firmware.
The HPOSC operates from the low-voltage (1.8 V) VCCD supply, and uses an available 1.2 µA current for fast startup.
After startup, or when disabled, this current is not used and is cut off. The block is low power, typically using less
than 10 µA. 
The HPOSC is controlled with the HPOSC_CTL register.

11.2.1.4 Trim information
HPOSC uses trim inputs to achieve flat frequency response over temperature and a total accuracy of 0.1% of the
target clock frequency. Table 11-2 shows the HPOSC trim registers. 
Important note: Trim registers are loaded by boot, so customer software should not set or change these
registers.

11.2.2 Internal low-speed oscillator
The internal low-speed oscillator (ILO) operates with no external components and outputs a clock at 40-kHz
nominal. The ILO is relatively low power, and low accuracy with ±40 percent, not suitable for precision timing or
real-time clocking. The ILO is available in all power modes. The ILO is enabled and disabled with register
CLK_ILO_CONFIG bit ENABLE.

Table 11-2.  HPOSC Trim Registers

Registers Bits Mode

TRIM_HPOSC2_CTL PTAT[7:0] PTAT fine trim

TRIM_HPOSC0_CTL PTATEF[1:0] PTAT extra fine trim

TRIM_HPOSC0_CTL PTATEC[1:0] PTAT extra coarse trim

TRIM_HPOSC3_CTL CTAT[7:0] CTAT fine trim

TRIM_HPOSC0_CTL CTATEF[1:0] CTAT extra fine trim

TRIM_HPOSC0_CTL CTATEC[1:0] CTAT extra coarse trim

TRIM_HPOSC1_CTL TCF[5:0] Tempco - fine trim

TRIM_HPOSC4_CTL TOC[2:0] Tempco - coarse trim
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11.2.3 Precision internal low-speed oscillator
The precision internal low-speed oscillator (PILO) provides ±5% or ±7% accuracy at 32 kHz (based on the part
number). It is primarily used as the system low-frequency clock (LFCLK) when the ILO accuracy is insufficient. This
block can be trimmed to better than 1% accuracy under any operating condition, using its 0.2% (or better) trim
resolution. The user will need to adjust some trim (TR_CAP field in PILO_CTL) to meet the ±1% accuracy target.
Typical current consumption is 650 nA from a VCCD (1.8 V nominal) supply.

11.2.3.1 Trim information
PILO trim involves matching the tempco of the VREF voltage to the capacitor charging currents to maintain flat
frequency response over temperature. In addition, the output frequency’s absolute value is set with coarse and
fine trim controls. To meet the ±1% accuracy target, the user need to trim PILO_CTL.TR_CAP to lock to HPOSC
using the “Clock calibration counters” on page 98. The MSB [15] of TR_CAP must always equal 1 when doing the
calibration (TR_CAP will be > 128. The trim uses only the lower 7 bits). This register is initialized at reset with a
default value, which sets the PILO to its nominal frequency and is updated with firmware for tracking. This allows
adjusting the PILO output clock frequency, for example, with dynamic calibration against an accurate clock to
compensate drift due to temperature or supply voltage change. The resolution is less than 0.2%, and increasing
values give a monotonic increase in PILO frequency. The trim registers are summarized in Table 11-3. 
Important note: Trim registers are loaded by boot, so customer software should not set or change these
registers except the PILO_CTL.TR_CAP register.

11.2.4 External clock
The external clock (EXTCLK) is a MHz range clock that can be generated from a signal on a designated 
PSoC™ 4 HV PA pin. This clock may be used instead of the IMO as the source of the system high-frequency clock,
HFCLK. The allowable range of external clock frequencies is 1 MHz–48 MHz. The device always starts up using the
IMO and the external clock must be enabled in user mode.
When manually configuring a pin as the input to the EXTCLK, the drive mode of the pin must be set to 
high-impedance digital to enable the digital input buffer. See the “I/O system” on page 141 for more details.

Table 11-3.  PILO Trim Registers

Registers Bits Mode

PILO_CTL TR_CAP PILO user temperature fine trim. The register is lock 
protected so the register must be unlocked before changing 
values.

TRIM_PILO2_CTL PTAT[7:0] PTAT fine trim

TRIM_PILO0_CTL PTATEF[1:0] PTAT extra fine trim

TRIM_PILO0_CTL PTATEC[1:0] PTAT extra coarse trim

TRIM_PILO3_CTL CTAT[7:0] CTAT fine trim

TRIM_PILO0_CTL CTATEF[1:0] CTAT extra fine trim

TRIM_PILO0_CTL CTATEC[1:0] CTAT extra coarse trim

TRIM_PILO1_CTL TCF[5:0] Tempco - fine trim

TRIM_PILO4_CTL TOC[2:0] Tempco - coarse trim
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11.3 Clock calibration counters
A feature of the clocking system in PSoC™ 4 HV PA device is built-in hardware calibration counters. These
counters can be used to compare the frequency of two clock sources. The primary use case is to take a higher
accuracy clock such as the HPOSC and use it to measure a lower accuracy clock such as the IMO and PILO. The
result of this measurement can then be used to trim both IMO and PILO (alternately). The calibration counters are
available only in Active/Sleep modes. Counter values are not retained and will be in default state after wakeup
from Deep Sleep.
There are two counters: Counter 1 is clocked off the Calibration Clock 1 and counts down; Counter 2 is clocked off
the Calibration Clock 2 and counts up. When Counter 1 reaches 0, Counter 2 stops counting up and its value can
be read. From that value the frequency of Calibration Clock 2 can be determined with the following equation:

For example, if Calibration Clock 1 = 2 MHz, Counter 1 = 2500, and Counter 2 = 41
Calibration Clock 2 = 2 MHz × (41/2500) = 32.8 kHz.
Calibration Clock 1 and Calibration Clock 2 are selected with the CLK_DFT_SELECT register. All clock sources are
available as a source for these two clocks.
Counter 1 is programmed in CLK_CAL_CNT1. Calibration counting starts immediately after a non-zero value is
loaded. When Calibration Counter 1 reaches 0, CLK_CAL_CNT1.CAL_COUNTER_DONE is set. Then Counter 2 can
be read in CLK_CAL_CNT2 (See Table 11-4).
The maximum error of the calibration measurement is estimated from the formula:

Error is reduced when a larger value of Counter 1 is used, subject to the limitation that both Counter 1 and
Counter 2 are 16-bit counters without any overflow protection.
The calibration counters can be used to monitor clocks for drift or failure provided that the system clock is still
functioning. It is also possible to use the counters to dynamically update trim values for certain clock sources to
improve frequency accuracy. First or second order frequency locking can be done using the following formula:

Trim(N+1) = Trim(N) + Gain1 × FrequencyError(N+1)                                                                     (first order)
Trim(N+1) = Trim(N) + Gain1 × FrequencyError(N+1) + Gain2 × ΣFrequencyError(N:2)                (second order)

where:
- FrequencyError = (Ideal Counter 2 - Counter 2) × Calibration Clock 1 / Counter 1
- ΣFrequencyError(N:2) is the sum of previous frequency errors, ignoring one (or more) initial measurements

The first order frequency locking is simpler, and is preferred when calibration is performed occasionally or
irregularly. The second order frequency locking will drive the long-term error towards zero, but it assumes that
the clock frequency is constant between trim updates, and that the calibration measurements are regularly
spaced.

The Gain1 and Gain2 factors depend on the trim sensitivity of the clock source. Recommended values are:
 - IMO: Gain1 = 50 LSB/MHz, Gain2 = 5 LSB/MHz
 - PILO: Gain1 = 15000 LSB/MHz, Gain2 = 1500 LSB/MHz

Calibration Clock 2 Calibration Clock 1 Counter 2
Counter 1
------------------------=

Error Calibration Clock 1 Calibration Clock 2 
Counter 1

-------------------------------------------------------------------------------------------------------=
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For example: 
 - Calibration Clock 1 = HPOSC (2 MHz)
 - Counter 1 = 2000
 - Calibration Clock 2 = IMO (48 MHz)
 - Ideal Counter 2 = 49152
 - Trim(0) = 80
       FrequencyError(1) = (49152 – 48000) × 2 / 2000 = 1.152 MHz
       Trim(1) = 80 + 50 × 1.152 + 5 × 0 = 137.6 -> 137
       FrequencyError(2) = (49152 – 49139) × 2 / 2000 = 0.013 MHz
       Trim(2) = 137 + 50 × 0.013 + 5 × 0 = 137.65 -> 137
       FrequencyError(3) = (49152 – 49139) × 2 / 2000 = 0.013 MHz
       Trim(3) = 137 + 50 × 0.013 + 5 × 0.013 = 137.72 -> 137
       …
       Trim[7) = 137 + 50 × 0.013 + 5 × 0.078 = 138.04 -> 138

In this example, the first order equation will stay at a trim setting of 137, while the second order equation will vary
between 137 and 138. This example ignores the impacts of jitter and calibration error; actual behavior will be
noisier.

Table 11-4.  Clock calibration counter registers

Register Bit Field and Bit Name Description

CLK_CAL_CNT1 CAL_COUNTER_DONE Status bit indicating that the internal counter #1 is finished 
counting and CLK_CAL_CNT2.COUNTER stopped counting up.

CAL_COUNTER1 Down-counter clocked on clock output #0. This register always 
reads as zero. Counting starts internally when this register is written 
with a nonzero value. CAL_COUNTER_DONE goes immediately low 
to indicate that the counter has started and will be asserted when 
the counters are done. Do not write this field unless 
CAL_COUNTER_DONE==1. Both clocks must be running or the 
measurement will not complete. A stalled counter can be recovered 
by selecting valid clocks, waiting until the measurement completes, 
and discarding the first result.

CLK_CAL_CNT2 CAL_COUNTER2 Up-counter clocked on clock output #1. When 
CLK_CAL_CNT1.CAL_COUNTER_DONE==1, the counter is stopped 
and can be read by SW. Do not read this value unless 
CAL_COUNTER_DONE==1. The expected final value is related to the 
ratio of clock frequencies used for the two counters and the value 
loaded into counter 1: CLK_CAL_CNT2.COUNTER=
(F_cnt2/F_cnt1)*(CLK_CAL_CNT1.COUNTER)
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11.4 Clock distribution
PSoC™ 4 HV PA clocks are developed and distributed throughout the device, as shown in Figure 11-1. The
distribution configuration options are as follows:
• HFCLK/PUMP input selection
• LFCLK input selection
• SYSCLK prescaler configuration
• Peripheral divider configuration

11.4.1 HFCLK/PUMP input selection
Figure 11-4 shows the selection options for HFCLK and PUMP.

Figure 11-3.  HFCLK selection options
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11.4.1.1 HFCLK input selection
HFCLK in PSoC™ 4 HV PA has three input options: IMO, EXTCLK, and HPOSC. The HFCLK input is selected using the
CLK_SELECT register’s HFCLK_SEL bits, as described in Table 11-5.

Predivider is provided for HFCLK to limit the peak current of the device. The divider options are 2, 4, and 8
configured using CLK_SELECT register’s HFCLK_DIV bits, as described in Table 11-6.

Note: 
- HFCLK_SEL and HFCLK_DIV settings should be separated
- There are 3–4 clock cycles to switch to the new predivider value after changing of HFCLK_DIV setting, wait for 
4 cycles or more in the current HFCLK source frequency if needed.

11.4.1.2 PUMP input selection
clk_pump (PUMP) in PSoC™ 4 HV PA has two input options: IMO and HFCLK. The PUMP input is selected using the
CLK_SELECT register’s PUMP_SEL bits, as described in Table 11-7.

Table 11-5.  HFCLK input selection Bits HFCLK_SEL

Name Description

HFCLK_SEL[1:0] HFCLK input clock selection
0x0: IMO. Internal R/C Oscillator
0x1: EXTCLK. External Clock Pin
0x2: Reserved (ECO for future device)
0x3: HPOSC. High Precision Oscillator

Table 11-6.  HFCLK divider selection Bits HFCLK_DEV

Name Description

HFCLK_DIV[3:2] Selects clk_hf predivider value. It takes 3–4 clock cycles to switch to the new predivder 
value
0x0: NO_DIV: Transparent mode, feed through selected clock source w/o dividing.
0x1: DIV_BY_2: Divide the selected clock source by 2
0x2: DIV_BY_4: Divide the selected clock source by 4
0x3: DIV_BY_8: Divide the selected clock source by 8

Table 11-7.  PUMP input selection Bits PUMP_SEL

Name Description

PUMP_SEL[1:0] PUMP input clock selection
0: GND. No clock, connect to gnd
1: IMO. Use main IMO output
2: HFCLK. Use HFCLK (using selected source after predivider but before prescaler)
3: Reserved. 
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11.4.2 LFCLK input selection
Figure 11-4 shows the selection options for LFCLK.

Figure 11-4.  LFCLK selection options

LFCLK in PSoC™ 4 HV PA has two input options: ILO and PILO. The LFCLK input is selected using the CLK_SELECT
register’s LFCLK_SEL bits, as described in Table 11-8.

11.4.3 SYSCLK prescaler configuration
The SYSCLK prescaler allows the device to divide the HFCLK before use as SYSCLK, which allows for non-integer
relationships between peripheral clocks and the system clock. SYSCLK must be equal to or faster than all other
clocks in the device that are derived from HFCLK. The SYSCLK prescaler is capable of dividing the HFCLK by
powers of 2 between 2^0 = 1 and 2^3 = 8. The prescaler divide value is set using register CLK_SELECT bits
SYSCLK_DIV, as described in Table 11-9. The prescaler is initially configured to divide by 1.

Table 11-8.  LFCLK Input Selection Bits LFCLK_SEL

Name Description

LFCLK_SEL[0] LFCLK input clock selection
0: ILO. Internal Low Frequency Oscillator
1: PILO. Precision Internal Low Frequency Oscillator

Table 11-9.  SYSCLK prescaler divide value bits SYSCLK_DIV

Name Description

SYSCLK_DIV[1:0] SYSCLK prescaler divide value
0: SYSCLK = HFCLK
1: SYSCLK = HFCLK/2
2: SYSCLK = HFCLK/4
3: SYSCLK = HFCLK/8

ILO
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-50% to +100%

PILO
32 kHz
+/- 5%

clk_lf (LFCLK)

LFCLK_SEL [0]
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11.4.4 Peripheral clock divider configuration
PSoC™ 4 HV PA has six clock dividers, which include four 16-bit clock dividers and two 16.5-bit fractional clock
dividers. Fractional clock dividers allow the clock divisor to include a fraction of 0..31/32. The formula for the
output frequency of a fractional divider is Fout = Fin / (INT16_DIV + 1 + (FRAC5_DIV/32)). For example, a 
16.5-divider with an integer divide value of 3 (INT16_DIV=2, FRAC5_DIV = 0), produces signals to generate a 
16-MHz clock from a 48-MHz HFCLK. A 16.5-divider with an integer divide value of 4 (INT16_DIV = 3, 
FRAC5_DIV = 0), produces signals to generate a 12-MHz clock from a 48-MHz HFCLK. A 16.5-divider with an integer
divide value of 3(INT16_DIV = 2) and a fractional divider of 0.5 (FRAC5_DIV = 16) produces signals to generate a
13.7-MHz clock from a 48-MHz HFCLK. Not all 13.7-MHz clock periods are equal in size; half of them will be three
HFCLK cycles and half of them will be two HFCLK cycles. 
Fractional dividers are useful when a high-precision clock is required (for example, for a SPI serial interface).
Fractional dividers are not used when a low jitter clock is required, because the clock periods have a jitter of 
1 HFCLK cycle.
The divide value for each of the four integer clock dividers are configured with the PERI_DIV_16_CTLx registers
and the two 16.5-bit fractional clock dividers are configured with the PERI_DIV_16_5_CTLx registers. Table 11-10
and Table 11-11 describe the configurations for these registers.

Each divider can be enabled using the PERI_DIV_CMD register. This register acts as the command register for all
integer dividers and fractional dividers. The PERI_DIV_CMD register format is as follows.

The SEL_TYPE field specifies the type of divider being configured. This field is ‘1’ for the 16-bit integer divider, ‘2’
for the 16.5-bit fractional divider. 
The SEL_DIV field specifies the number of the specific divider being configured. For the integer dividers, this
number ranges from 0 to 15. For fractional dividers, this field is any value in the range 0 to 3. When SEL_DIV = 63
and SEL_TYPE = 3, no divider is specified.
The (PA_SEL_TYPE, PA_SEL_DIV) field pair allows a divider to be phase-aligned with another divider. The
PA_SEL_DIV specifies the divider which is phase aligned. Any enabled divider can be used as a reference. The
PA_SEL_TYPE specifies the type of the divider being phase aligned. When PA_SEL_DIV = 63 and PA_SEL_TYPE = 3,
HFCLK is used as a reference.

Table 11-10.  Non-Fractional Peripheral Clock Divider Configuration Register PERI_DIV_16_CTLx

Bits Name Description

0 EN_x Divider enabled. HW sets this field to ‘1’ as a result of an ENABLE command. HW sets 
this field to ‘0’ as a result on a DISABLE command.

23:8 INT16_DIV_x Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65536].

Table 11-11.  Fractional Peripheral Clock Divider Configuration Register PERI_DIV_16_5_CTLx

Bits Name Description

0 EN_x Divider enabled. HW sets this field to ‘1’ as a result of an ENABLE command. HW sets 
this field to ‘0’ as a result on a DISABLE command.

7:3 FRAC5_DIV_x Fractional division by (FRAC5_DIV/32). Allows for fractional divisions in the range [0, 
31/32].
Note that fractional division results in clock jitter as some clock periods may be 
1 “clk_hf” cycle longer than other clock periods.

23:8 INT16_DIV_x Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536]. 

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description Enable Disable PA_SEL_TYPE PA_SEL_DIV SEL_TYPE SEL_DIV
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Consider a 48-MHz HFCLK and a need for a 12-MHz divided clock A and a 8-MHz divided clock B. Clock A uses a 
16-bit integer divider 0 and is created by aligning it to HF_CLK ((PA_SEL_TYPE, PA_SEL_DIV) is (3, 63)) and
DIV_16_CTL0.INT16_DIV is 3. Clock B uses the integer divider 1 and is created by aligning it to clock A
((PA_SEL_TYPE, PA_SEL_DIV) is (1, 0)) and DIV_16_CTL1.INT16_DIV is 5. This guarantees that clock B is 
phase-aligned with clock A as the smallest common multiple of the two clock periods is 12 HFCLK cycles, the
clocks A and B will be aligned every 12 HFCLK cycles. Note that clock B is phase-aligned to clock A, but still uses
HFCLK as a reference clock for its divider value.
Each peripheral block in PSoC™ has a unique peripheral clock (PERI#_CLK) associated with it. Each of the
peripheral clocks have a multiplexed input, which can take the input clock from any of the existing clock dividers. 
Table 11-12 shows the mapping of the mux output to the corresponding peripheral blocks (shown in
Figure 11-1). Any of the peripheral clock dividers can be mapped to a specific peripheral by using their respective
PERI_PCLK_CTLx register.

11.5 Low-Power mode operation
The high-frequency clocks including the IMO, EXTCLK, HPOSC, HFCLK, SYSCLK and peripheral clocks operate only
in Active and Sleep modes. The ILO, PILO and LFCLK operate in all power modes.
For lowest possible power consumption in Deep Sleep mode, the ILO and PILO can both be disabled. In this case,
either a GPIO or another peripheral (that is, LIN PHY) must be used to wake-up the part. Refer to the “Interrupts”
on page 54 for more details on wakeup sources.

Table 11-12.  PSoC™ 4 HV PA Devices Peripheral Clock Multiplexer Output Mapping

PERI#_CLK Peripheral

0 SCB0

1 LIN0

2 LIN1

3 TCPWM0

4 TCPWM1

5 TCPWM2

6 TCPWM3

7 PACSS

Table 11-13.  Programmable Clock Control Register - PERI_PCLK_CTLx

Bits Name Description

1:0 SEL_DIV Specifies one of the dividers of the divider type specified by SEL_TYPE. If SEL_DIV is 63 and 
SEL_TYPE is 3 (default/reset value), no divider is specified and no clock control signal(s) 
are generated.

7:6 SEL_TYPE Specifies divider type:
0: Reserved. 
1: 16.0 (integer) clock dividers.
2: 16.5 (fractional) clock dividers.
3: Reserved. 
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11.6 Register List

Table 11-14.  Clocking System Register List

Register name Description

SRSSHV

CLK_IMO_CONFIG IMO Configuration Register - This register controls the IMO configuration (lock 
protected)

CLK_IMO_SELECT IMO Frequency Select Register (lock protected)

CLK_ILO_CONFIG ILO Configuration Register - This register controls the ILO configuration (lock 
protected)

HPOSC_CTL High Precision Oscillator Control Register (lock protected)

PILO_CTL Precision Low Power Oscillator Control Register (lock protected)

CLK_SELECT Clock Select Register - This register controls clock tree configuration, selecting 
different sources for the system clocks (lock protected)

CLK_IMO_TRIM1 IMO Trim Register - This register contains IMO trim for frequency trim bits (lock 
protected)

CLK_IMO_TRIM2 IMO Trim Register - This register contains IMO trim for temperature 
compensation trim and frequency trim bits (lock protected)

CLK_IMO_TRIM3 IMO Trim Register - This register contains the IMO trim step-size bits (lock 
protected)

PWR_BG_TRIM1 Bandgap Trim Registers - These registers control the trim of the bandgap 
reference, allowing manipulation of the voltage references in the device (lock 
protected).

PWR_BG_TRIM2

TRIM_HPOSCx_CTL High Precision Oscillator Trim Control Registers (lock protected)

TRIM_PILOx_CTL Low Frequency Oscillator Trim Control Registers (lock protected)

CLK_CAL_CNT1 Clock Calibration Counter 1 Register

CLK_CAL_CNT2 Clock Calibration Counter 2 Register

CLK_DFT_SELECT Clock DFT Mode Selection Register

PELI

PERI_DIV_CMD Peripheral Clock Divider Command Registers

PERI_PCLK_CTLx Programmable Clock Control Registers - These registers are used to select the 
input clocks to peripherals.

PERI_DIV_16_CTLx Peripheral Clock Divider Control Registers - These registers configure the 
peripheral clock dividers, setting integer divide value, and enabling or disabling 
the divider.

PERI_DIV_16_5_CTLx Peripheral Clock Fractional Divider Control Registers - These registers configure 
the peripheral clock dividers, setting fractional divide value, and enabling or 
disabling the divider.

SFLASH.128x4

SFLASH_IMO_TRIM_LTx IMO Frequency Trim Register

SFLASH_IMO_TCTRIM_LTx IMO Temperature Compensation Trim

SFLASH_IMO_STEPSIZE_LTx IMO Stepsize Trim
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SFLASH_IMO_4PCT_LIM MO trim 4% deviation from nominal

SFLASH_IMO_3PCT_LIM IMO trim 3% deviation from nominal

SFLASH_PILO_6PCT_LIM PILO trim 6% deviation from nominal

Table 11-14.  Clocking System Register List (continued)

Register name Description
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12 Power supply and monitoring
The power system consists of regulators to generate appropriate voltages. The PSoC™ 4 HV PA operates at full
performance from a single supply on VBAT over a voltage range of 3.6 V to 28 V and remains functional up to 42 V.
The system has the following regulators:
• High-Voltage (HV) Regulator
• Active Digital Regulator
• Deep-Sleep Regulator

12.1 Block diagram

Figure 12-1.  Power System block diagram

Figure 12-1 shows the power system diagram and all the power supply pins. 
The high-voltage regulator generates a 3.3-V supply from VBAT for VDDD and VDDA. VDDA powers analog circuits, while
VDDD provides power for I/Os (GPIOs). The active digital regulator and deep-sleep regulator generate a 1.8-V
supply from VDDD for VCCD to support the various power modes. VCCD powers digital circuits.

3V Analog
Domain

3V I/O
Domain

Active
Digital

Regulator

Deep-Sleep
Regulator

Active Domain
Examples: CPU, 

IMO/HPOSC,
Flash, Peripherals

Deep-Sleep Domain
Examples: Low-speed 
digital, ILO/PILO, I2C, 

SRAM retention

High-Voltage
Regulator

LIN Interface 
HV Domain

VBAT VDDA VDDD VCCD

VSSA VSSD

V
B

A
T

V
D

D
A

V
D

D
D

V
C

C
D

0.1 μF 2.2 μF 0.22 μF 0.22 μF3.3 μF

3V Digital
Domain

0.1 μF

15Ω 

TVS
Optional

Battery

Reverse polarity 
protection diode

VSSL

VREF
Block

VREFH

VREFL

0.47 μF



Reference manual 108 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Power supply and monitoring

12.2 Power supply
Figure 12-2 shows the PSoC™ 4 HV PA power supply input.

Figure 12-2.  PSoC™ 4 HV PA Power Supply Input 

Bypass capacitors must be used from VBAT, VDDD, VDDA, and VCCD to ground, and between VREFH and VREFL. These
capacitors should typically be X7R ceramic or better. The VBAT bypass capacitors must be 50-V rated voltage or
more.

Battery input filter resistor (typical 15 Ω) will add between a reverse polarity protection diode and the bypass
capacitors. The resistor power rating should be 0.5 W or more. 
Reverse polarity protection diode protects the reverse current from VBAT bypass capacitors. The forward voltage
should be as low as possible.
Transient Voltage Suppressor (TVS) protects surge voltage such as load dump waveform from battery. This
component is optional.

Table 12-1.  Bypass capacitors

Power Supply Bypass Capacitor

VBAT – VSSD 0.1-µF ceramic plus 2.2-µF bypass capacitor

VDDD – VSSD 0.1-µF ceramic plus 3.3-µF ceramic always required

VDDA – VSSA 0.22-µF ceramic bypass capacitor

VCCD – VSSD 0.22-µF ceramic bypass capacitor

VREFH – VREFL 0.47-µF ceramic bypass capacitor
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12.3 How it works
The regulators in Figure 12-1 power the various domains of the device. The system has a high-voltage (HV)
regulator, which generates 3.3-V supplies and several regulators for various low-voltage core domains. The
analog circuits run directly from the VDDA supply generated by the HV regulator. The core regulators include an
Active digital regulator for digital circuitry, and a separate regulator for Deep Sleep. The deep-sleep regulator has
switches to pass high-power regulator voltages to loads when the low-power regulators are not required. 
The HV regulator is always enabled. The Active digital regulator is enabled during the Active or Sleep power
modes. It is turned off in the Deep Sleep power mode. The Deep Sleep regulator fulfills power requirements in the
low-power modes.

12.4 Voltage monitoring
The power supply includes supervision and monitoring to ensure that the required voltage levels exist for the
respective modes. The voltage monitoring system includes power-on-reset (POR), brownout detection (BOD) and
over-voltage detection (OVD). The supervisor either delays mode transitions (on POR, for example) until required
voltage levels are achieved for proper function or generates resets (BOD, OVD) as appropriate. 

12.4.1 Power-on-reset (POR)
POR circuits provide a reset pulse during the initial power ramp. POR circuits monitor VCC (core voltage). The POR
guarantees that all circuits are properly initialized before release. POR circuits are used during initial chip power-
up and then disabled.

12.4.2 Brownout detection (BOD)
The BOD circuit protects the operating or retaining logic from possibly unsafe supply conditions by applying reset
to the device. There are three BOD circuits that are the VDDD detection (BODVDDD), VCCD detection (BODVCCD) and
High-Voltage Subsystem detection (BODHVSS) which is only available for DeepSleep supervision. Note that
BODVDDD and BODVCCD are not available in DeepSleep mode.
The BOD circuit generates a reset if core voltage dips below the minimum safe operating voltage. The system will
not come out of RESET until the supply is detected to be valid again.
To enable firmware to distinguish a normal power cycle from a brownout event, a special register is provided
(RES_CAUSE), which will not be cleared after a BOD generated RESET. However, this register will be cleared if the
device goes through POR or XRES.

12.4.3 Over-voltage detection (OVD)
PSoC™ 4 HV PA offers two OVD circuits that are VDDD detection (OVDVDDD) and VCCD detection (OVDVCCD).Similar
to the BOD circuit, the OVD circuit detects supply conditions above a threshold and applies a reset. As the name
suggests, the OVD circuit maintains a device reset, if VDDD or VCCD supply stays higher than thresholds. The OVD
circuit can generate a reset in all device power modes except RESET_PORVDDD and RESET_XRES. For more
information of power modes, refer to “Power modes” on page 113.
Note that the OVDVDDD and OVDVCCD are not available in DeepSleep mode. 

Table 12-2.  Details

Mode HV Regulator Active Regulator Deep Sleep Regulator

Active On On On

Sleep On On On

Deep Sleep On Off On
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12.4.4 Controls BOD and OVD
The PWR_SSV_CTL register controls the brownout and over-voltage detectors.
BODVDDD and BODVCCD settings are enable by default. Note that they cannot be disabled during normal mode.
OVDVDDD and OVDVCCD are disabled during boot-up. It can be enabled by writing to
OVDVDDD/OVDVCCD_ENABLE fields.
BODHVSS is also disabled during boot-up. It can be enabled by writing to BODHVSS_ENABLE field. The enable
allows the BOD to take effect, it does not disable the detector. The detector is in HVSS and is always on. 

12.4.5 Monitoring supplies with ADC
The ADCs can measure supply voltages (VDDD, VDDA, VCCD, VSSD, and VSSA) pins for diagnostic purposes. See “Input
multiplexer” on page 322 for more information.

12.5 Voltage references
The SRSS includes a bandgap and current references for use by analog circuits, flash, and several system
resources blocks. The high-voltage regulator is a standalone circuit with an internal voltage reference. The
precision analog channel subsystem (PACSS) has a separate high-precision voltage reference, which provides
accurate voltage references for the ADCs.

12.6 Register list

Table 12-3.  Power supply and monitoring register list

Register name Description

PWR_CONTROL Power Mode Control Register (Lock Protected)

PWR_KEY_DELAY Power System Key & Delay Register (Lock Protected)

PWR_SSV_CTL Supply Supervisory Control Register (Lock Protected)

PWR_SSV_STATUS Supply Supervision Status Register

RES_CAUSE Reset Cause Observation Register

PWR_PWRSYS_TRIM1 Power System Trim Register (Lock Protected)

PWR_BG_TRIM1 Bandgap Trim Register (Lock Protected)

PWR_BG_TRIM2 Bandgap Trim Register (Lock Protected)

TRIM_BOD Brown Out Detect Trim Register (Lock Protected)

TRIM_OVD Over Voltage Detect Trim Register (Lock Protected)
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13 Chip operational modes
PSoC™ 4 HV PA is capable of executing firmware in four different modes. These modes dictate execution from
different locations in flash and ROM, with different levels of hardware privileges. Only three of these modes are
used in end-applications; debug mode is used exclusively to debug designs during firmware development. 
PSoC™ 4 HV PA operational modes are:
• Boot
• User
• Privileged
• Debug

13.1 Boot
Boot mode is an operational mode where the device is configured by instructions hard-coded in the device SROM.
This mode is entered after the end of a reset, provided no debug-acquire sequence is received by the device. Boot
mode is a privileged mode; interrupts are disabled in this mode so that the boot firmware can set up the device
for operation without being interrupted. During boot mode, hardware trim settings are loaded from flash to
guarantee proper operation during power-up. When boot concludes, the device enters user mode and code
execution from flash begins. This code in flash may include automatically generated instructions from the IDE
that will further configure the device.
At the end of Boot, the content of the CPUSS_SYSREQ register defines Boot status. Each bit in the CPUSS_SYSREQ
register defines specific Boot status. The decoding of the bits is present in Table 13-1 Boot Statuses. 
A zero value for CPUSS_SYSREQ after boot implies a successful boot, while non-zero values should be compared
with Table 13-1 to determine the cause and severity. The CPUSS_BOOT_RESULT_0 and
CPUSS_BOOT_RESULT_1 registers contain details of logged Boot error. If a few errors are logged in the
CPUSS_SYSREQ register, then CPUSS_BOOT_RESULT_0/1 contains details of the logged error with the highest
priority.
There is a group of Boot statuses with Special priority. Other logged Boot statuses are cleared once a status with
special priority is set.

Table 13-1.  Boot statuses

Priority CPUSS_SYSREQ 
Bit Number

Status Descriptiona) CPUSS_BOOT_RESULT_0 CPUSS_BOOT_RESULT_1

High 0 Flash read error X X

1 Calibration error. Trims 
are not applied correctly. 
Reboot is recommended.

Address which failed on 
write

X

2 Invalid SFLASH checksum Calculated checksum Correct checksum from 
SFLASH

3-4 Reserved – –

5 FAULT source 0 FAULT_Data[0] register FAULT_Data[1] register

6 FAULT source 1

7–18 FAULT sources 2–13

19 FAULT source 14

20 FAULT source 15

Low 21–26 Reserved – –
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13.2 User
User mode is an operational mode where normal user firmware from flash is executed. User mode cannot execute
code from SROM. Firmware execution in this mode includes the automatically generated firmware by the IDE and
the firmware written by the user. The automatically generated firmware can govern both the firmware startup
and portions of normal operation. The boot process transfers control to this mode after it has completed its tasks.

13.3 Privileged
Privileged mode is an operational mode, which allows execution of special subroutines that are stored in the
device ROM. These subroutines cannot be modified by the user and are used to execute proprietary code that is
not meant to be interrupted or observed. Debugging is not allowed in privileged mode. 
The CPU can transition to privileged mode through the execution of a system call. For more information on how
to perform a system call, see “Performing a system call” on page 376. Exit from this mode returns the device to
user mode.

13.4 Debug
Debug mode is an operational mode that allows observation of the PSoC™ 4 HV PA operational parameters. This
mode is used to debug the firmware during development. The debug mode is entered when an SWD debugger
connects to the device during the acquire time window, which occurs during the device reset. Debug mode allows
IDEs to debug the firmware. Debug mode is only available on devices in open mode (one of the four protection
modes). For more details on the debug interface, see the “Program and debug interface” on page 361.
For more details on protection modes, see the “Device security and register protection” on page 137.

Special 27 HardFault Value of PC register before 
HardFault

Value of LR register before 
HardFault

28-31 Reserved - -
a) Logged Faults could be detected by the last Boot process or by Boot/ Application before the warn reset. Boot detects only 

NC ECC Faults for (S)Flash and SRAM. The application can detect all Fault sources.

Table 13-1.  Boot statuses (continued)

Priority CPUSS_SYSREQ 
Bit Number

Status Descriptiona) CPUSS_BOOT_RESULT_0 CPUSS_BOOT_RESULT_1
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14 Power modes
The PSoC™ 4 HV PA provides three power modes, intended to minimize the average power consumption for a
given application. The power modes, in the order of decreasing power consumption, are:
• Active
• Sleep
• Deep Sleep
Active, Sleep, and Deep Sleep are standard Arm®-defined power modes, supported by the Arm® CPUs
The power consumption in different power modes is controlled by using the following methods: 
• Enabling/disabling peripherals
• Powering on/off internal regulators
• Powering on/off clock sources
• Powering on/off other portions of the PSoC™ 4 HV PA
Figure 14-1 illustrates the various power modes and the possible transitions between them.

Figure 14-1.  Power mode transitions state diagram

Note: Arm® nomenclature for Deep Sleep power mode is ‘SLEEPDEEP’.
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Table 14-1 illustrates the power modes offered by PSoC™ 4 HV PA.

14.1 Active mode
Active mode is the primary power mode of the PSoC™ device. This mode provides the option to use every possible
subsystem/peripheral in the device. In this mode, the CPU is running and all the peripherals are powered. The
firmware may be configured to disable specific peripherals that are not in use, to reduce power consumption.

14.2 Sleep mode
This is a CPU-centric power mode. In this mode, the Cortex®-M0+ CPU enters Sleep mode and its clock is disabled.
It is a mode that the device should come to very often or as soon as the CPU is idle, to accomplish low power
consumption. It is identical to Active mode from a peripheral point of view. Any enabled interrupt can cause
wakeup from Sleep mode.

Table 14-1.  PSoC™ 4 HV PA power modes

Power 
Mode

Description Entry 
Condition

Wakeup 
Sources

Active Clocks Wakeup 
Action

Available 
Regulators

Active Primary mode of 
operation; all 
peripherals are 
available 
(programmable).

Wakeup from 
other power 
modes, internal 
and external 
resets, 
brownout, 
power on reset

Not 
applicable

All 
(programmable)

N/A All regulators are 
available. 

Sleep CPU enters Sleep 
mode and SRAM is in 
retention; all 
peripherals are 
available 
(programmable).

Manual register 
write

Any enabled 
interrupt

All 
(programmable) 
except CPU clock

Interrupt All regulators are 
available. 

Deep 
Sleep

All internal supplies 
are driven from the 
deep sleep 
regulator. IMO and 
high-speed 
peripherals are off. 
Only the 
low-frequency clock 
is available. 
Interrupts from 
low-speed, 
asynchronous, or 
low-power analog 
peripherals can 
cause a wakeup.

Manual register 
write

GPIO 
interrupt, 
SCB, 
watchdog 
timer, 
lifetime 
counter, LIN 
PHY

PILO (32 kHz)
ILO (40 kHz)

Interrupt Deep-sleep 
regulator
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14.3 Deep Sleep mode
In Deep Sleep mode, the CPU, SRAM, and high-speed logic are in retention. The high-frequency clocks are
disabled. Optionally, the PILO or ILO remains on and low-frequency peripherals continue to operate. Digital
peripherals that do not need a clock or receive a clock from their external interface (for example, I2C slave)
continue to operate. Interrupts from low-speed, asynchronous, or low-power analog peripherals can cause a
wakeup from Deep Sleep mode. 
The available wakeup sources are listed in Table 14-3. 

14.4 Power mode summary
Table 14-2 illustrates the peripherals available in each low-power mode; Table 14-3 illustrates the wakeup
sources available in each power mode. 

Note: In addition to the wakeup sources mentioned in Table 14-3, external reset (XRES) and power monitor reset
bring the device to Active mode from any power mode. XRES and brownout trigger a full system restart. All the
states including frozen GPIOs are lost. In this case, the cause of the reset will be stored in the SRSS reset cause
register.

Table 14-2.  Available Peripherals
Peripheral Active Sleep Deep Sleepa)

a) All registers marked with the “NonRetention” flag return to their default states during Deep Sleep mode.

CPU Available Retentionb)

b) The configuration and state of the peripheral is retained. Peripheral continues its operation when the device enters 
Active mode.

Retention
SRAM Available Retention Retention
DMA Available Available Not Available
High-speed peripherals Available Available Retention
Low-speed peripherals Available Available Available (optional)
Internal main oscillator (IMO) Available Available Not Available
High-Precision Oscillator (HPOSC) Available Available Not Available
Precision Internal Low-speed Oscillator (PILO) Available Available Available (optional)
Internal low-speed oscillator (ILO, 40 kHz) Available Available Available (optional)
Asynchronous peripherals (peripherals that do not run on 
internal clock)

Available Available Available

Power-on-reset, Brownout detection Available Available Available
GPIO output state Available Available Available

Table 14-3.  Wakeup Sources
Power Mode Wakeup Source Wakeup Action
Sleep Any enabled interrupt source Interrupt

Any reset source Reset
Deep Sleep GPIO interrupt Interrupt

I2C address match Interrupt
LIN wakeup interrupt Interrupt
Watchdog timer Interrupt/Reset
Lifetime counter Interrupt
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14.5 Deep Sleep Wakeup hold-off
The PWR_KEY_DELAY.WAKEUP_HOLDOFF register controls the delay in waiting for references to settle on wake
up from DEEPSLEEP. BOD is ignored and the system does not resume until this delay expires. Note that the same
delay on POR is hard-coded. The default assumes the output of the predivider is 48 MHz + 3%. Firmware may scale
this setting according to the fastest actual clock frequency that can occur when waking from DEEPSLEEP.
The default value of PWR_KEY_DELAY.WAKEUP_HOLDOFF assumes a 48-MHz clk_hf (including the predivider,
but not the prescaler). For different clk_hf settings, firmware can optimize the wake time by scaling the hold-off
to achieve the same time.
It is functionally acceptable to leave the default hold-off setting, but DEEPSLEEP wakeup time may exceed the
specification. The minimum allowed hold-off is ceiling (default setting × F_clk_hf/48).
A larger setting can be used to artificially increase the wake time. This is useful in giving additional settling time,
for example, for failure analysis or functional purposes.

14.6 Low-Power mode entry and exit
A Wait For Interrupt (WFI) instruction from the Cortex®-M0+ (CM0+) triggers the transitions into Sleep and Deep
Sleep mode. The Cortex®-M0+ can delay the transition into a low-power mode until the lowest priority ISR is
exited (if the SLEEPONEXIT bit in the CM0 System Control register is set).
The transition to Sleep and Deep Sleep modes are controlled by the flags SLEEPDEEP in the CM0P System Control
register (CM0P_SCR)
• Sleep is entered when the WFI instruction is executed, SLEEPDEEP = 0.
• Deep Sleep is entered when the WFI instruction is executed, SLEEPDEEP = 1.
Note: Since the CPU write buffers are not retained in DeepSleep power mode, ensure that they are empty prior
to  executing the WFI instruction for Deep sleep mode transition.
The LPM READY bit in the PWR_CONTROL register shows the status of the deep-sleep regulator. If the firmware
tries to enter Deep Sleep mode before the regulators are ready, then PSoC™ 4 HV PA goes to Sleep mode first, and
when the regulators are ready, the device enters Deep Sleep mode. This operation is automatically done in
hardware.
In Sleep and Deep Sleep modes, a selection of peripherals are available (see Table 14-3), and firmware can either
enable or disable their associated interrupts. Enabled interrupts can cause wakeup from low-power mode to
Active mode. Additionally, any RESET returns the system to Active mode. See the “Interrupts” on page 54 and
the “Reset system and interrupts” on page 133 for details.

14.7 Register list

Table 14-4.  Power mode register list

Register name Description

CM0P_SCR System Control Register - Sets or returns system control data.

PWR_CONTROL Power Mode Control Register (Lock Protected)

PWR_KEY_DELAY Power System Key and Delay Register (Lock Protected)
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15 Watchdog timer
The Watchdog Timers (WDTs) are used to automatically reset the device in the event of an unexpected firmware
execution path. They are also used as a wakeup source to periodically generate interrupts as a wakeup source in
low-power modes. 
There are several Watchdog Timer functionalities in PSoC™ 4 HV PA devices. These are:
• Basic WDT

– The Basic WDT is a free-running up-counter with programmable limit values and a maximum of 32-bit 
resolution 

• Challenge-Response WDT (CRWDT)
– The CRWDT includes a window watchdog function, generating timeout events if the CRWDT is serviced too 

soon, too late, or with the wrong software key. A register identifies the timeout cause. It generates a 
watchdog reset or interrupt if serviced too soon or too late. Service too soon potentially means an infinite 
loop including watchdog service is executing, while too late means the processor may be stuck and not 
processing properly. The challenge/response means the watchdog service routines must present specific 
data or “keys” in the order expected by the watchdog or a fault will occur. The fault will generate a 
watchdog reset or interrupt with the reset recorded in the Reset Cause register. The causes can be 
conditions such as watchdog too soon, watchdog late, or wrong key received.

• Lifetime Counter with wakeup capability.
– The 32-bit lifetime counter includes a prescaler (/1 to /32) and triggered from the LFCLK clock. This counter 

runs in all modes and can be reset by POR. With the prescaler, the net resolution of the counter becomes 
37-bit causing an overflow every 49.7 days. The counter will continue counting upon overflow.

15.1 Features
The WDTs have these features:
• System reset generation after a configurable interval
• Periodic interrupt/wake up generation in Active, Sleep, and Deep Sleep power modes
• Basic WDT

– 32-bit counter and compares, clocked by LFCLK
– Lower, Warn, and Upper limits with programmable actions for each
– Implemented in VCCD logic domain

• Challenge/response WDT (CRWDT)
– Integrated Linear Feedback Shift Register (LFSR) updates when accessed
– 24 bit counter and compares, clocked by LFCLK
– Lower, Warn, and Upper limits, generates interrupts and faults
– Implemented in VCCD logic domain

• Lifetime counter
– 32-bit free running counter, clocked by LFCLK with 1–32 prescalar
– Up to every 49.7 days of roll over (Used to calculate total time the battery is connected)
– Interrupt generation (Used to schedule mode transitions or other occasional actions)
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15.2 Block diagram

Figure 15-1.  Watchdog timer block diagram
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15.3 Basic WDT

15.3.1 Overview
The basic WDT is a free-running up-counter with programmable limit values, a maximum of 32-bit resolution, and
a clock from the LFCLK. Servicing the watchdog clears and restarts the counter at zero. 
The WDT can be configured to act on different counter limits where a reset is triggered if the watchdog is not
serviced before the upper limit. In the window mode, a reset is triggered if the servicing occurs before the lower
limit is reached. The warning limit triggers an interrupt to request servicing. Each of these actions can be
activated independently. The WDT is enabled and specific registers are locked by default. An unlocking sequence
is required to prevent accidental accesses. The WDT operates in Active, Sleep, and Deep Sleep modes. After a WDT
reset the device returns to Active mode.
Figure 15-2 shows the functional overview of the WDT.

Figure 15-2.  Basic WDT functional diagram
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When enabled, the WDT counts up on each rising edge of the LFCLK clock. When the counter value (WDT_CNT
register) equals the warning threshold value stored in WDT_WARN_LIMIT [31:0], an interrupt is generated if the
WARN_ACTION [8] bit is set to ‘1’ in the WDT_CONFIG register. The warn event will not reset the WDT counter and
the WDT continues counting until it reaches the timeout threshold value stored in UPPER_LIMIT [31:0]; it
generates a reset if the UPPER_ACTION [4] bit is set to ‘1’ in the WDT_CONFIG register. If no action is taken on the
upper threshold, the counter increments to the 32-bit boundary and then wraps around to ‘0’ and counts up. In
the window mode, an early threshold stored in LOWER_LIMIT [31:0] can be used if the LOWER_ACTION [0] bit is
set to ‘1’ in the WDT_CONFIG register for generating a reset if the counter is serviced too early. The watchdog
counter is serviced by the SERVICE [0] bit in the WDT_SERVICE register. If this bit is set to ‘1’ the watchdog counter
is set to zero. 
The WDT [0] bit in the WDT_INTR register is set whenever the WDT counter matches with the WARN_LIMIT and an
interrupt is requested by the CPU. This interrupt must be cleared by writing a ‘1’ to the same bit (WDT bit of
WDT_INTR). Clearing the interrupt does not reset the watchdog counter.
The WDT can be enabled or disabled using the ENABLE [31] bit of the WDT_CTL register. The actual status of the
counter is indicated by the ENABLED [0] bit of the WDT_CTL register. 
The WDT provides a mechanism to lock WDT configuration registers. The WDT_LOCK bits [1:0] control the lock
status of WDT-related registers. These are special bits, which can enable the lock in a single write (WDT_LOCK =
3); to release the lock, two different write accesses are required (WDT_LOCK = 1 to clear WDT_LOCK [0] and
WDT_LOCK = 2 to clear WDT_LOCK [1]). When the WDT_LOCK bits are not equal to ‘0’ the write accesses to the
CTL, LOWER_LIMIT, WARN_LIMIT, UPPER_LIMIT, CNT, and SERVICE registers are prohibited. Note that this field is
two bits to force multiple writes only. It represents only a single write protect signal protecting all those registers
at the same time. WDT will lock and enable on any reset. This field is not retained during Deep Sleep mode, so the
WDT will be locked after wakeup from these modes.
Note: The lock mechanism is an additional safety opportunity, which requires to unlock/lock the SERVICE
register when servicing each watchdog counter. 
When the watchdog counter is disabled and unlocked, the count value can be written for verification and
debugging purposes. Software writes are always ignored when the counter is enabled.
Table 15-1 explains various registers and bit fields used to configure and use the WDT.

Table 15-1.  Basic watchdog timer configuration options

Register [Bit_Pos] Bit name Description

WDT_CTL[31] ENABLE Enable or disable the watchdog counter
• 0: Counter is disabled (not clocked)
• 1: Counter is enabled (counting up)

WDT_CTL[0] ENABLED Indicates actual state of watchdog

WDT_LOCK[1:0] WDT_LOCK Prohibits writing control and configuration registers 
related to this MCWDT when not equal to 0
• 0: No effect
• 1: Clear bit 0
• 2: Clear bit 1
• 3: Set both bit 0 and 1 (lock enabled)

WDT_CNT[31:0] CNT Current value of WDT counter

WDT_LOWER_LIMIT[31:0] LOWER_LIMIT Lower limit for watchdog

WDT_UPPER_LIMIT[31:0] UPPER_LIMIT Upper limit for watchdog

WDT_WARN_LIMIT[31:0] WARN_LIMIT Warn limit for watchdog
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WDT_CONFIG[0] LOWER_ACTION Action taken if this watchdog is serviced before 
LOWER_LIMIT is reached
• 0: Do nothing
• 1: Trigger a reset

WDT_CONFIG[4] UPPER_ACTION Action taken if this watchdog is not serviced before 
UPPER_LIMIT is reached
• 0: Do nothing
• 1: Trigger a reset

WDT_CONFIG[8] WARN_ACTION Action taken when the count value reaches WARN_LIMIT
• 0: Do nothing
• 1: Trigger an interrupt

WDT_CONFIG[12] AUTO_SERVICE Automatically service when the count value reaches 
WARN_LIMIT. This allows creation of a periodic interrupt if 
this counter is not needed as a watchdog.

WDT_CONFIG[28] DEBUG_TRIGGER_EN Enables the trigger input for the WDT to pause the counter 
in debug mode.
• 0: Pauses the counter when a debug probe is 

connected.
• 1: Pauses the counter when a debug probe is 

connected and the trigger input is high.

WDT_CONFIG[29] DPSLP_PAUSE Pauses/runs this counter when the system is in Deep Sleep
• 0: Counter behaves normally during Deep Sleep
• 1: Counter pauses during Deep Sleep

WDT_CONFIG[31] DEBUG_RUN Pauses/runs this counter while a debugger is connected
• 0: Counter pauses according to DEBUG_TRIGGER_EN 

configuration
• 1: Counter runs normally when debugger connected

WDT_INTR[0] WDT WDT Interrupt Request. This bit is set as configured by 
WDT action and limits. The WDT interrupt is cleared by 
writing a ‘1’ to this bit.

WDT_INTR_SET[0] WDT WDT Interrupt set register. Can be used to set interrupts 
for firmware testing.

WDT_INTR_MASK[0] WDT Mask for the WDT interrupt
• 0: WDT interrupt is masked to CPU
• 1: WDT interrupt is not masked to CPU

WDT_INTR_MASKED[0] WDT Logical AND of corresponding request and mask bits

Table 15-1.  Basic watchdog timer configuration options (continued)

Register [Bit_Pos] Bit name Description
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15.3.2 Watchdog reset
A watchdog is typically used to protect the device against firmware/system crashes or faults. When the WDT is
used to protect against system crashes, the WDT counter should be cleared by writing a ‘1’ to the SERVICE [0] bit
in the WDT_SERVICE register from a portion of the code that is not directly associated with the WDT interrupt.
Otherwise, even if the main function of the firmware crashes or is in an endless loop, the WDT interrupt vector can
still be intact and feed the WDT periodically.
The safest way to use the WDT against system crashes is to:
• Configure the UPPER_LIMIT such that firmware is able to reset the watchdog at least once during the period, 

even along the longest firmware delay path.
• In window mode, configure the LOWER_LIMIT to serve the watchdog counter not too early, even along the 

shortest firmware delay path.
• Reset (feed) the watchdog for clearing the counter regularly in the main body of the firmware code by setting 

the SERVICE [0] bit to ‘1’ in WDT_SERVICE register.
It is not recommended to reset the watchdog counter in the WDT interrupt service routine (ISR), if WDT is being
used as a reset source to protect the system against crashes. If necessary, use the warning interrupt to set a flag
in the ISR. Local processing loops can observe that flag and break out of their loop. This allows the main loop to
reach the servicing code (and clear the flag for the next pass through the main loop).
Recommended steps to use WDT as a reset source are as follows:
1. Write UPPER_LIMIT value to define the timeout period for reset generation. Set UPPER_ACTION [4] bit to ‘1’ in

the WDT_CONFIG register to enable a reset trigger when the watchdog counter reaches the UPPER_LIMIT.
2. If required, write the WARN_LIMIT to generate an interrupt before reaching the UPPER_LIMIT threshold. Do 

not use the ISR to feed the WDT; instead, use this interrupt to indicate that there is a firmware delay path, 
which is already critical. Use a warn level that is close enough to the UPPER_LIMIT but consider also the delay 
to handle the ISR and return to your main body functions for serving the watchdog counter. Set 
WARN_ACTION [8] bit to ‘1’ in the WDT_CONFIG register to enable a watchdog warn interrupt when the 
watchdog counter matches with the WARN_LIMIT.

3. In window mode, define an adequate LOWER_LIMIT, which cannot be violated by the shortest firmware delay 
path. Set the LOWER_ACTION [0] bit to ‘1’ in the WDT_CONFIG register to enable a reset trigger when the 
watchdog counter is serviced before the counter reaches the LOWER_LIMIT.

4. Set the WDT [0] bit in the WDT_INTR register to clear any pending WDT interrupt.
5. Enable low-speed oscillator either ILO (CLK_ILO_CONFIG.ENABLE) or PILO (PILO_CTL.ILO_EN).
6. Set the LFCLK_SEL in the CLK_SELECT register to select which clock source uses for LFCLK. 
7. Enable the WDT by setting the ENABLE [31] bit in the WDT_CTL register.
8. In the firmware, write ‘1’ to the SERVICE [0] bit in the WDT_SERVICE register to feed (reset) the watchdog.
9. Lock the WDT configuration by writing ‘3’ to the WDT_LOCK bits.
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Figure 15-3 shows all scenarios of the WDT operation while LOWER_ACTION, WARN_ACTION, and
UPPER_ACTION are enabled.
• Counter is serviced between LOWER_LIMIT and WARN_LIMIT: This is the regular behavior of the WDT. No 

WARN interrupt is issued and no RESET is done.
• Counter is serviced between WARN_LIMIT and UPPER_LIMIT: The service is done late, a WARN interrupt is 

issued but no RESET is done.
• Counter is not serviced at all: WARN interrupt is issued but the SERVICE bit is not set. When the counter 

reaches the UPPER_LIMIT a reset is executed.
• Counter is serviced before the LOWER_LIMIT is reached: The counter is serviced too early; a reset is executed 

because the counter is cleared outside of the window.

Figure 15-3.  WDT counter operation in Window mode

Note: This figure illustrates the different scenarios with or without servicing the watchdog counter. It does not
consider the WDT configuration, especially after a reset.
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15.3.3 Watchdog interrupt
In addition to generating a device reset, the WDT can be used to generate interrupts. The watchdog counter can
send interrupt requests to the CPU in Active power modes and to the wakeup interrupt controller (WIC) in Sleep
and Deep Sleep power modes. It works as follows:
• Active Mode: In this mode, the WDT can send the interrupt to the CPU. The CPU acknowledges the interrupt 

request and executes the ISR. The interrupt must be cleared after entering the ISR in firmware.
• Sleep or Deep Sleep Mode: In these modes, the CPU subsystem is powered down. Therefore, the interrupt 

request from the WDT is directly sent to the WIC, which will then wake up the CPU. The CPU acknowledges the 
interrupt request and executes the ISR. The interrupt must be cleared after entering the ISR in firmware. 

For more details on device power modes, see the “Power modes” on page 113. Follow these steps to use the
WDT as a periodic interrupt generator:
1. Write the WARN_LIMIT to set the interrupt period. If the WDT is not serviced, the counter will continue to count

up until the maximum counter level of 0xFFFFFFFF is reached and then the counter starts from zero.
2. Set the WARN_ACTION [8] bit to ‘1’ in the WDT_CONFIG register to enable a watchdog warn interrupt when the 

watchdog counter matches with the WARN_LIMIT.
3. Set the WDT [0] bit in the WDT_INTR register to clear any pending WDT interrupt.
4. Enable the WDT interrupt to CPU by setting the WDT [0] bit in the WDT_INTR_MASK register.
5. Enable SRSS interrupt to the CPU by configuring the appropriate ISER register, see the “Interrupts” on 

page 54 for details.
6. In the ISR, clear the WDT interrupt; if required, clear the watchdog timer by writing ‘1’ to the SERVICE [0] bit in 

the SERVICE register. Servicing the WDT allows to generate various interrupt periods, which can be defined by 
the WARN_LIMIT. Alternatively, set the AUTO_SERVICE[12] bit to ‘1’ in the CONFIG register to automatically 
service the WDT when the count value reaches WARN_LIMIT.

Waking up from Deep Sleep mode requires to execute an unlock sequence by writing the value ‘1’ to the
WDT_LOCK [1:0] bits in the WDT_LOCK register followed by writing ‘2’ to the same bit field.
Figure 15-4 shows the behavior of the WDT counter in interrupt mode. LOWER and UPPER actions are disabled.
An interrupt is issued each time the counter matches the WARN_LIMIT and continuous to count up to the 32-bit
maximum value. The interrupt period is calculated by 232 x LFCLK clock cycles. The WDT does not provide an
automatic counter clear function; therefore, the counter must be cleared manually by writing ‘1’ to the
SERVICE[0] bit in the WDT_SERVICE register.

Figure 15-4.  WDT Counter Operation with WARN Interrupt only
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15.4 CRWDT

15.4.1 Overview
The CRWDT uses a challenge/response during a measured window to ensure that software is in control. The
watchdog counters are clocked by LFCLK. The challenge and response values are provided by the Linear
Feedback Shift Register (LFSR: CRC-8 AutoSAR) and is used to validate the time logged by the CRWDT_UPCNT.
Firmware reads the LFSR value from CRWDT_CHALLENGE. The actions of reading the CRWDT_CHALLENGE or
writing CRWDT_RESPONSE both increment the LFSR. The CRWDT is serviced by writing, in a timely manner, the
value of CRWDT_RESPONSE that matches the current LFSR value. Successful servicing resets CRWDT_UPCNT to
zero, starting a new counting period. The CRWDT also provides early and warning notifications.
Figure 15-5 shows the CRWDT block diagram.

Figure 15-5.  CRWDT block diagram

Table 15-2 explains various registers and bit fields used to configure and use the CRWDT.

Table 15-2.  CRWDT Configuration options

Register [Bit_Pos] Bit name Description

CRWDT_CTL[31] ENABLED When set to “1”, enables the Challenge/Response WatchDog 
Timer to Count. Requires 2 clk_lf cycles to take effect.

CRWDT_CTL[30] STATUS_ENABLED Indicates the actual state of CRWDT enable. May lag ENABLED 
by up to one clk_lf cycle.

CRWDT_CHALLENGE[7:0] CHALLENGE Challenge/Response WatchDog Challenge value. Implements 
the LFSR CCRC8-AUTOSAR using the polynomial 
x^8+x^5+x^3+x^2+x+1. The next value in the LFSR sequence is 
used to compare against the value subsequently written to 
the CRWDT_RESPONSE register. Incremented by write to 
CRWDT_RESPONSE to LFSR value next in the LFSR sequence 
after the value written to CRWDT_RESPONSE. Also 
incremented each time this register before a response is 
written to CRWDT_RESPONSE.
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CRWDT_RESPONSE[7:0] RESPONSE Challenge/Response WatchDog Response value. Value is 
compared against the expected next value in the LFSR 
sequence following the value obtained from 
CRWDT_CHALLENGE. If the values match, the CRWDT_UPCNT 
resets. If the values miscompare, the action selected by 
CRWDT_CONFIG.CHALLENGE_FAIL_ACTION occurs.

