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1. Put

(1.1) Ay = [(nfs)] (r, s=0, 1, ..., n) ,

a matrix of order n+l; for example

0 0 0 1
A, =10 0 1 1
4 0 1 2 1
1 3 3 1
Let
(1.2) fn+1(x) = det(xI—An+1)

denote the characteristic polynomial of An Hoggatt has communi-

+1°
cated the following result to the writer.

Let F = 0; F = 1:
o 1
= >
Fn+1 Fn * I;‘n—l (n21)
denote the Fibonacci numbers. Define
(1.3 F__=-220 rtl p21), F_ =L
Fl FZ oo Fr
Then we have
n+l /
_ r(rt+l)/2 n+l-r
(1.4) fn-i-l(x) - Z (-1) Fn+1, r=* :
r=o

In the present paper we prove the truth of (1.4). Moreover we
show that

(1.5) £ 00 = I (x-al g™y
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where

(1.6) a = (1+/5)/2, B =0-/5)/2

Thus the characteristic values of An+1 are

(1.7) P AT S

Since they are distinct it follows that An+l is similar to a diagonal
matrix.

2. We recall first that for any matrix A of the nth order with
characteristic roots )\1, XZ’ e oo >\n we have

(2.1) tr(Ak)=>\11‘+...+>\1; k=0, 1, ...) ,

where tr(Ak) denotes the trace of Ak. Moreover once these traces
are known it is a simple matter to get the characteristic polynomial.

We shall accordingly attempt to evaluate
(2.2) t (Ak ) (k=0,1 )
. (A =0, 1, ...

For k=1 itis evident from (1.1) that
r
(2.3) tr(AnH) - Z (n-r) - Fn+l .
T

For k = 2 we have

tl'(A121+l) - Z (nfs)(n?r) - Z (n;r)(n;s)
T, s r,s
(- k) (n k+1)
- (n-r)! (n-s)
z r!s!((n-r-s)! ) Z ke (n k). Z
T, s T
where

(aL)r = a(atl)...(atr-1)
Since [1] page 37
(-n)_(a) (c-a)

' n
z r.r(c:)r - (c)n ’

iy

we get
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, (-2n+k-1)
2 _ n! k
tr(Ang) 7 2 TR N
k
_ n! (n-k)! (2n-k+1)!
- Z K (n-kK)! 0’ (Zn-2k+1)
- Z (ank+l) ’
k
so that
(2. 4) tr(AIZI‘H.) = Font2

In the next place we have
_ r s t _ n 1' n-t
tr(a’ arl) = GIIGIDG ) = D S TGy I
T, 8,t r,s,t

but it does not seem possibleto evaluate this sum by the above method.
We shall instead employ the method used in [2] .
Starting with the identity

(2.5) x" (1+x)" Z (n Ty x7°°

replace x by 1+x-1. We get

(2. 6) (1+x) " (1 +2x)" Z G T P t

Next multiply both sides by x' and sum over r. This gives
n

z xr(1+x)r(1+zx)n—r - Z (n-r)(n—ts)xn+r—t

s
r=0 r,s,t

The coefficient of x" on the right is equal to

nrns 2
Z( Z(ns nr = tr(AnH)
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On the left we get

s'' s s s n
r+s+t=n r+s<n
say. Then
n r r+s n-r n-r-s
= 2
D Y Rl IO
n=o r, s=0 n=r+s

- Z (:) XI‘+S(I_2X)—S—1
s=

r, s=0

- Z xzs(l—x)_s—l(l-Zx)—s_l

5=0

1 _ 1 0.2 [32
1—3x+x2 c12 - Bz 1 - azx 1 - ﬁzx

1

where a, B are defined by (1.6). We have therefore

D’Zn+2 _ 6Ic‘.n+2. F2n+2
un = > > = = F
a - B F

2n+2
2
in agreement with (2. 4).

Returning to (2. 6), again replace x by l+x_1. We find that

T 5 . \0-T _ n-r,,n-s, n-t, n-j
(2.7) (1+2x) " (2+3x) = > N ) x
s, t,

Multiply by x' and sum over r. We get

n

T T n-r _ n-r, n-s, n-t, ntr-j

(2.8) Z x (1+2x)"(2+3x) = Z CoNCN j)x

r=o0 T, 8, %]

The coefficient of x" on the right of (2. 8) is evidently

- - -t 3
2 OO = )

T
r,s,t
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On the left we get

- ~r-t _t - —r-
D 8 TGt It M S U T SRR
rt+s+t=n r+s<n

say. Then as above

” n < r.,2s r+s -s-1
u X = Z (()277x" T(1-3%)
n=o r, S=0
” 2s -s-1 -s-~1 1
= Z (2x)“7(1-%) (1-3x) = v
f (1-x)(1-3x)-4x
1 1

1—4x-x2 (l—asrx)(l-ﬁgx)

1
W
W
(68 |
Wi

so that

a3n+3 _ 53n+3 ) F3n+3

a3—{33 F

3

It follows that

_ F31\.-!-3

) = oot
1 F3

3. We are now able to handle the general case. In (2.6) replace

(2.9) tr(Af’1+

x by 1+x_1 and we get

(3.1) (2437 (345" F = > (n’r)(n’s)(n}t)(nl;j)xn'k

s t
S, tr j: k
The general formula of this type is

r n-r
(3.2) (Fk_1+ka) (Fk+ka+1)

T

n
=S AN, S 1,203,000
k



86 THE CHARACTERISTIC POLYNOMIAL OF A CERTAIN April

Indeed for k=1, 2, 3, 4, (3.2) reduces to (2.5), (2.6), (2.7), (3.1),
respectively. Assuming that (3. 2) holds for the value k we replace x

by 1+x'l and multiply the result by x?. The left member becomes

r n-r
(ka_l +XFk+Fk) (ka+ka+1 + Fk+1)

_ r n-r
= (Fy v xFe) (B T xF,) ’
while the right member becomes

n-rl n-r n-r n-r

Z (nl-‘-lr)(r Yoo ( rk—l)(r k)x k+1

This evidently completes the proof of (3. 2).

Next multiply (3. 2) by x' and sum over r. This gives

n
(3.3) z xr(Fk_l+ka)r(Fk+ka+1)n r
r=o
n-r n-—rl n—rk_1 n+;t'-rk
= D R ) [ P G I :
r,r r 1 2 k
El 1""! k

The coefficient of x on the right of (3. 3) is equal to

S Qe T

k k+1
r+s+t=n
_ r,,n-r, ..r-s _2s _n-r-s (k)
- Z (s)( s )Fk—l Fro Fraa Yn ’
r+s<n
say. Then
(k) n r,.r-s _2s r+s -s-1

Z Yn X 7 Z (S)Fk-l Fy (1-Fy )
n=o r, S=0

1 1
2 2 k 2
k+lx)-FkX 1-(Fk_1+Fk+l)X+('1) X

n

.
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1_(Fk—1+Fk+l)X+(_1)kX2 = 1-(ak+[3k)x+(aﬁ)kx2 = (l-akx)(l-ﬁkx)

1 1 a B

(l-akx)(l—ﬁkx) ) QR-Bk l—akx I—ka

It follows that
nk+k nk+k F
_a’ -8B

R T

"z

Comparison with (3. 4) yields

F
k _ T nktk
(3.5) tr(An+1) = —
k
4. We now return to the characteristic polynomial

fn+l (x) = det(xI - An+l)

If we denote the characteristic values by >\o’ A . )\n, we have

1’
n n
f' (X) © ] ©
nt1X 1 k-1 <k _ k-1 Kk
& Zx—)\. = Z x )\j_ Zx tr(An_H)
nt+l . ] _ . -
j=o k=o j=o k=o
> nk+k _nk+k = ® o
= Z x_k_1 -_—E——-k—-—a -P = x—k—1 ZaJkﬁ(n—J)k
k=0 a - P k=o j=o
n
1
~ eIpnd
J=0
It follows that
n
_ _ Jpn-]
(4.1) fn_,_l(X) = I (x-a'f ")
j=o
and therefore the characteristic values of An—l are the numbers
(4.2) e T S

We shall now show that
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n+l

n
j nn-j +1 -
(4. 3) 0 (x-ap™) = % (-1)Tr/2 F 1 rxn+1 r
j=o r=o
with Fn+1, . defined by (1. 3).
To prove (4. 3) we make use of the familiar identity
n-1 n
P 1\ E r(r-1)/2 rnq r
(4. 4) n (l-a’x) = > (-1)' g I
j=o r=o
where
n -1 -r+l
(4. 5) ] - G=aD0-9"")...0-a"""")
: - 2
: (1-a)(1-g")...(1-q")
1f. we replace g by f/a we find that
n rz-nr
[r] —>a Fnr
Thus (4. 4) becomes
n-1 n / /
ol - _\r Thrtl)/2 —nr r(r-1)/2 r
H(laﬁx)—Z(l)a B LI
j=o r=o

Now replace x by an—lx. Then

n-1
n (1--(111_‘]-1 ﬁJx)

j=o r=o

n
3 (DR ep TR

n, r

n
Z (_l)r(r+1)/2 F «F

n, r
r=o
. -1
Replacing x by x we get
n-1 n
-1 i +1)/2 -
n (x-a®J IBJ) - Z (_l)r(r )/ Fn i} BT
j=o r=o

This evidently proves (4. 3).
Incidentally we have proved the stronger result that (4. 3) holds

when a, f are any numbers such that af = -1 and
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n-r+1_ n-r+l

2). 5 (a B )
(a-P)(a”-B%).. . (a"-B")

If we now compare (4. 3) with (4. 1) it is clear that we have proved
(1.4).

. ) (an_ﬁn)(an—l_ﬁn—l

n, r

5. It is of interest to note that the particular characteristic values

o, Bn can be predicted directly as follows. We have

Z (nfs) O.S _ al’l Z (nfs) aS-I’l

S S

1. r n-r

P+a T = ™ T et = T

X n . . .
This shows that [1, Ay ooy a] is the characteristic vector corres-

ponding to an. Similarly [1, By <oy ﬁn] is the characteristic
. n
vector corresponding to 7,

However it is not evident how tofind the remaining characteristic

vectorswhen n > 1. We canfor example show that there are no other

characteristic vectors of the type [1, Yy eees 'yn] . Indeed assume
that
T s T

(5.1) 2 ()%= T (r=0, 1, .., m)

s
Then since . S n 1 -t .

DU 7= T = T v

n-s
s

it follows from (5. 1) that

Y2 )T Y™ (=0, 1, ..., n)
2
Since the right side is independent of r we must have Y+1 =7, so

that Y=a or P .
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A RECURSIVE OPERATION ON TWO-DIGIT INTEGERS
CHARLES W. TRIGG
San Diego, California

Let d bethe sum of the digits of the integer S, and S1 + dl = SZ’
S‘2 + dZ = 83, e e Sk + dk = Sk-i—l’ with each S being reduced modulo
100. Since there are only 100 two-digit integers (with initial zeros
being permitted), this operation must eventually repeat one or more
integers with the production of one or more closures of the series into
loops. Indeed, the 100 integers fall into four groups of branched chains
of 2, 11, 25 and 62 integers terminating in loops of 1, 11, 13 and 20
members, respectively, The loops consist of the integers between the

asterisks (**) in the following series.
(1) 86%00%00
(2) #5259 73 83 9407 1419 29 40 44%52

(3) 20 22 26 34 41 46 56 67 80 88

25 87*02} 04 08 16 23 28

38 49 62 70 77 91 01%02

64 74 85 98
(4) 31 35 43 50 55 65 76 89 06 12 15 21
53 61 68 82 92 03

11

24 30 33 3951 57 69 84 96}
97

42 48 60 66 78 93 05 10 E 13%17 25 32

37 47 58 71 79 95 09 18 27 36 45 54 63 72
81 90 99%*17.
Thus all the numbers can be generated from the eleven integers
86, 52, 20, 75, 64, 31, 53, 24, 42, 97 and 47.
If the S's are reduced modulo 10, two groups are formed —— a
loop of one with one attachment, 5%0%0, and a loop of four with four

attachments, ;:ﬁ: :;, so that it takes five digits to generate the set.

PR HKHK XK KKK
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THE CHARACTERISTIC POLYNOMIAL OF THE
GENERALIZED SHIFT MATRIX

V.E. HOGGATT, JR. and A.P. HILLMAN
San Jose State College and University of Santa Clara

T. A. Brennan | 3] obtained the characteristic volynomial for the
k by k matrix Pk:LPij]‘With the binomial coefficienf. (i(—_l.)as the
element pij in the i-th row and j-th column. See [6] and |7] for
special cases. L. Carlitz [5] used another method involving some
very interesting identities to achieve the same result. In this paper
we find the characteristic polynomial for a generalization of the Pk.

Let F be a field of characteristic zero, let p and q be in F,

and let
(1) Ypiz = 9V, t PV, 9 F O

be a second order homogeneous linear difference equation over F. We
restrict n to be an integer in (1). Let a and b be the zeros of the

auxiliary polynomial

xz—px—q = (x - a){x - b)

of (1). We deal only with the case in which (1) is ordinary inthe sense
of R. F. Torretto and J. A. Fuchs [4], i.e., we assume that either
a=b or a £ b” for all rositive integers n. Using the notation of
E. Lucas [1] we let Un be the solution (an - bn)/(a - b) of (1). Also

we use the notation of [3] and [4] for the generalized binomial coefficient

m- _ UmUm—l Um—j+l mo _
[j:l_ UIUZ"'Uj ’ [O]_'

of D. Jarden [2].
Jarden showed that the product Z, of the n-th terms of k-1

solutions of (1) satisfies

[«]

Kk
(2) Z (—1)h[§] (-q)h(h'”/’zzn_h =
h=0

91



92 THE CHARACTERISTIC POLYNOMIAL OF THE April

Torretto and Fuchs showed that (1) is ordinary if and only if the ''se-

quences'' (i.e., functions of the integral variable n)

. k-i_i-1 . _
(3) z (Lk) = UTU LT i=12, ..., k

form a basis for the vector space of all sequences satisfying (2).
Let Cn = Cn(k) be the k-dimensional column vector with zn(i, k)

the element in the i-th row and let S = S(k) be the k by k matrix
[Sij] with

(4) s,

_ (i-1Y k-j itj-k-1
ij ( p

k-1/4

We show below that S has the shifting property SCn =C and that

n+tl
the characteristic polynomial of S is the auxiliary polynomial

k

(5) () = 3 (DP[E]qRt ) 2nk
h=0

of the difference equation (2).

