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The New Executive Committee

The New Executive Committee

by ROBERT SEIRINGER (President of the IAMP)

Every three years, a new Executive Committee (EC) gets elected by
the members of the IAMP, and following the elections last fall, the
new EC has started its work at the beginning of this year. After having
served for the last six years (and hence the maximum number of two
consecutive terms), Stephan de Bievre, Ari Laptev, Arne Jensen and
Barry Simon have left the EC, and I would like to use this occasion
to thank them for their valuable service. Their place is taken by Yosi
Avron, Sylvia Serfaty, Herbert Spohn and Daniel Ueltschi, the rest of
the committee will stay as before. Also the officers stay the same for
the next three years, except for the role of vice president, which will
be taken on by Herbert.

There will thus be quite some continuity in the IAMP governance, and I’d like to interpret the
election results as reflecting a general satisfaction with IAMP’s development, which is indeed
very positive. A significant number of new members has joined IAMP over the last three years,
especially many young scientists. This has had some positive effect on our finances. Combined
with the decision of the EC to slightly reduce IAMP’s assets, this has allowed us to increase
our support for conferences, schools and other events of this type. Conference support has also
gone up due to our 2016 agreement with Springer, which is now a sponsor of the IAMP Early
Career Award and also contributes financially to our conference budget.

What has also not changed, due to the above mentioned continuity, is the fact that the
various subdisciplines of Mathematical Physics are not very evenly represented in the EC (and,
it is probably fair to say, some disciplines are not represented at all). An opportunity to make a
change in this direction will present itself three years from now, when eight of the current twelve
EC members will not be eligible for re-election. However, the unevenness in the distribution
of fields within the EC is presumably simply a reflection of a similar unevenness within our
membership, and there is certainly much room for improvement in this direction. So if you
feel your field of research is not properly represented in the IAMP, please encourage your
colleagues, students and collaborators to join the association!

The year a new EC takes over is also the year of the most important event organized by
IAMP, the triannual International Congress on Mathematical Physics (ICMP). As you surely
know, the next ICMP will take place from July 23 to 28, 2018, in Montreal, Canada. Please
visit http://www.icmp2018.org for updates on the program, opportunities for financial support,
as well as information on the various satellite events taking place before and after the Congress.
This will surely be an exciting event for anybody interested in Mathematical Physics, and I hope
you will all attend!

Finally, let me remind you that bids for hosting the next ICMP 2021 have to be made not
later than one month before the next Congress. Feel free to get in touch if you have any ideas
or questions related to that matter. Hosting the ICMP is certainly a lot of work, but the effort is
surely highly appreciated by everybody in the community.
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The 2018 Dannie Heineman Prize

The 2018 Dannie Heineman Prize

by EVANS HARRELL (Editor of the IAMP Bulletin)

One of the challenges of being an interdisciplinary scientist is to do work that is valued on
both sides of the disciplinary line. We in the IAMP meet this challenge with varying degrees
of success, but very few to the degree of the latest winner of the American Physical Society’s
Dannie Heineman Prize in Mathematical Physics, Barry Simon. It is truly remarkable that this
honor from the APS follows within a year of Barry’s Lifetime Achievement award from the
AMS, as reported in last January’s issue of this News Bulletin.

On behalf of the entire community of mathematical physicists –

Congratulations, Barry!

The announcement of the Dannie Heineman Prize is reprinted below from the the APS website:

https://www.aps.org/programs/honors/prizes/heineman.cfm

We inform readers that nominations for the 2019 Dannie Heineman Prize are now being ac-
cepted at https://www.aps.org/programs/honors/prizes/heineman.cfm, with a deadline of 1 June.

2018 Dannie Heineman Prize for Mathematical Physics Recipient

Barry Simon, California Institute of Technology

IBM Professor of Mathematics and Theoretical Physics, Emeritus
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The 2018 Dannie Heineman Prize

Citation
For his fundamental contributions to the mathematical physics of quantum me-
chanics, quantum field theory, and statistical mechanics, including spectral theory,
phase transitions, and geometric phases, and his many books and monographs that
have deeply influenced generations of researchers.

Background

Barry Simon is the IBM Professor of Mathematics and Theoretical Physics, Emer-
itus, at Caltech. He received his A.B. in physics from Harvard College in 1966 and
his Ph.D. in physics from Princeton in 1970. He is a fellow of the American Phys-
ical Society and the American Mathematical Society (AMS), and is a member of
the Society for Industrial and Applied Mathematics, and the International Associa-
tion of Mathematical Physics (IAMP), where he is currently vice president. He has
honorary doctorates from Technion, University of Swansea, and Ludwig Maximil-
ian University of Munich. He is the recipient of Sloan, Guggenheim, and Simons
Foundation fellowships, and is a member of the American Academy of Arts and
Science and the Austrian Academy of Science. He has won the IAMP Poincare
Prize, the AMS Steele Prize for Lifetime Achievement, and the Bolyai Prize from
the Hungarian Academy of Sciences. Professor Simon has worked on mathemati-
cal problems connected to quantum mechanics, quantum field theory and statistical
mechanics. He has made fundamental contributions to geometric phases and spec-
tral theory and, more recently, to the theory of orthogonal polynomials. He has
written 21 books and monographs and over 400 papers. Eight of his coauthors are
winners of the Heineman Prize in Mathematical Physics.

Selection Committee

2018 Selection Committee Members: David Campbell (Chair), Bruno Nachter-
gaele (Vice Chair), Carl Bender (2017 recipient), Sharon Glotzer, Dam Son
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Tosio Kato’s Work on Non–Relativistic Quantum Mechanics:

A Brief Report

by BARRY SIMON (California Institute of Technology, Pasadena, USA)

1 Introduction
In 2017, we celebrated the 100th anniversary of the birth of Tosio Kato (August 25, 1917–
October 2, 1999), the founding father of the theory of Schrödinger operators. There was a
centennial held in Tokyo in his memory and honor in September. I decided to write a review
article on his work in nonrelativistic quantum mechanics (NRQM), which, as we’ll see, was
only part of his opus. I originally guessed it would be about 80 pages but it turned out to be
more than 210! It will appear in Bull. Math. Sci. Our intrepid newsletter editor asked if I
could produce a Reader’s Digest version for the newsletter and that is what this is. A version of
this will appear in Analysis and Operator Theory – In Honor of Tosio Kato’s 100 th Birthday,
a volume edited by Th. M. Rassias and V. Zagrebnov to be published by Springer. Since the
longer article has an over 600 item bibliography, I will not provide any detailed references here
but refer the reader to the full article. The rest of this introduction will say a little about Kato’s
life while the next will summarize some major themes in his work. I will then describe in some
depth (but less detail than in my Bull. Math. Sci. article) five topics that were among the most
important of Kato’s contributions to NRQM.

Kato as a student

Kato’s most significant paper was on self–
adjointness of atomic Hamiltonians and was published
in 1951 in Trans. A.M.S. (See Section 3.) I note that
he was 34 when it was published (it was submitted a
few years earlier as we’ll discuss in Section 3). Be-
fore it, his most important work was his thesis, awarded
in 1951 and published in 1949-51. One might be sur-
prised at his age when this work was published but not
if one understands the impact of the war. Kato got his
BS from the University of Tokyo in 1941, a year in
which he published two (not mathematical) papers in
theoretical physics. But during the war he was evacu-
ated to the countryside. We were at a conference to-
gether one evening and Kato described rather harrow-
ing experiences in the camp he was assigned to, espe-
cially an evacuation of the camp down a steep wet hill.
He contracted tuberculosis in the camp. In his accep-
tance of the Wiener Prize, Kato says that his work on
essential self-adjointness and on perturbation theory were essentially complete by the end of
the war.

In 1946, Kato returned to the University of Tokyo as an Assistant (a position common for
students progressing towards their degrees) in physics, was appointed Assistant Professor of
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Tosio Kato’s Work on Non–Relativistic Quantum Mechanics

Physics in 1951 and full professor in 1958. I’ve sometimes wondered what his colleagues
in physics made of him. He was perhaps influenced by the distinguished Japanese algebraic
geometer, Kunihiko Kodaira (1915-1997) two years his senior and a 1954 Fields medalist.
Kodaira got a BS in physics after his BA in mathematics and was given a joint appointment in
1944, so there was clearly some sympathy towards pure mathematics in the physics department.

Beginning in 1954, Kato started visiting the United States. This bland statement masks
some drama. In 1954, Kato was invited to visit Berkeley for a year, I presume arranged by F.
Wolf. Of course, Kato needed a visa, and it is likely it would have been denied due to his history
of TB. Fortunately, just at the time (and only for a period of about a year), the scientific attaché
at the US embassy in Tokyo was Otto Laporte (1902-1971) on leave from a Professorship
in Physics at the University of Michigan. Charles Dolph (1919-1994), a mathematician at
Michigan, learned of the problem and contacted Laporte, who intervened to get Kato a visa.
Dolph once told me that he thought his most important contribution to American mathematics
was his helping Kato to come to the US. In 1987, in honor of Kato’s 70th birthday, there was
a special issue of the Journal of Mathematical Analysis and Applications and the issue was
jointly dedicated to Laporte (passed away in 1971) and Kato and edited by Dolph and Kato’s
student Jim Howland.

Kato at Berkeley

František Wolf (1904–1989) was important in
bringing Kato to Berkeley both as a visitor
and later, a regular faculty member. He was
a Czech mathematician who had a junior po-
sition at Charles University in Prague. Wolf
had spent time in Cambridge and did some
significant work on trigonometric series un-
der the influence of Littlewood. When the
Germans invaded Czechoslovakia in March,
1938, he was able to get an invitation to
Mittag–Leffler. He got permission from the
Germans for a three week visa but stayed in
Sweden! He was then able to get an instruc-
torship at Macalester College in Minnesota.
He made what turned out to be a fateful de-
cision in terms of later developments. Be-
cause travel across the Atlantic was difficult,
he took the trans–Siberian railroad across the
Soviet Union and then through Japan and
across the Pacific to the US. This was mid–
1941 before the US entered the war and made
travel across the Pacific difficult.

Wolf stopped in Berkeley to talk with
G. C. Evans (known for his work on poten-
tial theory) who was then department chair.