CRWDT_UPCNT[23:0] UPCNT Challenge/Response WatchDog Up Counter. The counter up 
counts upon every clk_lf occurrence when enabled. If a 
match occurs between CRWDT_CHALLENGE and 
CRWDT_RESPONSE, the counter resets. If there is a 
mismatch, the action is taken selected by 
CRWDT_CONFIG.CHALLENGE_FAIL_ACTION. The counter will 
also reset when CRWDT_UPCNT=CRWDT_LATE.
CRWDT_CTL.ENABLED = 0 - Counter reset
CRWDT_CTL.ENABLED = 1 - Counter Increments

CRWDT_EARLY[23:0] EARLY Challenge/Response Early Value will cause the action 
selected by CRWDT_CONFIG.EARLY_ACTION if 
CRWDT_UPCNT < CRWDT_EARLY and there is a 
CRWDT_CHALLENGE/CRWDT_RESPONSE match.
Writes to this register are ignored when 
CRWDT_CTL.ENABLED<>0.

CRWDT_WARN[23:0] WARNING Challenge/Response Warning Value will cause the action 
selected by CRWDT_CONFIGWARN_ACTION if 
CRWDT_UPCNT>CRWDT_WARN and there is a 
CRWDT_CHALLENGE/CRWDT_RESPONSE match.
Writes to this register are ignored when 
CRWDT_CTL.ENABLED<>0.

CRWDT_LATE[23:0] LATE Challenge/Response Late Value will cause action selected by 
CRWDT_CONFIG.LATE_ACTION if CRWDT_UPCNT = 
CRWDT_LATE.
Writes to this register are ignored when 
CRWDT_CTL.ENABLED<>0.

Table 15-2.  CRWDT Configuration options (continued)

Register [Bit_Pos] Bit name Description
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CRWDT_CONFIG[31] DEBUG_RUN Pauses/runs this counter while a debugger is connected. 
Other behaviors are unchanged during debugging, including 
service, configuration updates, and enable/disable. Note it 
may take up to two clk_lf cycles for the counter to pause and 
another two cycles to unpause, due to internal 
synchronization. If the debugger is connected for at least two 
clk_lf cycles, the EARLY_ACTION is ignored until after the first 
service after the debugger is disconnected. This prevents an 
unintentional trigger of the EARLY_ACTION before the 
firmware realigns the servicing period. After the first service, 
EARLY_ACTION behaves as configured. If the debugger is 
disconnected before two clk_lf cycles, the EARLY_ACTION 
may or may not be ignored.
0: When the debugger is connected, the counter pauses 
incrementing.
1: When the debugger is connected, the counter increments 
normally, but reset generation is blocked.
Writes to this register are ignored when 
CRWDT_CTL.ENABLED<>0.

CRWDT_CONFIG[11] CHALLENGE_FAIL_A
CTION

Action is taken when a failed response occurs, i.e., the 
expected LFSR value is different than the expected value.
Writes to this register are ignored when 
CRWDT_CTL.ENABLED<>0.
0x0 : NOTHING: Do nothing
0x1 : RESET: Trigger a reset

CRWDT_CONFIG[8] WARN_ACTION Action is taken if this watchdog when the proper response is 
written to CRWDT_RESPONSE and CRWDT_UPCNT reaches 
CRWDT_WARN and CRWDT_UPCNTF or CRWDT_WARN == 
CRWDT_UPCNT && CRWDT_LATE > CRWDT_UPCNT: The 
action is triggered on the same edge as when it meets this 
condition.
For CRWDT_WARN
Writes to this register are ignored when 
CRWDT_CTL.ENABLED<>0.
0x0: NOTHING: Do nothing
0x1: FAULT_AND_INT: Trigger a Fault and interrupt

Table 15-2.  CRWDT Configuration options (continued)

Register [Bit_Pos] Bit name Description
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CRWDT_CONFIG[4] LATE_ACTION Action is taken if this watchdog is not serviced before 
CRWDT_LATE is reached. The counter resets CRWDT_UPCNT 
when CRWDT_LATE is reached, regardless of 
CRWDT_CONFIG.LATE_ACTION setting. LATE_ACTION is 
ignored (i.e., treated as NOTHING) when a debugger is 
connected.
For CRWDT_LATE == CRWDT_UPCNT: The action is triggered 
on the same edge as when it meets this condition.
For CRWDT_LATE > CRWDT_UPCNT: No action is taken
Writes to this register are ignored when 
CRWDT_CTL.ENABLED<>0.
0x0: NOTHING: Do nothing
0x1: FAULT_RESET: Trigger a fault. Further, trigger a system-
wide reset if the CRWDT is not disabled within 6 clk_lf cycles.

CRWDT_CONFIG[0] EARLY_ACTION Action is taken if this watchdog when the proper response is 
written to CRWDT_RESPONSE before CRWDT_UPCNT 
reaches CRWDT_EARLY. EARLY_ACTION is ignored (i.e., 
treated as NOTHING) when a debugger is connected.
For CRWDT_EARLY > CRWDT_UPCNT: The action is triggered 
on the same edge as when it meets this condition.
For CRWDT_EARLY <= CRWDT_UPCNT: No action is triggered.
Writes to this register are ignored when 
CRWDT_CTL.ENABLED<>0.
0x0: NOTHING: Do nothing
0x1: FAULT_AND_INT: Trigger a Fault and interrupt

Table 15-2.  CRWDT Configuration options (continued)

Register [Bit_Pos] Bit name Description
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15.4.2 Firmware usage
Figure 15-6 shows the CRWDT firmware usage.

Figure 15-6.  CRWDT Firmware usage

The steps recommended when using CRWDT are as follows:
1. Configure CRWDT
Write the DEBUG_RUN, CHALLENGE_FAIL_ACTION, WARN_ACTION, LATE_ACTION, EARLY_ACTION in the
CRWDT_CONFIG register to set each action. For more information, see Table 15-2.
2. Enable CRWDT
Set the ENABLED bit to ‘1’ in the CRWDT_CTL register to enable the CRWDT.
3. Start of service
4. Read CRWDT_CHALLENGE
Read the LFSR value from CHALLENGE bits in the CRWDT_CHALLENGE register. The action of reading the
CHALLENGE increments the LFSR value.
5. Compute CRC-8 with INCR
The computed value will be written to the RESPONSE register at the appropriate time to service the CRWDT.
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6. Write response
a) If the response does not arrive before CRWDT_LATE = CRWDT_UPCNT, then LATE_ACTION occurs.
b) If the response does arrive, but does not match the current LFSR value, then RESPONSE, 

CHALLENGE_FAIL_ACTION occurs.
c) If the response does arrive and does match the current LFSR, then CRWDT_UPCNT is compared to the 

values of the CRWDT_WARN and CRWDT_EARLY registers. 
i. CRWDT_EARLY > CRWDT_UPCNT: 
EARLY_ACTION occurs
ii. CRWDT_WARN <= CRWDT_UPCNT: 
WARN_ACTION occurs

7. Repeat 4 to 6
8. End of Service

a) Set the ENABLED bit to ‘0’ in the CRWDT_CTL register to disable the CRWDT.

15.5 Lifetime counter

15.5.1 Overview
The lifetime counter provides a basic 32-bit counter operating in the Deep Sleep domain at a frequency lower
than clk_lf (LFCLK) which can provide a interrupt when required. The lifetime counter includes a prescaler and
triggered from the LFCLK clock. The prescalar provides the LFCLK from divide-by-2 up to divide-by-32.
The 32-bit counter runs off of the prescaled clock. It is capable of wrapping. The initial value may be loaded
through the MMIO, and is intended to provide a life-cycle count that is maintained by software. It is expected that
the value is loaded after POR by software, and software periodically updates Flash to the current count. 
Figure 15-7 shows the Lifetime Counter Block Diagram.

Figure 15-7.  Lifetime counter block diagram
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Table 15-3 explains various registers and bit fields used to configure and use the lifetime counter.

15.5.2 Wakeup mechanism
The wakeup value is set in the MMIO and is compared against the 32-bit counter value. If there is a match, the
interrupt_lifetime signal is asserted. This is a Deep Sleep interrupt.

Table 15-3.  Lifetime counter configuration options

Register [Bit_Pos] Bit name Description
LIFETIME_CTL[31] ENABLED When set to ‘1’ enables LIFETIME_COUNTER to increment. 

Due to internal synchronization, it takes up to two LFCLK 
cycles to update the counters after a write to this register. 

LIFETIME_CTL[30] STATUS_ENABLED Indicates actual state of lifetime counter enable. May lag 
ENABLED by up to one clk_lf cycles.

LIFETIME_CTL[2:0] PRESEL Select Divide ratio for preselector. Legal values are 0-4. 
0x0: PRESEL_DIV2: Divide CLK_LF by 2
0x1: PRESEL_DIV4: Divide CLK_LF by 4
0x2: PRESEL_DIV8: Divide CLK_LF by 8
0x3: PRESEL_DIV16: Divide CLK_LF by 16
0x4: PRESEL_DIV32: Divide CLK_LF by 32

LIFETIME_WAKEUP[31:0] WAKEUP Compare the WAKEUP value against LIFETIME_COUNTER. If 
they are equal interrupt_wakeup to set. Due to internal 
synchronization, it takes up to two LFCLK cycles to update 
the counters after a write to this register. 

LIFETIME_COUNTER[31:0] COUNT Lifetime counter which clocks on the output of the CLK_LF 
prescaler output controlled by LIFETIME_CTL.PRESEL. The 
counter does not increment unless LIFETIME_CTL.ENABLED 
=1. FW is responsible for initializing this value after reset and 
maintaining the running value.
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15.6 Register list

Table 15-4.  WDT registers

Register name Description

Basic WDT (WDT_B_STRUCT)

WDT_CTL WDT Control Register

WDT_LOWER_LIMIT WDT Lower Limit Register

WDT_UPPER_LIMIT WDT Upper Limit Register

WDT_WARN_LIMIT WDT Warn Limit Register

WDT_CONFIG WDT Configuration Register

WDT_CNT WDT Count Register

WDT_LOCK WDT Lock Register

WDT_SERVICE WDT Service Register

WDT_INTR WDT Interrupt Register

WDT_INTR_SET WDT Interrupt Set Register

WDT_INTR_MASK WDT Interrupt Mask Register

WDT_INTR_MASKED WDT Interrupt Masked Register

CRWDT 

CRWDT_CTL Challenge Response Watchdog Control Register (Lock Protected)

CRWDT_CHALLENGE Challenge Response Watchdog Challenge Value Register

CRWDT_RESPONSE Challenge Response Watchdog Response Value Register

CRWDT_UPCNT Challenge Response Watchdog Up Counter Register

CRWDT_EARLY Challenge Response Watchdog Early Limit Register (Lock Protected)

CRWDT_WARN Challenge Response Watchdog Warning Limit Register (Lock Protected)

CRWDT_LATE Challenge Response Watchdog Late Limit Register (Lock Protected)

CRWDT_CONFIG Challenge Response Watchdog Configuration Register

Lifetime Counter

LIFETIME_CTL Lifetime Counter Control Register (Lock Protected)

LIFETIME_WAKEUP Lifetime Wakeup Value Register

LIFETIME_COUNTER Lifetime Counter Current Value Register
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16 Reset system and interrupts
The PSoC™ 4 HV PA can be reset from a variety of sources including a software reset. Reset events are
asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register (RES_CAUSE),
which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for
external reset to avoid complications with configuration and multiple pin functions during power-on or
reconfiguration. This pin is not used in normal applications, it is intended for test purpose and production, for
example, in conjunction with debugging and flashing the device.
The following events cause resets:
• Power-on reset (POR) to hold the device in reset while the power supply ramps up
• Brownout reset (BOD) to reset the device if the power supply falls below specifications during operation
• Over-Voltage Detection (OVD) to reset the device if the power supply rises above specifications during 

operation
• Watchdog reset (RESET_WDT) to reset the device if firmware execution fails to service the watchdog timer
• Challenge/Response Watchdog reset (RESET_CRWDT) to reset the device if a failed response occurs
• Fault Infrastructure reset (RESET_ACT_FAULT) to reset the device if Fault Subsystem captured fault 
• Software initiated reset (RESET_SOFT) to reset the device on demand using firmware
• External reset (XRES) to reset the device using an external electrical signal
• Protection fault reset (RESET_PROT_FAULT) to reset the device if unauthorized operating conditions occur
The interrupt status of SRSSHV is available in the SRSS_INTR register. The SRSS_INTR indicates those events
generated by SRSS peripherals such as CRWDT, clock calibration counter, wakeup of lifetime counter, and
regulator over-temp interrupt. 

16.1 Reset sources
The following sections provide a description of the reset sources available in PSoC™ 4 HV PA.

16.1.1 Power-on reset
The Power-On-Reset (POR) circuits provide a reset pulse during the initial power ramp. POR circuits monitor VCCD
(core) voltage. The POR guarantees that all circuits are properly initialized before release. POR circuits are used
during initial chip power-up and then disabled.

16.1.2 Brownout reset
The Brownout Reset (BOD) circuit protects the operating or retaining logic from possibly unsafe supply
conditions by applying reset to the device. The BOD circuit monitors the VDDD and VCCD voltage. The BOD circuit
generates a reset if voltage dips below the minimum safe operating voltage. The system will not come out of
RESET until the supply is detected to be valid again.
To enable firmware to distinguish a normal power cycle from a brownout event, a special register is provided
(RES_CAUSE), which will not be cleared after a BOD generated RESET. However, this register will be cleared if the
device goes through POR or XRES.

16.1.3 Over-voltage detection
The Over-Voltage Detection (OVD) circuit protects the operating or retaining logic from possibly unsafe supply
conditions by applying reset to the device. OVD circuit monitors the VDDD and VCCD voltage. As the name suggests,
the OVD circuit maintains a device reset, if VCCD or VDDD supply stays higher than thresholds. The system will not
come out of RESET until the supply is detected to be valid again.
The OVD circuit can generate a reset in all device power modes except POR or XRES. Note that the OVD settings
are OFF by default. User software needs to enable this features by PWR_SSV_CTL register. 
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16.1.4 Watchdog reset
Watchdog reset (RESET_WDT) detects errant code by causing a reset if the watchdog timer is not cleared within
the user-specified time limit. 
The RESET_WDT status bit of the RES_CAUSE register is set when a watchdog reset occurs. This bit remains set
until cleared or until a POR, XRES, or BOD reset; for example, in the case of a device power cycle. All other resets
leave this bit untouched.
For more details, see the “Watchdog timer” on page 117.

16.1.5 Challenge/Response watchdog reset
Challenge/Response Watchdog reset (RESET_CRWDT) detects errant code by causing a reset when a failed
response occurs. The RESET_CRWDT status bit of the RES_CAUSE register is set when a watchdog reset occurs.
This bit remains set until cleared or until a POR, XRES, or BOD reset; for example, in the case of a device power
cycle. All other resets leave this bit untouched.
For more details, see the “Watchdog timer” on page 117.

16.1.6 Fault infrastructure reset
Fault Infrastructure reset (RESET_ACT_FAULT) to reset the device if Fault Subsystem captured fault. This type of
reset brings regular MMIO registers to their default/reset state. The RESET_ACT_FAULT status bit of the
RES_CAUSE register is set when a fault Infrastructure reset occurs. This bit remains set until cleared or until a
POR, XRES, or BOD reset; for example, in the case of a device power cycle. All other resets leave this bit untouched.
For more details, see the “Fault subsystem” on page 87.

16.1.7 Software initiated reset
Software initiated reset (RESET_SOFT) is a mechanism that allows a software-driven reset. The Cortex®-M0
application interrupt and reset control register (CM0_AIRCR) forces a device reset when a ‘1’ is written into the
SYSRESETREQ bit. CM0_AIRCR requires a value of A05F written to the top two bytes for writes. Therefore, write
A05F0004 for the reset.
The RESET_SOFT status bit of the RES_CAUSE register is set when a software reset occurs. This bit remains set
until cleared or until a POR, XRES, or BOD reset; for example, in the case of a device power cycle. All other resets
leave this bit untouched.
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16.1.8 External reset
External reset (XRES) is a user-supplied reset that causes immediate system reset when asserted. The XRES pin is
active low – a high voltage on the pin has no effect and a low voltage causes a reset. The pin is pulled high inside
the device. XRES is available as a dedicated pin in most of the devices. For detailed pinout, refer to the pinout
section of the PSoC™ 4 HV PA datasheet.
The XRES pin holds the device in reset while held active. When the pin is released, the device goes through a
normal boot sequence. The logical thresholds for XRES and other electrical characteristics, are listed in the
Electrical Specifications section of the PSoC™ 4 HV PA datasheet. 
XRES events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset
source. If no other reset event is detected, then the reset is caused by POR, BOD, or XRES.

16.1.9 Protection fault reset
Protection fault reset (RESET_PROT_FAULT) detects unauthorized protection violations and causes a device
reset if they occur. One example of a protection fault is if a debug breakpoint is reached while executing
privileged code. For details about privilege code, see “Privileged” on page 112.
The RESET_PROT_FAULT bit of the RES_CAUSE register is set when a protection fault occurs. This bit remains set
until cleared or until a POR, XRES, or BOD reset; for example, in the case of a device power cycle. All other resets
leave this bit untouched.

16.2 Reset levels
The PSoC™ 4 HV PA has three levels of reset: 
• Cold, also known as High Voltage: Clears all registers except SRSS_RES_CAUSE. Triggered by XRES, POR, BOD, 

OVD, and WDT.
• Warm, also known as Low Voltage: Resets all registers unless specifically mentioned in the register description 

(fault system). Triggered by protection fault, fault system, CRWDT, or SYSRESETREQ.
• CPU reset: Resets only the M0+; no impact to any peripheral registers. Nothing is logged in the reset cause 

register. Triggered by VECTRESET or setting PC to start of application.

16.3 Identifying reset sources
When the device comes out of reset, it is often useful to know the cause of the most recent or even older resets.
This is achieved in the device primarily through the RES_CAUSE register. This register has specific status bits
allocated for some of the reset sources. The RES_CAUSE register supports detection of all above resets. The bits
are set on the occurrence of the corresponding reset and remain set after the reset, until cleared or a loss of
retention, such as a POR reset, external reset, or brownout detect. 
Note: During the initial power ramp, VDD will be below the trip thresholds of both the POR and VDD BOD circuits.
The reset cause register (RES_CAUSE) will always have the POR cause set after a power ramp. It is normal but not
guaranteed that BOD_VDDD will also be included as a cause.
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16.4 SRSS interrupts
The SRSS_INTR register indicates SRSSHV interrupts. The SRSS_INTR_MASK register decides whether the
interrupts are forwarded to the CPU.The following are the interrupt sources available in SRSSHV.

16.4.1 CRWDT interrupt
The SRSS_INTR.CRWDT bit is set by warning and early faults of CRWDT when enabled by CRWDT_CONFIG. For
more details, see the “Watchdog timer” on page 117.

16.4.2 Clock calibration counter interrupt
The SRSS_INTR.CLK_CAL bit is set when the clock calibration counter is done. This bit is reset during Deep Sleep
mode. For more details, see the “Clocking system” on page 93.

16.4.3 Wakeup interrupt from lifetime counter
The SRSS_INTR.LIFETIME_WAKEUP bit is set when LIFETIME_COUNTER = LIFETIME_WAKEUP. This is a Deep Sleep
interrupt. The interrupt source will reset only with hard reset (power related reset, XRES, WDT/CRWDT reset). For
more details, see the “Watchdog timer” on page 117.

16.4.4 Over-temp interrupt
The SRSS_INTR.TEMP_HIGH bit is set when a short circuit exists on the VCCD pin or when extreme loads are applied
on the I/O cells causing the die to overheat. Firmware is encouraged to shut down all I/O cells and then go to Deep
Sleep mode when this interrupt occurs to protect against such conditions.

16.5 Register list

Table 16-1.  Reset system and interrupts register list

Register name Description

CM0P_AIRCR Cortex®-M0+ Application Interrupt and Reset Control Register - This register allows 
initiation of software resets, among other Cortex®-M0+ functions.

RES_CAUSE Reset Cause Register - This register captures the cause of recent resets.

SRSS_INTR This register shows interrupt requests from the SRSS peripheral.

SRSS_INTR_SET This register is used for firmware testing.

SRSS_INTR_MASK This register controls forwarding of the interrupt to CPU.

SRSS_MASKED This register shows the logical AND of the corresponding SRSS interrupt request (SRSS 
Interrupt register) and mask bits (SRSS Interrupt Mask register)
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17 Device security and register protection
PSoC™ 4 HV PA offers a number of options for protecting user designs from unauthorized access or copying and
for protecting critical registers. Disabling debug features and enabling flash protection provide a high level of
security.
The debug circuits are enabled by default and can only be disabled in firmware. If disabled, the only way to 
re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware
that enables debugging. Additionally, all device interfaces can be permanently disabled for applications
concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by
starting and interrupting flash programming sequences. Permanently disabling interfaces is not recommended
for most applications because the designer cannot access the device. For more information, as well as a
discussion on flash row and chip protection, see the PSoC™ 4 HV PA datasheet. 
Note: Because all programming, debug, and test interfaces are disabled when maximum device security is
enabled, PSoC™ 4 HV PA devices with full device security enabled may not be returned for failure analysis.

17.1 Device security
The PSoC™ 4 HV PA device security system has the following features:
• User-selectable levels of protection.
• In the most secure case provided, the chip can be “locked” such that it cannot be acquired for test/debug and 

it cannot enter erase cycles. Interrupting erase cycles is a known way for hackers to leave chips in an 
undefined state and open to observation.

• CPU execution in a privileged mode by use of the non-maskable interrupt (NMI). When in privileged mode, NMI 
remains asserted to prevent any inadvertent return from interrupt instructions causing a security leak.

In addition to these, the device offers protection for individual flash row data.

17.1.1 How it works

17.1.1.1 Device protection modes
The CPU operates in normal user mode or in privileged mode, and the device operates in one of four protection
modes: BOOT, OPEN, PROTECTED, and KILL. Each mode provides specific capabilities for the CPU software and
debug. 
• BOOT mode: The device comes out of reset in BOOT mode. It stays there until its protection state is copied 

from supervisor flash to the protection control register. The debug-access port is stalled until this has 
happened. BOOT is a transitory mode required to set the part to its configured protection state. During BOOT 
mode, the CPU always operates in privileged mode.

• OPEN mode: This is the factory default. The CPU can operate in user mode or privileged mode. In user mode, 
flash can be programmed and debugger features are supported. In privileged mode, access restrictions are 
enforced.

• PROTECTED mode: The user may change the mode from OPEN to PROTECTED. This mode disables all debug 
access to user code or memory. In protected mode, only few registers are accessible; debug access to registers 
to reprogram flash is not available. The mode can be set back to OPEN but only after completely erasing the 
flash.

• KILL mode: The user may change the mode from OPEN to KILL. This mode disables all debug access to user 
code or memory. Access to most registers is still available by internal software; access to registers to 
reprogram/erase is available. The devices in KILL mode may not be returned for failure analysis.

For system calls details, see “System calls” on page 377.
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17.1.1.2 Flash security
The PSoC™ 4 HV PA devices include a flexible flash-protection system that controls access to flash memory. This
feature is designed to secure proprietary code, but it can also be used to protect against inadvertent writes to the
bootloader portion of flash.
Flash memory is organized in rows. You can assign one of two protection levels to each row; see Table 17-1. Flash
protection levels can only be changed by performing a complete flash erase.
For more details, see the “Flash Memory” on page 67 and “Nonvolatile memory programming” on page 374.

17.2 Register protection
Register protection is for the critical registers. These critical registers are protected by means of a “magic key”
written to the REG_PROT.MAGIC in SRSSHV register. After writing the correct key, users can update these critical
registers. This is a non-retention register that resets in DEEPSLEEP power mode.

17.2.1 How it works
Setting the REG_PROT.MAGIC bits to the value 0xF08169E7 unlocks access to lock-protected registers. These
protected registers cannot be written to unless this value is written into them. Writing a value other than the
magic key will disable access to the registers. The register POR value is set to “unlock” the register access. 
The following registers are locked:
• PWR_CONTROL
• PWR_KEY_DELAY
• CLK_SELECT
• CLK_ILO_CONFIG
• CLK_IMO_CONFIG
• CRWDT_CTL
• CRWDT_EARLY
• PWR_SSV_CTL
• CRWDT_WARN
• CRWDT_LATE
• LIFETIME_CTL
• HPOSC_CTL
• PILO_CTL
• All trim registers
The same register protection is available in PACSS. See “Registers” on page 338 for PACSS register protection.

Table 17-1.  Flash Protection Levels

Protection setting Allowed Not Allowed

Unprotected External read and write,
Internal read and write

–

Full Protection External reada)

Internal read
a) To protect the device from external read operations, you should change the device protection settings to 

PROTECTED.

External write,
Internal write
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17.3 Disable SWD in firmware
The PSoC™ 4 HV PA Program and Debug interface uses a serial wire debug (SWD) interface as the communication
protocol with the external device. The SWD physical port pins (SWDIO and SWDCK) communicate with the
Cortex®-M0+ debug and access port (DAP) through the high-speed I/O matrix (HSIOM). The default value of SWP
ports are set to HSIOM_PORT_SEL0 = 0xE (See Table 18-4).
To disable the SWD in firmware, the HSIOM settings should change to 0x0; change the drive mode to weak 
pull-down as shown here:
• Disable SWDIO

– HSIOM_PORT_SEL0.IO6_SEL=0
– GPIO_PRT0_PC.DM6=7
– GPIO_PRT0_PC2.INP_DIS6=1 
– GPIO_PRT0_DR.DATA6=0

• Disable SWDCK
– HSIOM_PORT_SEL0.IO7_SEL=0
– GPIO_PRT0_PC.DM7=7
– GPIO_PRT0_PC2.INP_DIS7=1 
– GPIO_PRT0_DR.DATA7=0

17.4 Privileged registers
The PSoC™ 4 HV PA has some privileged registers in the MMIO space, FLASH, SRAM, and SROM memory. Privileged
registers may not be read or written to by the Cortex-M0+ core or the DAP, unless they are in Privileged mode (See
“Chip operational modes” on page 111). 
Notes:
• Reading or writing protected memory locations may result in a protection violation error (See “Fault 

subsystem” on page 87).
• A protection violation may occur that requires a RESET. This includes hitting a debug breakpoint while in 

Privileged mode (RES_CAUSE.RESET_PROT_FAULT).
• The privileged registers are not listed in the PSoC™ 4 HV PA Registers TRM.
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Section C:   I/O System
This section encompasses the following chapter:
• “I/O system” on page 141

Top Level Architecture

Figure 18-1.  I/O System block diagram
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18 I/O system
This chapter explains the PSoC™ 4 HV PA I/O system, its features, architecture, operating modes, and interrupts.
The GPIO pins in PSoC™ 4 HV PA are grouped into ports; a port can have a maximum of eight GPIOs. The 
PSoC™ 4 HV PA device has eight GPIOs arranged in one port (P0.x), and three peripheral connection I/Os (P1.0 to
P1.2) shared with the external temperature sensor pins (VTEMP_SUP/ VTEMP/ VTEMP_RET).

18.1 Features
The GPIOs have these features:
• Output drive modes include push-pull (strong or weak), open drain/source, high-z, and pull-up/-down
• Selectable CMOS and low-voltage LVTTL input buffer mode
• Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis
• Individual control of input and output disables
• Hold mode for latching previous state (for retaining I/O state in Deep Sleep)
• Selectable slew rates allowing dV/dt control to assist with noise control to improve EMI

18.2 I/O cell architecture
Figure 18-2 shows the I/O cell architecture. It comprises of an input buffer and an output driver. This architecture
is present in every GPIO cell. It connects to the HSIOM multiplexers for the digital input and the output signal.

Figure 18-2.  GPIO block diagram
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18.2.1 Digital input buffer
The digital input buffer provides a high-impedance buffer for the external digital input. The buffer is enabled and
disabled by the INP_DIS bit of the Port Configuration Register 2 (GPIO_PRTx_PC2, where x is the port number).
The buffer is configurable for the following modes: 
• CMOS
• LVTTL
• 1.8 V (Not used in PSoC™ 4 HV PA)
These buffer modes are selected by the PORT_VTRIP_SEL and PORT_IB_MODE_SEL bit (GPIO_PRTx_PC)of the
Port Configuration register. 

The threshold values for each mode can be obtained from the PSoC™ 4 HV PA datasheet. The output of the input
buffer is connected to the HSIOM for routing to the selected peripherals. Writing to the HSIOM port select register
(HSIOM_PORT_SELx) selects the peripheral. The digital input peripherals in the HSIOM, shown in Figure 18-2, are
pin dependent. See the PSoC™ 4 HV PA datasheet to know the functions available for each pin.

18.2.2 Digital output driver
Pins are driven by the digital output driver. It consists of circuitry to implement different drive modes and slew
rate control for the digital output signals. The peripheral connects to the digital output driver through the HSIOM;
a particular peripheral is selected by writing to the HSIOM port select register (HSIOM_PORT_SELx).
In PSoC™ 4 HV PA I/Os are driven with VDDD supply. Each GPIO pin has ESD diodes to clamp the pin voltage to the
VDDD source. Ensure that the voltage at the pin does not exceed the I/O supply voltage VDDD and drop below VSSD.
For the absolute maximum and minimum GPIO voltage, see the device datasheet. The digital output driver can
be enabled and disabled using the DSI signal from the peripheral or data register (GPIO_PRTx_DR) associated
with the output pin. See “High-speed I/O matrix” on page 145 to know about the peripheral source selection for
the data and to enable or disable control source selection.

Table 18-1.  Input buffer modes

PORT_IB_MODE_SEL PORT_VTRIP_SEL Input Buffer Mode

0b 0b CMOS 

0b 1b LVTTL

1b 0b or 1b 1.8 V (Do not use this setting)
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18.2.3 Drive modes
Each I/O is individually configurable into one of eight drive modes using the Port Configuration register,
GPIO_PRTx_PC. Table 18-2 lists the drive modes. Figure 18-3 is a simplified output driver diagram that shows
the pin view based on each of the eight drive modes.

Figure 18-3.  I/O Drive Mode block diagram

Table 18-2.  Drive mode settings
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• High-Impedance Analog
High-impedance analog mode is the default reset state; both output driver and digital input buffer are turned off.
This state prevents an external voltage from causing a current to flow into the digital input buffer. This drive mode
is recommended for pins that are floating or that support an analog voltage. High-impedance analog pins cannot
be used for digital inputs. Reading the pin state register returns a 0x00 regardless of the data register value. To
achieve the lowest device current in low-power modes, unused GPIOs must be configured to the high-impedance
analog mode.
• High-Impedance Digital
High-impedance digital mode is the standard high-impedance (High Z) state recommended for digital inputs. In
this state, the input buffer is enabled for digital input signals.
• Resistive Pull-Up or Resistive Pull-Down
Resistive modes provide a series resistance in one of the data states and strong drive in the other. Pins can be
used for either digital input or digital output in these modes. If resistive pull-up is required, a ‘1’ must be written
to that pin’s Data Register bit. If resistive pull-down is required, a ‘0’ must be written to that pin’s Data Register.
Interfacing mechanical switches is a common application of these drive modes. The resistive modes are also used
to interface PSoC™ with open drain drive lines. Resistive pull-up is used when input is open drain low and resistive
pull-down is used when input is open drain high.
• Open Drain Drives High and Open Drain Drives Low
Open drain modes provide high impedance in one of the data states and strong drive in the other. The pins can
be used as digital input or output in these modes. Therefore, these modes are widely used in bi-directional digital
communication. Open drain drive high mode is used when signal is externally pulled down and open drain drive
low is used when signal is externally pulled high. A common application for open drain drives low mode is driving
I2C bus signal lines.
• Strong Drive
The strong drive mode is the standard digital output mode for pins; it provides a strong CMOS output drive in both
high and low states. Strong drive mode pins must not be used as inputs under normal circumstances. This mode
is often used for digital output signals or to drive external transistors.
• Resistive Pull-Up and Resistive Pull-Down
In the resistive pull-up and resistive pull-down mode, the GPIO will have a series resistance in both logic 1 and
logic 0 output states. The high data state is pulled up while the low data state is pulled down. This mode is used
when the bus is driven by other signals that may cause shorts.

18.2.3.1 Slew rate control
GPIO pins have fast and slow output slew rate options in strong drive mode; this is configured using PORT_SLOW
bit of the Port Configuration register (GPIO_PRTx_PC[25]). Slew rate is individually configurable for each port.
This bit is cleared by default and the port works in fast slew mode. This bit can be set if a slow slew rate is required.
Slower slew rate results in reduced EMI and crosstalk; hence, the slow option is recommended for low-frequency
signals or signals without strict timing constraints.



Reference manual 145 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

I/O system

18.3 High-speed I/O matrix
The high-speed I/O matrix (HSIOM) is a group of high-speed switches that routes GPIOs to the peripherals inside
the device. As the GPIOs are shared for multiple functions, HSIOM multiplexes the pin and connects to a particular
peripheral selected by the user. PSoC™ 4 HV PA ports connect directly to the HSIOM.The HSIOM_PORT_SELx
register is provided to select the peripheral. It is a 32-bit wide register available for each port, with each pin
occupying four bits. This register provides up to 16 different options for a pin as listed in Table 18-3.

Note The Active and Deep Sleep sources are pin dependent. See the “Pinouts” section of the device datasheet or
more details on the features supported by each pin.
Each port pin can be assigned to one of multiple functions; it can, for example, be an analog I/O or a digital
peripheral function. The pin assignments are shown in Table 18-4.

Table 18-3.  PSoC™ 4 HV PA HSIOM Port settings

HSIOM_PORT_SELx (‘x’ denotes port number and ‘y’ denotes pin number)

Bits Name (SEL‘y’) Value Description (Selects pin ‘y’ source (0  y  7))

4y+3 : 4y DR 0x0 Pin is regular firmware-controlled I/O or connected to dedicated 
hardware block.

– 0x1–0x5 Not used

AMUXA 0x6 Pin is connected to AMUXBUS-A.

AMUXB 0x7 Pin is connected to AMUXBUS-B. 

ACTIVE_0 0x8 ACT#0. Pin-specific Active source #0 (TCPWM, I/O trigger).

ACTIVE_1 0x9 ACT#1. Pin-specific Active source #1 (LIN).

ACTIVE_2 0xA ACT#2. Pin-specific Active source #2 (SCB-UART).

ACTIVE_3 0xB ACT#3. Pin-specific Active source #3 (TCPWM out).

DEEP_SLEEP_0 0xC DP#0. Pin-specific Deep Sleep source #0 (SCB-SPI).

DEEP_SLEEP_1 0xD DP#1. Not used

DEEP_SLEEP_2 0xE DP#2. Pin-specific Deep Sleep source #2 (SCB-I2C, SWD).

DEEP_SLEEP_3 0xF DP#3. Not used

Table 18-4.  Alternate Pin functions
Name Bits I/O pad route name

DR
0x0

AMUXA
0x6

AMUXB
0x7

ACT#0
0x8

ACT#1
0x9

ACT#2
0xA

ACT#3
0xB

DS#0
0xC

DS#1
0xD

DS#2
0xE

DS#3
0xF

HSIOM_PORT_SEL0 register

P0.0 [3:0] GPIO AMUXA AMUXB tcpwm.tr_in[0] lin.lin_rx[0] scb.uart_rx:1 tcpwm.line[0] scb.spi_clk scb.i2c_scl

P0.1 [7:4] GPIO AMUXA AMUXB tcpwm.tr_in[1] lin.lin_tx[0] scb.uart_tx:1 tcpwm.line_
compl[0]

scb.spi_mosi scb.i2c_sda

P0.2 [11:8] GPIO AMUXA AMUXB tcpwm.tr_in[2] lin.lin_en[0] tcpwm.line[1] scb.spi_miso

P0.3 [15:12] GPIO AMUXA AMUXB tcpwm.tr_in[3] tcpwm.line_
compl[1]

scb.spi_select0

P0.4 [19:16] GPIO AMUXA AMUXB peri.virt_in_0 tcpwm.line[2] scb.spi_select1 cpuss.fault_
out[0]

P0.5 [23:20] GPIO AMUXA AMUXB srss.ext_clk tcpwm.line_
compl[2]

scb.spi_select2 cpuss.fault_
out[1]

P0.6 [27:24] GPIO AMUXA AMUXB peri.virt_in_1 scb.spi_select3 cpuss.swd_
data

P0.7 [31:28] GPIO AMUXA AMUXB peri.virt_in_2 cpuss.swd_
clk
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18.4 I/O State on power up
During power up all the GPIOs are in high-impedance analog state and the input buffers are disabled. During run
time, GPIOs can be configured by writing to the associated registers. Note that the pins supporting debug access
port (DAP) connections (SWD lines) are always enabled as SWD lines during power up. However, the DAP
connection can be disabled or reconfigured for general-purpose use through HSIOM. However, this
reconfiguration takes place only after the device boots and start executing code.

18.5 Behavior in low-power modes
Table 18-5 shows the status of GPIOs in low-power modes.

HSIOM_PORT_SEL1 register

VTEMP_
SUP
(P1.0)

[3:0] GPIO / 
VTEMP_SUPa)

AMUXA AMUXB hvss.lin_
alt_rxd

tcpwm.line[3]

VTEMP 
(P1.1)

[7:4] GPIO / VTEMPa AMUXA AMUXB hvss.lin_
alt_txd

VTEMP_
RET
(P1.2)

[11:8] GPIO / 
VTEMP_RETa

AMUXA AMUXB peri.virt_in_3 hvss.lin_
alt_en

tcpwm.line_
compl[3]

a) There is no peripheral logic for operating the external temp sensor function. The CPU should directly control VTEMP_SUP and VTEMP_RET using GPIO_PRTx_DR register 
(after configuring HSIOM_PORT_SEL1 for these I/Os to DR: 0x00).

Table 18-5.  GPIO in Low-Power Modes

Low-Power Mode Status

Sleep • GPIOs are active and can be driven by peripherals such as TCPWM and SCBs, which can 
work in sleep mode.

• Input buffers are active; thus an interrupt on any I/O can be used to wake up the CPU.
• AMUXBUS connections are available.

Deep Sleep • Active connections (ACT#n in Table 18-4) are in latched and hold state, deep-sleep 
connections (DS#n in Table 18-4) remain available. The SCB (I2C and SPI) block can 
work in the Deep Sleep mode and can wake up the CPU on address match or SPI slave 
select event. 

• Input buffers are also active in this mode; pin interrupts are functional.
• AMUXBUS connections are not available.

Table 18-4.  Alternate Pin functions (continued)
Name Bits I/O pad route name

DR
0x0

AMUXA
0x6

AMUXB
0x7

ACT#0
0x8

ACT#1
0x9

ACT#2
0xA

ACT#3
0xB

DS#0
0xC

DS#1
0xD

DS#2
0xE

DS#3
0xF
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18.6 Interrupt
In the PSoC™ 4 HV PA device, all the port pins have the capability to generate interrupts. As shown in Figure 18-3,
the pin signal is routed to the interrupt controller through the GPIO Edge Detect block. 
Figure 18-4 shows the GPIO Edge Detect block architecture.

Figure 18-4.  GPIO Edge Detect block architecture

An edge detector is present at each pin. It is capable of detecting rising edge, falling edge, and both edges without
reconfiguration. The edge detector is configured by writing into the EDGE_SEL bits of the Port Interrupt
Configuration register, GPIO_PRTx_INTR_CFG, as shown in Table 18-6.

Besides the pins, edge detector is also present at the glitch filter output. This filter can be used on one of the pins
of a port. The pin is selected by writing to the FLT_SEL field of the GPIO_PRTx_INTR_CFG register as shown in
Table 18-7.

Table 18-6.  Edge Detector configuration

EDGE_SEL Configuration

00 Interrupt is disabled

01 Interrupt on Rising Edge

10 Interrupt on Falling Edge

11 Interrupt on Both Edges

Table 18-7.  Glitch filter input selection

FLT_SEL Selected Pin

000 Pin 0 is selected

001 Pin 1 is selected

010 Pin 2 is selected

011 Pin 3 is selected

100 Pin 4 is selected

101 Pin 5 is selected

110 Pin 6 is selected

111 Pin 7 is selected

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

50 ns Glitch Filter

Interrupt 
Signal

Pin 1

Pin 2

Pin 3

Pin 4

Pin 0

Pin 5

Pin 6

Pin 7
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The edge detector outputs of a port are ORed together and then routed to the interrupt controller (NVIC in the
CPU subsystem). Thus, there is only one interrupt vector per port. On a pin interrupt, it is required to know which
pin caused an interrupt. This is done by reading the Port Interrupt Status register, GPIO_PRTx_INTR. This register
not only includes the information on which pin triggered the interrupt, it also includes the pin status; it allows the
CPU to read both information in a single read operation. This register has one more important use – to clear the
interrupt. Writing ‘1’ to the corresponding status bit clears the pin interrupt. It is important to clear the interrupt
status bit; otherwise, the interrupt will occur repeatedly for a single trigger or respond only once for multiple
triggers, which is explained later in this section. Also, note that when the Port Interrupt Control Status register is
read when an interrupt is occurring on the corresponding port, it can result in the interrupt not being properly
detected. Therefore, when using GPIO interrupts, it is recommended to read the status register only inside the
corresponding interrupt service routine and not in any other part of the code. Table 18-8 shows the Port Interrupt
Status register bit fields.

The edge detector block output is routed to the Interrupt Source Multiplexer shown in Figure 7-3, which gives an
option of Level and Rising Edge detect. If the Level option is selected, an interrupt is triggered repeatedly as long
as the Port Interrupt Status register bit is set. If the Rising Edge detect option is selected, an interrupt is triggered
only once if the Port Interrupt Status register is not cleared. Thus, it is important to clear the interrupt status bit
if the Edge Detect block is used. 

Table 18-8.  Port Interrupt Status Register

GPIO_PRTx_INTR Description

0000b to 0111b Interrupt status on pin 0 to pin 7. Writing ‘1’ to the corresponding bit clears 
the interrupt

1000b Interrupt status from the glitch filter

10000b to 10111 Pin 0 to Pin 7 status

11000b Glitch filter output status
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18.7 Peripheral connections

18.7.1 Firmware controlled GPIO
See Table 18-3 to know the HSIOM settings for a firmware controlled GPIO. GPIO_PRTx_DR is the data register
used to read and write the output data for the GPIOs. A write operation to this register changes the GPIO output
to the written value. Note that a read operation reflects the output data written to this register and not the
current state of the GPIOs. Using this register, read-modify-write sequences can be safely performed on a port
that has both input and output GPIOs.
In addition to the data register, three other registers – GPIO_PRTx_DR_SET, GPIO_PRTx_DR_CLR, and
GPIO_PRTx_INV – are provided to set, clear, and invert the output data respectively of a specific pin in a port
without affecting other pins. Writing ‘1’ into these registers will set, clear, or invert; writing ‘0’ will have no affect
on the pin status.
GPIO_PRTx_PS is the I/O pad register that provides the state of the GPIOs when read. Writes to this register have
no effect.

18.7.2 Analog I/O
Analog resources, such as the PACSS, which require low-impedance routing paths with hard-wired connections
to pins. These analog connections are always present and are generally enabled by the destination analog
circuitry. See the device datasheet for details on these dedicated pins. Some analog connections use dedicated
analog pads (RS*), others use hard-wired connections to GPIOs (VTEMP*). When using a hard-wired analog
connection to a GPIO, that GPIO should be configured in high-impedance analog mode (see Table 18-2). 
GPIOs also feature connections to a two wire global analog bus called AMUXBUSA and AMUXBUSB. The GPIO
should be configured in high-impedance analog mode and then routed to AMUXBUS using the
HSIOM_PORT_SELx register.

18.7.3 Serial communication block (SCB)
These blocks are connected through HSIOM; there are no dedicated connections (see Table 18-3 for HSIOM port
settings). There is limited connectivity as determined by connections to HSIOM and documented in the Alternate
Pin Functions section of the device datasheet. When the SPI mode is used, the SCB controls the digital output
buffer drive mode for the input pin to keep the pin in the high-impedance state. This functionality overrides the
drive mode settings, which is done using the GPIO_PRTx_PC register.
Refer to the “Serial communications block (SCB)” on page 152 for detailed functionalities.

18.7.4 Timer, counter, and pulse width modulator (TCPWM) block
These blocks are connected through HSIOM; there are no dedicated connections (See Table 18-3). There is
limited connectivity as determined by connections to HSIOM and documented in the Alternate Pin Functions
section of the PSoC™ 4 HV PA datasheet. Note that when the TCPWM block inputs such as start and stop are taken
from the pins, the drive mode can be only high-Z digital because the TCPWM block disables the output buffer at
the input pins.
Refer to the “Timer, Counter, and PWM” on page 244 for detailed functionalities.
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18.7.5 LIN controller (MXLIN)
These blocks are connected through HSIOM; there are no dedicated connections (See Table 18-3). There is
limited connectivity as determined by connections to HSIOM and documented in the Alternate Pin Functions
section of the PSoC™ 4 HV PA datasheet. The MXLIN provides two LIN channels (MXLIN channel 0/1) that both
connect to the HSIOM. 
Refer to the “Local interconnect network (LIN)” on page 207 for detailed functionalities.

18.7.6 LIN PHY
The LIN PHY in the High-Voltage Subsystem (HVSS) connects to the HSIOM through the auxiliary interface, which
makes the LIN PHY look like a set of three GPIO pads (P1.0 to P1.2). These pads are shared with the external
temperature sensor pins (VTEMP/VTEMP_RET/VTEMP_SUP). The HVSS implements an alternate interface, which
allows the PHY to be connected directly to GPIO pads so external signals can directly drive and receive data
through the HVSS LIN PHY connected to the LIN bus. Note that these connections from the VTEMP pins to the LIN
PHY are provided to enable certification of the LIN PHY. They are not expected to be used during normal
operation. See Table 18-5 for detailed settings. 
Refer to the “High-voltage subsystem” on page 345 for detailed LIN PHY functionalities.

18.8 Registers

Table 18-9.  I/O Registers

Name Description

GPIO_INTR_CAUSE Interrupt Port Cause Register

GPIO_DFT_IO_TEST I/O SELF TEST Control Register for DFT purposes only

GPIO_PRTx_DR Port Output Data Register

GPIO_PRTx_DR_SET Port Output Data Set Register

GPIO_PRTx_DR_CLR Port Output Data Clear Register

GPIO_PRTx_DR_INV Port Output Data Inverting Register

GPIO_PRTx_PS Port Pin State Register - Reads the logical pin state of I/O

GPIO_PRTx_PC Port Configuration Register - Configures the output drive mode, input threshold, and 
slew rate

GPIO_PRTx_PC2 Port Secondary Configuration Register - Configures the input buffer of I/O pin

GPIO_PRTx_INTR_CFG Port Interrupt Configuration Register

GPIO_PRTx_INTR Port Interrupt Status Register

HSIOM_PORT_SELx HSIOM Port Selection Register
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Section D:   Digital System
This section encompasses the following chapters:
• “Serial communications block (SCB)” on page 152
• “Local interconnect network (LIN)” on page 207
• “Timer, Counter, and PWM” on page 244

Top Level Architecture

Figure 19-5.  Digital System block diagram
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19 Serial communications block (SCB)
The Serial Communications Block (SCB) of PSoC™ 4 HV PA supports three serial interface protocols: SPI, I2C, and
UART. Only one of the protocols is supported by an SCB at any given time. The PSoC™ 4 HV PA device has one SCB.

19.1 Features
This block supports the following features:
• Standard SPI master and slave functionality with Motorola, Texas Instruments, and National Semiconductor 

protocols
• Standard UART functionality with SmartCard reader, Local Interconnect Network (LIN), and IrDA protocols
• Standard I2C master and slave functionality
• Standard LIN slave functionality with LIN v1.3 and LIN v2.1/2.2 specification compliance
• EZ mode for SPI and I2C, which allows for operation without CPU intervention
• Low-power (Deep Sleep) mode of operation for SPI and I2C protocols (using external clocking)
Each of the three protocols is explained in the following sections.

19.2 Serial peripheral interface (SPI)
The SPI protocol is a synchronous serial interface protocol. Devices operate in either master or slave mode. The
master initiates the data transfer. The SCB supports single-master-multiple-slaves topology for SPI. Multiple
slaves are supported with individual slave select lines. 
You can use the SPI master mode when the PSoC™ has to communicate with one or more SPI slave devices. The
SPI slave mode can be used when the PSoC™ has to communicate with an SPI master device. 

19.2.1 Features
• Supports master and slave functionality
• Supports three types of SPI protocols:

– Motorola SPI – modes 0, 1, 2, and 3
– Texas Instruments SPI, with coinciding and preceding data frame indicator for mode 1
– National Semiconductor (MicroWire) SPI for mode 0

• Supports up to four slave select lines
• Data frame size programmable from 4 bits to 16 bits
• Interrupts or polling CPU interface
• Programmable oversampling
• Supports EZ mode of operation (“Easy SPI protocol” on page 160)

– EZSPI mode allows for operation without CPU intervention
• Supports externally clocked slave operation:

– In this mode, the slave operates in Active, Sleep, and Deep Sleep system power modes
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19.2.2 General description
Figure 19-6 illustrates an example of SPI master with four slaves.

Figure 19-6.  SPI example

A standard SPI interface consists of four signals as follows. 
• SCLK: Serial clock (clock output from the master, input to the slave).
• MOSI: Master-out-slave-in (data output from the master, input to the slave).
• MISO: Master-in-slave-out (data input to the master, output from the slave).
• Slave Select (SS): Typically an active low signal (output from the master, input to the slave).
A simple SPI data transfer involves the following: the master selects a slave by driving its SS line, then it drives
data on the MOSI line and a clock on the SCLK line. The slave uses either of the edges of SCLK depending on the
configuration to capture the data on the MOSI line; it also drives data on the MISO line, which is captured by the
master.
By default, the SPI interface supports a data frame size of eight bits (1 byte). The data frame size can be configured
to any value in the range 4 to 16 bits. The serial data can be transmitted either most significant bit (MSb) first or
least significant bit (LSB) first.
Three different variants of the SPI protocol are supported by the SCB:
• Motorola SPI: This is the original SPI protocol.
• Texas Instruments SPI: A variation of the original SPI protocol, in which data frames are identified by a pulse 

on the SS line.
• National Semiconductors SPI: A half duplex variation of the original SPI protocol.

SPI 
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Slave Select (SS) 2

Slave Select (SS) 4

SPI
Slave 3
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19.2.3 SPI modes of operation

19.2.3.1 Motorola SPI
The original SPI protocol was defined by Motorola. It is a full duplex protocol. Multiple data transfers may happen
with the SS line held at ‘0’. As a result, slave devices must keep track of the progress of data transfers to separate
individual data frames. When not transmitting data, the SS line is held at ‘1’ and SCLK is typically pulled low.

19.2.3.1.1 Modes of Motorola SPI
The Motorola SPI protocol has four different modes based on how data is driven and captured on the MOSI and
MISO lines. These modes are determined by clock polarity (CPOL) and clock phase (CPHA). 
Clock polarity determines the value of the SCLK line when not transmitting data. CPOL = '0' indicates that SCLK
is ‘0’ when not transmitting data. CPOL = ‘1’ indicates that SCLK is ‘1’ when not transmitting data.
Clock phase determines when data is driven and captured. CPHA = 0 means sample (capture data) on the leading
(first) clock edge, while CPHA = 1 means sample on the trailing (second) clock edge, regardless of whether that
clock edge is rising or falling. With CPHA = 0, the data must be stable for setup time before the first clock cycle.
• Mode 0: CPOL is ‘0’, CPHA is ‘0’: Data is driven on a falling edge of SCLK. Data is captured on a rising edge of 

SCLK.
• Mode 1; CPOL is ‘0’, CPHA is ‘1’: Data is driven on a rising edge of SCLK. Data is captured on a falling edge of 

SCLK.
• Mode 2: CPOL is ‘1’, CPHA is ‘0’: Data is driven on a rising edge of SCLK. Data is captured on a falling edge of 

SCLK.
• Mode 3: CPOL is ‘1’, CPHA is ‘1’: Data is driven on a falling edge of SCLK. Data is captured on a rising edge of 

SCLK.
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Figure 19-7 illustrates driving and capturing of MOSI/MISO data as a function of CPOL and CPHA.

Figure 19-7.  SPI Motorola, 4 Modes
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Figure 19-8 illustrates a single 8-bit data transfer and two successive 8-bit data transfers in mode 0 (CPOL is ‘0’,
CPHA is ‘0’).

Figure 19-8.  SPI Motorola data transfer example

19.2.3.1.2 Configuring SCB for SPI Motorola Mode
To configure the SCB for SPI Motorola mode, set various register bits in the following order: 
1. Select SPI by writing ‘01’ to the MODE (bits [25:24]) of the SCB_CTRL register.
2. Select SPI Motorola mode by writing ‘00’ to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.
3. Select the mode of operation in Motorola by writing to the CPHA and CPOL fields (bits 2 and 3 respectively) of 

the SCB_SPI_CTRL register.
4. Follow steps 2 to 4 mentioned in “Enabling and initializing SPI” on page 164. 
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19.2.3.2 Texas Instruments SPI
The Texas Instruments’ SPI protocol redefines the use of the SS signal. It uses the signal to indicate the start of a
data transfer, rather than a low active slave select signal, as in the case of Motorola SPI. As a result, slave devices
need not keep track of the progress of data transfers to separate individual data frames. The start of a transfer is
indicated by a high active pulse of a single bit transfer period. This pulse may occur one cycle before the
transmission of the first data bit, or may coincide with the transmission of the first data bit. The TI SPI protocol
supports only mode 1 (CPOL is ‘0’ and CPHA is ‘1’): data is driven on a rising edge of SCLK and data is captured on
a falling edge of SCLK.
Figure 19-9 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse
precedes the first data bit. Note how the SELECT pulse of the second data transfer coincides with the last data bit
of the first data transfer.

Figure 19-9.  SPI TI data transfer example
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LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out
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Figure 19-10 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse
coincides with the first data bit of a frame.

Figure 19-10.  SPI TI data transfer example

19.2.3.2.1 Configuring SCB for SPI TI Mode
To configure the SCB for SPI TI mode, set various register bits in the following order: 
1. Select SPI by writing ‘01’ to the MODE (bits [25:24]) of the SCB_CTRL register.
2. Select SPI TI mode by writing ‘01’ to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.
3. Select the mode of operation in TI by writing to the SELECT_PRECEDE field (bit 1) of the SCB_SPI_CTRL 

register (‘1’ configures the SELECT pulse to precede the first bit of next frame and ‘0’ otherwise).
4. Follow steps 2 to 5 mentioned in “Enabling and initializing SPI” on page 164. 
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LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out
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CPOL=0, CPHA=1   two successive data transfers
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19.2.3.3 National Semiconductors SPI
The National Semiconductors’ SPI protocol is a half duplex protocol. Rather than transmission and reception
occurring at the same time, they take turns. The transmission and reception data sizes may differ. A single “idle”
bit transfer period separates transmission from reception. However, the successive data transfers are NOT
separated by an idle bit transfer period.
The National Semiconductors SPI protocol only supports mode 0: data is driven on a falling edge of SCLK and
data is captured on a rising edge of SCLK.
Figure 19-11 illustrates a single data transfer and two successive data transfers. In both cases the transmission
data transfer size is eight bits and the reception data transfer size is four bits.

Figure 19-11.  SPI NS data transfer example

19.2.3.3.1 Configuring SCB for SPI NS Mode
To configure the SCB for SPI NS mode, set various register bits in the following order: 
1. Select SPI by writing ‘01’ to the MODE (bits [25:24]) of the SCB_CTRL register.
2. Select SPI NS mode by writing ‘10’ to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.
3. Follow steps 2 to 5 mentioned in “Enabling and initializing SPI” on page 164.
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LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out
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19.2.4 Using SPI Master to Clock Slave
In a normal SPI Master mode transmission, the SCLK is generated only when the SCB is enabled and data is being
transmitted. This can be changed to always generate a clock on the SCLK line as long as the SCB is enabled. This
is used when the slave uses the SCLK for functional operations other than just the SPI functionality. To enable
this, write ‘1’ to the SCLK_CONTINUOUS (bit 5) of the SCB_SPI_CTRL register.

19.2.5 Easy SPI protocol
The easy SPI (EZSPI) protocol is based on the Motorola SPI operating in any mode (0, 1, 2, 3). It allows
communication between master and slave without the need for CPU intervention at the level of individual
frames.
The EZSPI protocol defines an 8-bit EZ address that indexes a memory array (32-entry array of eight bit per entry
is supported) located on the slave device. To address these 32 locations, the lower five bits of the EZ address are
used. All EZSPI data transfers have 8-bit data frames. 
Note: The SCB has a FIFO memory, which is a 16 word by 16-bit SRAM, with byte write enable. The access
methods for EZ and non-EZ functions are different. In non-EZ mode, the FIFO is split into TXFIFO and RXFIFO. Each
has eight entries of 16 bits per entry. The 16-bit width per entry is used to accommodate configurable data width.
In EZ mode, it is used as a single 32x8 bit EZFIFO because only a fixed 8-bit width data is used in EZ mode.
EZSPI has three types of transfers: a write of the EZ address from the master to the slave, a write of data from the
master to an addressed slave memory location, and a read by the master from an addressed slave memory
location.

19.2.5.1 EZ address write
A write of the EZ address starts with a command byte (0x00) on the MOSI line indicating the master’s intent to
write the EZ address. The slave then drives a reply byte on the MISO line to indicate that the command is observed
(0xFE) or not (0xFF). The second byte on the MOSI line is the EZ address.

19.2.5.2 Memory array write
A write to a memory array index starts with a command byte (0x01) on the MOSI line indicating the master’s intent
to write to the memory array. The slave then drives a reply byte on the MISO line to indicate that the command
was registered (0xFE) or not (0xFF). Any additional write data bytes on the MOSI line are written to the memory
array at locations indicated by the communicated EZ address. The EZ address is automatically incremented by
the slave as bytes are written into the memory array. When the EZ address exceeds the maximum number of
memory entries (32), it remains there and does not wrap around to 0.

19.2.5.3 Memory array read
A read from a memory array index starts with a command byte (0x02) on the MOSI line indicating the master’s
intent to read from the memory array. The slave then drives a reply byte on the MISO line to indicate that the
command was registered (0xFE) or not (0xFF). Any additional read data bytes on the MISO line are read from the
memory array at locations indicated by the communicated EZ address. The EZ address is automatically
incremented by the slave as bytes are read from the memory array. When the EZ address exceeds the maximum
number of memory entries (32), it remains there and does not wrap around to 0.
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Figure 19-12 illustrates the write of EZ address, write to a memory array and read from a memory array
operations in the EZSPI protocol.

Figure 19-12.  EZSPI example
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LEGEND :
CPOL : Clock Polarity                                               0x00 : Write EZ address
CPHA : Clock Phase                                                 0x01 : Write DATA
SCLK : SPI Interface Clock                                       0x02 : Read DATA
MISO : SPI Master-In-Slave-Out                               0xFE : slave ready
MOSI : SPI Master-Out-Slave-In                               0xFF  : slave busy
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19.2.6 Configuring SCB for EZSPI Mode
By default, the SCB is configured for non-EZ mode of operation. To configure the SCB for EZSPI mode, set the
register bits in the following order: 
1. Select EZ mode by writing ‘1’ to the EZ_MODE bit (bit 10) of the SCB_CTRL register.
2. Use continuous transmission mode for the transmitter by writing ‘1’ to the CONTINUOUS bit of SCB_SPI_CTRL 

register. 
3. Follow steps 2 to 5 mentioned in “Enabling and initializing SPI” on page 164.

