A Secure Distributed Transport Protocol for
Wireless Sensor Networks

Levente Buttyan

Laboratory of Cryptography and System Security (CrySyS)
Budapest University of Technology and Economics, Hungary

http://www.crysys.hu/

Abstract—We propose a secure distributed transport protocol
for wireless sensor networks that resists against attacks on the
reliability service provided by the protocol, as well as against
energy depleting attacks. Our protocol is based on the Distributed
Transport for Sensor Networks (DTSN) protocol, to which we
add a security extension that consists in an efficient, symmetric
key based authentication scheme for control packets. Besides
describing the operation of our protocol, we also provide its
analysis in terms of security and overhead.

I. INTRODUCTION

In some applications of Wireless Sensor Networks (WSN),
for instance, in case of multimedia sensor networks [1], the
sensors capture and transmit high-rate data with some QoS
requirements. Such applications require the use of a transport
protocol that ensures reliable delivery and congestion control.
It is widely accepted that transport protocols used in wired
networks (e.g., the well-known TCP) are not applicable in
WSNs, because they perform poorly in a wireless environment
and they are not optimized for energy consumption. Therefore,
a number of transport protocols specifically designed for
WSNs have been proposed in the literature (see e.g., [2] for a
survey). The main design criteria that those transport protocols
try to meet are reliability and energy efficiency. However,
despite the fact that WSNs are often envisioned to operate
in hostile environments, they do not address security issues at
all, and as a consequence, they ensure reliability and energy
efficiency only in a benign environment where no intentional
attack takes place [3].

Attacks against WSN transport protocols come in two
flavors: attacks against reliability and energy depleting attacks.
An attack against reliability is considered to be successful if
the loss of a packet (or packet fragment) remains undetected.
In case of energy depleting attacks, the goal of the attacker is to
force the sensor nodes to perform energy intensive operations,
in order to deplete their batteries. An example would be when
the attacker coerces some sensor nodes to unnecessarily re-
transmit packets (or packet fragments).

In this paper, we propose a secure WSN transport protocol,
which, to the best of our knowledge, is the first of its kind.
Our protocol is based on the Distributed Transport for Sensor
Networks (DTSN) protocol [4], to which we propose a security
extension that transforms the otherwise vulnerable DTSN
protocol into a secure WSN transport protocol that resists

Anténio M. Grilo
INESC-ID, Instituto Superior Técnico
Technical University of Lisbon, Portugal
http://comp.ist.utl.pt/

both reliability and energy depleting attacks. Essentially, our
proposal consists in an authentication scheme that prevents
the forgery of transport control packets, i.e., acknowledge-
ments (ACK) and negative acknowledgements (NACK). The
prevention of ACK forgery ensures that the attacker cannot
generate a valid ACK for a valid packet that has not been
received by the destination, and hence, the loss of a valid
packet can be detected by not receiving an ACK for it. The
prevention of NACK forgery ensures that the attacker cannot
inject valid NACKs that would trigger the retransmission of
the corresponding valid data packets. As a side effect, our
authentication scheme also provides end-to-end authentication
and integrity protection of the data packets.

The organization of the paper is the following: In Section II,
we briefly summarize the operation of the DTSN protocol.
In Section III, we analyze the security vulnerabilities of
DTSN and define our design objectives. In Section IV, we
describe our proposed authentication scheme, and we analyze
its security and overhead in Section V. Finally, we conclude
the paper in Section VI.

II. THE DTSN PROTOCOL

DTSN [4] is a reliable transport protocol developed for
sensor networks where intermediate nodes between the source
and the destination of a data flow cache data packets in
a probabilistic manner such that they can re-transmit them
upon request. The advantage of allowing intermediate nodes to
cache and re-transmit data packets is that the average number
of hops a re-transmitted packet must travel is smaller than the
length of the route between the source and the destination.
In case of a fully end-to-end reliability mechanism, where
only the source is allowed to re-transmit lost data packets,
re-transmitted packets always travel through the entire route
from the source to the destination. Thus, DTSN improves the
energy efficiency of the network compared to a transport pro-
tocol that uses a fully end-to-end re-transmission mechanism.
Our proposed security extension that we will introduce later
preserves this advantageous feature of DTSN.

