
 www.forgottenbooks.com

Copyright © 2016 FB \&c Ltd.
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

EUCLIDE's

 ELEMENTS; The whole FIFTEENBOOKS compendioufly Demonftrated:
WITH

ARCHIMEDES's Theorems of the Sphere and Cylinder Inveltigated by the Metbod of Indivifibles.

By ISAAC BARROW, D.D. late Mafer of Trinity College in Cambridge.

To which is Annexd,
EUCLIDE's Data, and a brief Treatife of Regular Solids.
The Whole revis'd with great Care, and fome Hundreds of Errors of the former Imprefiion carrected.

By THOMAS HASELDEN, Feacher of tbe Matbematicks.

LONDON: Printed for Daniel Midewinter and Aakon Ward in Little-Britain; Axtbur Bettefwortb and Cbarles Hitch in Pater-nofter-row ; and Tbomas Page and Williomp Mount on Tower-Hill. 1 i32.

-0°

Naitiferis $5 \cdot \alpha$ To the READER. 54323

IF you are desirous, Courteous Reader, to known what I lave performed in this Edition of the Elements of Euclide, I fall bere explain it to - you in fort, according to the Nature of the Work. I have endeavour'd to attain two Ends chiefly; the firft, to be very perspicuous, and at the fame time fo very brief, that the Book may not Swell to fuck a Bulk, as may be troublesome to carry about one, in both which I think I bave succeeded. Some of a brighter Genius; and endued with greater Skill, may bave demonstrated soft of the fe Propofitions with more nicety, but perbaps none with more fuccinctnefs than I bave; efpecially since I alter'd nothing in the Number and Order of the Author's Propofitions; nor prefum'd either to take the Liberty of rejecting, dis less necéfary, any of, them, or of reducing fore of the easier fort into the Rank of Axioms, as Several have dons; and among others, that inof expert Geometrician A. Tacquetus C . (whom I the more willingly name, because I think it is but civil to acknowledge that I have imitated bim in forme Points) after whore mot accurate Edition I bad no Thoughts of attempting any thing of this: Nature, 'till I conjuder'd that this mot learned Man thought fit to publifo only Eight of Euclide's Books, which be took the pains to explain and embellifb, having in at. manner rejected and undervalued the other Series; as Ifs appertaining to the Elements of Geometry., But my Province was originally quite different, not that. of writing the Elements of Geometry after what method. soever I pleased, but of demonftrating, in as fere Words as pofibie I could, the wobole Works of Euclide:

[^0]
To the READER.

to Four of the Books, viz. the Seventh, Eighth, Ninth, and Tenth, altbougb they don't so nearly appertain to the Elements of plain and folid Geometry, as the fie precedent and the two Subfequent, yet nowse of the more skilfal Geometricians can be fo ignorant as not to know that they are very ufful for Geometrical Matters, not ponly by reafon of the mighty siear affiwity that is betreeen Aritbmetick and Geometry, but alfo for the Knowledge of both commenfurable and imcommenfurable Magnitudes, fo excceding neceffary for the Dotrine of botb plain and Solid Figures. Now the woble Contermplation of the five regular Bodies that is contained in the three laft Books, cannot withoult great Injuftice be pretermitted, fince tbat for the fake thereof our sorxemanis, being a Pbilofopher of the Platonic Sect, is faid to bave compos'd this univerfal Syffem of Elements; as Proclus iiv. 2. avitneffeth in thefe Words, "Osty sin xif fupadans

 to tbink, tbat it would not be unacceptable to any Lover of thefe Sciences to bave, in bis Polfefion the rewbole Euclidean Work, as it is commonly cite.t and celebrated ly all Men: Wherefore I refolo'd tor omit no Book or Tropofition of thoofe that are found in P. Herigonius's Edition, whofe Steps I was oblig'd clofely to follcw, by reafon I took a Refolution to make ufe of maft of the Schemes of the faid Book, very well forefeeing tbat lime woould not allowe me to form new ones, thougb fomettmes I chofe rather to do it. For the fame Reafoni I suas willing to ufe for the mof part Euclide's own Demonftrations, baving only exprefs'd them in a more filctinct Form, unlefsperbaps in the Second, Tbirteenth, and rery fere in the Sevonth, Eigbth, -and Ninth Bosks, in wibich it feem'd not soorth my wbile to deteiae is any Tarticular from bim: Therefore I am not without

To the READER.

weithout good bopes that as to this Part I bave in fome meafure fatisfred both my own Intentions, and the Defire of the Studious. As for fome certain Problems and Theorenss that are added in the Scholions (or Bort Expofitions) either appertaining (by reafon of their frequent UJC) to the Nature of thefe Elements, or conducing to the ready Demonfrations of thofe Thbings that follow, or which do intimate the Reafons of fome principal Rules of Praciical Geometry, reducing tbem to their original Fountains, tbefe I fay, will not, I bope, make the Book freell to a Size bejond the defign'd Proportionn.