19.2.7 SPI registers
The SPI interface is controlled using a set of 32-bit control and status registers listed in Table 19-10. For more
information on these registers, see the PSoC™ 4 HV PA Registers TRM.

Table 19-10.  SPI registers

Register name Operation

SCB_CTRL Enables the SCB, selects the type of serial interface (SPI, UART, I2C), and selects 
internally and externally clocked operation, EZ and non-EZ modes of operation.

SCB_STATUS In EZ mode, this register indicates whether the externally clocked logic is 
potentially using the EZ memory.

SCB_SPI_CTRL Configures the SPI as either a master or a slave, selects SPI protocols (Motorola, TI, 
National) and clock-based submodes in Motorola SPI (modes 0,1, 2, 3), selects the 
type of SELECT signal in TI SPI. When SPI works as slave mode, only the first chip 
select pin SPI_SELECT[0] can be used in slave mode.

SCB_SPI_STATUS Indicates whether the SPI bus is busy and sets the SPI slave EZ address in the 
internally clocked mode.

SCB_TX_CTRL Specifies the data frame width and specifies whether MSB or LSB is the first bit in 
transmission.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the 
receiver. Also decides whether a median filter is to be used on the input interface 
lines.

SCB_TX_FIFO_CTRL Specifies the trigger level, clears the transmitter FIFO and shift registers, and 
performs the FREEZE operation of the transmitter FIFO. 

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the 
receiver.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of 
a PUSH operation.

SCB_RX_FIFO_RD Holds the data frame read from the receiver FIFO. Reading a data frame removes 
the data frame from the FIFO - behavior is similar to that of a POP operation. This 
register has a side effect when read by software: a data frame is removed from the 
FIFO.

SCB_RX_FIFO_RD_SILENT Holds the data frame read from the receiver FIFO. Reading a data frame does not 
remove the data frame from the FIFO; behavior is similar to that of a PEEK 
operation.

SCB_RX_MATCH Holds the slave device address and mask values.
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19.2.8 SPI interrupts
The SPI supports both internal and external interrupt requests. The internal interrupt events are listed here.
Custom ISRs can be used by connecting external interrupt component to the interrupt output of the SPI
component (with external interrupts enabled).
The SPI predefined interrupts can be classified as TX interrupts and RX interrupts. The TX interrupt output is the
logical OR of the group of all possible TX interrupt sources. This signal goes high when any of the enabled TX
interrupt sources are true. The RX interrupt output is the logical OR of the group of all possible RX interrupt
sources. This signal goes high when any of the enabled Rx interrupt sources are true. Various interrupt registers
are used to determine the actual source of the interrupt. 
The SPI supports interrupts on the following events: 
• SPI master transfer done
• SPI Bus Error - Slave deselected at an unexpected time in the SPI transfer
• SPI slave deselected after any EZSPI transfer occurred
• SPI slave deselected after a write EZSPI transfer occurred
• TX

– TX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL
– TX FIFO is not full
– TX FIFO is empty
– TX FIFO overflow
– TX FIFO underflow

• RX
– RX FIFO is full
– RX FIFO is not empty
– RX FIFO overflow
– RX FIFO underflow

• SPI Externally clocked
– Wake up request on slave select
– SPI STOP detection at the end of each transfer
– SPI STOP detection at the end of a write transfer
– SPI STOP detection at the end of a read transfer

Note The SPI interrupt signal is hard-wired to the Cortex-M0 NVIC and cannot be routed to external pins.

SCB_TX_FIFO_STATUS Indicates the number of bytes stored in the transmitter FIFO, the location from 
which a data frame is read by the hardware (read pointer), the location from which 
a new data frame is written (write pointer), and decides if the transmitter FIFO holds 
the valid data.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for 
the receiver.

SCB_EZ_DATA Holds the data in EZ memory location 

Table 19-10.  SPI registers (continued)

Register name Operation
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19.2.9 Enabling and initializing SPI
The SPI must be programmed in the following order:
1. Program protocol specific information using the SCB_SPI_CTRL register, according to Table 19-15. This

includes selecting the submodes of the protocol and selecting master-slave functionality. EZSPI can be used
with slave mode only.

2. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL 
registers, as shown in Table 19-16:
a) Specify the data frame width. This should always be 8 for EZSPI.
b) Specify whether MSB or LSB is the first bit to be transmitted/received. This should always be MSB first for 

EZSPI.
3. Program the transmitter and receiver FIFOs using the SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL registers 

respectively, as shown in Table 19-17:
a) Set the trigger level.
b) Clear the transmitter and receiver FIFO and Shift registers.
c) Freeze the TX and RX FIFO.

4. Program SCB_CTRL register to enable the SCB block. Also select the mode of operation. These register bits are 
shown in Table 19-11.

5. Enable the block (write a ‘1’ to the ENABLED bit of the SCB_CTRL register). After the block is enabled, control 
bits should not be changed. Changes should be made after disabling the block; for example, to modify the 
operation mode (from Motorola mode to TI mode) or to go from externally clocked to internally clocked 
operation. The change takes effect only after the block is re-enabled. Note that re-enabling the block causes 
re-initialization and the associated state is lost (for example, FIFO content).

Table 19-11.  SCB_CTRL Register

Bits Name Value Description

[25:24] MODE 00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED 0 SCB block disabled

1 SCB block enabled

Table 19-12.  SCB_SPI_CTRL Register

Bits Name Value Description

[25:24] MODE 00 SPI Motorola submode. (This is the only mode 
supported for EZSPI.)

01 SPI Texas Instruments submode.

10 SPI National Semiconductors submode.

11 Reserved.

31 MASTER_MODE 0 Slave mode. (This is the only mode supported for 
EZSPI.)

1 Master mode.
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19.2.10 Internally and externally clocked SPI operations
The SCB supports both internally and externally clocked operations for SPI and I2C functions. An internally
clocked operation uses a clock provided by the chip. An externally clocked operation uses a clock provided by the
serial interface. Externally clocked operation enables operation in the Deep Sleep system power mode.
Internally clocked operation uses the high-frequency clock (HFCLK) of the system. For more information on
system clocking, see the “Clocking system” on page 93. It also supports oversampling. Oversampling is
implemented with respect to the high-frequency clock. The OVS (bits [3:0]) of the SCB_CTRL register specify the
oversampling. 
In SPI master mode, the valid range for oversampling is 4 to 16. Hence, with a clock speed of 48 MHz, the
maximum bit rate is 12 Mbps. However, if you consider the I/O cell and routing delays, the oversampling must be
set between 6 and 16 for proper operation. So, the maximum bit rate is 8 Mbps. 
Note To achieve maximum possible bit rate, LATE_MISO_SAMPLE must be set to ‘1’ in SPI master mode. This has
a default value of ‘0’.
In SPI slave mode, the OVS field (bits [3:0]) of SCB_CTRL register is not used. However, there is a frequency
requirement for the SCB clock with respect to the interface clock (SCLK). This requirement is expressed in terms
of the ratio (SCB clock/SCLK). This ratio is dependent on two fields: MEDIAN of SCB_RX_CTRL register and
LATE_MISO_SAMPLE of SCB_CTRL register. If the external SPI master supports Late MISO sampling and if the
median bit is set to ‘0’, the maximum data rate that can be achieved is 8 Mbps. If the external SPI master does not
support late MISO sampling, the maximum data rate is limited to 4 Mbps (with the median bit set to ‘0’). Based on
these bits, the maximum bit rates are given in Table 19-15.

Table 19-13.  SCB_TX_CTRL/SCB_RX_CTRL Registers

Bits Name Description

[3:0] DATA_ WIDTH ‘DATA_WIDTH + 1’ is the number of bits in the transmitted or received data 
frame. The valid range is [3, 15]. This does not include start, stop, and 
parity bits. For EZSPI, this value should be ‘0b0111’.

8 MSB_FIRST 1 = MSB first
0 = LSB first
For EZSPI, this value should be 1.

9 MEDIAN This is for SCB_RX_CTRL only.
Decides whether a digital three-tap median filter is applied on the input 
interface lines. This filter should reduce susceptibility to errors, but it 
requires higher oversampling values.
1 = Enabled
0 = Disabled

Table 19-14.  SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL Registers

Bits Name Description

[3:0] TRIGGER_LEVEL Trigger level. When the transmitter FIFO has less entries or receiver FIFO 
has more entries than the value of this field, a transmitter or receiver 
trigger event is generated in the respective case.

16 CLEAR When ‘1’, the transmitter or receiver FIFO and the shift registers are 
cleared.

17 FREEZE When ‘1’, hardware reads/writes to the transmitter or receiver FIFO have 
no effect. Freeze does not advance the TX or RX FIFO read/write pointer.
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Externally clocked operation is limited to:
• Slave functionality.
• EZ functionality. EZ functionality uses the block's SRAM as a memory structure. Non-EZ functionality uses the 

block’s SRAM as TX and RX FIFOs; FIFO support is not available in externally clocked operation.
• Motorola mode 0, 1, 2, 3.
Externally clocked EZ mode of operation can support a data rate of 48 Mbps (at the interface clock of 48 MHz).
Internally and externally clocked operation is determined by two register fields of the SCB_CTRL register:
• EC_AM_MODE: Indicates whether SPI slave selection is internally (‘0’) or externally (‘1’) clocked. SPI slave 

selection comprises the first part of the protocol.
• EC_OP_MODE: Indicates whether the rest of the protocol operation (besides SPI slave selection) is internally 

(‘0’) or externally (‘1’) clocked. As mentioned earlier, externally clocked operation does NOT support non-EZ 
functionality.

These two register fields determine the functional behavior of SPI. The register fields should be set based on the
required behavior in Active, Sleep, and Deep Sleep system power mode. Improper setting may result in faulty
behavior in certain system power modes. Table 19-16 and Table 19-17 describe the settings for SPI (in non-EZ
and EZ modes).

Table 19-15.  SPI Slave Maximum Data Rates

Maximum Bit Rate at Peripheral 
Clock of 48 MHz

Ratio requirement Median of 
SCB_RX_CTRL

LATE_MISO_SAMPLE of 
SCB_CTRL

8 Mbps 6 0 1

6 Mbps 8 1 1

4 Mbps 12 0 0

3 Mbps 16 1 0
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19.2.10.1 Non-EZ mode of operation
In non-EZ mode there are two possible settings. As externally clocked operation is not supported for non-EZ
functionality (no FIFO support), EC_OP_MODE should always be set to ‘0’. However, EC_AM_MODE can be set to
‘0’ or ‘1’. Table 19-16 gives an overview of the possibilities.

EC_OP_MODE is ‘0’ and EC_AM_MODE is ‘0’: This setting only works in Active and Sleep system power modes. The
entire block's functionality is provided in the internally clocked domain.
EC_OP_MODE is ‘0’ and EC_AM_MODE is ‘1’: This setting works in Active and Sleep system power mode and
provides limited (wake up) functionality in Deep Sleep system power mode. SPI slave selection is performed by
the externally clocked logic: in Active system power mode, both internally and externally clocked logic are active,
and in Deep Sleep system power mode, only the externally clocked logic is active. When the externally clocked
logic detects slave selection, it sets a wakeup interrupt cause bit, which can be used to generate an interrupt to
wake up the CPU.
• In Active system power mode, the CPU and the block’s internally clocked operation are active and the wakeup 

interrupt cause is disabled (associated MASK bit is ‘0’). But in the Sleep mode, wakeup interrupt cause can be 
either enabled or disabled (MASK bit can be either ‘1’ or ‘0’) based on the application. The remaining 
operations in the Sleep mode are same as that of the Active mode. The internally clocked operation takes care 
of the ongoing SPI transfer.

• In Deep Sleep system power mode, the CPU needs to be woken up and the wakeup interrupt cause is enabled 
(MASK bit is ‘1’). Waking up takes time, so the ongoing SPI transfer is negatively acknowledged (‘1’ bit or 0xFF 
byte is sent out on the MISO line) and the internally clocked operation takes care of the next SPI transfer when 
it is woken up.

Table 19-16.  SPI Operation in Non-EZ Mode

SPI (non-EZ) Mode

System Power Mode EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep Selection using 
internal clock. 
Operation using 
internal clock.

Selection using 
external clock: 
Operation using 
internal clock.
In Active mode, the 
Wakeup interrupt 
cause is disabled 
(MASK = 0).
In Sleep mode, the 
MASK bit can be 
configured by the 
user.

Not supported Not supported

Deep Sleep Not supported Selection using 
external clock: 
Wakeup interrupt 
cause is enabled 
(MASK = 1).
Send 0xFF.
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19.2.10.2 EZ mode of operation
EZ mode has three possible settings. EC_AM_MODE can be set to ‘0’ or ‘1’ when EC_OP_MODE is ‘0’ and
EC_AM_MODE must be set to ‘1’ when EC_OP_MODE is ‘1’. Table 19-17 gives an overview of the possibilities. The
gray cells indicate a possible, yet not recommended, setting because it involves a switch from the externally
clocked logic (slave selection) to the internally clocked logic (rest of the operation). The combination
EC_AM_MODE = 0 and EC_OP_MODE = 1 is invalid and the block will not respond.

Table 19-17.  SPI Operation in EZ Mode

SPI, EZ Mode

System Power Mode EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1 

Active and Sleep Selection using 
internal clock.
Operation using 
internal clock.

Selection using 
external clock.
Operation using 
internal clock.
In Active mode, the 
Wakeup interrupt 
cause is disabled 
(MASK = 0).
In Sleep mode, the 
MASK bit can be 
configured by the 
user.

Invalid Selection using 
external clock.
Operation using 
external clock.

Deep Sleep Not supported Selection using 
external clock: 
Wakeup interrupt 
cause is enabled 
(MASK = 1). 
Send 0xFF.

Selection using 
external clock.
Operation using 
external clock.
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EC_OP_MODE is ‘0’ and EC_AM_MODE is ‘0’: This setting only works in Active and Sleep system power modes. The
entire block’s functionality is provided in the internally clocked domain.
EC_OP_MODE is ‘0’ and EC_AM_MODE is ‘1’: This setting works in Active and Sleep system power modes and
provides limited (wake up) functionality in Deep Sleep system power mode. SPI slave selection is performed by
the externally clocked logic: in Active system power mode, both internally and externally clocked logic are active,
and in Deep Sleep system power mode, only the externally clocked logic is active. When the externally clocked
logic detects slave selection, it sets a wakeup interrupt cause bit, which can be used to generate an interrupt to
wake up the CPU.
• In Active system power mode, the CPU and the block’s internally clocked operation are active and the wakeup 

interrupt cause is disabled (associated MASK bit is ‘0’). But in Sleep mode, wakeup interrupt cause can be 
either enabled or disabled (MASK bit can be either ‘1’ or ‘0’) based on the application. The remaining 
operations in the Sleep mode are same as that of the Active mode. The internally clocked operation takes care 
of the ongoing SPI transfer.

• In Deep Sleep system power mode, the CPU needs to be woken up and the wakeup interrupt cause is enabled 
(MASK bit is ‘1’). Waking up takes time, so the ongoing SPI transfer is negatively acknowledged (‘1’ bit or 0xFF 
byte is sent out on the MISO line) and the internally clocked operation takes care of the next SPI transfer when 
it is woken up.

EC_OP_MODE is ‘1’ and EC_AM_MODE is ‘1’: This setting works in Active, Sleep, and Deep Sleep system power
modes. The SCB functionality is provided in the externally clocked domain. Note that this setting results in
externally clocked accesses to the block's SRAM. These accesses may conflict with internally clocked accesses
from the device. This may cause wait states or bus errors. The field FIFO_BLOCK of the SCB_CTRL register
determines whether wait states (‘1’) or bus errors (‘0’) are generated.
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19.3 UART
The Universal Asynchronous Receiver/Transmitter (UART) protocol is an asynchronous serial interface protocol.
UART communication is typically point-to-point. The UART interface consists of two signals:
• TX: Transmitter output
• RX: Receiver input

19.3.1 Features
• Asynchronous transmitter and receiver functionality
• Supports a maximum data rate of 3 Mbps
• Supports UART protocol

– Standard UART
– SmartCard (ISO7816) reader.
– IrDA

• Supports Local Interconnect Network (LIN)
– Break detection
– Baud rate detection
– Collision detection (ability to detect that a driven bit value is not reflected on the bus, indicating that 

another component is driving the same bus)
• Multi-processor mode
• Data frame size programmable from 4 to 9 bits
• Programmable number of STOP bits, which can be set in terms of half bit periods between 1 and 4 
• Parity support (odd and even parity)
• Interrupt or polling CPU interface
• Programmable oversampling



Reference manual 171 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Serial communications block (SCB)

19.3.2 General description
Figure 19-13 illustrates a standard UART TX and RX.

Figure 19-13.  UART example

A typical UART transfer consists of a “Start Bit” followed by multiple “Data Bits”, optionally followed by a “Parity
Bit” and finally completed by one or more “Stop Bits”. The Start and Stop bits indicate the start and end of data
transmission. The Parity bit is sent by the transmitter and is used by the receiver to detect single bit errors. As the
interface does not have a clock (asynchronous), the transmitter and receiver use their own clocks; also, they need
to agree upon the period of a bit transfer.
Three different serial interface protocols are supported:
• Standard UART protocol

– Multi-Processor Mode
– Local Interconnect Network (LIN)

• SmartCard, similar to UART, but with a possibility to send a negative acknowledgement
• IrDA, modification to the UART with a modulation scheme
By default, UART supports a data frame width of eight bits. However, this can be configured to any value in the
range of 4 to 9. This does not include start, stop, and parity bits. The number of stop bits can be in the range of 1
to 4. The parity bit can be either enabled or disabled. If enabled, the type of parity can be set to either even parity
or odd parity. The option of using the parity bit is available only in the Standard UART and SmartCard UART
modes. For IrDA UART mode, the parity bit is automatically disabled. Figure 19-18 depicts the default
configuration of the UART interface of the SCB.
Note: UART interface does not support external clocking operation. Hence, UART operates only in the Active and
Sleep system power modes. 

UART UART

TX

RX
TX

RX
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19.3.3 UART modes of operation

19.3.3.1 Standard protocol
A typical UART transfer consists of a start bit followed by multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start bit value is always ‘0’, the data bits values are dependent on
the data transferred, the parity bit value is set to a value guaranteeing an even or odd parity over the data bits,
and the stop bit value is ‘1’. The parity bit is generated by the transmitter and can be used by the receiver to detect
single bit transmission errors. When not transmitting data, the TX line is ‘1’ – the same value as the stop bits. 
Because the interface does not have a clock, the transmitter and receiver need to agree upon the period of a bit
transfer. The transmitter and receiver have their own internal clocks. The receiver clock runs at a higher
frequency than the bit transfer frequency, such that the receiver may oversample the incoming signal. 
The transition of a stop bit to a start bit is represented by a change from ‘1’ to ‘0’ on the TX line. This transition
can be used by the receiver to synchronize with the transmitter clock. Synchronization at the start of each data
transfer allows error-free transmission even in the presence of frequency drift between transmitter and receiver
clocks. The required clock accuracy is dependent on the data transfer size. 
The stop period or the amount of stop bits between successive data transfers is typically agreed upon between
transmitter and receiver, and is typically in the range of 1 to 3-bit transfer periods. 
Figure 19-14 illustrates the UART protocol.

Figure 19-14.  UART, Standard Protocol example

The receiver oversamples the incoming signal; the value of the sample point in the middle of the bit transfer
period (on the receiver’s clock) is used. Figure 19-15 illustrates this.

Figure 19-15.  UART, Standard Protocol example (Single Sample)

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)

LEGEND:
TX / RX : Transmit or Receive line

TX / RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line
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Alternatively, three samples around the middle of the bit transfer period (on the receiver’s clock) are used for a
majority vote to increase accuracy. Figure 19-16 illustrates this.

Figure 19-16.  UART, Standard Protocol (Multiple Samples)

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line
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19.3.3.1.1 UART Multi-Processor Mode
The UART_MP (multi-processor) mode is defined with single-master-multi-slave topology, as Figure 19-17
shows. This mode is also known as UART 9-bit protocol because the data field is nine bits wide. UART_MP is part
of Standard UART mode.

Figure 19-17.  UART MP mode bus connections

The main properties of UART_MP mode are: 
• Single master with multiple slave concept (multi-drop network).
• Each slave is identified by a unique address.
• Using 9-bit data field, with the ninth bit as address/data flag (MP bit). When set high, it indicates an address 

byte; when set low it indicates a data byte. A data frame is illustrated in Figure 19-18.
• Parity bit is disabled.

Figure 19-18.  UART MP data frame

The SCB can be used as either master or slave device in UART_MP mode. Both SCB_TX_CTRL and SCB_RX_CTRL
registers should be set to 9-bit data frame size. When the SCB works as UART_MP master device, the firmware
changes the MP flag for every address or data frame. When it works as UART_MP slave device, the MP_MODE field
of the SCB_UART_RX_CTRL register should be set to ‘1’. The SCB_RX_MATCH register should be set for the slave
address and address mask. The matched address is written in the RX_FIFO when ADDR_ACCEPT field of the
SCB_CTRL register is set to ‘1’. If received address does not match its own address, then the interface ignores the
following data, until next address is received for compare.

UART MP
Master

UART MP
Slave 1

UART MP
Slave 2

UART MP
Slave 3

TX

RXTX TXTX

RX

RXRX

Master TX

Master RX

DATA DATA DATA DATA DATA DATA DATA DATAIDLE START STOPMP

DATA Field
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19.3.3.1.2 UART Local Interconnect Network (LIN) Mode
The LIN protocol is supported by the SCB as part of the standard UART. LIN is designed with single-master-multi-
slave topology. There is one master node and multiple slave nodes on the LIN bus. The SCB UART supports both
LIN master and slave functionality. The LIN specification defines both physical layer (layer 1) and data link layer
(layer 2). Figure 19-19 illustrates the UART_LIN and LIN Transceiver.

Figure 19-19.  UART_LIN and LIN Transceiver

LIN protocol defines two tasks:
• Master task: This task involves sending a header packet to initiate a LIN transfer. 
• Slave task: This task involves transmitting or receiving a response.
The master node supports master task and slave task; the slave node supports only slave task, as shown in
Figure 19-20.

Figure 19-20.  LIN Bus Nodes and Tasks
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19.3.3.1.3 LIN Frame Structure
LIN is based on the transmission of frames at predetermined moments of time. A frame is divided into header and
response fields, as shown in Figure 19-21.
• The header field consists of:

– Break field (at least 13 bit periods with the value ‘0’).
– Sync field (a 0x55 byte frame). A sync field can be used to synchronize the clock of the slave task with that 

of the master task.
– Identifier field (a frame specifying a specific slave).

• The response field consists of data and checksum.

Figure 19-21.  LIN Frame Structure

In LIN protocol communication, the least significant bit (LSB) of the data is sent first and the most significant bit
(MSB) last. The start bit is encoded as zero and the stop bit is encoded as one. The following sections describe all
the byte fields in the LIN frame.
Break Field
Every new frame starts with a break field, which is always generated by the master. The break filed has logical
zero with a minimum of 13 bit times and followed by a break delimiter. The break field structure is as shown in
Figure 19-22.

Figure 19-22.  LIN Break Field

Sync Field
This is the second field transmitted by the master in the header field; its value is 0x55. A sync field can be used to
synchronize the clock of the slave task with that of the master task for automatic baud rate detection.
Figure 19-23 shows the LIN sync field structure.

Figure 19-23.  LIN Sync Field
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Protected identifier (PID) Field
A protected identifier field consists of two sub-fields: the frame identifier (bits 0–5) and the parity (bit 6 and bit 7). 
• Frame identifier: The frame identifiers are split into three categories

– Values 0 to 59 (0x3B) are used for signal carrying frames
– 60 (0x3C) and 61 (0x3D) are used to carry diagnostic and configuration data
– 62 (0x3E) and 63 (0x3F) are reserved for future protocol enhancements

• Parity: Frame identifier bits are used to calculate the parity
Figure 19-24 shows the PID field structure.

Figure 19-24.  PID Field

Data
In LIN, every frame can carry a minimum of one byte and maximum of 8 bytes of data. Here, the LSB of the data
byte is sent first and the MSB of the data byte is sent last.
Checksum
The checksum is the last byte field in the LIN frame. It is calculated by inverting the 8-bit sum along with carryover
of all data bytes only or the 8-bit sum with the carryover of all data bytes and the PID field. The two types of
checksums in LIN frames are:
• Classic checksum: the checksum calculated over all the data bytes only (used in LIN 1.x slaves).
• Enhanced checksum: the checksum calculated over all the data bytes along with the protected identifier 

(used in LIN 2.x slaves).
LIN Frame Types
The type of frame refers to the conditions that need to be valid to transmit the frame. According to the LIN
specification, there are five different types of LIN frames. A node or cluster does not have to support all frame
types.
Unconditional Frame
These frames carry the signals and their frame identifiers (of 0x00 to 0x3B range). The subscriber will receive the
frames and make it available to the application; the publisher of the frame will provide the response to the
header.
Event-Triggered Frame
The purpose of an event-triggered frame is to increase the responsiveness of the LIN cluster without assigning too
much of the bus bandwidth to polling of multiple slave nodes with seldom occurring events. Event-triggered
frames carry the response of one or more unconditional frames. The unconditional frames associated with an
event triggered frame should:
• Have equal length
• Use the same checksum model (either classic or enhanced)
• Reserve the first data field to its protected identifier
• Be published by different slave nodes
• Not be included directly in the same schedule table as the event-triggered frame
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Sporadic Frame
The purpose of the sporadic frames is to merge some dynamic behavior into the schedule table without affecting
the rest of the schedule table. These frames have a group of unconditional frames that share the frame slot. When
the sporadic frame is due for transmission, the unconditional frames are checked if they have any updated
signals. If no signals are updated, no frame will be transmitted and the frame slot will be empty.
Diagnostic Frames
Diagnostic frames always carry transport layer, and contains eight data bytes.
The frame identifier for diagnostic frame is:
• Master request frame (0x3C), or
• Slave response frame (0x3D)
Before transmitting a master request frame, the master task queries its diagnostic module to see if it will be
transmitted or if the bus will be silent. A slave response frame header will be sent unconditionally. The slave tasks
publish and subscribe to the response according to their diagnostic modules.
Reserved Frames
These frames are reserved for future use; their frame identifiers are 0x3E and 0x3F.
LIN Go-To-Sleep and Wake-Up
The LIN protocol has the feature of keeping the LIN bus in Sleep mode, if the master sends the go-to-sleep
command. The go-to-sleep command is a master request frame (ID = 0x3C) with the first byte field is equal to 0x00
and rest set to 0xFF. The slave node application may still be active after the go-to-sleep command is received.
This behavior is application specific. The LIN slave nodes automatically enter Sleep mode if the LIN bus inactivity
is more than four seconds.
Wake-up can be initiated by any node connected to the LIN bus – either LIN master or any of the LIN slaves by
forcing the bus to be dominant for 250 µs to 5 ms. Each slave should detect the wakeup request and be ready to
process headers within 100 ms. The master should also detect the wakeup request and start sending headers
when the slave nodes are active.
To support LIN, a dedicated (off-chip) line driver/receiver is required. Supply voltage range on the LIN bus is 7 V
to 18 V. Typically, LIN line drivers will drive the LIN line with the value provided on the SCB TX line and present the
value on the LIN line to the SCB RX line. By comparing TX and RX lines in the SCB, bus collisions can be detected
(indicated by the SCB_UART_ARB_LOST field of the SCB_INTR_TX register).
Configuring the SCB as Standard UART Interface
To configure the SCB as a standard UART interface, set various register bits in the following order:
1. Configure the SCB as UART interface by writing ‘10’ to the MODE field (bits [25:24]) of the SCB_CTRL register.
2. Configure the UART interface to operate as a Standard protocol by writing ‘00’ to the MODE field (bits [25:24]) 

of the SCB_UART_CTRL register.
3. To enable the UART MP Mode or UART LIN Mode, write ‘1’ to the MP_MODE (bit 10) or LIN_MODE (bit 12) 

respectively of the SCB_UART_RX_CTRL register.
4. Follow steps 2 to 5 described in “Enabling and initializing UART” on page 183.
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19.3.3.2 SmartCard (ISO7816)
ISO7816 is asynchronous serial interface, defined with single-master-single slave topology. ISO7816 defines both
Reader (master) and Card (slave) functionality. For more information, refer to the ISO7816 Specification. Only
master (reader) function is supported by the SCB. This block provides the basic physical layer support with
asynchronous character transmission. UART_TX line is connected to SmartCard I/O line, by internally
multiplexing between UART_TX and UART_RX control modules.
The SmartCard transfer is similar to a UART transfer, with the addition of a negative acknowledgement (NACK)
that may be sent from the receiver to the transmitter. A NACK is always ‘0’. Both master and slave may drive the
same line, although never at the same time. 
A SmartCard transfer has the transmitter drive the start bit and data bits (and optionally a parity bit). After these
bits, it enters its stop period by releasing the bus. Releasing results in the line being ‘1’ (the value of a stop bit).
After one bit transfer period into the stop period, the receiver may drive a NACK on the line (a value of ‘0’) for one
bit transfer period. This NACK is observed by the transmitter, which reacts by extending its stop period by one bit
transfer period. For this protocol to work, the stop period should be longer than one bit transfer period. Note that
a data transfer with a NACK takes one bit transfer period longer, than a data transfer without a NACK. Typically,
implementations use a tristate driver with a pull-up resistor, such that when the line is not transmitting data or
transmitting the Stop bit, its value is ‘1’.
Figure 19-25 illustrates the SmartCard protocol.

Figure 19-25.  SmartCard example

The communication Baud rate for ISO7816 is given as:
Baud rate= f7816 × (D/F)
Where f7816 is the clock frequency, F is the clock rate conversion integer, and D is the baud rate adjustment integer.
By default, F = 372, D = f1, and the maximum clock frequency is 5 MHz. Thus, maximum baud rate is 13.4 Kbps.
Typically, a 3.57-MHz clock is selected. The typical value of the baud rate is 9.6 Kbps. 

19.3.3.2.1 Configuring SCB as UART SmartCard Interface
To configure the SCB as a UART SmartCard interface, set various register bits in the following order.
1. Configure the SCB as UART interface by writing ‘10’ to the MODE (bits [25:24]) of the SCB_CTRL register.
2. Configure the UART interface to operate as a SmartCard protocol by writing ‘01’ to the MODE (bits [25:24]) of 

the SCB_UART_CTRL register.
3. Follow steps 2 to 5 described in “Enabling and initializing UART” on page 183.

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) without NACK
TX / RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) with NACK

LEGEND:
TX / RX : Transmit or Receive line

TX / RX

STOPNACK

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38770
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19.3.3.3 IrDA
The SCB supports the Infrared Data Association (IrDA) protocol for data rates of up to 115.2 Kbps using the UART
interface. It supports only the basic physical layer of IrDA protocol with rates less than 115.2 Kbps. Hence, the
system instantiating this block must consider how to implement a complete IrDA communication system with
other available system resources.
The IrDA protocol adds a modulation scheme to the UART signaling. At the transmitter, bits are modulated. At the
receiver, bits are demodulated. The modulation scheme uses a Return-to-Zero-Inverted (RZI) format. A bit value
of ‘0’ is signaled by a short ‘1’ pulse on the line and a bit value of ‘1’ is signaled by holding the line to ‘0’. For these
data rates (<= 115.2 Kbps), the RZI modulation scheme is used and the pulse duration is 3/16 of the bit period. The
sampling clock frequency should be set 16 times the selected baud rate, by configuring the SCB_OVS field of the
SCB_CTRL register. 
Different communication speeds under 115.2 Kbps can be achieved by configuring corresponding block clock
frequency. Additional allowable rates are 2.4 Kbps, 9.6 Kbps, 19.2 Kbps, 38.4 Kbps, and 57.6 Kbps. An IrDA serial
infrared interface operates at 9.6 Kbps. Figure 19-26 shows how a UART transfer is IrDA modulated.

Figure 19-26.  IrDA example

19.3.3.3.1 Configuring the SCB as UART IrDA Interface
To configure the SCB as a UART IrDA interface, set various register bits in the following order.
1. Configure the SCB as UART interface by writing ‘10’ to the MODE (bits [25:24]) of the SCB_CTRL register.
2. Configure the UART interface to operate as IrDA protocol by writing ‘10’ to the MODE (bits [25:24]) of the 

SCB_UART_CTRL register.
3. Enable the Median filter on the input interface line by writing ‘1’ to MEDIAN (bit 9) of the SCB_RX_CTRL 

register.
4. Configure the SCB as described in “Enabling and initializing UART” on page 183.

PARIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)
TX / RX

IrDA
TX / RX

LEGEND:
TX / RX : Transmit or Receive line
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19.3.4 UART registers
The UART interface is controlled using a set of 32-bit registers listed in Table 19-18. For more information on
these registers, see the PSoC™ 4 HV PA Registers TRM.

Table 19-18.  UART registers

Register name Operation

SCB_CTRL Enables the SCB; selects the type of serial interface (SPI, UART, I2C)

SCB_UART_CTRL Used to select the sub-modes of UART (standard UART, SmartCard, IrDA), also 
used for local loop back control.

SCB_UART_RX_STATUS Used to specify the BR_COUNTER value that determines the bit period. This is 
used to set the accuracy of the SCB clock. This value provides more granularity 
than the OVS bit in SCB_CTRL register.

SCB_UART_TX_CTRL Used to specify the number of stop bits, enable parity, select the type of parity, 
and enable retransmission on NACK.

SCB_UART_RX_CTRL Performs same function as SCB_UART_TX_CTRL but is also used for enabling 
multi processor mode, LIN mode drop on parity error, and drop on frame error.

SCB_TX_CTRL Used to specify the data frame width and to specify whether MSB or LSB is the 
first bit in transmission.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the 
receiver. Also decides whether a median filter is to be used on the input interface 
lines.

SCB_UART_FLOW_CONTROL Configures flow control for UART transmitter.
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19.3.5 UART interrupts
The UART supports both internal and external interrupt requests. The internal interrupt events are listed in this
section. Custom ISRs can be used by connecting the external interrupt component to the interrupt output of the
UART component (with external interrupts enabled).
The UART predefined interrupts can be classified as TX interrupts and RX interrupts. The TX interrupt output is
the logical OR of the group of all possible TX interrupt sources. This signal goes high when any of the enabled TX
interrupt sources is true. The RX interrupt output is the logical OR of the group of all possible RX interrupt sources.
This signal goes high when any of the enabled Rx interrupt sources is true. The UART provides interrupts on the
following events: 
• TX

– TX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL
– TX FIFO is not full
– TX FIFO is empty
– TX FIFO overflow
– TX FIFO underflow
– TX received a NACK in SmartCard mode
– TX done
– Arbitration lost (in LIN or SmartCard modes)

• RX 
– RX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL
– RX FIFO is full
– RX FIFO is not empty
– RX FIFO overflow
– RX FIFO underflow
– Frame error in received data frame
– Parity error in received data frame
– LIN baud rate detection is completed
– LIN break detection is successful
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19.3.6 Enabling and initializing UART
The UART must be programmed in the following order:
1. Program protocol specific information using the SCB_UART_CTRL register, according to Table 19-19. This

includes selecting the submodes of the protocol, transmitter-receiver functionality, and so on. 
2. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL 

registers, as shown in Table 19-21.
a) Specify the data frame width.
b) Specify whether MSB or LSB is the first bit to be transmitted or received.

3. Program the transmitter and receiver FIFOs using the SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL registers 
respectively, as shown in Table 19-21. 
a) Set the trigger level.
b) Clear the transmitter and receiver FIFO and Shift registers.
c) Freeze the TX and RX FIFOs.

4. Program the SCB_CTRL register to enable the SCB block. Also select the mode of operation (Table 19-22).
5. Enable the block (write a ‘1’ to the ENABLED bit of the SCB_CTRL register). After the block is enabled, control 

bits should not be changed. Changes should be made after disabling the block; for example, to modify the 
operation mode (from SmartCard to IrDA). The change takes effect only after the block is re-enabled. Note 
that re-enabling the block causes re-initialization and the associated state is lost (for example FIFO content).

Table 19-19.  SCB_UART_CTRL Register

Bits Name Value Description

[25:24] MODE 00 Standard UART

01 SmartCard

10 IrDA

11 Reserved

16 LOOP_BACK Loop back control. This allows a SCB UART transmitter to communicate with its 
receiver counterpart.

Table 19-20.  SCB_TX_CTRL/SCB_RX_CTRL Registers

Bits Name Description

[3:0] DATA_ WIDTH ‘DATA_WIDTH + 1’ is the no. of bits in the transmitted or received data frame. The 
valid range is [3, 15]. This does not include start, stop, and parity bits.

8 MSB_FIRST 1 = MSB first
0 = LSB first

9 MEDIAN This is for SCB_RX_CTRL only.
Decides whether a digital three-tap median filter is applied on the input 
interface lines. This filter should reduce susceptibility to errors, but it requires 
higher oversampling values. For the UART IrDA mode, this should always be ‘1’.
1 = Enabled
0 = Disabled
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Table 19-21.  SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL Registers

Bits Name Description

[3:0] TRIGGER_LEVEL Trigger level. When the transmitter FIFO has less entries or receiver FIFO has 
more entries than the value of this field, a transmitter or receiver trigger event is 
generated in the respective case.

16 CLEAR When ‘1’, the transmitter or receiver FIFO and the shift registers are 
cleared/invalidated.

17 FREEZE When ‘1’, hardware reads/writes to the transmitter or receiver FIFO have no 
effect. Freeze will not advance the TX or RX FIFO read/write pointer.

Table 19-22.  SCB_CTRL Register

Bits Name Value Description

[25:24] MODE 00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED 0 SCB block disabled

1 SCB block enabled
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19.4 Inter integrated circuit (I2C)
This section explains the I2C implementation in PSoC™. For more information on the I2C protocol specification,
refer to the I2C-bus specification available on the NXP website.

19.4.1 Features
This block supports the following features:
• Master, slave, and master/slave mode
• Slow-mode (50 Kbps), standard-mode (100 Kbps), fast-mode (400 Kbps), and fast-mode plus (1000 Kbps) 

data-rates
• 7- or 10-bit slave addressing (10-bit addressing requires firmware support)
• Clock stretching and collision detection
• Programmable oversampling of I2C clock signal (SCL)
• Error reduction using an digital median filter on the input path of the I2C data signal (SDA)
• Glitch-free signal transmission with an analog glitch filter 
• Interrupt or polling CPU interface

19.4.2 General description
Figure 19-27 illustrates an example of an I2C communication network.

Figure 19-27.  I2C Interface block diagram

The standard I2C bus is a two wire interface with the following lines:
• Serial Data (SDA)
• Serial Clock (SCL)
I2C devices are connected to these lines using open collector or open-drain output stages, with pull-up resistors
(Rp). A simple master/slave relationship exists between devices. Masters and slaves can operate as either
transmitter or receiver. Each slave device connected to the bus is software addressable by a unique 7-bit address.
PSoC™ 4 HV PA also supports 10-bit address matching for I2C with firmware support.

VDD

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

http://www.nxp.com/documents/other/UM10204_v5.pdf
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19.4.3 Terms and definitions
Table 19-23 explains the commonly used terms in an I2C communication network.

19.4.3.1 Clock stretching
When a slave device is not yet ready to process data, it may drive a ‘0’ on the SCL line to hold it down. Due to the
implementation of the I/O signal interface, the SCL line value will be ‘0’, independent of the values that any other
master or slave may be driving on the SCL line. This is known as clock stretching and is the only situation in which
a slave drives the SCL line. The master device monitors the SCL line and detects it when it cannot generate a
positive clock pulse (‘1’) on the SCL line. It then reacts by delaying the generation of a positive edge on the SCL
line, effectively synchronizing with the slave device that is stretching the clock.

19.4.3.2 Bus arbitration
The I2C protocol is a multi-master, multi-slave interface. Bus arbitration is implemented on master devices by
monitoring the SDA line. Bus collisions are detected when the master observes an SDA line value that is not the
same as the value it is driving on the SDA line. For example, when master 1 is driving the value ‘1’ on the SDA line
and master 2 is driving the value ‘0’ on the SDA line, the actual line value will be ‘0’ due to the implementation of
the I/O signal interface. Master 1 detects the inconsistency and loses control of the bus. Master 2 does not detect
any inconsistency and keeps control of the bus.

Table 19-23.  Definition of I2C Bus Terminology

Term Description

Transmitter The device that sends data to the bus.

Receiver The device that receives data from the bus.

Master The device that initiates a transfer, generates clock signals, and terminates a transfer.

Slave The device addressed by a master.

Multi-master More than one master can attempt to control the bus at the same time without corrupting the 
message.

Arbitration Procedure to ensure that, if more than one master simultaneously tries to control the bus, 
only one is allowed to do so and the winning message is not corrupted.

Synchronization Procedure to synchronize the clock signals of two or more devices.
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19.4.4 I2C modes of operation
I2C is a synchronous single master, multi-master, multi-slave serial interface. Devices operate in either master
mode, slave mode, or master/slave mode. In master/slave mode, the device switches from master to slave mode
when it is addressed. Only a single master may be active during a data transfer. The active master is responsible
for driving the clock on the SCL line. Table 19-24 illustrates the I2C modes of operation.

Data transfer through the I2C bus follows a specific format. Table 19-25 lists some common bus events that are
part of an I2C data transfer. The “Write transfer” on page 188 and “Read transfer” on page 189 sections explain
the I2C bus bit format during data transfer.

When operating in multi-master mode, the bus should always be checked to see if it is busy; another master may
already be communicating with a slave. In this case, the master must wait until the current operation is complete
before issuing a START signal (see Table 19-25, Figure 19-28, and Figure 19-29). The master looks for a STOP
signal as an indicator that it can start its data transmission.
When operating in multi-master-slave mode, if the master loses arbitration during data transmission, the
hardware reverts to slave mode and the received byte generates a slave address interrupt, so that the device is
ready to respond to any other master on the bus. With all of these modes, there are two types of transfer - read
and write. In write transfer, the master sends data to slave; in read transfer, the master receives data from slave.
Write and read transfer examples are available in “Master mode transfer examples” on page 199, “Slave mode
transfer examples” on page 201, and “Multi-Master mode transfer example” on page 205. 

Table 19-24.  I2C Modes

Mode Description

Slave Slave only operation (default)

Master Master only operation

Multi-master Supports more than one master on the bus

Multi-master-slave Simultaneous slave and multi-master operation 

Table 19-25.  I2C bus events terminology

Bus Event Description

START A HIGH to LOW transition on the SDA line while SCL is HIGH.

STOP A LOW to HIGH transition on the SDA line while SCL is HIGH.

ACK The receiver pulls the SDA line LOW and it remains LOW during the HIGH period 
of the clock pulse, after the transmitter transmits each byte. This indicates to the 
transmitter that the receiver received the byte properly.

NACK The receiver does not pull the SDA line LOW and it remains HIGH during the HIGH 
period of clock pulse after the transmitter transmits each byte. This indicates to 
the transmitter that the receiver received the byte properly.

Repeated START START condition generated by master at the end of a transfer instead of a STOP 
condition.

DATA SDA status change while SCL is low (data changing), and no change while SCL is 
high (data valid).
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19.4.4.1 Write transfer

Figure 19-28.  Master write data transfer

• A typical write transfer begins with the master generating a START condition on the I2C bus. The master then 
writes a 7-bit I2C slave address and a write indicator (‘0’) after the START condition. The addressed slave 
transmits an acknowledgement byte by pulling the data line low during the ninth bit time.

• If the slave address does not match any of the slave devices or if the addressed device does not want to 
acknowledge the request, it transmits a no acknowledgement (NACK) by not pulling the SDA line low. The 
absence of an acknowledgement, results in an SDA line value of ‘1’ due to the pull-up resistor implementation. 

• If no acknowledgement is transmitted by the slave, the master may end the write transfer with a STOP event. 
The master can also generate a repeated START condition for a retry attempt.

• The master may transmit data to the bus if it receives an acknowledgement. The addressed slave transmits 
an acknowledgement to confirm the receipt of every byte of data written. Upon receipt of this 
acknowledgement, the master may transmit another data byte.

• When the transfer is complete, the master generates a STOP condition.

MSB LSBSDA

SCL

START Slave address (7 bits) Write ACK ACKData(8 bits) STOP

Write data transfer(Master writes the data)

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive
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19.4.4.2 Read transfer

Figure 19-29.  Master read data transfer

• A typical read transfer begins with the master generating a START condition on the I2C bus. The master then 
writes a 7-bit I2C slave address and a read indicator (‘1’) after the START condition. The addressed slave 
transmits an acknowledgement by pulling the data line low during the ninth bit time.

• If the slave address does not match with that of the connected slave device or if the addressed device does 
not want to acknowledge the request, a no acknowledgement (NACK) is transmitted by not pulling the SDA 
line low. The absence of an acknowledgement, results in an SDA line value of ‘1’ due to the pull-up resistor 
implementation. 

• If no acknowledgement is transmitted by the slave, the master may end the read transfer with a STOP event. 
The master can also generate a repeated START condition for a retry attempt.

• If the slave acknowledges the address, it starts transmitting data after the acknowledgement signal. The 
master transmits an acknowledgement to confirm the receipt of each data byte sent by the slave. Upon 
receipt of this acknowledgement, the addressed slave may transmit another data byte.

• The master can send a NACK signal to the slave to stop the slave from sending data bytes. This completes the 
read transfer.

• When the transfer is complete, the master generates a STOP condition.
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START Slave address (7 bits) Read ACK ACKData(8 bits) STOP

Read data transfer(Master reads the data)

SDA

SCL

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive
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19.4.5 Easy I2C (EZI2C) protocol
The Easy I2C (EZI2C) protocol is a unique communication scheme built on top of the I2C protocol by Infineon. It
uses a software wrapper around the standard I2C protocol to communicate to an I2C slave using indexed memory
transfers. This removes the need for CPU intervention at the level of individual frames.
The EZI2C protocol defines an 8-bit address that indexes a memory array (8-bit wide 32 locations) located on the
slave device. Five lower bits of the EZ address are used to address these 32 locations. The number of bytes
transferred to or from the EZI2C memory array can be found by comparing the EZ address at the START event and
the EZ address at the STOP event.
Note: The I2C block has a hardware FIFO memory, which is 16 bits wide and 16 locations deep with byte write
enable. The access methods for EZ and non-EZ functions are different. In non-EZ mode, the FIFO is split into
TXFIFO and RXFIFO. Each has 16-bit wide eight locations. In EZ mode, the FIFO is used as a single memory unit
with 8-bit wide 32 locations.
EZI2C has two types of transfers: a data write from the master to an addressed slave memory location, and a read
by the master from an addressed slave memory location.

19.4.5.1 Memory array write
An EZ write to a memory array index is by means of an I2C write transfer. The first transmitted write data is used
to send an EZ address from the master to the slave. The five lowest significant bits of the write data are used as
the “new” EZ address at the slave. Any additional write data elements in the write transfer are bytes that are
written to the memory array. The EZ address is automatically incremented by the slave as bytes are written into
the memory array. If the number of continuous data bytes written to the EZI2C buffer exceeds EZI2C buffer
boundary, it overwrites the last location for every subsequent byte.
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19.4.5.2 Memory array read
An EZ read from a memory array index is by means of an I2C read transfer. The EZ read relies on an earlier EZ write
to have set the EZ address at the slave. The first received read data is the byte from the memory array at the EZ
address memory location. The EZ address is automatically incremented as bytes are read from the memory array.
The address wraps around to zero when the final memory location is reached.

Figure 19-30.  EZI2C write and read data transfer
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19.4.6 I2C registers
The I2C interface is controlled by reading and writing a set of configuration, control, and status registers, as listed
in Table 19-26.

Note: Detailed descriptions of the I2C register bits are available in the PSoC™ 4 HV PA Registers TRM.

Table 19-26.  I2C Registers

Register Function
SCB_CTRL Enables the I2C block and selects the type of serial interface (SPI, UART, I2C). Also 

used to select internally and externally clocked operation and EZ and non-EZ 
modes of operation.

SCB_I2C_CTRL Selects the mode (master, slave) and sends an ACK or NACK signal based on receiver 
FIFO status.

SCB_I2C_STATUS Indicates bus busy status detection, read/write transfer status of the slave/master, 
and stores the EZ slave address.

SCB_I2C_M_CMD Enables the master to generate START, STOP, and ACK/NACK signals.
SCB_I2C_S_CMD Enables the slave to generate ACK/NACK signals.
SCB_STATUS Indicates whether the externally clocked logic is using the EZ memory. This bit can 

be used by software to determine whether it is safe to issue a software access to the 
EZ memory.

SCB_I2C_CFG Configures filters, which remove glitches from the SDA and SCL lines.
SCB_TX_CTRL Specifies the data frame width; also used to specify whether MSB or LSB is the first 

bit in transmission.
SCB_TX_FIFO_CTRL Specifies the trigger level, clearing of the transmitter FIFO and shift registers, and 

FREEZE operation of the transmitter FIFO.
SCB_TX_FIFO_STATUS Indicates the number of bytes stored in the transmitter FIFO, the location from 

which a data frame is read by the hardware (read pointer), the location from which 
a new data frame is written (write pointer), and decides if the transmitter FIFO holds 
the valid data. 

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of 
a PUSH operation.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the 
receiver. Also decides whether a median filter is to be used on the input interface 
lines.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the 
receiver.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for 
the receiver. 

SCB_RX_FIFO_RD Holds the data read from the receiver FIFO. Reading a data frame removes the data 
frame from the FIFO; behavior is similar to that of a POP operation. This register has 
a side effect when read by software: a data frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT Holds the data read from the receiver FIFO. Reading a data frame does not remove 
the data frame from the FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Stores slave device address and is also used as slave device address MASK. 
SCB_EZ_DATA Holds the data in an EZ memory location.
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19.4.7 I2C interrupts
The fixed-function I2C block generates interrupts for the following conditions.
• I2C Master

– I2C master lost arbitration 
– I2C master received NACK
– I2C master received ACK
– I2C master sent STOP
– I2C bus error (unexpected stop/start condition detected)

• I2C Slave
– I2C slave lost arbitration
– I2C slave received NACK
– I2C slave received ACK
– I2C slave received STOP
– I2C slave received START
– I2C slave address matched
– I2C bus error (unexpected stop/start condition detected)

• TX
– TX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL
– TX FIFO is not full
– TX FIFO is empty
– TX FIFO overflow
– TX FIFO underflow

• RX
– RX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL
– RX FIFO is full
– RX FIFO is not empty
– RX FIFO overflow
– RX FIFO underflow

• I2C Externally Clocked
– Wake up request on address match
– I2C STOP detection at the end of each transfer
– I2C STOP detection at the end of a write transfer
– I2C STOP detection at the end of a read transfer

The I2C interrupt signal is hard-wired to the Cortex-M0 NVIC and cannot be routed to external pins.
The interrupt output is the logical OR of the group of all possible interrupt sources. The interrupt is triggered
when any of the enabled interrupt conditions are met. Interrupt status registers are used to determine the actual
source of the interrupt. For more information on interrupt registers, see the PSoC™ 4 HV PA Registers TRM.
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19.4.8 Enabling and initializing the I2C
The following section describes the method to configure the I2C block for standard (non-EZ) mode and EZI2C
mode.

19.4.8.1 I2C Standard (Non-EZ) mode configuration
The I2C interface must be programmed in the following order.
1. Program protocol specific information using the SCB_I2C_CTRL register according to Table 19-27. This

includes selecting master - slave functionality.
2. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL 

registers, as shown in Table 19-28. 
a) Specify the data frame width.
b) Specify that MSB is the first bit to be transmitted/received.

3. Program transmitter and receiver FIFO using the SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL registers, 
respectively, as shown in Table 19-29. 
a) Set the trigger level.
b) Clear the transmitter and receiver FIFO and Shift registers.

4. Program the SCB_CTRL register to enable the I2C block and select the I2C mode. These register bits are shown 
in Table 19-30. For a complete description of the I2C registers, see the PSoC™ 4 HV PA Registers TRM.

Table 19-27.  SCB_I2C_CTRL Register

Bits Name Value Description

30 SLAVE_MODE 1 Slave mode

31 MASTER_MODE 1 Master mode

Table 19-28.  SCB_TX_CTRL/SCB_RX_CTRL Register

Bits Name Description

[3:0] DATA_ WIDTH ‘DATA_WIDTH + 1’ is the number of bits in the transmitted or 
received data frame. For I2C, this is always 7.

8 MSB_FIRST 1 = MSB first (this should always be true for I2C)

0 = LSB first

9 MEDIAN This is for SCB_RX_CTRL only.
Decides whether a digital three-tap median filter is applied on the 
input interface lines. This filter should reduce susceptibility to 
errors, but it requires higher oversampling values.
1 = Enabled
0 = Disabled
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19.4.8.2 EZI2C mode configuration
To configure the I2C block for EZI2C mode, set the following I2C register bits
1. Select the EZI2C mode by writing ‘1’ to the EZ_MODE bit (bit 10) of the SCB_CTRL register.
2. Follow steps 2 to 4 mentioned in “I2C Standard (Non-EZ) mode configuration” on page 194.
3. Set the S_READY_ADDR_ACK (bit 12) and S_READY_DATA_ACK (bit 13) bits of the SCB_I2C_CTRL register.

Table 19-29.  SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL 

Bits Name Description

[3:0] TRIGGER_LEVEL Trigger level. When the transmitter FIFO has less entries or the receiver 
FIFO has more entries than the value of this field, a transmitter or receiver 
trigger event is generated in the respective case.

16 CLEAR When ‘1’, the transmitter or receiver FIFO and the shift registers are 
cleared.

17 FREEZE When ‘1’, hardware reads/writes to the transmitter or receiver FIFO have 
no effect. Freeze does not advance the TX or RX FIFO read/write pointer.

Table 19-30.  SCB_CTRL Registers

Bits Name Value Description

[25:24] MODE 00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED 0 SCB block disabled

1 SCB block enabled
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19.4.9 Internal and external clock operation in I2C
The I2C block supports both internally and externally clocked operation for data-rate generation. Internally
clocked operations use a clock signal derived from the PSoC™ system bus clock. Externally clocked operations
use a clock provided by the user. Externally clocked operation allows limited functionality in the Deep Sleep
power mode, in which on-chip clocks are not active. For more information on system clocking, see the “Clocking
system” on page 93. 
Externally clocked operation is limited to the following cases:
• Slave functionality.
• EZ functionality. 
TX and RX FIFOs do not support externally clocked operation; therefore, it is not used for non-EZ functionality. 
Internally and externally clocked operations are determined by two register fields of the SCB_CTRL register:
• EC_AM_MODE (Externally Clocked Address Matching Mode): Indicates whether I2C address matching is 

internally (‘0’) or externally (‘1’) clocked.
• EC_OP_MODE (Externally Clocked Operation Mode): Indicates whether the rest of the protocol operation 

(besides I2C address match) is internally (‘0’) or externally (‘1’) clocked. As mentioned earlier, externally 
clocked operation does not support non-EZ functionality.

These two register fields determine the functional behavior of I2C. The register fields should be set based on the
required behavior in Active, Sleep, and Deep Sleep system power modes. Improper setting may result in faulty
behavior in certain power modes. Table 19-31 and Table 19-32 describe the settings for I2C in EZ and non-EZ
mode.
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19.4.9.1 I2C Non-EZ mode of operation
Externally clocked operation is not supported for non-EZ functionality because there is no FIFO support for this
mode. So, the EC_OP_MODE should always be set to '0' for non-EZ mode. However, EC_AM_MODE can be set to
‘0’ or ‘1’. Table 19-31 gives an overview of the possibilities. The combination EC_AM_MODE = 0 and EC_OP_MODE
= 1 is invalid and the block will not respond.
EC_AM_MODE is ‘0’ and EC_OP_MODE is ‘0’
This setting only works in Active and Sleep system power modes. All the functionality of the I2C is provided in the
internally clocked domain.
EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘0’
This setting works in Active, Sleep, and Deep Sleep system power modes. I2C address matching is performed by
the externally clocked logic in Active, Sleep, and Deep Sleep system power modes. When the externally clocked
logic matches the address, it sets a wakeup interrupt cause bit, which can be used to generate an interrupt to
wakeup the CPU.

• In Active system power mode, the CPU is active and the wakeup interrupt cause is disabled (associated MASK 
bit is ‘0’). The externally clocked logic takes care of the address matching and the internally locked logic takes 
care of the rest of the I2C transfer.

• In the Sleep mode, wakeup interrupt cause can be either enabled or disabled based on the application. The 
remaining operations are similar to the Active mode.

• In the Deep Sleep mode, the CPU is shut down and will wake up on I2C activity if the wakeup interrupt cause 
is enabled. CPU wakeup up takes time and the ongoing I2C transfer is either negatively acknowledged (NACK) 
or the clock is stretched. In the case of a NACK, the internally clocked logic takes care of the first I2C transfer 
after it wakes up. For clock stretching, the internally clocked logic takes care of the ongoing/stretched transfer 
when it wakes up. The register bit S_NOT_READY_ADDR_NACK (bit 14) of the SCB_I2C_CTRL register 
determines whether the externally clocked logic performs a negative acknowledge (‘1’) or clock stretch (‘0’).

Table 19-31.  I2C operation in non-EZ Mode

I2C (Non-EZ) Mode

System Power 
Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep Address match using 
internal clock.
Operation using 
internal clock.

Address match using 
external clock.
Operation using 
internal clock.

Not supported

Deep Sleep Not supported Address match using 
external clock.
Operation using 
internal clock.
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19.4.9.2 I2C EZ operation mode
EZ mode has three possible settings. EC_AM_MODE can be set to ‘0’ or ‘1’ when EC_OP_MODE is ‘0’ and
EC_AM_MODE must be set to ‘1’ when EC_OP_MODE is ‘1’. Table 19-32 gives an overview of the possibilities. The
gray cells indicate a possible, yet not recommended setting because it involves a switch from the externally
clocked logic (slave selection) to the internally clocked logic (rest of the operation). The combination
EC_AM_MODE = 0 and EC_OP_MODE = 1 is invalid and the block will not respond.

• EC_AM_MODE is ‘0’ and EC_OP_MODE is ‘0’. This setting only works in Active and Sleep system power 
modes. 

• EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘0’. This setting works same as I2C non-EZ mode.
• EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘1’. This setting works in Active and Deep Sleep system power 

modes. 
The I2C block’s functionality is provided in the externally clocked domain. Note that this setting results in
externally clocked accesses to the block’s SRAM. These accesses may conflict with internally clocked accesses
from the device. This may cause wait states or bus errors. The field FIFO_BLOCK (bit 17) of the SCB_CTRL register
determines whether wait states (‘1’) or bus errors (‘0’) are generated.

19.4.10 Wake up from Sleep
The system wakes up from Sleep or Deep Sleep system power modes when an I2C address match occurs. The
fixed-function I2C block performs either of two actions after address match: Address ACK or Address NACK.
Address ACK - The I2C slave executes clock stretching and waits until the device wakes up and ACKs the address. 
Address NACK - The I2C slave NACKs the address immediately. The master must poll the slave again after the
device wakeup time is passed. This option is only valid in the slave or multi-master-slave modes.
Note: The interrupt bit WAKE_UP (bit 0) of the SCB_INTR_I2C_EC register must be enabled for the I2C to wake up
the device on slave address match while switching to the Sleep mode.
Note: If the device is configured in I2C slave mode, the clock to the SCB should be disabled when entering Deep
Sleep power mode; enable the clock when waking up from Deep Sleep mode.