DTSN uses special packets to control caching and re-
transmissions. More specifically, there are three types of such
control packets: Explicit Acknowledgement Requests (EARs),
Positive Acknowledgements (ACKs), and Negative Acknowl-
edgements (NACKSs). The source sends an EAR packet after

the transmission of a certain number of data packets, or when
its output buffer becomes full, or when the application has
not requested the transmission of any data during a predefined
timeout period. Upon the reception of an EAR packet, the
destination sends an ACK or a NACK packet depending on
the existence of gaps in the received data packet stream. An
ACK refers to a packet sequence number n, and it should
be interpreted such that all packets with sequence number
smaller than or equal to n were received by the destination.
A NACK refers to a base sequence number n and it also
contains a bitmap, in which each bit represents a different
sequence number starting from the base sequence number n.
A NACK should be interpreted such that all packets with
sequence number smaller than or equal to n were received
by the destination and the packets corresponding to the set
bits in the bitmap are missing.

Within a session, packets are sequentially numbered. The
Acknowledgement Window (AW) is defined as the number of
packets that the source transmits before generating an EAR.
The output buffer at the sender works as a sliding window,
which can span more than one AW. Its size depends on
the specific scenario, namely on the memory constraints of
individual nodes.

In DTSN, besides the source, intermediate nodes process
ACK and NACK packets too. When an ACK packet with
sequence number n is received by an intermediate node, it
deletes all data packets with sequence number smaller than
or equal to n from its cache and passes the ACK packet on
to the next node on the route towards the source. When a
NACK packet with base sequence number n is received by
an intermediate node, it deletes all data packets with sequence
number smaller than or equal to n from its cache, and in
addition, it re-transmits those missing data packets that are
indicated in the NACK packet and stored in the cache of
the intermediate node. The bits that correspond to the re-
transmitted data packets are cleared in the NACK packet,
which is then passed on to the next node on the route towards
the source. If all bits are cleared in the NACK, then it
essentially becomes an ACK referring to the base sequence
number. The source manages its cache and re-transmissions
in the same way as the intermediate nodes, without passing
on any ACK and NACK packets.

III. SECURITY ISSUES AND DESIGN OBJECTIVES

As we have shown earlier in [3], reliable transport protocols
are vulnerable to control packet manipulation attacks mounted
by compromised nodes on the route between the source and
the destination. In particular, a compromised intermediate node
can forge or alter an ACK packet on its way to the source,
which creates the false impression that data packets have been
received by the destination while in reality they may have
been lost. Data packets that are believed to be delivered are
deleted from the caches of intermediate nodes and the output
buffer of the source. Thus, forging or altering ACK packets
may lead to permanent loss of some data packets, and puts
the reliability service provided by the protocol in jeopardy. A

compromised intermediate node can also forge or alter NACK
packets, which would have a similar effect, as a NACK also
acknowledges the reception of data packets up to the base
sequence number in the NACK. In addition, setting bits in the
bitmap in a NACK packet triggers unnecessary re-transmission
of the corresponding data packets, leading to increased energy
consumption and a larger probability of packet loss due to
increased interference. While unnecessary re-transmissions do
not directly harm the reliability service provided by the DTSN
protocol, it is clear that such inefficiency is still undesirable.

ACK and NACK packets can also be entirely deleted by
compromised intermediate nodes, which cannot be prevented
by cryptographic countermeasures. Note, however, that an
eventually received later ACK or NACK packet with a larger
sequence number or base sequence number, respectively, ac-
knowledges all previous data packets including those referred
to by the deleted ACK or NACK, and hence, ensures recovery
from their loss. The deletion of NACK packets, or just clearing
set bits in their bitmap, will also prevent the immediate re-
transmission of the corresponding missing data packets, but
again, the eventual reception of an intact NACK packet ensures
recovery from this situation too.