Using (3) and (1) we have,

k-i i-1y _h i-1-h_h_k-1-h

i-1
. _ i-1
(6) Zn+l (i, k) = Un+1 (qUn+pUn+1) B Z( h/9P UnUn+1
h=0

Letting h =k - j in (6) and reversing the order of the terms leads to

k
o iclN k-j itj-k-1 _k-j _j-1
(7 Zpap (b K= Z (k—j) L P Un " Van
j=k+l-i

Using (4) and the fact that (T) =0 for m < r, we can rewrite (7) as

k
(8) 2o (B0 = X s (5, k)
j=1

Let T :[tij] be the matrix £(S), where £f(X) is as defined in (5). In

matrix notation (8) is SCn = cn+1' By induction it follows that

S'C_= C_,.. Since the elements of the C_ in a fixed position satisfy
n nti n
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the difference equation (2), so do the vectors Cn. This is equivalent

to TC_ =0 for all integers n, i.e.,
n

(9) t.. z (1,k) + t,Z zn(Z, ky +... +t., =z

il "n i : ik k k) = 0

ol
for all n. Since it was proved in [ 3] that the sequences

zn(l,k), oo, z_(k, k)

!l

are linearly independent, (9) implies that each t.. = 0. Hence Tz 0

and we have shown that S satisfies f(X) = 0. Let g(X) =0 be the

monic polynomial equation of leastdegree over K for which g(S) = 0.
Then g(X) divides 1f(X).

Clearlythe last column of S is C,. Since only the last column

1
of S™ is involved in finding the last column of SnH by the formula
s-5% = 5™ Lnd since SC_=C_,,» it follows by induction that the

last column of S" is Cn' In particular, the element in the first row
and k-th column of S" is zn(l,k), which we shorten to z in what

follows. By definition

_ o.k-1 n n k-1
2 =U " =[@"-bN/(a- b) |
Expanding the binomial (an-bn)k_1 we see that
_ k-1.n k-2, \n k-1.n
(10) z = cl(a ) +c2(a by +... +Ck(b )

with each cy different from zero.

Since g(S) = 0, the elements in the s™ in a fixed position, and
in particular the z_s satisfies the difference equation for which g(x)
is the auxiliary polynomial. Jarden showed in [5] that the zeros of

f(x) are
(11) a , a b, a b, ..., b

The zeros of g(x) thus are some or all of these zeros of f(x). If

f(x) # g(x), then g(x) has lower degree than f(x) and so
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with m < k, the di in F, and each r, one of the elements of (11).
Since no ¢y in (10) is zero, %i;xo-t;lldnmean that (10) is not unique and
hence that the sequences (a b ), 0€ h £k-1, are linearly de-
pendent. As in [4], this would contradict the fact that (1) is ordinary.
Hence £(X) = g(X). Since the characteristic polynomial P(X) of S
is monic, of degree k, and a multiple of g(X), ¢(X) mustalsobe £(X)

and (11) gives the characteristic values of S. This completes the proof.
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(Continued from page 134)

A more extensive analysis of the generated compositions which
yield Fibonacci numbers will be jointly attempted by Dr. Hoggatt and
the author in a subsequent paper. In addition, the author is planning
to submit some papers in the future, which will furnish some original
models and theorems connected with Fibonacci numbers and their
properties. These models andtheorems have beenincorporated in part
in the author's doctoral thesis, which has been cited as a reference in

this article.



SUMMATION FORMULAE FOR
MULTINOMIAL COEFFICIENTS

SELMO TAUBER
Portland State College, Portland, Oregon
1. INTRODUCTION
In [1] we have given some historical background to the multinomial
coefficients and proved some of the basic summation formulae. More
of the summation formulae can be found in[2]. In this paper we shall
prove additional relations involving multinomial coefficients. Some of
these can be considered as generalizations of corresponding formulae
for binomial coefficients. We shall refer to [3]for these formulae.
2. FIRST SET OF FORMULAE
In order to simplify the notation used in [1], at least for the

proof, we shall write

n n
N .
! _ —_
N!/ 1 ks' _(k,k,...,k)’ with, > ks-—N ,
1’72 n
s=1 s=1
and, for, k1 +k2+.'. . +kn = N+1, we shall have the simplified notation
N
( i = [N (ke -1),k ] .
kl’kZ""’kj-l’kj l,kj+1,...,kn) j n

Under these conditions equation (6) of [1] can be written

n
(1) > [N,(kj-l),kn] = [N ] -
j=1
For 0 S p < n, we can write (1) in the form
p-1 n
- - ‘ -1),k
3 [N (k; 1),kp,kn] + [N, K l,kn] + s [N, ke (1;-1) n]
j=1 j=p+l
= [N+1,k Jk ] .
P n
and similar relations for N-1, N-2, ..., N-q, ..., N—kp, thus,
p-1 n
‘El[N—l,(kj—l),kp—l,kn]+[N-1,kp-2,kn]+. by 1[N-l,kp-1,(kj—1),kn]
)= j=pt
= [N,kp-l,kn]

95
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---------------------------------------------------------------

p-1 n
> [N-q, (1), -q, k_ J+[N-q, kma-Lk T+ 5 [Neg k-a, (k1) k]
=1 j=ptl

= [N-qt1, ko-a. k]

---------------------------------------------------------------

) [N—kp, (kj-l),O,kn]+ s [N-kp,O, (kj-l),kn]z [N-kp+1,o,kn] )
=1 j=p+l

By adding the first q equations and simplifying we obtain

q [p-1 n

N-a, (k.-1),k -a,k [+ ¥ [N-a,k -a,(k.-1),k =
T2 [Nea gl ma ] [N-a, -0, (1), 5 ]
a=0] j=1 j=ptl

= [N+1,kp, k|- [N-q, kp-q-l,kn] )

or, using the classical notation,

q -1
N-a
(2 212 G,k pEeLk ek ca, ., k)
a=0 j=l J- J J P n
n
N-a ) _
p> S N RERTE TIPS I U5 I | =
j=p+l J- J J n
= N+1 ) - N-q )
kl’k2’ sk, ,kn kl’k2’° ,k -q,. ,kn
For gq = k_, we obtain
kp -1
N-a
G X2 Gk ik L kelLk ek may...,k )T
N 1’72 j-1 +1 n
a=0] j=1
n
N-a _
2 ek, ik may .k kel k..., k)| T
. 1’72 j-1°775 jt+l n
j=ptl
- N+l )
kl’kZ" ,kp,. ,kn
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It will be noted that in both (2) and (3) the sum is independent of p, thus

by summing on p we obtain

K
n p[p-1
N-a
(9 2 213 G ek o kelke sk car.. k) T
p=1 a=0| j=1 1772 j-1"75 j+l p n
n
N-a
p> (kl,kz,...,k—a,...,k. R DR R I
j=p+1 p j-1"7 j+1 n
N N+ )
S ST

For n =2, (2) and (3) reduce to (3) and (4) of [3], p. 246,

3. SECOND SET OF FORMULAE
Consider the formulae leading to (2) and (3). If we multiply the

first relation by +1, the second by -1, ..., the (gq+l)-th relation by
(-l)q, etc., ... we obtain
q p-1
a N-a .
G) 21D 2 G e,k kelk ek s, k)T
a=0 i=1 j j i P
n
N-a _
pY (kl,kz,...,k—a,...,k. l,k.—l,k.+1,...,kn) -
j=ptl p J-17 7 j
a N-a+l N-1
~-a+ -
23 (-1D% g k -a k) K ..., k)
1, 2,.-., p 300 0y n 1: Z: H p: ’ n
a=1
+1 N-q
-1 o )
kl’kZ’ sk q 1’ :kn
and,
k
p p-1 N
a -a
© DT 2 G e,k Lkl ek ek )T
0.'—-'-0 J=1 J J J p
n
N-a —
D U S TS SUNS 06 16 SRS SUN
j=p+l p J J
i N-a+1 N+1
2% ( - )+ )
a1 Ko Kpr e e s kman e kg TR TRERTE SVRTRYE
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(5) and (6) for n = 2 reduce to (7) of {3], p. 247.

4. THIRD SET OF FORMULAE

Using the notation of section 2 we write for

n
= + =
Tk, o= NH, k=0,

s=1
p-1 n
s [N (k;-1), 0, k] + 3 [No, (kj-l),kn]:[Nﬂ,o,kn]
=1 j=p+1
p-1 n
s [N+, (-1, 1, k [N 0k ]+ s [N+, 1, (k;-1), k= [N+2, 1, k]
=1 j=p+l
SSRRRLLL LR LR LR R R R R R R EELLLLERERES ARRRARLLRTERRTSTEPRLITEE . |
b [NJrq, (kj—l), q, kn]+ [NJrq, q-1, kn:|+ by [N-I-q, q, (kj—l), kn]: |:N+q+l, q, kn]
=1 j=p+l
i)._.l ........... e SRRCLETRSCITCIVRLITLRTRNS
b3 N+h,U%—l),h,kn]+[N+h,h—1,kn]+ b3 [N+h,h,U%—l),kn]: Pq+h+1,h,kn}.
j=1 j=ptl

By adding and simplifying we obtain
q [p-1 n
D> [N+Q,U%—l),a,kn]+ ) Dﬂ+a,a,ﬂ%—l),kn] = [Ntq,a k]
a=0] j=1 j=ptl :

or, using the classical notation

q [p-1
N+a
(7) o B U S S Y R A S
a=0|_j=1 “ ) ?
n
N+a _
p> (kl,kz,...,a,.n.,k. DRk ek V| =
j___p+1 J- J J n
( N+qg+1 )
Kol e do etk el
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and similarly

h [p-1
N+a
@) = Z(kl,kz,...,k. l,k.—l,k.+1,.._.,a,...,k) *
azql jo1 3-17 0T n
n
N+a
2 kg a ke kel ek ) | T
i=ptl RS A n
n+h+1

(k,k,.. k h+l, k

17527 Npi1? p+l’ " %n

ntqg-1

( _
kl’kZ""’k _l,q 1,k

o) ptl” """’ n

For n=2 (8) reduces to (11) of [3] p. 248.
5. FOURTH SET OF FORMULAE
(8) of [1] can be simplified in writing by introducing the notation

k1 k2 kn-l n-1 ks

(9) p3 T ... X =(@m - Z) ,
3170 3,70 Jn-1=0 s=1  jg=0

where II operates on the operator X. Under these conditions (8) of

[1] can be written for,

n n
2 k,=pta, X j =P

s
s=1 s=1
n-1 ks
p q ptq
(o) (mm - = ). D 1 G s o ) .
_ Jpadpreeendy kl Jl,kz JZ,...,kan kl’kZ""’kn
s=1 JS'—‘O

P
Let us substitute p+r for p in (10), we obtain for (jl’jZ’ .o .,jn) .

n-1 It
+r p r
(. ° )= o 2O 4 s C ) )
Jp2 gy ~ ~ Udpthypdpthys s oh Thy byl By
t=1 h =0

with
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n n n
by hi =r, 3 ji = ptr, > ki = ptqtr ,
i=1 i=1 i=1

so that substituting into (10) we obtain

n-1 ks n-1 jt
11 : . , N : o4 .
D Cm Eo0m 26 a0t a0 L e )
s=1 j =0 t=1 h=0 non
s t
( r ) = ptqtr )
hl’hZ""’hn kl’kz"“’kn
More generally as can be proved by induction we can write
m-1 n-1 ki,_] m-1 q
. . J
(le) m (o U UL P U S SO L
=1 i=l k. =0 j=1 0 TRt Je JTh BB
jtl, 1
. d., ) q1+q2+...+qm )
k k k ’

m,l’ m,2’"" "’ "m,n k'll’klZ""’kln

where,

for, j=1,2,...,n
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EXPANSION OF ANALYTIC FUNCTIONS IN TERMS
INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES

PAUL F. BYRD

San Jose State College, San Jose, California

1. INTRODUCTION

In a previous article [1] , certain available results concerning
polynomial expansions were appliedin order to illustratea simple gen-

eral technique for obtaining the coefficients Bn(q) in the series

(1.1) fla) = X B (a) F

n ntl ’
n=0

where f(a) is an "arbitrary'' analytic functionof a, and Fn are Fib-
onacci numbers. The same method may also be applied to develop

series expansions of the form

@

1
(1.2) f(a) = 5 Ao(a) LO + 3 An(a) Ln ,
n=1
where Ln are the Lucas numbers (Lo =2, L1 =1; Ln+2 = Ln+1 + Ln
for n=0, 1, ...). Suchseries, whichcanbederived as special cases

of more general expansions, are of use whenone desires to make some

given function f serve as a generating function of the Fibonacci or

Lucas sequence — two famous sequences whose many number-theo-

retical properties are of primary concern to this journal.

“In general, any infinite series of the form

f(a)

1
Q
r

8
<
ja]
| I—
H
M s
o
B
<

n=0

is called a generating function of a number sequence %Yn% if gn(a) are

linearly independent functions of a. The familiar type, when gn(a)
is taken to be a' or an/n! , is a special case of the more general
definition.