Evans knew of Wolf’s work and offered him a position on the spot!! After the year he promised
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to Macalester, Wolf returned to Berkeley and worked his way up the ranks. In 1952, Wolf ex-
tended Sz.–Nagy’s work to the Banach space case. At about the same time Sz.–Nagy himself
did similar work and so did Kato. While Wolf and Kato didn’t know of each other’s work, Wolf
learned of Kato’s work and that led to his invitation for Kato to visit Berkeley.

During the mid 1950s, Kato spent close to three years visiting US institutions, mainly
Berkeley, but also the Courant Institute, American University, the National Bureau of Stan-
dards, and Caltech. In 1962, he accepted a Professorship in Mathematics from Berkeley where
he spent the rest of his career and remained after his retirement. One should not underestimate
the courage it takes for a 45-year-old to move to a very different culture because of a scientific
opportunity. That said, I’m told that when he retired and some of his students urged him to
live in Japan, he said he liked the weather in Northern California too much to consider it. The
reader can consult the Mathematics Genealogy Project for a list of Kato’s students (24 listed
there, 3 from Tokyo and 21 from Berkeley; the best known are Ikebe and Kuroda from Tokyo
and Balslev and Howland from Berkeley). Notices A.M.S. 47 (2000), 650–657 is a memorial
article with lots of reminiscences.

The pictures here are all from the estate of Mizue Kato, Tosio’s wife who passed away in
2011. Her will gave control of the pictures to H. Fujita, M. Ishiguro and S. T. Kuroda. I thank
them for permission to use the pictures and H. Okamoto for providing digital versions.

2 Overview

While this review will cover a huge array of work, it is important to realize it is only a frac-
tion, albeit a substantial fraction, of Kato’s opus. I’d classify his work into four broad areas,
NRQM, non–linear PDE’s, linear semigroup theory, and miscellaneous contributions to func-
tional analysis. We will not give references to all this work. The reader can get an (almost)
complete bibliography from MathSciNet; for papers up to 1987 the dedication of the special
issue of JMAA on the occasion of Kato’s 70th birthday has a bibliography.

Around 1980, one can detect a clear shift in Kato’s interest. Before 1980, the bulk of his
papers are on NRQM with a sprinkling in the other three areas while after 1980, the bulk are
on nonlinear equations with a sprinkling in the other areas including NRQM. Kato’s nonlinear
work includes looking at the Euler, Navier–Stokes, KdV and nonlinear Schrödinger equations.
He was a pioneer in existence results – we note that his famous 1951 paper can be viewed as a
result on existence of solutions for the time-dependent linear Schrödinger equation! It almost
seems that when NRQM became too crowded with others drawn by his work, he moved to a
new area which took some time to become popular.

The basic results on generators of semigroups on Banach spaces date back to the early
1950s, going under the name Feller-Miyadera-Phillips and Hille-Yosida theorems (with a later
1961 paper of Lumer–Phillips). A basic book with references to this work is by Pazy. This
is a subject that Kato returned to often, especially in the 1960s. Pazy lists 19 papers by Kato
on the subject. Perhaps the most important of these results are the Trotter–Kato theorems and
the definition of fractional powers for generators of (not necessarily self–adjoint) contraction
semigroups.

Given this work on the theory on a Banach space, it is interesting to see a quote that his
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friend Cordes attributes to Kato: “There is no decent Banach space, except Hilbert space.” It is
likely Kato had in mind the spectral theorem and the theory of quadratic forms of operators, a
subject where he made important contributions, especially the monotone convergence theorems
for forms.

The fourth area is a catchall for a variety of results that don’t fit into the other bins. Among
these results is an improvement of the celebrated Calderón-Vaillancourt bounds on pseudo-
differential operators. Also, Kato proved that the absolute value for operators is not Lipschitz
continuous even restricted to the self–adjoint operators, but for any pair of bounded, even non–
self–adjoint, operators, one has that

‖|S| − |T |‖ ≤ 2

π
‖S − T‖

(
2 + log

‖S‖+ ‖T‖
‖S − T‖

)
. (1)

He was also a key player in variants of Loewner’s result that the square root is a monotone
function on positive operators on a Hilbert space, a result rediscovered by Heinz. It and its
variants have been called the Heinz–Loewner or Heinz–Kato inequality. Kato returned several
times to this subject, most notably finding a version of the Heinz–Loewner inequality (with an
extra constant depending on s) for maximal accretive operators on a Hilbert space.

One can get a feel for Kato’s impact by considering the number of theorems, theories and
inequalities with his name on them. Here are some: Kato’s theorem (which usually refers
to his result on self–adjointness of atomic Hamiltonians), the Kato–Rellich theorem (which
Rellich had first), the Kato-Rosenblum theorem and the Kato–Birman theory (where Kato had
the most significant results, although, as we’ll see, Rosenblum should get more credit than
he does), the Kato projection lemma and Kato dynamics (used in the adiabatic theorem), the
Putnam–Kato theorem, the Trotter–Kato theorem, the Kato cusp condition, Kato smoothness
theory, the Kato class of potentials and Kato–Kuroda eigenfunction expansions. To me Kato’s
inequality refers to the self–adjointness technique discussed in Section 5, but the term has also
been used for the Hardy-like inequality with best constant for r−1 in three dimensions, for a
result on hyponormal operators that follows from Kato smoothness theory (there is a book with
a section called “Kato’s inequality” on it), and for the above-mentioned variant of the Heinz–
Loewner inequality for maximal accretive operators. There are also Heinz–Kato, Ponce–Kato
and Kato–Temple inequalities. Erhard Seiler and I proved that if f, g ∈ Lp(Rν), p ≥ 2, then
f(X)g(−i∇) is in the trace ideal Ip. At the time, Kato and I had correspondence about the
issue and about some results for p < 2. In Reed–Simon Volume 3, we mentioned that Kato
had this result independently. Although Kato never published anything on the subject, in recent
times, it has come to be called the Kato–Seiler–Simon inequality.

Of course, when discussing the impact of Kato’s work, one must emphasize the importance
of his book Perturbation Theory for Linear Operators, which has been a bible for several
generations of mathematicians. One of its virtues is its comprehensive nature. Percy Deift told
me that Peter Lax told him that Friedrichs remarked on the book: “Oh, its easy to write a book
when you put everything in it!”

We will not discuss every piece of work that Kato did in NRQM – for example, he wrote
several papers on variational bounds on scattering phase shifts whose lasting impact was lim-
ited.
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Kato was a key figure in eigenvalue perturbation theory the subject of his thesis which was
codified in his book. For the regular case, the basic results were by Rellich and later Sz.–Nagy
but refined by Kato. He was the pioneer in the asymptotic case, originally using his extension of
Temple’s inequality but later operator techniques. The full version of this article has 5 sections
on eigenvalue perturbation theory but I’ve chosen other areas for this shorter version.

Ever since the work of von Neumann about 1930, it has been clear that self–adjointness of
quantum Hamiltonians is crucial. In this regard, Kato has been a, indeed the, key figure. His
contributions include:

1. Self–adjointness of atomic Hamiltonians. (See Section 3.)

2. His work with Ikebe on V (x) > −cx2 − d, an area where Weinholtz was the pioneer.

3. Kato’s inequality, including his theorem that if V ∈ L2
loc(Rν) and V ≥ 0, then −∆ + V

is essentially self–adjoint on C∞0 (Rν). (See Section 5.)

4. He was a pioneer on the use of quadratic forms, including his work on perturbations (the
KLMN theorem) and monotone convergence for forms.

Scattering and spectral theory formed a major thread in Kato’s work from 1955 to 1980,
so much so that when he gave a plenary talk at the 1970 ICM, it was on this subject. One can
identify four areas:

1. Trace-class scattering. (See Section 6.)

2. Kato Smoothness. (See Section 7.)

3. Eigenfunction expansions (Kato–Kuroda theory).

4. Jensen–Kato on low energy and large times.

Three isolated but important contributions:

1. His 1948 paper on the adiabatic theorem. (See Section 4.)

2. His ultimate Trotter product formula: if A and B are arbitrary positive self–adjoint oper-
ators, if C is the self–adjoint form sum on Q(A) ∩Q(B) ≡ K, and if P is the projection
onto K, then

s− lim
n→∞

[
e−tA/ne−tB/n

]n
= e−tCP.

3. His 1957 paper on properties of eigenfunctions of general Schrödinger operators and es-
pecially of Coulomb Hamiltonians. For the Coulomb case, he proved that eigenfunctions
were globally Lipschitz but not generally C1; instead he found the celebrated Kato cusp
condition – at coincidence points, radial averages have well defined jumps (like e−|x| for
the hydrogen ground state). Trial function calculations for atoms and molecules use the
Kato cusp condition making this paper his most quoted one on Google Scholar (with over
1,700 citations!)
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3 Foundations of Atomic Physics
Ever since von Neumann’s work around 1930, it has been clear that a fundamental mathe-
matical problem in quantum theory, indeed the fundamental question in atomic physics, is the
self–adjointness of atomic Hamiltonians, so Kato’s 1951 paper is a pathbreaking contribution
of great significance. He considered N–body Hamiltonians on L2(RνN) formally written as

H = −
N∑
j=1

1

2mj

∆j +
∑
i<j

Vij(xi − xj), (2)

where x ∈ RνN is written x = (x1, . . . , xN) with xj ∈ Rν , ∆j is the ν–dimensional Laplacian
in xj , and each Vij is a real valued function on Rν . In 1951, Kato considered only the physically
relevant case ν = 3.

If there are N + k particles in the limit where the masses of particles N + 1, . . . , N + k are
infinite, one considers an operator like H but adds terms

N∑
j=1

Vj(xj), Vj(x) =
N+k∑
`=N+1

Vj`(x− x`), (3)

where xN+1, . . . , xN+k are fixed points in Rν .
More generally, one wants to consider (as Kato did) Hamiltonians with the center of mass

removed. We note that the self–adjointness results on the Hamiltonians of the form (2) easily
imply results on Hamiltonians (on L2(R(N−1)ν)) with the center of mass motion removed. Of
special interest is the Hamiltonian of the form (3) with N = 1, i.e.

H = −∆ +W (x) (4)

on L2(Rν) which we’ll call the reduced two-body Hamiltonian (since, except for a factor of
(2µ)−1 in front of −∆, it is the two-body Hamiltonian with the center of mass removed).