Table 19-32.  I2C operation in EZ Mode

I2C, EZ Mode

System Power 
Mode

EC_OP_MODE= 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep Address match using 
internal clock
Operation using 
internal clock

Address match using 
external clock
Operation using 
internal clock

Invalid Address match 
using external clock 
Operation using 
external clock 

Deep Sleep Not supported Address match using 
external clock
Operation using 
internal clock

Address match 
using external clock 
Operation using 
external clock
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19.4.11 Master mode transfer examples
Master mode transmits or receives data.

19.4.11.1 Master transmit

Figure 19-31.  Single Master Mode Write operation flow chart
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19.4.11.2 Master receive

Figure 19-32.  Single Master Mode Read operation flow chart
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19.4.12 Slave mode transfer examples
Slave mode transmits or receives data.

19.4.12.1 Slave transmit

Figure 19-33.  Slave Mode Write operation flow chart
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19.4.12.2 Slave receive

Figure 19-34.  Slave Mode Read operation flow chart
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19.4.13 EZ Slave mode transfer example
The EZ Slave mode transmits or receives data.

19.4.13.1 EZ Slave transmit

Figure 19-35.  EZI2C Slave Mode Write operation flow chart
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19.4.13.2 EZ Slave receive

Figure 19-36.  EZI2C Slave Mode Read operation flow chart
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19.4.14 Multi-Master mode transfer example
In multi-master mode, data can be transferred with the slave mode enabled or not enabled.

19.4.14.1 Multi-Master - Slave not enabled

Figure 19-37.  Multi-Master, Slave not enabled flow chart
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19.4.14.2 Multi-Master - Slave enabled

Figure 19-38.  Multi-Master, Slave enabled flow chart
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20 Local interconnect network (LIN)
The Local Interconnect Network (LIN) block of PSoC™ 4 HV PA supports the autonomous transfer of the LIN frame
to reduce CPU processing. 

20.1 Features

20.1.1 LIN
• LIN protocol support in hardware according to ISO 17987 standard
• Master and slave functionality
• Master node

– Autonomous header transmission and autonomous response transmission and reception
• Slave node

– Autonomous header reception and autonomous response transmission and reception
• Message buffer for PID, data, and checksum fields
• Classic and enhanced checksum
• Timeout detection
• Error detection
• Test modes including hardware error injection
• Baud rate detection
• 16x bit time oversampling

20.2 Block diagram

Figure 20-39.  LIN block diagram
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20.2.1 Internal bus interface
The LIN unit registers are connected via an AHB-Lite IF to the peripheral bus.

20.2.2 Test registers
The test error injection and different LIN signal tests are controlled within this unit.

20.2.3 LIN channel
The LIN channels are part of one common LIN unit. Each channel has its own control and status registers and its
interrupts are routed to the external interrupt controller. 

20.2.4 Trigger
The tr_cmd_tx_header signal is used to support “time triggered” transfers. The trigger is pulse signal more than
two clock_hf cycles, which edge will be detected in LIN block. The trigger source for LIN block is selected in the
PERI_TR_GROUP3_TR_OUT_CTLx[3:0] register.
Table 20-33 and Table 20-34 provide the PSoC™ 4 HV PA LIN trigger multiplexers and the multiplexer outputs.

Table 20-33.  LIN Trigger sources

PERI_TR_GROUP3_TR_OUT_CTL x[3:0] Trigger source

0 Software trigger

1 TCPWM 0 compare match

2 TCPWM 1 compare match

3 TCPWM 2 compare match

4 TCPWM 3 compare match

5 GPIO input trigger 0

6 GPIO input trigger 1

7 GPIO input trigger 2

8 GPIO input trigger 3

Table 20-34.  Trigger Multiplexer Outputs

Output Trigger source

0 LIN timed trigger, channel #0

1 LIN timed trigger, channel #1
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20.3 Clocking
Each LIN channel has its own LIN channel input clock, lin.clock_ch_en[y]. This LIN internal channel clock and
register clock are derived from the high-frequency clock (clock_hf), and the peripheral clock divider settings in
the clock tree, lin.clock_ch_en[y]. 

20.3.1 Baud rate and sample point
One LIN bit length corresponds to 16 lin.clock_ch_en[y] cycles; that is, 16 oversample counters are executed. The
LIN receiver starts counting after the detection of the falling edges on the synchronized rx_synced signal to
identify START bits. A bit value is sampled when the oversample counter changes from ‘7’ to ‘8’.
The LIN receiver can operate (detect and sample) on the internally rx_synced signal directly, or it can operate on
a filtered version of this signal by setting the LIN0_CHy_CTL0.FILTER_EN bit. The filter consists of a three-input
median/majority filter that effectively performs a majority vote on a window of three consecutively rx_synced
samples. For more details, see “Noise filter” on page 223.

Figure 20-40.  LIN Bit timing diagram

The baud rate can be configured for each channel individually, which is derived from the clock_hf. As there is the
fixed signal oversampling factor of 16 in the LIN channel, for the target baud rate the clock divider for the
dedicated lin.clock_ch_en[y] in the component must be calculated as follows. Thereby the baud rate calculation
considered for the master resp. the slave with fixed clock and for the slave with required baud rate adjustment
due to inaccurate system clock. For details about the possible the clock divider settings, see the “Clocking
system” on page 93.
Depending on whether a fractional clock divider or an integer clock divider is applied for the LIN module input
clock, check if the maximum permitted relative tolerance of the nominal LIN bit time according to the LIN ISO
specification is exceeded or not. For example, the maximum master bit rate deviation from nominal bitrate
(FTOL_RES_MASTER) is ± 0.5 percent.

Table 20-35.  Details
CLK_HF  internal high-frequency clock
lin.clock_ch_en[y] dedicated internal LIN channel clock derived from the internal peripheral clock 
Tbit 16 × Tlin.clock_ch_en[y]

fbit LIN baud rate
fCLK_HF high-frequency clock frequency
CLK_DIV clock divider for dedicated LIN channel

LIN bit period

rx_synced

“oversample 
counter”
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START bit

LIN bit period

bit 0
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20.3.1.1 Baud rate calculation for LIN Master and Fixed LIN Slave Clock

(20.1)

20.3.1.2 Baud rate calculation Adjusted LIN Slave Clock

(20.2)

(20.3)

20.3.1.3 Example: Master 
fbit,nom nominal bit rate 20 kBaud = 20 kHz
fbit,real real bit rate
fCLK_HF 48 MHz
integer clock divider in use

(20.4)

As an integer clock divider is in use, the relative bit time tolerance is checked with CLK_DIV = 150.

(20.5)

The resulting relative bit time tolerance is 0% and within the ±0.5% of FTOL_RES_MASTER.

CLK_DIV
fCLK_SYS

fLIN.CLOCK_CH_EN y 
-------------------------------------------------------

fCLK_SYS

16 fbit
------------------------= =

CLK_DIV
fCLK_SYS

fLIN.CLOCK_CH_EN y 
------------------------------------------------------- SyncByteCorrection=

CLK_DIV
fCLK_SYS

16 fbit
------------------------ LIN_CH_TX_RX_STATUS.SYNC_COUNTERvalue

128
-----------------------------------------------------------------------------------------------------------------------------------------------------=

CLK_DIV
fCLK_SYS
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------------------------------- 48MHz
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----------------------------- 150= = =
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fCLK_SYS
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---------------------------------------- 48MHz
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--------------------- 20.00kHz= =
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20.4 LIN message frame format
A LIN message frame consists of two main elements, header and response (see Figure 20-41).
• A frame header, transmitted only by the master node, consists of a break field, followed by a synchronization 

(SYNC) field and a protected identifier (PID) field.
• A frame response consisting of a maximum of eight data fields and followed by a checksum field can be 

transmitted by the master node or by a slave node.
With exception of the LIN break field the LIN frame structure is based on byte fields, each with a START bit and a
STOP bit. Due to frame support in the LIN module registers are provided for the PID field, data fields, and
checksum field. The LIN break and SYNC field are processed in the LIN module and thus there is no message buffer
required for the transmission as LIN master. The handling as master or slave is controlled implicitly by commands
instead of a dedicated master or slave control bit.
The following sections describe the LIN protocol support by hardware.

Figure 20-41.  LIN Message Frame Format
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20.4.1 Break and synchronization fields
The break field is generated by the master node with minimum 13-bit periods (on the master clock), whereas a
slave node must detect a break field after 11-bit periods (on the slave clock). For the master and slave, the break
length must be configured in LIN0_CHy_CTL0.BREAK_WAKEUP_LENGTH and the break delimiter length in
LIN0_CHy_CTL0.BREAK_DELIMITER_LENGTH.
The SYNC field with the signal pattern 0x55 is used to synchronize the slave clocks to the master clock. When the
LIN module is configured as master (LIN0_CHy_CMD.TX_HEADER = 1 and LIN0_CHy_CMD.RX_HEADER = 0), the
SYNC field is generated autonomously. When the LIN channel is configured as slave node
(LIN0_CHy_CMD.TX_HEADER = 0 and LIN0_CHy_CMD.RX_HEADER = 1), the detected baud rate is mirrored in the
implicitly by the LIN0_CHy_TX_RX_STATUS.SYNC_COUNTER. 
Notes:
• Before the wakeup transmission start, the bus level of the LIN signal input LIN0_CHy_TX_RX_STATUS.RX_IN 

must be on recessive level (logical 1). If the bus level is dominant level (logical 0), then the LIN module waits 
until the bus level is changing to the recessive level.

• The received signal pattern of the synchronization field is verified. When it is invalid, the error flag 
LIN0_CHy_INTR.RX_HEADER_SYNC_ERROR is activated.

Baud rate adjustment
The baud rate detection is done by the 128 bit lin.clock_ch_en[y] synchronization field counter (see “Baud rate
and sample point” on page 209). The slave measures the duration of the 8-bit field, which starts from the falling
edge of SYNC field START bit and stops counting with falling edge of the seventh data bit. One bit period
corresponds to 16 lin.clock_ch_en[y] cycles and 8-bit periods are finally 128 lin.clock_ch_en[y] cycles. 
The following table lists the synchronization cases with the resulting SYNC byte correction factor for the new
clock divider calculation. The clock divider calculation for the synchronized slave is shown in “Baud rate and
sample point” on page 209.

Table 20-36.  Baud Rate Adjustment Correction Factor

Clock Ratio: 
master to slave

Slave Value
LIN0_CHy_TX_RX_STATUS.SYNC_COUNTER

Counter Action SYNC Byte Correction 
Factor for LIN ch. 
Clock Divider

fmaster = fslave x = 128 No change (128 / 128) = 1

fmaster < fslave x > 128 Decrease the 
slave clock 
(increase the LIN 
ch. clock divider)

(x / 128) > 1

fmaster > fslave x < 128 Increase the 
slave clock 
(decrease the LIN 
ch. clock divider)

(x / 128) < 1
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20.4.2 PID field
The 8-bit PID field consists of a 6-bit frame identifier and a 2-bit parity over the frame identifier, for which the
LIN0_CHy_PID_CHECKSUM register is provided exclusively.
• Master operation: Before the transmission start of the message frame the PID field will be written.
• Slave operation: After the reception of the STOP bit from the PID field the LIN0_CHy_PID_CHECKSUM register 

is updated. The confirmation of a finished and valid LIN header reception is flagged by 
LIN0_CHy_INTR.RX_HEADER_DONE.

• The parity of the received PID field is verified. In case of verification failure, the error flag 
LIN0_CHy_INTR.RX_HEADER_PARITY_ERROR is activated.

20.4.3 Data fields
As well the master as a slave can transmit a response field including maximum eight data fields. As message
buffer for the data fields LIN0_CHy_DATA0 and LIN0_CHy_DATA1 are provided. The target number of data fields
is processed in the register bit field LIN0_CHy_CTL1.DATA_NR. The status of transferred numbers of data bytes
including the checksum field within a response is given in LIN0_CHy_STATUS.DATA_IDX. Additionally the status
of an ongoing frame transfer is represented, when LIN0_CHy_STATUS.HEADER_RESPONSE is ‘1’. All these
registers are used for response transmission and response reception. 
The response transfer can be aborted by disabling the LIN channel (clear LIN0_CHy_CTL0.ENABLED to ‘0’).

20.4.3.1 Response transmission (LIN0_CHy_CMD.TX_RESPONSE)
Before the transmission response is started by the command LIN0_CHy_CMD.TX_RESPONSE, it must be ensured,
that the data is written into the message buffer and the data length is stored.
Master operation: The response transmission can be prepared either after the reception of the PID or before the
LIN frame transmission, to reduce the CPU load. 
Slave operation: no additional note.

20.4.3.2 Response reception (LIN0_CHy_CMD.RX_RESPONSE)
The response reception is enabled by the command LIN0_CHy_CMD.RX_RESPONSE. It is strongly recommended,
to enable it before each LIN frame start. Otherwise there is the risk of losing the response data, when the response
reception is enabled after another node has already started to transmit the response. The configuration of data
response length in LIN0_CHy_CTL1.DATA_NR and the checksum type selection must be configured at latest
before the reception of the STOP bit in the first data byte.
Master operation: To reduce the CPU load, the data length can be stored before the LIN frame, as it is already
known to the master. 
Slave operation: The correct data length can be stored after the reception of the PID field. Therefore it is
recommended, to configure the maximum data length for the response reception before the LIN frame
transmission, to avoid timing constraints in the PID processing.
Notes: When the LIN response transmission and reception are active, both the transmission and reception error
flags occur simultaneously. The transmitted data fields in the LIN0_CHy_DATA0/1 registers are not overwritten
by the received data fields. 
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20.4.4 Checksum field
The checksum field provides an integrity check over the response data fields and optionally over the header PID
field, which is controlled by the LIN0_CHy_CTL1.CHECKSUM_ENHANCED register field. The checksum field is
supported through a message buffer register in LIN0_CHy_PID_CHECKSUM.CHECKSUM.

20.4.4.1 Response transmission (LIN0_CHy_CMD.TX_RESPONSE)
For the completion of the response transmission the checksum value is calculated by hardware and is
transmitted automatically after the last data field. For an invalid checksum read back the
LIN0_CHy_INTR.TX_RESPONSE_BIT_ERROR is set. The checksum type selection can be done already before the
LIN frame start.

20.4.4.2 Response reception (LIN0_CHy_CMD.RX_RESPONSE)
When receiving, the checksum over the received PID field and data fields is calculated to verify the received
checksum field. In case of verification failure a LIN0_CHy_STATUS.RX_RESPONSE_CHECKSUM_ERROR is
activated. The checksum type should selected before the reception of the first data byte STOP bit reception.

20.5 Timeout operation
For development purposes a timeout functionality is provided to determine an incomplete LIN message frame
operation. The timeout detection mode can be selected between a complete frame (header and response),
header, and response transfer by the LIN0_CHy_CTL1.FRAME_TIMEOUT_SEL field and the timeout value is
specified by the LIN0_CHy_CTL1.FRAME_TIMEOUT field in number of bit periods. The LIN0_CHy_INTR.TIMEOUT
flag is set, when either the timeout detected or the stop condition is reached.
Note: An ongoing frame transfer is not aborted due to a time out.

Table 20-37.  Timeout selection

FRAME_TIMEOUT_SEL 
Bit Field Value

Timeout Selection Timer Start Timer Stop

0 Timeout disabled None None

1 Frame mode Falling edge of START bit in 
break field 

Checksum field STOP bit OR 
timeout

2 Frame header mode Falling edge of START bit in 
break field

PID field STOP bit OR timeout

3 Frame response mode End of STOP bit Checksum field STOP bit OR 
timeout
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20.6 Wakeup
When a LIN cluster is in sleep state, a wakeup signal can initiate a transfer to operational state. Both the dominant
wake up signal generation and detection are supported in hardware. 

20.6.1 Wakeup signal transmission
Before the generation of the dominant wake up signal, its dominant pulse length should be defined in the register
field LIN0_CHy_CTL0.BREAK_WAKEUP_LENGTH in bit periods, which corresponds to the specified wake up pulse
length range according to the LIN specification. The transmission starts by setting LIN0_CHy_CMD.TX_WAKEUP.
The flag LIN0_CHy_INTR.TX_WAKEUP_DONE confirms the completed dominant wakeup pulse, except when the
received signal is different to the generated one, then the error is LIN0_CHy_INTR.TX_BIT_ERROR is set. 
Note: Before the wakeup transmission start, the bus level of the LIN signal input
LIN0_CHy_TX_RX_STATUS.RX_IN must be on recessive level (logical 1). If the bus level is dominant level (logical
0), then the LIN module waits until the bus level is changing to the recessive level.

20.6.2 Wakeup signal reception
To activate the wakeup reception, the commands LIN0_CHy_CMD.TX_HEADER and LIN0_CHy_CMD.RX_HEADER
should be disabled.
Typically, external transceivers support remote wakeup detection. The generated ‘low’ level signal can be
detected by polling of the receiver input LIN0_CHy_TX_RX_STATUS.RX_IN within the LIN unit. Other
opportunities such as an input capture detection of the falling edge need to be checked for the dedicated port
pin.
The coding information of the TX and RX transceiver pins about the wake up source can be captured directly with
the internal LIN module signals LIN0_CHy_TX_RX_STATUS.RX_IN and LIN0_CHy_TX_RX_STATUS.TX_IN. For this
case the LIN0_TX GPIO input function must be enabled (see the “I/O system” on page 141).
When the external LIN transceiver is in operational mode, the dominant wake up pulse is passed on. To detect it,
the minimum expected pulse length must be configured in the form of bit periods in the register bit field
LIN0_CHy_CTL0.BREAK_WAKEUP_LENGTH. When the rising edge of the dominant pulse is detected, then the flag
LIN0_CHy_INTR.RX_BREAK_WAKEUP_DONE is set.

20.6.3 Wakeup in Low-Power mode
The LIN unit cannot detect a wakeup condition, when the device is Deep Sleep power mode. To support a CPU
wakeup, refer to the interrupt on falling edge support for the LIN0_RX port pin of the LIN channel.

20.7 External transceiver control
Discrete LIN transceiver devices may consume a significant amount of power when enabled. Fortunately, most
transceivers support the Sleep power mode in which power consumption is reduced. To this end, most
transceivers have an enable “en” input signal to control the power mode. 
Each LIN channel has an “en” line that is used to control the transceiver enable input signal. Before a message
transfer, the en line should be activated, and after the message transfer the en line can be deactivated. The en
line can be controlled by either software or hardware.
• Software control requires setting LIN0_CHy_TX_RX_STATUS.EN_OUT to ‘1’ before a message transfer and 

clearing LIN0_CHy_TX_RX_STATUS.EN_OUT to ‘0’ after a message transfer.
• Hardware control ensures setting LIN0_CHy_TX_RX_STATUS.EN_OUT to ‘1’ before a message transfer and 

clearing LIN0_CHy_TX_RX_STATUS.EN_OUT to ‘0’ after message transfer.
The LIN0_CHy_CTL0.AUTO_EN field enables the hardware control of the en signal line.
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20.8 Test modes

20.8.1 Interrupt test
To test the internal interrupt signals line within the LIN module regarding functionality, an interrupt set function
is provided by the LIN0_CHy_INTR_SET register.

20.8.2 Loop-back mode
A self-test circuit allows the channels to be connected to each other, to test the LIN functionality without an
external transceiver or without affecting an operational LIN cluster by enabling the register bit
LIN0_TEST_CTL.ENABLED. The LIN operation configuration of the two selected channels, to operate as LIN
master and LIN slave, is done as usual.
Following channel loop back connections are permitted:
• Channel [0, CH_NR-2], which is identified by the LIN0_TEST_CTL.CH_IDX register field and
• the last channel [CH_NR-1].
Note: CH_NR refers to the maximum LIN channel number.

20.8.2.1 Partial disconnect mode
In this mode both channels to be tested the loop back is done via the port pins. In this case the GPIO input
function of TX port pin from channel [i] must be enabled (see the “I/O system” on page 141).

20.8.2.2 Full disconnect mode
In this mode the LIN channels under test are routed with each other completely inside the LIN unit (see
Figure 20-44). There is no connection to existing port pins and thereby no impact to the LIN bus.

Figure 20-42.  Functional Mode
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Figure 20-43.  Partial Disconnect Mode

Figure 20-44.  Full Disconnect Mode

20.8.3 Error injection mode
For test purposes, hardware injected transmitter errors can be generated, which result in the activation of the
corresponding error flag on the reception line.
The error injection type is selected by the LIN0_ERROR_CTL register. The LIN0_ERROR_CTL.CH_IDX field specifies
the channel to which the errors are applied. Table 20-38 shows the error injection types.

Table 20-38.  Error Injection Support in LIN/UART Unit

Error Injection Error Injection description Mode support

LIN UART

TX_SYNC_ERROR The transmitted synchronization field is changed from 0x55 
to 0x00.

Yes No

TX_SYNC_STOP_ERROR The synchronization field STOP bits are inverted to ‘0’. Yes No

TX_PARITY_ERROR LIN: The highest parity bit of the PID field is inverted. Yes Yes

TX_PID_STOP_ERROR The PID field STOP bits are inverted to ‘0’. Yes No

TX_DATA_STOP_ERROR The data field STOP bits are inverted to ‘0’. Yes Yes

TX_CHECKSUM_ERROR The checksum field is inverted. Yes No

TX_CHECKSUM_STOP_ERROR The checksum field STOP bits are inverted to ‘0’. Yes No

LIN IO signal router

LIN Channel 
[CH_NR-1]

LIN Channel [i]

lin_tx_in[i]

tx_out[i]

rx_in[i]

tx_out[CH_NR-1]

rx_in[CH_NR-1]

lin_tx_out[i]

lin_tx_out[CH_NR-1]

LINx_TEST_CTL.ENABLED = ‘1’, LINx_TEST_CTL.MODE = ‘0’

IOSS

HSIOM IO ring

TX[i]

RX[i]

D
ev

ic
e 

bo
un

da
ry

Ch[i]

TX[CH_NR-1]

Ch[CH_NR-1]

“partial disconnect”

LIN IO signal router

LIN Channel 
[CH_NR-1]

LIN Channel [i]
tx_out[i]

rx_in[i]

tx_out[CH_NR-1]

rx_in[CH_NR-1]

LINx_TEST_CTL.ENABLED = ‘1’, LINx_TEST_CTL.MODE = ‘1’

“full disconnect”
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20.9 Operation

20.9.1 LIN operation

20.9.1.1 LIN message transfer
The LIN protocol supports three types of message transfers:
• Master response: The master node transmits the header and transmits the response. This type can be used to 

control slave nodes.
• Slave response: The master node transmits the header. A slave node transmits the response and the master 

node receives the response. This type can be used to observe slave node status.
• Slave to slave: The master node transmits the header. A slave node transmits the response and another slave 

receives the response.
To support these different message types, the handling of the LIN master or LIN slave operation mode is implicitly
done by command sequences.
• LIN0_CHy_CMD.TX_HEADER: This command is used exclusively by the master node to transmit a complete 

header such as, LIN break, SYNC field, PID field.
• LIN0_CHy_CMD.RX_HEADER: This command is used exclusively by a slave node to receive a header. After a 

slave node receives the header, LIN0_CHy_INTR.RX_HEADER_DONE is activated and slave node application 
may use the received PID field to decide to either:
– Continue with receipt of a response (LIN0_CHy_CMD.RX_RESPONSE command).
– Continue with transmission of a response (LIN0_CHy_CMD.TX_RESPONSE command).
– Ignore the incoming response by disabling the channel and re-enabling for the next frame.

• LIN0_CHy_CMD.TX_RESPONSE: This command is used by the master node or a slave node to transmit a 
response; that is, the hardware sends the data field and the autonomously generated checksum.

• LIN0_CHy_CMD.RX_RESPONSE: This command is used by the master node or a slave node to receive a 
response; that is, the hardware receives the data field in one buffer and verifies the checksum.
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In Table 20-39 and Table 20-40 the command sequences for master and slave for the different message types are
shown.

Table 20-39.  LIN Master Command Sequences

Message Type Command Sequence in Register CMDia)

a) Command sequence can be done before frame start.

CMDi.TX_HEADER CMDi.RX_HEADER CMDi.TX_RESPONSE CMDi.RX_RESPONSE

Master Response 1 0 1 0

Slave Response 1 0 0 1

Slave-to-Slave 
Response

1 0 0 0

Table 20-40.  LIN Slave Command Sequences

Message Type Command Sequence in Register CMDia)

a) LIN0_CHy_CMD.RX_HEADER and LIN0_CHy_CMD.RX_RESPONSE are enabled before break detection to avoid break loss 
and loss of data bytes in response. Disabling of LIN0_CHy_CMD.RX_RESPONSE after PID reception is permitted.

CMDi.TX_HEADER CMDi.RX_HEADER CMDi.TX_RESPONSE CMDi.RX_RESPONSE

Master Response 0 1 0 1

Slave Response 0 1 1 1b)

b) When both LIN0_CHy_CMD.TX_RESPONSE and LIN0_CHy_CMD.RX_RESPONSE is set, then a bus collision can be 
detected by LIN0_CHy_INTR.RX_RESPONSE_DONE.

Slave-to-Slave 
Response 
(transmitting 
node)

0 1 1 1

Slave-to-Slave 
Response 
(receiving node)

0 1 0 1

Ignore Response 0 1 0 0
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Master
The master node needs to enable one interrupt cause (LIN0_CHy_INTR.TX_HEADER_DONE,
LIN0_CHy_INTR.TX_RESPONSE_DONE, LIN0_CHy_INTR.RX_RESPONSE_DONE) and only enters the associated
interrupt handler once.
Slave
The slave nodes will always set both LIN0_CHy_CMD.RX_HEADER and LIN0_CHy_CMD.RX_RESPONSE commands
to ‘1’. The received header PID field will specify if a slave node must:
• Receive a response.
• Transmit a response.
• Abort the transfer and ignore the response.
By setting LIN0_CHy_CMD.RX_HEADER and LIN0_CHy_CMD.RX_RESPONSE simultaneously, the slave node
anticipates response reception, to avoid loss of data bytes in the response.
Master and slave
When a message transfer is successful, the commands are cleared to ‘0’ and must be enabled again for the next
transfer. On a detected error, the transmission commands are cleared to ‘0’, but the reception commands are
not. This behavior is essential to support break-while-receive functionality on a slave node.
Both the response commands LIN0_CHy_CMD.TX_RESPONSE and LIN0_CHy_CMD.RX_RESPONSE can be
enabled in parallel, a command order is processed in following priority:
• Highest priority: LIN0_CHy_CMD.TX_RESPONSE command.
• Middle priority: LIN0_CHy_CMD.RX_RESPONSE command.
• Lowest priority: No response as indicated by the absence of BOTH the LIN0_CHy_CMD.TX_RESPONSE and 

LIN0_CHy_CMD.RX_RESPONSE commands.
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20.9.1.2 LIN software flow chart
This section shows software flow charts for the LIN master and slave operation.

Figure 20-45.  LIN Master software flow chart
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Figure 20-46.  LIN Slave Software Flow Chart
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20.10 Noise filter
The LIN receiver operates on the synchronized rx_synced input signal, as shown in Figure 20-47.
• When LIN0_CHy_CTL0.FILTER_EN is ‘0’, the receiver operates on rx_synced directly.
• When LIN0_CHy_CTL0.FILTER_EN is ‘1’, the receiver operates on the majority of the last three rx_synced 

signal values based on the internal module clock LIN0_lin.clock_ch_en[y]. This filter suppresses noise on the 
rx_in input. Note that the filter adds a delay of one cycle to the receiver. Figure 20-47 shows the block diagram 
of the noise filter and Figure 20-48 shows the noise filtering timing behavior including the sample point 
position.

20.10.1 Example
When a 0, 1, 0 sequence is synchronized, the ‘1’ is filtered out due to majority decision for ‘0’.

Figure 20-47.  LIN signal line synchronization block diagram

Even when the median filter effectively eliminates the rx_in noise, it is of interest to be notified of this noise, as
the noise can be an indication of a malfunctioning LIN cluster. Therefore, the receiver verifies the rx_in signal by
investigating the last three rx_synced signal values, which are the same values as used by the median filter. The
verification consists of two types:
• Sampling verification

When a START bit, a data bit or STOP bit value is sampled (in the middle of a bit period), all three rx_synced 
signal values should be the same (a 0, 0, 0 sequence or a 1, 1, 1, sequence).

• Generic verification
The isolated ‘0’ or ‘1’ values may not occur (a 1, 0, 1 sequence or a 0, 1, 0 sequence)

LIN channel input

tx_in

rx_in

lin.clock_ch_en[y]

rx_synced

tx_out

tx_synced
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When the noise filter is enabled (LIN0_CHy_CTL0.FILTER_EN is ‘1’), the error flag
LIN0_CHy_INTR.RX_NOISE_DETECT is set in case of a verification failure. An ongoing frame is not aborted by the
noise detection.

Figure 20-48.  LIN noise filter block diagram
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Figure 20-49.  LIN noise filtering timing diagram
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20.11 Interrupts and flags

20.11.1 Overview
The LIN module supports multiple LIN channels; each LIN channel has its dedicated interrupt line and
accordingly its own set of interrupt registers LIN0_CHy_INTR, LIN0_CHy_INTR_SET, LIN0_CHy_INTR_MASK, and
LIN0_CHy_INTR_MASKED. 
To reduce interrupt load of the interrupt source flags listed in the LIN0_CHy_INTR register, an AND masking is
done with the LIN0_CHy_INTR_MASK. The masked interrupts, which cause interrupt on the interrupt controller,
are shown in the LIN0_CHy_INTR_MASKED register.

The following tables give an overview of the interrupt events in the module in different modes.

Table 20-41.  Details

Data Register

00000111 LIN0_CH_INTR

AND 00000111 LIN0_CH_INTR_MASK

00000111 LIN0_CH_INTR_MASKED

Table 20-42.  Interrupt Events in LIN Master Mode

Event 
Type

Event Event Detection 
Condition

Clear Event Flag Transfer 
Abort

Enable 
Interrupt

Register Flag Bit

TX Header 
Transmission 
done

Header 
transmission 
succeeded

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR.
TX_HEADER_DONE

TX Response 
Transmission 
done

Response 
transmission 
succeeded

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR.
TX_RESPONSE_DONE

TX Wakeup 
Transmission 
done

Wake up signal 
successfully 
transmitted

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR.
TX_WAKEUP_DONE

RX Response 
Reception 
done

Response 
reception 
succeeded

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR.
RX_RESPONSE_DONE

RX Wakeup 
Reception 
done

Wake up signal 
received, after 
wake up 
reception 
detection was 
enabled.

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR.
RX_BREAK_WAKEUP_
DONE

Error Time out A frame, header 
or response does 
not finish within 
a specified time 

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

no yes LIN0_CHy_INTR.
TIMEOUT
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TX 
Error

Transmitter 
Header Bit 
Error

The incoming 
bus level does 
not match with 
the transmitted 
value during:
• header 

transmission 
• wake up 

transmission

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yesa) yes LIN0_CHy_INTR.
TX_HEADER_BIT_
ERROR.

TX
Error

Transmitter 
Response Bit 
Error

During the 
response 
transmission the 
received bus 
value does not 
match with the 
transmitted 
value

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yesa yes LIN0_CHy_INTR. 
TX_RESPONSE_BIT_
ERROR

RX 
Error

Noise 
Detection

Noise on RX 
input detected, 
when 
LIN0_CHy_CTL0. 
FILTER_EN is ‘1’

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

no yes LIN0_CHy_INTR.
RX_NOISE_DETECT

RX 
Error

Receiver 
Response 
Frame Error

An invalid start 
bit or stop bit 
occurs during 
response 
reception (data 
field, checksum)

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yes yes LIN0_CHy_INTR. 
RX_RESPONSE_
FRAME_
ERROR

RX 
Error

Receiver 
Response 
Checksum 
Error

The calculated 
checksum over 
the data bytes 
and optionally 
the PID field does 
match with the 
received 
checksum.

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yes yes LIN0_CHy_INTR. 
RX_RESPONSE_
CHECKSUM_ERROR

a) When LIN0_CHy_CTL0.BIT_ERROR_IGNORE is ‘1’, then bit errors are still reported, but do not abort an ongoing transfer.

Table 20-42.  Interrupt Events in LIN Master Mode (continued)

Event 
Type

Event Event Detection 
Condition

Clear Event Flag Transfer 
Abort

Enable 
Interrupt

Register Flag Bit
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Table 20-43.  Interrupt Events in LIN Slave Mode

Event 
Type

Event Event 
Detection 
Condition

Clear Event Flag Transfer 
Abort

Enable 
Interrupt

Register Flag Bit

TX Response 
Transmission 
done

Response 
transmission 
succeeded

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR.
TX_RESPONSE_DONE

TX Wakeup 
Transmission 
done

Wake up 
signal 
successfully 
transmitted

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR.
TX_WAKEUP_DONE

RX Header 
Reception done

Header 
reception 
succeeded

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR.
RX_HEADER_DONE

RX Response 
Reception done

Response 
reception 
succeeded

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR.
RX_RESPONSE_DONE

RX Wakeup 
Reception done

Wake up 
signal 
received, 
after wake up 
reception 
detection was 
enabled.

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR.
RX_BREAK_WAKEUP_
DONE

RX Synchronization 
Field Reception 
done

Synchronizati
on field 
successfully 
received

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

– yes LIN0_CHy_INTR. 
RX_HEADER_SYNC_
DONE

Error Time out A frame, 
header or 
response 
does not 
finish within a 
specified time 

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

no yes LIN0_CHy_INTR.
TIMEOUT

TX 
Error

Transmitter 
Response Bit 
Error

The incoming 
bus level does 
not match 
with the 
transmitted 
value during 
the response

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yesa) yes LIN0_CHy_INTR.
TX_RESPONSE_BIT_
ERROR
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RX 
Error

Noise Detection noise on RX 
input 
detected, 
when 
LIN0_CHy_
CTL0. 
FILTER_EN is 
‘1’

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

no yes LIN0_CHy_INTR.
RX_NOISE_DETECT

RX 
Error

Receiver Header 
Frame Error

• An invalid 
start bit 
occurs 
during PID 
field.

• An invalid 
stop bit 
occurs 
during 
SYNC or 
PID field.

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yes yes LIN0_CHy_INTR.
RX_HEADER_FRAME_
ERROR

RX 
Error

Receiver 
Synchronization 
Error

An invalid 
data field 
pattern is 
detected 
during the 
reception of 
the SYNC field

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yes yes LIN0_CHy_INTR. 
RX_HEADER_SYNC_
ERROR

RX 
Error

Receiver PID 
Parity Error

The received 
PID field has a 
parity error

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yes yes LIN0_CHy_INTR.
RX_HEADER_PARITY_
ERROR

Table 20-43.  Interrupt Events in LIN Slave Mode (continued)

Event 
Type

Event Event 
Detection 
Condition

Clear Event Flag Transfer 
Abort

Enable 
Interrupt

Register Flag Bit
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RX 
Error

Receiver 
Response Frame 
Error

An invalid 
stop bit 
occurs during 
response 
reception 
(data field, 
checksum)

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yes yes LIN0_CHy_INTR. 
RX_RESPONSE_
FRAME_ERROR

RX 
Error

Receiver 
Response 
Checksum Error

The 
calculated 
checksum 
over the data 
bytes and 
optionally the 
PID field does 
match with 
the received 
checksum.

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yes yes LIN0_CHy_INTR.
RX_RESPONSE_
CHECKSUM_ERROR

a) When LIN0_CHy_CTL0.BIT_ERROR_IGNORE is ‘1’, then bit errors are still reported, but do not abort an 
ongoing transfer.

Table 20-43.  Interrupt Events in LIN Slave Mode (continued)

Event 
Type

Event Event 
Detection 
Condition

Clear Event Flag Transfer 
Abort

Enable 
Interrupt

Register Flag Bit
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Table 20-44.  Interrupt Events in UART Mode

Event 
Type

Event Event Detection 
Condition

Clear Event Flag Transfer 
Abort

Enable 
Interrupt

Register Flag Bit

TX Transmission 
done

Transmission 
succeeded

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

- yes LIN0_CHy_INTR.
TX_HEADER_DONE

RX Reception 
done

Reception 
succeeded

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

- yes LIN0_CHy_INTR.
RX_HEADER_DONE

TX Error Transmitter 
Bit Error

The incoming 
bus level does 
not match with 
the transmitted 
value during 
transmission.

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yesa)

a) When LIN0_CHy_CTL0.BIT_ERROR_IGNORE is ‘1’, then bit errors are still reported, but do not abort an 
ongoing transfer.

yes LIN0_CHy_INTR.
TX_HEADER_BIT_ERRO
R

RX Error Noise 
Detection

noise on RX input 
detected, when 
LIN0_CHy_CTL0. 
FILTER_EN is ‘1’.

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

no yes LIN0_CHy_INTR.
RX_NOISE_DETECT

RX Error Receiver 
Frame Error

An invalid start 
bit resp. stop bit 
occurs during 
reception.

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yes yes LIN0_CHy_INTR.
RX_HEADER_FRAME_
ERROR

RX Error Receiver 
Parity Error

The received PID 
field has a parity 
error.

• Write ‘1’ to flag
• LIN0_CHy_CTL.

ENABLED to ‘0’

yes yes LIN0_CHy_INTR.
RX_HEADER_PARITY_
ERROR
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20.11.2 Transmission

20.11.2.1 TX header done
After a successful header transmission as master the flag LIN0_CHy_INTR.TX_HEADER_DONE is activated. This
means, the flag is set after the valid PID STOP bit verification. The enabled command bits such as
LIN0_CHy_CMD.TX_HEADER within this frame session are not cleared, as long as a selected legal command
sequence (see “LIN operation” on page 218) is not successfully completed.
Clearing the flag
The flag can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or disabling
the LIN channel (LIN0_CHy_CTL0.ENABLED = 0).

Figure 20-50.  TX header done flag timing diagram
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20.11.2.2 TX response done
After a valid completion of a frame including the CHECKSUM STOP bit, the LIN0_CHy_INTR.TX_RESPONSE_DONE
flag is activated; that is, the flag is set after the valid CHECKSUM STOP bit verification. The enabled commands
such as LIN0_CHy_CMD.TX_RESPONSE within this frame session are not cleared, as long as a selected legal
command sequence (see “LIN operation” on page 218) is not successfully completed.
Clearing the flag
The flag can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or disabling
the LIN channel (LIN0_CHy_CTL0.ENABLED = 0).

Figure 20-51.  TX response done flag timing diagram
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20.11.3 Reception

20.11.3.1 RX break wakeup done
After transition from the break low pulse to the break delimiter bit, a break detection interrupt is set by the
LIN0_CHy_INTR.BREAK_WAKEUP_DONE flag. This interrupt flag does not need to be enabled for the regular
header processing. 
As the wakeup function is shared with the break function the end of the wakeup pulse detection is represented
by the same flag. 
Clearing the flag
The flag can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or disabling
the LIN channel (LIN0_CHy_CTL0.ENABLED = 0). 

20.11.3.2 RX Header SYNC Done
After reception of a valid SYNC byte pattern and valid SYNC STOP bit the LIN0_CHy_INTR.RX_HEADER_DONE flag
is set.
Clearing the flag
The flag can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or disabling
the LIN channel (LIN0_CHy_CTL0.ENABLED = 0).

20.11.3.3 RX header done
After reception of a valid LIN header including a valid PID STOP bit and PID parity check, the
LIN0_CHy_INTR.RX_HEADER_DONE flag is set. The command bit LIN0_CHy_CMD.RX_HEADER is not cleared, as
long as a legal command sequence (see “LIN operation” on page 218) is not successfully completed.
Clearing the flag
The flag can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or disabling
the LIN channel (LIN0_CHy_CTL0.ENABLED = 0).

Figure 20-52.  “RX Header Done” flag timing diagram
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20.11.3.4 RX response done
After a valid completion of a frame including CHECKSUM STOP bit and the checksum verification the
LIN0_CHy_INTR.RX_RESPONSE_DONE flag is set. The enabled commands such as
LIN0_CHy_CMD.TX_RESPONSE within this frame session are not cleared, as long as a selected legal command
sequence (see “LIN operation” on page 218) is not successfully completed.
Clearing the flag
The flag can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or disabling
the LIN channel (LIN0_CHy_CTL0.ENABLED = 0).

Figure 20-53.  “RX Response Done” flag timing diagram
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20.11.4 Error and Status detection
To ensure robust behavior, several types of errors are detected. When an error is detected, the associated
interrupt cause in the INTR register is activated. Figure 20-54 and Figure 20-55 give an overview about the
appearance of error events for the LIN master and LIN slave.

Figure 20-54.  LIN master error events timing diagram
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Figure 20-55.  LIN slave error events timing diagram

Notes: 
• When the LIN0_CHy_CTL0.BIT_ERROR_IGNORE is ‘1’, a bit error (the timeout error is not included) does not 

abort an ongoing transfer, although the bit errors are always reported.
• As the transmission commands (such as TX_REPONSE) have higher priority than the reception commands 

(such as RX_RESPONSE) in the processing order the transmission errors are only reported, when both 
commands are activated.

Transmitter
Response Bit Error

Noise Detection

Receiver Response 
Frame Error

Header Response

Data 1 Data 2 Data N
Check
sum

Sync PIDBreak

Break delimiter

Message

Receiver Response 
Checksum Error

Timeout:

Response space

Frame Mode

Frame Header Mode

Frame Response Mode

Receiver Header Frame 
Error

Receiver 
Synchronization Error

Receiver PID error

Wakeup

Transmitter Header Bit 
Error

LIN Frame transmission/reception:

LIN Wakeup pulse transmission:



Reference manual 238 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Local interconnect network (LIN)

20.11.4.1 Transmitter bit error
During transmission the transmitted value on the RX line is also received over the TX line. The transmitted and
received values should be the same. If this verification detects a failure, an
LIN0_CHy_INTR.TX_HEADER_BIT_ERROR or LIN0_CHy_INTR.TX_RESPONSE_BIT_ERROR is activated and the
transmission is automatically aborted by the hardware. This also includes the detection of an invalid START and
STOP bit.
The error flag LIN0_CHy_INTR.TX_HEADER_BIT_ERROR is valid for:
• Break field
• Synchronization field
• PID field
• Wake up low pulse
The error flag LIN0_CHy_INTR.TX_RESPONSE_BIT_ERROR is valid for:
• Data fields
• Checksum field
Clearing the flag
Both flags can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or
disabling the LIN channel (LIN0_CHy_CTL0.ENABLED = 0).

Figure 20-56.  Transmitter bit error timing diagram
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20.11.4.3 Receiver frame error
A START bit should be received as a ‘0’ on the RX line and a STOP bit should be received as a ‘1’ on the RX line. A
START bit occurs at specific moments in the frame after a falling edge on the RX line and a STOP bits occurs after
every 8-bit field. The error is detected after the sample time of the RX line, which is in the center of bit period (see
“Baud rate and sample point” on page 209).
Header Reception
When a frame error is detected during the header the LIN0_CHy_INTR.RX_HEADER_FRAME_ERROR flag is set. The
ongoing transfer is aborted automatically.
Response Reception
During the response, the LIN0_CHy_INTR.RX_RESPONSE_FRAME_ERROR flag is activated when the frame error
occurs in the data bytes 2 to 8 or in the checksum. Additionally, the ongoing response reception is aborted by the
hardware. 
Exception: Framing Error in Data Byte 1
Case A: “no response”:
Here the response part is missing and followed by a LIN break of the next LIN frame. The event flag
LIN0_CHy_INTR.RX_RESPONSE_DONE and error flag LIN0_CHy_INTR.RX_RESPONSE_FRAME_ERROR stays ‘0’,
but the LIN0_CHy_STATUS.RX_DATA0_FRAME_ERROR is set. But the flag is only set in case of slave operation,
indicated by RX_HEADER command. The response reception is not aborted by the invalid STOP bit in the data
byte 1. But missing bus activity within the frame can be also detected by LIN0_CHy_INTR.TIMEOUT.
Case B: “error response”: 
As in this previous case, a detected invalid STOP bit in the data byte 1 is flagged by
LIN0_CHy_STATUS.RX_DATA0_FRAME_ERROR and response reception, first of all, continue with the START bit of
the next byte (either data byte 2 or the checksum field). Consequently, a frame error is detected, and
LIN0_CHy_INTR.RX_RESPONSE_FRAME_ERROR is set to ‘1’. Hereby the next byte is only transmitted when the
frame error in data byte 1 is not detected by the transmitting node.
Note: LIN0_CHy_STATUS.RX_DATA0_FRAME_ERROR does not trigger any interrupt. It must be checked explicitly.
Clearing the flag
Both flags can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or
disabling the LIN channel (LIN0_CHy_CTL0.ENABLED = 0). The LIN0_CHy_STATUS.RX_DATA0_FRAME_ERROR
clears automatically. At the falling edge of the SYNC start bit, which means after the
INTR.RX_HEADER_BREAK_WAKEUP_DONE flag.

20.11.4.4 Receiver PID parity error
The receiver calculates the parity bits over the received frame identifier in the PID field. The calculated parity bits
are verified against the received parity bits in the PID field. In case of verification failure, the
LIN0_CHy_INTR.RX_HEADER_PARITY_ERROR flag is set.
Clearing the flag
The flag can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or disabling
the LIN channel (LIN0_CHy_CTL0.ENABLED = 0).
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20.11.4.5 Response checksum error
The receiver calculates the checksum over the received PID field (optionally as specified by the
LIN0_CHy_CTL0.CHECKSUM_ENHANCED register field) and the received data fields. The calculated checksum is
verified against the received checksum field. In case of verification failure, the
LIN0_CHy_INTR.RX_RESPONSE_CHECKSUM_ERROR is activated.
Clearing the flag
The flag can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or disabling
the LIN channel (LIN0_CHy_CTL0.ENABLED = 0).

20.11.4.6 Receiver noise detection
When the noise filter is enabled (LIN0_CHy_CTL0.FILTER_EN is ‘1’), the error flag
LIN0_CHy_INTR.RX_NOISE_DETECT is set in case of a verification failure. But a going transfer is not aborted. See
“Noise filter” on page 223 for more details.
Clearing the flag
The flag can be cleared either by a write access to the flag with ‘1’ within the LIN0_CHy_INTR register or disabling
the LIN channel (LIN0_CHy_CTL0.ENABLED = 0).
Note: An ongoing frame is not aborted by the noise detection.

20.11.4.7 Timeout detection
As described in “Timeout operation” on page 214, the timer operation inside the LIN module is supported. When
one of the selected timeouts is detected, the LIN0_CHy_INTR.TIMEOUT flag is activated.
Note: The timeout detection does not abort an ongoing frame.
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20.11.5 Dedicated operation use case(s)

20.11.5.1 LIN Slave Node response reception
For a slave node, it is required to distinguish a “no response” from an “error response” scenario, in addition to the
typical “correct response” scenario. When LIN0_CHy_CMD.RX_HEADER and LIN0_CHy_CMD.RX_RESPONSE are
set to ‘1’, a slave node expects to receive a response with a specific number of data fields. Despite this
expectation, there is a possibility that the response is NOT transmitted.
• The master node may have decided to abort the frame transfer after it transmitted the header. 
• Another slave node may not be operational and therefore not be able to transmit the response.
In both cases, the slave node expects to receive a response, but there is no response. Consider the following
cases:

a) While waiting for the first data field of the response, there is no other bus activity. This case can be detected 
using the timeout functionality (LIN0_CHy_INTR.TIMEOUT).

b) While waiting for the first data field of the response, the master node transmits the header of the next 
frame.

If the slave node expects a data field and receives a break field of the header of the next frame, the data field’s
STOP bit has a frame error.
• If a response is transmitted, the frame error is applicable and indicates an “error response”.
• If a response is not transmitted (a header of the next frame is transmitted), the frame error is not applicable 

and indicates a “no response”.

20.11.5.2 Different Slave Node response reception scenarios
Correct response:
A LIN0_CHy_INTR.RX_HEADER_DONE activation is followed by a LIN0_CHy_INTR.RX_RESPONSE_DONE
activation and LIN0_CHy_STATUS.RX_DATA0_FRAME_ERROR is ‘0’ within the same frame.
Error response – Data Field 1: 
Within the same frame, a LIN0_CHy_INTR.RX_HEADER_DONE activation is followed by a
LIN0_CHy_INTR.RX_RESPONSE_DONE activation and LIN0_CHy_STATUS.RX_DATA0_FRAME_ERROR is ‘1’
because the response reception is not aborted because of a frame error in data field 1. The condition is that if the
transmitting node does not detect the frame error, it aborts the transmission.
Error response – All except Data Field 1: 
Within the same frame, a LIN0_CHy_INTR.RX_HEADER_DONE activation is followed by a
LIN0_CHy_INTR.RX_RESPONSE_FRAME_ERROR activation, because the response reception is aborted due to
frame error in the complete response field, except in data field 1. Therefore, there can be also a frame error in the
first data field, shown by LIN0_CHy_STATUS.RX_DATA0_FRAME_ERROR is ‘1’. 
No response: 
Because of the missing response in the first frame, the LIN0_CHy_INTR.RX_HEADER_DONE activation is followed
by the second frame and its header by the LIN0_CHy_INTR.RX_HEADER_DONE activation. Therefore, there is no
LIN0_CHy_INTR.RX_RESPONSE_DONE activation.
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20.12 Registers

Note: In LIN0_CHy, ‘y’ is the channel number under the LIN instance.

Table 20-45.  LIN Global Unit Registers

Register Name Description

LIN0_ERROR_CTL Error Control Register Error injection control for the full LIN unit.

LIN0_TEST_CTL Test Control Register Test control is done for all channels.

Table 20-46.  LIN Channel Registers

Register Name Description

LIN0_CHy_CTL0 Control 0 Register In this register the channel can be enabled. 
Furthermore the communication mode selection and 
mode configurations are provided.

LIN0_CHy_CTL1 Control 1 Register Beside the LIN data length and the checksum the 
timeout counter is processed in the register.

LIN0_CHy_STATUS Status Register The communication state flags and the error flags, 
which are mirrored from the INTR register, are listed.

LIN0_CHy_CMD Command Register The communication protocol is controlled.

LIN0_CHy_TX_RX_STATUS TX/RX Status Register An input and output status of the LIN transceiver 
control is reported. Additionally the LIN 
synchronization counter provides a counter value, 
which needs to be processed for the synchronization 
procedure in software.

LIN0_CHy_PID_CHECKSUM PID Checksum Register PID and checksum buffer.

LIN0_CHy_DATA0 Data 0 Register The response buffer for the data byte fields 0 to 3 is 
covered.

LIN0_CHy_DATA1 Data 1 Register The response buffer for the data byte fields 4 to 7 is 
covered.

LIN0_CHy_INTR Interrupt Register The status of communication and error flags is shown.

LIN0_CHy_INTR_SET Interrupt Set Register Communication and error flags in the INTR register can 
be set for test purposes.

LIN0_CHy_INTR_MASK Interrupt Mask Register A bit mask over the communication and error flags can 
be defined.

LIN0_CHy_INTR_MASKED Interrupt Masked 
Register

Masked communication and error flags are listed.



Reference manual 243 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Local interconnect network (LIN)

Table 20-47.  Peripheral Interconnect trigger group control registers

Register Name Description

PERI_TR_CTL Trigger Control Register This register provides software control 
over trigger activation. 

PERI_TR_GROUP3_TR_OUT_CTLx Trigger Control Register This register specifies the input trigger for 
a specific output trigger in trigger group3.
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21 Timer, Counter, and PWM
The Timer, Counter, and Pulse Width Modulator (TCPWM) block in PSoC™ 4 HV PA implements the 16-bit timer,
counter, pulse width modulator (PWM), and quadrature decoder functionality. The block can be used to measure
the period and pulse width of an input signal (timer), find the number of times a particular event occurs (counter),
generate PWM signals, or decode quadrature signals. This chapter explains the features, implementation, and
operational modes of the TCPWM block.

21.1 Features
• Up to four 16-bit timers, counters, or pulse width modulators (PWM)
• The TCPWM block supports the following operational modes:

– Timer
– Capture
– Quadrature decoding
– Pulse width modulation
– Pseudo-random PWM
– PWM with dead time

• Multiple counting modes – up, down, and up/down 
• Clock prescaling (division by 1, 2, 4, ... 64, 128)
• Double buffering of compare/capture and period values
• Supports interrupt on:

– Terminal Count – The final value in the counter register is reached
– Capture/Compare – The count is captured to the capture/compare register or the counter value equals the 

compare value
• Complementary line output for PWMs

21.2 Block diagram

Figure 21-57.  TCPWM block diagram
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conditions.
• System interface: Consists of control signals such as clock and reset from the system resources subsystem.
This TCPWM block can be configured by writing to the TCPWM registers. See “TCPWM registers” on page 273 for
more information on all registers required for this block.
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21.2.1 Enabling and disabling counter in TCPWM block
The counter can be enabled by setting the COUNTER_ENABLED field (bit 0) of the control register TCPWM_CTRL. 
Note: The counter must be configured before enabling it. If the counter is enabled after being configured,
registers are updated with the new configuration values. Disabling the counter retains the values in the registers
until it is enabled again (or reconfigured).

21.2.2 Clocking
The TCPWM receives the high-frequency clock through the system interface to synchronize all events in the block.
The counter enable signal (counter_en), which is generated when the counter is enabled, gates the 
high-frequency clock to provide a counter-specific clock (counter_clock). Output triggers (explained later in this
chapter) are also synchronized with the high-frequency clock.
Clock Prescaling: counter_clock can be prescaled, with divider values of 1, 2, 4… 64, 128. This prescaling is done
by modifying the GENERIC field of the counter control (TCPWM_CNT_CTRL) register, as shown in Table 21-48.

Note: Clock prescaling cannot be done in quadrature mode and PWM-DT mode.

Table 21-48.  Bit-field setting to prescale counter clock

GENERIC[10:8] Description

0 Divide by 1

1 Divide by 2

2 Divide by 4

3 Divide by 8

4 Divide by 16

5 Divide by 32

6 Divide by 64

7 Divide by 128
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21.2.3 Events based on trigger inputs
These are the events triggered by hardware or software.
• Reload
• Start
• Stop
• Count
• Capture/switch
Hardware triggers can be level signal, rising edge, falling edge, or both edges. Figure 21-58 shows the selection
of edge detection type for any event trigger signal.
Any edge (rising, falling, or both) or level (high) can be selected for the occurrence of an event by configuring the
trigger control register 1 (TCPWM_CNT_TR_CTRL1). This edge/level configuration can be selected for each trigger
event separately. Alternatively, firmware can generate an event by writing to the counter command register
(TCPWM_CMD), as shown in Figure 21-58.

Figure 21-58.  Trigger signal edge detection
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The trigger signal to generate an event can be a GPIO signal, TCPWM’s underflow, compare match or overflow
signal, or Sample_Done signal. Figure 21-59 shows the trigger signal selection for all the events. The trigger
source for TCPWM is selected in the PERI_TR_GROUP1_TR_OUT_CTLx[5:0] register.

Figure 21-59.  Trigger Mux in PSoC™ 4 HV PA
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Table 21-49 and Table 21-50 provide the PSoC™ 4 HV PA TCPWM trigger multiplexers and the multiplexer
outputs.

Table 21-49.  TCPWM trigger sources

PERI_TR_GROUP1_TR_OUT_CTL x[5:0] Trigger source

0 Software trigger

1 DMA Channel 0 trigger out

2 DMA Channel 1 trigger out

3 DMA Channel 2 trigger out

4 DMA Channel 3 trigger out

5 DMA Channel 4 trigger out

6 DMA Channel 5 trigger out

7 DMA Channel 6 trigger out

8 DMA Channel 7 trigger out

9 Fault structure output #0

10 Fault structure output #1

11 TCPWM 0 overflow

12 TCPWM 1 overflow

13 TCPWM 2 overflow

14 TCPWM 3 overflow

15 TCPWM 0 underflow

16 TCPWM 1 underflow

17 TCPWM 2 underflow

18 TCPWM 3 underflow

19 TCPWM 0 compare match

20 TCPWM 1 compare match

21 TCPWM 2 compare match

22 TCPWM 3 compare match

23 SCB 0 TX request

24 SCB 0 RX request

25 PACSS data valid channel 0

26 PACSS data valid channel 1

27 PACSS data valid channel 2

28 PACSS data valid channel 3

29 GPIO input trigger 0

30 GPIO input trigger 1

31 GPIO input trigger 2

32 GPIO input trigger 3

33 Reserved
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The events derived from these triggers can have different definitions in different modes of the TCPWM block. 
• Reload: A reload event initializes and starts the counter.

– In UP counting mode and DOWN counting mode, the count register (TCPWM_CNT_COUNTER) is initialized 
with ‘0’.

– In UP/DOWN counting mode, the count register is initialized with ‘1’.
– In quadrature mode, the reload event acts as a quadrature index event. An index/reload event indicates a 

completed rotation and can be used to synchronize quadrature decoding.
• Start: A start event is used to start counting; it can be used after a stop event or after re-initialization of the 

counter register to any value by software. Note that the count register is not initialized on this event. 
– In quadrature mode, the start event acts as quadrature phase input phiB, which is explained in detail in 

“Quadrature Decoder mode” on page 259.
• Count: A count event causes the counter to increment or decrement, depending on its configuration. 

– In quadrature mode, the count event acts as quadrature phase input phiA.
• Stop: A stop event stops the counter from incrementing or decrementing. A start event will start the counting 

again. 
– In the PWM modes, the stop event acts as a kill event. A kill event disables all the PWM output lines.

• Capture: A capture event copies the counter register value to the capture register and capture register value 
to the buffer capture register. In the PWM modes, the capture event acts as a switch event. It switches the 
values of the capture/compare and period registers with their buffer counterparts. This feature can be used 
to modulate the pulse width and frequency.

Notes
• All trigger inputs are synchronized to the high-frequency clock.
• When more than one event occurs in the same counter clock period, one or more events may be missed. This 

can happen for high-frequency events (frequencies close to the counter frequency) and a timer configuration 
in which a pre-scaled (divided) counter clock is used.

Table 21-50.  Trigger Multiplexer Outputs

TCPWM_CNTx_TR_CTRL0 Trigger source

0 Constant ‘0’ 

1 Constant ‘1’

2 tcpwm.tr_in[0]

3 tcpwm.tr_in[1]

4 tcpwm.tr_in[2]

5 tcpwm.tr_in[3]

6 tcpwm.tr_in[4]

7 tcpwm.tr_in[5]

8 tcpwm.tr_in[6]

9 tcpwm.tr_in[7]

10 tcpwm.tr_in[8]

11 tcpwm.tr_in[9]

12 tcpwm.tr_in[10]

13 tcpwm.tr_in[11]

14 tcpwm.tr_in[12]

15 tcpwm.tr_in[13]
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21.2.4 Output signals
The TCPWM block generates several output signals, as shown in Figure 21-60.

Figure 21-60.  TCPWM output signals

21.2.4.1 Signals upon trigger conditions
• Counter generates an internal overflow (OV) condition when counting up and the count register reaches the 

period value.
• Counter generates an internal underflow (UN) condition when counting down and the count register reaches 

zero. 
• The capture/compare (CC) condition is generated by the TCPWM when the counter is running and one of the 

following conditions occur:
– The counter value equals the compare value.
– A capture event occurs - When a capture event occurs, the TCPWM_CNT_COUNTER register value is copied 

to the capture register and the capture register value is copied to the buffer capture register. 
Note: These signals, when they occur, remain at logic high for two cycles of the high-frequency clock. For reliable
operation, the condition that causes this trigger should be less than a quarter of the high-frequency clock. For
example, if the high-frequency clock is running at 24 MHz, the condition causing the trigger should occur at a
frequency less than 6 MHz.

21.2.4.2 Interrupts
The TCPWM block provides a dedicated interrupt output signal from the counter. An interrupt can be generated
for a TC condition or a CC condition. The exact definition of these conditions is mode-specific. 
Four registers are used for interrupt handling in this block, as shown in Table 21-51.