101
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The main purpose of the present article is to review one tech-
nique for finding the coefficients of (1.1) or (1.2), and to give explicit
expansions of a variety of transcendental functions in terms involving
Lucas numbers. Another objectiveis to pointouthow certain extensions

might be made to considerations involving similar sequences of integers.

2. EXPANSIONS IN TERMS OF GEGENBAUER POLYNOMIALS
We begin byfirst seekinga formal series expansion expressed by

(2.1)  f(2ax) = D (2a) C_ () + I D_ (2a) C (=) ,

m=1

where the functions Cm’ 1{(x), the well-known Gegenbauer polynomials

[2], are given by CO k(x) =1, and

’

[m/2]

1 r {m-r+tk) [ m-r m-2r
(2.2) G 0= 3 ()T Dmirtg(mor)pgmeln

r=o (for k >-1/2, k#0)

m/2
m/d]

= ooy
r=0

m:) (2x)™ 72T (for k= 0, m >0)

These polynomials satisfy the orthogonality relation

1
2.k ‘ 2T (2k+m)§
(1-x7) - mp
(2.3) C (x)C_ , (x)dx = (k £ 0),
{ [z mkRk 4X(m+1) 1 (m+1) [ T()] 4

"

2 ﬂ8mp/m2 for k=0, m #0,

with & being equal to 0 when m # p and to 1 when m = p. If we
mp 2.k-1/2 )
multiply both sides of (2.1) by (1 - x7) Cp k(x) and then integrate

from -1 to 1, we obtain (upon setting x = cosy andmakinguse of (2. 3))

the coefficient formulas

s

“We find it convenient to write C_, 1 (%) instead of using the standard

. k
notation C__ (x).
notation m
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k 2 q
_ 4 (m+k) I(m+1){T (k .2k
Dm’k(Za) = > n((2k+)r[n)( )] fmn Y{(2a cosy)Cm,k(cosy)dy
© (for m=0,1,..; k #0)
2 m
(2.4{D, (2a) = i J f(2a cosy)C_  (cos y)dy(for m # 0, k =0),
o
¢
D k(za) = __F_(_k_+_%) f sinZkY f(2a cosy )dy
©, \/71‘<k + '2‘) J

Now it will be seen that both (1.1) and (1. 2) can easily be obtained as

special cases of the more general series (2.1).

3. RELATIONSHIP BETWEEN GEGENBAUER POLYNOMIALS AND
THE SO-CALLED FIBONACCI AND LUCAS POLYNOMIALS

The Gegenbauer (ultraspherical) polynomials Cm k(X) of degree

b
m andorder k satisfythe recurrence formula, giveninreference[Z],

(3.1) (m+Z)Cm+2’ k(x) = 2(m+1+k)XCm+1’ k(X) - (m+2k)Cm’ k(x) ,
which reduces to
(3.2) Cm+2,1(x) - 2XCm+1’1(x) + Cm,l(x) =0

when k = 1. Relation (3.2), with conditions CO 1(x) =1 and

C1 1(X): 2%, is the well-known recurrence formula defining the

Chebyshev polynomials Um(x) of the second kind, and one may thus

write
_ _ _ sin(m+1)Y _
(_3.3)Cm,1(x) = Um(x) = Um(cosy )y = —smy (x = cos V)
When k = 0, formula (3.1) becomes
(3.4) (m+Z)Cm+2, O(x) - 2(m+l)me+1, O(x) - mCm, 0(x) =0 ,
so that, since C (x) =1, C (x) = 2%, and
0,0 1,0

(3.5) C x) =2 T (x)=2 T (cosy):m'—— (x=cosy, m#0)

m, O m ~m m “m m ’ ’ ’

we have
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(3.6) Tm+2(x) - 2x Tm+1(x) + Tm(x) =0 ,

whichis the relation satisfied by Chebyshev polynomials Tm(x) of the
first kind.

Now, as pointed outin references [1] and [3] , the Fibonacci poly-
nomials qu(x) and the Lucas polynomials )\m(x) are simply modified

Chebyshev polynomials having the relationship

(3.7) ¢1’1’1+1(X) = ('i)mUm(iX): )\m(x) = 2(—i)me(iX), (i= ‘/?f )
In view of (3. 3) and (3.5), we have

(3.8) b, (x) = (-1)

m

Con, 1), A () = m(-0FC_ (ix), (m21),

thus showing that the Fibonacci and Lucas polynomials are related to
modified Gegenbauer polynomials for the special cases of k=1 and
k = 0.

Moreover, the Fibonacci and Lucas numbers are particular val-

ues of (3.8) when x = 1/2; that is

1

F,=C,, 1(1/2) =L FoaT ('i)mcm, 1(1/2)
(3.9) (m 21)

L, = 2C Jli/2)=2, L_ = m(-i)mCm’ Ji/2)

1]

With the above relationships, the series expansions (1.1) or (1.2) for
a givenfunction f in terms involving Fibonacci or Lucas numbers can

be obtained from (2.1) by taking
(3.10) x = i/2 and 2a = -2ia

Thus, we have the series

®  .m
£(a) =%Do J-2igL  + T }rT D_ (-2ie)L_ ,

m=1

(3.11) ¢ (i=-1)

@

_ .m .
fla)= X i Dm,l(-zm’)Fm+1

m=o0




1965 INVOLVING LUCAS NUMBERS OR SIMILAR 105
NUMBER SEQUENCES

where, from (2. 4), (3. 3), and (3. 5), the coefficients may be expressed

by the definite integrals

m
. 1 .
D, ,(-2ia) = 7 J’ f(-2ia cosy)dy = A _(a) ,

(e]

(3.12) { D (-2i0) = 7 | f(-2ia cosy)cos mydy = (-1)mmAm(o.),

Ot

(m 21)
. 2 T . . . m
Dm’  (-2ia) = = f f(-2ia cosy)sin ¥ sin(m+l)ydy = (-i) B _(a)
° (m 20) .

4. EXAMPLES

Since many specific examples were presentedin reference [1] for
certain series in terms of Fibonacci numbers, we shall now only give
some explicit expansions in terms involving Lucas numbers.

Consider first the function
(4.1) fla) = % ,

so that from (3.12) we have

m
N | -2ia cosy 5 _ _
(4.2) D, (-zia) =5 [ e dy = I (-2a) = J_(2a) ,
[¢]

and
” .

(4.3) D_ (-2ia)=2 f e % €%V cos my dy = m(-)"I_(2a) ,
o

where Jm are Bessel functions of order m [4] . (Evaluation of the
above integrals, as well as othersto follow, was made by use of tables
and formulas in [2], [4], and[5].) Substituting the values of(4.2)
and (4. 3) into (3.11) then yields the expansion

JO(Za)LO+ 3 Jm(Za)Lm ,

m=1

(4. 4) e =

o} —
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which converges for 0 < Ia]< ©» , since

(4.5) lim T mn o 1+V5 _
: m 5o Jm(Z(ﬂLm T m 5« mtl 2 -

for all finite values of a. If application is now made of the familiar

relations
cosh a= (e + e_a)/Z, sinh a = (e” - e-a)/Z ,
(4. 6) cos a = (ela + e-m)/Z, sin a = i(e_ia - eia)/Z ,
. .m m
7 lie) = iTL_(a), I_(-a)= (-1 _(a) .

the following series expansions* can be easily derived from (4. 4):

@

. m
sina= Y (-1) IZm-l(Za)LZm-l ,
m=1

(4.7)

©

cos a = IO(Za) + 3 (-l)mlzm(ZO.)L

3

2m
m=1

where Im are modified Bessel functions of order m, and

2 Ty

m=1

sinh a

(4. 8)

cosh a = JO(Za) + 3 sz(Za)Lzm s

m=1

The four examples in (4.7) and (4. 8) all converge for 0 < ’a| < =,

Although these series are apparentlynot found in the literature in the
specific form we have givenfor our purposes, theyare modified cases
of some expansions due to Gegenbauer (e.g., see [4], pp. 368-369).
Series for such functions in terms involving certain powers of Lucas

numbers may also be obtained and will be presentedin a later article.
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Next, consider the odd function

(4.9) f(a) = arctan a

Now

(4.10) Dzm,o(—Zla) = 0, for m = 0,1, ...;
but

2m-1
Iz

(4.11) Dy, (-2ia) =

2 arctan(-2ia cosy )cos(Zm-1)ydy,

0 —m3

which can be integrated by parts to give

T
.y _ 2ia sin(2m-1)y siny _
(4.12) D, (-Zia) = _ﬂ_f > dy (m=1,2,...),
1-4a cos Y
o
m
_ia cos 2m Y - cos(2m-2)y d
‘Tf 1aa2 o2 Yo
-4a” cos'y
o
or, finally,
2 Z2m-1
. \/l-4a - 1)
(4.13) DZm—l,o(-Zla) =i ( ———

Use of (4.10) and (4.13) inthe firstequationof (3.11) yields the series

expansions

(4.14) arctana= X

(’l)m—l <1 _ /1_4a2>2m--1

Zm-1 Za ’ LZrn-l (@?0)

m=1

which will converge:'< for 0 < lal < 1/ /5. Ifwenow take a = J2 -1,

we obtain, since arctan ( ﬁ- 1) = /8, the interesting equation

- -1 2m-1
(4.15) m=8 3 (-13: [( VT + 1)(1 - J8 VZ - 11)} m

m=1

2m-1 "

e
>

For a =0, the right-hand side of (4.14) becomes an indeterminate

form, but the correct result is obtained in the limit.
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Certain higher transcendental functions such as the Bessel func-
tion Jo(a) canalso be easily expanded interms involving Lucas num-

bers. Thus, if f(a) = Jo(q), we have
1 2
(4.16) D, ,(-Zia) = = j I (-2ia cos y)dy = [I(a)]*;
0]

and

m

.y _ 2m . _ ) 2

(4.17) D, (-2ia) = Tf J (-2ia cosy)cos Zmydy = 2m [1m(a)] ,
(o]

and hence from (3. 11) we obtain, since for aneven function D 0,

2m-1, o:
the series

m

(4.18) J (a) = %[Io(a)] 2 Lo+t 2 (1)

m=1

[Im(a] : LZm

It canbe shownin a similar manner thatthe expansions of Bessel func-

tions for all even orders are given by

(4.19) JZn(a) = % I:In(a):}z Lo > (_l)m—nlm-kn m-n
m=1

and are convergent for 0 < la] <o .
A proposed problem for the reader is to show that the Bessel
function Jl(a) may be expressed in the form

@

(4.20) Jjle)= = (DT (e) L,

m=1

The reader may also usethe last equationsin (3.11) and (3.12) to show

that, in terms of Fibonacci numbers FZm’
@ 2

L« m-1[ 1 b ]2m-1
(4.21) arctana= 3 (-1) [ml_2m+l b F

m=1

and whence
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_ : m-1 1 d 2m-1
(4. 22) =8 ¥ (-1) |j-2—r—n':—1 --Z—_T_—j| d F

!

m=1

where

(4.23) b= [1 - \/1_4(121 a=2 [( ZH1)(1 - /8 [Z- 11)] .

The results (4.21) and (4. 22) can actually be obtained more readily,

as indicated in the following remarks.

5. REMARKS

If one has already found the coefficients An(a) in (1.2) for an
expansionin terms of Lucas numbers, it is not necessary to carry out
the integration in the last equation of (3.12) in order to obtain the co-
efficients Bn(a) in (1.1) for a series in terms involving Fibonacci
numbers., For, since FO =0, Lo =2, and Ln =F + Fn it is

n+l -1’
easy to show that

(5.1) B (a)=A_, (@) +A_ (0 ,
and thus that

@

(5.2) fla) = ¥ |:An(a) +An+2(a):| F o, -

n=o

Expansions in terms of Fibonacci numbers or of Lucas numbers,
however, are not very efficient for computing approximate values of a
function. For example, to compute 7 correctly to 6 places using

formula (4.15) requires 36 terms in comparison to 9 terms using the

series
s m
(5.3) n=8 3 UU (vzopt

which is based on a slowly convergent Maclaurin expansion. But the

series
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® m
_ (-1) i _ 2m+1
m=16 Zm (VZ+1)(V4-2 JZ - 1) ,
m=o
based on a more rapidly convergent expansion in terms of Chebyshev
polynomials, yields 6-place accuracy with only 5 terms.

As pointed out by Gould [6] , if f(a) hasapower series expansion

(5. 4) fla)= T ya"

n=o

then the series

©

(5.5) Gla) = f(a;a) + f(aya) = = ynan L.
n=o
where
_1+/5 _1-V5
(5.6) a = ———, a,=—>—,

will furnisha whole specialclass of generating functions for the Lucas
sequence. Similarly, the series

©®

(5.7) H(a) = £(a,a) - f(a,a) = 2 /5 Ynan F_

n=o0

yields a class of generating functions for the Fibonacci sequence. It
is to be noted, however, that this technique of Gould for obtaining gen-
erating functions for Lucas or Fibonacci numbers is notintended to ac-
complish our purpose of making some given function f serve as the
generating function by the expansion (1.1) or (1.2). Clearly the func-
tions G(a) and H(a) in (5.5) and (5.7) arenot the same as the given

function f{.