Moreover, a compromised intermediate node may replay
previously recorded ACK and NACK packets. Fortunately,
a replayed ACK has no harmful effect apart from the futile
energy usage due to the transmissions of the replayed ACK
packet itself. This problem can be alleviated if the nodes keep
track of the largest sequence number acknowledged so far,
and drop ACK packets that refer to smaller sequence numbers,
because in this case, a replayed ACK will be accepted only for
a limited period (i.e., until the reception of a newer ACK or
NACK containing a larger sequence number or base sequence
number, respectively). A replayed NACK can also generate
unnecessary re-transmission of data packets, but only until
the eventual reception of a newer ACK or NACK packet that
acknowledges the reception of those packets that still appear
missing in the replayed NACK.

Considering the above discussion on possible attacks on
control information and their effects, our main objective is
to prevent the forgery and illegitimate alteration of control
packets in DTSN. For this reason, our security extension
proposed for DTSN hereafter aims at providing authentication
and integrity protection for DTSN control packets.

Packet authentication services could be provided trans-
parently for DTSN by lower layers, but there are at least
two reasons why we cannot rely solely on security services
provided by lower layers. First, as explained above, we want
some level of protection against compromised intermediate
nodes, and this requirement essentially excludes pure link level
solutions. Although, we do assume message authentication
services at the link layer in order to prevent the injection of
fake data packets into the network, that service is not sufficient
to detect forged control information injected by compromised
intermediate nodes.

Second, the authentication and integrity protection of ACK
and NACK packets must be provided in a way such that honest

intermediate nodes can also verify them, because in DTSN,
intermediate nodes also process ACK and NACK information.
This requirement calls for a broadcast authentication mecha-
nism; however, broadcast authentication mechanisms are typ-
ically expensive either in terms of computational complexity
(e.g., in case of asymmetric key digital signatures) or in terms
of management overhead (e.g., in case of the symmetric key
TESLA protocol [5]). Therefore, we do not want to provide
a broadcast authentication service at the routing layer that is
transparent to the upper layers, including DTSN, because this
would mean to protect each and every upper layer protocol
data unit, not only DTSN ACK and NACK packets, with the
expensive broadcast authentication mechanism. Another rea-
son why a transparent broadcast authentication service is not
desirable for protecting DTSN control packets is that NACK
packets are not only authenticated but they are sometimes also
modified by intermediate nodes (set bits are cleared when the
corresponding data packets are re-transmitted).

I'V. THE PROPOSED AUTHENTICATION SCHEME

Our security extension to DTSN is based on symmetric key
cryptographic primitives, and hence, it is efficient and easily
applicable in the WSN context. In effect, our proposal is simi-
lar to the TESLA protocol [5] in spirit, but it does not require
globally synchronized clocks in the nodes, neither it requires
the establishment of any cryptographic context between the
destination/source and the intermediate nodes on the route.
The price that we pay for these advantageous features is that
the proposed mechanism does not really provide a general
purpose broadcast authentication service, but it is tailored
for the specific problem of authenticating ACK and NACK
packets. More specifically, our proposed mechanism ensures
that an intermediate node can verify if an acknowledgment or
negative acknowledgment information has really been issued
by the destination, if and only if the intermediate node actually
has in its cache the valid data packet referred to by the
ACK or NACK. Note, however, that the real need to verify
the authenticity of control information arises exactly in the
case when the intermediate node has the referred data packet,
because only in that case it needs to decide to delete it from
the cache (in case of an ACK) or to re-transmit it (in case of a
NACK). Otherwise, the intermediate node only needs to pass
on the control information. Thus, in our scheme, forged control
information can propagate in the network, but only until it hits
an intermediate node that cached the corresponding valid data
packet; this node can detect the forgery and drop the forged
control packet.