Kato’s big 1951 result was (I will use “esa” as shorthand for essentially self–adjoint and
“esaν” for esa on C∞0 (Rν)):

Theorem 3.1 (Kato’s Theorem, First Form). Let ν = 3. Let each Vij in (2) lie in L2(R3) +
L∞(R3). Then the Hamiltonian (2) is self–adjoint on D(H) = D(−∆) and esa–(3N).

Remarks. 1. The same result holds with the terms in (3) added, so long as each Vj lies in
L2(R3) + L∞(R3).

2. Kato didn’t assume that V ∈ L2(R3) + L∞(R3), but rather the stronger hypothesis that
for some R <∞, one has that

´
|x|<R |V (x)|2d3x <∞ and sup|x|≥R |V (x)| <∞, but his proof

extends to L2(R3) + L∞(R3).

3. Kato didn’t state that C∞0 (R3N) is a core, but rather that ψ’s of the form P (x)e−
1
2
x2 with

P a polynomial in the coordinates of x form a core (He included the 1
2

so the set was invariant
under the Fourier transform.) His result is now usually stated in terms of C∞0 .

If v(x) = 1/|x| on R3, then v ∈ L2(R3) + L∞(R3), so Theorem 3.1 has an important
corollary, which includes the Hamiltonians of atoms and molecules:
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Theorem 3.2 (Kato’s Theorem, Second Form). The Hamiltonian, H , of (2) with ν = 3 and
each

Vij(x) =
zij
|x| , (5)

and the Hamiltonian with terms of the form (3), where

Vj(x) =
N+k∑
`=N+1

zj`
|x− x`|

, (6)

are self–adjoint on D(−∆) and esa–3N .

Remark 3.3. This result ensures that the time-dependent Schrödinger equation ψ̇t = −iHψt
has solutions (since self–adjointness means that e−itH exists as a unitary operator). The analo-
gous problem for Coulomb Newton’s equation (i.e. solvability for a.e. initial condition) is open
for N ≥ 5!

As Kato remarks in his Wiener prize acceptance, “The proof turned out to be rather easy.”
It has three steps:

(1) The Kato–Rellich theorem, which reduces the proof to showing that each Vij is relatively
bounded for Laplacian on R3 with relative bound 0.

(2) A proof that any function in L2(R3) + L∞(R3), as an operator on L2(R3), is −∆–
bounded with relative bound 0. This relies on the simple Sobolev estimate that on R3 any
function in D(−∆) is bounded. Alternatively, for the atomic case, Hardy’s inequality (that
(4r2)−1 ≤ −∆) implies this fact.

(3) A piece of simple kinematics that says that the two-body estimate in Step 2 extends to
one for vij(xi − xj) as an operator on L2(R3N).

Kato states in the paper that he had found the results by 1944. Kato originally submitted the
paper to Physical Review. Physical Review transferred the manuscript to the Transactions of
the AMS, where it eventually appeared. They had trouble finding a referee and, in the process,
the manuscript was lost (a serious problem in pre-Xerox days!). Eventually, von Neumann got
involved and helped get the paper accepted. I’ve always thought that given how important he
knew the paper was, von Neumann should have suggested Annals of Mathematics and used
his influence to get it published there. The receipt date of October 15, 1948 on the version
published in the Transactions shows a long lag compared to the other papers in the same issue
of the Transactions which have receipt dates of Dec., 1949 through June, 1950. Recently, after
Kato’s widow died and left his papers to some mathematicians (see the end of Section 1), some
fascinating correspondence of Kato with Kemble and von Neumann came to light. There are
plans by Kato’s students to publish an edited version of these letters.

It is a puzzle why it took so long for this theorem to be found. One factor may have been
von Neumann’s attitude. Bargmann told me of a conversation several young mathematicians
had with von Neumann around 1948 in which von Neumann told them that self–adjointness
for atomic Hamiltonians was an impossibly hard problem, and that even for the hydrogen atom
the problem was difficult and open. This is a little strange since, using spherical symmetry,
hydrogen can be reduced to a direct sum of one-dimensional problems. For such ODEs, there
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is a powerful limit-point/limit-circle method named after Weyl and Titchmarsh (although it was
Stone, in his 1932 book, who first made it explicit). Using this, it is easy to see (there is one
subtlety for ` = 0, since the operator then is limit-point at 0) that the hydrogen Hamiltonian
is self–adjoint, and this appears at least as early as Rellich in 1944. Of course, this method
doesn’t work for multielectron atoms. In any event, it is possible that von Neumann’s attitude
may have discouraged some from working on the problem.

Still it is surprising that neither Friedrichs nor Rellich found this result. Rellich used
Hardy’s inequality in his perturbation theory papers in a closely related context. Namely he
used Hardy’s inequality to show that r−1 ≤ 4ε(−∆) + 1

4
ε−1 to note the semiboundedness of

the hydrogen Hamiltonian. Since Rellich certainly knew the Kato–Rellich theorem, it appears
that he knew steps 1 and 2.

In a sense it is pointless to speculate why Rellich didn’t find Theorem 3.2, but it is difficult
to resist. It is possible that he never considered the problem of esa of atomic Hamiltonians,
settling for a presumption that using the Friedrichs extension suffices (as Kato suggests in his
Wiener prize acceptance) but I think that unlikely. It is possible that he thought about the
problem but dismissed it as too difficult and never thought hard about it. Perhaps the most
likely explanation involves Step 3: once you understand it, it is trivial, but until you conceive
that it might be true, it might elude you.

Later authors considered the analogues for dimension ν 6= 3 – Stummel was a big hero
here. For our discussion in Section 5, we’ll need the following: We call p ν–canonical if p = 2
for ν ≤ 3, p > 2 if ν = 4 and p = ν/2 if ν ≥ 5. The optimal Lp extension of Theorem 3.1 is:

Theorem 3.4. Let p be ν–canonical. Then V ∈ Lp(Rν) + L∞(Rν) is −∆–bounded with
relative bound zero. If ν ≥ 5, then V ∈ Lpw(Rν) + L∞(Rν) is −∆–bounded on L2(Rν).

It is known that this is optimal since when ν > 5 limit-point/limit-circle methods show that
for C sufficiently large −∆ − Cr−2 is not essentially self–adjoint on C∞0 and r−2 lies in
all Lp + L∞ with p < ν/2. The longer paper includes further discussion of these higher-
dimensional analogues and also discusses Kato’s application in his 1951 paper to the Coulomb
Dirac Hamiltonian.

4 The Adiabatic Theorem
In 1950 Kato published a paper in a physics journal (noted as based on a presentation in 1948)
on the quantum adiabatic theorem. It is his only paper on the subject but has strongly impacted
virtually all the huge literature on the subject and related subjects ever since. (There are more
Google Scholar citations of this paper than of the one on self–adjointness of atomic Hamilto-
nians.) We will begin by describing his theorem and its proof, which introduced what he called
adiabatic dynamics and I’ll call the Kato dynamics. We’ll see that the Kato dynamics defines a
notion of parallel transport on the natural vector bundle over the manifold of all k–dimensional
subspaces of a Hilbert space H, and so a connection. This connection is called the Berry con-
nection and its holonomy is the Berry phase (when k = 1). All this Berry stuff was certainly
not even hinted at in Kato’s work, but it is implicit in the framework. Then I’ll say something
about the history before Kato.
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The adiabatic theorem considers a family of time-dependent Hamiltonians, H(s), 0 ≤ s ≤
1 and imagines changing them slowly, i.e. looking at H(s/T ), 0 ≤ s ≤ T for T very large.
Thus, we look for ŨT (s) solving

d

ds
ŨT (s) = −iH(s/T )ŨT (s), 0 ≤ s ≤ T ; ŨT (0) = 1. (7)

Letting UT (s) = ŨT (sT ), 0 ≤ s ≤ 1, we see that UT (s), 0 ≤ s ≤ 1 solves

d

ds
UT (s) = −iTH(s)UT (s), 0 ≤ s ≤ 1; UT (0) = 1. (8)

Here is Kato’s adiabatic theorem

Theorem 4.1 (Kato). LetH(s) be aC2 family of bounded self–adjoint operators on a (complex,
separable) Hilbert space, H. Suppose there is a C2 function, λ(s), so that for all s, λ(s) is an
isolated point in the spectrum of H(s) and so that

α ≡ inf
0≤s≤1

dist(λ(s), σ(H(s)) \ {λ(s)}) > 0. (9)

Let P (s) be the projection onto the eigenspace for λ(s) as an eigenvalue of H(s). Then

lim
T→∞

(1− P (s))UT (s)P (0) = 0 (10)

uniformly in s in [0, 1].

Remarks. 1. Thus, if ϕ0 ∈ ranP (0), this says that when T is large, UT (s)ϕ0 is close to lying
in ranP (s). That is, as T →∞, the solution gets very close to the “curve” {ranP (s)}0≤s≤1.

2. If there is an eigenvalue of constant multiplicity near λ(0) for s small, it follows from the
contour representation of P (s) that P (s) and λ(s) are C2.

3. Kato made no explicit assumptions on regularity in s saying “Our proof given below is
rather formal and not faultless from the mathematical point of view. Of course it is possible to
retain mathematical rigour by detailed argument based on clearly defined assumptions, but it
would take us too far into unnecessary complication and obscure the essentials of the problem.”
It is hard to imagine the Kato of 1960 using such language! In any event, the proof requires
that P (s) be C2.

4. As we’ll see, the size estimate for (10) is O(1/T ).

Kato’s wonderful realization is that there is an explicit dynamics, W (s) for which (10) is
exact, i.e.

(1− P (s))W (s)P (0) = 0. (11)

He not only constructs it but proves the theorem by showing that (this formula only holds in
case λ(s) ≡ 0; see (16) below):

lim
T→∞

[UT (s)−W (s)]P (0) = 0. (12)

The W (s) that Kato constructs, he called the adiabatic dynamics. It is sometimes called Kato’s
adiabatic dynamics. We call it the Kato dynamics. Here is the basic result:
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Theorem 4.2 (Kato dynamics). Let W (s) solve

d

ds
W (s) = iA(s)W (s), 0 ≤ s ≤ 1; W (0) = 1; (13)

iA(s) ≡ [P ′(s), P (s)]. (14)

Then W (s) is unitary and obeys

W (s)P (0)W (s)−1 = P (s). (15)

The proof is not hard (see the longer paper for details). Using P (s)2 = P (s) and its
derivative, one shows that W (s)−1P (s)W (s) has zero derivative.