6. CERTAIN EXTENSIONS

In reference [1], we considered the expansion of functions in

terms involving numbers (those of Fibonacci) associated with modified
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Gegenbauer polynomials for the special case when k=1, and in the
present article in terms of numbers (those of Lucas)for the case when
k = 0. Now from the general class, there appear to be other special
cases whichmay alsoprove of interestto students ''devoted to the study
of integers with special properties. "

For instance, upon taking k = 1/2, one may consider the set of

polynomials Rm(x) defined by

(6.1) R ) = 47-DTC g, lix) = 4T)TP (%), (m=0,1,...),

where Prn are the Legendre polynomials, From equation (3.1) we

then have the recurrence relation

(6.2) (m+2)R (x) = 4(2m+3)XRm+l (x) + 16(m+1)Rm(x)

m+2

with RO(X) =1 and Rl(x) = 4x; or, more explicitly, from (2.2), we

can write

[m/Z:] . .
(6. 3) R_()=2" 5 (7) <2m- 2J> me2)

m

which has a generating function expressed by
1

m 2
(6. 4) ——— = S R (x)z7,  ([8xz] + |162°] < 1)
\/1-8xz—16z2 n=o &

Now let Hm be the sequence of numbers (which we shall call

"H-numbers'') obtained from Rm(x) by taking x = 1/2. Thus

[m/2]

_ m 2m - 2_]> j
(6. 5) H_ = 3 <J)( T, mzo),
j=o
with HO =1, Hy = 2, H, = 14, H3 = 68, ...), and one may investigate

what particular propertiesq‘ these numbers might have.

Lim (

What, for instance, is
m —yw m

/Hm+1 }? Are thereanyinteresting

identities, etc. ?
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By the procedure we have illustrated, one may also find expan-
sions which would make a givenfunction serveas a generating function
for such numbers. Thus, from (2.1), (2.4), (3.10), and (6.1), we ob-

tain the series

-m
1

(6.6) f(a) = Do, 1/2(-Zia) H0 + 3 F Dm’ 1/2(-2io.) Hm ,
m=1

where the coefficients are expressed by

14
(6.7) D | jp(-2ia) = an2+1 f siny f(-2ia cos y)P_(cos y)dy(m=0,1,...).

(o]

For example, if we take the analytic function

(6. 8) fla) = e
then
(6.9) D (-2iq) = 2L Pl mlacosy oo
: m,1/2 == f Y m'cos Y)Y
(o]

1
2m+1 -2iaz Z2m+l , ..m =
= = 27T I
> f e P _(z)dz >— (1) Ja Jm+l/2(2a),
-1
(m=0,1,2,...)

and hence from (6. 6) we have the expansion

(6.10) &%= % ‘/'%' [Jl/z(zu)HO + s Zr:;ll Jmﬂ/z(zc)HmJ , (a #£0)

m=1

where Jrn+1 /2 are Besselfunctions of order half an odd integer. Other
functions f may be expanded in a similar way.

The Lucas numbers, the Fibonacci numbers, and our so-called
H-numbers, in terms of which we have expandeda given analytic func-
tion, are all seento be mere special cases of a more general sequence

1
Vm, kf , where

_ q(m, k) [(m-rtk) (m - r
6.11) v -dmod s Lmorid ( - ) (k >-1/2) .
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Our three particular cases of these may be summarized as follows:

k=1, g(m, k) =1, then Vm,le 41
6. 2 = q(m’ k) = - =
(6.12)sk =0, W) m, then V o Lm, (m=0,1,2,.
m
= = A% =
k=1/2, g{m, k) =47, then m,1/2 H

In the familyx (6.11), however, there may be many other interesting
sets of integers worthy of consideration. For example, if k is any

integer > 1, then

[m/2]
S . v

r=o
will obviously lead to various sequences of integers whenever q(m,k)/
(k-1)! 1is any arbitrarily chosen function yielding a positive integer.
Expansion of a given function f(a) in terms involving the numbers
Vm, k may easily be made by the familiar procedure already described.
Besides the Gegenbauer polynomials, there are of course other
well-known families of orthogonal polynomials which may be modified
to furnish still other sources of integer-sequences. A given function

could be expanded in terms of such numbers by a technique similar to

the one presented in reference [1], or in this article.

>'<It can be easily shown that

v ( )
; m, k \/5_- 1 [ . q(m, k) :l
Lim > = Lim - ,
m. s Vm+l,k 2 mI3 e gq(mtl, k)
and thus that the value of this limit for all sequences of the general
family has the common factor ( /5 - 1)/2, which is the classical
""golden mean'' for the Fibonacci or Lucas sequence. (Of course, an

appropriate choice of q{m,k) should be made sothat the limit on the

right-hand side exists.)
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INFORMATION AND AN OMISSION

Reference related to H-37..

References by R. E. Greenwood: Problem 4047, Amer. Math. Mon.
(issue of Feb. 1944, pp. 102-104), proposed by T. R. Running, solved
by E. P. Starke. Problem #65, Nat. Math. Mag. (now just Math, Mag. )
issue of November 1934, p. 63,

Omission H-37. Also solved by J. A. H. Hunter.

CORRECTION
H-28 Let 1
T N +N,+...N
® . . a 1 n-1
S (r,a,b) = ¥ C.(r,n)ap™? 2 o plr-lin 2 (E)
n J Nz¢



ADVANCED PROBLEMS AND SOLUTIONS
Edited by VERNER E. HOGGATT, JR.

San Jose State College, San Jose, California

Send all communications concerning Advanced Problems and
Solutions to Verner E. Hoggatt, Jr., Mathematics Department, San
Jose State College, San Jose, California. This department especially
welcomes problems believed to be new or extending old results. Pro-
posers should submit solutions or other information that will assist
the editor. To facilitate their consideration, solutions should be sub-
mitted on separate signed sheets within two months after publication

of the problems.
H-59 Proposed by D.W. Robinson, Brigham Young University, Provo, Utah

Show that, if m > 2, then the period of the Fibonacci sequence
0, 1,1, 2, 3, ..., F, ... reduced modulo m is twice the least

n
positive integer n such that Fn = (—l)nFn_1 (mod m).

+1

H-60 Proposed by Vemer E. Hoggatt, Jr., San Jose State College, San Jose, California

Itis well knownthatif p, isthe leastinteger suchthat F = F
k k Kk n+pk n
mod 107, then p; = 60, p, = 300 and p, = 1.5x 10" for k23, If
Q(n, k) isthe kth digitofthe nth Fibonacci, thenfor fixed k, O(n, k)
is periodic, thatis Qe is the least integer such that Q(n+qk, k) = O(n, k)

mod 10. Find an explicit expression for SI

H-61 Proposed by P.F. Byrd, San Jose State College, San Jose, California

= < < k- =
Let fn,k 0 for 0 n S k-2, fk-—l,k 1 and
k
= f
fn,k s fn—j,k or nz2k
=1
Show that
f
%<fn,k <1§+21E for n21 .,
n+l, k
Hence f
lim lim nk _ 1
k —=>= n—=° f -2
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See E. P. Miles, '""Generalized Fibonacci Numbers and their Associated

Matrices, "' The American Mathematical Monthly, Vol. 67, No. 8.
H-62 Proposed by H.W. Gould, West Virginia University, Morgantown, West Va.

Find all polynomials f£(x) and g(x), of the form

f(x+1)

r
3 a.xJ, aj an integer

g(x)

i
™M
o

.

o
”'_n

bj an integer

such that

2 §x2f3(x+1) - (x+1)2g3(x)§ + 3§x2f2(x+1) - (x+1)2g2(x)f
+ 2(xH1) § xf(xH1) - (x+l)gx)} = 0
H-63 Proposed by Stephen Jerbic, San Jose State College, San Jose, California
Let

F

rnF -1 """ "m-ntl
F(m,0) =1 and F(m,n) = FmF F o<n<m

n n-1

be the Fibonomial coefficients, where Fn is the nth Fibonacci num-
ber. Show

2m-1 m-1
5. F(2m-1l,n) = 1 L. m 21
n=o izo

H-64 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

Show

n
_ : jo
Fn+1 = I (1 - 21 cos o ,

=1

where Fn is the nth Fibonacci number.
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ALL THE SOLUTIONS
H-30 Proposed by . A.H. Hunter, Toronto, Ontario, Canada

Find allnon-zero integral solutions to the two Diophantine equa-

tions,
(a) x2+xy+x—y2:o
(b) xz—xy—x—y2=0

Solution by Jobn L. Broun, Jr., Pennsylvania State University, State College, Pa.

We first observe that (xo, yo) is a solution of (a), if and only
(-xo, yo) is a solution of (b). Thus we may limit our considerations
to just one of the equations, say (b).

Equation (b) has the form
XZ - (y+l)x - yZ = 0
which, considering y as a parameter, has solutions

(y+1) =, (y+1)2 + 4y2
2

For x to be an integer, it is clearly necessary and sufficient that
(y+1)2 + 4y2 be a perfect square, that is, there exists an integer 2z
such that

2
)

(y+1 +4y2 =z ,

or,

(y1)? + 2n? = 2

Let us look first for solutions with y > 0. Note that 2y/d and
(y+l)/d are relatively prime integers, where d 2 1 is the greatest
common divisor of 2y and y+l, so that, by the well-known theorem
on solutions of x2 + yz = zZ, there exist two relatively prime positive

integers r and s of different parity, with r > s, such that either

(= a(r?-s%)
(1) ,
| 2y = d(zrs)
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sy+1 = d{(2rs)
} 2y = d(rz—sz)

For case (l), it follows easily that d =1, while in case (2),
d = 2. Hence, solving case (1) is equivalent to finding relative prime

positive integers r and s of different parity satisfying

(3) ¥ s -s® =1

Now, in case (2), let

Then, recalling that d = 2 in case (2), we have

i
=

s y+1

(4)
)‘ 2y = 2r's' ,

which has formally the same appearance as case (1) and implies

Thus, since

solving case {2) is equivalent to finding odd positive integers r' and s'
satisfying (3).
In either case, we see that every solution of (b) with y > 0 is

generated by an appropriate solution of the diophantine equation:

(%) r2 - rs - 52 =1

Note that any solution (r, s) of (*) inpositive integershas r and
s relatively prime and r > s. Note that the case (r even, s even)
cannot occur as a solution of (*).

Now, if (r,s) is a solution of (*) with positive integers r and

s of different parity, then case(l)is indicated with y = rs and either
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2 2

r or x=-s . Thus, we obtain two solutions (x, y) of (b), namely
r , rs) and (—sz, rs).

If (r', s') is asolution of (*) with odd positive integers r' and

s', thenwehave case (2) and vy = r's' withboth x = r'z and x = -s'

again giving two solutions of (b).

Thus, every positive solution (r,s) of (*) leads to two solutions
of equation (b) having positive values for vy, namely (rz, rs) and
(—sz, rs).

It remains to consider solutions of (b) having vy < O.

If y<O0, let y=- 'yl; then, from (b),

2
x

_ (-ly] +1>i2/(|v! - 1%t ey

so that (ly! - 1)‘2 + 4Iy,2 must be a perfect square, or equivalently,

there exists an integer 2z such that

2 ‘ 2 2
(yl-n7+@lyh® = -
As before, letting d = the greatest common divisor of ‘y[ -1
and Zly‘, we deduce the existence of two relatively prime positive

integers r and s of different parity, with r > s, such that either

(1) lyl-1 = a?-s%)
2|y] = d(zrs)

or

(2)% lyl-1 = a(zrs)
2ly| = a@?-s?)

Clearly, d =1 incase (1)¥ and d = 2 forcase (2)*. Incase (1)%,

we find that r and s must satisfy

(:{::{:) I’Z—S -rs = -1 )

while in case (2)%, the substitution r' = r+s, s'=r-s yields (using

d =1 for case (1)* and d =2 for case (2)%)

It
-
'
w

lyl-1 ’

2yl

1l
Y
)
w0
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which shows that (r', s') is also a solution in positive integers of (¥%),

Note that any solution (r,s) of (*%) in positive integers has r
and s relativelyprimeand r > s ifwe exclude the solution r = s = 1.
Alsothe case(r even, s even)cannotoccurasa solution of (*%*), Thus,
every solution of (*#*)in positive integers either has both terms odd or
r even and s odd. The latter case gives a solution of (b) with 'y' =rs

and both x = —r'Z and x = SZ, sothatthetwo generated solutions of (b)
2 2
are (-r , -rs) and (s, -rs).

Similarly, if (r', s') is a solution of (**) with r' and s' both

| 2

odd and r' > s', then ’yi =r's' with x = —r'2 and x = s'

Thus, every solution of (*%)in positive integers (r, s) (including
(1,1)) yields two solutions of (b) with negative y, namely (—rz, -rs)
and (SZ, -rs).

To find the actual solutions, we recall that every solution of
rz -rs - s2 =1 1in positiveintegers r,s hasthe form r = F2k+1 and
s = F for some integer k 2 1. (See solution of H-31). The corres-

2 2

2kl Fok Fopar) 2nd (CFop Fop For )

2k
ponding solutions of (b) are (F

for k=1, 2, 3,

The other equation rZ -rs —s2 = -1 may be transformed to

r' —r's'-—s'z =1 by the change of variable, r' = r+s, s' = r; it follows

that every solution of 1'2—rs - SZ = -1 in positive integers (r,s) has

= = 1 > -
the form r FZk’ s FZk—l for some integer k _21. The corres
ponding solutions of (b)are (-F and (FZk-l’ -F

for k=1, 2, 3,

2k " FoF k-1 2k F2r-1)

.. . 2
Summarizing, the set of solutions, (F2k+1’ FZk F2k+1)’

2 2 2
CFoe For Forrd CFoe ~For Forard Fap ~Fop Foroy)
k=1, 2, 3, ..., constitute all the non-zero integral solutions of

for

Xz—xy-x—yz = 0, and the set

2 2 2
CForr Fox Foarn ) Fare For Foxn)h Fope Fop Fop )
(-F2 “F., F, .) for k=1, 2, 3,

2k-17 2k " 2k-1
constitute all non-zero integral solutions of x2 + Xy t+x -y

AN OLD PROBLEM
H-41 Proposed by Robert A. Laird, New Orleans, La.