The general idea of our protocol is the following: Each data
packet is extended with two MAC (Message Authentication
Code) values computed over the packet itself with two differ-
ent keys, an ACK key and a NACK key, both specific to the
data packet and known only to the source and the destination.
When the destination wants to send an ACK referring to this
data packet, it reveals its ACK key; similarly, when it wants
to signal that this data packet is missing, it reveals its NACK
key. Now, any intermediate node that has the data packet

in question can verify if the ACK or NACK is authentic
by checking if the appropriate MAC verifies correctly with
the given key. As only the source and the destination can
produce the right keys, but the source never reveals them,
the intermediate node can be sure that the control information
must have been sent by the destination. A side effect of the
scheme is that the MAC values provide end-to-end protection,
meaning that the destination can check the authenticity and
integrity of each received data packet, which is also a desirable
feature.

Below, we specify in details the management of ACK and
NACK keys and the processing of ACK and NACK packets.

A. Key hierarchy

We assume that the source and the destination share a secret
which we call the session master key, and we denote it by K.
From this, they both derive an ACK master key K40k and a
NACK master key Ky4cx for the session as follows:

Kioxk = PRF(K, “ACK master key”, SessionlD)

Kyacxk = PRF(K, “NACK master key”, SessionID)

where PRF' is the pseudo-random function defined in [6] and
SessionID is the DTSN session identifier. The length of K,
Kack, and Kyacox is 128 bits each.

The ACK key K 4%y and NACK key K ") for the n-th
packet of the session (i.e., whose sequence number is n) are
computed as follows:

Kﬁxnc)*}(= PRF(Kack, “per packet ACK key”,n)
K](GQCK = PRF(Knack, “per packet ACK key”,n)

The length of the ACK keys is KLack and the length of
the NACK keys is KLyack. These are security parameters
which will be analyzed later. Note that both the source and the
destination can compute all these keys as they both possess the
session master key K. Moreover, PRF' is a one-way function,
therefore, when the ACK and NACK keys are revealed, the
master keys cannot be computed from them, and consequently,
as yet unrevealed ACK and NACK keys remain secrets too.

In most applications, the destination of the data packets
transferred with the help of DTSN is the base station. Under
this assumption, the simplest way to generate the session
master key between any DTSN enabled node and the base
station is to derive it from a pre-established shared secret
value, such as a node key shared by the node and the base
station, which can be configured manually in the node before
its deployment. Denoting the shared secret by S, the session
master key K is then derived as follows:

K = PRF(S, “session master key”, SessionID)

The advantage of this approach is that it does not even
require an explicit message exchange between the source and
destination for the purpose of establishing K.

In a more general setting, when a shared secret between the
source and the destination cannot be assumed, we propose to
use an authenticated Diffie-Hellman protocol variant such as

the Station-to-Station protocol [7]. In that case, an explicit
message exchange is needed between the source and the
destination which can precede the DTSN session establishment
or it can be integrated with it.

B. Generating and processing ACK and NACK packets

As we said before, data packets are extended with two
MAC values: these are called ACK MAC and NACK MAC.
These values are computed from the entire DTSN packet with
sequence number n using K,(anc)‘K and KI(\;Q ck» respectively.
The MAC function used for this purpose is HMAC [8]. The
length of the ACK MAC is ML4cx and the length of the
NACK MAC is MLyack. These are security parameters
which will be analyzed later. Both MAC values are placed
in the DTSN header.

The ACK packet that refers to sequence number n is
extended with the ACK key Kj(fc)K. For this purpose the
format of ACK packets is extended with an ACK key field.
Similarly, the NACK packet with base sequence number n
is extended with the ACK key Ki;gK, as the semantics of
the base sequence number in NACK packets is the same as
that of the sequence number in ACK packets. In addition, if
the 4-th bit is set in the bitmap, then the NACK packet is
further extended with the NACK key KI(\;LIC‘)K In order to
accommodate these keys, the packet format of NACK packets
is extended with an ACK key field and variable number of
NACK key fields.