The proof of Theorem 4.1 depends on proving that

‖UT (s)P (0)− e−iT
´ s
0 λ(s) dsW (s)P (0)‖ = O(1/T ). (16)

(16) says a lot more than (10). (10) says that as T → ∞, UT (s) maps ranP (0) to ranP (s).
(10) actually tells you what the precise limiting map is! One fancy-pants way of describing
this is as follows. Fix k ≥ 1 in Z. Let M be the manifold of all k–dimensional subspaces
of some Hilbert space, H. We want dim(H) ≥ k, but it could be finite. Or M might be a
smooth submanifold of the set of all such subspaces. For each ω ∈ M, we have the projection
P (ω). There is a natural vector bundle of k–dimensional spaces overM, namely, we associate
to ω ∈M, the space ranP (ω). If k = 1, we get a complex line bundle.

The Kato dynamics W (s) tells you how to “parallel transport” a vector v ∈ ranP (γ(0))
along a curve γ(s) : 0 ≤ s ≤ 1 inM. In the language of differential geometry, it defines a con-
nection, and such a connection has a holonomy and a curvature. In less fancy terms, consider
the case k = 1. Suppose γ is a closed curve. Then W (1) is a unitary map of ranP (0) to itself,
so multiplication by eiΓB(γ). Returning to UT , it says that the phase change over a closed curve
isn’t what one might naively expect, namely exp(−i

´ T
0
λ(s/T ) ds) = exp(−iT

´ 1

0
λ(s) ds).

There is an additional term, exp(iΓB). This is the Berry phase discovered by Berry in 1983
(it was discovered in 1956 by Pancharatnam, but then forgotten). I realized that this was just
the holonomy of a natural bundle connection and that, moreover, this bundle and connection is
precisely the one whose Chern integers are the TKN2 integers of Thouless et al. (as discussed
by Avron–Seiler–Simon). Thouless shared in a recent Physics Nobel Prize in part for the dis-
covery of the TKN2 integers. The holonomy, i.e. Berry’s phase, is an integral of the Kato
connection [P, dP ]. As usual, this line integral over a closed curve is the integral of its differ-
ential [dP, dP ] over a bounding surface. This quantity is the curvature of the bundle and has
come to be called the Berry curvature (even though Berry did not use the differential geometric
language). Naively [dP, dP ] would seem to be zero but it is shorthand for the two–form∑

i 6=j

[
∂P

∂si
,
∂P

∂sj

]
dsi ∧ dsj. (17)

This formula of Avron–Seiler–Simon for the Berry curvature is a direct descendant of formulae
in Kato’s paper, although, of course, he did not consider the questions that lead to Berry’s
phase.
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Finally, a short excursion into the history of adiabatic theorems. “Adiabatic” first entered
into physics as a term in thermodynamics meaning a process with no heat exchange. In 1916,
Ehrenfest discussed the “adiabatic principle” in classical mechanics. The basic example is the
realization (earlier than Ehrenfest) that while the energy of a harmonic oscillator is not con-
served under time-dependent change of the underlying parameters, the action (energy divided
by frequency) is fixed in the limit that the parameters are slowly changed. (The reader should
figure out what Kato’s adiabatic theorem says about a harmonic oscillator with slowly varying
frequency.) Interestingly enough, many adiabatic processes in the thermodynamic sense are
quite rapid, so the Ehrenfest use has, at best, a very weak connection to the initial meaning of
the term!

Ehrenfest used these ideas by asserting that in old quantum theory, the natural quantum
numbers were precisely these adiabatic invariants. Once new quantum mechanics was dis-
covered, Born and Fock in 1928 discussed what they called the quantum adiabatic theorem,
essentially Theorem 4.1 for simple eigenvalues with a complete set of (normalizable) eigen-
functions. It was 20 years before Kato found his wonderful extension (and then more than 30
years before Berry made the next breakthrough). The longer article has a discussion on the
considerable further mathematical literature of the quantum adiabatic theorem.

5 Kato’s Inequality
This section will discuss a self–adjointness method that appeared in a 1972 paper of Kato based
on a remarkable distributional inequality. Its consequences are a subject to which Kato returned
often with at least seven additional papers. It is also his work that most intersected my own – I
motivated his initial paper and it, in turn, motivated several of my later papers.

To explain the background, recall that in Section 3 we defined p to be ν–canonical (ν is
dimension) if p = 2 for ν ≤ 3, p > 2 for ν = 4, and p = ν/2 for ν ≥ 5. For now, we focus
on ν ≥ 5 so that p = ν/2. As we saw, if V ∈ Lp(Rν) + L∞(Rν), then −∆ + V is esa–ν. The
example V (x) = −C|x|−2 for C sufficiently large shows that p = ν/2 is sharp. That is, for
any 2 ≤ q ≤ ν/2, there is a V ∈ Lq(Rν) + L∞(Rν), so that −∆ + V is defined on but not esa
on C∞0 (Rν).

In these counterexamples, though, V is negative. It was known since the late 1950s that
while the negative part of V requires some global hypothesis for esa–ν, the positive part does
not (e.g. −∆ − x4 is not esa–ν while −∆ + x4 is esa–ν). But when I started looking at these
issues around 1970, there was presumption that for local singularities, there was no difference
between the positive and negative parts. In retrospect, this shouldn’t have been the belief! After
all, limit-point/limit-circle methods show that if V (x) = |x|−α with α < ν/2 (to make V ∈ L2

loc

so that −∆ + V is defined on C∞0 (Rν)) then −∆ + V is esa–ν although, if α > 2, −∆− V is
not. (Limit-point/limit-circle methods apply for−∆ +V for any α if we look at C∞0 (Rν \ {0})
but then only when α < ν/2 we can extend the conclusion to C∞0 (Rν).) This example shows
that the conventional wisdom was faulty but people didn’t think about separate local conditions
on

V+(x) ≡ max(V (x), 0); V−(x) = max(−V (x), 0). (18)

Kato’s result shattered the then conventional wisdom:
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Theorem 5.1 (Kato). If V ≥ 0 and V ∈ L2
loc(Rν), then −∆ + V is esa–ν.

Kato’s result was actually a conjecture that I made on the basis of a slightly weaker result
that I had proven:

Theorem 5.2 (Simon). If V ≥ 0 and V ∈ L2(Rν , e−cx
2
dνx) for some c > 0, then −∆ + V is

esa–ν.

Of course this covers pretty wild growth at infinity but Theorem 5.1 is the definitive result
since one needs that V ∈ L2

loc(Rν) for −∆ + V to be defined on all functions in C∞0 (Rν). I
found Theorem 5.2 because I was also working at the time in constructive quantum field theory
which was then focused on the simplest interacting field models ϕ4

2 and P (ϕ)2. (The subscript
2 means two space–time dimensions.) I was able to use results in the theory of hypercontractive
semigroups that seemed very different from what Kato used, although connections were later
found as well as a semigroup proof of Theorem 5.1. In my preprint proving Theorem 5.2, I
conjectured Theorem 5.1, and Kato’s response was sent within a few weeks of my mailing him
my preprint. The longer paper describes both my proof and these later developements but I
want to focus here on Kato’s arguments. Kato proved:

Theorem 5.3 (Kato’s inequality). Let u ∈ L1
loc(Rν) be such that its distributional Laplacian,

∆u is also in L1
loc(Rν). Define

sgn(u)(x) =

{
u(x)/|u(x|), if u(x) 6= 0
0, if u(x) = 0

(19)

(so u sgn(u) = |u|). Then as distributions

∆|u| ≥ Re [sgn(u)∆u] . (20)

Remarks. 1. What we call sgn(u), Kato calls sgn(ū).
2. We should pause to emphasize what a surprise this was. Kato was a long established

master of operator theory. He was 55 years old. He simply pulled a distributional inequality
out of his hat. It is true, like other analysts, that he’d been introduced to distributional ideas in
the study of PDEs, but no one had ever used them in this way. Truly a remarkable discovery.

The proof is not hard. By replacing u by u ∗ hn with hn a smooth approximate identity
and taking limits (using sgn(u ∗ hn)(x)→ sgn(u)(x) for a.e. x and using a suitable dominated
convergence theorem), we can suppose that u is a C∞ function. In that case, for ε > 0, let
uε = (ūu+ ε2)1/2. From u2

ε = ūu+ ε2, we get that

2uε
−→∇uε = 2 Re(ū

−→∇u), (21)

which implies (since |ū| ≤ uε) that

|−→∇uε| ≤ |
−→∇u|. (22)
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Applying 1
2

−→∇· to (21), we get that

uε∆uε + |−→∇uε|2 = Re(ū∆(u)) + |−→∇u|2. (23)

Using (22) and letting sgnε(u) = ū/uε, we get that

∆uε ≥ Re(sgnε(u)∆u). (24)

Taking ε ↓ 0 yields (20).
Once we have (20), here is Kato’s proof of Theorem 5.1. Consider T , the operator closure of

−∆+V on C∞0 (Rν). T ≥ 0, so, by a simple argument, it suffices to show that ran(T +1) = H
or, equivalently, that T ∗u = −u⇒ u = 0. So suppose that u ∈ L2(Rν) and that

T ∗u = −u. (25)

Since T ∗ is defined via distributions, (20) implies that

∆u = (V + 1)u. (26)

Since u and V + 1 are both in L2
loc, we conclude that ∆u ∈ L1

loc, so by Kato’s inequality,

∆|u| ≥ (sgn(u))(V + 1)u = |u|(V + 1) ≥ |u|. (27)

Convolution with non–negative functions preserves positivity of distributions, so for any non-
negative h ∈ C∞0 (Rν), we have that

∆(h ∗ |u|) = h ∗∆|u| ≥ h ∗ |u|. (28)

Since u ∈ L2, h ∗ |u| is a C∞ function with classical Laplacian in L2, so h ∗ |u| ∈ D(−∆).
(−∆ + 1)−1 has a positive integral kernel, so (28)⇒ (−∆ + 1)(h ∗ |u|) ≤ 0⇒ h ∗ |u| ≤ 0⇒
h ∗ |u| = 0. Taking hn to be an approximate identity, we have that hn ∗ u→ u in L2, so u = 0,
completing the proof.