2 -0,

Find rational integers, x, and positive integers, m, so that
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2
N = x - m and M:x2+rn

are rational squares,
Solution by Joseph Arkin, Spring Valley, New York

Professor Oystein Ore, Sterling Professor of Mathematics at

Yale University, in his book, Number Theory and Its History, 1st ed.,

1948, gives the complete solution to this problem on pages188-193.

Also solved by Maxey Brooke, Sweeny, Texas
COMMENTS ON THE HISTORICAL CASE

Solved by Robert A. Laird

A solution to the historical problem submitted to Fibonacci
(Leonardo of Pisa) by John of Palermo, animperialnotary of Emperor
Frederick I, about 1220 A.D. (see page 124, Cajori's ''History of
Mathematics' for reference). The problem: Find a number x, such
that XZ +5 and x2 - 5 are each square numbers. In other words,
find the square which increased or decreased by 5, remains a square.
Leonardo solved the problem bya method (not known to me) of building
squares by the summation of odd numbers.

Solution to this problem was published in the ''Mathematics
Teacher'! in December 1952,

Ioffer it here for your interest and pleasure. Let

x = side of the desired square
x +b = side of a larger square
x - a = side of a smaller square

a and b are positive, rational numbers

(1) (x +b)° = x° +5
(2) N
Solving (1) and (2)

g .- 2

(4) « = 5 - b2
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Equating (3) and (4)

5+az_5-bZ

2a B 2b

Solving for b in terms of a, we have

(5) b o= —(5+az) + \/a4+30a2+25

- 2a

In order for b to be a rational number, the radical must clear. So
find value of a that will do this.
We can find a by trial substitution or by factoring. Let's take

factoring:

a4 + 3Oa2 + 25
a4 + Z()a2 + 4a2 + 25
—— e,
a4 + 26a2 + 169 + 4aZ - 144

@% +13)% + 4(a” - 36)

If aZ = 36 or a =6, the radical will clear. For immediate result,

substitute a = 6 in (3)

5+a2 5 + 36 41

x = 2a = 12 = Tz' Q. E.D.

Generally, find the square whichif increased or decreased by m will
remain a square (m = positive integer). Strangely, when m =6, a

solution can be found, but not for m =1, or 2, or 3, or 4.

FROM BEST SET OF K TO BEST SET OF K+17?

H-42 Proposed by |.D.E. Konhauser, State College, Pa.

A set of nine integers having the property that no two pairs have
the same sum is the set consisting of the nine consecutive Fibonacci
numbers, 1, 2, 3,5, 8,13, 21, 34, 55 with total sum 142. Starting with 1,
and annexing at each step the smallest positive integer which pro-

duces a set with the stated property yields the set1,2,3,5,8,13,21,
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30, 39 with sum 122. Is thisthe best result? Cana setwith lower total

sum be found?

Partial solution by the proposer.

Partial answer. The setl,2,4,5,9,14, 20,26, 35 has total sum
116, For eight numbers the best set appears to be 1, 2, 3,5, 9, 15, 20,
25 with sum 80. Annexing the lowest possible integer to extend the set
to nine members requires annexing 38 which produces a set with sum
118, It is not clear (to me, at least) how to progress from a best set

of k integers to a best set for k + 1 integers.

H-43 (Corrected) Proposed by H.W. Gould, West Virginia University, Morgantown, West Va.

Let

*® F
elx) = = x M0

n=1
where Fj is the j-th Fibonacci number, find

lim ¢ (x)
x 31 “Tog (I-%)

See specialcase m = 2 in Revista Matematica Hispano-Americana (2)
9 (1934) 223-225 problem 115.

A FAVORABLE RESPONSE

H-44 Proposed by V.E. Hoggatt, |r., San Jose State College, San Jose, California

Let u, =9 and U, = P and u U

called generalized Fibonacci numbers.

+
a1 un, then the un are

(1) Show u = pFn + an-l
(2) Show that if
2 2 _ 2 2
V2n+1 = Y * Yn+l and VZn oS RN B

then Vn are also generalized Fibonacci numbers.
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Solution by Lucile R. Morton, San Jose State College, San Jose, California
We prove formula (1) by induction on n. It is obvious that
ul=p=pF1+qFo and u2=p+q_=p]1"2+qFl
Now let us assume formula (1) holds for n=k and n = k+l. Thus

pF., +qF

o
b
I

k k-1

and

k1 - PFiqr TaFy
Adding we get
Wy Ty = PEL FF) FaF FF )

or _
Ytz = PEryp TaFy o
which was to be proved.

We prove Vn are generalized Fibonacci numbers by showing they satis-
fy the rzecurzsmnformula Vn+2 = Vo

V1 =p +q . We can do this by showing

+ Vn, where VO = 2pq - q2 and

(3) Vontt = Von " Vona

(4) Voniz = Vonn TVon -

From formulas (2)

_ 2 2 2 2
Von ¥ Vonor = (g muy ) Fle  ta)
2 2 _
= Yntl + Yn® V2n+1 ’
and
_ 2 2 2 2
V.2.n+l * VZn - (un * un+1) * (un-l—l un—l)
2 2 2
R R | * Zun+1
(un+1)(un—2) * (un+l)(un+1 tfu,tu —1)
= UYnn (un-Z + Yh-1 * un+2)
2 2
- (un+2 - un)(un+2 * U'n) T U427 8
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Now let us carryour problem a little further. Let m be a fixed inte-

ger, and let Vn: u Are there any restrictions on p and g?

ntm
Since Vn and u are generalized Fibonacci numbers

B B 2 2, 2
Vorr = VoFp TV F 4y = @pa-a)F +(p" + 9 )F

and

Yhtm+l uan * Y+l Fn+1 = (pF

m * qu—l)Fn+(me+1 +qu(Fn+1'

Thus we have

2
(5) epq-q9 = pF_ +qF_ 4

2
(6) p +q = pF +qF

m+1 m

Our question becomes: For what integral values p and g do equa-
tions (5) and {6) hold? Obviously p =g =0 1is a solution. Then
V. _=u_ =0, Let

n n

X_len'rH _ V+Fn’1

p:——-———z.-——— and q—~‘————"—2 3

substituting into equations (5) and (6) we have

2 2 2
(7) 2xy -y = Fm+1 - Fm—l = FZm and
2 2 _ 2 2
&) Xty T P PP T Fomn
Eliminating x and simplifying
4 ; 2 2
5y~ + Z(E‘Zm -2 FZmH)y tE, = o ,
or
4 2 2
5y - ZLZmy tE, C 0
Ths L + \/41_,2' ZOF2
2 2m 2m 2m
v 10
L + L2 5F
2m 2m Zm
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2m 2 m
5 L, * [4(-1) L, *2 Lo -2(-1)" %2

y = 5 = 5 5

Then

and we have 5y2 = ern’ which has no integral solutions, or

2 _ .2 _ 2 m
(9) 5y" = LD +4=5F +4(-1)7 4 4

Now 5y2 = San + 8, which has no integral solutions, or 5y2 = San,

and y= # Fm. Therefore the equations (7) and (8) have the solutions

x=F =F and x = -F = -F forall m, and x = -F
m m

m+1’ Y m+1’ Y m+1’
y = Fm and X:Fm“l'l’ y=—Fm for m =0, -1,
Thus
P = Fon p =0
or
q = F_ q =20
are solutions of (5) and (6) for all m, and
p =0 p = Ferl
or
qQ = F_ q =20
are solutions of (5) and (6) for m = 0, -1.
Therefore Vn U 4T F2m+n when p = Fm+1 and q = Fm
for all m, or Vn:um+n=0 when p =q = 0.
If we consider nonintegral solutions, from (7) and (8) we had
2 2
5y = Lm
which gives us
L L
y = % m and x = =% mtl .
V5 V5
Thus the solutions of (7) and (8) are
I"r’n-H L'rn I"rn+1 Lrn
X = , y = — and x = - ’ y = - —
V5 V5 V5 V5

for all m. Therefore
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Lrn+1 +F
\/-5— m+l um+1
p = =
2 /5
L
=4 F
q = —‘*—2——‘—\/5 - = "—am
V5
and
Lm+1 +F
h NG m+l ﬁmﬂ
p= =-
V5
L
SRS R m
q= 5 "B
= = L
V5

Also solved by Clifton T. Whyburn, Douglas Lind, Clyde A. Bridger, Charles R. Wall,
Jobn L. Brown, Jr., Joseph Arkin, Raymond E. Whitney, Jobn Wessner, W.A. Al-Slalm
and A. A. Gioia (jointly), Charles Ziegenfus and L. Carlitz.

ITERATED SUMS OF SQUARES

H-45 Proposed by R.L. Grabam, Bell Telephone Labs., Murray Hill, N.].

Prove
n P q T
2 2 1 2 n
3 S s s FS = Fn+2 —§(2n +8n+11-3(-1)") ,
p=0 g=0 r=0 s=0

where Fn is the nth Fibonacci number.

Solution by Charles R. Wall, Texas Christian University, Ft. Worth, Texas

Using the identities

k 2 k »
I Fy = X F FkaH ’
n=0 =1
k
k
2 1+ (-1)
2 FF b P

n=0

127
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we have
n P q r n p q
2

b 3 b p> F_ = 3 b b FF
p=0 gq=0 r=0 s=0 p=0 q=0 r=0

n p
_ 2 1+ (-4
= X 2 Fq+1 - —Z——>

P:O q:O

o P
~ Coptl 1+ (-1)P |
= X \FouForet T T

p:O N ;

n N
= r F - ._E - .:i - _(_j_)f(

1 ptl Tptz T 2 1 EI

p:O N .
_og2 Ll (-1)"  n(@n+l)  3(n+l) 1+ (-7
T Tnt+t2 "2 2 7 - q 8
= Fi+2 - % (2n® + 8n + 11 - 3(-1)P)

Also solved by Douglas Lind, L. Carlitz, and Al-Slalm and A. A. Gioia (jointly).

OIKRKIOKHKIKXAKXAKKXK

HAVE YOU SEEN?

J. Arkin, ""An Extension of the Fibonacci Numbers, '"" American Math-

ematical Monthly, Vol. 72, No. 5, March 1965, pp. 275-279.

Marvin Wunderlich, ""Another Proof of the Infinite Primes Theorem, '
American Mathematical Monthly, Vol. 72, No. 5, March 1965, p. 305.

This is an extremely neat proof for the Fibonacci Fan!

Benjamin B. Sharpe, Problem 561, Mathematics Magazine, Vol. 28,
No. 2, March 1965, pp. 121-122.



SEEKING THE LOST GOLD MINE OR
EXPLORING FOR FIBONACCI FACTORIZATIONS

BROTHER ALFRED
Saint Marys College

Now that summer is coming on, everybody is looking for a good
way to waste time. Seek no farther. The search for factors of Fib-
onacci numbers is the perfect answer.

And first, some ground rules. People with computers who pro-
gram their machines and then sit idly by while they grind out answers
should not be considered inthe class of working Fibonacci factorizers.
The challenge is to be able with the available tables and the mathematical
bow-and-arrow — the calculator — to find some method or methods
that facilitate the determination of factors in Fibonacci sequences.

Just to get away from the well-worn path we start in virgin ter-
ritory witha sequence 1, 4, 5, 9, 14, 23, etc. Wediscover very soon
that this has a prolongationto the left of ....... -19, 12, -7, 5, -2, 3,
1, 4, 5, 9....... and since the factors of both portions of the sequence
are the same we might call the sequence 2, 5, 7, 12, etc., the conju-
gate sequence to 1, 4, 5, 9, 14, etc. This is a first help in factoring
the initial hundred terms of each portion of our sequence — a not too
modest goal.

Next, we candetermine the primes thatdonotdivide the members
of our sequence. Taking the square of any term minus the product of
the two adjacent terms gives + 11. Thus

52 4.9 = - 11

In general, if we designate the terms of the sequence Tn,
T - T T = x11

Hence if a prime divides Tn-l’ for example, it would follow that

2 _
T, = #11 (mod p)

Thus if neither +11 nor -11 is a quadratic residue of a given prime p,
then this prime cannot be a factor of the sequence., We can eliminate
from consideration in this way: 11, 13, 17, 29, 41, 61, etc.

The smaller quantities in our sequence can be factored either by
inspection or factor tables. Next, apart from 11, the primes have the
same period in as in the Fibonacci sequence. Hence we can have some

129
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FOR FIBONACCI FACTORIZATIONS

idea of whenthey should be entering the sequence bylooking at the size
of the periodand more specificallythe entry pointin the Fibonacci se-
quence. For the spacing of the members of our sequence that are di-
visible by the given prime is the same as in the Fibonacci sequence
should it be a factor of the sequence at all. For small spacings we can
then extend the factor to other members of our sequence by using this
information regarding the period and entry point of the prime in the Fib-
onacci sequence.

But how should we organize a systematic and convenient method
of factoring using previous information on the Fibonacci and Lucas
sequences ? The following approach was tried. Since

T1:1 FO+L1

i

i

T2=4 F]_*}-L2

it follows in generalthat T = F + L . Thus if we know the Fibonacci
numbers modulo p and the Pucas™umbe s modulo p, itis simply neces-
saryto checkand see whether the sum ofthe residues of F and L

is congruent to zero modulo p. Another dividend comes f#otn the fact
that if we call the members of the conjugate sequence Rn then

R1:2 F2+Ll

R2 = 5 = F3+L2

so that in general R, = F, 17 + L. Thus the residues can be used in
two ways. The original thought was that once these residues are on
hand, it would be possible to use them for factoring many Fibonacci
sequences.