When an ACK packet is received by an intermediate node
or the source, the node first checks if it has the corresponding
data packet. If not, then the ACK packet is simply passed on
to the next node towards the source. Otherwise, the node uses
the ACK key obtained from the ACK packet to verify the ACK
MAC value in the data packet. If this verification is successful,
then the data packet can be deleted from the cache, and the
ACK packet is passed on to the next node towards the source.
If the verification of the MAC is not successful, then the ACK
packet is silently dropped.

When a NACK packet is received by an intermediate node
or the source, the node processes the acknowledgement part
of the NACK packet as described above. In addition, it also
checks if it has any of the data packets that correspond to
the set bits in the bitmap of the NACK packet. If it does
not have any of those data packets, it passes on the NACK
without modification. Otherwise, for each data packet that
it has and that is marked as missing in the NACK packet,
it verifies the NACK MAC of the data packet with the
corresponding NACK key obtained from the NACK packet. If
this verification is successful, then the data packet is scheduled
for re-transmission, the corresponding bit in the NACK packet
is cleared, and the NACK key is removed from the NACK
packet. After these modifications, the NACK packet is passed
on to the next node towards the source.

In addition, each node maintains for each DTSN session
the largest verifiably acknowledged sequence number so far,
which we denote by MaxSN. If the sequence number n in a
received ACK is smaller than or equal to MazSN, then the

ACK is silently dropped. If the base sequence number 7 in a
received NACK packet is smaller than or equal to MazSN,
the NACK packet may still contain useful information in the
bitmap. In particular, if the i-th bit is set and n+1i > MazSN
then the corresponding data packet needs to be re-sent (if the
node has that data packet and verification of the corresponding
NACK key is successful). However, if the i-th bit is set and
n+1i < MazSN then it can be cleared and the corresponding
NACK key can be removed from the NACK packet. The full
processing of NACK packets is illustrated in Figure 1.

V. ANALYSIS
A. Security

The security of the proposed DTSN extension depends on
the length of the MAC values ML 4¢cx and MLyack, and the
length of the MAC keys, KLscx and KLyacx. In general,
the length of the MAC value determines the probability that
an attacker can generate a valid MAC for a forged data
packet by random guessing. If the length of the MAC is ML
bits, then this probability is 2~™%. The length of the key
determines the resistance of the scheme to brute force key
guessing attacks: the attacker can observe some data packets
with valid MAC values, and try all possible keys until he finds
one that produces the observed MAC values for all observed
data packets. The average complexity of this attack, measured
in the expected number of MAC computations, is 2~ %F+1,
where KL is the key length in bits. Thus, larger MAC and
key sizes are more secure, but on the other hand, MAC values
add byte overhead to data packets, whereas ACK and NACK
keys are part of control packets and therefore they add byte
overhead to those packets. In particular, NACK packets may
carry multiple NACK keys. Hence a good trade-off between
security and overhead must be found.

In our case, producing a valid ACK MAC and NACK MAC
on a forged data packet would result in the acceptance of
the forged data packet by the destination, and the erasure
of all potentially valid but not yet delivered data packets
from the caches of the intermediate nodes up to the sequence
number of the forged data packet. In order to prevent this
attack, ML 4cx + MLnack should be sufficiently large. Note,
however, that the attacker cannot check off-line if a guessed
MAC for a forged packet is correct, but it needs to send the
forged packet to the destination, and see if it is accepted or
not. In other words, the attacker must use the destination as
an oracle. Moreover, he must prevent the destination from
receiving the original data packet while he is submitting
the forged packets with the same sequence number to the
destination. This limits the power of the attack, and allows
us to set the value of MLacx + MLyack in the range of
40-64.

A brute force key guessing attack against our scheme would
result in forged ACK and NACK information with all their
consequences as discussed in Section III. In particular, an
attacker can observe a data packet with its MAC values and try
all possible keys until he finds the correct ACK and/or NACK
key; then he can forge ACK and/or NACK packets. In order

. n (n+i)
NACK: N,...bieesy Kac ™, oo Knack' e

State: MaxSN, D =0

— forall 0 <i<=|b|, such that n+i <= MaxSN:
Clear b; and delete Kyack™*) from NACK

Pass NACK on

All bj is cleared
andD=17?