At first sight, Kato’s proof seems to have nothing to do with the semigroup ideas used in
the proof of Theorem 5.2 and the proof of Theorem 5.1 that I found using semigroup methods.
But in trying to understand Kato’s work, I found the following abstract result:

Theorem 5.4 (Simon). Let A be a positive self–adjoint operator on L2(M,dµ) for a σ–finite,
separable measure space (M,Σ, dµ). Then the following are equivalent:

(a) (e−tA is positivity preserving)

∀u ∈ L2, u ≥ 0, t ≥ 0⇒ e−tAu ≥ 0.

(b) (Beurling–Deny criterion) u ∈ Q(A)⇒ |u| ∈ Q(A) and

qA(|u|) ≤ qA(u). (29)

(c) (Abstract Kato Inequality) u ∈ D(A)⇒ |u| ∈ Q(A) and for all ϕ ∈ Q(A) with ϕ ≥ 0,
one has that 〈

A1/2ϕ,A1/2|u|
〉
≥ Re 〈ϕ, sgn(u)Au〉 . (30)
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In his original paper, Kato proved more than (20). He showed that

∆|u| ≥ Re
[
sgn(u)(

−→∇ − i−→a )2u
]
. (31)

In his initial paper, he required that −→a to be C1(Rν) and he then followed his arguments to get
Theorem 5.1 with−∆+V replaced by−(∇− ia)2 +V when a ∈ C1(Rν), V ∈ L2

loc(Rν), V ≥
0. But there was a more important consequence of (31) than a self–adjointness result. I noted
that (31) implies, by approximating |u| by positive ϕ ∈ C∞0 (Rν), that

〈|u|,∆|u|〉 ≥
〈
u,D2u

〉
where D =

−→∇ − i−→a , which implies that〈
u, (−D2 + V )u

〉
≥ 〈|u|, (−∆ + V )|u|〉 . (32)

This, in turn, implies that turning on any, even non–constant, magnetic field always increases
the ground state energy (for spinless bosons), something I called universal diamagnetism.

If one thinks of this as a zero-temperature result, it is natural to expect a finite-temperature
result. (That is, for, say, finite matrices, one has that limβ→∞−β−1Tr(e−βA) = inf σ(A) which
in statistical mechanical terms is saying that as the temperature goes to zero, the free energy
approaches a ground state energy.)

Tr(e−tH(a,V )) ≤ Tr(e−tH(a=0,V )), (33)

where
H(a, V ) = −(∇− ia)2 + V. (34)

This suggested to me the inequality

|e−tH(a,V )ϕ| ≤ e−tH(a=0,V )|ϕ|. (35)

I mentioned this conjecture at a brown bag lunch seminar when I was in Princeton. Ed Nelson
remarked that formally, it followed from the Feynman–Kac–Ito formula for semigroups in mag-
netic fields which says that adding a magnetic field with gauge−→a adds a factor exp(i

´ −→a (ω(s))·
dω) to the Feynman–Kac formula. (The integral is an Ito stochastic integral.) Eq. (35) is im-
mediate from | exp(i

´ −→a (ω(s)) · dω)| = 1 and the positivity of the rest of the Feynman–Kac
integrand. Some have called (35) the Nelson–Simon inequality but the name I gave it, namely
diamagnetic inequality, has stuck.

The issue with Nelson’s proof is that, at the time, the Feynman–Kac–Ito formula was only
known for smooth a’s. One can obtain the Feynman–Kac–Ito formula for more general a’s by
independently proving a suitable core result. After sucessive improvements by me and then
Kato, I proved that

Theorem 5.5 (Simon). Equation (35) holds for V ≥ 0, V ∈ L1
loc(Rν) and −→a ∈ L2

loc.

The optimal self-adjointness result (V ≥ 0, V ∈ L2
loc, a ∈ L4

loc, div a ∈ L2
loc) was proven by

Leinfelder–Simader.
As with Theorem 5.4, there is an abstract two-operator Kato inequality result (originally

conjectured by Simon) which was proven by Hess–Schader-Uhlenbrock and Simon. For more
details as well as a discussion of the Kato class which Kato introduced in his original Kato
inequality note, see the longer paper.
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6 Kato–Rosenblum and Kato–Birman
Starting with Rutherford’s 1911 discovery of the atomic nucleus, scattering has been a cen-
tral tool in fundamental physics, so it isn’t surprising that one of the first papers in the new
quantum theory was by Born in 1926 on scattering. While scattering is at a deep level a time-
dependent phenomenon, Born used eigenfunctions and time–independent ideas. In the early
1940s, the theoretical physics community first considered time-dependent approaches to scat-
tering. Wheeler and Heisenberg defined the S–matrix and Møller introduced wave operators as
limits (with no precision as to what kind of limit).

The Kato group, late 1950s.
S.T. Kuroda (standing), T. Kato, T. Ikebe, H. Fujita, Y. Nakata

It was Friedrichs in a prescient 1948 paper who first considered the invariance of the absolutely
continuous spectrum under sufficiently regular perturbations. Friedrichs was Rellich’s slightly
older contemporary. Both were students of Courant at Göttingen in the late 1920s (in 1925
and 1929 respectively). By 1948, Friedrichs was a professor at Courant’s institute at NYU. He
looked at several simple models, and for one with purely a.c. spectrum he could prove that the
perturbed models were unitarily equivalent to unperturbed models. While Friedrichs neither
quoted Møller nor ever wrote down the explicit formulae

Ω±(H,H0) = s− limt→∓∞e
itHe−itH0 (36)
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(the strange ± vs. ∓ convention that we use is universal in the theoretical physics community,
uncommon among mathematicians, and not the convention that Kato used), he did prove some-
thing equivalent to showing that the limit Ω+ existed and was the unitary he constructed with
time-independent methods.

Motivated in part by Friedrichs, in 1957 Kato published two papers that set out the basics
of the theory we will discuss in this section. In the first, he had the important idea of defining

Ω±(A,B) = s− limt→∓∞e
itAe−itBPac(B), (37)

where Pac(B) is the projection ontoHac(B), the set of all ϕ ∈ H for which the spectral measure
of B and ϕ is absolutely continuous with respect to Lebesgue measure. If these strong limits
exist, we say that the wave operators Ω±(A,B) exist.

By replacing t by t+s, one sees that if Ω±(A,B) exist then eisAΩ± = Ω±eisB. Since Ω± are
unitary maps, U±, ofHac(B) to their ranges, we see that U±B � Hac(B)(U±)−1 = A � ran Ω±.
In particular, ran Ω± are invariant subspaces forA and lie inHac(A). It is thus natural to define:
Ω±(A,B) are said to be complete if

ran Ω+(A,B) = ran Ω−(A,B) = Hac(A). (38)

In the first of the 1957 papers, Kato proved the following:

Theorem 6.1 (Kato). Let Ω±(A,B) exist. Then they are complete if and only if Ω±(B,A) exist.

The proof is almost trivial. It depends on noting that

ψ = lim
t→∞

eiAte−itBϕ ⇐⇒ ϕ = lim
t→∞

eitBe−itAψ. (39)

That said, it is a critical realization because it reduces a completeness result to an existence
theorem. In particular, it implies that symmetric conditions which imply existence also imply
completeness. We’ll say more about this below.

To show the importance of this idea, motivated by it in 1977, Deift and Simon proved that
completeness of multichannel scattering for N–body scattering was equivalent to the existence
of geometrically defined “inverse” wave operators. All proofs of asymptotic completeness for
N–body systems prove it by showing the existence of these Deift–Simon wave operators, in
support of Kato’s Theorem 6.1.

One consequence of Theorem 6.1 is that a symmetric condition for existence implies com-
pleteness also. Using this idea, in his first 1957 paper, Kato proved:

Theorem 6.2 (Kato). Let H0 be a self–adjoint operator and V a (bounded) self–adjoint finite
rank operator. ThenH = H0 +V is a self–adjoint operator and the wave operators Ω±(H,H0)
exist and are complete.

Later in 1957, Kato proved:

Theorem 6.3 (Kato–Rosenblum Theorem). The conclusions of Theorem 6.2 remain true if V
is a (bounded) trace-class operator.

‖ψ − eiAte−itBϕ‖ = ‖eitBe−itAψ − ϕ‖. (40)
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S. Kuroda, T. Ikebe, H. Fujita
recently

In a sense this theorem is optimal. It is a result of
Weyl–von Neumann that if A is a self–adjoint opera-
tor, one can find a Hilbert–Schmidt operator, C, so that
B = A + C has only pure point spectrum. Kato’s
student, S. T. Kuroda, shortly after Kato proved The-
orem 6.3, extended this result of Weyl–von Neumann
to any trace ideal strictly bigger than trace class. So
within trace-ideal perturbations, one cannot do better
than Theorem 6.3.

The name given to this theorem comes from the
fact that before Kato proved Theorem 6.3, Rosenblum
proved a special case that motivated Kato: namely, if
A and B have purely a.c. spectrum and A−B is trace
class, then Ω±(A,B) exist and are unitary (so complete).

I’d always assumed that Rosenblum’s paper was a rapid reaction to Kato’s finite rank paper,
which, in turn, motivated Kato’s trace-class paper. But I recently learned that this assumption
is not correct. Rosenblum was a graduate student of Wolf at Berkeley who submitted his thesis
in March, 1955. It contained his trace-class result under some additional technical hypotheses;
a Dec., 1955 Berkeley technical report had the result as eventually published without the extra
technical assumption. Rosenblum submitted a paper to the American Journal of Mathematics
which took a long time refereeing it before rejecting it. In April, 1956, Rosenblum submitted
a revised paper to the Pacific Journal, in which it eventually appeared. (This version dropped
the technical condition; I’ve no idea what the original journal submission had.)

Kato’s finite rank paper was submitted to J. Math. Soc. Japan on March 15, 1957, and was
published in the issue dated April, 1957(!). The full trace-class result was submitted to Proc.
Japan Acad. on May 15, 1957. Kato’s first paper quotes an abstract of a talk Rosenblum gave
at an A.M.S. meeting, but I don’t think that abstract contained many details. This finite-rank
paper has a note added in proof thanking Rosenblum for sending the technical report to Kato,
quoting its main result and saying that Kato had found the full trace-class results. (“Details will
be published elsewhere.”). That second paper used some technical ideas from Rosenblum’s
paper.