Table 21-51.  Interrupt Register

Interrupt Registers Bits Name Description

TCPWM_CNT_INTR 
(Interrupt request register)

0 TC This bit is set to ‘1’, when a terminal count is detected. 
Write ‘1’ to clear this bit.

1 CC_MATCH This bit is set to ‘1’ when the counter value matches 
capture/compare register value. Write ‘1’ to clear this bit.

TCPWM_CNT_INTR_SET 
(Interrupt set request register)

0 TC Write ‘1’ to set the corresponding bit in the interrupt 
request register. When read, this register reflects the 
interrupt request register status.

1 CC_MATCH Write ‘1’ to set the corresponding bit in the interrupt 
request register. When read, this register reflects the 
interrupt request register status.

TCPWM block

Interrupt

line_out
line_compl_out

Underflow
Overflow
Capture / Compare
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21.2.4.3 Outputs
The TCPWM has two outputs (see Figure 21-61), line_out and line_compl_out (complementary of line_out). Note
that the OV, UN, and CC conditions can be used to drive line_out and line_compl_out if needed, by configuring
the TCPWM_CNT_TR_CTRL2 register (Table 21-52).

Figure 21-61.  Line generation logic

TCPWM_CNT_INTR_MASK 
(Interrupt mask register)

0 TC Mask bit for the corresponding TC bit in the interrupt 
request register.

1 CC_MATCH Mask bit for the corresponding CC_MATCH bit in the 
interrupt request register.

TCPWM_CNT_INTR_MASKED 
(Interrupt masked request 
register)

0 TC Logical AND of the corresponding TC request and mask 
bits.

1 CC_MATCH Logical AND of the corresponding CC_MATCH request and 
mask bits.

Table 21-52.  Configuring output line for OV, UN, and CC Conditions

Field Bit Value Event Description

CC_MATCH_MODE 
Default Value = 3

1:0 0 Set line_out to 1 Configures output line on a compare match (CC) 
event1 Clear line_out to 0

2 Invert line_out

3 No change

OVERFLOW_MODE 
Default Value = 3

3:2 0 Set line_out to 1 Configures output line on a overflow (OV) event

1 Clear line_out to 0

2 Invert line_out

3 No change

UNDERFLOW_MODE 
Default Value = 3

5:4 0 Set line_out to 1 Configures output line on a underflow (UN) event

1 Clear line_out to 0

2 Invert line_out

3 No change

Table 21-51.  Interrupt Register (continued)

Interrupt Registers Bits Name Description

line “kill period”

line_out

line_compl_out

“line_out polarity”

“line_compl_out polarity”

cc_match

underflow
overflow

TR_CTRL2

 PWM 
generation

Dead time 
insertion

only supported in 
PWM_DT mode
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21.2.5 Power modes
The TCPWM block works in Active and Sleep modes. The TCPWM block is powered from VCCD. The configuration
registers and other logic are powered in Deep Sleep mode to keep the states of configuration registers. See
Table 21-53 for details.

21.3 Operation modes
The counter block can function in six operational modes, as shown in Table 21-54. The MODE [26:24] field of the
counter control register (TCPWM_CNTx_CTRL) configures the counter in the specific operational mode.

Table 21-53.  Power modes in TCPWM block

Power Mode Block status

Active This block is fully operational in this mode with clock running and power switched on.

Sleep All counter clocks are on, but bus interface cannot be accessed.

Deep Sleep In this mode, the power to this block is still on but no bus clock is provided; hence, the logic 
is not functional. All the configuration registers will keep their state.

Table 21-54.  Operational mode configuration

Mode MODE 
Field 
[26:24]

Description

Timer 000 Implements a timer or counter. The counter increments or decrements by ‘1’ at every 
counter clock cycle in which a count event is detected.

Capture 010 Implements a timer or counter with capture input. The counter increments or 
decrements by ‘1’ at every counter clock cycle in which a count event is detected. When 
a capture event occurs, the counter value copies into the capture register.

Quadrature 
Decoder

011 Implements a quadrature decoder, where the counter is decremented or incremented, 
based on two phase inputs according to the selected (X1, X2 or X4) encoding scheme.

PWM 100 Implements edge/center-aligned PWMs with an 8-bit clock prescaler and buffered 
compare/period registers.

PWM-DT 101 Implements edge/center-aligned PWMs with configurable 8-bit dead time (on both 
outputs) and buffered compare/period registers.

PWM-PR 110 Implements a pseudo-random PWM using a 16-bit linear feedback shift register (LFSR).
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The counter can be configured to count up, down, and up/down by setting the UP_DOWN_MODE[17:16] field in
the TCPWM_CNT_CTRL register, as shown in Table 21-55.

Table 21-55.  Counting mode configuration

Counting Modes UP_DOWN_
MODE[17:16]

Description

UP Counting Mode 00 Increments the counter until the period value is reached. A 
Terminal Count (TC) condition is generated when the counter 
reaches the period value.

DOWN Counting Mode 01 Decrements the counter from the period value until 0 is reached. 
A TC condition is generated when the counter reaches ‘0’.

UP/DOWN Counting Mode 0 10 Increments the counter until the period value is reached, and 
then decrements the counter until ‘0’ is reached. A TC condition 
is generated only when ‘0’ is reached.

UP/DOWN Counting Mode 1 11 Similar to up/down counting mode 0 but a TC condition is 
generated when the counter reaches ‘0’ and when the counter 
value reaches the period value.
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21.3.1 Timer mode
The timer mode is commonly used to measure the time of occurrence of an event or to measure the time
difference between two events.

21.3.1.1 Block diagram

Figure 21-62.  Timer mode block diagram

21.3.1.2 How it works
The timer can be configured to count in up, down, and up/down counting modes. It can also be configured to run
in either continuous mode or one-shot mode. The following explains the working of the timer:
• The timer is an up, down, and up/down counter.

– The current count value is stored in the count register (TCPWM_CNTx_COUNTER). 
Note:  It is not recommended to write values to this register while the counter is running.

– The period value for the timer is stored in the period register.
• The counter is re-initialized in different counting modes as follows:

– In the up counting mode, after the count reaches the period value, the count register is automatically 
reloaded with 0.

– In the down counting mode, after the count register reaches zero, the count register is reloaded with the 
value in the period register.

– In the up/down counting modes, the count register value is not updated upon reaching the terminal values. 
Instead the direction of counting changes when the count value reaches 0 or the period value.

• The CC condition is generated when the count register value equals the compare register value. Upon this 
condition, the compare register and buffer compare register switch their values if enabled by the 
AUTO_RELOAD_CC bit-field of the counter control (TCPWM_CNT_CTRL) register. This condition can be used 
to generate an interrupt request.

Figure 21-63 shows the timer operational mode of the counter in four different counting modes. The period
register contains the maximum counter value. 
• In the up counting mode, a period value of A results in A + 1 counter cycles (0 to A).
• In the down counting mode, a period value of A results in A + 1 counter cycles (A to 0).
• In the two up/down counting modes (0 and 1), a period value of A results in 2 × A counter cycles (0 to A and 

back to 0).
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COMPARE

   BUFFER 
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==

==
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Count
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TC

counter_clock
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Figure 21-63.  Timing diagram for timer in multiple counting modes

Note: The OV and UN signals remain at logic high for two cycles of the high-frequency clock, as explained in
“Signals upon trigger conditions” on page 250. The figures in this chapter assume that high-frequency clock
and counter clock are the same.
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21.3.1.3 Configuring counter for Timer mode
The steps to configure the counter for Timer mode of operation and the affected register bits are as follows.
1. Disable the counter by writing ‘0’ to the COUNTER_ENABLED field of the TCPWM_CTRL register.
2. Select Timer mode by writing ‘000’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.
3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.
4. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the 

TCPWM_CNT_CC_BUFF register. 
5. Set AUTO_RELOAD_CC field of the TCPWM_CNT_CTRL register, if required to switch values at every CC 

condition.
6. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in 

Table 21-48.
7. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL 

register, as shown in Table 21-55.
8. The timer can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively 

to the ONE_SHOT[18] field of TCPWM_CNT_CTRL.
9. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Stop, 

Capture, and Count).
10. Set the TCPWM_CNT_TR_CTRL1 register to select the edge of the trigger that causes the event (Reload, Start, 

Stop, Capture, and Count).
11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 250.
12. Enable the counter by writing ‘1’ to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger 

must be provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal is 
not enabled.
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21.3.2 Capture mode
In the capture mode, the counter value can be captured at any time either through a firmware write to command
register (TCPWM_CMD) or a capture trigger input. This mode is used for period and pulse width measurement.

21.3.2.1 Block diagram

Figure 21-64.  Capture mode block diagram

21.3.2.2 How it works
The counter can be set to count in up, down, and up/down counting modes by configuring the
UP_DOWN_MODE[17:16] bit-field of the counter control register (TCPWM_CNT_CTRL).
Operation in capture mode occurs as follows:
• During a capture event, generated either by hardware or software, the current count register value is copied 

to the capture register (TCPWM_CNT_CC) and the capture register value is copied to the buffer capture 
register (TCPWM_CNT_CC_BUFF).

• A pulse on the CC output signal is generated when the counter value is copied to the capture register. This 
condition can also be used to generate an interrupt request.

Figure 21-65 illustrates the capture behavior in the up counting mode.

Figure 21-65.  Timing diagram of counter in Capture Mode, Up Counting Mode
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In Figure 21-65, observe that:
• The period register contains the maximum count value.
• Internal overflow (OV) and TC conditions are generated when the counter reaches the period value.
• A capture event is only possible at the edges or through software. Use trigger control register 1 to configure 

the edge detection.
• Multiple capture events in a single clock cycle are handled as:

– Even number of capture events - no event is observed
– Odd number of capture events - single event is observed

This happens when the capture signal frequency is greater than the counter_clock frequency.

21.3.2.3 Configuring counter for Capture mode
The steps to configure the counter for Capture mode operation and the affected register bits are as follows.
1. Disable the counter by writing ‘0’ to the COUNTER_ENABLED field of the TCPWM_CTRL register.
2. Select Capture mode by writing ‘010’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.
3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.
4. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in 

Table 21-48.
5. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL 

register, as shown in Table 21-55.
6. Counter can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively 

to the ONE_SHOT[18] field of the TCPWM_CNT_CTRL register.
7. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Stop, 

Capture, and Count).
8. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Stop, 

Capture, and Count).
9. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 250.
10. Enable the counter by writing ‘1’ to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger 

must be provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal is 
not enabled.
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21.3.3 Quadrature Decoder mode
Quadrature decoders are used to determine speed and position of a rotary device (such as servo motors, volume
control wheels, and PC mice). The quadrature encoder signals are used as phiA and phiB inputs to the decoder.

21.3.3.1 Block diagram

Figure 21-66.  Quadrature Mode block diagram
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21.3.3.2 How it works
Quadrature decoding only runs on counter_clock. It can operate in three sub-modes: X1, X2, and X4 modes. These
encoding modes can be controlled by the QUADRATURE_MODE[21:20] field of the counter control register
(TCPWM_CNT_CTRL). This mode uses double buffered capture registers.
The Quadrature mode operation occurs as follows:
• Quadrature phases phiA and phiB: Counting direction is determined by the phase relationship between phiA 

and phiB. These phases are connected to the count and the start trigger inputs, respectively as hardware 
input to the decoder. 

• Quadrature index signal: This is connected to the reload signal as a hardware input. This event generates a TC 
condition, as shown in Figure 21-67.

• On TC, the counter is set to 0x0000 (in the up counting mode) or to the period value (in the down counting 
mode).

• Note: The down counting mode is recommended to be used with a period value of 0x8000 (the mid-point 
value).

• A pulse on CC output signal is generated when the count register value reaches 0x0000 or 0xFFFF. On a CC 
condition, the count register is set to the period value (0x8000 in this case).

• On TC or CC condition:
– Count register value is copied to the capture register.
– Capture register value is copied to the buffer capture register.
– This condition can be used to generate an interrupt request.

• The value in the capture register can be used to determine which condition caused the event and whether:
– A counter underflow occurred (value 0)
– A counter overflow occurred (value 0xFFFF)
– An index/TC event occurred (value is not equal to either 0 or 0xFFFF)

• The DOWN bit field of counter status (TCPWM_CNTx_STATUS) register can be read to determine the current 
counting direction. Value ‘0’ indicates a previous increment operation and value ‘1’ indicates previous 
decrement operation. Figure 21-67 illustrates quadrature behavior in the X1 encoding mode. 
– A positive edge on phiA increments the counter when phiB is ‘0’ and decrements the counter when phiB is 

‘1’.
– The count register is initialized with the period value on an index/reload event.
– Terminal count is generated when the counter is initialized by index event. This event can be used to 

generate an interrupt.
– When the count register reaches 0xFFFF (the maximum count register value), the count register value is 

copied to the capture register and the count register is initialized with period value (0x8000 in this case).
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Figure 21-67.  Timing diagram for Quadrature Mode, X1 Encoding
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The quadrature phases are detected on the counter_clock. Within a single counter_clock period, the phases
should not change value more than once. The X2 and X4 quadrature encoding modes count twice and four times
as fast as the X1 encoding mode.
Figure 21-68 illustrates the quadrature mode behavior in the X2 and X4 encoding modes.

Figure 21-68.  Timing diagram for Quadrature Mode, X2 and X4 Encoding

21.3.3.3 Configuring counter for Quadrature mode
The steps to configure the counter for quadrature mode of operation and the affected register bits are as follows.
1. Disable the counter by writing ‘0’ to the COUNTER_ENABLED field of the TCPWM_CTRL register.
2. Select Quadrature mode by writing ‘011’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.
3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.
4. Set the required encoding mode by writing to the QUADRATURE_MODE[21:20] field of the TCPWM_CNT_CTRL 

register.
5. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Index and Stop).
6. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Index and Stop).
7. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 250.
8. Enable the counter by writing ‘1’ to the COUNTER_ENABLED field of the TCPWM_CTRL register.
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21.3.4 Pulse Width Modulation mode
The PWM mode is also called the Digital Comparator mode. The comparison output is a PWM signal whose period
depends on the period register value and duty cycle depends on the compare and period register values.
PWM period = (period value/counter clock frequency) in left- and right-aligned modes
PWM period = (2 × (period value/counter clock frequency)) in center-aligned mode
Duty cycle = (compare value/period value) in left- and right-aligned modes
Duty cycle = ((period value-compare value)/period value) in center-aligned mode

21.3.4.1 Block diagram

Figure 21-69.  PWM Mode block diagram
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21.3.4.2 How it works
The PWM mode can output left, right, center, or asymmetrically aligned PWM signals. The desired output
alignment is achieved by using the counter’s up, down, and up/down counting modes selected using
UP_DOWN_MODE [17:16] bits in the TCPWM_CNT_CTRL register, as shown in Table 21-55.
This CC signal along with OV and UN signals control the PWM output line. The signals can toggle the output line
or set it to a logic ‘0’ or ‘1’ by configuring the TCPWM_CNT_TR_CTRL2 register. By configuring how the signals
impact the output line, the desired PWM output alignment can be obtained.
The recommended way to modify the duty cycle is:
• The buffer period register and buffer compare register are updated with new values.
• On TC, the period and compare registers are automatically updated with the buffer period and buffer 

compare registers when there is an active switch event. The AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD 
fields of the counter control register are set to ‘1’. When a switch event is detected, it is remembered until the 
next TC event. Pass through signal (selected during event detection setting) cannot trigger a switch event.

• Updates to the buffer period register and buffer compare register should be completed before the next TC 
with an active switch event; otherwise, switching does not reflect the register update, as shown in 
Figure 21-71.

In the center-aligned mode, the output line is set to ‘0’ at Terminal Count and toggled at the CC condition
At the reload event, the count register is initialized and starts counting in the appropriate mode. At every count,
the count register value is compared with compare register value to generate the CC signal on match.
Figure 21-70 illustrates center-aligned PWM with buffered period and compare registers (up/down counting
mode 0).

Figure 21-70.  Timing diagram for center aligned PWM

Figure 21-70 illustrates center-aligned PWM with software generated switch events:
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• Software generates a switch event only after both the period buffer and compare buffer registers are updated.
• Because the updates of the second PWM pulse come late (after the terminal count), the first PWM pulse is 

repeated.
• Note that the switch event is automatically cleared by hardware at TC after the event takes effect.

Figure 21-71.  Timing diagram for center aligned PWM (software switch event)

21.3.4.3 Other configurations
• For asymmetric PWM, the up/down counting mode 1 should be used. This causes a TC when the counter 

reaches either ‘0’ or the period value. To create an asymmetric PWM, the compare register is changed at every 
TC (when the counter reaches either ‘0’ or the period value), whereas the period register is only changed at 
every other TC (only when the counter reaches ‘0’).

• For left-aligned PWM, use the up counting mode; configure the OV condition to set output line to ‘1’ and CC 
condition to reset the output line to ‘0’. See Table 21-52.

• For right-aligned PWM, use the down counting mode; configure UN condition to reset output line to ‘0’ and CC 
condition to set the output line to ‘1’. See Table 21-52.
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21.3.4.4 Kill feature
The kill feature gives the ability to disable both output lines immediately. This event can be programmed to stop
the counter by modifying the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the counter control register, as
shown in Table 21-56.

A kill event can be programmed to be asynchronous or synchronous, as shown in Table 21-57.

In the synchronous kill, PWM cannot be started before the next TC. To restart the PWM immediately after kill input
is removed, kill event should be asynchronous (see Table 21-57). The generated stop event disables both output
lines. In this case, the reload event can use the same trigger input signal but should be used in falling edge
detection mode.

Table 21-56.  Field setting for stop on kill feature

PWM_STOP_ON_KILL Field Comments

0 The kill trigger temporarily blocks the PWM output line but the counter is still 
running.

1 The kill trigger temporarily blocks the PWM output line and the counter is also 
stopped.

Table 21-57.  Field Setting for Synchronous/Asynchronous Kill

PWM_SYNC_KILL Field Comments

0 An asynchronous kill event lasts as long as it is present. This event requires pass 
through mode.

1 A synchronous kill event disables the output lines until the next TC event. This 
event requires rising edge mode.
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21.3.4.5 Configuring Counter for PWM Mode
The steps to configure the counter for the PWM mode of operation and the affected register bits are as follows.
1. Disable the counter by writing ‘0’ to the COUNTER_ENABLED field of the TCPWM_CTRL register.
2. Select PWM mode by writing ‘100’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.
3. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in 

Table 21-48.
4. Set the required 16-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the 

TCPWM_CNT_PERIOD_BUFF register to switch values, if required.
5. Set the 16-bit compare value in the TCPWM_CNT_CC register and buffer compare value in the 

TCPWM_CNT_CC_BUFF register to switch values, if required.
6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL 

register to configure left-aligned, right-aligned, or center-aligned PWM, as shown in Table 21-55.
7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.
8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, Switch, 

and Count).
9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, Switch, 

and Count).
10. line_out and line_out_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert 

upon CC, OV, and UN conditions.
11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 250.
12. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger 

must be provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal is 
not enabled.
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21.3.5 Pulse width modulation with Dead Time mode
Dead time is used to delay the transitions of both ‘line_out’ and ‘line_out_compl’ signals. It separates the
transition edges of these two signals by a specified time interval. Two complementary output lines ‘dt_line’ and
‘dt_line_compl’ are derived from these two lines. During the dead band period, both compare output and
complement compare output are at logic ‘0’ for a fixed period. The dead band feature allows the generation of
two non-overlapping PWM pulses. A maximum dead time of 255 clocks can be generated using this feature.

21.3.5.1 Block diagram

Figure 21-72.  PWM-DT mode block diagram

21.3.5.2 How it works
The PWM operation with Dead Time mode occurs as follows:
• On the rising edge of the PWM line_out, depending upon UN, OV, and CC conditions, the dead time block sets 

the dt_line and dt_line_compl to ‘0’.
• The dead band period is loaded and counted for the period configured in the register.
• When the dead band period is complete, dt_line is set to ‘1’.
• On the falling edge of the PWM line_out depending upon UN, OV, and CC conditions, the dead time block sets 

the dt_line and dt_line_compl to ‘0’.
• The dead band period is loaded and counted for the period configured in the register.
• When the dead band period has completed, dt_line_compl is set to ‘1’.
• A dead band period of zero has no effect on the dt_line and is the same as line_out.
• When the duration of the dead time equals or exceeds the width of a pulse, the pulse is removed.
This mode follows PWM mode and supports the following features available with that mode:
• Various output alignment modes
• Two complementary output lines, dt_line and dt_line_compl, derived from PWM line_out and line 

_out_compl, respectively
– Stop/kill event with synchronous and asynchronous modes
– Conditional switch event for compare and buffer compare registers and period and buffer period registers

This mode does not support clock prescaling. 
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Figure 21-73 illustrates how the complementary output lines dt_line and dt_line_compl are generated from the
PWM output line, line_out.

Figure 21-73.  Timing diagram for PWM, with and without Dead Time

21.3.5.3 Configuring counter for PWM with Dead Time mode
The steps to configure the counter for PWM with Dead Time mode of operation and the affected register bits are
as follows:
1. Disable the counter by writing ‘0’ to the COUNTER_ENABLED field of the TCPWM_CTRL register.
2. Select PWM with Dead Time mode by writing ‘101’ to the MODE[26:24] field of the TCPWM_CNT_CTRL register.
3. Set the required dead time by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown 

in Table 21-48.
4. Set the required 16-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the 

TCPWM_CNT_PERIOD_BUFF register to switch values, if required.
5. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the 

TCPWM_CNT_CC_BUFF register to switch values, if required.
6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL 

register to configure left-aligned, right-aligned, or center-aligned PWM, as shown in Table 21-55.
7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required, as 

shown in the “Pulse Width Modulation mode” on page 263.
8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, Switch, 

and Count).
9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, Switch, 

and Count).
10. dt_line and dt_line_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert 

upon CC, OV, and UN conditions.
11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 250.
12. Enable the counter by writing ‘1’ to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger 

must be provided through firmware (TCPWM_CMD register) to start the counter if hardware start signal is not 
enabled.
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21.3.6 Pulse width modulation Pseudo-Random mode
This mode uses the linear feedback shift register (LFSR). LFSR is a shift register whose input bit is a linear function
of its previous state.

21.3.6.1 Block diagram

Figure 21-74.  PWM-PR mode block diagram

21.3.6.2 How it works
The counter register is used to implement LFSR with the polynomial: x16 + x14 + x13 + x11 + 1, as shown in
Figure 21-75. It generates all the numbers in the range [1, 0xFFFF] in a pseudo-random sequence. Note that the
counter register should be initialized with a non-zero value.

Figure 21-75.  Pseudo-random sequence generation using counter register
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The following steps describe the process:
• The PWM output line, ‘line_out’, is driven with ‘1’ when the lower 15-bit value of the counter register is smaller 

than the value in the compare register (when counter[14:0] < compare[15:0]). A compare value of ‘0x8000’ or 
higher always results in a ‘1’ on the PWM output line. A compare value of ‘0’ always results in a ‘0’ on the PWM 
output line. 

• A reload event behaves similar to a start event; however, it does not initialize the counter.
• Terminal count is generated when the counter value equals the period value. LFSR generates a predictable 

pattern of counter values for a certain initial value. This predictability can be used to calculate the counter 
value after a certain amount of LFSR iterations ‘n’. This calculated counter value can be used as a period value 
and the TC is generated after ‘n’ iterations.

• At TC, a switch/capture event conditionally switches the compare and period register pairs (based on the 
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD fields of the counter control register).

• A kill event can be programmed to stop the counter as described in previous sections. 
• One shot mode can be configured by setting the ONE_SHOT field of the counter control register. At terminal 

count, the counter is stopped by hardware.
• In this mode, underflow, overflow, and trigger condition events do not occur.
• CC condition occurs when the counter is running and its value equals compare value. Figure 21-76 illustrates 

pseudo-random noise behavior.
• A compare value of 0x4000 results in 50 percent duty cycle (only the lower 15 bits of the 16-bit counter are used 

to compare with the compare register value).

Figure 21-76.  Timing diagram for pseudo-random PWM

A capture/switch input signal may switch the values between the compare and compare buffer registers and the
period and period buffer registers. This functionality can be used to modulate between two different compare
values using a trigger input signal to control the modulation. 
Note: Capture/switch input signal can only be triggered by an edge (rising, falling, or both). This input signal is
remembered until the next terminal count.
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21.3.6.3 Configuring counter for pseudo-random PWM mode
The steps to configure the counter for pseudo-random PWM mode of operation and the affected register bits are
as follows.
1. Disable the counter by writing ‘0’ to COUNTER_ENABLED of the TCPWM_CTRL register.
2. Select pseudo-random PWM mode by writing ‘110’ to the MODE[26:24] field of the TCPWM_CNT_CTRL 

register.
3. Set the required period (16 bit) in the TCPWM_CNT_PERIOD register and buffer period value in the 

TCPWM_CNT_PERIOD_BUFF register to switch values, if required.
4. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the 

TCPWM_CNT_CC_BUFF register to switch values.
5. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.
6. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, and 

Switch).
7. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, and 

Switch).
8. line_out and line_out_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert 

upon CC, OV, and UN conditions.
9. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 250.
10. Enable the counter by writing ‘1’ to the COUNTER_ENABLED field of the TCPWM_CTRL register.
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21.4 TCPWM registers

Table 21-58.  List of TCPWM registers

Register Comment Features

TCPWM_CTRL TCPWM Control Register Enables the counter block

TCPWM_CMD TCPWM Command Register Generates software events

TCPWM_INTR_CAUSE TCPWM Counter Interrupt Cause 
Register

Determines the source of the combined 
interrupt signal

TCPWM_CNT_CTRL Counter Control Register Configures counter mode, encoding 
modes, one shot mode, switching, kill 
feature, dead time, clock prescaling, and 
counting direction

TCPWM_CNT_STATUS Counter Status Register Reads the direction of counting, dead time 
duration, and clock prescaling; checks if 
the counter is running

TCPWM_CNT_COUNTER Count Register Contains the 16-bit counter value

TCPWM_CNT_CC Counter Compare/Capture Register Captures the counter value or compares 
the value with counter value

TCPWM_CNT_CC_BUFF Counter Buffered Compare/Capture 
Register

Buffer register for the counter CC register; 
switches period value

TCPWM_CNT_PERIOD Counter Period Register Contains upper value of the counter

TCPWM_CNT_PERIOD_BUFF Counter Buffered Period Register Buffer register for the counter period 
register; switches compare value

TCPWM_CNT_TR_CTRL0 Counter Trigger Control Register 0 Selects trigger for specific counter events

TCPWM_CNT_TR_CTRL1 Counter Trigger Control Register 1 Determine edge detection for specific 
counter input signals

TCPWM_CNT_TR_CTRL2 Counter Trigger Control Register 2 Controls counter output lines upon CC, 
OV, and UN conditions

TCPWM_CNT_INTR Interrupt Request Register Sets the register bit when TC or CC 
condition is detected

TCPWM_CNT_INTR_SET Interrupt Set Request Register Sets the corresponding bits in the 
interrupt request register

TCPWM_CNT_INTR_MASK Interrupt Mask Register Mask for the interrupt request register

TCPWM_CNT_INTR_MASKED Interrupt Masked Request Register Bitwise AND of the interrupt request and 
mask registers
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Table 21-59.  Peripheral Interconnect Trigger Group Control Registers

Register Name Description

PERI_TR_CTL Trigger Control 
Register

This register provides software control over trigger 
activation. 

PERI_TR_GROUP3_TR_OUT_CTLx Trigger Control 
Register

This register specifies the input trigger for a specific 
output trigger in trigger group3.
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Section E:   Analog System
This section encompasses the following chapter:
• “Precision analog channel subsystem” on page 276

Top Level Architecture

Analog System Block Diagram
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22 Precision analog channel subsystem
The PSoC™ 4 HV PA precision analog channel subsystem (PACSS) is a high-performance data acquisition
subsystem consisting of two physical channels. The PACSS contains the following blocks (see Figure 22-1):
• Analog delta-sigma modulator (DSM) system

– Two analog channels
– Channel multiplexer

• Digital Data System
– Four digital channels (with/without FIR filter)
– Data storages

• Automatic Gain Control
– Gain multiplexer

• I/O Components
– Input multiplexer
– Two high-voltage (HV) input dividers1) 
– On-die temperature sensor
– External temperature sensor

Figure 22-1.  Block diagram

1)  The HV input dividers are part of the High-Voltage Subsystem. See “VDIVIDER (high-voltage divider)” on page 357 for detailed 
information.
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22.1 Features
• Two precision ΔΣ ADCs (16–20+ bits)

– Maximum 48 ksps sample rate at OSR = 64
• Analog multiplexer selects from the following inputs: 

– Two current channels
– Two high-voltage dividers
– On-die temperature sensors
– External NTC temperature sensor
– GPIO pads

• Current channel with automatic gain
– Enables measuring large starting currents or small battery-off currents
– Gain range of 1 to 512, in powers of 2
– 400 nVrms input referred noise at Gain = 512
– ±500 nV offset at Gain = 512
– Support for input voltages from –300 to +300 mV
– Automatic or manual gain control
– Optional chopping to minimize offset voltage error

• Voltage channel with HV input divider
– Battery voltage to levels compatible with the ADCs by HV input divider
– Static gain range of 0.5–512, in powers of 2
– Nominal divider ratio is 24x (28.8 V full-scale)
– Optional divider ratio is 16x (19.2 V full-scale)
– Optional chopping to minimize offset voltage error

• Temperature and diagnostic channels
– Supports on-die and external temperature sensing
– On-die temperate sensing method is delta VBE

• Up to four configurable digital channels
– Filter and post-processing options
– Offset and gain correction

• Scaler (9-bit left shift value)
• Decimator with programmable over-sampling ratio and order (per digital channel)

– Sinc3 or Sinc4 filter, option is configurable 
–       OSR = 2 to 128: (DR)
– Sinc2 Filter (Rate Reducer)
–       OSR = 1 to 32 (DR2)

• Moving average: The last two or four results are averaged or summed
• Finite Impulse Response (FIR) filter

– Configurable up to 64 taps
– Each stage is 32 bits
– 16-bit programmable coefficients

• Sequencer (per analog channel)
– Supports simultaneous sampling
– Incremental mode (16 ksps)
– Continuous mode (48 ksps)
– Digital channel scheduler

• Data storage
– 32-bit ADC results per digital channel
– 32-bit accumulated ADC results per digital channel
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• Post processor
– Range detection: 32-bit high and low thresholds
– Interrupts: data valid, range detection, data saturated
– Triggers: data valid

• Trigger function
– Perform simultaneous measurements
– One device uses a GPIO output to simultaneously trigger the on-chip ADC measurements while signaling 

other PSoC™ 4 HV PA devices to trigger measurements
– Trigger signal can be set using either a timer or software to write to the GPIO

22.2 How it works
This section includes the following contents: 
• PACSS measurement and acquisition system
• Introduction of each PACSS block

22.2.1 PACSS measurement and acquisition system
Figure 22-2 shows the block diagram of the PACSS measurement and acquisition system. 
The analog DSM system is comprised of an input multiplexer, programmable gain amplifier (PGA), anti-alias filter
(AAF), diagnostic multiplexer, buffer, and a delta-sigma modulator. The digital data system is comprised of a
scaler, decimator, FIR-type digital filter, accumulator, comparator, and offset and gain calibrations. 
Also included in this subsystem is the auto gain correction (AGC) circuit, and a temperature sensor with
diagnostics capability. Each digital channel can quickly switch between input sources to create a “virtual” ADC by
using the digital data system. This channel can be used for diagnostic purposes. 
Sequencer is used to generate control signals for performing all the functions of the channel.

Figure 22-2.  PACSS measurement and acquisition system

PGA

Mod Gain
(Cin/Cref) PGA Gain

Buffer

PGA

Analog DSM System

Anti-Alias Filter

Buffer
Modulator

Gain

I/O Components

RSH2
(optional)

ESD

ESD
RSL2

(optional)

ESDVsense

ESDVdiag

RDIVen

GPIO / VDDD

ESDVtemp_sup

ESDVtemp

ESDVtemp_ret

Slower NTC
settling w/ext 

byp. cap

Faster NTC
settling w/ext 

byp. cap

NTCen

NTCen

2-Channel
Differential

Analog
Input
and

Diagnostic
Multiplexor

RDIVsel

RSH ESD

ESDRSL

Modulator
Gain

On-die
Temperature 

Sensor

Anti-Alias Filter

Mod Gain
(Cin/Cref) PGA Gain

Neg Pump 
(2x)


modulator


modulator

LDO Pos Pump

Digital Data System

TEMPERATURE/AUX/DIAGNOSTIC CHANNEL

VOLTAGE/CURRENT CHANNEL

AHB
BUS

FIFO

Gain 
Mux

Decimator Gain
(shift/format)

Scaler,
Decimator

ADC ResultFIR Filter,
Moving Avrg Filter,

Format/Clamp,
Accumulator

Compensation
Accumulated

Int
Threshold

Comparisons

32b

32b

Control RegistersOffset & Gain
Coefficients

Comparison
Coefficients

Scaler, 
Decimation

Control

Post Processing
Control

Decimator Gain
(shift/format)

Scaler,
Decimator

ADC ResultFIR Filter,
Moving Avrg Filter,

Format/Clamp,

Accumulator

Compensation
Accumulated

Int
Threshold

Comparisons

32b

32b

Control RegistersOffset & Gain
Coefficients

Comparison
Coefficients

Scaler, 
Decimation

Control

Post Processing
Control

Decimator Gain
(shift/format)

Scaler,
Decimator

ADC ResultFIR Filter,
Moving Avrg Filter,

Format/Clamp,

Accumulator

Compensation
Accumulated

Int
Threshold

Comparisons

32b

32b

Control RegistersOffset & Gain
Coefficients

Comparison
Coefficients

Scaler, 
Decimation

Control

Post Processing
Control

Decimator Gain
(shift/format)

Scaler,
Decimator

Rate 
Reducer

ADC ResultFIR Filter,
Moving Avrg Filter,

Format/Clamp,
Accumulator

Compensation
Accumulated

Int
Threshold

Comparisons

32b

32b

Control RegistersOffset & Gain
Coefficients

Comparison
Coefficients

Scaler, 
Decimation

Control

Post Processing
Control

TEMPERATURE/AUX/DIAGNOSTIC CHANNEL

VOLTAGE/CURRENT CHANNEL

FIFO

Gain Control
Range

Comparisons

Gain Control
Logic and

Lookup Table

Gain

Increase

Decrease

Comparison Thresholds

Fast 
Decimator

Counter / 
Integrator

GPIO / VSSD

AREF, HPBGR

Auto Gain Control

vddd/4

vdda/4

vref

vccd/2

vs_div0

vs_div1

rsh1
rsl1

rsh0
rsl0

gpio
7-0

vt_sup
vts_ret

vts
vts_ret

vtint



Reference manual 279 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Precision analog channel subsystem

The PSoC™ 4 HV PA PACSS is divided into the following blocks: 
• Analog DSM System

– Sequencer
• Digital Data System
• Automatic Gain Control
• I/O Components

22.2.2 Analog DSM system
The PSoC™ 4 HV PA PACSS has two delta-sigma analog-to-digital converters (ADCs) to perform 16–20+ bit
measurements at a sample rate of up to 48 ksps for continuous measurements. Higher resolution can be achieved
at slower sample rates by accumulating more modulator results in the decimator. 
The analog portion of the ADCs (see Figure 22-3) consists of a PGA, AAF, diagnostic multiplexer, buffer, and a
delta-sigma modulator. 
The analog DSM system receives a differential signal selected through the analog multiplexer. This differential
signal is received by a programmable gain amplifier (PGA). The output of the PGA feeds a low-pass anti-alias filter
(AAF) with a bandwidth of ~30 kHz. A buffer amplifier drives the DSM modulator – this amplifier has high
bandwidth to settle the modulator capacitors to better than 16 bits each time they are settled. The modulator
uses capacitor dividers to set gain. The modulator is a third order with switched capacitor amplifier circuits. The
modulator produces a multi-level digital bitstream sent to the digital channel.
PGA and buffer amplifiers have offset trim, which reduces to offset these sub-blocks to <0.5 mV (across
temperature). Offset trim is done during production. To reduce offset further, there is circuit chopping in PGA,
buffer, and modulator. Chopping frequency is programmable from Fs/2 to Fs/256 (in 2’s powers), where default
is Fs/32 (PACSS_ACHANx_DPATH_CTL.BUF_PGA_FCHOP). Fs here is the modulator clock.
There is also a channel chop mode setting (PACSS_ACHANx_CHOP_CTL.CHOP_MODE):
• 00 - OFF: Channel Chopping and Buffer Cross Chopping Disabled
• 01 - Channel Chopping Enabled
• 11 - Buffer Cross Chopping Enabled
• 10 - Not supported
Channel chopping is between the inmux and the modulator output using the modbit. 
Buffer cross chopping is on the input and output of the buffer using the modbit. 
Both modes toggle the modbit when the PACSS_ACHANx_CHOP_CTL.SMP_CNT value is reached.
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Figure 22-3.  Analog DSM system block diagram

Figure 22-4 shows a simplified diagram of an analog channel. Analog multiplexers to bypass and swap blocks for
diagnostics are omitted for clarity.

Figure 22-4.  Analog channel - simplified diagram

Lowest input referred noise is achieved when PGA is set to its highest gain before feeding it to the DSM. FIR and
Moving Average Filters in digital channels further reduce the noise by reducing bandwidth and averaging. 
ADC measurements can be triggered by software or hardware. Hardware triggers can be generated by timers or
GPIO inputs. The ADCs can be triggered independently or simultaneously. A trigger function can be implemented
to allow multiple PSoC™ 4 HV PA devices to perform simultaneous measurements. One device uses a GPIO output
to simultaneously trigger the on-chip ADC measurements while signaling other PSoC™ 4 HV PA devices to trigger
measurements. The trigger signal can be set using either a timer or software to write to the GPIO. 
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22.2.2.1 Programmable gain amplifier
The PGA is a fully-differential pseudo-instrumentation amplifier implemented with two opamps. The PGA can be
programmed for gains of 1 to 32 (PACSS_DCHANx_PGA_GAIN_CTL.GAIN). Additional channel gain can be
obtained later in the channel with the DSM (typically modulator gain of 1 to 16 is used). Note that this gain setting
is overridden by the AGC values if PACSS_MMIO_PACSS_CTL.AGC_EN = 1 and
PACSS_DCHANx_DCHAN_CTL.AGC_GAIN_EN = 1. Therefore, the current value of the PGA gain cannot be read
from this register during AGC mode. 
The PGA gain can be programmed via the internal bus or comes from the AGC
(PACSS_MMIO_STATUS.AGC_CURR_GLVL). This enables large dynamic range while maintaining good noise
performance. The AGC selects the PGA gain to ensure that the output of the PGA is below the ADC reference. In
this way over-ranging of the PGA. such as at high input signals can be avoided. 
The PGA input range is –250 mV to 1.2 V (For RSH/RSL input pins, the input range is –300 mV to +300 mV). A
negative pump is used to allow inputs to be below ground. This PGA has low-noise and input capacitance of about
1.5 pF. The PGA includes input/output chopping, which the sequencer can enable, and digital offset trim.

22.2.2.2 Anti-alias filter
The anti-alias filter (AAF) is a first order RC filter with a 30-kHz corner frequency. 30 kHz is selected to give 40 dB
attenuation at modulator sampling frequency, which is 3.072 MHz. The filter also has bypass switches, which
allow the filter to be removed from the signal path, and a set of fast switches that bypass the “R” in the RC filter,
moving the corner frequency approximately 600 kHz. Figure 22-5 shows the AAF. To alternately measure two
signals with one channel, the anti-alias filter can be temporarily shorted since the AAF needs about 60 µs to settle
to 16-bits before conversions can start - the measurement sample rate needs to slow to 4 ksps if the AAF is not
bypassed.

Figure 22-5.  Anti-alias filter
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22.2.2.3 Buffer amplifier
The buffer amplifier converts the high-impedance AAF filter output to low impedance for driving the DSM
modulator. The modulator configuration used by in battery monitoring and management applications is
typically 6.4 pF. The charge on the modulator capacitors must be restored every conversion cycle (3.072 MHz at
maximum conversion rate), which requires a low-output impedance and high-unity bandwidth of about 18 MHz
to allow the modulator capacitors charge to be restored and settle within a half clock cycle. The buffer includes
digital offset trim and chopping, which can be enabled or disabled with a control signal.

Figure 22-6.  Buffer amplifier

22.2.2.4 Delta-sigma modulator
Figure 22-7 is a block diagram of a Delta-Sigma Modulator (DSM).

Figure 22-7.  Delta-sigma modulator
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The delta-sigma modulator works by taking the difference between input and feedback signals (delta) and
accumulating that difference (sigma) to produce a digital output. The digital stream goes to a decimator, which
converts the fast oversampled bit stream into slower high-resolution results.
This block is implemented with a switched capacitor architecture implementing a third order Cascade of
Resonators Feed-forward architecture. The quantizer uses nine quantization levels. 
The DSM has built-in overload detection with programmable detection threshold. The input common mode
range is rail-to-rail (0 V to VDDA, VDDA = 2.7 V–3.6 V).
Modulator has typical attenuation of 15% to ensure the loop stability. Gain calibration of the Analog Channel
corrects this attenuation (see Table 22-9).
Gain is programmable from 0.5x to 4x (with most battery monitoring and management applications using 1, 2,
and 4, in powers of 2). Gain is selected by adjusting the size of the inputs caps, to reference gaps with more gain
when larger input caps and smaller reference caps are selected. Programming of the capacitors is binary
weighted with selectable resolution of 12 fF, 50 fF, or 100 fF.
A bi-directional data weighted averaging (DWA) based dynamic element matching scheme is used for capacitor
mismatch cancellation. Register option exists to change Dynamic Element Matching Scheme (DEM) to be
unidirectional instead of bi-directional.
Chopping is possible at programmable frequency in the first integrator to cancel the input path mismatch
between buffer amplifier offset and 1/f noise.
Sign inversion support is controlled by external input to support applications such as full wave rectification and
channel chopping.

Figure 22-8.  Delta-sigma modulator architecture 

This modulator produces an 8-bit thermometric code, which is converted to 4-bit 2’s complement before scaling
and decimation in the digital channel. The Cascade Resonant Feed-Forward modulator architecture is illustrated
in Figure 22-8.
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22.2.2.5 Dynamic element matching
The Delta-Sigma Modulator has a multi-bit quantizer; therefore, the reference DAC is multi-level. This causes
linearity issues, which is solved by using dynamic element matching (DEM). Two types of DEM are supported.
These are selected by PACSS_ACHANx_DEM_CTL.SCRAM0_EN and SCRAM1_EN bits and enabled by setting
DEM_EN bit to high. DWA uses data weighted averaging technique for mismatch cancellation. The bi-directional
DWA (Bi-DWA) alters the direction of pointers used for rotation in every cycle to avoid a repetition pattern of the
DWA for low-value DC inputs. Alternate DWA (ADWA) is an alternate scheme where the pointer direction is
reversed only on detection of repeating codes. The PACSS_ACHANx_DEM_CTL register is used to control DEM
mode.

22.2.2.6 Reference system
The main reference to modulator DAC comes from the High-Precision BandGap Reference (HPBGR). Other
options are available for diagnostic features. 
An external 470-nF (typ) capacitor is required for HPBGR reference to improve absolute accuracy and SNR by
reducing noise. This capacitor is connected between VREFH and VREFL pins. VREFL must not be shorted to ground at
PCB level. VREFL is Kelvin connected to VSSA on the device.
The quantizer of the modulator uses the same reference as the DAC by default, but with a source-follower
amplifier so that there is no constant load on HPBGR. Quantizer reference can also be VCCA (1.8 V), but this will
increase quantization noise (which will degrade SQNR). The default quantizer reference is HPBGR voltage
(PACSS_ACHANx_REF_CTL.VREF_QTZ_SEL = 0).
The common mode for the modulator amplifiers is programmable. Available voltages are 0.7 V and 0.8 V from
HPBGR and also VCCA (1.8 V)/2. Default common mode is 0.8 V from HPBGR (PACSS_ACHANx_REF_CTL.VCM_SEL
= 0).

The PACSS_DCHANx_SMP_REF_CTL register is used to control VREFH and VREFL connection. VREF connections are
recommended for each convert mode. Table 22-2 shows the reference selection by mode.

VREF measurement with a gain of 1x can measure the results even the ADC’s reference is 1.2 V. It is because the
DSM modulator attenuates the input by ~0.85x gain (see Table 22-9). 

Table 22-1.  DEM settings

SCRAM1_EN (EN_DWA) SCRAM0_EN (EN_ADWA) Function

0 0 Bi-DWA (default)

0 1 ADWA (not recommended)

1 0 DWA

1 1 Not used

Table 22-2.  Reference selection by mode

Mode Pos Ref VREFH_SEL[2:0] Neg Ref VREFL_SEL[5:4] Comments

Normal mode VREFH Direct 0x00 VREFL 0x00 –

Internal temp sens VREFH Direct 0x00 VREFL 0x00 –

External temp sens VTS_REF 0x03 VTS_RET 0x03 –

VREFH measurement VREF SRSS 0x02 VSSA_SRSS 0x01 VREFH is input to 
the channel

Other diagnostic VREFH Direct 0x00 VREFL 0x00 Measuring power 
supplies, grounds, 
and so on
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22.2.2.7 Negative pump
The negative pump produces –1.2 V, which is used by the programmable gain amplifiers and –0.8 V, which is used
to bias the isolated p-well (body) of N-MOS switches that connect to signals which can go up to 300 mV below
ground. The PACSS_ACHANx_PUMP_CTL register is used to control the negative pump.
The negative pump requires a 24-MHz clock. The clocks are created by HFCLK (clk_hf) or PUMP clock  (clk_pump)
from the SRSS (see the “Clocking system” on page 93 for more details). 
Pump Clock Configuration
There is a functional option that will always save power without impacting performance by changing the clock
configuration. The power can be saved by changing the following registers:
• PACSS_ACHANx_PUMP_CTL.CLOCK_SEL sets to 0x2 or 0x3
 0x0: pump clock sourced by clk_pump/2, use if clk_pump is set to 48MHz
 0x1: pump clock sourced by clk_pump/1, use if clk_pump is set to 24 MHz
 0x2: pump clock sourced by clk_hf/2, use if clk_hf is set to 48 MHz
 0x3: pump clock sourced by clk_hf/1, use if clk_hf is set to 24 MHz
• SRSSHV.CLK_SELECT.PUMP_SEL sets to 0x0
 0x0 : GND : No clock, connect to gnd
 0x1 : IMO : Use main IMO output
 0x2 : HFCLK : Use clk_hf (using selected source after predivider but before prescaler)
Note: To save power, the pump clock can be disabled (PUMP_SEL=0x0) for normal operation, then re-enabled
prior to calling FLASH operations. Each FLASH operation should confirm that pump clock is enabled.

22.2.2.8 Positive pump
The positive pump is included in the PACSS block as risk mitigation. Single positive pump is used for both
channels. The  PACSS_MMIO_VPOS_PUMP_CTL register is used to control the positive pump, and enabled via the
PACSS_MMIO_PACSS_CTL.VPOS_PMP_EN bit. By default, the positive pump is disabled. In this mode, pump
output is bypassed to VDDA.
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22.2.2.9 Chopping configuration

Chopping is used to reduce offset and 1/f (Flicker) noise. Various chopping schemes are implemented in the
PACSS. See Table 22-3 for default values and “Sequencer timing” on page 315 for each channel setting.

Table 22-3.  Default chopping settings

Register Field Comment D/T Channel V Channel I Channel

PACSS_ACHANx_CHOP_CTL SMP_CNT Chopping Sample 
Count number of 
samples to count 
before toggling modbit

N/A N/A 3

AAF_SHORT_
R_CNT

Anti-Aliasing Filter 
Short Resistor Count 
number of DSM clock 
cycles

N/A N/A N/A

DEC_BLANK_
CNT

Decimator Blanking 
Count number of DSM 
clock cycles

N/A N/A N/A

CHOP_MODE Set channel/buffer 
cross chopping mode

0 0 3

CIRCUIT_
CHOP

Disconnect PGA-AAF for 
0-3 clk cycles at PGA 
chopping rate

2 2 2

CIRCUIT_
2ND_EN

Second Stage Circuit 
Chopping Enable

1 1 1

CHOP_RST_
EN

Reserved (no 
functionality)

0 0 0

PACSS_ACHANx_PGA_CTL PGA_CHOP_
EN

Chopping Enable for 
PGA

1 1 1

PACSS_ACHANx_BUF_CTL BUF_CHOP_
EN

Chopping Enable for 
Buffer

1 1 1

PACSS_ACHANx_MOD_CTL MOD_FCHOP Modulator Chopping 
Clock Frequency 
Selection

Fs/32 Fs/32 Fs/32

MOD_CHOP_
EN

Modulator Chopping 
Enable

1 1 1

PACSS_ACHANx_DPATH_CTL BUF_PGA_
FCHOP

Chopping Clock 
Frequency selection for 
Buffer and PGA

Fs/32 Fs/32 Fs/32

BUF_PGA_
CHOP_CLK_
EN

Buffer and PGA 
Chopping Clock Enable

1 1 1

PACSS_MMIO_HPBGR_CTL CHOP_EN HPBGR Chopping 
Enable

1 1 1

HPBGR_
FCHOP

HPBGR Chopping Clock 
Frequency selection

Fs/4 Fs/4 Fs/4
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22.2.2.10 Power configuration

Power control registers save power in negative pump, modulator, PGA, and buffer. Table 22-4 shows the
recommended settings for each register.

Table 22-4.  Recommended power and clock settings

Register Field Comment Value Power Level

PACSS_ACHANx_PUMP_CTL VNEG_PWR_MODE Negative pump power mode 3 –

CLOCK_SEL Negative pump clock selection 2 or 3  clk_hf/2 or 
clk_hf/1

PACSS_ACHANx_MOD_CTL POWER1 First stage opamp power level 
control

5 88%

POWER2_3 The power control for the second 
and third integrator stages

3 100%

POWER_COMP The power control for the 
quantizer block

2 100%

POWER_SUM The power control for the 
summer block

3 100%

PACSS_ACHANx_BUF_CTL BUF_PWR_LEVELS Buffer power levels 2 78%

PACSS_ACHANx_PGA_CTL PGA_PWR_LEVELS PGA power levels 1 58%

SRSSHV.CLK_SELECT PUMP_SEL Clock source for charge pump 
clock

0a)

a) Should re-enable prior to calling FLASH operations. Each FLASH operation should confirm that pump clock is 
enabled.

No clock
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22.2.2.11 Modulator data path
This section describes the flow of the modulator data through the design. Figure 22-9 shows the block diagram
of the modulator data path.

Figure 22-9.  Modulator data path

22.2.2.12 Overload logic
The modulator outputs dout[7:0] and ovd[1:0] are routed to the analog channels data path logic. ovd[1:0] is the
overload detect status bits: ovd[1] and ovd[0]. The output ovd[1] is set when an overload of ones is detected. The
output ovd[0] is set when an overload of zeros is detected. The ovdflag signal is an output of the overload logic
and is set if either the one or zero overload bit is set. The ovdcause bit is set for overload one detected and cleared
for overload zero detected. The overload logic is enabled and configured with the PACSS_ACHANx_DPATH_CTL
register.
When ovdflag is set it modifies the data to all zeros or all ones depending on the ovdcause bit before the two’s
complement conversion.
If the number of 1s or 0s at the modulator output exceed certain number (set in
PACSS_ACHANx_DPATH_CTL.ODET_TH), then first, second, or third integrator stage feedback can be reset.
RESET1_EN, RESET2_EN, and RESET3_EN fields are set to enable which capacitors are to be reset in the case of
modulator overload. The RESET*_EN bits are used as a level of correction; in most cases start with setting
RESET3_EN, then if more correction is required set RESET2_EN, and then RESET1_EN if needed.
Overload detect runs continuously, even when a conversion is not in progress. Overload detect may trigger even
when a conversion is not in progress. To stop the modulator from running continuously, disable HPBGR chopping
(PACSS_MMIO_HPBGR_CTL.CHOP_EN) and the free-running clock (PACSS_ACHAN0_DPATH_CTL.FCLOCK_EN).
Note that getting the overload interrupt (PACSS_DCHANx_INTR.OVERLOAD_INTR) indicates that the sample can
be corrupted by the overload reset event. Getting multiple interrupts indicate that the block is configured
incorrectly or there is an error with the signals being measured.
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22.2.2.13 Quantization level
The two’s complement conversion logic inputs the output data from the overload logic and a 2-bit quantization
level configurable input (PACSS_ACHANx_DPATH_CTL.QLEV). The default value of quantization level is 9-level
modulation.

22.2.2.14 Data path multiplexing
After the two’s complement conversion, if channel chopping is enabled and the modbit is high, the data is
inverted to create the signal xout[3:0]. In the default case xout is used as the decimator’s inputs, but there is an
option to route off-chip data directly to the decimator via dbg_io. This mux selection is controlled by
PACSS_ACHANx_DPATH_CTL.MX_DIN. 
The dbg_io port is a bi-directional port that can also be used to send the modulator output, modulator reset and
clock, overload status bits, and the AGC gain level off-chip for debug purposes. This mux select is set by
PACSS_ACHANx_DPATH_CTL.MX_DOUT. 
The PACSS can have up to two analog channels, but there is only one dbg_io port per PACSS. If both channels
attempt to use the dbg_io port, channel 0 will get priority.

Table 22-5.  Two’s complement conversion (QLEV)

Input Output

QLEV[1:0] dout[7:0] dout2scomp[3:0]

2’b00 8’b00000000 4’b1111 –1

2’b00 8’b11111111 4’b0001 1

2’b01 8’b00000000 4’b1111 –1

2’b01 8’b00001111 4’b0000 0

2’b01 8’b11111111 4’b0001 1

2’b10 8’b00000000 4’b1100 –4

2’b10 8’b00000001 4’b1101 –3

2’b10 8’b00000011 4’b1110 –2

2’b10 8’b00000111 4’b1111 –1

2’b10 8’b00001111 4’b0000 0

2’b10 8’b00011111 4’b0001 1

2’b10 8'b00111111 4’b0010 2

2’b10 8’b01111111 4’b0011 3

2’b10 8’b11111111 4’b0100 4
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22.2.3 Digital data system
The digital data system has four digital channels that include scaler, decimator, rate control, FIR filter,
accumulator, comparator, offset, and gain calibrations. The digital channels process outputs from either of the
two analog channels. Two channels are with FIR filter and the others are without the FIR Filter. The digital channel
without FIR filter has every other feature.
The channels are typically used for current, voltage, temperature, and diagnostic measurements although they
can be associated with any inputs. The digital system of the PACSS is largely autonomous; it performs
acquisitions, filtering, post-processing, and data storage without firmware intervention. This allows real-time
measurements without loading the CPU. The digital data system optionally generates various interrupts to
enable further processing of the results, or to handle diagnosis errors. Triggers are also generated by the digital
data system for system peripheral use cases.
Figure 22-10 shows a diagram of the digital data system. The digital data system is configured, then initiated
with a trigger, which must be associated with one or both analog channels. At this point the sequencer of the
analog channel determines which digital channels have selected it. It may be one, or up to all four digital
channels. The sequencer loads the configuration from the first digital channel then starts the acquisition. The
sample is converted, optionally filtered, optionally post-processed then stored. The sequencer will then move on
to the next digital channel, if any, and repeat until it has converted all the digital channels linked to the
sequencer. There are interrupts, status bits, and output triggers that the software and peripherals can use to
track the events of the digital data system. 
The PACSS register configuration is divided into three sections:
• Global configuration (pacss_mmio)
• Digital channel (dchan)
• Analog channel configuration (achan)
The global configuration (pacss_mmio) applies to the entire system. This contains the configuration for the
sequencers, the temperature sensor, the AGC, and the logic that muxes data between dchan and achan slices.
The digital channel (dchan) contains the sample configuration data that will be sequenced, such as the pin to be
sampled, and the filtering and post processing options. Each dchan slice contains a decimator, FIR filter
(optional), a post-processing block, and data storage. There can be up to four dchan slices per PACSS. The default
configuration of the digital data system will instance two dchans with a FIR filter and two dchans without FIR
filter.
The analog channel configuration (achan) is the analog configuration that is static while the sequencer traverses
between digital channels. Each achan contains the triggering logic, a sequencer, and data path (DPATH) logic.
In general, all register configuration must be set before triggering and static while conversions are running. The
exceptions are noted in the register map.
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Figure 22-10.  Digital data system block diagram

The digital channel converts the modulator output data and includes scaling, filtering, and compensation. It also
compares ADC values with thresholds to generate interrupts when thresholds are exceeded. Figure 22-11 shows
a simplified diagram of the digital channel path.

Figure 22-11.  Simplified diagram of digital channel
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The modulator bit stream first goes to a channel chopper, which can multiply the bit stream by +1 or –1. The
voltage channel uses programmable fixed gain while the current channel can use either fixed or automatic gain.
A scaler is used so the LSB of the ADC can have the same weight regardless of gain. The LSB is established by the
ADC resolution at maximum gain - for the current channel, the LSB is 0.715 mA with a gain of 512. The scaler
multiplies the output of the modulator by 512/Gain to normalize results and maintain 0.715 mA for the LSB
regardless of gain setting. To multiply by 2, the scaler shifts results up one bit. To cover a gain range of 1 to 512
means results can be shifted up to 9 bits.
There are two decimators – one is configurable as sinc3 or sinc4, and the other is used as rate reducer and is a
sinc2. 
The first decimator can be configured for third or fourth order operation. The decimation rate (DR) is
programmable and can range from 2 to 128. Both the third and fourth order decimator configurations can be
used for incremental or continuous mode. 
The second decimator (rate reducer) DR2 is programmable and can range from 1 to 32. For instance, with a 
3.072-MHz clock, DR is set to 64, and DR2 is set to 6 to achieve an 8 ksps sample rate.
The output of the decimator goes to a compensation block, which multiplies results for gain adjustment and adds
constants for offset correction. Up to 64 tap finite impulse response (FIR) filter with programmable coefficients
follows the compensation block. Results are then normalized to remove unused bits and averaging,
accumulation, and threshold detection can be performed. Threshold comparison uses a window comparator,
which can be programmed for high and low thresholds that trigger interrupts. Channel control registers are
programmed by the CPU using the AHB bus. Results can be transferred by DMA or CPU. An interrupt can initiate
a DMA transfer or notify the CPU data is available. The CPU can also poll for end-of-conversion to determine data
is available.
Figure 22-12 shows the block diagram of the digital channel (DCHAN) data path.

Figure 22-12.  Digital channel data path
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22.2.3.1 Decimator
The decimator is either a three- or four-stage CIC filter, which consists of cascaded integrators followed by
differentiators, implementing a comb filter. The number of stages is determined by the register bit
PACSS_DCHANx_DEC_CTL.SINC_MODE. The decimator is clocked by clk_dsm, which runs at the same frequency
as the modulator. The differentiators however are clock-enabled at a slower rate determined by the decimation
rate. The decimation rate (DR) is configurable in the PACSS_DCHANx_DEC_CTL register to any integer value
between 2 and 128. There are some DR value restrictions based on configuration choices, which are noted in
PSoC™ 4 HV PA Registers TRM. Therefore, the differentiators are effectively clocked at Fs/DR.
Figure 22-13 shows a block diagram of the decimator.