The method works. But — as we getto larger and larger primes
the periods increase and so likewise do the entry points so that the
probability that the prime will be a factor between Tjgg and Rjgg gets
less. Also, with large primes such as 911 with an entry point of 70 in
the Fibonacci sequence (1,1, 2, 3...) the probability that this will be a
factor of a Fibonacci sequence chosen at random is relatively small,
being only 7.6%. This same pattern applies to all large primes with
relatively small entry points.

Againthe sequence of primes thatfactor all Fibonacci sequences
have the maximum period, 2p + 2 and hence tendto have a small prob-
ability of factoring our sequences within the limited range from Tjgq
to Ripg-

All in all, the high hopes entertained for this method were not
realized. Does some one have a better way of attacking this problem?

As a byproduct, it would appear to be a worthwhile goal to have
available factorizations of the first hundred terms of a few Fibonacci
sequences such as (1,4) and (2,5) — even if somebody does it on a

computer. XK K KK KKK KKK KK



TIME GENERATED COMPOSITIONS YIELD
FIBONACCI NUMBERS

HENRY WINTHROP
University of South Florida, Tampa, Florida
1. INTRODUCTION
Imagine a particle the number of whose collisions with other par-
ticles during the tth time intervalis given by ¢(t). Assume that this
particle possessesa property, p, whichit can transmit by collision to
every particle with which it collides. Further suppose that every par-
ticle that has received property p by collisioncan also transmit it by
collision. Assume that for an indefinite period of time every particle
possessing property, p, collides only withthose particlesnot possess-
ing this property. The number of new particles to which property, p,

has been imparted is given by the following model.

2, THE MODEL
Let Ai be the number of collisions with new particles in the time
interval i < t < i+ 1 by particles possessing property, p, at t=1i.
The new particles do not start their private times until the end of the

time interval of their initial collision.

(1) Ay = 1
Ay = (1)
A, = (2) + ¢°(1)
By = $(3) +262)$(1) + ¢ (1)
b, = $4) + [2603)p(1) + $7(@)]+ 362167 (1) + (1)

A; = F(h,9)

The model is obtained as follows:

Up to t=1, AO generates the increment Al’ whose magnitude
is &(1), the number of particles with which AO collided in the first
time interval.

Atthe time t = 2, AO has collided with ¢(2) more new particles
during the second time interval and Al has collided with ¢(1l) new
particles, since its collisions are subject to the phase rule constraint
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of its own private time. Therefore when t = 2 in public time,
A, = B(2) + B(LIB(1) = P(2) + $7(1).

When t = 3, AO has collided with ¢(3) more new particles during
the third time interval for it is in phase 3 of its private time, each
particle of Al = ¢(1) hascollided with ¢(2) more new particles, pro-
ducing @(1)$(2) new particles altogether, because Al is in the sec-
ond phase of its private time. FEach particle of AZ collides with ¢(1)
new particles since‘it is in the first phase of its private time, thus
producing

A, p(1) = (B(2) + SUNS) = R)(L) + $(1)

particles. Therefore when t = 3, we have

6, = B3)) + )] + Bl + ¢ (1)
= P(3) + 26(2)B(1) + (1)

Now if we substitute ¢{t} = t into themodeldisplay(l), we obtain

(2) Ay =1
A1=l
AZ = 2+1% = 3
A, = 3+2°-1+1° = 8
A4: 4+2-3-1+22+3-2-12+14= 21

Neglecting AO, one observes that the numbers 1, 3, 8, 21, 55,
ceey U = 30
n n

quence

- Un are the alternate terms of the Fibonacci se-

+2 +1

1,1,2,3,5,8,13,21, 34,55, ..., Fn+2= Fn+1 +Fn

so that the sequence of cumulative sums (including AO) is
1, 1+1=2,1+1+3=5,1+1+3+8=13, ...,

=3 Un - Un whichis the other setof alternate Fibonacci num-

U
nta +1
bers. The proof of these statements will follow as a special case of

the theorem in the following section.

3. ANOTHER SPECIAL MODEL

If we assume that the time generator is ¢(t) = kt (k a positive

integer), the same model display (1) yields
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(3) By = 1
A =k
2
A, = k% +2k
A, = K+ ak” & 3k

= k4+6k3 -!-1Ok2 + 4k

.;;D

Ai = Pi(k)
Note: The coefficient of k'* in the polynomial Pn(k) is the number
of distinct compositions of integer n in m positive integers. The
coefficients are also the alternate rising diagonals of Pascal's arith-
metic triangle upward from left to right.
We now prove the following theorem.

Theorem: If ¢(t) = kt, then model display (3) has as its nth row a
polynomial Pn(k) satisfying the recursion relation:

P,k = (k+2)P_ (k) - P (k) ,
2

where Pl(k) = k and PZ(k) = k" + 2k,

4. PROOF OF THE THEOREM
Let Tn(k) be the total number of particles possessing property,
ntl (k) = Tn (k) + An+1 , while collectively
the Tn(k) particles collide with An+1 new particles during the next

p, at time t = n. Clearly T

time interval, each particle collides with k more new particles than

during the previous time interval so that

(4) An+2 - k(Tn(k) * An+l) * An-l-l - an+1(k) * An+1

1 n+l
(5) T oK) = (2) T_, () - T (k)

Thus, since An+ =T (k) - 'Tn(k) equation (4) yields

But, since A =T (k) - T (k) isthedifference of two solutions of
n+l n+l n 2

(5), itis alsoa solution of (5). Now, Alzkzpl(k) and A, =k"+2k=P, (k)

and the proof is complete. If k = 1, then (5) becomes

(6) Uptz = 3Un+1 - U

If U1 = Pl(l) =1, and U2 = PZ(l) = 3, thenthe numbers generated are

the alternate Fibonacci numbers promised after (2), while

= - = - :A A: =
U T (1) AO 1, and U T, (1) y tA =1+1=2 ,

2

0 1
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recursion relation (6) yields the other set of alternate Fibonacci num-

bers as the sequence of cumulative sums, the total particle count.

5. CONCLUDING REMARKS
One is directed toadvanced problem H-50 December 1964, Fib-
onacciQuarterly, for the partitioning interpretation of the integer n of
the model for @(t) = kt.

Suppose one defines two sets of Morgan-Voyce polynomials

bO(x) =1, b}(x) =1+ x; Bo(x) =1, Bl(x) =2+x ,
both sets satisfying
(7) P )= (x+2)P_, (x)- P_(x), n20

It is easy to establish that
Pn(k) = An =k Bn—l(k)

T k)=A0+AI+...+A = b_(k)

ol
Thus for k=1, we againfind Bn_l(l) = an and bn(l) = anﬂ. See
corrected problem B-26 with solution by Douglas Lind inthe Elementary
Problem Section of this issue, where the binomial coefficient relation
mentioned in the note of Section 3 is shown. A future paper by Prof.
M. N. S. Swamydealing extensively with Morgan-Voyce polynomials will
appear in an early issue of the Fibonacci Quarterly.

Acknowledgment: The author is completely indebted to Dr. V. E.

Hoggatt, Jr., for bringing to his attention the theorem and its proof.

Additional references to work along the lines of generated composi-
tions — some of which yield numbers with Fibonacci properties — will

be found in the references at the end of this paper. (Seenote, page 94)
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mitted to the Faculty of The New School for Social Research, 1953.
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H. Winthrop, '""The Analysis of Time-Flow Equivalents in Finite Dif-

ference Equations Governing Growth'' (In preparation).
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MYSTERY PUZZLER AND PHI
MARVIN H. HOLT
Wayzata, Minnesota
A problem proposed by Professor Hoggatt is as follows: Does
there exist a pair of triangles which have five of their six parts equal
but which are not congruent ? (Here the six parts are the three sides
and the three angles.) The initial impulsive answer is no! The prob-
lem also appears in [1| as well as in the MATH LOG.
I have taken some time to work on the problem you suggested.
I think you will agree that the solution I haveis interesting. One prob-
lem, as you have stated it, is posed in a high school geometry text
entitled, "Geometry' by Moise and Downs, published by Addison Wesley
Company, (page 369).
In their solution key, they gave one possible pair of triangles

that work:

27 18

I discovered this after I solved the problem myself. But the above
solution does not do justice to the problem at all, since my old friend
1 is really the key to the solution. Note: Golden Mean = ¢ = r in what
follows.

I attacked the problem as follows: First, the five congruent parts
cannot contain all three sides, since the triangles would then be con-
gruent. Therefore, the five parts must be three angles and two sides
which means that the two triangles are similar. But, the two sides
cannot be in corresponding order, or the triangles would be congruent
either by ASA or SAS. So, the situation must be one of two possibilities

as I have sketched below: (My sketches are not to scale.)
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triangle 2

c
triangle 1

a.
possibility 1

b
possibility 2

In both cases, by using relationships from similar triangles, it follows

that %z % or b=ka and ¢ = kb = kza from possibility 2 and

b=ka and d=kb= kza from possibility 1.

or

ol o

2
b

So, the three sides of the triangle must be three consecutive
members of a geometric series: a, ak, akz, where k is a proportion-
ality constantand k >0 and k # 1. If k = 1, the triangles would both

be equilateral and thus congruent. Therefore, k # 1,

From myprevious article onthe Golden Section (Pentagon, Spring
1964) I worked out two problems on right triangles where the sides
formed a geometric progression and the constants turned out to beVT
and % . So, Iknew oftwomore situations where the original problem
could be solved. Then I began to consider various other values of k
and I beganto wonder what values of '"'k'"' will work. Inother words, for
what values of k will the numbers a, ak, and akZ be sides of a tri-
angle. Once we know this, then another triangle with sides 2 , a, ak

k
or ak, akz, ak3 willhave five parts congruent but the triangles would

not be congruent.

Inorder for a, ak and ak2 to be sides of a triangle, three state-

ments must be true:
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These are instances of the strict triangle inequality.

1. a +ak >ak? {a+Db >c)
2. a+ak2>ak (a tc >Dhb)
3. ak+ak2>a (b+c¢c >a)

[2>0, k>0, k#I1]
For Case 1, consider k >1
(a) k>1—->k2>k—>1+k2>k
therefore, a + akz > ak (condition 2 above)
(b) k>1——>k+1>l~>k2+k>1
therefore, akz + ak > a (condition 3 above)

(c) if k >1 show a +ak > ak2 (condition 1 above) ,

This part revolves aroundthe problem of finding out when 1 +k > kz,

or, graphically: For what x >1 will 1 +x =y be above y = XZ?

y4
y= 1l +x
2
\ / X
— v = x
2 3
Ve
Solving this problem produces the result that
k < }_‘*__2_\/_—;':)_ 2{ k<7 .

So, if 1 <k < r then the numbers a, ak, akz are the sides of the
triangle that can be matched with ?—( , a, ak or ak, akz, ak3 to solve
the original problem. {Incidentally: 1 < VT < r | Sothisfits in here. )

For Case 2, consider k <1
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(a) if k < l——>k2 < k.gkz <k +1 Therefore ak2 < ak +a
(condition 1)
(b) if k<l—=sl+k>1l->sa+ akz > ak (condition 2)
(c) Now, if k <1 show ak + ak2 > a. This is, essentially,finding
what values of k make k + k2 > 1.
Again, graphically, for what x <1 will the parabola y = x + XZ

be above the line y = 17?

|
2
y =xt+x
y=1
— x=1
. . -1 +V5
Solving this problem produces the result that k >———F— . If you
. . -1 +V5 | e .
will follow this closely, ———=—— is the additive inverse of the conjugate
. 1+J5 ° . .1 -V5
of r. (i.e., 1 = ————= . Therefore, the conjugate of 7 is —
. e 3 -1 + /5 .. -1+ V5
and its additive inverseis -———Z—.) So, if — <k <1 theprob-

lem is again solved. (Again, 1-1-—-2';—\/—2 < \/; <1, so mysecondproblem
fits here.)

Therefore, the complete solution can be summed up as follows,

v -1+
if k is a number such that 1 < k <L+7_3: r or _1_ZE<1<< 1.
Then the three sets of triangles with sides % , a, ak or a, ak, akz

or ak, ak%, or ak> can be used to produce two triangles with five
parts equal and the triangles themselves not congruent.

So, there are an infinite number of pairs of triangles that solve
this problem and once again, 7 proves to be an interesting number
and a key to the solution of interesting problems.

REFERENCES
1. Moise and Downs, Geometry, Addison-Wesley, p. 369.
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LADDER NETWORK ANALYSIS USING POLYNOMIALS

JOSEPH ARKIN
Spring Valley, New York

In this paper we develop some ideas with the recurring series

(1) B_=kB_| *kB_ B, =1, (k

2 0 and k2 £0) ,

-1 1

and show a relationship between this sequence and the simple network
of resistors known as a ladder-network.