I’ve heard that Rosenblum always felt that he’d not received sufficient credit for his trace-
class paper. There is some justice to this. The realization that trace class is the natural class is
important. As I’ve discussed, trace class is maximal in a certain sense. Kato was at Berkeley in
1954 when Rosenblum was a student (albeit some time before his thesis was completed) and
Kato was in contact with Wolf. However, there is no indication that Kato knew anything about
Rosenblum’s work until shortly before he wrote up his finite rank paper when he became aware
of Rosenblum’s abstract. My surmise is that both, motivated by Friedrichs, independently
became interested in scattering.

The longer paper describes further developments and some applications of the trace-class
theory, some of them due to Kato himself. To me the heroes of this later work are Kuroda,
Pearson, and especially Birman.
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7 Kato Smoothness
In this final section we discuss the theory of Kato smoothness, which is based primarily on two
papers of Kato published in 1966 (when Kato was 49) and 1968. The first is the basic one with
four important results: the equivalence of many conditions giving the definition, the connection
to spectral analysis, the implications for existence and completeness of wave operators and,
finally, a perturbation result. The second paper concerns the Putnam–Kato theorem on positive
commutators.

To me, the 1951 self–adjointness paper is Kato’s most significant work (with the adiabatic
theorem paper a close second), Kato’s inequality his deepest, and the subject of this section
his most beautiful. One of the things that is so beautiful is that there isn’t just a relation be-
tween the time–independent and time–dependent objects – there is an equivalence! Part of the
equivalence depends on the simple formula that holds when H is a self–adjoint operator on a
(complex) Hilbert spaceH (where R(µ) = (H − µ)−1),

ˆ ∞
0

e−εteitλe−itHϕdt = −iR(λ+ iε)ϕ (41)

for any ϕ ∈ H, because
´∞

0
e−εtei(λ−x)t dt = −i(x− λ− iε)−1.

Here is the set of equivalent definitions:

Theorem 7.1 (Kato (1966)). Let H be a self–adjoint operator and A a closed operator. The
following are all equal:

sup
‖ϕ‖=1
ε>0

1

4π2

ˆ ∞
−∞

(
‖AR(λ+ iε)ϕ‖2 + ‖AR(λ− iε)ϕ‖2

)
dλ (42)

sup
‖ϕ‖=1

1

2π

ˆ ∞
−∞
‖Ae−itHϕ‖2 dt (43)

sup
‖ϕ‖=1, ϕ∈D(A∗)
−∞<a<b<∞

‖P(a,b)(H)A∗ϕ‖2

b− a (44)

sup
µ/∈R, ϕ∈D(A∗)
‖ϕ‖=1

1

2π
| 〈A∗ϕ, [R(µ)−R(µ̄)]A∗ϕ〉 | (45)

sup
µ/∈R, ϕ∈D(A∗)
‖ϕ‖=1

1

π
‖R(µ)A∗ϕ2 |Im‖µ|. (46)

In particular, if one is finite (resp. infinite), then all are.

Remarks. 1. In (42)/ (43), we set ‖Aψ‖ =∞ if ψ /∈ D(A), so, for example, to say that (43) is
finite implies that for each ϕ, we have that e−itHϕ ∈ D(A) for Lebesgue a.e. t ∈ R.

2. If one and so all of the above quantities are finite we say that A is H–smooth. The
common value of these quantities is called ‖A‖2

H .
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3. The proof is not hard. For example, if the integral in (43) has a factor of e−2εt put
inside it, the equality of the integrals in (42) and (43) follows from (41) and the Plancherel
theorem. By monotone convergence, the sup of the time-integral with the e−2εt factor is the
integral without that factor.

Smoothness has an immediate consequence for the spectral type of H:

Theorem 7.2 (Kato). LetH be a self–adjoint operator and letA beH–smooth. Then ran(A∗) ⊂
Hac(H). In particular, if ker(A) = {0}, then H has purely a.c. spectrum.

The proof is very easy. If dν is the H–spectral measure for A∗ϕ, then (44) says that

ν(I) ≤ ‖A‖H‖ϕ‖2|I| (47)

(where | · | is Lebesgue measure) for open intervals I . By taking unions and using outer regu-
larity, (47) holds for all sets, so ν is absolutely continuous.

Smoothness also implies existence and completeness of wave operators.

Theorem 7.3 (Kato). Let H,H0 be two self–adjoint operators. Let A,B be closed operators
so that A is H–smooth and B is H0–smooth and so that

H −H0 = A∗B. (48)

Then Ω±(H,H0) exist and are complete.

Remark 7.4. The proof is again easy (indeed, one of the beauties of Kato smoothness theory
is how much one gets with simple proofs). The key is to use

| 〈ψ, (W (t)−W (s))ϕ〉 | =
∣∣∣∣ˆ t

s

〈
Ae−iuHψ,Be−iuH0ϕ

〉
du

∣∣∣∣
≤
(ˆ ∞
−∞
‖Ae−iuHψ‖2 du

)1/2(ˆ t

−s
‖Be−iuH0ϕ‖2 du

)1/2

≤
√

2π‖A‖H‖ψ‖
(ˆ t

−s
‖Be−iuH0ϕ‖2 du

)1/2

,

which implies that

‖(W (t)−W (s))ϕ‖ ≤
√

2π‖A‖H
(ˆ t

−s
‖Be−iuH0ϕ‖2 du

)1/2

. (49)

We say that a closed operator, A is H–supersmooth if and only if

‖A‖2
H,SS ≡ sup

z∈C\R
‖A(H − z)−1A∗‖ <∞. (50)

The notion is in Kato’s basic 1966 paper and the name is from a 1989 paper of Kato–Yajima.
The name hasn’t stuck but I like it, so I’ll use it. The fourth important result in Kato’s 1966
paper is:
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Theorem 7.5 (Kato). Let H0 be a self–adjoint operator. Let A be H0–supersmooth and C a
bounded self-adjoint operator so that

α ≡ ‖C‖‖A‖2
H0,SS

< 1. (51)

Let B = A∗CA. Then B is relatively form bounded with relative form bound at most α. If
H = H0 +B, then A is also H–supersmooth with

‖A‖H,SS ≤ ‖A‖H0,SS(1− α)−1/2. (52)

In particular, Ω±(H,H0) exist and are complete.

Remark 7.6. Once again, the proofs are simple. The key is a formal geometric series:

A(H − z)−1A∗ = A(H0 − z)−1A∗

+
∞∑
j=0

(−1)j+1A(H0 − z)−1A∗
[
CA(H0 − z)−1A∗

]j
CA(H0 − z)−1A∗. (53)

In his original paper, Kato proved for ν ≥ 3, any V ∈ L
1
2
ν−ε ∩ L

1
2
ν+ε is supersmooth and

Kato–Yajima improved that to Lν/2. Iorio–O’Carroll used supersmooth ideas to get a weak
coupling result for N–body systems. If one has an N–body system on Rν with two-body
potentials in Lν/2 and if ν > 2, then for small couplingH has purely a.c. with spectrum [0,∞).

In his 1968 paper, Kato used smoothness ideas to prove that if A and B are bounded self–
adjoint operators so that i[A,B] > 0, then A and B have purely a.c. spectrum (a result proven
the year before by very different methods by Putnam). If A is the generator of dilations and B
an N -body potential with repulsive potentials one has positivity of the commutator but neither
operator is bounded so Kato’s argument doesn’t apply. In a series of papers, Lavine was able
to use smoothness ideas to prove that suitable N -body systems with repulsive potentials have
purely a.c. spectrum and, with sufficiently fast decay, have complete wave operators. To do
this, he introduced the important notion of local smoothness. For details, the reader can consult
the longer paper or, better, the relevant section of Reed–Simon.

The longer paper also discusses a paper of Vakulenko that should be better known. For
two-body systems, he proved that if |V (x)| ≤ C(1 + |x|)−1−ε ≡ g(x)2, then g is −∆ + V
locally smooth on [0,∞) which recovers the results of Agmon–Kato–Kuroda on completeness
of wave operators and absence of singular continuous spectrum in this case and also the result
of Kato on the absence of positive eigenvalues. The longer paper also has references to work of
Yafaev on long-range and on N–body systems that uses smoothness as one tool in the analysis
of such problems.
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An Introduction to CIMPA

by ROSANE USHIROBIRA (INRIA, Lille, France)

The Centre International de Mathématiques Pures et Appliquées (CIMPA), founded in France
in 1978, is a nonprofit organization working to promote mathematical research in develop-
ing countries. A UNESCO Category 2 Centre located in Nice, CIMPA belongs to France’s
Laboratoire d’Excellence CARMIN (Centre d’Accueil et de Rencontres Mathématiques Inter-
nationales) and benefits from the financial support of France, Norway, Spain, and Switzerland.
In order to introduce CIMPA to the members of the International Association for Mathematical
Physics, we describe here CIMPA’s mission, activities, and history, and then include testimony
by two mathematicians who have participated in CIMPA activities, one working in Africa and
the other in the US. CIMPA’s 2018 activities can be viewed at

https://www.cimpa.info/sites/default/files/CIMPA POSTER 2018.pdf.

CIMPA’s Mission and Activities

Each year, CIMPA co-organizes and sponsors numerous activities in developing countries
across all continents. Each of those activities is awarded through a call for proposals within
one of the following categories:

• CIMPA Research Schools: This is the historical activity of CIMPA, it focuses on areas
where there is a real drive to develop mathematics and where there is scope for a research
project. Calls for proposals are launched every year to organize about twenty Research
Schools per year.

• Support for Training in Research: This program consists in funding the organization of a
series of research-level courses in mathematics within the geographic areas of activities
of CIMPA (Africa, Central and South America, Asia). Every year, two calls for proposals
are launched, with deadlines in early January and early July.

• Short-Term Thematic Programs: CIMPA funds the participation of young mathemati-
cians from developing countries in short-term thematic international programs organized
by some of our partner institutions. A call for applications is opened for each such pro-
gram.