Drop NACK

no

i=i+l

Clear bj and .
delete Kyack™
from NACK

no
—

i = MaxSN-n+1
Data packet | o
with SN =n
is in cache ?
yes
ACK MIC in biis set?
data packet | no _
verifies with b=1
Kack™ ?
yes Data packet
with SN = n+i
is in cache ?
MaxSN =n
Delete all data packets yes
with SN <= MaxSN from cache
NACK MIC in
data packet
verifies with
Knack ™ 2

yes

Schedule data packet
with SN = n+i for
retransmission

L

Fig. 1.

to prevent this attack, both KL cx and KLyacx should be
sufficiently large. Note, however, that they do not necessarily
need to be the same. Indeed, as forging ACK information has
potentially more serious consequences, we may require that
KLack > KLnack.

There is also a subtle interplay between the MAC length and
the key length in our scheme. Notably, it is not worth to choose
the key length larger than the MAC length. The reason is that,
in our scheme, the attacker actually does not need to find
K XgK itself in order to forge an ACK on the n-th data packet,
but any key with which the ACK MAC verifies correctly would
be sufficient. In addition, it is sufficient if the guessed key
works only for a single data packet. When the key length is
KL and the MAC length is ML, and KL > ML, the expected
number of keys with which the MAC in a given packet verifies
correctly is 2561~ML Hence, the complexity of a successful
guessing attack against our scheme is 2K7/2KL—ML — oML

Based on the above analysis, we propose the following
parameter values: MLacx = KLacox = 40 and MLyacx =
KLyack = 24.

B. Overhead

The proposed authentication scheme imposes an additional
protocol overhead, which decreases the energy-efficiency of
the system. We evaluated the impact of the additional DTSN
packet fields based on the analytical framework described
in [9]. In this analytical framework, the DTSN end-to-end
delivery procedure is represented as a Markov chain whose

NACK processing

states correspond to the location of a packet on the path
from the source to the destination at each iteration (i.e.,
at each (re-)transmission attempt). The end-to-end delivery
cost is measured in terms of the expected total number of
transmitted bytes (at the Media Access Control layer) required
to accomplish the successful end-to-end delivery of a data
packet. The model assumes that the Packet Error Rate (PER)
is fixed and the same for all packets.

The presented numerical results assume that the used radio
technology is IEEE 802.15.4. The considered PER values are
within the realistic ranges reported in [10], with a maximum
around 0.035 for indoor scenarios and 0.1 for outdoor sce-
narios in the absence of IEEE 802.11b/g interference, while
with IEEE 802.11b/g interference, the worst-case PER may be
as high as 0.80, even for very short communication distances
(e.g., 5 m). These PER values already take into account the
default number of retransmissions attempts, which is equal to
3.

Figure 2 shows the expected total number of transmitted
bytes required to deliver a data packet with a payload of 60
bytes, as a function of the PER, with and without our proposed
security extension.

As it can be seen, the overhead imposed by the security
extension becomes more significant for PER values above
0.05. This can be explained by the fact that with the security
extension, NACK packets become much longer since they
must carry the NACK keys of the requested packets besides
the sequence number bitmap. As the PER increases, the

5000.00
4500.00
4000.00
3500.00
3000.00
2500.00
2000.00
1500.00
1000.00
500.00
0.00

Total Octets Transmitted by MAC

0] 002 0.04 0.06 0.08 01 012

PER

=—f=/0 security =ll=w/ security

Fig. 2. Expected total number of transmitted bytes required to deliver a data
packet with a payload of 60 bytes, as a function of the PER.

number of lost EAR and NACK packets (and consequently
the number of EAR and NACK retransmissions) increases,
which affects both the secured and the unsecured DTSN
configurations. Additionally, the number of lost data packets
also increases, and hence, the number of NACK keys in NACK
packets, increasing the NACK length in the secured DTSN
configuration. This explains the significant overhead difference
observed in the results.