The ladder-network in Figure 1 isan important network in com-
munication systems. The m-L sectionsin cascade that make up this

network can be characterized by defining:

(2) a) the attenuation (input voltage/output voltage) = A,
b) the output impedance = Z»
c) the input impedance = zZy-
Rl Rl Rl Rl

1 RZ ﬁ RZ i RZ RZ i
o o
Figure 1
A result obtained by applying Kirchhoff's and Ohm's Laws to
ladder-networkswith m =1, 2, 3, ..., R, = R,k,, wastabulated with

71 271°
the results in Table 1, where setting k1 =1, R2 =1 ohm, the network
in Figure 1 was analyzed by inspection [1] .
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m zO A z1
1 R, (k, +1) (k +1)R,
2
k. +1 \R kS+3k, +1 \R
2 : 2 (k243K +1) 1 1 2
2373 17751 R
2 3.2
k%+3k. +1\ R k> +5k5+6k, +1 \R
3 171 2 (kf+5kf+6k1+1) ! 5 1 1 )72
K2 +ak. +3 KS+4k. +3
17 17
Table 1

We observe that the nth row in Table 1, may be written

| m | %0 | & | “1 |
n | (Con 2V 1Ry | Con | (Con/Yan )Ry
where,
3 ac =x/fc tc L co =1,
b) Yn ~ k}/Z‘Yn-l +Yn-Z’ Yo = l/k}/z

It then remains to solve for Y, and Cn in (3), to be able to analyze
(Figure l) by inspection for any value of k1 (kl # 0), where R2 =1 ohm.
So that, in (1), we let

@ a) w = g e ra) Bz
b vo= (k- 4 4k2)1/2)/2 ,
where it is evident,
c) kl = w+v ,
and
d) k2 = - WV
Then, combining (c) and (d) with (1), leads to
(5) B = ((w' - v)B__| - wy(w-v)B_ )/(w-v)
Bn = ((W3-V3)Bn_2 - wv(wz—vz)Bn_S)/(w-v) ,
B = (W™ - v (wHv) - WV(Wn-l - vn_l)Bo)/(w—v) ,
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and we have n+l n4l

(6) B =¥ -V
n W -V
. . 1/2 . .
Where, in (1) we replace kl with k1 and k2 with 1, and combin-
ing this result with (3) and (6), leads to

(ki/z + (k1+4)1/2)n+1 ) (ki/z C(k +4)1/2)n+1

- 1 _
(02 ¢, = (1) 17271 = Pl),
1

)2

and

1]

b) oy, = i)/

(8) Theorem.
The attenuation (input voltage/output voltage = A) of m-L sec-
tions in cascade in a ladder-network is given by
2m-2

AT = ¥ C_((-C

T
ACo 1)/ Co2)
r=0

)

The proof of the theorem rests on the following
(9) Lemma.

The power series

n
-1nH* T B X,

r
r=0
is always a square, where Br is defined in.(1).

Proof of lemma.

Let
n
10 1 = (I-kx - k,x°)(3 B_x"
( ) - ( - 1X - ZX I‘X ) ’
r=0
then, by comparing coefficients and by (1), we have
(11) % = —(Bnkl +Bn-1k2) _ _Bn+1
- B k " Bk ’
n 2 n 2

. . . 2
and replacing x with (—Bn+1)/(Bnk2) in (l-klx-kzx ), leads to

2
x

(12) 1-k x-k,

2 2 2
= (BnkZ+Ban+lkl—Bn+l)/(Bnk2)

By (4, d) and (6) it is easily verified
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2 n
(13) B - BuiiBnar (-ky)™ s
so that
2 2 _ n  n+tl
(14) Bk P By Bntiky - By = G K

Then, replacing the numerator in (12) by the result in (14) leads to

2 : 2
(15) 1-k x-k,x = ((—I)Dk]g)/Bn ,
so that (10) may be written as
n
n_2 _ T
(16) (-1)’'B. = ¥ Bx
r=0

which completes the proof of the lemma.

(17) Theproof ofthe theorem is immediate, when in (11) and (16), we

replace n with 2m-2, k1 with ki/z, k2 with 1, and combine the

result with (7, a) and the values of the attenuation in Table 1.

REFERENCES
1. a) S. L. Basin, ''The Appearance of Fibonacci Numbers and the
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pp. 84-97.

b) S. L. Basin, ''The Fibonacci Sequence as it Appears in Na-

ture, ' Fibonacci Quarterly, 1(1963) pp. 54-55.

The author expresses his gratitude and thanks to Professor L.
Carlitz, Duke University; Professor V. E. Hoggatt, Jr., San Jose

State College; and the referee.

XXXKHKARKRX KKK HKKKX K
REQUEST

The Fibonacci Bibliographical Research Center desires that any
reader findinga Fibonacci reference, send a card giving the reference
and a brief description of the contents. Please forward all such in-
formation to:

Fibonacci Bibliographical Research Center,
Mathematics Department,
San Jose State College,
San Jose, California



CONCERNING LATTICE PATHS AND FIBONACCI NUMBERS
DOUGLAS R. STOCKS, JR.
Arlington State College, Arlington, Texas
R. E. Greenwood [1] has investigated plane lattice paths from
(0, 0) to (n, n) and has found a relationship between the number of paths
in a certain restricted subclass of such paths and the Fibonacci se-
quence. Considering such paths and using a method of enumeration
different from that used by Greenwood, an unusual representation of
Fibonacci's sequence is suggested.
The paths considered hereare comprised of steps of three types:
(i)horizontalfrom (x, y) to (x + 1, vy); (ii) vertical from (x, y) to (x, y + 1);
and (iii) diagonal from (x,y) to (x +1, y +1).

H, H, Hy H, H

Figure 1

In the interest of simplicity of representation, we will here con-
sider the paths from Hi to Vi’ for each positive integer i. Note
that the number of paths from Hi to Vi is the number of paths from
(0, 0) to (i,i). However, instead of considering the total number of
paths from Hi to Vi as was done by Greenwood, we will count only
the number of paths from Hi to Vi which do not contain as subpaths
any of the paths from Hj to Vj’ for j <i. This number plus the
number of paths from Hi—l to Vi-l is the total number of paths from

Hi to Vi' The use of this counting device suggest the
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Theorem:
Let
1D =1
D-1 . .
ZD = [ 5 ], where [ ]denotes the greatest integer functior
3p 7 ®p.1 T 2pog
“p 7 %p.2*3p2

i

(2n), = (2m)p_, +(2n-1), ,

(2.n+l)D = (2.n+1)D‘1 + (Zn)D_l
with the restriction that kD =0 if k > D. For each positive integer
D, let D
(D) = % kD .
k=1
The sequence {f(D) ] D=1, 2, 3, ...}is the Fibonacci sequence.

The proof is direct and is therefore omitted.

The geometric interpretation of the numbers kD and (D) men-
tioned in the theorem is interesting. However, before considering this
interpretation it is necessary to define a section of a path. For this
purpose we willnow consider a pathas the point settowhich p belongs
if and only if for some step ((x, y), (u, v)) of the path, p belongs to the
line interval whose end points are (x, y) and (u, v). A section of a path
is a line interval which is a subset of the pathand whichis not a subset
of any other line interval each of whose points is a point of the path.

The above mentioned geometric interpretation follows: By defi-
nition f£(1) = 1. For each positive integer D 2 2, let Ly denote the
set of paths from HD to VD which do not contain as subpaths any of
the paths from Hj to Vj’ for j < D. £{(D) is the number of paths be-

longing to the set LD. k., is the number of paths in the subset X of

D

LD such that x belongs to X if and only if x contains as subsets

exactly k diagonal sections.
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Figure 2 portrays the five paths which belong to L5. In Figure
2a appears the one path of L5 which contains only one diagonal sec-
tion (l5 = 1). Thetwo paths of L, whichcontainexactly two diagonal
sections appear in Figure 2b (Z5 = 2). In Figure 2c the two paths of
L5 which contain exactly three diagonal sections are shown (35 = 2).

It is noted that 45 = 55 = 0.

Fig. 2b

25=2 35=2

fi(6) = 1 +2+2+0+0 = 5
Figure 2
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REPLY TO EXPLORING FIBONACCI MAGIC SQUARES*
JOHN L. BROWN, JR.

Pennsylvania State University, State College, Pennsylvania

Problem. For n 22, show that there do not exist any nxn magic
squares with distinct entries chosen from the set of Fibonacci num-

bers, u, =1, u, = 2, u = u +un for n >21.

1 2 n+2 n+l
Proof. Trivial for n = 2,

If an nxn magic square existed for some n 2 3 with distinct
Fibonacci entries, then the requirement that the first three columns

add to the same number would yield the equalities:

(*) F. +F., +...+F, =F, +F, +...+F. =F_ +F +...+F .
| 2 'n 1 J2 In ky ky k,

Since the entries are distinct, we may assume without loss of gener-
alitythatFi>Fi> "'>Fi’F' > F. > ...> F. and
1 2 n 1 )2 n
Fk > Fk > .. > Fk .
1 2 n
Noting that the columns contain no common elements, and by rearrange-

ment if necessary, we assume Fi > F. > F, , again without losing

1 1 Ky
generality; thus, F. 2> F + 2.
B! Ky
Now
F. +F. +... +F. > F. S F y
i iy i i, = k1+2
while
k1
< = -
F, *F, +...+Fk_2 F. = F_ -1
1 2 n 1 1

This contradicts the equality postulatedin (*), and we conclude no magic

squares in distinct Fibonacci numbers are possible.

*The Fibonacci Quarterly, October 1964, Page 216.

SXEKIXHKIIKHKHXKXKK
146



THE FIBONACCI NUMBER F, WHERE v IS NOT AN INTEGER

ERIC HALSEY
Redlands, California

INTRODUCTION

Fibonacci numbers, like factorials, are not naturally defined for
any values exceptinteger values. However the gamma function extends
the concept of factorialto numbers thatare not integers. Thus we find
that (1/2)! = /7/2. This article develops a function which will give
Fn for any integer n but which will furthermore give Fu for any
rational number u. The article also defines a quantity nA™ and de-

velops a function f(x,y) = Xﬁy where x and y need not be integers,

(1) DEFINITIONS

Let nA° = 1 (Definitions (1) hold for all n ¢ N)

Let
. n n
n./,?(1 (read 'm cardinal') = X kﬁo =3 1l=n
k=1 k=1
This gives the cardinal numbers 1, 2, 3, ...
Let n n
nAZ (read ''n triangular') = I kﬁl =% k
k=1 k=1
This gives the triangular numbers 1, 3, 6, 10,
Let n
nﬁa (read "n tetrahedral') = % kAZ
k=1

This gives the tetrahedral numbers 1, 4, 10, 20,

In general, let

n
nﬁm (read '"n delta-slash m') = z kAm_l
k=1
147
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This gives a figurate number series which can be assigned to the
m-dimensional analog of the tetrahedron (which is the 3-dimensional
analog of the triangle, etc.).

Let us construct an array (ai’ .}, where we assign to each a.

i,
an appropriate coefficient of Pascal's triangle.

1 11 1 1
1 2 3 4 5

(0 ) = 1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

It is clear that in this arrangement the usual rule for forming Pascal's

triangle is just

= +
(2) %, 7 M,5-1 7 Y-l

Buta comparison ofthis rule withthe definitions (1) shows that Pascal's

triangle can be written:
14

. S

1A

Y SV Y CHNE Y o
Y Y oY G o

where a; j = iAJnl. From the symmetry of Pascal's triangle,

a. .= a. .. Therefore
(3) W7 = W o™ = (g™

Pascal's triangle is a well-known generator of Fibonacci numbers in

the way shown in the following diagram.
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/ /

1 1 1 1:1:F1
2 |

6

3

2 = =
/1/ 4 5 o 1=1=F,

I3

J/ 1/3 10 15 ... 141 =2=F,
/1/4 10 20 35 ... 142=3=F,
/1 5 15 35 70 ... 14341 = 5 = F

We can apply the same course to our abstracted Pascal's triangle.

/ F1=14X0
425/ FZ:24XO
341(0/3¢g1 F, =340+ 140

e F, =480 + 24

SO

It is clear that, if we keep forming Fibonacci numbers from Pascal's

triangleinthisway, F_ = nAO + (n-2) ! + (11—4)A2 +... + (n—Zm)Am, or
g ¥, B

m
(4) F = % (n-20f
k=0

where we require that m be an integer and that 0 < n-Z2Zm £ 2, or in

other words that n/2 - 1 < m < n/2. Now let us prove

(5) Theorem 1 nf™ = n+2-1>

Proof: It is sufficient toperform induction on n. Let thetheorem be
E(n). Then if n =1, E(1l) states

<n+m—l) B <l+m—l> - ome
m - m T m! ’
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But by definition (1), (m+l)4(0 =1 for any (m+l) ¢ N. Then by equa-
tion (3) 147 =1 for m=0, 1, 2, 3, ... and E(l) is true. Now

let us assume that, for arbitrary m ¢ N, E(n) is true. Then

nAm - (n-l-m-l)

m

From the definitions (1) it can be seen that

- SR oo

Therefore the induction hypothesis can be restated

m-1 m-1 ntm-2) _ /nt+m-1
(6) 14 + 24 +...+< m_l)_< ™ )
Add (n:n“_‘Il) to both sides of equation (6) to obtain
m-1 m-1 n+tm-2 ntm-1
(7) 14 + 2/ S +( o )+ A
(n+m-1> <n+rn—l>»
= +
m m-1
n+m

The right-hand side of equation (7) is {( m ) by the standard identity

for combinations, so we have

m-1 m-1 (n+m—2) <n+m~1 _(n+m)
1A + 24 LEEEER A G m_l)~ ™ ,
or

lAm—l . 2‘ﬁm—-l I n:’nrr_IIZ>+ ((n+in-_hin-2>

_ ((n+1)+m—l> ’

m

which is E(n+l). Therefore E(n) implies E(n+l) and Theorem 1 is

true by mathematical induction.