Figure 22-13.  Decimator block diagram

The 7-bit decimation counter is used to produce a clock enable strobe for the comb (subtractor) section - allowing
it to effectively clock at a rate slower than the sample rate. This counter divides Fs by a programmable value
between 2 and 128. Depending on the configuration the filter is in, this full range may not produce valid results.
The expectation is decimation ratios (DR) of 8 to 128. 
The Single Sample counter is used to measure out the decimation periods (3 or 4) that constitute a single sample.
In incremental mode, the filter needs clocks equal to (Fs) S x DR to produce a valid result. S = 3 when
PACSS_DCHANx_DEC_CTL.SINC_MODE = 0, and 4 when SINC_MODE = 1. This counter is also used in continuous
mode. When the modulator is reset, the first S-1 decimations cycles do not produce a valid data – thus they are
not used as results. 
A second sinc2 filter is used as a rate reducer. It is nothing more than an accumulator of the samples from the CIC
filter. This uses the decimation ratio called DR2; it has a maximum value of 32. 
With the 3.072-MHz clock (clk_dsm), output data rate is programmable between 0.75 to 48 ksps based on the DR
values.
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22.2.3.2 Circular buffer
The circular buffer is used to blank the decimator with recent but buffered modulator data while the analog
settles after a gain or input mux selection change.
The decimators circular buffer can be activated by the sequencer or the AGC. When it is not activated, it
continuously stores modulator data. The buffer holds 32 4-bit samples before it overlaps. When the circular buffer
is activated, it no longer receives new samples and outputs the oldest data in buffer into the accumulation stage
of the decimator.

22.2.3.3 Conversion modes
The supported conversion modes are incremental (single sample) and continuous. The conversion modes are set
in PACSS_DCHANx_DEC_CTL.CONV_MODE register (0 - Incremental (Single Sample), 1 - Continuous). 
Note that the primary (I and V) measurements should be made using continuous mode; performance is better in
this mode. Incremental mode is meant for secondary (diagnostic) measurements.
When the Decimator Sinc mode is set in the PACSS_DCHANx_DEC_CTL.SINC_MODE register, the initial
conversion time will change as shown in Figure 22-14 and Figure 22-15.

Figure 22-14.  Incremental conversion (Single Sample)

Figure 22-15.  Incremental conversion w/ dr2 = 4
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Figure 22-16.  Continuous conversion

22.2.3.4 Left shift
The SHIFTL[3:0] fields are used to align the output of the CIC filter to a consistent location. SHIFTL depends on
the input levels on mod data, decimation ratio, and whether the channel uses moving-sum averaging.
It can be used as a scalar to normalize the result according to gain applied by the PGA and modulator.
SHIFTL defaults to LSB aligned and all shifts are to the left (toward MSB). The register is programmed with
PACSS_DCHANx_DEC_CTL.SHIFTL when AGC is not used. When AGC is used, each gain level has its own SHIFTL,
found in PACSS_MMIO_GAIN_CFGx.SHIFT1. Frequently, this document will refer to SHIFTL; SHIFT1 may be
substituted for configs which use AGC, where appropriate.

22.2.3.5 Right shift

Figure 22-17.  Decimator right shifting stages

The right shifts have two purposes: 
• To work with the left shift to align the data in the datapath. 
• To reduce the magnitude of the data so that it fits within the datapath limits.
The digital datapath has two right-shifting stages. The first stage is after the moving average computation, just
before offset-correction is applied. The second right shift is after the rate-reducer.
The input of the offset-correction will truncate the most significant bits to reduce the bit-width to 32-bits.  If the
converted value surpasses 32-bits, this would result in a loss of MSB data.  The data must be right shifted at the
first stage in order to fit.  Further, the gain profiles were developed at specific magnitudes, and right shifting is an
easy way to ensure the data magnitude aligns with the gain profile. See “Offset correction values alignment”
on page 298.
Similarly, the rate-reducer can output data that is too wide. The second right shifter can realign this data. 
The amount to right shift at the first stage depends on the quantization level, decimator oversample ratios,
number of decimator filter stages (sync order), and left shift scaler values. 
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Use the following equation to determine the right shift value for PACSS_DCHANx_DEC_CTL.SHIFTR:
             

qLev = Quantization level of the modulator. Usually 9.
max(SHIFTL) = Largest scaler shift used by any gain level. 
N = Filter order of the first stage. Usually 3.
DR1 = Oversample ratio of the first stage decimator.
U = Number of samples in the moving average. Often 4 or 1.
The next shifting stage is after the sync2 rate reducer. The rate reducer's output max width is 42 bits, but the adc
result must be 32-bit. The 10 most significant bits of data would be truncated, so it is important that the second
right shift reduce the data width to 32-bit. 
Use the following equation to calculate PACSS_DCHANx_DEC_CTL.RR_SHIFTR:
            

A RR_SHIFTR value will guarantee that the number is not truncated during the PACSS processing. However, the
magnitude of the output code still needs to be aligned with the input signal. See “Decimator result calculation”
on page 297.

22.2.3.6 Moving average and sum
The moving average logic uses up to four 42-bit registers to store the last two or four samples and continuously
compute the average or sum of these samples based on the configuration. The latency of the moving average
logic is two clk_dsm cycles, regardless if average mode is set to 2 or 4. The configuration for moving average is
contained in the PACSS_DCHANx_SMP_CTL register.

22.2.3.7 Offset and gain correction
Offset and gain correction are enabled via the PACSS_DCHANx_DEC_CTL register (OCOR_EN and GCOR_EN bits).
If offset correction is enabled, the 16-bit PACSS_DCHANx_OFST_COR.OCOR value is left shifted by the
PACSS_DCHANx_OFST_COR.OCOR_SCLR value then added to the decimation result. 
If gain correction is enabled, the decimated result is multiplied by the 16-bit PACSS_DCHANx_GAIN_COR.GCOR
value. The 4-bit PACSS_DCHANx_GAIN_COR.GVAL field is used to determine how many bits of the GCOR value are
valid in the calculation. See the register description for more information. If both offset and gain correction are
enabled the offset calculation is done before the gain multiplication.
If Auto Gain Control is enabled, the offset and gain correction are taken from PACSS_MMIO_OFST_COR1 and
PACSS_MMIO_GAIN_COR1 registers. The OCOR_EN, OCOR_SCLR, GCOR_EN, and GVAL values are taken from
each PACSS_DCHAN register settings as shown here.

See “PACSS calibration” on page 330 for more detailed information.

Table 22-6.  Details

Values Description Register name

OCOR_EN Offset Correction Enable ← PACSS_DCHANx_DEC_CTL.OCOR_EN

OCOR_SCLR Decimator Offset Correction Coefficient 
Scaler

← PACSS_DCHANx_OFST_COR.OCOR_SCLR

GCOR_EN Gain Correction Enable ← PACSS_DCHANx_DEC_CTL.GCOR_EN

GVAL Number of valid bits minus one in Gain 
Coefficient registers 

← PACSS_DCHANx_GAIN_COR.GVAL 

DEC_SHIFTR 2 qLev  1+log  max SHIFTL  N 2 DR1 log 2 U  32–log+ + +=

RR_SHIFR 2 qLev  max SHIFTL  N 2 DR1 log 2 U  DEC_SHIFR– 2 2 DR2  1+log+log+ + +log  32–=
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22.2.3.8 Saturation
The decimator implements saturation logic that is used to prevent over- and under-flow wrap-around in the
accumulator. When saturation is enabled the ALU in the decimator will not wrap if the most positive or negative
number is exceeded. This feature is used to prevent wrap-around if the decimator is incorrectly configured for the
application and produces a result larger than the accumulators can hold.

22.2.3.9 Decimator result calculation
The ADC’s analog input is gained by a programmable gain amplifier (PGA) and by the modulator’s capacitor
settings, then it is compared to a reference voltage to produce a 4-bit output stream. This stream is left shifted,
decimated, averaged, right shifted, offset/gain corrected, decimated again, and right shifted again.
To convert the decimator results to a voltage, use:

             

Comeas = Counts of the measurement.
Vrange and Comax are constants which can be derived in advance.

             

Vref = Reference voltage. For example, 1.2 V.
GPGA = Gain of the programmable gain amplifier. For example, 1.
Gcap = Gain introduced by the modulator’s capacitor arrays. For example, 1/2.

             

M = Maximum modulator output. For example, 4.
U = Contribution from moving-sum averaging. For example, 4.
SL = SHIFTL value. For example, 8.
N1 and DR1 are the first decimator stage’s filter order and decimation ratio. For example, 3 and 128.
SR = DEC_SHIFTR value. For example, 3.
N2 and DR2 are the second decimator stage’s filter order and decimation ratio. For example, 2 and 12.
SRR = RRSHIFTR value. For example, 7.

Using the example values:

             

             

             

The LSB (V) can be found by assuming Comeas = 1.

Vout Vrange

Comeas

Comax
------------------ 
 =

Vrange

Vref

GPGA G
cap

--------------------------------=

Comax M U 2
SL N1 2 DR1  SR N2 2 DR2  SRR–log+–log+

=

Vrange
1.2V

1
1
2
---

------------ 2.4V==

Comax 4 4 2
8 3 2 128  3 2 2 12  7–log+–log+=

0x4800_0000=
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If the FIR is enabled, the calculation can involve a few additional factors. The first step is to calculate how many
bits the FIR will add to the datapath. This depends on the number of taps (Ntaps) and the coefficients (coeffi);
another right shift, PP_SHIFTR, can be used to ensure the data fits (see “FIR Filter” on page 301 and “Post
processor right shift” on page 305 for more details).

             

For many useful filters, FIRADJ will be 0.
To ensure the Result fits the datapath, set PP_SHIFTR (SPP)

             

The complete equation for Comax, including the effect of the filter:

             

Note: The automatic gain control allows one to change GPGA, Gcap, and SL. As long as increases in GPGA between
GAINLVL_STRUCTS are offset by decreases in SL, the same constants can be used when doing voltage
conversions.
Caution: Vrange is merely a constant used for calculation. The actual input voltage is restricted such that the
output of the PGA does not exceed 1.2 V.

22.2.3.10 Offset correction values alignment
The Offset Correction (OCOR) values stored in SFlash are determined using specific Digital Channel (DCHAN)
configurations. The OCOR is applied at the output of the decimator right shift (DEC_SHIFTR). Any changes to the
DCHAN that affect the scale of this output require a corresponding change to either the DCHAN settings or the
OCOR value in order to align them back to the same scale.
The OCOR is applied after DEC_SHIFTR, therefore consider the channel configuration up to DEC_SHIFTR (see
Figure 22-18).

Figure 22-18.  Decimator right shifting stages

The OCOR values in SFlash are derived from the following specific channel configurations, resulting in specific
resolutions at DEC_SHIFTR. All configurations use the following values:
• M = modulator data, ranges = 9 (–4 to 4)
• N = Number of sinc stages = 3 (sinc3)
• DR = Decimation ratio = 128
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Any changes to the channel configuration need to match the Resolution after DEC_SHIFTR so that the OCOR
values in SFlash are on the same scale. The Resolution after DEC_SHIFTR can be calculated with the equation.

             

If the resulting resolution is different from the value in Table 22-7, SHIFTL and DEC_SHIFTR must be adjusted.
Note: When AGC is used, SHIFTL is applied at each gain level, but DEC_SHIFTR can only be applied at the DCHAN
level. This means that an increase of SHIFTL at one gain level requires an increase of SHIFTL in all other gain
levels.

Table 22-7.  Channel configuration for OCOR value in SFLASH for DR1 = 128

Gain SHIFTL (SL) DEC_SHIFTR (SR) Resolution of 
OCORa) (nV)

a) Assumes OCOR_SCLR = 0

Profile Analog Gain (Gana) Moving Average (U)

0.5 0.5 1 0 0 286.1

1 1 1 0 0 143.1

2 0.5 4 8 3 2.235

4 1 4 7 3 2.235

8 2 4 6 3 2.235

16 4 4 5 3 2.235

32 8 4 4 3 2.235

64 16 4 3 3 2.235

128 32 4 2 3 2.235

256 64 4 1 3 2.235

512 128 4 0 3 2.235

VLSB

1.2V
Gana
------------

max M  U 2
SL N1 2 DR1  SR–log+


----------------------------------------------------------------------------------------=
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• Example: DR = 64 instead of 128
The following calculation uses the gain profile of 2x.

             

The conversion is not aligned. Lowering DR1 requires a correction.

             

To recoup the lost factor of 8, use a smaller SR value, or a larger SL value. Because the SL value is already somewhat
large, choose to modify SR.

             

If the factor had been 1/8 instead, use a smaller SL value.
Applying this to the previous table gives Table 22-8.

Table 22-8.  Channel configuration for DR1 = 64

Gain SHIFTL (SL) DEC_SHIFTR (SR) Resolution of 
OCORa) (nV)

a) Assumes OCOR_SCLR = 0

Profile Analog Gain (Gana) Moving Average (U)

0.5 0.5 1 3 0 286.1

1 1 1 3 0 143.1

2 0.5 4 8 0 2.235

4 1 4 7 0 2.235

8 2 4 6 0 2.235

16 4 4 5 0 2.235

32 8 4 4 0 2.235

64 16 4 3 0 2.235

128 32 4 2 0 2.235

256 64 4 1 0 2.235

512 128 4 0 0 2.235

VLSB

1.2V
0.5

------------

4 4 2
8 3 2 64  3–log+

-------------------------------------------------------- 17.9nV==

17.9
2.235
------------- 8=

VLSB

1.2V
0.5

------------

4 4 2
8 3 2 64  0–log+

-------------------------------------------------------- 2.235nV==
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22.2.3.11 FIR Filter
Two digital channels (dchan0 and 1) contain a Finite Impulse Response (FIR) Filter.

Figure 22-19.  FIR Filter

From Figure 22-19, dec_in signifies the input data to the FIR from the decimator, while the [t] signifies is the
instance in time. As data enters the FIR it is first multiplied by the initial coefficient value (coeff[0]); then it is added
with the product (*) of the previous decimator data [t – 1] and the next stored coefficient value (coeff[1]), and so
on. This continues until it reaches the number of TAPs enabled (N), which is a programmable register in
PACSS_DCHANx_DCHAN_CTL. The maximum value is 64. The coefficient value (16-bits) and saved tap values 
(32-bits) are stored in separate SRAMs. 
Note: The FIR filter registers (FIR_STRUCTx) are actually an SRAM, not registers. This means that they cannot be
accessed by SWD while the ADC is running. 
The coefficient values can range from –1+1/215 to 1–1/215 with a resolution of 1/215. The coefficient uses twos-
complement notation and the decimal point is fixed to the right of the most significant bit.
Examples: –0.25 = 0xE000 and 0.25 = 0x2000
Figure 22-20 shows a state machine of the FIR filter.

Figure 22-20.  FIR State Machine
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Latency for data available at FIR output from reset: The general formula to calculate delay time/latency to get the
first valid result at FIR output is as follows.
  latency = (5 + [(FIR_taps + 1) × DR2 + (decimator_order – 1)] × DR) / Fdsm_clk
Example: Latency at 8 Ksps data rate:
  decimator order = 3 (for example, sinc3)
  DR = 64
  DR2 = 6
  FIR taps = 16
  Latency = (5 + [17 × 6 + 2] × 64)) / 3.072e6 = 2.168 ms (typ)
[worst-case is 1% more, therefore: 2.190 ms]

22.2.3.12 Digital channel filters
The PACSS digital channel has two decimators (See “Decimator” on page 293) and an FIR filter (See “FIR Filter”
on page 301). Over Sampling Rate (DR and DR2) of decimators is programmable. FIR filter coefficients and the
number of taps are also programmable. Figure 22-21 shows a high-level block diagram of the digital channel.

Figure 22-21.  High-level block diagram of digital channel

Decimators, also known as CIC filters are used to filter quantization noise of the Delta-Sigma modulator block
diagram of sinc3 and sinc2 decimators are shown in Figure 22-22.

Figure 22-22.  Block diagram of sinc3 and sinc2 decimators

The z-domain transfer function of an Lth-order CIC filter is typically presented as:
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The sinc response is equal to zero at integer multiples of the data rate. Meaning, the magnitude response shows
notches at these frequencies. Therefore:
sinc3 has notches at N*Fs/DR                [notches at 24 kHz, 48 kHz, …]
sinc2 has notches at N*Fs/(DR*DR2)     [notches at 1 kHz, 2 kHz, 3 kHz, …]
where,
   N is an integer number
   DR is the Over Sampling Rate of the sinc3 decimator
   DR2 is the Over Sampling Rate of the sinc2 decimator
   Fs is the ADC sample clock rate
An example response for DR = 128 and DR2 = 24 cases is shown in Figure 22-23. ADC sample clock rate is 
Fs = 3.072 MHz. Data-rate of this configuration is 1 ksps.

Figure 22-23.  sinc3 and sinc3+sinc2 output comparison

In addition, an FIR filter can be used to further reduce bandwidth. FIR filter is fully programmable and has 64 taps.
Figure 22-24 is a general structure of the FIR filter block diagram.

Figure 22-24.  General structure of the FIR filter

Figure 22-25 shows the combined output with a 16-tap FIR filter. DR = 128 and DR2 = 24, ADC sample clock rate
is Fs = 3.072 MHz. The coefficients used for the FIR filter are:
• [–0.00414 –0.01741 –0.02674 –0.0151 0.02896 0.1049 0.18756 0.24197 
• 0.24197 0.18756 0.1049 0.02896 –0.0151 –0.02674 –0.01741 –0.00414]
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Figure 22-25.  Combined output of the digital channel filters

22.2.3.13 Post Processor (PP)
Each digital channel contains its own post processor with a unique set of configuration registers (see
Figure 22-26).

Figure 22-26.  Post Processor
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22.2.3.14 Post processor right shift
The 4-bit shift right value is used to make binary point alignment adjustments and to avoid truncation of the most
significant bits from the FIR output. The right shift amount is determined by the number of FIR taps and
coefficient values.
The first step is to calculate how many bits the FIR will add to the data path. This depends on the number of taps
and the coefficient values, and is used to prevent the stored result from exceeding 32 bits.
  FIR_DP_ADJ = log2(coeff[0] + coeff[1] + ... + coeff[n])
If the bit width of the data path plus FIR_DP_ADJ is greater than 32, PP_SHIFTR must be set. The data path
equation at this point is:
  DP_BW = log2(qlev) + SHIFTL + N × log2(DR) + 2 × log2(DR2) – DEC_SHIFTR – RR_SHIFTR
Therefore:
  PP_SHIFTR = DP_BW + FIR_DP_ADJ – 32 

22.2.3.15 Range detection
Range detection allows result comparison with two programmable signed threshold values without CPU
involvement. It is defined by two 32-bit threshold values and a mode field for selecting one of the four possible
modes. The range detection modes are:
• Below Low threshold (result < Lo)
• Inside range (Lo <= result < Hi)
• Above high threshold (Hi <= result)
• Outside range (result < Lo || Hi <= result)
There is also a range counter mode that can be enabled to filter out glitches. In this mode, an 8-bit count value is
also set with one of the range detection modes. The count increments for every sample that triggers range
detection event and decrements for every sample that does not trigger a range detection event. 

22.2.3.16 Data storage
Each digital channel consists of a result, result tag, and accumulated result register. The result register is updated
when the digital channel completes an acquisition. This may be at the end of the decimator conversion, the end
of FIR filtering, or the end of post processing depending on how the channel is configured.
The result tag register contains the 7-bit ECC parity. This is the same ECC parity calculation used for the SRAM
except that the address is not used. The same parity calculation can be used to with the address set to zero.
The accumulated result register accumulates signed acquisitions until a configurable threshold is reached
(PACSS_DCHANx_ACC_THRESH.ACC_THRESH). When the threshold is reached the register resets to zero. The
accumulated results register can also be written, so that its value can be reset at any time. The accumulated
result occurs before the moving average calculation. To obtain an accumulated result the post processor must
be enabled.
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22.2.3.17 Interrupts and output triggers
Each digital channel contains the following interrupts (PACSS_DCHANx_INTR register):
• Range (RANGE_INTR)

– The range interrupt is set whenever the measured value is meets the criteria for one of its four modes. The 
same interrupt is used if the glitch filtering counter is enabled. The range interrupt does require the post 
processor to be enabled.

a) If RANGE_DET_EN = 01: When condition is met an interrupt is set; otherwise, nothing happens.
b) if RANGE_DET_EN = 10: When condition is met, range detection counter is incremented, if less than 

RANGE_CNT_VAL.
c) When condition is not met counter is decremented, if less than RANGE_CNT_VAL. When counter reaches 

RANGE_CNT_VAL interrupt is set. Write with ‘1’ to clear bit. 
• Accumulated Threshold (ACC_THRESH_INTR)

– The accumulated threshold interrupt is set whenever the accumulated result register reaches the 
configured threshold value, which also means the accumulated result register has been reset. This 
interrupt does require the post processor to be enabled.

• Saturate Interrupt (SATURATE_INTR)
– The hardware sets this interrupt if a conversion result is prevented from overflowing in either the decimator 

or the post-processor when PP_CTL.SAT_EN = 1. Write with ‘1’ to clear bit. 
• Overload Interrupt (OVERLOAD_INTR)

– The hardware sets this interrupt for each channel if the modulator output is all zeros or all ones. This is an 
indication that the modulator is overloaded. Write with ‘1’ to clear bit.

• Hardware Trigger Collision Interrupt (HWT_COLLISION_INTR)
– The hardware sets this interrupt when the HW trigger signal is asserted while the DSM is BUSY. Raising this 

interrupt is delayed to when the scan caused by the HW trigger has been completed, i.e. not when the 
preceding scan with which this trigger collided is completed. When this interrupt is set it implies that the 
channels were sampled later than was intended (jitter). Write with ‘1’ to clear bit.

• Firmware Trigger Collision Interrupt (FWT_COLLISION_INTR)
– The hardware sets this interrupt when FW_TRIGGER is asserted while the DSM is BUSY. Raising this 

interrupt is delayed to when the scan caused by the FW_TRIGGER has been completed, i.e. not when the 
preceding scan with which this trigger collided is completed. When this interrupt is set it implies that the 
channels were sampled later than was intended (jitter). Write with ‘1’ to clear bit. 

• Overflow Interrupt (OVERFLOW_INTR)
– The hardware sets this interrupt when it sets a new DATA_VAL_INTR while that bit was not yet cleared by 

the firmware. Write with ‘1’ to clear bit. 
• Data Valid (DATA_VAL_INTR)

– After data is stored in the result register or the accumulated result register, the data valid interrupt will be 
set. If moving average is enabled the data valid interrupt will not be set until the moving average sample 
count is reached. Enabling the post processor is not required for this interrupt, but it is required to get an 
accumulated result. There is also a data valid hardware trigger that pulses once the data is valid and ready 
to be read. Write with ‘1’ to clear bit. 

Global configuration (pacss_mmio) contains the following interrupt (PACSS_MMIO_INTR register):
• AGC Gain Level Change Interrupt (AGC_GLVL_CHG)

– The hardware sets this interrupt when a gain level change occurs. Write with ‘1’ to clear bit.
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22.2.4 Automatic gain control
The current channel has an automatic gain control (AGC), which allows a large dynamic range that enables
measuring large starting currents or small battery-off currents. The gain of the current channel ranges from 1 to
512. Automatic gain can be disabled and set to a fixed value. A scaler between the modulator and decimator
adjusts the weight of modulator data based on gain so the LSB of the data going into the decimator is always
0.715 mA. The gain of other channels is static instead of dynamic. Static gain is typically set to ‘1’ but any value
from 0.5 to 512 in powers of 2 can be used. The HV input channels have resistor voltage dividers that attenuate
the input voltage. The nominal divider ratio is 24x (28.8 V full-scale) with an optional value of 16x (19.2 V full scale).
The AGC can automatically control the gain of either channel. AGC circuits typically monitor either the input
voltage or output of the PGA and increase gain when signal amplitude is below a certain threshold or reduce gain
when above another threshold. This function can also be achieved with a low-resolution A/D converter with
digital comparison for gain selection. 
For battery monitoring and management applications, the AGC is configured to operate with the primary current
channel as shown in Figure 22-27. This functions by measuring the analog channel input voltage with an ADC and
increasing or decreasing gain when programmable thresholds are reached. The output of the gain control
comparators is used by a look-up table to set scaler, PGA, and modulator gain settings. To minimize input
referred noise, it is advisable to configure the gain table to increase PGA gain before increasing modulator gain.
The PACSS uses a novel ADC implemented with a fast decimator providing 8–10 bit resolution, which is compared
against programmable thresholds to decide when to increase or decrease gain. Gain is typically decreased when
amplitude approaches 75% (PACSS_MMIO_AGC_CTL0.HI_THRESH) of full-scale and increased when amplitude
falls below 25% (PACSS_MMIO_AGC_CTL0.LO_THRESH). As gain is increased or decreased, a table of PGA and
modulator gain parameters is indexed to set overall gain as desired.
The highlighted AGC system is shown in Figure 22-27 controlling a simplified channel.

Figure 22-27.  Automatic Gain Control (AGC) System

The AGC consist of 10 gain levels: 1 to 512. Each gain level contains register structure (GAINLVL_STRUCT) in the
register map to provide programming of PGA gain, a left shift scaler, modulator cap value configuration to adjust
its gain, and offset and gain correction values. The modulator cap values for each gain settings is given in
Table 22-9.
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The left shift scaler is used to normalize results so the LSB always has the same weight, which is accomplished by
multiplying the modulator output by the scaler value; the scaler value is the same as Log2 (512/gain).
The AGC is always sourced from dchan0. In most use cases this will be the digital channel configured for current
measurement. The other configuration options are set in the PACSS_MMIO_AGC_CTLx registers. This is where the
thresholds are configured and the decimation ratio of the fast decimator is set. It is not required to use all 10 gain
levels; this can be reduced by setting the MIN_LVL and MAX_LVL fields in the PACSS_MMIO_AGC_CTL0 register.
The initial gain level for where the AGC will begin can be specified with the INIT_LVL field. 
The gain levels must be configured from lowest gain to highest gain. When the result of the fast decimator is
compared with the thresholds it will increment the gain level if the result is lower than the low threshold, and
decrement the gain level if the result is higher than the high threshold. 
For example: gain level 0 can be set to a gain value of 1 and gain level 9 can be set to a gain value of 512.
When the AGC makes a gain level change and new gains are applied to the PGA and the modulator, the analog
system may require settling time before the modulator data is valid or accurate. The AGC provides blanking
features to compensate for this. The AGC contains an 8-bit counter that starts to increment after the gain level
changes. The counter counts DSM clock cycles. PACSS_MMIO_AGC_CTL1 contains three configuration count
values:
• AAF_BLANK_CNT is used to short the anti-aliasing filter. Shorting the AAF reduces the settling time. 
• DEC_BLANK_CNT disconnects the decimator from the modulator data path and enables the circular buffer. 

During this period the decimator will use previously stored data from the modulator. This will allow the gain 
level changes to settle and keep the digital channel in its previous state until the modulator data is ready to 
be sampled.

• SCALER_BLANK_CNT is the number of clock cycles after the gain level change before the new scaler value 
from the new gain level is applied. The goal here is to only use the new scaler when the new modulator data 
is ready to be converted.

The blanking period is determined by the greatest count value of the three. The AGC will not perform any new
gain level changes during the blanking period.
Each digital channel can be configured to use the AGC’s gain updates
(PACSS_DCHANx_DCHAN_CTL.AGC_GAIN_EN). In the primary use case the digital channels configured for the
current and voltage measurements will set this bit and the channels configured for diagnostic or temperatures
measurements will not.

Table 22-9.  Modulator Cap Value Configuration
Gain PGA MOD Digitala)

a) MA-4: Moving Average of 4, MS-4: Moving Sum of 4.

Actual 
MOD 
gainb)

b) MOD: Modulator attenuates the input by ~15% gain and Gain Correction (GCOR) corrects this attenuation.

Gain 
correction

IPCAP1 DACCAP FCAP1 IPCAP2 FCAP2 IPCAP3 FCAP3 SUMCA
P1

SUMCA
P2

SUMCA
P3

SUMCA
PFB

SUMCA
PIN

0.5c)

c) Gain = 0.5 setting is for static gain range of voltage channel (ACHAN1).

0x00 0.5 MA-4 0.44 1.1429 0xD 0x1F 0x39 0x4 0xA 0x4 0xD 0x7 0x7 0x7 0x7 0x7

1 0x00 1 MA-4 0.88 1.1429 0x1B 0x1F 0x39 0x4 0xA 0x4 0xD 0x3 0x3 0x3 0x7 0x3

2 0x00 0.5 MS-4 0.44 1.1429 0xD 0x1F 0x39 0x4 0xA 0x4 0xD 0x7 0x7 0x7 0x7 0x7

4 0x00 1 MS-4 0.88 1.1429 0x1B 0x1F 0x39 0x4 0xA 0x4 0xD 0x3 0x3 0x3 0x7 0x3

8 0x00 2 MS-4 1.75 1.1429 0x1B 0xF 0x39 0x4 0xA 0x4 0xD 0x3 0x3 0x3 0x3 0x3

16 0x01 2 MS-4 1.75 1.1429 0x1B 0xF 0x39 0x4 0xA 0x4 0xD 0x3 0x3 0x3 0x3 0x3

32 0x02 2 MS-4 1.75 1.1429 0x1B 0xF 0x39 0x4 0xA 0x4 0xD 0x3 0x3 0x3 0x3 0x3

64 0x03 2 MS-4 1.75 1.1429 0x1B 0xF 0x39 0x4 0xA 0x4 0xD 0x3 0x3 0x3 0x3 0x3

128 0x04 2 MS-4 1.75 1.1429 0x1B 0xF 0x39 0x4 0xA 0x4 0xD 0x3 0x3 0x3 0x3 0x3

256 0x05 2 MS-4 1.75 1.1429 0x1B 0xF 0x39 0x4 0xA 0x4 0xD 0x3 0x3 0x3 0x3 0x3

512 0x05 4 MS-4 3.50 1.1429 0x1B 0x7 0x39 0x4 0xA 0x4 0xD 0x3 0x3 0x3 0x1 0x3
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Figure 22-28 is an example of the AGC with current going from 0% to 100% of full scale (3000 A). As described in
the previous sections, the scaler is used to normalize results so the LSB always has the same weight (0.715 mA),
which is accomplished by multiplying the modulator by the scaler value; the scaler value is the same as
Log2(512/gain).

Figure 22-28.  Automatic gain control example

Table 22-10 shows typical full scale current, resolution, and scalar values with various gain settings while the
scaled LSB remains constant at 0.715 mA. As gain decreases, the modulator is shifted up (multiplied by the
scalar).

Table 22-10.  Typical Gain, Full Range Current Range, Resolution, and Scalar Values

Full Scale Range, Resolution, and Scalar vs. Gain (0.1 mΩ shunt an 1.2 V VREF)

Gain Full Scale (±A) Resolution (mA) Scalar SHIFTL Register Value

512 23.4375 0.715 1 0

256 46.875 1.431 2 1

128 93.75 2.861 4 2

64 187.5 5.722 8 3

32 375 11.444 16 4

16 750 22.888 32 5

8 1500 45.776 64 6

4 3000 91.553 128 7
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Figure 22-29 illustrates scalar operation. A 4-bit modulator output from ±4 is scaled by 1 to 128. For example,
when scaled by 128, ±4 becomes ±4 × 128 (= ±512).

Figure 22-29.  Scaler operation example

The AGC can be configured to increase or decrease gain by factors of two or more. Large steps can track large
current changes faster by reducing the number of gain changes needed for tracking.
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22.2.5 PACSS sequencer
The PACSS sequencer generates control signals for performing analog-to-digital conversion. Figure 22-30 shows
the block diagram of the sequencer.
The PACSS has two sequencers that are associated with the two analog channels. When triggered, the sequencer
loads the input pin selection of the first linked digital channel, then starts the decimator, which initializes the
modulator to start the conversion. The modulator output data is transferred to the linked digital channel. 
The two conversion modes supported are incremental (single sample) and continuous. When a conversion is
finished, the sequencer is notified by the decimator.

Figure 22-30.  PACSS sequencer

A peripheral clock from the System-Wide Resources clock system is used for sequencer timing. The same clock is
used for all ADC channels. The clock goes to the delta-sigma modulator (DSM) controller, which generates timing
strobes with a finite state machine; these are used by other sections of the sequencer. The DSM controller also
includes control and status registers, which are accessed from the μC and DMA channels using the AHB bus. The
controller also generates interrupt and DMA requests.
ADC conversions are initiated from triggers generated by other sources. These sources include timers (TCPWM),
input signals from GPIOs, software requests, and end-of-conversion commands from an active ADC. Triggers can
start one or two ADCs – when triggering two ADCs, both ADCs start together. The two ADC channels have a
channel controller, which generates timing for that channel. There are separate controls for the analog and
digital portion of the channels. The analog timing signals control the delta-sigma modulator and chopping
switches, while the digital timing signals clock data path registers including the decimator, finite impulse
response filter, and comparators and accumulators. At the beginning of the conversion sequence, a two-cycle
reset of the modulator clears state from previous conversions (the integrators in the modulator are initialized by
this reset). The length of a conversion cycle requires the same number of clocks as the OSR setting. After the
modulator is reset, the decimation filter needs to stabilize before output data is valid. The incremental
measurement mode can be used to measure several different voltage sources for each conversion sequence
while maintaining an aggregate sample rate. The sample rate can be adjusted by changing the OSR setting. If this
mode is used to measure two different sources continuously, the sample rate for each signal is half of the single
source rate.
PSoC™ 4 HV PA takes advantage of the incremental mode to create three channels with only two analog front-
ends. The third channel can use either of the analog front-ends, which are not used between V/I measurements.
This channel can be used for temperature measurement, to measure other signals, or for diagnostics. Diagnostics
can include measuring power supplies, references, and even the same signal measured by the other channel. The
main advantage of using shared analog front-ends is power reduction.
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22.2.5.1 Triggering
The sequencers can be triggered via a hardware trigger (tr_start) or from a firmware trigger. The typical use case
is for both sequencers to be triggered simultaneously but they can be triggered independently. 
To set up a hardware trigger, one of the four trigger sources must be selected
(PACSS_ACHANx_TR_CTL.PRIM_TR_SEL) and enabled (PACSS_ACHANx_TR_CTL.PRIM_TR_EN) via the
PACSS_ACHANx_TR_CTL register. This register consists of primary and secondary fields. The primary trigger is
used to start a conversion, while the secondary trigger is used to pend digital channels that are configured as
secondary. The conversions of secondary channels always follow the conversion of primary channels.
The hardware triggers are rising edge detection, and have the option to be synchronized.
A firmware trigger can also be used to start a conversion via the PACSS_MMIO_START register. Using this register
will start both sequencers simultaneous. To run the sequencers individually use the associated
PACSS_ACHANx_START register.
If the primary triggered channel is in incremental mode, the secondary trigger must occur before the primary
trigger for the secondary channel conversion to be appended to the primary conversion. If the secondary trigger
occurs during the primary channel conversion, the secondary conversion is pushed until after the next primary
conversion.
The trigger source for PACSS is selected in the PERI_TR_GROUP2_TR_OUT_CTLx[4:0] register.
Table 22-11 and Table 22-12 provide the PSoC™ 4 HV PA PACSS trigger multiplexers and the multiplexer outputs 

Table 22-11.  PACSS trigger sources

PERI_TR_GROUP2_TR_OUT_CTL x[4:0] Trigger source

0 Software trigger

1 TCPWM 0 overflow

2 TCPWM 1 overflow

3 TCPWM 2 overflow

4 TCPWM 3 overflow

5 TCPWM 0 underflow

6 TCPWM 1 underflow

7 TCPWM 2 underflow

8 TCPWM 3 underflow

9 TCPWM 0 compare match

10 TCPWM 1 compare match

11 TCPWM 2 compare match

12 TCPWM 3 compare match

13 PACSS data valid channel 0

14 PACSS data valid channel 1

15 PACSS data valid channel 2

16 PACSS data valid channel 3

17 GPIO input trigger 0

18 GPIO input trigger 1

19 GPIO input trigger 2

20 GPIO input trigger 3
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22.2.5.2 Channel selection
Each sequencer is assigned digital channels based on the PACSS_DCHANx_SMP_CTL.ACHAN_SEL setting. If more
than one digital channel is assigned to a sequencer, the sequencer will convert the next assigned channel
immediately following the conversion of its previous channel. By default, digital channels that are enabled are
primary, setting PACSS_DCHANx_DCHAN_CTL.SEC_EN changes them to secondary.
For example, consider that dchan0 and dchan2 are assigned to sequencer 0 (seq0). When triggered, seq0 will first
convert dchan0; on completion it will start the conversion on dchan2. If dchan2 is configured as a secondary
channel via PACSS_DCHANx_DCHAN_CTL.SEC_EN, when seq0 is triggered (by a primary trigger) only dchan0 will
convert.
When a secondary trigger occurs, the secondary channels assigned with the sequencer will go into a pending
state. On the following primary trigger, the primary channels will convert followed by the secondary channels. In
Figure 22-31 all digital channels are configured as incremental. There should never be two primary channels
assigned to the same sequencer when using the continuous conversion mode.

Figure 22-31.  Primary vs. Secondary triggering

Table 22-12.  Trigger multiplexer outputs

Output Trigger source

0 PACSS start conversion, digital channel #0

1 PACSS start conversion, digital channel #1

2 PACSS start conversion, digital channel #2

3 PACSS start conversion, digital channel #3
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22.2.5.3 Input selection state machine
When the sequencer starts, it detects the first digital channel (lowest channel number) assigned to the sequencer.
The next step is to load the channel configuration from the PACSS_DCHANx_SMP_CTL register. This includes the
positive and negative pin selection, the channel selection delay, and the conversion mode of the digital channel.
The channel selection delay provides additional delay between the pin selection and conversion if additional
settling time is required for the analog system. Refer to the PSoC™ 4 HV PA Registers TRM for more information.

Figure 22-32.  Sequencer FSM

The decimator is started in the next state, which resets the modulator and begins the conversion. If the
conversion mode is set to incremental (PACSS_DCHANx_DEC_CTL.CONV_MODE = 0) after the sample is done, the
decimator will assert sample done, and the sequencer will exit the conversion state. Otherwise, it will stay in the
conversion mode state until the CONV_MODE bit is set to ‘0’. In the “done” state it will determine if other digital
channels need to be converted or if the sequencer can go back to idle. The “break” state opens all the switches
on the input mux before making another pin selection.
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22.2.5.4 Sequencer timing
Figure 22-33 is a use case example that shows the sequencer timing when digital channel 0 (dch0) is assigned to
sequencer 0 (seq0) and dch1 and dch2 are assigned to seq1. dch0 and dch1 are configured as primary channels
with decimation ratios (DR) of 64 and rate reducer (DR2) of 6, for 8 ksps sample rate. dch2 is configured as a
secondary channel and has a decimation ratios (DR) of 64 and rate reducer (DR2) of 1. All digital channel
decimators are in the sinc3 mode.

Figure 22-33.  Sequencer timing

Both sequencers are configured to start from the same hardware trigger. After conversions begin on dch0 and
dch1, a secondary trigger occurs. When seq1 is done with its active conversion (dch1), it loads the analog
configuration of dch2 (input mux pin selection, and so on), then resets the modulator. The clock cycle delay, 17
is used here as an example and is inserted via the channel select delay it is a configurable delay used to add
settling time between the mux selection and the conversion. The channel select delay should be set to the same
value for any channels that need to be synchronized. There is an option to short the anti-aliasing filter during this
delay to speed up settling time. After the channel select delay, the conversion begins (see “Diagnostic Timing”
on page 316).
While the secondary channel is being converted on dch2, dch1’s sinc3 decimator is frozen, and the last valid result
of the sinc3 is reused until it resumes sampling from adc1. After the D/T (dch2) conversion is complete, the analog
configuration of adc1 from dch1 is loaded, the modulator is reset, the channel select delay begins and the
conversion resumes from the next sinc3 boundary, sampling actual data from adc1. During the D/T conversion
the V channel result will be a merge of actual and frozen sinc3 data.
• Register settings example
PACSS_DCHANx_DEC_CTL.DR
PACSS_DCHANx_DEC_CTL.DR2
PACSS_DCHANx_SMP_CTL.CH_SEL_DLY
 DCH0:   DR = 63, DR2 = 5, Sinc3, CH_SEL_DLY = 0
 DCH1:   DR = 63, DR2 = 5, Sinc3, CH_SEL_DLY = 36
 DCH2:   DR = 63, DR2 = 0, Sinc3, CH_SEL_DLY = 16
Note1: The value written to these registers will be plus 1 (for example, write 63 for 64).
Note2: Conversions with DR2 > 0 require 2 × DR + (2 × DR2 × DR) cycles to complete.
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22.2.5.4.1 Conversion Mode Transition
1. The recommended behavior for stopping a Continuous channel from converting is to change the conversion 

mode from Continuous to Incremental, PACSS_DCHANx_DEC_CTL.CONV_MODE = 1 to 0.
2. The behavior of multiple DCHANs connected to the same ACHAN:

a)  Incremental mode: DCHANs will all convert in sequential order 0->3.
Multiple Secondary DCHANs will convert in sequential order after receiving a Pend Secondary trigger. 
Conversions will be performed back to back.

b)  Continuous mode: Only the lowest-numbered DCHAN will convert
3. If the channel is running in Continuous mode and the mode is changed to Incremental, the last conversion will 

be in Incremental mode. This is important to note because if there are other DCHANs assigned as Primary 
channels to the same ACHAN they will convert after this last conversion, as described in 2.

22.2.5.4.2 Diagnostic Timing
1. The secondary trigger is applied at the end of Valid (6), which is the output of Rate Reducer (DR2 = 5).
2. Analog channel changes to programmed D/T input and modulator is reset. This takes five clock cycles.
3. A 17 clock cycle delay is inserted so that AAF, modulator, and other circuits settle 

(PACSS_DCHAN2_SMP_CTL.CH_SEL_DLY = 16).
4. During this time, AAF resistor should be shorted for five clock cycles for faster initial settling 

(PACSS_DCHAN2_SMP_CTL.AAF_SHORT_R_EN = 1).
5. D/T measurement is made with sinc3, DR = 63, DR2 = 0, incremental mode. This takes 3 × 64 clock cycles.
6. Analog channel changes to V input and the modulator is reset. This takes five clock cycles.
7. A 37 clock cycle delay is inserted so that AAF, modulator, and other circuits settle 

(PACSS_DCHAN1_SMP_CTL.CH_SEL_DLY = 36).
8. During this time, the AAF resistor should be shorted for five clock cycles for faster initial settling 

(PACSS_DCHAN1_SMP_CTL.AAF_SHORT_R_EN = 1).
In this timing scheme, in the V channel, the circular buffer data is fed to the decimator while the D/T measurement
and channel switching is executed.
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22.2.5.4.3 PACSS clock cycle equations
Table 22-13 shows the PACSS clock cycle equations and Table 22-14 are example results of the clock cycle.

For example: 
• Clock frequency

– CLK_SYS = 49.152 MHz
– CLK_DSM = 3.072 MHz

• Register value
– CH_SEL_DLY = 16
– SINC_MODE = 3 (sinc3 = 3, sinc4 = 4)
– DR = 63
– DR2 = 5 (DR2_EN = 1, if DR2 > 0)
– AVG_MODE > 0 = 0 (disable)
– OCOR_EN = 1 (enable)
– GCOR_EN = 1 (enable)
– GVAL = 15
– FIR_EN = 1 (enable)
– FIR_NUM_TAPS = 15
– PP_EN = 1 (enable)

Table 22-13.  PACSS clock cycle equations

Step Cycle Count Equation Comments

Input Trigger Processing 3 CLK_SYS (SYSCLK) constant

Sequencer Start 1 CLK_DSM constant

Sequencer Delay 1 + CSD CSD = CH_SEL_DLY + 1, if CH_SEL_DLY = 0, 
CSD = 0

Reset & Start 4 Modulator and decimator resets time 
period

Decimator Initialization (SINC_MODE – 1) × (DR + 1) CLK_DSM equation

Decimator Conversion if (DR2 > 0): 0, else: DR + 1 CLK_DSM equation

Moving Sum/Avg (AVG_MODE > 0) × 2 CLK_DSM equation

Gain & Offset (OCOR_EN × 3) + 
GCOR_EN × ((GVAL+2) + (!OCOR_EN))

CLK_DSM equation

Rate Reducer Start 3 × DR2_EN CLK_DSM equation

Rate Reducer Initialization ((DR + 1) × (DR2 + 1)) × DR2_EN CLK_DSM equation

Rate Reducer Conversion ((DR2 + 1) × (DR + 1)) × DR2_EN DR2_EN = 1, IF DR2 > 0

FIR ((FIR_NUM_TAPS + 1) × 5 + 1) × FIR_EN CLK_SYS Equation + 0.5 CLK_DSM 
(constant)

Post Processor PP_EN × 6 CLK_SYS Equation

Output Trigger Processing 3 CLK_SYS constant
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• Example results
CLK_SYS time = 93 / (49.152 × 10^6) = 1.892 µs
CLK_DSM time = 942.5 / (3.072 × 10^6) = 306.803 µs
Total tine = 308.695 µs

22.2.5.4.4 DR, DR2 recommended for different sample rates
The sample rates are depended on DR an DR2 value. Table 22-15 shows the recommended value for different
sample rates.

Table 22-14.  Example of PACSS clock cycle

Step Cycle Count Equation Calculation CLK_SYS CLK_DSM

Input Trigger Processing 3 – 3

Sequencer Start 1 – 1

Sequencer Delay 1 + CSD 1 + 16 + 1 18

Reset & Start 4 – 4

Decimator Initialization (SINC_MODE – 1) × (DR + 1) (3 – 1) × (63 + 1) 128

Decimator Conversion if (DR2 > 0): 0, else: DR + 1 0 0

Moving Sum/Avg (AVG_MODE > 0) × 2 0 × 2 0

Gain & Offset ((OCOR_EN × 3) + GCOR_EN) × 
((GVAL + 2) + (!OCOR_EN))

((1 × 3) + 1) × ((15 + 2) + 
(0))

20

Rate Reducer Start 3 × DR2_EN 3 × 1 3

Rate Reducer Initialization ((DR + 1) × (DR2 + 1)) × DR2_EN ((63 + 1) × (5 + 1)) × 1 384

Rate Reducer Conversion ((DR2 + 1) × (DR + 1)) × DR2_EN ((5 + 1) × (63 + 1)) × 1 384

FIR ((FIR_NUM_TAPS + 1) × (5 + 1)) × 
FIR_EN

((15 + 1) × (5 + 1)) × 1 81 0.5

Post Processor PP_EN × 6 1 × 6 6

Output Trigger Processing 3 – 3

Total clock cycle 93 942.5

Table 22-15.  DR, DR2 recommended values (Register value. These values will be plus 1)

Sample rate (ksps) DR DR2

1 127 23

2 127 11

4 127 5

8 63 5

48 63 0
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22.2.5.4.5 Registers list of persisting until next start of conversion
Certain registers only change after a start of conversion (SoC) is inserted. The list of these signals is as follows:
• PACSS_DCHANx_SMP_CTL register
         POS_PIN_SEL
         NEG_PIN_SEL
         BYPASS_AAF
•  PACSS_DCHANx_SMP_REF_CTL register
         VREFH_SEL
         VREFL_SEL
         VREF_BUF_EN
         RS_PULLUP_SEL
         RS_PULLUP_EN
Because these registers do not change until the next SoC, the first result after SoC may get affected. This is a
configuration transition that results in a discontinuity in the input conditions to the Channel that must settle out
after conversion starts. The size of the glitch depends on previous and current input selection and the voltage
level difference between these states (See Figure 22-34). If ADC is configured for a faster conversion (such as 
DR = 64, DR2 = 1), more than 1 sample may be affected. If AGC is enabled, the AGC gain level may change as a
reaction to the glitch. AGC filter can be used to reduce this glitch.

Figure 22-34.  Glitch by configuration transition
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22.2.5.5 Startup timing requirements
The PACSS block has sequencing requirements at startup and wakeup as follows.
• Startup timing out of reset
1. Initialize and enable ADC sequencer and High Precision Band Gap Reference (HPBGR).
2. Wait 1000 µs.

The sequencer must be enabled 1000 µs before enabling any analog channels to allow the reference currents 
to settle.

3. Initialize and enable analog channels (negative pump, LDO, PGA, Buffer, modulator, and so on). 
4. Wait 3 µs.
5. Analog channel must be enabled for 3 µs before starting conversions to wait for AREF startup. Note that this 

startup time does not include AAF settling, which can take 64 µs (typ).
6. Initialize and enable digital channels.
7. Initialize and enable auto gain control (AGC) if necessary.
8. Start the conversion process.
9. Output delay is based on DR, DR2, and FIR filter configurations (See Table 22-13).
• Wakeup from deepsleep
1. Chip wakes up with AREF enabled.
2. Wait 25 µs for AREF to settle.
3. Enable HPBGR and analog channels.
4. Wait 150 µs for HPBGR to settle.
5. Start the conversion process.
6. Wait 60 µs for AAF settling (by using PACSS_DCHANx_SMP_CTL.CH_SEL_DLY = 180).
7. Output delay is based on DR, DR2, and FIR filter configurations (See Table 22-13).
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22.2.5.6 Channel chopping
Channel chopping is where the sequencer swaps positive and negative inputs of the INMUX while also inverting
the output of the modulator to cancel out any offset. When the inputs are not swapped, the output of the
decimator is representation of Vin + Voffset. When the inputs (and modulator output) are swapped, the output of
the decimator is Vin – Voffset. When both results are summed (at the following stages), the offset error is
removed.
The sequencer generates a signal called “modbit”; when this signal is “1” the INMUX swaps its positive and
negative input and the modulator data is inverted in the data path logic before entering the decimator. The
PACSS_ACHANx_CHOP_CTL register configures channel chopping. 
The channel chopping sample count register specifies the counted samples required before toggling the modbit.
The sample count in this case, refers only to the decimation ratio of the sinc3/4 filter (not DR2). When the modbit
toggles you can short the resistor on the AAF and/or activate the decimator’s circular buffer “blank” for a set
number of DSM clock cycles. Shorting the resistor on the AAF speeds up the settling time of the INMUX pin swap,
and blanking the decimator reuses old modulator data while this settling completes.

Figure 22-35.  Sequencer Channel Chopping

The configuration shown in the Figure 22-35 example is:
• PACSS_DCHANx_DEC_CTL.DR = 0xF
• PACSS_ACHANx_CHOP_CTL.SMP_CNT = 0x1, this counts 2 DR periods
• PACSS_ACHANx_CHOP_CTL.AAF_SHORT_R_CNT = 0x4
• PACSS_ACHANx_CHOP_CTL.DEC_BLANK_CNT = 0x8
• PACSS_ACHANx_CHOP_CTL.CH_CHOP_EN = 1
In Figure 22-35 the modbit toggles after two DR periods; at this point the AAF resistor is shorted for four DSM
clock cycles and the decimator is blanked for eight DSM clock cycles. This repeats after the next two DR periods.
Channel chopping is enabled with the PACSS_ACHANx_CHOP_CTL.CH_CHOP_EN bit, but it is only functional in
the configurations where ACHAN0 is only assigned to one DCHAN. Otherwise, channel chopping will have
unpredictable results.

22.2.5.7 Sequencer configuration rules
• An enabled analog channel should have at least one assigned primary digital channel.
• Secondary channels should always be set to incremental mode.
• If two primary channels are assigned to the same sequencer, their conversion modes should both be set to 

incremental.
• Primary channels should always have a lower digital channel index than secondary channels when assigned 

to the same sequencer. For example, an unsupported configuration is DCHAN0 set as the secondary while 
DCHAN1 is set as the primary.

• Channel chopping is only supported when ACHAN0 is only assigned to one DCHAN.
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22.2.6 I/O components

22.2.6.1 Input multiplexer
The PSoC™ 4 HV PA PACSS input multiplexer (INMUX) selects between two differential input currents, differential
input voltages including two high-voltage dividers, GPIO pads, on-die temperature sensors, an external NTC
temperature sensor, and diagnostic voltages (see Figure 22-36). All analog signals can be supplied to either
analog ADC, which improves diagnostics since both ADCs can measure and compare the same signals. Several
integrated multiplexers facilitate diagnostics and channel switching without disturbing filters.
A sequencer selects the analog input signal by controlling the analog mux, connecting the input to an analog DSM
system. Signals from GPIOs, on-chip power supplies and grounds, the high-voltage input voltage divider, and 
on-chip sensors and references can be selected. GPIOs not directly connected to the analog multiplexer can use
an analog input bus called the analog multiplex bus (amuxbus). The amuxbus has two signals (amuxbusa and
amuxbusb), which can connect GPIOs to ADC using software controlled analog switches inside each I/O. The
analog DSM channel includes choppers and multiplexers in addition to the PGA, anti-alias filter, buffer amplifier,
and DSM modulator (see “Analog DSM system” on page 279 for detailed information). This section also includes
a temperature sensor.

Figure 22-36.  I/O Components
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Figure 22-37 shows the INMUX diagram. The device supplies (vs*) go-through resistor dividers so they are scaled
down to a level below the modulator reference. VDDA and VDDD are divided by 4, and VCCD is divided by 2.

Figure 22-37.  INMUX connectivity diagram
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Table 22-16 and Table 22-17 show the INMUX truth tables.

Table 22-16.  Positive pin selections (PACSS_DCHANx_SMP_CTL.POS_PIN_SEL)

POS_PIN_SEL <6:0>  Hex Source Description

00000XX 0x00  vs_div0 High-voltage Divider 0 (Vsense)

00001XX 0x04 vs_div1 High-voltage Divider 1 (Vdiag)

00010XX 0x08 vts External (NTC) temperature

00011XX 0x0C vtint Internal temperature Sensor

0010000 0x10 vg0_vssa Analog GND (VSSA)

0010001 0x11 vg1_vssd Digital GND (VSSD)

0010010 0x12 vg2_vssl LIN GND (VSSL)

0010011 0x13 vg3_vrefl VREFL

0010100 0x14 vg4_vts_ret External temperature sense GND

0010101 0x15 vg5_vts_ret_k External temperature sense reference GND

0010110 0x16 vg6_vtint_ret Internal temperature sense GND

0010111 0x17 vg7_vsub (vssa_k2) Kelvin GND for offset Calibration

0011000 0x18 vs0_vccd VCCD divided by 2

0011001 0x19 vs1_vcchib VCCD divided by 2

0011010 0x1A vs2_vdda VDDA divided by 4

0011011 0x1B vs3_vddd VDDD divided by 4

0011100 0x1C vr0_1p2_hpbgr 1.2 V VREF (HPBGR)

0011101 0x1D vr1_0p8_hpbgr 0.8 V VREF (HPBGR)

0011110 0x1E vr2_0p7_hpbgr 0.7 V VREF (HPBGR)

0011111 0x1F vr3_1p2_srss 1.2 V VREF (SRSSHV)

01000XX 0x20 gpio0 P0.0

01001XX 0x24 gpio1 P0.1

01010XX 0x28 gpio2 P0.2

01011XX 0x2C gpio3 P0.3

01100XX 0x30 gpio4 P0.4

01101XX 0x34 gpio5 P0.5

01110XX 0x38 gpio6 P0.8

01111XX 0x3C gpio7 P0.7

100XXXX 0x40 rsh0 RSH

110XXXX 0x60 rsh1 RSH2

1111010 0x7A amuxbusA  If selected, neg_pin_sel should be set to amuxbusB 

1111011 0x7B amuxbusB  If selected, neg_pin_sel should be set to amuxbusA 
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Table 22-17.  Negative pin selections (PACSS_DCHANx_SMP_CTL.NEG_PIN_SEL)

NEG_PIN_SEL <4:0>  Hex Source Description

00XXX 0x00 vssa Analog GND (VSSA)

01000 0x08 vss_spare Reserved 

01001 0x09 vrefl VREFL

01010 0x0A vss_srss SRSS GND

01011 0x0B vdiv_ret HV divider GND

01100 0x0C vts_ret External temp sense GND

01101 0x0D vint_ret Internal temp sense GND

01110 0x0E gpio0 P0.0

01111 0x0F gpio2 P0.2

10000 0x10 rsl0 RSL

11000 0x18 rsl1 RSL2

11010 0x1A amuxbusA If selected, pos_pin_sel should be set to amuxbusB

11011 0x1B amuxbusB If selected, pos_pin_sel should be set to amuxbusA



Reference manual 326 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Precision analog channel subsystem

Table 22-18 shows different input options and the corresponding positive and negative pin selections for these
options.

Table 22-18.  Pair of positive and negative pin selections

Positive Pin Negative Pin

Hex Source Hex Source

0x00 vs_div0 (HV divider 0) 0x0B vdiv_ret (Ground of HV divider)

0x04 vs_div1 (HV divider 1) 0x0B vdiv_ret (Ground of HV divider)

0x08 vts (external temp sens) 0x0C vts_ret (Ground of external temp sensor)

0x0C vtint (internal temp sens) 0x0D vint_ret (Ground of internal temperature sensor)

0x10 vg0_vssa 0x00 vssa

0x11 vg1_vssd 0x00 vssa

0x12 vg2_vssl 0x00 vssa

0x13 vg3_vrefl 0x00 vssa

0x14 vg4_vts_ret 0x00 vssa

0x15 vg5_vts_ret_k 0x00 vssa

0x16 vg6_vtint_ret 0x00 vssa

0x17 vg7_vsub (vssa_k2) 0x00 vssa

0x18 vs0_vccd 0x00 vssa

0x19 vs1_vcchib 0x00 vssa

0x1A vs2_vdda 0x00 vssa

0x1B vs3_vddd 0x00 vssa

0x1C vr0_1p2_hpbgr 0x09 vrefl

0x1D vr1_0p8_hpbgr 0x09 vrefl

0x1E vr2_0p7_hpbgr 0x09 vrefl

0x1F vr3_1p2_srss 0x0A vss_srss

0x20 gpio0 0x00 vssa

0x24 gpio1 0x00/0x0E vssa or gpio0 for differential signal

0x28 gpio2 0x00 vssa

0x2C gpio3 0x00/0x0F vssa or gpio2 for differential signal

0x30 gpio4 0x00 vssa

0x34 gpio5 0x00 vssa

0x38 gpio6 0x00 vssa

0x3C gpio7 0x00 vssa

0x40 rsh0 0x10 rsl0

0x60 rsh1 0x18 rsl1
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22.2.6.2 On-die temperature sensor
On-die temperature measurements are made with an internal temperature sensor by measuring bipolar VBE at
different current densities and calculating temperature. Two independent current references are used for
diagnosis and redundancy. In addition to temperature, die stress also causes VBE shifts but NPN and PNP bipolars
respond differently to stress; therefore, arrays of both transistor types are included. Figure 22-38 shows the 
on-die temperature sensor.