Figure 3 shows the expected total number of transmitted
bytes required to deliver a data packet, as a function of the
payload size, for the fixed PER of 0.1, with and without our
security extension.

7000.00

[}
E £000.00 s
_‘E /
H 5000.00 /
£ 400000
E /
£ 300000 —
E /
= 2000.00 —
o
§ 100000
El 0.00
=
0 20 40 60 80 100 120

Data Payload Size (octets)

=—f=/0 security =ll=w/ security

Fig. 3. Expected total number of transmitted bytes required to deliver a data
packet, as a function of the payload size and PER = 0.1.

One can observe that the number of transmitted bytes
increases linearly with the payload size. As expected, the
security overhead is constant, which means that it is more
significant for low payload sizes.

VI. CONCLUSION

In this paper, we proposed a security extension to the
Distributed Transport for Sensor Networks (DTSN) protocol
that transforms the otherwise insecure DTSN protocol into
a secure WSN transport protocol that resists control packet
manipulation attacks. Essentially, our security extension con-
sists in a novel authentication scheme that prevents the forgery

of transport control packets. As a side effect, our authen-
tication scheme also provides end-to-end authentication and
integrity protection for the data packets. The proposed security
extension is solely based on symmetric key cryptographic
primitives. We analyzed the overhead of the proposed scheme
in terms of the amount of the additional bytes that need to be
transmitted over the wireless medium, and our analysis showed
that the overhead is bearable for realistic values of the Packet
Error Rate (PER).

Our planned future work includes the implementation and
validation of the proposed scheme in a WSN testbed envi-
ronment. In addition, we intend to carry out a more detailed
security analysis of the proposed protocol. So far, we assumed
that compromised intermediate nodes attack only control pack-
ets, and the data packets cached by the honest intermediate
nodes are intact. In a more general attacker model, however,
compromised nodes may also modify or inject data packets.
While those fake data packets would not be accepted by the
destination, they do interfere with the mechanisms of our
scheme. A detailed analysis and understanding of the effects
of such attacks are also left for future work.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 225186.
The first author has also been supported by the Hungarian
Academy of Sciences through the Bolyai Jdnos Research
Fellowship.

The information in this document is provided “as is”, and
no guarantee or warranty is given that the information is fit
for any particular purpose. The use of the information is at
the sole risk and liability of the user.

REFERENCES

[1] 1. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless
multimedia sensor networks,” Computer Networks, vol. 51, pp. 921-960,
2007.

[2] C. Wang, K. Sohraby, B. Li, M. Daneshmand, and Y. Hu, “A survey of
transport protocols for wireless sensor networks,” IEEE Network, vol. 20,
no. 3, pp. 34-40, 2006.

[3] L. Buttyan and L. Csik, “Security analysis of reliable transport layer
protocols for wireless sensor networks,” in Proceedings of the IEEE
Workshop on Sensor Networks and Systems for Pervasive Computing
(PerSeNS), March 2010.

[4] B. Marchi, A. Grilo, and M. Nunes, “DTSN - Distributed Transport for
Sensor Networks,” in Proceedings of the IEEE Symposium on Computers
and Communications, Aveiro, Portugal, 2007.

[5]1 A. Perrig, R. Canetti, D. Song, and D. Tygar, “The TESLA broadcast
authentication protocol,” RSA Cryptobytes, Summer 2002.

[6] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2, Internet RFC 5246, August 2008.

[7] A. Menezes, P. C. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. CRC Press, 1997.

[8] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” Internet RFC 2104, February 1997.

[91 A. M. Grilo and N. M. Tiglao, “A Markov model of WSN reliable
transport with cooperative caching,” Technical Report, available on-line
at http://www.inov.pt/WSN_Reliability_TR.pdf, June 2010.

[10] M. Petrova, J. Riihijirvi, P. Mihonen, and S. Labella, “Performance
study of IEEE 802.15.4 using measurements and simulations,” in Pro-
ceedings of IEEE Wireless Communications and Networking Conference
2006 (WCNC’06), Las Vegas, USA, April 2006.