Other actions strongly supported by CIMPA include activities developed in close collaboration
with continental mathematical unions such as the Schools in Partnership, whose purpose is
to introduce undergraduate and master students to the research in mathematics. For most of
its activities, CIMPA works in partnership with other bodies with similar objectives like the
International Mathematical Union (IMU), the European Mathematical Society (EMS) and the
International Centre for Theoretical Physics (ICTP).
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CIMPA

History
Following a recommendation made during the 18th session of the General Conference of UN-
ESCO in Paris in 1974, the creation of CIMPA was decided during the 19th session of the
General Conference of UNESCO in Nairobi in 1976. On the initiative of the French Govern-
ment and a group of founding members (J.P. Aubin, J. Ca, P. Deheuvels, F. Dress, C. Godbillon,
H. Hogbe Nlend, J.L. Lions, J.L. Koszul, E.J. Picard, A. Revuz, P. Sabourin), the International
Center for Pure and Applied Mathematics was formally created as an Association of the Law
of 1901, on 30 October, 1978. According to its statutes, its mission is the training of math-
ematicians coming in priority from developing countries, by means of study visits during the
university academic year and of summer schools, and with the help of the development of
means of documentations. The seat of CIMPA is fixed at Nice, and its host university is the
University of Nice Sophia Antipolis.

The association CIMPA gathers individual members, institutional members and member
states. Originally purely French, CIMPA has recently taken on a European dimension with the
entrance of two new members states, Spain in 2009 and Norway in 2011, and the strong finan-
cial support of Switzerland since 2011. Currently, the main sources of funding for CIMPA are:
the French Ministry of Higher Education and Research, the University of Nice Sophia Antipo-
lis, the Laboratory of Excellence CARMIN, the National Institute of Mathematical Sciences
and their interactions (INSMI) of the Centre National de la Recherche Scientifique (France),
the Ministry of Economics, Industry, and Competitiveness (Spain), the Ministry of Education
and Research (Norway), and the Secrétariat d’État la formation, à la recherche et à l’innovation
(Switzerland) via the University of Neuchâtel. Ever since its creation, CIMPA is led by a Pres-
ident, together with a Vice-President, a Secretary, and a Treasurer, who work in collaboration
with the Executive team: an Executive Director in charge of the day-to-day running of the
center and a dozen Scientific Officers. An IT Manager, an Executive Secretary, and a Commu-
nication Officer take care of operational activities in Nice.

Mathematics in Africa, and the roles of EMA and CIMPA

by DIARAF SECK (Université Cheikh Anta Diop, Dakar, Senegal)

At least half a century ago real efforts were under way in Africa to train mathematicians, though
not coordinated among countries. This had initial results, even if overall insufficient. In 1976
the African Mathematical Union (AMU) was created in Rabat, Morocco. Henri Hogbe Nlend
was the first president of AMU and, thanks to the interpersonal skills of African mathemati-
cians at the time, there followed within AMU the creation of four commissions: on the history
of mathematics in Africa, on women and mathematics in Africa, on the teaching of mathemat-
ics and new technologies, and on the Pan-African Mathematics Olympiad. We can say with
certainty that a milestone was already reached. However, a regional or sub-regional frame-
work for exchanges between students in mathematics, young mathematicians, and the more
experienced was lacking.
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It is important to stress that young people aged under 25 form a large majority of the population
of Sub-Saharan Africa, and there is a crucial need for teachers and researchers in mathematics.
It is of note that in the past (mainly in the ’70s, ’80s, and ’90s), several initiatives for the devel-
opment of research in mathematics in Sub-Saharan Africa started. Most of them struggled to
reach their goal, however, because of the low number of active researchers in mathematics in
Africa. Since then, real efforts have been made by researchers publishing papers and defend-
ing theses in various topics in mathematics such as analysis, geometry, algebra, and applied
mathematics. However, topics like mathematical physics remain to be included.

The positive effects of the CIMPA activities on the life of mathematics in the world in
general and in Africa in particular, with its schools of research, are indisputable. They have
allowed not only young people but also researchers scattered across African countries to be in
contact with leading scientists. These exchanges have allowed African researchers to pursue
participation in the concert of the mathematical exchanges in the world. Still, an environment
of further initiation and strengthening in mathematics is desired.

In 2010, after the general assembly of the African Mathematical Union (AMU) held at Ya-
moussoukro in Ivory Coast, the African Mathematics Schools (EMA) were created by Professor
Saliou Touré, who was President of AMU from 2010 to 2014. These EMA have the primary
goal of strengthening the mathematical level of young people, to develop contact with relevant
topics of current or major interest, and to stimulate the best among them toward more in-
depth studies. CIMPA supports and accompanies this beautiful initiative to strengthen African
students in various areas of mathematics at license and master levels. Besides CIMPA’s sup-
port, other efforts are ongoing, such as the Non-Linear Analysis, Geometry, and Applications
(NLAGA) project, funded by the Simons Foundation through its African Mathematics Project
(AMP), initiated in 2011. A second example we would like to point out is the initiative of the
World Bank supporting scientific research in Africa via Centers of Excellence. At least two of
these are oriented to mathematics and computer science, in Benin and in Senegal.

Funding from donors such as the Simons Foundation and the World Bank by creating Cen-
ters of Excellence oriented toward mathematics, as in Senegal and in Benin, is intended to
foster the organization of more and more EMA to prepare students for occupations in (medium-
secondary and higher) teaching and in research. That is why we wish to launch a vibrant appeal,
encouraging African colleagues to organize EMA, including in mathematical physics, which
are relatively easy and not costly to run. Once a series of EMA have taken place, we can expect
very positive outcomes such as: the strengthening of skills, greater frequency of exchanges
among African mathematicians and physicists, and, finally, more frequent exchanges between
this community of mathematicians and physicists in Africa countries and that of the rest of the
Earth.
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My involvement in CIMPA

by FRANK SOTTILE (Texas A& M University, College Station, USA)

The key event for me occurred at lunch during a conference in Stockholm in June, 2011, when
Marie-Françoise Roy introduced me to Prof. M.O. Ibrahim of Usmanu Danfodiyo University
in Sokoto, Nigeria, and told us to organize a CIMPA research school there.

While unexpected, the groundwork had been laid for this. I long admired my undergrad-
uate friends who joined the US Peace Corps, and in graduate school had traveled by myself
to several developing countries, including visiting a friend in the Peace Corps. As an active
researcher, I travel widely and cherish belonging to a community of scholars that transcends
national boundaries, language, and culture. I also know that while talent is evenly distributed
in this world, opportunity and resources are not.

Marie-Françoise Roy has been very influential to me scientifically and over time I became
aware of her role as a Godmother to Mathematics in Africa, while at the same time she learned
of my peripatetic ways. Starting in the early 2000s, she has encouraged me to become involved
with CIMPA.

Consequently, I was more than ready to accept her directive on that June day in Stockholm.
It turns out that M.O. had come to that meeting expressly to ask Marie-Françoise to organize
a CIMPA School in Nigeria—there had not been one in Nigeria since 1987. With help from
Marie-Françoise, M.O. and I made plans for a two-week Research School at Sokoto in 2013,
making a proposal to CIMPA.

The application process was straightforward. The application form and CIMPA’s instruc-
tions were very helpful; with 35 years of experience, CIMPA is both efficient and accommo-
dating. Our proposal was accepted, and I helped M.O. and his team apply for supplementary
funding, and made plans to come to Nigeria in 2012 to help with preparations and planning.

On that trip, I visited five universities and the National Mathematics Centre in Abuja (the
capital), traveling from the southwest to the center to the far northwest of that large country. At
each institution, I met dignitaries and gave talks to students and faculty. Notable was my visit to
the University of Ibadan (Nigeria’s oldest) to see a young Nigerian, H. Praise Adeyemo, whom
I had met in the U.S., and whose work in Schubert calculus was close to mine. Besides advertis-
ing the CIMPA school and introducing me to the Nigerian Mathematical community, the goal
of that trip was a week in Sokoto. There, I and Moussa Seydou, of the Université de Maradi
in Niger and a lecturer at our planned school, gave short courses to gauge the mathematical
background of potential students. I also assessed the university facilities and accommodations
for the school, and discussed its organization and logistics. When I left, matters were in order.

Unfortunately, by year’s end, the northern region of Nigeria was declared unsafe to visit by
the French Government, and the 2013 CIMPA Research School in Sokoto was canceled.

This visit made a deep impression on me; I was warmly received, and enjoyed my inter-
actions with people. I think this was because they, like the rest of us, love mathematics and
are eager to connect to the international community of mathematicians. M.O. visited Texas in
2014 and I returned to Nigeria that summer to visit Ibadan and the University of Ilorin, where
M.O. had become Head of Department. On that trip, I started a collaboration with Adeyemo,
gave talks, including a short course and math circles (outreach activities) at some schools in
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Ibadan, and we made plans for Adeyemo to visit me for the winter semester in 2015. When he
came, we wrote another paper and decided to apply to CIMPA for a Research School in Ibadan
in 2017 on Combinatorial and Computational Algebraic Geometry.

Our proposal was accepted, and I visited again in 2016 to discuss preparations and help
make decisions about the school. These visits were important. Hosting 50 students, lectur-
ers, and assistants for two weeks is a big undertaking, for which they had little experience or
infrastructure. Planning and applying for supplemental support continued during the 2016–7
academic year, which both Adeyemo and I spent at the Fields Institute for Research in Mathe-
matical Sciences in Toronto, Canada. One difficulty was that promised and hoped-for support
from Nigerian sources did not materialize, so that we had to seek new sources of support (thank
you, Canada). Another was that I needed to be involved with details of the local organization.
A common theme was our hosts’ desire to treat their foreign guests royally, which collided with
the lecturers’ desire to maximize interaction with the students (and with budget realities). Here,
the CIMPA rules that lecturers and students be housed and take meals together was helpful in
negotiations. I also came to believe that the local organizers were not particularly experienced
at making and keeping within a budget.

In the end, the school was a great success. The students were appreciative and their enthu-
siasm drove the lecturers and assistants to work intensely with them. I learned that many of the
participants, particularly those from outside Nigeria, knew one another. They had met at pre-
vious CIMPA schools, or at the ICTP (International Centre for Theoretical Physics in Trieste),
or taken courses together at an AIMS (African Institute for Mathematical Sciences) location.
This shows the success of the CIMPA model of engagement; it is nurturing a Pan-African com-
munity of mathematical scientists, and enabling interaction between that community and the
wider international community.