Figure 22-38.  On-die temperature measurement

This sensor uses the principle that VBE for a diode-connected bipolar transistor is proportional to the logn of
junction current. Either one transistor with two different currents or two different size transistors with the same
current value can be used. This sensor supports both schemes.
Temperature is directly proportional to the difference in VBE voltage at two different current densities. The
following equation shows how it works:

Temperature (0K) ∝ (VBE2 – VBE1) × 1 / ln(IBE2/IBE1) (22.1)

                                          VBE2 and VBE1 are base-emitter voltage at current densities of IBE2 and IBE1

Note: Equation 22.6 shows the formula for calculating internal temperature. 
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This sensor supports sensing temperature with either one transistor measured with two different currents, or one
current with two different size transistors. However, mismatch between bipolar devices are not calibrated. There
are provisions to measure currents using a resistor to allow correction for current mismatch. 
Suggested flow for temperature measurement:
1. Decide the flavor and number of bipolar devices to use.
2. Decide the low and high currents to be used.
3. Set the current to low, and using diagnostic channel, measure the voltage across the resistor, and record the 

value.
4. Set the current to high, and using diagnostic channel, measure the voltage across the resistor, and record the 

value.
5. Ratio of these two voltages will give the ratio of two currents.
6. Set the current to low, and using diagnostic channel, measure the VBE voltage, and record the value.
7. Set the current to high, and using diagnostic channel, measure the VBE voltage, and record the value.
8. Now that both VBE and current ratio are known, the temperature can be calculated using the previously 

provided formula.
The sensor also supports external current and voltage monitoring. Selection of current source and VBE monitoring
is independent of each other. The amuxbuses can be used to supply current on amuxbus_a and monitor VBE on
amuxbus_b. Because the amuxbuses have many connections, excessive leakage at high temperature may affect
their utility; therefore, a set of external connections directly to GPIOs is available. The set of GPIOs chosen is the
three external temperature measurement pins – vtemp_sup, vtemp, and vtemp_ret.
The options for redundancy are as follows:
• Using different current source (SRSS vs AREF as current source)
• Using NPN or PNP type bipolar
• Using different ratios for generating delta VBE
• Using different number of NPN or PNP units
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22.2.6.3 External temperature sensor
The external temperature sensor uses a fixed resistor and a temperature-dependent resistor (generally a
negative temperature coefficient thermistor) – the resistor and thermistor form a voltage divider whose output
voltage is temperature dependent. When enabled, the External Temperature Sensor block provides power to the
off-chip temperature-dependent divider (and a reference supply for the ADC) of VDDD/3. Figure 22-39 shows the
block diagram of the external temperature sensor.

Figure 22-39.  External temperature sensor

The off-chip voltage divider be selected to optimize temperature accuracy and will typically use a voltage divider
comprised of a 33 kΩ and 16.9 kΩ fixed resistors (R) and a 10 kΩ nominal NTC thermistor RT (nominal NTC
resistance is typically specified at 25°C). NTC resistance is found by supplying vts_ref as the reference input of the
ADC, measuring vts voltage, which produces a ratio-metric value of vts with respect to vts_sup, and calculating
RT.
Manufacturers provide NTC coefficients that can be used to convert resistance to temperature. Temperature can
be calculated with either beta values (β) or Steinhart-Hart coefficients. Beta (β) values change as a function of
temperature range and are only accurate to about ±5°C over a 200°C temperature range. They are calculated by
measuring resistance and two temperatures, typically room temperature (RT25 is resistance at 25°C and T25 is
298.15°K) using the following expression with temperatures in kelvin:

β = ln(RT25/RT) / ((1/T25) – (1/T)) (22.2)

ln(RT) = ln(RT25) × β × ((1/T) – (1/T25)) (22.3)

β can be used to convert resistance to temperature using the following equation:

T (°K) = 1 / (ln(RT/RT25)/β + 1/T25) (22.4)

The example circuit uses an NTC with a β(25/50) of 3380K (ln(RT25/RT50)/(1/(273 + 25) – 1/(273 + 50)) = 3380).
Steinhart coefficients are determined by measuring resistance at three temperatures and can be accurate to
±0.15% over a 200°C range. The equation for determining temperature from resistance is:

T (°K) = 1 / (A + B(ln(R)) + C(ln(R)3) (22.5)
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22.2.6.4 HV input divider
The HV input divider is a voltage divider used on the VSENSE and VDIAG to scale battery voltage to levels
compatible with the ADCs, so battery voltages can be measured. The HV input divider is part of high-voltage
subsystem (see “VDIVIDER (high-voltage divider)” on page 357 for more information).

22.2.7 PACSS calibration

22.2.7.1 Channel OFFSET and GAIN calibration
The digital channels allow adjustments to offset and gain to correct cumulative errors in the analog circuits.The
offset and gain is calibrated during test at multiple temperatures and for multiple configurations. Offset and gain
calibration data is stored in SFlash.
Customer software is responsible for reading the correct SFlash data for the desired configuration, interpolating
that data between temperatures, and loading the data into hardware registers.
The calibration data requires analog channel usage of ACHAN0: Current with AGC, and ACHAN1: Voltage and
diagnostic. For more information on the following registers, see the PSoC™ 4 HV PA Registers TRM.

22.2.7.1.1 ACHAN0: Current with AGC calibration procedure
1. Read the SFlash data of offset scaler value from:

2. Load OFFSETSCLR value into the following register.

Note: Only bits 3:0 of OFFSETSCLR in SFLASH should be copied to OCOR_SCLR.
3. Measure junction temperature using the internal temperature sensor.

Register name: SFLASH_PACSS_CHAN_OFFSET_SCLR

Description: Defines the offset scaler for all offset calibration values

Comments: Defines the offset scaler to be used with the OFFSETADJ for all 2TEMP and 3TEMP calibration 
values.

Bits Name Description

7:0 OFFSETSCLR Offset scaler

Register name: PACSS_DCHAN0_OFST_COR

Description: Offset Correction register

Comments: –

Bits Name SFlash Data Description

19:16 OCOR_SCLR OFFSETSCLR Decimator Offset Correction Coefficient Scaler
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4. Read the SFlash data of offset and gain adjustment values from: 

Calibration data of SFLASH_PACSS_CHAN0_2TEMP_TRIMx are provided for two temperatures and ten
conditions.
- Temperature: –40°C and 150°C
- Gain: 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512

5. Calculate OFFSETADJ and GAINADJ (except OFFSETSCLR) for all settings by linear interpolation.
6. Load calculated OFFSETADJ and GAINADJ values into the following registers. Note that the current channel 

uses automatic gain control circuit (AGC). See “Offset and gain correction” on page 296 for more details.

7. Measure junction temperature again using the internal temperature sensor.
8. If junction temperature has changed (for example, by 5°C from the previous temperature), loop steps 4 to 7, 

to update the Offset and Gain adjustment values. 

Register name: SFLASH_PACSS_CHAN0_2TEMP_TRIMx

Description: Channel 0 two temperature trim values for software lookup

Comments: GAIN and OFFSET trim values for PACSS Analog Channel 0. Two of these registers are used to 
create a 64-bit structure for a single gain setting. The structure contains trims at Tjunction = 
–40°C (lower word) and 150°C (upper word). The actual trim should be a linear interpolation 
of the provided trims, using the measured junction temperature. The 64-bit structure is 
repeated for the following gain values: 
Index - Gain Value 0 - 1 1 - 2 2 - 4 3 - 8 4 - 16 5 - 32 6 - 64 7 - 128 8 - 256 9 - 512

Bits Name Description

15:0 OFFSETADJ OFFSET adjustment value (signed)

31:16 GAINADJ GAIN adjustment value (unsigned)

Register name: PACSS_MMIO_OFST_CORx

Description: Offset Correction register

Comments: –

Bits Name SFlash Data Description

15:0 OCOR OFFSETADJ Decimator Offset Correction Coefficient

Register name: PACSS_MMIO_GAIN_CORx

Description: Gain Correction register

Comments: –

Bits Name SFlash Data Description

15:0 GCOR GAINADJ Decimator Gain Correction Coefficient
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Note: When ACHAN0 takes a diagnostic measurement of the VSENSE or VDIAG inputs, use the following formula:
• calculated_gcor_hvch0 = gcor_ch0 × gcor_hvch1 / gcor_ch1
• calculated_ocor_hvch0 = –gcor_ch1 × (ocor_ch1 – ocor_hvch1) / gcor_ch0 + ocor_ch0
where,
 gcor_ch0 = ACHAN0 GCOR for 1X Gain
 gcor_ch1 = ACHAN1 GCOR for 1X Gain
 gcor_hvch1 = ACHAN1 GCOR for HV Input
 ocor_ch0 = ACHAN0 OCOR for 1X Gain
 ocor_ch1 = ACHAN1 OCOR for 1X Gain
 ocor_hvch1 = ACHAN1 OCOR for HV Input
* Use the /16 or /24 version of *hvch1 to match the setting to be used for ACHAN 0

22.2.7.1.2 ACHAN1: Voltage and diagnostic calibration procedure
1. Read the SFlash data of offset scaler value from: 

2. Load OFFSETSCLR value into the following registers.

Note: Only bits 3:0 of OFFSETSCLR in SFLASH should be copied to OCOR_SCLR.
3. Measure junction temperature using the internal temperature sensor.

Register name: SFLASH_PACSS_CHAN_OFFSET_SCLR

Description: Defines the offset scaler for all offset calibration values

Comments: Defines the offset scaler to be used with the OFFSETADJ for all 2TEMP and 3TEMP calibration 
values.

Bits Name Description

7:0 OFFSETSCLR Offset scaler

Register name: PACSS_DCHAN1(and 2)_OFST_COR

Description: Offset Correction register

Comments: –

Bits Name SFlash Data Description

19:16 OCOR_SCLR OFFSETSCLR Decimator Offset Correction Coefficient Scaler



Reference manual 333 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Precision analog channel subsystem

4. Read the voltage SFlash data from: 

Calibration data of SFLASH_PACSS_CHAN1_3TEMP_TRIMx are provided for three temperatures and four
conditions
- Temperature: –40°C, –25°C, and 150°C
- Attenuation 16 and 24, using PGA Gain = 1 and Modulator Gain = 1
- Inputs VSENSE and VDIAG 

5. Read the diagnostic SFlash data from:

Calibration data of PACSS_CHAN1_2TEMP_TRIMx are provided for two temperatures and eleven conditions.
- Temperature: –40°C and 150°C 
- Gain: 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512

6. Calculate OFFSETADJ and GAINADJ (except OFFSETSCLR) for all settings by linear interpolation.

Register name: SFLASH_PACSS_CHAN1_3TEMP_TRIMx

Description: Channel 1 three temperature trim values for software lookup

Comments: GAIN and OFFSET trim values for PACSS Analog Channel 1. Three of these registers are used 
to create a 96-bit structure for a single gain setting. The structure contains trims at Tjunction 
= –40°C (lower word), CENTERTEMP (middle word), and 150°C (upper word). The actual trim 
should be a linear interpolation of the provided trims, using the measured junction 
temperature. The 96-bit structure is repeated for the following input and gain values: Index - 
Definition 0 - VSENSE/16 1 - VSENSE/24 2 - VDIAG/16 3 - VDIAG/24.

Bits Name Description

15:0 OFFSETADJ OFFSET adjustment value (signed)

31:16 GAINADJ GAIN adjustment value (unsigned)

Register name: SFLASH_PACSS_CHAN1_2TEMP_TRIMx

Description: Channel 1 two temperature trim values for software lookup

Comments: GAIN and OFFSET trim values for PACSS Analog Channel 1. Two of these registers are used to 
create a 64-bit structure for a single gain setting. The structure contains trims at Tjunction = 
–40°C (lower word) and 150°C (upper word). The actual trim should be a linear interpolation 
of the provided trims, using the measured junction temperature. The 64 bit structure is 
repeated for the following gain values: 
Index - Gain Value 0 - 0.5 1 - 1 2 - 2 3 - 4 4 - 8 5 - 16 6 - 32 7 - 64 8 - 128 9 - 256 10 - 512

Bits Name Description

15:0 OFFSETADJ OFFSET adjustment value

31:16 GAINADJ GAIN adjustment value
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7. Load calculated OFFSETADJ and GAINADJ values into the following registers: Note that the 
voltage/diagnostic channel uses direct control of gain (for example, voltage = DCHAN1, Diagnostic channel = 
DCHAN2).

8. Measure junction temperature again using the internal temperature sensor.
9. If junction temperature has changed (for example, by 5°C from the previous temperature), loop steps 4 to 8 to 

update the Offset and Gain adjustment values.

Register name: PACSS_DCHAN1(and 2)_OFST_COR

Description: Offset Correction register

Comments: –

Bits Name SFlash Data Description

15:0 OCOR OFFSETADJ Decimator Offset Correction Coefficient

Register name: PACSS_DCHAN1/2_GAIN_COR

Description: Gain Correction register

Comments: –

Bits Name SFlash Data Description

15:0 GCOR GAINADJ Decimator Gain Correction Coefficient



Reference manual 335 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Precision analog channel subsystem

22.2.8 PACSS diagnostic features
The PACSS Diagnostic Features is divided into two sections:
• Internal temperature calculation
• Shunt resistor open detection of RSx pins

22.2.8.1 Internal temperature calculation
The formula for internal temperature calculation is as follows. For more information about internal temperature,
see “On-die temperature sensor” on page 327. 
Note: While making internal temperature sensor measurements, OCOR and GCOR (offset and gain correction)
should be disabled.

T = α2 × x2 / 234 + α1 × x / 29 + α0 × 214 (22.6)

where: 
 x = dVBE + dVBE × (A × ratio + B)
 dVBE = ADC(UNIT) – ADC(1) with 29 bit signed result
 ratio = ADC(UNIT) / ADC(1) with LOAD_MODE set to “Resistor”
A = –0.0534, B = 0.4804
where (A × ratio + B) is a linear approximation of LN(9)/LN(ratio).

ADC(UNIT) is the measurement with UNIT_MODE and IREF_BIPOLAR_UNIT_MASK applied.
The two measurements used for the ‘ratio’ can also be used a Diagnostic measurement to prove that the channel
is working properly.
a2, a1, and a0 coefficients are read from either SFlash (two circuits, Primary and Alternate, are available for
diagnostic).

Register name: SFLASH_PACSS_DIAG_TEMP_P_CAL_Ax

Description: Primary temperature calibration data polynomial ax

Comments: –

Bits Name Description

15:0 Ax Temperature calculation polynomial constant coefficient

Register name: SFLASH_PACSS_DIAG_TEMP_A_CAL_Ax

Description: Alternate temperature calibration data polynomial ax

Comments: –

Bits Name Description

15:0 Ax Temperature calculation polynomial constant coefficient
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The following is optimal order of calculation. This uses a 29-bit signed result size.
• Optional order of calculation
1. x2 → shift right 34 bits → multiply by a2
2. x → shift right 9 bits → multiply by a1
3. a0 → shift left 14 bits → sum with above
For fixed-point calculation, it can also be expressed as the above formula divided by 220.

T = (α2 × x2 / 234 + α1 × x / 29 + α0 × 214) / 220 (22.7)

The following defines the setup for the two temperature measurements.
First measurement:

Second measurement:
UNIT_MODE and IREF_BIPOLAR_UNIT_MASK define change for the second measurement. For more information,
see the PSoC™ 4 HV PA Registers TRM.

Reading SFlash Data Measurement Setup to Control Register

Register 
Name

SFLASH_PACSS_DIAG_TEMP_P(or A)_CAL_S PACSS_MMIO_TMPS_CTL

Bits 8:0 IREF_1_MASK → 8:0 IREF_UNIT

18:10 BIPOLAR_1_MASK → 20:12 BIPOLAR_UNIT

30 IREF_SEL → 11 IREF_SEL

31 LOAD_MODE → 25:24 LOAD_MODE
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22.2.8.2 Shunt resistor open detection of RSx pins
The current measurement channel detects disconnect shunt connections by switching internal pull-up resistors
to the shunt pins. If the resistance between the RSHx or RSLx to ground is more than 1000 Ω, an open pin fault can
be detected. Figure 22-40 shows the shunt resistor open detection diagram.

Figure 22-40.  Shunt resistor open detection diagram

• Detection criteria:
– Vadc_th must be defined to separate “good” (lower voltage) from “open” (higher voltage)
– Rdet < 250 Ω should always return “good” status
– Rdet > 1000 Ω should always return “open” status

Note that the following components have variation:
– Vsh: –0.3 V to 0.3 V
– Vdda: 2.7 V to 3.6 V
– Rpu: 4000 Ω nominal, ±40%

The following shows algorithm of RS* Open Detection. 
1. Enable the pull-up and measure the RS* pad with 0.5x gain: VPU
2. If VPU > 1.0 V then Fail: the shunt connection is too high
3. Disable the pull-up and measure the RS* pad with 0.5x gain: VSH
4. Read RPU from SFLASH_PACSS_DIAG_RSxx_PURES, multiply by 32, and interpolate for temperature.

Register name: SFLASH_PACSS_DIAG_RSxx_PURES

Description: Measured RSxx pull-up resistor value for shunt open testing

Comments: Resistance of pull-up resistor, measured during manufacturing. This resistance can be used 
to reduce the variation of the open-shunt diagnostic test.

Bits Name Description

7:0 RES_COLD Resistance/32 in Ohms, measured at –40°C

15:8 RES_HOT Resistance/32 in Ohms, measured at 150°C

ADCESD

Rpu Vdda

ResdRdetVsh

Vdda
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1. If available, use a measured voltage for VDD, otherwise use 3.3 V.
2. Calculate 

3. If VPU> VADC_TH then Fail: the shunt resistance is above 250 Ω.

22.3 Registers

22.3.1 PACSS Registers

Definition - x: Channel number, y: Structure number
• Register protection: Register protection are for the critical registers. These registers are protected using a 

“magic key” written to the PACSS_MMIO_REG_PROT.MAGIC register. After the correct key is written, users can 
update these critical registers. These are non-retention registers that reset in Deep Sleep power mode.

• How It Works: Setting PACSS_MMIO_REG_PROT register to 0xF08169E7 unlocks access to lock-protected 
registers. These protected registers cannot be written into unless this value is written into the register. Writing 
a value other than the magic key will disable access to the registers. The register POR value is set to “unlock” 
the register access. 

The following registers are locked:
• PACSS_MMIO_TRIM_REGL0_CTL
• PACSS_MMIO_TRIM_HPBGRy_CTL
• PACSS_MMIO_TRIM_AREFy_CTL
• PACSS_ACHANx_TRIM_PGAy_CTL
• PACSS_ACHANx_TRIM_BUFy_CTL

Table 22-19.  Precision Analog Channel Subsystem (PACSS) Registers

Offset Size Qty. Width Name Description

0x40300000 0x10000 4 – DCHAN Digital Channel Configuration Register

0x40340000 0x10000 2 – ACHAN Analog Channel Configuration Register

0x403F0000 0x10000 1 – PACSS_MMIO PACSS top-level MMIO Register

VADC_TH VSH VDD VSH–  600
600 RPU+ 

------------------------------+=
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22.3.1.1 PACSS_MMIO
The global configuration (pacss_mmio) applies to the entire system. This contains the configuration for the
sequencers, the temperature sensor, the AGC, and the logic that muxes data between dchan and achan slices.

Table 22-20.  Details

Name Offset Qty. Width Description

PACSS_MMIO_PACSS_CTL 0x0000 1 32 Precision Analog Channel Control Register

PACSS_MMIO_AGC_CTL0 0x0004 1 32 Auto-Gain Correction Control 0 Register

PACSS_MMIO_AGC_CTL1 0x0008 1 32 Auto-Gain Correction Control 1 Register

PACSS_MMIO_AGC_CTL2 0x000C 1 32 Auto-Gain Correction Control 2 Register

PACSS_MMIO_AGC_CTL3 0x0010 1 32 Auto-Gain Correction Control 3 Register

PACSS_MMIO_TMPS_CTL 0x0020 1 32 Temperature Sensor Control Register

PACSS_MMIO_VPOS_PUMP_CTL 0x0024 1 32 Positive Pump Control

PACSS_MMIO_START 0x0030 1 32 Start Conversion Register

PACSS_MMIO_INTR 0x0040 1 32 System Interrupt Request Register

PACSS_MMIO_INTR_SET 0x0044 1 32 System Interrupt Set Request Register

PACSS_MMIO_INTR_MASK 0x0048 1 32 System Interrupt Mask Register

PACSS_MMIO_INTR_MASKED 0x004C 1 32 System Interrupt Masked Request Register

PACSS_MMIO_INTR_CAUSE 0x0050 1 32 Interrupt Cause Register

PACSS_MMIO_STATUS 0x0060 1 32 Status Register

PACSS_MMIO_STATUS1 0x0064 1 32 Status Register 1

PACSS_MMIO_GAIN_CFGy0 0x01y0 10 32 Gain Configuration Register 0

PACSS_MMIO_GAIN_CFGy1 0x01y4 10 32 Gain Configuration Register 1

PACSS_MMIO_GAIN_OFST_CORy 0x01y8 10 32 Offset Correction Register

PACSS_MMIO_GAIN_GAIN_CORy 0x01yC 10 32 Gain Correction Register

PACSS_MMIO_HPBGR_CTL 0x0500 1 32 High Precision Bandgap Reference Control 
Register

PACSS_MMIO_HPBGR_DFT_CTL 0x0510 1 32 High Precision Bandgap Reference DFT 
Control Register

PACSS_MMIO_AREF_CTL 0x0600 1 32 Analog Reference Control Register

PACSS_MMIO_AREF_DFT_CTL 0x0610 1 32 Analog Reference DFT Control Register

PACSS_MMIO_REG_PROT 0x0700 1 32 Register Protection Register

PACSS_MMIO_PDFT_CTL 0x0800 1 32 PACSS DFT Control Register

PACSS_MMIO_TRIM_REGL0_CTL 0xFF00 1 32 Regulator (LDO) Trim 0 Register (lock 
protected)

PACSS_MMIO_TRIM_HPBGRy_CTL 0xFF04 5 32 High Precision Bandgap Reference Trim 
Control y (lock protected)

PACSS_MMIO_TRIM_AREFy_CTL 0xFF18 7 32 Analog Reference Trim Control 0 Register 
(lock protected)
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22.3.1.2 DCHAN
The digital channel (dchan) contains the sample configuration data that will be sequenced, such as the pin to be
sampled and the filtering and post processing options. Each dchan slice contains a decimator, FIR filter
(optional), a post processing block, and data storage. Each PACSS can have up to four dchan slices. The default
configuration of the digital data system will instance two dchans with a FIR filter and two dchans without one;
therefore, two of the FIR filters are optional.

Table 22-21.  Details

Name Offset Qty. Width Description

PACSS_DCHANx_DCHAN_CTL 0x0000 1 32 Digital Channel Control Register

PACSS_DCHANx_SMP_CTL 0x0004 1 32 Sample Control Register

PACSS_DCHANx_SMP_REF_CTL 0x0008 1 32 Sample Reference Control Register

PACSS_DCHANx_DEC_CTL 0x000C 1 32 Decimator Control Register

PACSS_DCHANx_PP_CTL 0x0010 1 32 Post Processing Control Register

PACSS_DCHANx_OFST_COR 0x0014 1 32 Offset Correction Register

PACSS_DCHANx_GAIN_COR 0x0018 1 32 Gain Correction Register

PACSS_DCHANx_RANGE_LOW 0x001C 1 32 Range Detect Low Value Register

PACSS_DCHANx_RANGE_HIGH 0x0020 1 32 Range Detect High Value Register

PACSS_DCHANx_PGA_GAIN_CTL 0x0024 1 32 PGA Gain Control Register

PACSS_DCHANx_CAP_CFG0 0x0028 1 32 Capacitor Configuration 0 Register

PACSS_DCHANx_CAP_CFG1 0x002C 1 32 Capacitor Configuration 1 Register

PACSS_DCHANx_CAP_CFG2 0x0030 1 32 Capacitor Configuration 2 Register

PACSS_DCHANx_ACC_THRESH 0x0034 1 32 Accumulated DataThreshold Register

PACSS_DCHANx_RESULT 0x0040 1 32 Channel Result Data Register

PACSS_DCHANx_RESULT_TAG 0x0044 1 32 Result Tag Register

PACSS_DCHANx_ACC_RESULT 0x0048 1 32 Channel Accumulated Result Data 
Register

PACSS_DCHANx_INTR 0x0050 1 32 Interrupt Request Register

PACSS_DCHANx_INTR_SET 0x0054 1 32 Interrupt Set Request Register

PACSS_DCHANx_INTR_MASK 0x0058 1 32 Interrupt Mask Register

PACSS_DCHANx_INTR_MASKED 0x005C 1 32 Interrupt Masked Request Register

PACSS_DCHANx_STATUS 0x0060 1 32 Channel Status Register

PACSS_DCHANx_FCFGy_COEF 0x0yy0 64 32 FIR Configuration Coefficient Register

PACSS_DCHANx_FCFGy_TAP 0x0yy8 64 32 FIR Configuration Tap Value Register
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22.3.1.3 ACHAN
The analog channel configuration (achan) is the analog configuration that is static while the sequencer traverses
between digital channels. Each achan contains the triggering logic, a sequencer, and data path (DPATH) logic.

Table 22-22.  Details

Name Offset Qty. Width Description

PACSS_ACHANx_ACHAN_CTL 0x0000 1 32 Analog Channel Control Register

PACSS_ACHANx_TR_CTL 0x0004 1 32 Trigger Control for Sequencer Register

PACSS_ACHANx_CHOP_CTL 0x0008 1 32 Chopping Control for Sequencer Register

PACSS_ACHANx_PGA_CTL 0x000C 1 32 Programmable Gain Amplifier Control 
Register

PACSS_ACHANx_MOD_CTL 0x0010 1 32 Modulator Control Register

PACSS_ACHANx_DPATH_CTL 0x0014 1 32 Datapath Control Register

PACSS_ACHANx_BUF_CTL 0x0018 1 32 Buffer Control Register

PACSS_ACHANx_PUMP_CTL 0x0020 1 32 Pump Control Register

PACSS_ACHANx_REF_CTL 0x0024 1 32 Reference Control Register

PACSS_ACHANx_START 0x0028 1 32 Start Conversion Register

PACSS_ACHANx_INMUX_CTL 0x002C 1 32 INMUX Control Register

PACSS_ACHANx_DEM_CTL 0x0030 1 32 Dynamic Element Matching Control 
Register

PACSS_ACHANx_SWITCH 0x0034 1 32 Firmware Switch Control 0 Register

PACSS_ACHANx_SWITCH_CLEAR 0x0038 1 32 Firmware Switch Control 0 Clear Register

PACSS_ACHANx_SWITCH_SQ_CTL 0x003C 1 32 Switch Sequencer Control Register

PACSS_ACHANx_SWITCH_STATUS 0x0040 1 32 Switch Status 0 Register

PACSS_ACHANx_DFT_CTL 0x0044 1 32 DFT Control Register

PACSS_ACHANx_DFT_STATUS 0x0048 1 32 DFT Status Register

PACSS_ACHANx_TRIM_PGAy_CTL 0xFF00 5 32 PGA Trim 0 (lock protected) Register

PACSS_ACHANx_TRIM_BUFy_CTL 0xFF14 4 32 Buffer Trim 0 (lock protected) Register
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22.3.2 SFlash calibration registers
The SFlash calibration registers are shown here.

Table 22-23.  Details

Offset Register Width Address Width Name Description

0x0FFFE000 8 10 SFLASH.128x4 Supervisory Flash Area

Table 22-24.  Details

Name Offset Qty. Width Description

SFLASH_PACSS_CHAN0_2TEMP_TRIMy 0x280 20 32 Channel 0 two temperature trim 
values for software lookup.

SFLASH_PACSS_CHAN1_2TEMP_TRIMy 0x2D0 22 32 Channel 1 two temperature trim 
values for software lookup.

SFLASH_PACSS_CHAN1_3TEMP_TRIMy 0x328 12 32 Channel 1 three temperature trim 
values for software lookup.

SFLASH_PACSS_CHAN_3TEMP_
CENTERTEMP

0x358 1 8 Defines the center temperature for 
three temperature trim values.

SFLASH_PACSS_CHAN_OFFSET_SCLR 0x359 1 8 Defines the offset scaler for all offset 
calibration values.

SFLASH_PACSS_DIAG_RSH_PURES 0x35A 1 16 Measured RSH pull-up resistor value 
for shunt open testing.

SFLASH_PACSS_DIAG_RSL_PURES 0x35C 1 16 Measured RSL pull-up resistor value 
for shunt open testing.

SFLASH_PACSS_DIAG_RSH2_PURES 0x35E 1 16 Measured RSH2 pull-up resistor 
value for shunt open testing.

SFLASH_PACSS_DIAG_RSL2_PURES 0x360 1 16 Measured RSL2 pull-up resistor 
value for shunt open testing.

SFLASH_PACSS_CHAN1_ETEMP_TRIM 0x362 1 16 Channel 1 gain adjust to be used 
with external temperature 
measurements.

SFLASH_PACSS_DIAG_TEMP_P_CAL_S 0x364 1 32 Primary temperature calibration 
data setup

SFLASH_PACSS_DIAG_TEMP_P_CAL_A2 0x368 1 16 Primary temperature calibration 
data polynomial a2

SFLASH_PACSS_DIAG_TEMP_P_CAL_A1 0x36A 1 16 Primary temperature calibration 
data polynomial a1

SFLASH_PACSS_DIAG_TEMP_P_CAL_A0 0x36C 1 16 Primary temperature calibration 
data polynomial a0

SFLASH_PACSS_DIAG_TEMP_A_CAL_S 0x370 1 32 Alternate temperature calibration 
data setup

SFLASH_PACSS_DIAG_TEMP_A_CAL_A2 0x374 1 16 Alternate temperature calibration 
data polynomial a2
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22.3.3 Peripheral interconnect trigger group control registers

SFLASH_PACSS_DIAG_TEMP_A_CAL_A1 0x376 1 16 Alternate temperature calibration 
data polynomial a1

SFLASH_PACSS_DIAG_TEMP_A_CAL_A0 0x378 1 16 Alternate temperature calibration 
data polynomial a0

Table 22-25.  Details

Register Name Description

PERI_TR_CTL Trigger Control Register This register provides software control 
over trigger activation. 

PERI_TR_GROUP2_TR_OUT_CTLx Trigger Control Register This register specifies the input trigger for 
a specific output trigger in trigger group2.

Table 22-24.  Details (continued)

Name Offset Qty. Width Description
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Section F:   High-Voltage System
This section encompasses the following chapter:
• “High-voltage subsystem” on page 345

Top Level Architecture

High-Voltage Subsystem Block Diagram
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23 High-voltage subsystem
The PSoC™ 4 HV PA High-Voltage Subsystem (HVSS) contains a series of analog circuits used in battery monitoring
and management applications. The applications are directly connected to an automotive battery and operates
up to 42 V. The HVSS has the following features:
• HVSS circuits operate directly off 12-V/24-V automotive battery (tolerates up to 42 V)
• A linear regulator powered by automotive battery voltage producing 3.3 V (HVREG)

– Output voltage accuracy: 2.7 V to 3.6 V
– Input voltage range: 3.6 V to 42 V
– Output current capability: 30 mA (for core, GPIO, and external loads), 10 mA (for GPIO and external loads)
– Low current consumption for always on: maximum 20 µA
– Power good function

• A LIN physical interface transceiver (LIN PHY)
– Data rates up to 20 Kbps with high EM noise immunity
– Positive/negative DC tolerance for LIN pin: –27 V to 42 V
– Sleep mode current consumption: IVBAT + IVDDD = 10 µA max
– Programmable slew rate control: 1.0 V/1.5 V/2.0 V/µs at VBAT = 12 V
– Dominant timeout and LIN wakeup interrupt timers

• A set of input voltage dividers (VDIVIDER) providing attenuated signals to ADCs
– Dividers attenuate input by factor of 16x or 24x
– 1.2-V full-scale outputs from input of 19.2 V (16x) or 28.8 V (24x)

• An AHB bus interface and control/status registers
• Interrupt logic

23.1 Block diagram
The HVSS has three public cells: HVREG, LIN PHY, and VDIVIDER. Figure 23-1 shows the block diagram for the
HVSS.

Figure 23-1.  Block diagram
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23.1.1 HVREG
The HVREG is the high-voltage regulator with self-start from the battery without a reference voltage; it provides
3.3 V to VDDD and VDDA as the chip supply. It also contains a power good function and Zener diode on the output
pin for over-voltage protection. The HVREG operates with stability against automotive battery voltage transient
events, keeping the output voltage between 2.7 V to 3.6 V even if the VBAT pin drops down to 3.6 V in cold cranking
or rises up to 42 V in a load dump surge.

23.1.2 LIN PHY
The LIN PHY is the interface between the Local Interconnect Network (LIN) protocol controller and the physical
bus in a LIN, which meets the requirements of LIN standard 2.2A and is downward-compatible with LIN 2.0. It
supports data rates of 1 to 20 Kbps. Non-LIN fast slew rates are available, providing 100 Kbps data rates for fast
downloads; this is used for factory and field flash program updates using the LIN pin.

23.1.3 VDIVIDER
The VDIVIDER is a voltage divider used on the VSENSE and VDIAG pins to scale battery voltage to levels compatible
with on-chip ADCs; this ensures that battery voltages are measured. In typical battery monitoring and
management applications, the VSENSE input is normally connected directly to the battery with a series 2.2-kΩ
resistor to measure battery voltage. VDIAG can be used to measure voltage at other locations such as the ECU or
other loads where monitoring is desired. The external 2.2-kΩ resistors in series with voltage sources limit current
during ESD and transient voltage events. 
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23.2 How it works
The HVSS includes circuitry that interfaces directly with automotive battery power and signals (nominal 12 V to
28 V, tolerates up to 42 V). The HVSS is configured and controlled by an AHB-Lite interface using memory mapped
I/O registers. Figure 23-2 shows an architectural diagram of the HVSS with key off-chip components.

Figure 23-2.  HVSS architecture diagram with off-chip components

On the left in Figure 23-2, a voltage divider attenuates input signals by a factor of 16x or 24x, providing 1.2-V 
full-scale outputs from input voltages of 19.2 V (16x) or 28.8 V (24x). The voltage divider can be disabled to reduce
input current when measurements are not needed.
The HVREG provides nominal 3.3 V from a 3.6 V to 42 V power supply, which is usually a car battery. This block is
always powered and is designed to consume low-power quiescent power (about 15 µA).
The block on the right is a LIN PHY, which is a transceiver that connects to an external LIN bus. The LIN driver
provides a pull-down to signal a dominant state and relies on pull-up resistors to signal a recessive state. The
driver includes slew control and edge rounding to minimize EMI generation and has internal filtering to minimize
EMI susceptibility. The receiver translates the state of the LIN bus to an on-chip logic signal and includes filtering
to minimize noise susceptibility. Normally, the LIN receiver is ON in Deep Sleep mode to listen for LIN
communication. The HVSS system interfaces these to LIN signaling in the IOSS, or to an alternative path for test
purposes.
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23.2.1 HVREG
Figure 23-3 shows the HVREG block architecture and function diagram. The HVREG generates a nominal 3.3-V
output voltage with loads up to 30 mA from an external supply voltage input of 3.6 V to 42 V. The regulator
maintains output voltage from 3 V to 3.6 V when the supply voltage is greater than 4 V, and may drop to 2.7 V when
the supply is between 3.6 V to 4 V. In normal operation, the external automotive battery voltage is typically 12 V
or higher but can drop as low as 4.5 V during cold cranking. However, voltage at the VBAT pin can go as low as 3.6 V
due to a reverse polarity protection diode and an EMI filter resistor.
This regulator provides VDDD (and VDDA) to power the chip, including the SRSS regulators, which then generate VCCD
(1.8 V) supplies. This regulator is always powered on. The regulator has one output for both VDDD and VDDA. Bond
wire inductance and a dedicated bypass capacitor provide some VDDA filtering.
This regulator has a self-bias circuit and can self-start by connecting the battery to the VBAT pin. The regulator
contains a power good function, which outputs a low pg_hv signal (HVSS_HVREG_STATUS.PWR_GOOD) when the
VDDD output is less than 2.0 V. 
The pg_hv signal indicates “power good”, that the VDD supply is stable. The pg_hv is routed to SRSS to optionally
provide a chip reset when power is not good. This signal is referred to as “BODHVSS” inside SRSS. HVREG also has
a Zener diode on its output pin for functional safety.

Figure 23-3.  HVREG block architecture and function diagram

Startup and shutdown timing diagrams of HVREG are shown in Figure 23-3. 
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Figure 23-4.  HVREG startup and shutdown timing diagrams

23.2.1.1 HVREG input pins
vddd_in is an analog input signal pin to monitor VDDD voltage level by power good circuit (PG). This pin connects
to the output VDDD at the appropriate place in the device, allowing for VDDD voltage drop.

23.2.1.2 HVREG output pins
“vddd” is the output pin of this regulator, a nominal 3.3 V regulated voltage with loads up to 30 mA. This output
drives the device’s VDDD and VDDA, and through the GPIO can drive external loads. The vddd pin is always ON after
startup.
pg_hv is the output pin of power good circuit in HVREG (BODHVSS: routed to SRSS as reset source). HVREG
monitors the VDDD output voltage net through the vddd_in pin. When VDDD is lower than 2 V, pg_hv provides a
secure “L”. Hence, this output signal can work as the reset signal of the entire device in the voltage range lower
than Vddd = 2.0 V. 

23.2.1.3 Reset and initialization
HVREG has no registers and latch circuits to hold states. The block provides power to the rest of the device and
thus cannot be reset or disabled. However, HVREG will ignore the input when the pg_hv signals are low. 

23.2.1.4 Power mode
After the VBAT pin is connected to the automotive battery, HVREG continues to be powered on with a circuit
current consumption of 20 µA or less to provide internal power supplies VDDD and VDDA. Power On/Off depends on
the battery connection. It operates with low current consumption of about 15 µA in Deep Sleep mode.

Tstart: 190 μs typ
Delay_pg_rise: 17μs typ
Delay_pg_fall: 35 μs typ
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23.2.2 LIN PHY

23.2.2.1 LIN specification overview
Local interconnected network (LIN) is a low-cost serial communication protocol, standardized by the LIN
consortium. The main properties of LIN are:
• Single master with one or more slaves
• Speeds up to 20 kbit/sec
• Single-wire implementation
• Low-cost silicon implementation based on common UART/SCI interface hardware or equivalent 

software/hardware state machine
The physical interface is a single-wire (not including ground) using a physical layer interface (PHY). The LIN PHY
has two states: the recessive state where the LIN bus is pulled up close to the vehicle battery voltage (a reverse
protection diode causes a small voltage drop) and a dominant state, which is essentially 0 V. Figure 23-5 shows
an overview of a LIN network.

Figure 23-5.  Local interconnect network (LIN) overview

Each node on the LIN network uses a LIN PHY (transceiver) to communicate over the network. The LIN physical
layer is independent of higher LIN protocol layers including master and slave operation. There are no differences
between master and slave transceivers. Each LIN network can have up to 16 nodes. The PHY has a transmitter
section, which includes the open-drain pull-down transistor and gate driver circuitry, a receiver, and a small 
pull-up resistor.
The master node includes a termination resistor that ranges from 500 Ω to 1000 Ω depending on network speed
and bus length (up to 40 m). The LIN PHY specification specifies network loads of 1000-Ω pull-up with 1-nF bus
load capacitance, 680 Ω with 6.8 nF, and 500 Ω with 10 nF. All nodes include a nominal 30-k nominal pull-up
resistor; this is intended to compensate for increasing node capacitance (typically ~270 pF/node) to maintain
approximately the same pull-up resistor to load capacitance (R × C) time constant as nodes are added. Typically
used network speeds are either 10k or 20k bits per second.
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The LIN specification has certain isolation requirements to ensure that the LIN bus is not compromised by certain
faults. This includes ensuring that loss of supply voltage or ground of a slave node does not affect LIN
communication between other nodes. This requirement introduces reverse protection diodes in series with pull-
up resistors and another diode in series with the open-drain pull-down resistor to prevent powering components
from the LIN bus and excessively loading the LIN bus and disrupting communication.

23.2.2.2 LIN PHY transceiver
Figure 23-6 shows the LIN PHY transceiver block diagram.

Figure 23-6.  LIN PHY block diagram

The LIN driver includes slew control to maintain consistent duty cycle over a range of loads. It also includes 
turn-on/turn-off control to round edges and minimize EMI. Large amounts of RF energy can be present on the LIN
bus; the driver must remain functional in the presence of this energy, which requires special attention to the
design of feedback circuits, so they do not saturate in the presence of RF energy.
LIN receiver thresholds are specified in relation to the supply voltage VBAT. A comparator with voltage dividers
sets the receiver threshold and scales bus voltages to appropriate levels. Noise filtering is needed to prevent RF
energy and brief transients from disturbing communication.
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23.2.2.3 Mode transition
Figure 23-7 illustrates the mode transition diagram of the LIN PHY transceiver block. The LIN PHY function modes
are controlled by changing HVSS_LIN_CTL.LIN_MODE [2:0] code, as shown in Table 23-1.

Figure 23-7.  LIN PHY mode transition diagram

A brief description of each mode is as follows:
• Disabled Mode

At startup when pg_hv is set, the LIN PHY block will be in the Disabled mode, with HVSS_LIN_CTL.LIN_MODE 
[2:0] = <000>. In this mode, LIN PHY does not operate and the transmitter connected to LIN bus outputs Hi-Z. 
Therefore, its consumption current will be zero except for leakage. 

• Normal Mode
When HVSS_LIN_CTL.LIN_MODE [2:0] is set to each of <100>, <101>, and <110>, LIN PHY goes into Normal 
mode. In this mode, LIN PHY works as the interface between the device’s LIN protocol controller and the 
physical bus, which meets the requirements of LIN standard 2.2A and is downward-compatible with the LIN 
2.0. Data rates of 10 Kbps and 20 Kbps are supported. Three types of slew rates, 1.0/1.5/2.0 V/µs at VBAT = 12 V, 
can be set and adjusted according to the LIN specification. The falling slope of a LIN bus waveform can be 
made more moderate by setting HVSS_LIN_CTL.RF_DETECT = “H” for EM emission reduction. 

• Sleep Mode
When HVSS_LIN_CTL.LIN_MODE [2:0] is set to <001>, LIN PHY goes into Sleep mode. In this mode, only the 
receiver works while the transmitter sleeps and its driver outputs the “recessive” state to the LIN bus. The 
receiver works with low power consumption. With HVSS timers, the receiver may detect a wake-up signal on 
the bus. 

rf_detect
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• Fast Mode
When HVSS_LIN_CTL.LIN_MODE [2:0] is set to <111>, LIN PHY is in Fast mode. This mode works the same as 
Normal mode except its slew rate is not limited. Therefore, data rates up to 100 Kbps are supported. However, 
other electrical specifications may not meet the LIN specification. This mode is only for test time reduction 
(such as downloads) or debugging.

• Diagnosis Mode
When HVSS_LIN_CTL.LIN_MODE [2:0] is set to <011>, LIN PHY goes into Diagnosis mode. This mode works the 
same as Normal mode except for the control of the transmitter driver output. For txd = H, the operation is the 
same. For txd = L, the high side switch of the output stage is completely OFF, and low side switch is replaced 
by a weak 30-k pull-down resistor instead of the main diode switch. 

• Standby Mode
When HVSS_LIN_CTL.LIN_MODE [2:0] is set to <010>, LIN PHY goes into Standby mode. In this mode, LIN PHY 
does not work and the transmitter outputs the “recessive” state regardless of the txd input. This mode is 
usually not used; it is suitable for quick wake-up, but the current consumption is high.

When HVSS_LIN_CTL.RF_DETECT is set to “H” in Normal mode, the falling slope of the LIN bus waveform will be
more moderate for EM emission reduction (see Figure 23-8).

Figure 23-8.  HVSS_LIN_CTL.RF_DETECT Mode transition diagram
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23.2.2.4 Timers
LIN PHY has a wakeup timer and a dominant timeout fault timer. The wakeup timer can be configured to generate
an interrupt when a LIN wakeup is detected. The dominant timeout fault timer inhibits transmission if the TX
signal is asserted for too long. This timer can generate an interrupt and transmission is re-enabled by disabling
and re-enabling the LIN PHY.
These timers are programmable and are clocked with a low-frequency clock with a nominal 32-kHz frequency.
• Enable/Disable

The timers are enabled through an AHB register write to the HVSS_LIN_TIMER register (FAULT_TIMER_EN and 
WAKEUP_TIMER_EN bit). 

• Wakeup timer
The wakeup timer monitors the incoming LIN receive value to detect a minimum dominant state on the LIN 
bus, which indicates a wakeup signal to LIN slaves. The standard “wakeup” time is on the order of 150 µs. 
Because the timer runs on LFCLK, a 32-kHz clock (nominal 30 µs period), the typical period for this timer will 
be three or four cycles. 
This timer is a down counter, which is initially loaded with the period (HVSS_LIN_TIMER.WAKEUP_TIMER). 
After it is enabled (HVSS_LIN_TIMER.WAKEUP_TIMER_EN), and when the lin_rxd signal (received LIN data 
signal) is in the dominant state (0), the timer will down count. If the lin_rxd signal transitions to the recessive 
state (1) and spans at least one LFCLK edge, this is synchronized and the period is subsequently reloaded to 
reset the count.
If the dominant state is continuously asserted for the full Timer Period, the timer will reach terminal count, 
and the HVSS Interrupt will be asserted.
This operation will work in Deep Sleep mode, and the output interrupt may be used as a Deep Sleep wakeup 
source for the device. After it is awake, the interrupt interface is accessible to user code. 
When the timer is disabled by resetting the AHB enable register bit, the timer state will reset. 
Important note: Do not toggle the WAKEUP_TIMER_EN bit when the device comes out of Deep Sleep. It 
creates a false edge that restarts the wakeup timer when the device goes back into Deep Sleep.

• Fault timer
The fault timer monitors the internal transmit signal to detect if there is a stuck-at fault to the dominant state 
in the hardware. If this is detected, this function will gate the internal transmit signal to the recessive state. 
The functionality of the fault timer is similar to the wakeup timer. It is a down counter, which is initially loaded 
with the period (HVSS_LIN_TIMER.FAULT_TIMER). When enabled (HVSS_LIN_TIMER.FAULT_TIMER_EN), 
down counting will occur when the lin_tx is in the dominant state (0). The period is reloaded for a new count 
when the transmit data is in the recessive state.
This operation will work in Deep Sleep mode, and the output interrupt may be used as a Deep Sleep wakeup 
source for the device. After it is awake, the interrupt interface is accessible to user code. 
When the timer is disabled by resetting the AHB enable register bit, the timer state will reset.

• Interrupts
The terminal count output from the wakeup and/or fault timers sets the interrupt bit. There are four 
interrupt-related registers: HVSS_LIN_INTR, HVSS_LIN_INTR_SET, HVSS_LIN_INTR_MASK, and 
HVSS_LIN_INTR_MASKED. 
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23.2.2.5 LIN PHY input pins
The pg_hv input functions as cell reset signals. When pg_hv is low, the cell is reset. This disables the cell and sets
level shifters to their default states. These are VDDD-level signals.
lin_mode<2:0> (HVSS_LIN_CTL.LIN_MODE<2:0>) is an input to change the LIN PHY function mode. These modes
are described in Table 23-1. 
txd is the data input signal, giving the drive state intended at the LIN pin in LIN PHY transmit mode.
txd_en is an input signal to mask the txd signal. When txd_en is “L”, the transmitter is controlled so that the txd
input is ignored and the LIN pin becomes “recessive” (weak pull-up). 
rf_detect (HVSS_LIN_CTL.RF_DETECT) is an input configuration signal to reduce the impact on the LIN driver
from incoming EMI. See Table 23-2 for options. When the rf_detect mode is selected, the falling slope of the LIN
bus waveform will be more moderate for lower EMI emission. 
use_alt_interface is an input signal to select the primary or alternate interface for Phy. When use_alt_interface is
“L”, the primary interface is selected (connected to the internal LIN controller through HSIOM). When it is “H”, the
alternate interface (connected to GPIOs through HSIOM).

23.2.2.6 LIN PHY output pins
“lin” is the input/output pin for LIN PHY transceiver. The block’s transmitter can drive this pin, and the receiver
uses it as an input. This pin requires positive/negative tolerance from –27 V to 42 V (to account for a “lost ground”
mode that can give negative inputs, and battery surge cases for the high positive voltages).
“rxd” is the output of the LIN PHY receiver. The voltage level of this signal is VCCD and reflects the state of the LIN
pin.

23.2.2.7 Reset and initialization
LIN PHY has no registers and latch circuits to hold states. However, LIN PHY will ignore low-voltage inputs when
pg_hv is low. The HVSS_LIN_CTL.LIN_MODE[2:0] input bus can be used the enable or disable the transceiver
(Table 23-2).

23.2.2.8 Power modes
LINPHY has three primary power modes (see Table 23-1): shutdown mode, active mode, and sleep mode. When
HVSS_LIN_CTL.LIN_MODE<2:0> is set to <000>, LINPHY goes into shutdown/disabled mode. In this mode, LINPHY
stays shut down with no power consumption. When HVSS_LIN_CTL.LIN_MODE<2:0> is set to <001>, LINPHY goes
into sleep mode. In this mode, only the receiver is enabled, listening to LIN pin traffic that may signal a wakeup
event. Current consumption is about 10 µA in this mode. When HVSS_LIN_CTL.LIN_MODE<2:0> is set to any other
setting, the cell is considered to be in active mode.
The standby mode (state 2) is similar to sleep mode, but has a higher receiver power for faster wakeup. 
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23.2.2.9 Truth Tables
Table 23-1, Table 23-2, and Table 23-3 show the LIN PHY truth tables.

Note: State No. 5 meets all parameters of LIN spec. State No. 4 or 5 may not meet all parameters of LIN spec at
some operating conditions.

Table 23-1.  lin_mode [2:0] Truth Table

Input Output (Driver)

State 
No.

LIN 
Transceiver 
Function

LIN_MODE
[2:0]

Receiver Slew 
Control

Slew 
Rate 
setting

txd = 1 txd = 0 Pull-up

0 Disable 000 Off No – Hi-Z Hi-Z Off

1 Sleep 001 On (Low 
Power)

No – Recessive Recessive On

2 Standby 010 On No – Recessive Recessive On

3 Diagnosis 011 On No – Recessive Low (weak) On/Off

4 Normal Mode 100 On Yes 1.0 V/µs Recessive Low (dominant) On

5 101 On Yes 1.5 V/µs Recessive Low (dominant) On

6 110 On Yes 2.0 V/µs Recessive Low (dominant) On

7 Fast Mode 111 On No – Recessive Low (dominant) On

Table 23-2.  rf_detect Truth Table

Input Output

rf_detect LIN Transceiver Function

“L” (0) off (default) 

“H” (1)  reduce impact on LIN driver from incoming EMI

Table 23-3.  use_alt_interface Truth Table

Input Output

use_alt_interface LIN Transceiver Function

“L” (0) Primary interface (connected to internal LIN controller through HSIOM)

“H” (1) Alternate interface (connected to GPIOs through HSIOM)
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23.2.3 VDIVIDER (high-voltage divider)
VDIVIDER is used to scale high-voltage analog inputs down to levels compatible with the ADC full-scale input
voltage (1.2 V). These programmable dividers support two voltage scales - 16x (19.2-V full scale) or 24x (28.8-V full
scale). Each divider can be independently enabled or disabled. The divider generates a single-ended differential
signal for the ADC with the bottom of the divider referenced to vdiv_ret.
Figure 23-9 shows a block diagram of the VDIVIDER.

Figure 23-9.  VDIVIDER block diagram

VDIVIDER has two voltage attenuators for the two inputs vsense and vdiag. The two dividers can be
enabled/disabled independently with the HVSS_RDIV_CTL.RDIV_EN<1:0> configuration inputs. Disabling a
divider stops current drawn from its input (other than leakage). 
VDIVDER can change its attenuator ratio to either 1/16 or 1/24 with the HVSS_RDIV_CTL.RDIV_SCALE<1:0>
configuration inputs.
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23.2.3.1 VDIVIDER input pins
pg_hv is a reset signal input pin. While this pin is “L”, the level shift circuit is in reset. When pg_hv is “L”,
vs_div0/vs_div1 output “L” regardless with rdiv_en<1:0> voltage level. The voltage level of this bus signals is VDDD.
rdiv_en<1:0> (HVSS_RDIV_CTL.RDIV_EN<1:0>) is an input bus for enabling the resistor dividers of the vsense and
vdiag inputs. When either signal is set to “L”, the corresponding resistor ladder is opened and its output becomes
low. The voltage level of this bus signals is VCCD.
rdiv_scale<1:0> (HVSS_RDIV_CTL.RDIV_SCALE<1:0>) is an input bus to set the voltage attenuator ratio to either
1/16 or 1/24. Table 23-4 shows the truth table. The voltage level of this bus is VCCD.

23.2.3.2 VDIVIDER output pins
vs_div0/vs_div1 are output pins of the divided vsense/vdiag signals. The voltage level of this bus signals is VDDD.

23.2.3.3 VDIVIDER ground multiplexer
Because accurate measurement of battery voltage is desired, and the device’s analog ground may be at a
different potential than the battery negative terminal, a ground reference multiplexer for the high-voltage divider
in the pg_hv is high. This multiplexer can select vssa, rsh, or rsl pins
(PACSS_MMIO_PACSS_CTL.HVDIVG_MUX_SEL) for measurement and voltage divider ground (vdiv_ret). If the
negative pole of the battery is not connected to vssa or it is desired to avoid potential voltage drops across the
vssa pin, rsh or rsl (whichever is connected to the battery negative pole) can be selected.

Figure 23-10.  VDIVIDER Ground Multiplexer

23.2.3.4 Reset and initialization
VDIVIDER has no registers and latch circuits to hold states. The block ignores low-voltage inputs until the pg_hv
input asserts high. When pg_hv is low, the dividers are disabled (leakage current only).

23.2.3.5 Power modes
VDIVIDER is a simple resistor attenuator. Either divider can be disabled to reduce current from the input pins,
using the HVSS_RDIV_CTL.RDIV_EN_x registers.
VDIVIDER can also set power domain mode when it is enabled (HVSS_RDIV_CTL.RDIV_ACT_EN register). When
RDIV_ACT_EN = 0, the resistor attenuator is enabled in Active and Deep-Sleep modes. When RDIV_ACT_EN = 1, it
is enabled in Active mode only.
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23.2.3.6 Truth Table

23.3 Registers

Table 23-4.  VDIVIDER (vsense/vdiag) Truth Table

Input = vsense/vdiag Output

pg_hv RDIV_EN_x RDIV_SCALE_x vs_div0 / vs_div1

0 X X 0

1 0 X 0

1 1 0 INPUT / 16

1 1 1 INPUT / 24

Table 23-5.  VDIVIDER Power Domain Mode Truth Table

RDIV_ACT_EN Description

0 Enable in Active and Deep-Sleep modes

1 Enable in Active mode only

Table 23-6.  List of HVSS Registers

Name Offset Qty. Width Description

HVSS

HVSS_HVREG_STATUS 0x0000 1 32 HVREG Status Register

HVSS_RDIV_CTL 0x0010 1 32 Resistor Attenuator Control Register

HVSS_LIN_CTL 0x0020 1 32 LIN Phy Control Register

HVSS_LIN_TIMER 0x0024 1 32 LIN Timer Control Register

HVSS_LIN_STATUS 0x0028 1 32 LIN Status Register

HVSS_LIN_INTR 0x0030 1 32 LIN Interrupt Request Register

HVSS_LIN_INTR_SET 0x0034 1 32 LIN Interrupt Set Register

HVSS_LIN_INTR_MASK 0x0038 1 32 LIN Interrupt Mask Register

HVSS_LIN_INTR_MASKED 0x003C 1 32 LIN Interrupt Masked Register

PACSS_MMIO_PACSS_CTL

HVDIVG_MUX_SEL 0x0000 1 32 High Voltage Divider Ground Reference Mux 
Select Register
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Section G:   Program and Debug
This section encompasses the following chapters:
• “Program and debug interface” on page 361
• “Nonvolatile memory programming” on page 374

Top Level Architecture

Program and Debug Block Diagram  
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24 Program and debug interface
The PSoC™ 4 HV PA Program and Debug interface provides a communication gateway for an external device to
perform programming or debugging. The external device can be a Infineon-supplied programmer and debugger,
or a third-party device that supports programming and debugging. The serial wire debug (SWD) interface is used
as the communication protocol between the external device and PSoC™ 4 HV PA.

24.1 Features
• Programming and debugging through the SWD interface
• Four hardware breakpoints and two hardware watchpoints while debugging
• Read and write access to all memory and registers in the system while debugging, including the Cortex®-M0+ 

register bank when the core is running or halted

24.2 Functional description
Figure 24-1 shows the block diagram of the program and debug interface in PSoC™ 4 HV PA. The Cortex®-M0+
debug and access port (DAP) acts as the program and debug interface. The external programmer or debugger,
also known as the “host”, communicates with the DAP of the PSoC™ 4 HV PA “target” using two pins of the SWD
interface - the bidirectional data pin (SWDIO) and the host-driven clock pin (SWDCK). The SWD physical port pins
(SWDIO and SWDCK) communicate with the DAP through the high-speed I/O matrix (HSIOM). See the “I/O
system” on page 141 for details on HSIOM.

Figure 24-1.  Program and debug interface 

The DAP communicates with the Cortex-M0+ CPU using the Arm®-specified advanced high-performance bus
(AHB) interface. AHB is the systems interconnect protocol used inside the device, which facilitates memory and
peripheral register access by the AHB master. The device has two AHB masters – Arm® CM0 CPU core and DAP.
The external device can effectively take control of the entire device through the DAP to perform programming
and debugging operations.
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24.3 Serial wire debug (SWD) interface
PSoC™ 4’s Cortex®-M0+ supports programming and debugging through the SWD interface. The SWD interface has
two signals: data (SWDIO) and clock for data (SWDCK). The host programmer always drives the clock line,
whereas either the programmer or the PSoC™ device drives the data line. The host programmer and PSoC™
communicate in packet format through the SWD interface. Write packet refers to the SWD packet transaction in
which the host writes data to PSoC™ 4. Read packet refers to the SWD packet transaction in which the host reads
data from PSoC™ 4. The Write packet and Read packet formats are illustrated in Figure 24-2 and Figure 24-3,
respectively.

Figure 24-2.  SWD ‘Write Packet’ timing diagram

Figure 24-3.  SWD ‘Read Packet’ timing diagram
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A complete data transfer requires 46 clocks (not including the optional three dummy clock cycles in Figure 24-2
and Figure 24-3). Each data transfer consists of three phases:
• Packet request – External host programmer issues a request to PSoC™ 4.
• Acknowledge response – PSoC™ 4 sends an acknowledgement to the host.
• Data – This is valid only when a packet request is followed by a valid (OK) acknowledge response. 
The data transfer is either:

• PSoC™ 4 to host, following a read request – RDATA
• Host to PSoC™ 4, following a write request – WDATA
In Figure 24-2 and Figure 24-3, the following sequence occurs:
1. The start bit initiates a transfer; it is always logic ‘1’.
2. The APnDP bit determines whether the transfer is an AP access, ‘1’, or a DP access, ‘0’. 
3. The next bit is RnW, which is ‘1’ for a read from PSoC™ 4, or ‘0’ for a write to PSoC™ 4.
4. The ADDR bits (A[3:2]) are register select bits for access port or debug port. See Table 24-2 and Table 24-3 for 

address bit definitions.
5. The parity bit has the parity of APnDP, RnW, and ADDR. This is even parity bit. If the number of logical 1s in 

these bits is odd, then parity must be ‘1’, otherwise, it is ‘0’.
If the parity bit is not correct, the header is ignored by the target device; there is no ACK response. For host
implementation, the programming operation should be stopped and tried again by doing a device reset.
1. The stop bit is always logic ‘0’.
2. The park bit is always logic’1’ and should be driven high by the host. 
3. The ACK bits are the device-to-host response.
Possible values are shown in Table 24-1. Note that the ACK in the current SWD transfer reflects the status of the
previous transfer. OK ACK means the previous packet was successful. WAIT response indicates that the previous
packet transaction is not yet complete. For a FAULT operation, the programming operation should be aborted
immediately.

a) For a WAIT response, if the transaction is a read, the host ignores the data read in the data phase. PSoC™ 4 
does not drive the line and the host must not check the parity bit as well.

b) For a WAIT response, if the transaction is a write, PSoC™ 4 ignores the data phase. However, the host must 
still send the data to be written from an implementation standpoint. The parity data corresponding to the 
data should also be sent by the host.

c) A WAIT response indicates that the PSoC™ device is processing the previous transaction. The host can try 
for a maximum of four continuous WAIT responses to see if an OK response is received, failing which, it can 
abort the programming operation and retry.

d) For a FAULT response, the programming operation should be aborted and retried by doing a device reset.
4. The data phase includes a parity bit (even parity, similar to the packet request phase). 

a) For a read data packet, if the host detects a parity error, then it must abort the programming operation and 
restart.

b) For a write data packet, if the PSoC™ 4 detects a parity error in the data packet sent by the host, it generates 
a FAULT ACK response in the next packet.