Now let us prove

1
(8) Theorem 2 nf™ = [(n+m)f xn‘l(l_x)mdx]’l
0
Proof: r(n)= (n-1). (gamma function)
rim)r{n)

B(m,n) = B(n,m) = F{min) (beta function)
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Therefore
1 _ TI'(m+n)
B(m,n) = T(m)T(n) ’
and
L - T(n+2) _ (nH1)!
B(m+l, n-m+I) - Tm+)r(n-m+l) -~ m!I(n-m)!
T = () ()
Then
L -1
@ (:;) T I B(mAL, a-m) [(n+1)B(m+1,n-m+1)]

We can now substitute the right-hand side of equation (5) into equation

(9) to obtain
nf™ - (n+m'1> - [(ner)B(mﬂ,n)]'1 ,

m
where 1
B(m+l,n) = B(n, m+l) = fxn'lu-x)mdx
0
Therefore
1
114Xm = n+m f x (1-x) dx]
0

Both equations (5) and (8) assert that nﬁ(m = (m+1) An_l. Some inter-
esting special cases of equation (5) are
_ (n-1 (n o
nAO - ( ) n 1 | =1 H
1

= (7) = whr ot e

n-

and

™M
~
n
=

B=
|

_ <n+1 _ (ntl)! _ (n)(n+l)
2 T -1zl T 2

Now we can put equation (8) into equation (4) to obtain
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m 1
(10) F o= 3 [k jf STl ket
k=0 0

where m is an integer, n/2 -1 <m < n/2. But whereas equations
(4) and (5) have meaning only for integer arguments, equations (8) and
(10) can be used to find xﬁy and Fuswhere %, ¥y, and u are any
rational numbers.,

In particular

m 1
(11) F = % [(u-k) f Xu'Zk'l(l-x)kdx]'l ,
k=0 0

where m is an integer, u/2 -1 <m < u/2. The equation (11), and
the definite integral in it, are easily programmed for solution on a

digital computer. A few values of Fu follow.

u F
u

4,1000000 3.1550000

4,2000000 3.3200000

4,3000000 3.4950000

4, 4000000 3. 6800000

4.5000000 3.8750000 u P
4. 6000000 4, 0800000 v
4,7000000 4,2950000 0.1 1.0
4. 8000000 4,5200000 0.2 1.0
4, 9000000 4,7550000 . ;
5.0000000 5.0000000 : :
5.1000000 5.2550000 2.0 1.0
5,2000000 5.5200000 2.1 1.1
5. 3000000 5.7950000 2.2 1.2
5. 4000000 6.0800000 . )
5.5000000 6.3750000 : :
5, 6000000 6. 6800000 3.0 2.0
5.7000000 6.9950000 3.1 2.1
5.8000000 7.3200000 . )
5.9000000 7. 6550000 : :
6.0000000 8.0000000 4. 3.0

SOCKXHKKKKHKAK XK XK



ELEMENTARY PROBLEMS AND SOLUTIONS
Edited by A.P. HILLMAN

University of Santa Clara, Santa Clara, California

Send all communications regarding Elementary Problems and
Solutions to Professor A. P. Hillman, Mathematics Department, Uni-
versity of Santa Clara, Santa Clara, California. Anyproblem believed
to be new in the area of recurrent sequences and any new approaches
to existing problems will be welcomed. The proposer should submit
each problem with solution in legible form, preferably typed in double
spacing with name and address of the proposer as a heading.

Solutions to problems should be submitted on separate sheets in

the format used below within two months of publication.
B-64 Proposed by Vemer E. Hoggatt, |r., San Jose State College, San Jose, California

- RS . )
Show that LnLnH = L2n+1+( 1)7, where Ln is the n-th Lucas

=1, L2: 3, and Ln+2: Ln +Ln.

B-65 Proposed by Vemer E. Hoggatt, ., San Jose State College, San Jose, California

number defined by L

1 +1

. . 4
Let U and v be sequences satisfying u otau g

+dv =0 where a, b, ¢, and d are constants and let

4+pE3+qE2+rE+S. Show that '>rn=un+vr1 satisfies

+bu =0 and
n

V-n+2'+cvn-l~1
(E2+aE+b)(E%+cE+d) = E

try +syn =0

Yn+4:+pyn+3+qyn+2 n+l

B-66 Proposed by D.G. Mead, University of Santa Clara, Santa Clara, California

Find constants p, g, r, and s such that
Vnt+4 PV 43tV P8y, = 0

is a 4th order recursionrelationfor the term-by-term products PG

of solutions of u -u

nt2 -u = 0 and v

-2v -v_=0.
n n

+1 +2 +1

B-67 Proposed by D.G. Mead, University of Santa Clara, Santa Clara, California

Findthe sum 1°1+1°2+2°5+3°12+. .. +FnGn, where Fn =F +F

+2 " ntl n
and Gn+2:2Gn+1 +Gn.

153
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B-68 Proposed by Walter W. Horner, Pittsburgh, Pennsylvania

Find expressions interms of Fibonacci numbers which will gen-
erate integers for the dimensions and diagonal of a rectangular parallel-

opiped, i.e., solutions of

a2+b2+cz = dZ
B-69 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California

Solve the system of simultaneous equations:

2, 2
an+1+yFn =x ty

_ 2
XFn+Z+yFn+1 = x +2xy

where Fn is the n-th Fibonacci number.

SOLUTIONS
CHEBYSHEV POLYNOMIALS
B-27 Proposed by D.C. Cross, Exeter, England

Corrected and restated from Vol. 1, No. 4: The Chebyshev
Polynomials Pn(x) are defined by Pn(x) = cos{nArccos x). Letting

b= Arccos x, we have

cos ¢

X = Pl (X)5

cos (2¢) = ZcoquS -1= ZXZ -1= PZ(X),

cos (396)

il

4cos3¢ - 3cos ¢ = 4x3 - 3x = P3(x),

cos (4¢)

B}

8cos? b - 8cosz¢ t1=8xT-8xt+1= Py(x), etc.

It is well known that

PI1+Z(X) = ZXPnH(X) - pn(x)

Show that
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where

m = [n/Z] ,
the greatest integer not exceeding n/2, and

_ on-1
(1) Bon = 2

(2) Bit1,ntl = 28B40, 0 7 By nn1

(3) If s_= |B0nl + IBlnI +...0 04 len" then S ., =2S ., +S

Solution by Douglas Lind, University of Virginia, Charlottesville, Va.
By De Moivre's Theorem,
. n ..
(cos ¢ +isind) = cosng+1isinng

Letting x = cos ¢, and expanding the left side,

cosnp+isinng = (x+i VYl - x%)®

1

n
s (-1)/2 ) S T T

j=0

We equate real parts, noting that only the even terms of the sum are
real,

[n/Z] k 2k 2.k

: n, n-

cosne = P &= Z (1) (3)=x (L -x7). .
k=0

We mayprove from this (cf. Formula (22), p. 185, Higher Transcend-

tal Functions, Vol. 2 by Erdelyi et al; R. G. Buschman, 'Fibonacci
Numbers, Chebyshev Polynomials, Generalizations and Difference
Equations, " Fibonacci Quarterly, Vol. 1, No. 4, p. 2) that

n-2j-1

() B, - (12 (n-j-1)!
jrn it (n-2))!

From this, we have

(1) B = 22!



156 ELEMENTARY PROBLEMS AND SOLUTIONS April
It is also easy to show from (%) that

(2) Bivt,nt1 = 2B, 07 By n-1

Now (*) implies

- J
B, = (-1 ]Bj,nl ,
so that (2) becomes
(-1 IBj+1,n+l! =2 ()" ,Bj+1,n] + (- 1B, ol
or
IBj+1,n+1l =2 [Bj+1,n] ¥ ]Bj,n—ll

Summing both sides for j to [n—}l—], we have

(3) S = 2S +S
n n

n+l -1

Also solved by the proposer.

A SPECIAL CASE

B-52 Proposed by Vemner E. Hoggatt, Jr., San Jose State College, San Jose, California

Showthat F_ F F? = (-1)*™, where F_ isthe n-th Fib-

-2"n+2 " n
onacci number, defined by F1 = FZ =1 and Fn+2 = Fn+l n Fn'

Solution by Jobn L. Brown, |r., Pennsylvania State University, State College, Pa.

Identity XXII (Fibonacci Quarterly, Vol. 1, No. 2, April 1963,
p. 68) states:

= () EFE .

FnFm - F k" m+tk-n

n- ka +k

The proposed identity is immediate on taking m = n and k= 2.

More generally, we have

2 _ n-k_2 < <
Fn— Fn—an+k = (-1) F for 0S5k Sn

Also solved by Marjorie Bicknell, Herta T. Freitag, Jobn E. Homer, Jr., [.A.H. Hunter,
Douglas Lind, Gary C. MacDonald, Robert McGee, C.B.A. Peck, Howard Walton, ]obn
Wessner, Charles Ziegenfus, and the proposer.
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SUMMING MULTIPLES OF SQUARES

B-53 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California
Show that
2n - 1)F> +(2n-2)F2 4+ ... + F
(en - 1) + (2n 27 T ¥2n-17 Y2n

Solution by James D. Mooney, University of Notre Dame, Notre Dame, Indiana

Remembering that

n
2
2R sFE R
k=0
2 2
Clearlyfor n=1, FI =1-= FZ' Assume

we may proceed by induction.

2
2] Fy oo ¥ Fpny

[2(n-1) - 1] Fi‘ +[2(n-1)
= (20-3)F% + (2n-4)F> + ... + F - F
= (2n-3)F + (2n-4)F, +... 2n-3 -~ “2n-2

Then

2 2
(2n-1)F] +... +F, [(2n-3)F] +... + FZn_3] +
2n-2 2n-1

2 2 2
+ EFk+2 F =

k=0 k=0

2 2 2
2(F] +... +F5 )+ Fy =F;

2 2
- +

Fon2 P Fon 2Fon1 T Fon1F2n = Fonz t Fon2¥on

2

2 _
+F = F, 2 T 2F 2o 1 T Fon1 T

T F 1 Fap 2 T )

2.2 . Q.E.D

(Fopn-2 T Fan-1) 2n

Also solved by Marjorie Bicknell, J.L. Brown, [r., Douglas Lind, Jobn E. Homer, Jr.,
Robert McGee, C.B.A. Peck, Howard Walton, David Zeitlin, Charles Ziegenfus, and

the proposer.
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RECURRENCE RELATION FOR DETERMINANTS
B-54 Proposed by C.A. Church, Jr., Duke University, Durham, N. Carolina

Show that the n-th order determinant

ay 1 0 0 0 0
-1 aZ 1 0 0 0
0 -1 as 1 0 0
0 0 - a 0 0
f(n) = 4
0 0 0 0 a 1
n-1

0 0 0 0 -1 a

n

satisfies the recurrence f£(n) = anf(n-l) + f(n-2) for n > 2.

Solution by Jobn E. Homer, Jr., La Crosse, Wisconsin

Expanding by elements of the n-th column yields the desired re-
lation immediately.

Also solved by Marjorie Bicknell, Douglas Lind, Robert McGee, C.B.A. Peck,
Charles Ziegenfus, and the proposer.

AN EQUATION FOR THE GOLDEN MEAN
B-55 From a proposal by Charles R. Wall, Texas Christian University, Ft. Worth, Texas

Show that x - an - F = 0 has no solution greater than a,

n-1
where a = (1 +V5)/2, F_ is the n-th Fibonacci number, and n > 1.

Solution by G.L. Alexanderson, University of Santa Clara, California

For n>1 let p(x,n)=xn-an-F g(x)=x2-x-1, and

n-1’
h(x,n)=xn_2+xn-3+2xn-4+...+Fxn-k_l+...+F x+F .

k n-2 n-1
It is easily seen that p(x,n) = g(x)h(x,n), g(x) < 0 for -1/a < x < a,
g(a) =0, g(x) > 0 for x > a, and h(x,n) > 0 for x 20. Hence x=a

is the unique positive root of p(x,n) = 0.

Also solved by ]J.L. Brown, |r., Douglas Lind, C.B.A. Peck, and the proposer.
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GOLDEN MEAN AS A LIMIT
B-56 Proposed by Charles R. Wall, Texas Christian University, Ft. Worth, Texas
Let Fn be the n-th Fibonacci number. Let xOZ 0 and define

Xy Foys oo by x where

1 = T
f(x) = TxE_

For n > 1, provethatthe limit of x, as k goes to infinity exists and

k
find the limit. (See B-43 and B-55.)

Solution by G.L. Alexanderson, University of Santa Clara, Santa Clara, California

For n >1 let p(x) = x" - xF_- F__,. Let a=(1+V5)/2. As
in the proof of B-55, one sees that p(x) > 0 for x >a and that

p(x) < 0 for 0 <x < a., If x%x, > a, we then have

k
G d” > 9 F FF = bg)”
and so X > Xpq- It is also clear that X > a implies
(Xk+1)n - Xan * Fn—l > aFn * Fn—l = a’

and hence x Thus X > a implies X, > Xy > Xy > eee> 2.

K+l >
Similarly, 0 < x, < a implies 0 < X < x <Xy < Lee <2 In both

cases the sequence X X is monotonic and bounded. Hence x

1’
has a limit L. >0 as k goes to infinity. Since L satisfies

k

L = "VF_FLF. ,
n- n
L must be the unique positive solution of p(x) = 0.

Also solved by Douglas Lind and the proposer.

A FIBONACCI-LUCAS INEQUALITY
B-57 Proposed by G.L. Alexanderson, University of Santa Clara, Santa Clara, California

Let Fn and Ln be the n-th Fibonacci and n-th Lucas num-

ber respectively. Prove that
n
(F4n/n) > LoLgLygeee Ly o

for all integers n > 2.



160 ELEMENTARY PROBLEMS AND SOLUTIONS April
Solution by David Zeitlin, Minneapolis, Minnesota
Using mathematical induction, one may show that

n

F4n: 3 L4k-2’ n=1, 2, ...
k=1

If we apply the well-known arithmetic-geometric inequality to the un-

equal positive numbers LZ’ L6’ LIO’ e L4n-7’ we obtain for
n=2, 3, ...,
n
Elhyp2
Tan kel = VI, L L i
n n - 276710 °°° T4n-2 ’

which is the desired inequality.

Also solved by Douglas Lind and the proposer.
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Page 26, line 10 from bottom of page
v \' +V =F,-F_=F, =8

7,37V7,4% Ve, 57 FgFg = Fg =
Page 27, lines 4 and 5

F2+F4+F6+. . +Fn = Fn+l -1 (n even)
F3+F5+F7+. . +Fn = Fn+l -1 (n odd)
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