Organizing this school was not without its moments. A weak point in our plans was getting
the funds that were pledged to the school through the international banking system and the
university bureaucracy to pay vendors and reimburse participants. Many participants could not
simply pay their accommodation and travel up front and be reimbursed later. For example,
receipts for ground transportation in Nigeria are nonexistent. Fortuitously, and thanks to the
flexibility of CIMPA and another funding agency, we were able to balance our books before the
school ended. In hindsight, it would have been better administratively to run the school through
an existing center or have a very senior local organizer who had serious clout.

For me, I met a number of younger African mathematicians, as well as many more Nigeri-
ans. I have kept in touch with many, and have advised and written letters for some. For most of
the lecturers and assistants, this was both their first experience in Africa and their first time at
a CIMPA school. Several will, like me, continue to seek opportunities to make a difference in
this way. My experiences at the CIMPA school and during my other trips to Africa have been
among the most rewarding of my professional career.
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XIXth International Congress on Mathematical Physics

Montreal, July 23-28, 2018

https://icmp2018.org/

On its three year cycle, the International Congress on Mathematical Physics (ICMP) is the
most important conference of the International Association of Mathematical Physics (IAMP).
In 2018 the Congress will return to North America for the first time since 1983: the ICMP
2018 will be held in Montreal, July 23-28, 2018, at the Conference Centre Mont-Royal. The
organizational aspects of the Congress are handled by the Canadian Mathematical Society.

The organization of the Congress is well under way. The list of plenary speakers and the-
matic sessions can be found at the Congress web site https://icmp2018.org/. As customary, the
Congress will be preceded by the Young Researcher Symposium that will be held at McGill
University July 20-21, 2018.

The Congress registration and financial aid applications for junior participants are open and
can be accessed via its web site. The Congress will be accompanied by six satellite meetings
which will be held the week before or after the Congress at BIRS, CRM, Fields Institute,
Perimeter Institute, and McGill. Finally, the ICMP 2018 will be followed by the Fall 2018 CRM
Thematic Program Mathematical Challenges in Many-Body Physics and Quantum Information
http://www.crm.math.ca/crm50/en/activities/2018-activities/.

Canada and Montreal are proud to host the world of mathematical physics in 2018. The
success of the Congress will be a further testament to the strength and vitality of our community.
On the behalf of the IAMP and the Local Organizing Committee, I would like to invite all the
members of the IAMP to attend the ICMP 2018.

Vojkan Jaksic
Professor of Mathematics, McGill University
Convenor of the ICMP 2018
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Funding For Travel to the ICMP

Funding For Travel to the ICMP

The organizers of the International Congress on Mathematical Physics 2018, which will take
place in July in Montreal, Canada, wish to remind the IAMP membership that applications for
travel funding to next summer’s ICMP are being accepted. The website of the meeting is at

https://icmp2018.org/.

Under the overall sponsorship of IAMP we are pleased to have obtained financial commitments
for travel support, including from major sponsors CRM (Montreal), Fields Institute (Toronto),
PIMS (British Columbia), Springer, AIP, AHP, IUPAP, McGill and from the US National Sci-
ence Foundation, especially for students and young researchers. US-NSF also encourages ap-
plications from members of underrepresented groups in science, and from those without access
to other funding. Applications are already being accepted for travel support at

https://icmp2018.org/en/financial-aid-junior-participants

and funding decisions will be made at regular intervals. US applicants may alternatively apply
at

https://forms.cos.gatech.edu/icmp-application-young-researchers-travel-funds-students.

We encourage you to apply for travel funding or, as appropriate, to spread the word to people
you may be advising, about this opportunity to apply for assistance in attending ICMP 2018
and related satellite events.

We hope to see many of you in Montreal!
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Call for Nominations for the 2018 IAMP Early Career Award

Call for Nominations for the 2018 IAMP Early Career Award

The IAMP Executive Committee calls for nominations for the 2018 IAMP Early Career Award.
The prize was instituted in 2008 and will be awarded for the fourth time at the ICMP in Mon-
treal, Canada in July, 2018.

The Early Career Award is given in recognition of a single achievement in mathematical physics.
The total prize value amounts to 3000 Euro and is reserved for scientists whose age in years
since birth on July 31 of the year of the Congress is less than 35.

The nomination should include the name of the candidate accompanied by a brief charac-
terization of the work singled out for the prize. Members of the IAMP should send their
nomination or nominations to the President (president@iamp.org) and to the Secretary (sec-
retary@iamp.org). A list of previous winners and the details of the award selection process can
be found at http://www.iamp.org.

Nominations should be made not later than on January 31, 2018.
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News from the IAMP Executive Committee

News from the IAMP Executive Committee

New individual members

IAMP welcomes the following new members

1. DR. JOCHEN ZAHN, University Leipzig, Germany

2. DR. ZHIRAYR AVETISYAN, University College London, UK

3. DR. DANIEL SIEMSSEN, University of Wuppertal, Germany

4. DR. GIUSEPPE RUZZI, University of Roma “Tor Vergata”, Italy

5. DR. RAJINDER MAVI, Michigan State University, East Lansing, USA

6. DR. ALEXANDER STOTTMEISTER, University of Roma “Tor Vergata”, Italy

7. PROF. ADAM RENNIE, University of Wollongong, Australia

8. PROF. PEDRO LAURIDSEN RIBEIRO, Universidade Federal do ABC, Santo André,
Brazil

9. MS. GIULIA BASTI, University of Roma “La Sapienza”, Italy

10. MR. MARCO OLIVIERI, University of Roma “La Sapienza”, Italy

11. MR. JACOB SHAPIRO, ETH Zurich, Switzerland

12. PROF. MARKUS PFLAUM, University of Colorado, Boulder, USA

13. PROF. MARC DE MONTIGNY, University of Alberta, Canada

14. PROF. MATTEO PARIS, University of Milano, Italy

15. PROF. FARRUKH MUKHAMEDOV, UAEU, Al Ain, United Arab Emirates

16. PROF. NASSER SAAD, University of Prince Edward Island, Charlottetown, Canada

17. PROF. ERIC GALAPON, University of the Philippines, Quezon City, Philippines
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Recent conference announcements

Transport and localization in random media:
theory and applications

May. 1-3, 2018. Columbia University, New York, USA.

Organized by I. Corwin, A. Drouot, H. Shen, M. I. Weinstein.

Universality in Probability Theory and Statistical Mechanics

EMS-IAMP Summer School in Mathematical Physics.

June 11-15, 2018. Ischia, Italy.

This conference is partially supported by the IAMP.

Organized by A. Giuliani, S. Cenatiempo, R. Greenblatt, D. Monaco.

Challenges in Probability and Mathematical Physics

This is a satellite meeting to the ICMP.

July 9-20, 2018. CRM, Montreal, Canada.

Organized by A. Fribergh, L. Addario-Berry, O. Angel.

http://www.crm.math.ca/crm50/en/activities/2018-activities/montreal-
summer-workshop-on-challenges-in-probability-and-mathematical-physics/

Around Quantum Chaos

This is a satellite meeting to the ICMP.

July 15-20, 2018. BIRS, Banff, Canada.

Organized by D. Jakobson, S. Nonnenmacher, S. Zelditch.

http://www.birs.ca/events/2018/5-day-workshops/18w5002
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Summer School on Current Topics in Mathematical Physics

This is a satellite meeting to the ICMP.

July 16-19, 2018. Fields Institute, Toronto, Canada.

Organized by C. Hainzl, R. Seiringer.

http://www.fields.utoronto.ca/activities/18-19/physics-summer-school

XIX International Congress on Mathematical Physics

July 23-28, 2018. Montreal, Canada.

Applications for travel funding to the ICMP in Montreal
can be submitted through the website

https://icmp2018.org/en/financial-aid-junior-participants

Physics and Mathematics of Quantum Field Theory

This is a satellite meeting to the ICMP.

July 29-August 3, 2018. BIRS, Banff, Canada.

Organized by J. Derezinski, S. Hollands, K.-H. Rehren.

http://www.birs.ca/events/2018/5-day-workshops/18w5015

Foundations of Quantum Mechanics

This is a satellite meeting to the ICMP.

July 30-August 3, 2018. Perimeter Institute, Waterloo, Canada.

Organized by L. Hardy, M. Müller, P. Panangaden, R. Spekkens.

http://perimeterinstitute.ca/conferences/foundations-quantum-mechanics

Solid Math 2018

This is a satellite meeting to the ICMP.

August 1-3, 2018. McGill University, Montreal, Canada.

Organized by E. Cances, H. Cornean, G. Dell’ Antonio, V. Jaksic, A. Jensen, G. Panati.

http://people.math.aau.dk/∼cornean/Solid-Math-2018/
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Open positions
CNRS Postdoc Position in Mathematical Physics, Grenoble

Applications are invited for a CNRS postdoc position in mathematical physics. The position
is based in Grenoble, at the “Laboratoire de Physique et Modélisation des Milieux Condensés”
and is funded by the ERC strating grant “Correlated frontiers of many-body quantum mathe-
matics and condensed matter physics”.

We search for candidates with a strong research potential, preferably with a background in
one or several of the following fields: Functional analysis, Spectral theory, Partial differential
equations, Many-body quantum mechanics, Condensed matter physics.

Suggested research topics include but are not limited to: The many-body problem for quan-
tum particles with fractional statistics (anyons), Rigorous studies of fractional quantum Hall
states, Mean-field limits of bosonic equilibrium states.

Financial conditions: The salary is approximatively 2100 EUR after tax per month (or
approx 2600 EUR gross salary). The postdoctoral researcher will have access to funding for
travel and visitors.

The successful candidate will not have any teaching obligations.

Applications: Deadline for the first call of the application is February 28th, 2018. We
reserve the right to leave the positions open, to extend the application period and to consider
candidates who have not submitted applications during the application period.

Applications should be submitted to nicolas.rougerie@lpmmc.cnrs.fr. Please provide: CV,
list of publications, research statement describing both past research and future research plans
(max. 4 pages), 2 or 3 letters of recommendation sent directly to nicolas.rougerie@lpmmc.cnrs.fr
and, if they are available already, reports on your PhD thesis and/or defense.

For more information on these positions and for an updated list of academic job announcements
in mathematical physics and related fields visit

http://www.iamp.org/page.php?page=page_positions

Benjamin Schlein (IAMP Secretary)
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Departments of Mathematics and Physics
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School of Mathematics
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