Table 24-1.  SWD Transfer ACK Response Decoding

Response ACK[2:0]

OK 3b001

WAIT 3b010

FAULT 3b100



Reference manual 364 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Program and debug interface

5. Turnaround (TrN) phase: According to the SWD protocol, the TrN phase is used both by the host and PSoC™ 4 
to change the drive modes on their respective SWDIO line. During the first TrN phase after packet request, 
PSoC™ 4 drives the ACK data on the SWDIO line on the rising edge of SWDCK in the TrN phase. This ensures 
that the host can read the ACK data on the next falling edge. Thus, the first TrN cycle is only for half-cycle 
duration. The second TrN phase is one-and-a-half cycle long. Neither the host nor PSoC™ 4 should drive 
SWDIO line during both phases as indicated by ‘z’ in Figure 24-2 and Figure 24-3.

6. The address, ACK, and read and write data are always transmitted least significant bit (LSB) first.
7. At the end of each SWD packet in Figure 24-2 and Figure 24-3, there is a “DUMMY” phase, which is three SWD 

clock cycles with SWDIO line held low. The dummy phase is not part of the SWD protocol. The three extra 
clocks with SWDIO low are required for the test controller in PSoC™ 4 to complete the read/write operation 
when the SWDCK clock is not free-running. For reliable implementation, include three IDLE clock cycles with 
SWDIO low for each packet. According to the SWD protocol, the host can generate any number of SWD clock 
cycles between two packets when SWDIO is low.

Note: The SWD interface can be reset anytime during programming, by clocking 50 or more cycles with SWDIO 
high. To return to the idle state, SWDIO must be clocked low once. The host programmer can begin a 
new SWD packet transaction from the idle state.
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24.4 Cortex®-M0+ debug and access port (DAP)
The Cortex®-M0+ program and debug interface includes a Debug Port (DP) and an Access Port (AP), which
combine to form the DAP. The debug port implements the state machine for the SWD interface protocol that
enables communication with the host device. It also includes registers for the configuration of access port, DAP
identification code, and so on. The access port contains registers that enable the external device to access the
Cortex®-M0+ DAP-AHB interface. Typically, the DP registers are used for a one-time configuration or for error
detection purposes, and the AP registers are used to for programming and debugging operations. Complete
architecture details of the DAP is available in the Arm® Debug Interface v5 Architecture Specification.

24.4.1 Debug Port (DP) registers
Table 24-2 shows the Cortex®-M0+ DP registers used for programming and debugging, along with the
corresponding SWD address bit selections. The APnDP bit is always zero for DP register accesses. Two address
bits (A[3:2]) are used for selecting among the different DP registers. Note that for the same address bits, different
DP registers can be accessed depending on whether it is a read or a write operation. See the Arm® Debug Interface
v5 Architecture Specification for details on all of the DP registers. 

Table 24-2.  Main Debug Port (DP) Registers

Register  APnDP Address
A[3:2]

RnW Full name Register functionality

ABORT 0 (DP) 2b00 0 (W) AP Abort Register This register is used to force a DAP abort 
and to clear the error and sticky flag 
conditions.

IDCODE 0 (DP) 2b00 1 (R) Identification 
Code Register

This register holds the SWD ID of the 
Cortex®-M0+ CPU, which is 0x0BB11477.

CTRL/STAT 0 (DP) 2b01 X (R/W) Control and 
Status Register

This register allows control of the DP and 
contains status information about the DP.

SELECT 0 (DP) 2b10 0 (W) AP Select 
Register

This register is used to select the current 
AP. In PSoC™ 4, there is only one AP, which 
interfaces with the DAP AHB.

RDBUFF 0 (DP) 2b11 1 (R) Read Buffer 
Register

This register holds the result of the last AP 
read operation.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
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24.4.2 Access Port (AP) registers
Table 24-3 lists the main Cortex®-M0+ AP registers that are used for programming and debugging, along with the
corresponding SWD address bit selections. The APnDP bit is always ‘1’ for AP register accesses. Two address bits
(A[3:2]) are used for selecting the different AP registers.

Table 24-3.  Main Access Port (AP) Registers

Register  APnDP Address
A[3:2]

RnW Full name Register functionality

CSW 1 (AP) 2b00 X (R/W) Control and 
Status Word 
Register (CSW)

This register configures and controls 
accesses through the memory access port 
to a connected memory system (which is 
the PSoC™ 4 Memory map).

TAR 1 (AP) 2b01 X (R/W) Transfer Address 
Register

This register is used to specify the 32-bit 
memory address to be read from or 
written to.

DRW 1 (AP) 2b11 X (R/W) Data Read and 
Write Register

This register holds the 32-bit data read 
from or to be written to the address 
specified in the TAR register.
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24.5 Programming the PSoC™ 4 device
PSoC™ 4 is programmed using the following sequence. Refer to the PSoC™ 4 HV PA Programming Specifications for
complete details on the programming algorithm, timing specifications, and hardware configuration required for
programming.
1. Acquire the SWD port in PSoC™ 4 HV PA.
2. Enter the programming mode. 
3. Execute the device programming routines such as Silicon ID Check, Flash Programming, Flash Verification, 

and Checksum Verification.

24.5.1 SWD port acquisition

24.5.1.1 SWD port acquire sequence
The first step in device programming is for the host to acquire the target’s SWD port. The host first performs a
device reset by asserting the external reset (XRES) pin. After removing the XRES signal, the host must send an SWD
connect sequence for the device within the acquire window to connect to the SWD interface in the DAP. The
pseudo code for the sequence is given here.
Code 1. SWD Port Acquire Pseudo Code
ToggleXRES(); // Toggle XRES pin to reset device

//Execute Arm’s connection sequence to acquire SWD-port
do
{

SWD_LineReset(); //perform a line reset (50+ SWDCK clocks with SWDIO high)
ack = Read_DAP ( IDCODE, out ID); //Read the IDCODE DP register

}while ((ack != OK) && time_elapsed < 1.5 ms); //retry connection until OK ACK or timeout

if (time_elapsed >= 1.5 ms) return FAIL; //check for acquire time out

if (ID != CM0P_ID) return FAIL; //confirm SWD ID of Cortex-M0+ CPU. (0x0BC11477)

In this pseudo code, SWD_LineReset() is the standard Arm® command to reset the debug access port. It consists
of more than 49 SWDCK clock cycles with SWDIO high. The transaction must be completed by sending at least one
SWDCK clock cycle with SWDIO asserted LOW. This sequence synchronizes the programmer and the chip.
Read_DAP() refers to the read of the IDCODE register in the debug port. The sequence of line reset and IDCODE
read should be repeated until an OK ACK is received for the IDCODE read or a timeout (1.5 ms) occurs. The SWD
port is said to be in the acquired state if an OK ACK is received within the time window and the IDCODE read
matches with that of the Cortex®-M0+ DAP.

24.5.2 SWD programming mode entry
After the SWD port is acquired, the host must enter the device programming mode within a specific time window.
This is done by setting the TEST_MODE bit (bit 31) in the test mode control register (MODE register). The debug
port should also be configured before entering the device programming mode. Timing specifications and pseudo
code for entering the programming mode are detailed in the PSoC™ 4 HV PA Programming Specifications
document. The minimum required clock frequency for the Port Acquire step and Programming Mode Entry step
to succeed is 1.5 MHz.
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24.5.3 SWD programming routines executions
When the device is in programming mode, the external programmer can start sending the SWD packet sequence
for performing programming operations such as flash erase, flash program, checksum verification, and so on. The
programming routines are explained in the “Nonvolatile memory programming” on page 374. The exact
sequence of calling the programming routines is given in the PSoC™ 4 HV PA Programming Specifications.

24.6 PSoC™ 4 SWD debug interface
Cortex®-M0+ DAP debugging features are classified into two types: invasive debugging and noninvasive
debugging. Invasive debugging includes program halting and stepping, breakpoints, and data watchpoints.
Noninvasive debugging includes instruction address profiling and device memory access, which includes the
flash memory, SRAM, and other peripheral registers.
The DAP has three major debug subsystems:
• Debug Control and Configuration registers
• Breakpoint Unit (BPU) – provides breakpoint support
• Debug Watchpoint (DWT) – provides watchpoint support. Cortex®-M0+ Debug does not support trace
See the Armv6-M Architecture Reference Manual for complete details on the debug architecture. 

24.6.1 Debug control and configuration registers
The debug control and configuration registers are used to execute firmware debugging. The registers and their
key functions are as follows. See the Armv6-M Architecture Reference Manual for complete bit level definitions of
these registers.
• Debug Halting Control and Status Register (CM0P_DHCSR) – This register contains the control bits to enable 

debug, halt the CPU, and perform a single-step operation. It also includes status bits for the debug state of the 
processor.

• Debug Fault Status Register (CM0P_DFSR) – This register describes the reason a debug event has occurred and 
includes debug events, which are caused by a CPU halt, breakpoint event, or watchpoint event.

• Debug Core Register Selector Register (CM0P_DCRSR) – This register is used to select the general-purpose 
register in the Cortex®-M0+ CPU to which a read or write operation must be performed by the external 
debugger.

• Debug Core Register Data Register (CM0P_DCRDR) – This register is used to store the data to write to or read 
from the register selected in the CM0P_DCRSR register.

• Debug Exception and Monitor Control Register (CM0P_DEMCR) – This register contains the enable bits for 
global debug watchpoint (DWT) block enable, reset vector catch, and hard fault exception catch.

24.6.2 Breakpoint unit (BPU)
The BPU provides breakpoint functionality on instruction fetches. The Cortex®-M0+ DAP in PSoC™ 4 HV PA
supports up to four hardware breakpoints. Along with the hardware breakpoints, any number of software
breakpoints can be created by using the BKPT instruction in the Cortex®-M0+. The BPU has two types of registers.
• The breakpoint control register (CM0P_BP_CTRL) is used to enable the BPU and store the number of hardware 

breakpoints supported by the debug system (four for CM0 DAP in the PSoC™ 4 HV PA).
• Each hardware breakpoint has a Breakpoint Compare Register (CM0P_BP_COMPx). It contains the enable bit 

for the breakpoint, the compare address value, and the match condition that will trigger a breakpoint debug 
event. In a typical use case, when an instruction fetch address matches the compare address of a breakpoint, 
a breakpoint event is generated and the processor is halted.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
https://www.cypress.com/documentation/programming-specifications/cy8c4xxx-cyblxxxx-programming-specifications
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24.6.3 Data watchpoint (DWT)
The DWT provides watchpoint support on a data address access or a program counter (PC) instruction address.
The DWT supports two watchpoints. It also provides external program counter sampling using a PC sample
register, which can be used for noninvasive coarse profiling of the program counter. The most important registers
in the DWT are as follows.
• The watchpoint compare (CM0P_DWT_COMPx) registers store the compare values that are used by the 

watchpoint comparator for the generation of watchpoint events. Each watchpoint has an associated 
DWT_COMPx register.

• The watchpoint mask (CM0P_DWT_MASKx) registers store the ignore masks applied to the address range 
matching in the associated watchpoints.

• The watchpoint function (CM0P_DWT_FUNCTIONx) registers store the conditions that trigger the watchpoint 
events. They may be program counter watchpoint event or data address read/write access watchpoint 
events. A status bit is also set when the associated watchpoint event occurs.

• The watchpoint comparator PC sample register (CM0P_DWT_PCSR) stores the current value of the program 
counter. This register is used for coarse, noninvasive profiling of the program counter register.

24.6.4 Debugging the PSoC™ 4 device
The host debugs the target PSoC™ 4 HV PA by accessing the debug control and configuration registers, registers
in the BPU, and registers in the DWT. All registers are accessed through the SWD interface; the SWD debug port
(SW-DP) in the Cortex®-M0+ DAP converts the SWD packets to appropriate register access through the DAP-AHB
interface.
The first step in debugging the target PSoC™ 4 is to acquire the SWD port. The acquire sequence consists of an
SWD line reset sequence and read of the DAP SWDID through the SWD interface. The SWD port is acquired when
the correct CM0 DAP SWDID is read from the target device. For the debug transactions to occur on the SWD
interface, the corresponding pins should not be used for any other purpose. See the “I/O system” on page 141
to understand how to configure the SWD port pins, allowing them to be used only for SWD interface or for other
functions such as LCD and GPIO. If debugging is required, the SWD port pins should not be used for other
purposes. If only programming support is needed, the SWD pins can be used for other purposes. 
When the SWD port is acquired, the external debugger sets the C_DEBUGEN bit in the DHCSR register to enable
debugging. Then, the different debugging operations such as stepping, halting, breakpoint configuration, and
watchpoint configuration are carried out by writing to the appropriate registers in the debug system.
Debugging the target device is also affected by the overall device protection setting, which is explained in the
“Device security and register protection” on page 137. Only the OPEN protected mode supports device
debugging. The external debugger and the target device connection is not lost for a device transition from Active
mode to either Sleep or Deep Sleep modes. When the device enters the Active mode from either Deep Sleep or
Sleep modes, the debugger can resume its actions without initiating a connect sequence again.
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24.7 Accessing PSoC™ memory and registers
The DCRDR and DCRSR are used to access the PSoC™ memory and registers. The register and memory access are
32 bits wide.
To use the registers to read the contents of a register, perform the following steps:
1. Set the C_DEBUGEN and C_HALT bits of the DHCSR. This enables the debug and halts the core. 
2. Wait for the S_HALT bit of the DHCSR to be set. This indicates that the core is halted. 
3. Write to the DCRSR, with the REGSEL value indicating the required register and the REGWnR bit as ‘0’ 

indicating a read access.
4. This write clears the DHCSR.S_REGRDY bit to 0. 
5. Poll DHCSR until DHCSR.S_REGRDY reads as one. This shows that the processor has transferred the value of 

the selected register to DCRDR. 
6. Read the required value from DCRDR. 
7. To write to a register, perform the following steps:
8. Make sure the processor is halted by following steps 1 and 2 mentioned above. 
9. Write the required word to DCRDR. 
10. Write to the DCRSR, with the REGSEL value indicating the required register, and the REGWnR bit as ‘1’ 

indicating a write access.
This write clears the DHCSR S_REGRDY bit to 0.

11. Poll DHCSR until DHCSR.S_REGRDY reads as one. This shows that the processor has transferred the DCRDR 
value to the selected register.

The Memory Access Port (MEM-AP) provides access to the memory through the DAP. All accesses to a MEM-AP are
made through the MEM-AP registers. All registers are 32 bits wide. The important registers required for memory
access include:
• Control/Status Word Register (CSW) – The CSW configures and controls accesses through the MEM-AP to or 

from a connected memory system. 
• Transfer Address Register (TAR) – The TAR holds the memory address to be accessed. 
• Data Read/Write Register (DRW) – The DRW holds a 32-bit data value. In write mode, the DRW holds the value 

to write for the current transfer to the address specified in TAR[31:0]. In read mode, the DRW holds the value 
read in the current transfer from the address specified in TAR[31:0]. 

• Configuration Register (CFG) – The CFG provides information about the configuration of the MEM-AP 
implementation. It indicates whether memory accesses by the MEM-AP are big-endian or little-endian. 

• Debug Base Address Register (BASE) – The BASE provides an index into the connected memory-mapped 
resource. This index value points to one of the following: the start of a set of debug registers or a ROM table 
that describes the connected debug components.

For more details on the Memory Access Port and registers, see the Arm® Debug Interface v5 Architecture
Specification.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
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24.8 Multi-drop serial wire debug port (SW-DP)
The Arm® Debug Interface Architecture Specification: ADIv5.1 introduces the serial wire debug (SWD) protocol
version 2 that extends the serial wire debug protocol, adding multi-drop capability. The following is a description
of the multi-drop architecture:
• Enables a two-wire host connection to communicate simultaneously with multiple devices.
• Permits an effectively unlimited number of devices to be connected simultaneously, subject to electrical 

constraints.
• Is largely backwards-compatible, because provision for multi-drop support in a device does not break 

point-to-point compatibility with existing host equipment that does not support the multi-drop extensions.
• Permits a device to power down completely, during the time that the device is not selected.
• Prevents multiple devices from driving the wire simultaneously, and continues to support the wire being 

actively driven both HIGH and LOW, maintaining a high maximum clock speed.
• Permits multi-drop connections incorporating devices that do not implement the SWD protocol.
Figure 24-4 shows an example of multi-drop physical connection.

Figure 24-4.  Multi-Drop Physical Connection Example
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24.8.1 How to support
To support multi-drop SW-DP, a debugger must first place the target into dormant state, and then transition to
the required operating state.
Using dormant state allows the target to be placed into a quiescent mode, allowing devices to inter-operate with
other devices implementing other protocols. For details on placing the target into the dormant state, see the
Arm® Debug Interface v5 Architecture Specification.

24.8.2 Limitations of multi-drop

24.8.2.1 System configuration
Each device must be configured with a unique target ID, which includes a 4-bit instance ID, to differentiate
between otherwise identical targets. This places a limit of 16 such targets in any system, and indicates that
identical devices must be configured before they are connected together to ensure that their instance IDs do not
conflict.

24.8.2.2 Auto-detection of target
It is not possible to interrogate a multi-drop SWD system that includes multiple devices to establish which
devices are connected. Because all devices are selected when coming out of a line reset, no communication with
a device is possible without prior selection of that target using its target ID. Therefore, connection to a multi-drop
SWD system that includes multiple devices requires either of the following:
• The host has prior knowledge of the devices in the system and is configured before target connection.
• The host attempts auto-detection by issuing a target select command for each of the devices it is configured 

to support. While this is likely to involve a large number of target select commands, it must be possible to 
iterate through all the supported devices in a reasonable time for the debug tool users.

Note: This means that debug tools cannot connect seamlessly to targets in a multi-drop SWD system that they
have never seen before. However, if the debug tools can be provided with the target ID of such targets by the user,
then the contents of the target can be auto-detected as normal.

24.8.2.3 Compatibility with SWD Protocol Version 1
To protect against multiple selected devices all driving the line simultaneously, SWD protocol version 2 requires
the DP to be in dormant state out of power-up reset; this means the start-up state differs from that in the SWD
protocol version 1. If SWD operation is then selected, operation becomes compatible with SWD protocol 
version 1.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
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24.9 Registers

Table 24-4.  List of Registers

Register name Description

CM0P_DHCSR Debug Halting Control and Status Register

CM0P_DFSR Debug Fault Status Register

CM0P_DCRSR Debug Core Register Selector Register

CM0P_DCRDR Debug Core Register Data Register

CM0P_DEMCR Debug Exception and Monitor Control Register

CM0P_BP_CTRL Breakpoint Control Register

CM0P_BP_COMPx Breakpoint Compare Register

CM0P_DWT_COMPx Watchpoint Compare Register

CM0P_DWT_MASKx Watchpoint Mask Register

CM0P_DWT_FUNCTIONx Watchpoint Function Register

CM0P_DWT_PCSR Watchpoint Comparator PC Sample Register
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25 Nonvolatile memory programming
Nonvolatile memory programming refers to the programming of flash memory in the PSoC™ 4 HV PA device. This
chapter explains the different functions that are part of device programming, such as erase, write, program, and
checksum calculation. Infineon-supplied programmers and other third-party programmers can use these
functions to program the PSoC™ 4 HV PA device with the data in an application hex file. They can also be used to
perform bootload operations where the CPU will update a portion of the flash memory.

25.1 Features
• Supports programming through the debug and access port (DAP) and Cortex®-M0+ CPU
• Supports both blocking and non-blocking flash program and erase operations from the Cortex®-M0+ CPU

25.2 Functional description
Flash programming operations are implemented as system calls. System calls are executed out of SROM in the
privileged mode of operation. The user has no access to read or modify the SROM code. The DAP or the CM0+ CPU
requests the system call by writing the function opcode and parameters to the System Performance Controller
Interface (SPCIF) input registers, and then requesting the SROM to execute the function. Based on the function
opcode, the System Performance Controller (SPC) executes the corresponding system call from SROM and
updates the SPCIF status register. The DAP or the CPU should read this status register for the pass/fail result of
the function execution. As part of function execution, the code in SROM interacts with the SPCIF to do the actual
flash programming operations (See the “Flash Memory” on page 67 for more information of the SPCIF).
PSoC™ 4 HV PA flash is programmed using a Program Erase Program (PEP) sequence that happens automatically
in the SROM routine. The flash cells are all programmed to a known state, erased, and then the selected bits are
programmed. This sequence increases the life of the flash by balancing the stored charge. When writing to flash
the data is first copied to a page latch buffer. The flash write functions are then used to transfer this data to flash
memory.
External programmers program the flash memory in PSoC™ 4 HV PA using the SWD protocol by sending the
commands to the DAP. The programming sequence for the PSoC™ 4 HV PA device with an external programmer
is given in the PSoC™ 4 HV PA Programming Specifications. Flash memory can also be programmed by the CM0+
CPU by accessing the relevant registers through the AHB interface. This type of programming is typically used to
update a portion of the flash memory as part of a bootload operation or other application requirements, such as
updating a lookup table stored in flash memory, or data logging. All write operations to flash memory, whether
from the DAP or from the CPU, are done through the SPCIF.
Note: It can take as much as 20 milliseconds to write to flash. During this time the device should not be reset, or
unexpected changes may be made to portions of the flash. Reset sources include XRES pin, software reset, and
watchdog (see the “Reset system and interrupts” on page 133); make sure these are not inadvertently
activated.
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25.3 System Call implementation
A system call consists of the following items:
• Opcode: A unique 8-bit opcode
• Parameters: Two 8-bit parameters are mandatory for all system calls. These parameters are referred to as 

key1 and key2, and are defined as follows:
– key1 = 0xB6
– key2 = 0xD3 + Opcode
– The two keys are passed to ensure that the user system call is not initiated by mistake. If the key1 and key2 

parameters are not correct, the SROM does not execute the function, and returns an error code. Apart from 
these two parameters, additional parameters may be required depending on the specific function being 
called. 

• Return values: Some system calls also return a value on completion of their execution, such as the silicon ID 
or a checksum.

• Completion status: Each system call returns a 32-bit status that the CPU or DAP can read to verify success or 
determine the reason for failure.

25.4 Blocking and Non-Blocking System Calls
System call functions can be categorized as blocking or non-blocking based on the nature of their execution.
Blocking system calls are those where the CPU cannot execute any other task in parallel other than the execution
of the system call. When a blocking system call is called from a process, the CPU jumps to the corresponding code
in SROM. When the execution is complete, the original thread execution resumes. Non-blocking system calls
allow the CPU to execute some other code in parallel and communicate the completion of interim system call
tasks to the CPU through an interrupt. 
Non-blocking system calls are only used when the CPU initiates the system call. The DAP will only use blocking
system calls during the programming mode and the CPU is halted during this process. 
The three non-blocking system calls are Non-Blocking Write Row, Non-Blocking Program Row, and Resume 
Non-Blocking, respectively. All other system calls are blocking. 
The CPU cannot execute code from code flash while doing an erase or program operation. Doing so results in an
undefined behavior, which may return a bus error and/or trigger a hard fault when the flash fetch operation is
being done. For this reason, blocking system calls must be used when programming code flash. 
Data flash is not expected to contain executable code, and can safely be updated using non-blocking system
calls.
For more information of code flash and data flash, see the “Flash Memory” on page 67.
The SPC block generates the properly sequenced high-voltage pulses required for erase and program operations
of the flash memory. When a non-blocking function is called, the SPC timer triggers its interrupt when each of the
sub-operations in a write or program operation is complete. Call the Resume Non-Blocking function from the SPC
interrupt service routine (ISR) to ensure that the subsequent steps in the system call are completed. The SPC
interrupt is triggered once in the case of a non-blocking program function or thrice in a non-blocking write
operation. Similarly, the Resume Non-Blocking function call in the SPC ISR should be called once in a 
non-blocking program operation and thrice in a non-blocking write operation.
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25.4.1 Performing a system call
The steps to initiate a system call are as follows:
1. Set up the function parameters: The two possible methods for preparing the function parameters (key1, key2,

or additional parameters) are:
a) Write the function parameters to the CPUSS_SYSARG register: This method is used for functions that 

retrieve their parameters from the CPUSS_SYSARG register. The 32-bit CPUSS_SYSARG register must be 
written with the parameters in the sequence specified in the respective system call table. 

b) Write the function parameters to SRAM: This method is used for functions that retrieve their parameters 
from SRAM. The parameters should first be written in the specified sequence to consecutive SRAM 
locations. Then, the starting address of the SRAM, which is the address of the first parameter, should be 
written to the CPUSS_SYSARG register. This starting address should always be a word-aligned (32-bit) 
address. The system call uses this address to fetch the parameters.

2. Specify the system call using its opcode and initiating the system call: The 8-bit opcode should be written to 
the SYSCALL_COMMAND bits ([15:0]) in the CPUSS_SYSREQ register. The opcode is placed in the lower eight 
bits [7:0] and 0x00 be written to the upper eight bits [15:8]. To initiate the system call, set the SYSCALL_REQ 
bit (31) in the CPUSS_SYSREG register. Setting this bit triggers a non-maskable interrupt that jumps the CPU 
to the SROM code referenced by the opcode parameter.

3. Wait for the system call to finish executing: When the system call begins execution, it sets the PRIVILEGED bit 
in the CPUSS_SYSREQ register. This bit can be set only by the system call, not by the CPU or DAP. The DAP 
should poll the PRIVILEGED and SYSCALL_REQ bits in the CPUSS_SYSREG register continuously to check 
whether the system call is completed. Both these bits are cleared on completion of the system call. The 
maximum execution time is one second. If these two bits are not cleared after one second, the operation 
should be considered a failure and aborted without executing the remaining steps. Note that unlike the DAP, 
the CPU application code cannot poll these bits during system call execution. This is because the CPU 
executes code out of the SROM during the system call. The application code can check only the final function 
pass/fail status after the execution returns from SROM.

4. Check the completion status: After the PRIVILEGED and SYSCALL_REQ bits are cleared to indicate completion 
of the system call, the CPUSS_SYSARG register should be read to check for the status of the system call. If the 
32-bit value read from the CPUSS_SYSARG register is 0xAXXXXXXX (where ‘X’ denotes don’t care hex values), 
the system call was successfully executed. For a failed system call, the status code is 0xF00000YY where YY 
indicates the reason for failure. See Table 25-1 for the complete list of status codes and their description.

5. Retrieve the return values: For system calls that return values such as silicon ID and checksum, the CPU or DAP 
should read the CPUSS_SYSREG and CPUSS_SYSARG registers to fetch the values returned.
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25.5 System calls
Table 25-1 lists all the system calls supported in PSoC™ 4 HV PA along with the function description and
availability in device protection modes. See the “Device security and register protection” on page 137 for more
information on the device protection settings. Note that some system calls cannot be called by the CPU as given
in the table. Detailed information on each of the system calls follows the table.

Table 25-1.  List of System Calls

System Call Op Code Description DAP Access CPU 
Access

Silicon ID 0x00 Returns the device Silicon ID, Family ID, 
and Revision ID

✔ ✔ – ✔

Load Flash Bytes 0x04 Loads data to the page latch buffer to be 
programmed later into the flash row, in 8 
byte granularity, for a row size of 128 bytes

✔ – – ✔

Write Row 0x05 Erases and then programs a row of flash 
with data in the page latch buffer

✔ – – ✔

Program Row 0x06 Programs a row of flash with data in the 
page latch buffer

✔ – – ✔

Non-Blocking Write Row 0x07 Erases and then programs a row of flash 
with data in the page latch buffer. During 
program/erase pulses, the user may 
execute code from SRAM. This function is 
meant only for CPU access

– – – ✔

Non-Blocking Program 
Row

0x08 Programs a row of flash with data in the 
page latch buffer. During program/erase 
pulses, the user may execute code from 
SRAM. This function is meant only for CPU 
access

– – – ✔

Resume Non-Blocking 0x09 Resumes a non-blocking write row or non-
blocking program row. This function is 
meant only for CPU access

– – – ✔

Erase All 0x0A Erases all user code in the flash main and 
work arrays, chip protection, and all Flash 
Row Level Write Protection data in SFlash.

✔ – – –

Checksum 0x0B Calculates the checksum over the entire 
flash memory (user and supervisory area) 
or checksums a single row of flash.

✔ ✔ – ✔

Write Protection 0x0D This programs both the flash row-level 
protection settings and the device 
protection settings in the supervisory flash 
row.

✔ ✔ – –

Configure Clock 0x15 Sets the clock to required frequency for 
flash program/erase operations.

✔ ✔ – ✔

Write User SFlash Row 0x18 Writes a user row of supervisory flash. ✔ – – ✔
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Soft Reset 0x1B Issues software reset by setting the 
CM0_AIRCR.SYSRESETREQ bit.

✔ ✔ – –

Bulk Erase 0x1D Erases single or all macro of regular flash 
of the specific flash controller in bulk 
mode.

✔ – – ✔

Specify External Clock 
Frequency

0x1E Specifies frequency on EXTCLK/ECO1) 
input to allow program/erase operations 
while being clocked from this clock 
source.

✔ ✔ – ✔

1) ECO is not available as a clock for the PSoC™ 4 HV PA device. It will be available in future products.

Table 25-1.  List of System Calls (continued)

System Call Op Code Description DAP Access CPU 
Access
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25.5.1 Silicon ID
This function returns a 12-bit family ID, 16-bit silicon ID, an 8-bit revision ID, and the current device protection
mode. These values are returned to the CPUSS_SYSARG and CPUSS_SYSREQ registers. Parameters are passed
through the CPUSS_SYSARG and CPUSS_SYSREQ registers.
Parameters

Return

Table 25-2.  Parameters

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD3 Key2

Bits [31:16] 0x0000 Not used

CPUSS_SYSREQ register

Bits [15:0] 0x0000 Silicon ID opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-3.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [7:0] Silicon ID Lo See the PSoC™ 4 HV PA datasheet for Silicon ID values for 
different part numbers.Bits [15:8] Silicon ID Hi

Bits [19:16] Minor Revision ID See the PSoC™ 4 HV PA Programming Specifications for these 
values.Bits [23:20] Major Revision ID

Bits [27:24] 0xXX Not used (don’t care)

Bits [31:28] 0xA Success status code

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)

CPUSS_SYSREQ register

Bits [11:0] Family ID Family ID is 0xC2 for PSoC™ 4 HV PA

Bits [15:12] Chip Protection See the “Device security and register protection” on 
page 137.

Bits [31:16] 0xXXXX Not used
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25.5.2 Load Flash Bytes
This API loads the page latch buffer with data to be programmed into a row of flash. Data is programmed into the
page latch buffer starting at the location specified by the Byte Addr input parameter. The Byte Addr parameter
together with the Load Size parameter must not exceed the size of the page latch. To write the entire page latch
buffer, set the Byte Addr to zero and Load Size to N-1 where N is the size of the page latch.
Flash write width is 64 bits. As a result, Load Size and Byte Addr have 8-byte granularity.
Data programmed into the page latch buffer will remain until a program is performed, which will clear the page
latch contents.
Parameters

Table 25-4.  Parameters

Address Value to be Written Description

SRAM Address - 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD7 Key2

Bits [23:16] Byte Addr Start address of page latch buffer to write data
Supported values:
0x00 - Byte 0 of latch buffer
….
0x78 - Byte 120 of latch buffer

Bits [30:24] Flash Macro Select 0x00 - Flash Macro 0
0x01 - Flash Macro 1
0x02 - Flash Macro 2 (Not used in PSoC™ 4 HV PA)
0x03 - Flash Macro 3 (Not used in PSoC™ 4 HV PA)

Bit [31] Flash Controller 
Number

0: Controller 0 (which has Macro 0 and 1)
1: Controller 1 (which has Macro 0 only)
(Refer to the “Flash Memory” on page 67 for the flash 
controllers in the device)
Note: Each flash controller starts from row 0.

SRAM Address- 32’hYY + 0x04

Bits [7:0] Load Size Number of bytes to be written to the page latch buffer.
Supported values:
0x07 - 8 byte
….
0x7F - 128 bytes

Bits [15:8] 0xXX Don’t care parameter

Bits [23:16] 0xXX Don’t care parameter

Bits [31:24] 0xXX Don’t care parameter

SRAM Address - From (32’hYY + 0x08) to (32’hYY + 0x08 + Load Size)

Byte 0 Data Byte [0] First data byte to be loaded

…. …. ….

Byte (Load size –1) Data Byte [Load size –1] Last data byte to be loaded
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Return

CPUSS_SYSARG register

Bits [31:0] 32’hYY 32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1).

CPUSS_SYSREQ register

Bits [15:0] 0x0004 Load Flash Bytes opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-5.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xAXXXXXXX (X = don’t care) Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on 
page 399)

Table 25-4.  Parameters (continued)

Address Value to be Written Description
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25.5.3 Write Row
This function erases and then programs the addressed row of flash with the data in the page latch buffer. If all
data in the page latch buffer is 0, then the program is skipped. The parameters for this function are stored in
SRAM. The start address of the stored parameters is written to the CPUSS_SYSARG register. This function clears
the page latch buffer contents after the row is programmed. 
Usage Requirements: Clocks must be configured correctly as documented in “Configure Clock” on page 394.
Call the Load Flash Bytes function before calling this function. This function can do a write operation only if the
corresponding flash row is not write-protected.
Refer to the CLK_IMO_CONFIG register in the PSoC™ 4 HV PA Registers TRM for more information.
Parameters

Return

Table 25-6.  Parameters

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD8 Key2

Bits [30:16] Row ID Row number to write
0x0000 - Row 0

Bit [31] Flash Controller Number 0: Controller 0
1: Controller 1
(Refer to the “Flash Memory” on page 67 for the flash 
controllers in the device)
Note: Each flash controller starts from row 0.

CPUSS_SYSARG register

Bits [31:0] 32’hYY 32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0005 Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-7.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xAXXXXXXX (X = don’t care) Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.5.4 Program Row
This function programs the addressed row of the flash with data in the page latch buffer. If all data in the page
latch buffer is 0, then the program is skipped. It clears the page latch buffer contents after the row is programmed.
Note that before any program operation can be performed, the page(s) must first be erased to bring all memory
cells that will be programmed to “0” state.
Usage Requirements: Clocks must be configured correctly as documented in “Configure Clock” on page 394.
Call the Load Flash Bytes function before calling this function. The row must be in an erased state before calling
this function. This function can do a program operation only if the corresponding flash row is not write-protected.
Parameters

Return

Table 25-8.  Parameters

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD9 Key2

Bits [30:16] Row ID Row number to program
0x0000 - Row 0

Bit [31] Flash Controller Number 0: Controller 0
1: Controller 1
(Refer to the “Flash Memory” on page 67 for the flash 
controllers in the device)
Note: Each flash controller starts from row 0.

CPUSS_SYSARG register

Bits [31:0] 32’hYY 32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0006 Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-9.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xAXXXXXXX (X = don’t care) Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.5.5 Non-Blocking Write Row
This function is used when a flash row needs to be written by the CM0+ CPU in a non-blocking manner, so that the
CPU can continue to execute application code. This function should only be used to program data flash. If it is
necessary to use non-blocking write row to program code flash, the CM0+ must execute code from SRAM or user
SROM. “Blocking and Non-Blocking System Calls” on page 375 discusses about non-blocking system calls in
detail. 
This function has three phases: Preprogram, Erase, Program. Preprogram is the step in which all of the bits in the
flash row are written a ‘1’ in preparation for an erase operation. The erase operation clears all bits in the row, and
the program operation writes the new data to the row.
While each phase is being executed, the CPU can execute code. When the non-blocking write row system call is
initiated, the user cannot call any system call function other than the Resume Non-Blocking function, which is
required for completion of the non-blocking write operation. After completion of each phase, the SPC triggers its
interrupt. In this interrupt, call the Resume Non-Blocking system call.
Note: The device firmware must not attempt to put the device to sleep during a non-blocking write row. This
action will reset the page latch buffer and the flash will be written with all zeros. The non-blocking operation does
not return success status (0xAXXXXXXX) until the last Resume API is complete. The CPUSS.SYSARG register will
reflect SRAM address during an ongoing non-blocking operation.
Usage Requirements: Clocks must be configured correctly as documented in “Configure Clock” on page 394.
Call the Load Flash Bytes function before calling this function to load the data bytes that will be used for
programming the row. This is because the CM0+ CPU cannot execute code from code flash while doing the code
flash erase program operations. If this function is called from the code flash memory, the result is undefined, and
may return a bus error and trigger a hard fault when the code flash fetch operation is being done.
Parameters

Table 25-10.  Parameters

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDA Key2

Bits [30:16] Row ID Row number to write
0x0000 - Row 0

Bit [31] Flash Controller Number 0: Controller 0
1: Controller 1
(Refer to the “Flash Memory” on page 67 for the flash 
controllers in the device)

CPUSS_SYSARG register

Bits [31:0] 32’hYY 32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0007 Non-Blocking Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit
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Return

Table 25-11.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:00] This will contain the SRAM 
address if API execution is 
successful.

Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.5.6 Non-Blocking Program Row
This function is used when a flash row needs to be programmed by the CM0+ CPU in a non-blocking manner, so
that the CPU can continue to execute application code. This function should only be used to program data flash.
If it is necessary to use non-blocking write row to program code flash, the CM0+ must execute code from SRAM or
user SROM. “Blocking and Non-Blocking System Calls” on page 375 discusses about non-blocking system calls
in detail.
While each phase is being executed, the CPU can execute code. When the non-blocking program row system call
is called, the user cannot call any other system call function other than the Resume Non-Blocking function, which
is required for the completion of the non-blocking write operation. 
Unlike the Non-Blocking Write Row system call, this system call only has a single phase. Therefore, the Resume
Non-Blocking function only needs to be called once from the SPC interrupt when using the Non-Blocking
Program Row system call.
Note1: FLASH should be in erase state before calling non-blocking program row operation.
Note2: The device firmware must not attempt to put the device to sleep during a non-blocking program row. This
action will reset the page latch buffer and the flash will be written with all zeros.
Usage Requirements: Clocks must be configured correctly as documented in “Configure Clock” on page 394.
Call the Load Flash Bytes function before calling this function to load the data bytes that will be used for
programming the row. This is because the CM0+ CPU cannot execute code from code flash while doing code flash
program operations. If this function is called from code flash memory, the result is undefined, and may return a
bus error and trigger a hard fault when the code flash fetch operation is being done.
Parameters

Table 25-12.  Parameters

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDB Key2

Bits [30:16] Row ID Row number to write
0x0000 - Row 0

Bit [31] Flash Controller Number 0: Controller 0
1: Controller 1
(Refer to the “Flash Memory” on page 67 for the flash 
controllers in the device)
Note: Each flash controller starts from row 0.

CPUSS_SYSARG register

Bits [31:0] 32’hYY 32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0008 Non-Blocking Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit
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Return

Table 25-13.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:00] This will contain the SRAM 
address if API execution is 
successful.

Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.5.7 Resume Non-Blocking
This function completes the additional phases of erase and program that were started using the Non-Blocking
Write Row and Non-Blocking Program Row system calls. This function must be called thrice following a call to
Non-Blocking Write Row or once following a call to Non-Blocking Program Row from the SPC ISR. This function
must be called within 25 ms. No other system calls can execute until all phases of the program or erase operation
are complete. More details on the procedure of using the non-blocking functions are explained in “Blocking and
Non-Blocking System Calls” on page 375.
Parameters

Return

Table 25-14.  Parameters

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDC Key2

Bit [16] Flash Controller Number 0: Controller 0
1: Controller 1
(Refer to the “Flash Memory” on page 67 for the flash 
controllers in the device)
Note: Each flash controller starts from row 0.

Bits [31:15] 0xXXXX Don’t care. Not used by SROM

CPUSS_SYSARG register

Bits [31:0] 32’hYY 32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0009 Resume Non-Blocking opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-15.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] This will contain the SRAM 
address if API execution is 
successful. It will be updated 
to 0xA0000000 only for 
Resume API called to 
complete the last operation.

Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.5.8 Erase All
This function erases all user code in the FLASH main and work arrays, chip protection, and the all Flash Row Level
Write Protection data in SFlash. To perform an Erase All in protected mode, the user must call the Write
Protection API, to change the chip-level protection from protected to open mode. 
Usage Requirements: Clocks must be configured correctly as documented in “Configure Clock” on page 394.
This system call can be called only from the DAP in the programming mode and only if the chip protection mode
is OPEN. If the chip protection mode is PROTECTED, then the Write Protection API must be used by the DAP to
change the protection settings to OPEN. Changing the protection setting from PROTECTED to OPEN
automatically does an erase all operation. Note that aborting the Erase All API during update of the chip
protection can corrupt the entire SFlash row and may cause the device to not function.
Parameters

Return

Table 25-16.  Parameters

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDD Key2

Bits [31:16] 0xXXXX Don’t care

CPUSS_SYSARG register

Bits [31:0] 32’hYY 32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x000A Erase All opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-17.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xAXXXXXXX (X = don’t care) Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.5.9 Checksum
This function reads either the whole FLASH or a row of FLASH, and returns the sum of each byte read. When
performing a checksum on the entire array, the user and privileged regions are included. When performing a
checksum on a row of FLASH, the user, privileged, or SFLASH are valid rows.
Notes:
ECC is enabled when executing Checksum which might lead to unexpected results. See the following for details.
• Single bit errors are corrected

A fault (cpuss.fault_flashc_c_ecc or cpuss.fault_flashc1_c_ecc) will be reported and is the primary method of
detecting a bit error

• Two or more bit errors which generate NC error
If CPUSS_FLASH*_CTL.FLASH_ERR_SILENT is ‘0’, a bus error will occur and the CPU will LOCKUP. A reset is
required to recover.  Reset could be from the XRES pin, the Fault system (if configured), or a Watch Dog Timer.
If CPUSS_FLASH*_CTL.FLASH_ERR_SILENT is ‘1’, a zero value will be returned for the read, and included in the
checksum. Unless the data was expected to be zero, this would likely result in a checksum error.

• Three or more bit errors which do not generate NC error (rare but possible)
Checksum is calculated normally, and would likely result in a checksum error.
The Checksum API behavior is intentional. If we disable ECC checking, then the ECC parity bits would not be
checked.

Parameters

Table 25-18.  Parameters

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDE Key2

Bits [28:16] Row ID Indicates the single row to checksum. Ignored if the Whole 
Flash Select bit is set.
Valid values are 0 - (Number of Rows – 1)
If SFLASH Select bit is set, valid values are 0 - (Number of 
SFlash Rows – 1)

Bit [29] Flash Controller Number 0: Controller 0
1: Controller 1
Note: Ignored if Whole Flash Select is set. 

Bit [30] SFLASH Select If set, performs checksum on the SFlash row indicated by Row 
ID. Ignored if Whole Flash Select is set.

Bit [31] Whole Flash Select Performs checksum on whole Flash (main + work). Ignores 
Row ID, SFlash Select and Flash Controller Number if set.

CPUSS_SYSREQ register

Bits [15:0] 0x000B Checksum opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit
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Return

Table 25-19.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xAXXXXXXX Success status code 
X = Checksum. Calculated value is truncated to fit into 28 bits.

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.5.10 Write Protection
This function programs both the flash row-level protection settings and the device protection settings in the
supervisory flash row. Use this function to transition the part from one protection setting to another. The
following shows the allowable protection state transitions. This also shows which transitions erase flash.
• OPEN -> PROTECTED: Sets chip protection to PROTECTED and programs flash row-level protection data.
• PROTECTED -> OPEN: Erases all User Region flash. Sets chip protection to OPEN and sets flash row-level 

protection to unprotected.
• OPEN -> KILL: Sets chip protection to KILL and programs flash row-level protection data (irreversible).
When the device is in KILL mode, it is not possible to change the chip protection mode to any other mode. 
Row-level protection does not prevent reading a user row; it just prevents it from being programmed.
The flash row-level protection settings are programmed separately for each flash macro in the device. Each row
has a single protection bit. The total number of protection bytes is the number of flash rows divided by eight. The
chip-level protection settings (1-byte) are stored in flash macro zero in the last byte location in row zero of the
supervisory flash. The size of the supervisory flash row is the same as the user code flash row size.
The chip-level protection mode does not take effect until the device is reset as it is copied into the protection
register during boot. The FLASH row protection takes effect immediately. Both can be verified by reading back
the SFlash data. 
Usage Requirements: Clocks must be configured correctly as documented in “Configure Clock” on page 394.
The Load Flash Bytes function is used to load the flash protection bytes of a flash macro into the page latch buffer
corresponding to the macro. The starting address parameter for the load function should be zero. The flash
macro number should be one that needs to be programmed; the number of bytes to load is the number of flash
protection bytes in that macro.
Then, the Write Protection function is called, which programs the flash protection bytes from the page latch to be
the corresponding flash macro’s supervisory row. In flash macro zero, which also stores the device protection
settings, the device-level protection setting is passed as a parameter in the CPUSS_SYSARG register. 
Parameters

Table 25-20.  Parameters

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xE0 Key2

Bits [23:16] Device Protection Byte 0x01 – OPEN mode
0x02 – PROTECTED mode
0x04 – KILL mode

Bits [30:24] Flash Macro Select 0x00 – Flash Macro 0
0x01 – Flash Macro 1
0x02 – Flash Macro 2 (Not used in PSoC™ 4 HV PA)
0x03 – Flash Macro 3 (Not used in PSoC™ 4 HV PA)

Bit [31] Flash Controller Number 0: Controller 0 (which has Macro 0 and 1)
1: Controller 1 (which has Macro 0 only)
(Refer to the “Flash Memory” on page 67 for the flash 
controllers in the device)
Note: Each flash controller starts from row 0.
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Return

CPUSS_SYSREQ register

Bits [15:0] 0x000D Write Protection opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-21.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xAX000000 (X = don’t care) Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)

Table 25-20.  Parameters (continued)

Address Value to be Written Description
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25.5.11 Configure Clock
This function initializes the clock necessary for code flash programming and erasing operations. Calling this API
ensures that the charge pump clock (clk_pump) and the HF clock (clk_hf) are set appropriately before calling the
flash write, program, or erase APIs. The flash write and erase APIs perform frequency checks and will exit without
acting on the flash and return the “Invalid Flash Clock” status clocks that are not configured correctly.
When this API is not called before calling a flash operation, the user must ensure that the clock configuration
meets the following requirements (See the “Clocking system” on page 93 for more details):
• When IMO clock is used: 

– CLK_IMO_SELECT register is set to 48 MHz or 49.152 MHz
– PUMP_SEL register is set to IMO

• When EXTCLK / ECO clock is used: 
– HFCLK_SEL register is set to EXTCLK or ECO
– HFCLK_DIV register is set to 0x0: NO_DIV
– PUMP_SEL register is set to HFCLK

Note: Flash programming mandates the pump clock to be running at 44 MHz to 52 MHz.
Parameters

Return

Table 25-22.  Parameters

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xE8 Key2

Bits [31:16] 0x0000 Not used

CPUSS_SYSREQ register

Bits [15:0] 0x0015 Command set IMO 48 MHz

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-23.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xAXXXXXXX (X = don’t care) Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.5.12 Write User SFlash Row
This API writes a user row in supervisory flash (SFlash). PSoC™ 4 HV PA has 1KB SFlash for application-specific use.
The application can store any information here. Each application should determine whether it needs this flash
region and for what purpose. Also, user SFlash rows are not stored in the hex file. A vendor should define the
programming process - during production, where to get the SFlash data from, and at which row/address to store
it. This API does not write rows containing security or protection settings. If the row provided is out of the
acceptable range, the API will return the Invalid Address status code.
SFlash user rows belong to macro 1 of Flash Controller 0. It must be specified while loading data to be
programmed by the Load Flash Bytes API.
Parameters

Return

Table 25-24.  Parameters

Address Value to be Written Description

SRAM Address - 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xEB Key2

Bits [31:16] 0xXXXX Don’t care parameter

SRAM Address - 32’hYY + 0x04

Bits [7:0] User SFlash Row Row number to write
0x00 – User SFlash Row 0

Bits [31:8] 0xXXXX Don’t care parameter

CPUSS_SYSARG register

Bits [31:0] 32’hYY 32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0018 Write User SFlash Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-25.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xA0000000 Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)



Reference manual 396 002-29223 Rev. *H
   2023-11-15

PSoC™ 4 high voltage (HV) precision analog (PA) MCU architecture
 

Nonvolatile memory programming

25.5.13 Soft Reset
This function issues a software reset by setting the CM0P_AIRCR.SYSRESETREQ bit. This API provides easy reset
functionality to parts that lack a reset pin. 
Parameters

Return

Table 25-26.  Parameters

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xEE Key2

Bits [31:16] 0xXXXX Don’t care parameter

CPUSS_SYSREQ register

Bits [15:0] 0x001B Soft reset opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-27.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xAXXXXXXX (X = don’t care) Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.5.14 Bulk Erase
This function erases a single macro or all macros of regular flash of a specific flash controller in bulk mode. The
API does not touch SFlash. Optionally, checksum of the erased memory is used to verify whether all data is
erased. A bad checksum will result in a failure status. 
Parameters

Return

Table 25-28.  Parameters

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xF0 Key2

Bits [18:16] Flash Macro Select 0x00 – Flash Macro 0
0x01 – Flash Macro 1
0x02 – Flash Macro 2 (Not used in PSoC™ 4 HV PA)
0x03 – Flash Macro 3 (Not used in PSoC™ 4 HV PA)
0x07 – All macro of specific flash controller

Bit [19] Flash Controller Number 0: Controller 0 (has Macro 0 and 1)
1: Controller 1 (has Macro 0 only)
(Refer to the “Flash Memory” on page 67 for the flash 
controllers in the device)
Note: Each flash controller starts from row 0.

Bit [20] Checksum after erase 0 - disabled
1 - enabled

Bits [31:21] 0xXXX Don’t care parameter

CPUSS_SYSREQ register

Bits [15:0] 0x001D Bulk Erase opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-29.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xAXXXXXXX (X = don’t care) Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.5.15 Specify external clock frequency
This function provides the frequency that is applied on EXTCLK/ECO1) input. It is a user’s responsibility to call this
API when EXTCLK/ECO frequency changes and this clock source is selected to drive HFCLK in a flash API. Flash
APIs that support EXTCLK/ECO check if the clocking preconditions are satisfied.
Parameters

Return

1) ECO is not available as a clock for the PSoC™ 4 HV PA device. It will be available in future products.

Table 25-30.  Parameters

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xF1 Key2

Bits [21:16] Frequency [1 to 52] MHz

Bits [31:22] 0xXXX Don’t care parameter

CPUSS_SYSREQ register

Bits [15:0] 0x001E Specify External Clock Frequency opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 25-31.  Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:0] 0xAXXXXXXX (X = don’t care) Success status code 

Bits [31:0] 0xF00000YY (Y = failure code) Failure status code (See “System Call Status” on page 399)
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25.6 System Call Status
At the end of every system call, a status code is written over the arguments in the CPUSS_SYSARG register. A
success status is 0xAXXXXXXX, where X indicates don’t care values or return data in the case of the system calls
that return a value. A failure status is indicated by 0xF00000YY, where YY is the failure code.

Table 25-32.  System Call Status Codes

Status Code 
(32-bit value in 
CPUSS_SYSARG register)

Description

AXXXXXXXh Success – The “X” denotes a don’t care value, which has a value of ‘0’ returned 
by the SROM, unless the API returns parameters directly to the CPUSS_SYSARG 
register. 

F0000001h Invalid Chip Protection Mode – This API is not available during the current chip 
protection mode.

F0000003h Invalid Page Latch Address – The address within the page latch buffer is either 
out of bounds or the size provided is too large for the page address.

F0000004h Invalid Address – The row ID or byte address provided is outside of the available 
memory. 

F0000005h Row Protected – The row ID provided is a protected row.

F0000007h Resume Completed – All non-blocking APIs have completed. The resume API 
cannot be called until the next non-blocking API. 

F0000008h Pending Resume – A non-blocking API was initiated and must be completed by 
calling the resume API, before any other APIs may be called. 

F0000009h System Call Still In Progress – A resume or non-blocking is still in progress. The 
SPC ISR must fire before attempting the next resume.

F000000Ah Checksum Zero Failed – The calculated checksum was not zero.

F000000Bh Invalid Opcode – The opcode is not a valid API opcode.

F000000Ch Key Opcode Mismatch – The opcode provided does not match key1 and key2. 

F000000Dh Flash Macro Protected - The flash macro ID provided is a protected.

F000000Eh Invalid Start Address – The start address is greater than the end address 
provided. 

F0000010h No Sector Erase - The Erase Sector operation is not supported.

F0000011h API Not Instantiated - The SRAM API for the opcode is not instantiated.

F0000012h Invalid Flash Clock - Flash erase/program operation is not supported using 
current clock setup.

F0000013h Invalid Macro ID - the macro provided is outside of the available macros.

F0000015h An SRSS register is Lock Protected
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25.7 Stack requirements
API calls share the same stack space as the application code. Table 25-33 shows the available stack required by
each API call, inclusive of the stack used when NMI exception is entered.

Table 25-33.  Stack Consumption in SROM API

Function Name Stack Consumption

Silicon ID 128

Load Flash Bytes 168

Write Row 292

Program Row 292

Non-Blocking Write Row 292

Non-Blocking Program Row 292

Resume Non-Blocking 276

Erase All 416

Checksum 192

Write Protection 424

Write User Sflash Row 300

Soft Reset 120

Bulk Erase 308

Specify External Clock Frequency 128
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25.8 Flash endurance concept
This product provides separate code flash and data flash regions. While similar in many respects, these offer
distinct endurance behavior.
• Code flash: Endurance limit from the device datasheet defines the maximum write cycles performed each 

segment of code flash.
• Data flash: Endurance limit from the device datasheet defines the maximum number of write cycles 

performed on each row, provided that certain assumptions are met.

25.8.1 Flash capabilities
The details of PSoC™ 4 HV PA Flash capabilities are as follows:
• A write requires erase and program (128 bytes)

– Erase sets all bits to ‘0’
– Bits can be set to ‘1’ during any later programming cycle. Each bit should be programmed only once 

between erase cycles.
Endurance refers to the number of programming cycles that the flash can tolerate before the ability of the flash
to store data is degraded.

25.8.2 Code Flash details
Code flash is organized into segments of up to 64KB. The endurance limit applies to each segment. A full 64KB
segment has 512 rows (128 bytes per row). The total number of times the code flash can be reprogrammed is
related to the number of rows used.
For example, assume a product supports 128KB of code flash and all available code flash is used. With an
endurance limit of 100K cycles, we can calculate that 100K / 512 rows = 195 times that the entire code flash can
be reprogrammed.
User accessible supervisory flash, if available, is part of the code flash. It is subject to the same reprogramming
limits as the main code flash.

25.8.3 Data Flash details
Data flash is intended to be used for data logging and storage of other frequently changed data. To support this
use case, data flash supports a per row endurance limit provided that EEPROM emulation software is used to
enforce a cyclic write pattern. Cyclic writing means sequentially writing each row, up to the data flash capacity
limit.
For example, an 8KB data flash will have 64 rows. Each row should be programmed in sequence (row 0, 1, 2, ... 62,
63, 0, 1, 2, ...). 
EEPROM emulation software typically splits each row into header and data fields to enable cyclic writing. It also
typically uses redundancy to ensure that data is not lost in the case where a part reset occurs during a write cycle.
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19. Local Interconnect Network (LIN)
- Corrected PERI_TR_GROUP3_TR_OUT_CTL x[3:0] of Table 19-1. LIN Trigger 
Sources
20. Timer, Counter, and PWM
- Updated Table 20-2. TCPWM Trigger Sources (added PACSS data valid channel 
3)
21. Precision Analog Channel Subsystem
- Updated Figures 21-1, 21-2, 21-3, and 21-10 (added digital channel 4)
- Updated 21.2.2.6 Reference System (added reason of VREF measurement with 
a gain of 1x) 
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- Updated 21.2.3.5 Right Shift (added note)
- Updated 21.2.3.6 Moving Average (added latency information)
- Updated Table 21-6. Modulator Cap Value Configuration (added column of 
MOD, Actual MOD gain and Gain correction)
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- Updated Table 21-9. Trigger Multiplexer Outputs (added PACSS start 
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- Updated 21.2.5.4 Sequencer Timing (added note of DR2>0 setting)
- Updated 21.2.6.2 On-die Temperature Sensor (updated formulas)
- Updated 21.2.6.3 External Temperature Sensor description
- Updated 21.2.7.1 Channel OFFSET and GAIN calibration (updated calibration 
procedure)
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- Updated 21.3.1.1 PACSS_MMIO (corrected offset values)
22. High-Voltage Subsystem
- Updated Figure 22-4. HVREG Startup and Shutdown Timing Diagram (added 
timing value)
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- Updated 24.5.7 Resume Non-Blocking (added maximum time for this function)
- Added 24.7 Stack Requirements

*D 2021-07-20

8. SRAM
- Updated 8.5.2 ECC Error Injection (updated description of when 
ECC_INJ_EN=1)
13. Power Modes
- Updated Table 13-1. PSoC 4 HV PA Power Modes (added LIN PHY wakeup source 
in Deep Sleep)
14. Watchdog Timer
- Removed HIB_PAUSE register in Table 14-1
19. Local Interconnect Network (LIN)
- Corrected typo of equation 1 to 5
- Removed Hibernate power mode in 19.6.3 Wakeup in Low-Power Mode
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- Updated 21.2.3.16 Interrupts and Output Triggers (added all PACSS interrupts 
description)
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8. SRAM chapter
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11. Power Supply and Monitoring
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WFI instruction)
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7. Flash Memory
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- Updated 10.4 Clock Distribution (added Table 10-6 and note)
- Added SFLASH_IMO_4PCT_LIM, SFLASH_IMO_3PCT_LIM and 
SFLASH_PILO_6PCT_LIM registers in Table 10-14
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14. Watchdog Timer
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- Updated 15.3 Identifying Reset Sources (added note of During initial power 
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18. Serial Communications Block (SCB)
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19. Local Interconnect Network (LIN)
- Updated Figure 19-7 and Figure 19-8
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- Updated 21.2.2.9 Chopping Configuration (corrected CHOP_EN and 
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- Updated 21.2.5.4 Sequencer Timing (updated sentence of “The clock cycle 
delay...”, added sentence of “Registers list of persisting until next start of 
conversion”
- Added “PACSS clock cycle equations” in 21.2.5.4 Sequencer Timing
- Updated 21.2.5.5 Startup Timing Requirements (added “Startup timing out of 
reset” and “Wakeup from deepsleep”)
- Updated 21.2.7.1 Channel OFFSET and GAIN calibration (added note of “when 
ACHAN0 takes a diagnostic measurement ...”)
- Updated 21.3.2 SFlash Calibration Registers (added 
SFLASH_PACSS_CHAN1_ETEMP_TRIM register)
22. High-Voltage Subsystem
- Changed name of LIN control register (SL_ROUND to RF_DETECT)
- Updated 22.2.2.4 Timers (added note of WAKEUP_TIMER_EN)
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- Updated 22.2.2.8 Power Modes (Added note in Table 22-1)
- Updated 22.2.2.9 Truth Tables (added Table 22-3 use_alt_interface Truth Table)
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- Removed sentence of “Parameter applicable only for Flash Macro 0” in 24.5.10 
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*H 2023-11-15
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- Updated Figure 21-59
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