The otber Butt. which I levell' d at, is to content the Defires of thafe who are delighted more with fymbolical than verbal Demonftrations. In which Kind, wobereas moft among us are accuftom'd to the Symbols of Gulielmus Qughtredus, I therefore tbought beft to make u/e, for the moft part, of bis. None bitberto (as I know of) bas attempted to interpret and publifb Euclide after this manner, except P. Herigenius; whole Metbod (tbo' indeed moft excellent in many things, and very well accomodated for the particular purpofe of tbat moft ingenious Man) yet feems in my Opinion to larbour under a double Defect. Firft, ins regard that, altho' of two or mere Propofitions produced for the Proof of any one Froblem or Theorem, the former don't always depend on the latter, yet it don't readily enoulgh appear, eitber from the order of each or by any other manner, when they agree togetber, and when not; wherefore for want of the Conjunctions and Adjectives, ergo, rurfus, Ejc. many difficulties and occalions of doubt do often arife in reading, efpecially' to thefe that are Novices. Befides it frequently bappens, that the faid Metbod connot avoid fuperfluous Repetitions, by which the Demonftrations are ofters-

To the READER.

times render'd tedious, and fometimes alfo more intricate; wbich Faults mi Metbod doth eafily remedy by the arbitrary mixture of botb Words and Signs: Therefore let what bas been faid, toucbing thie Intention and Metbod of tbis little Work, fuffice. As to the reft, whoever covets to pleafe bimfelf woith what may be faid, either in Praife of tbe Mathematicks in general, or of Geometry in particular, or touching the Hiflory of thefe. Sciences, and consequently of Euclide bimfelf, (who digefted thoofe Elements) and otbers部牛secroi of that kind, may consult other Interpreters. Neitber will I (as if I were afraid left thefe my Entdeavours may fall foort of being fatisfactory to all Perifons) alledge as an Excufe (tbo' I may very lawefuly do it) the want of due time wbich ougbt to be end ploy'd in this Work, nor the Interruption occafion'd by otber Affairs, nor yet the want of requifite belp for thess Studies, 130 feveral otber things of the like Nature. But what I bave bere employ'd my Labour and Study in for the UJe of the ingenious Reader, I wholly fubmit to bis Cenfure and Fudgment, to approve if zefful, or reject if otherwife.

I. \mathbf{B}

Ad amiciflimum Virum, I. C. de EUCLID contracta, Eu'qпино μ о́s.

FAttum bene! didicit Laconice logui Senex profundus, EP apborifmos induit. Immenfa dudxm margo commentarii
Diagramma circuit minütum ; wique Infoda
Problema breve natabat in vafto mart.
Sed unda jam detumuit ; © gloffa artyign
Stringit Tbeoremata: minoris anguli
Lateritions ecce totus Euclides jaceet,
Inclufus olime velast Homerus in nuce;
Plateogue farcina modo qui incubuit, hevis
En fit manipulus. Pelle in exigua latet
Ingens Matbefis, matris utero Hercules,
In glande quercus, vel Itbaca Eurus in pila.
Nec mole dum decrefitt, ufin fit minor;
Quin autfior jam evadit, of cumulatioss
Contrafta prodeft erudita pagina.
Sic ubere magis liquor à prefo affuit;
Sic pleniori vafa inurdat fanguinis
Torrenter cordis Syfole ; fic fuffers
Procurrit aquor ex Abyla angufitis.
$\tau_{B A m p t i l l i}$ operis ars tanta referenda unice oft
BARO IA NO nomini, ac folertie.
Sublimis exge mentis ingenium potens!
Cui imvium sil, arduum effe mil folet;
Sic ufque pergas profpero conaminp.
Radiufque multum debeat ac abacus tibi;
Sic crefcat indies feracior feges,
Simili colonum germine affiduo beaus.
Specimen futura meffos bic fiet labor.
Magnaque fame illuftria bac praludia.
Ffivenis dedit qui tanta, quid dabit fenex?
Car. Robotham, CANTAB.
Coll! TYin. Sen. Sas
Tp\%

The Explication of the Signs or

Characters.

$\begin{aligned} & \equiv \\ & \Gamma \end{aligned}$	$\left\{\begin{array}{l} \text { Equal. } \\ \text { Greater: } \end{array}\right.$
\bigcirc	Leffers
+	More, or to be added.
-	Lefs, or to be fubtracted.
-	The Differences, or Excefs; Alfo, that all the Quantities which follow, are to be fubtracted, the Signs not being changed.
$\boldsymbol{*}$	Multiplication, or the Drawing one fide of a Rectangle into another. The fame is denoted by the Conjunction of Letters; as $A B=A \times B$.
$\ddot{\square}$	Continued Proportion.'
\checkmark	The Side or Root of a Square, or Cube, Epe.
Q \& 9	A Square.
C\&	A Cube.
Q. Q.	The Ratio of a fquare Number to a fquare © Number.

Otber Abbreviations of Words; wbere-ever tbey occur, the Reader will witbout trouble underffand of bimelf; faving fome few, wbich, being of les! general ufe, we refer to be explained in their Tlaces, moft commonly at the beginning of each Book inz weuch they are used.

$$
[1] .
$$

The First Book

0 F

EUCLIDE'S EMENTS.

Definitions.

Point is that which hath no part.
II. A line is a longitude without latitude.
III. The ends, or limits of a line are points.
IV. A right line is that which lies equally betwixt its points.
V. A Superficies is that which hath only longitude and latitude.

VI The extremes, or limits of a fuperficies are lines.
VII. A plain fuperficies is that which lies equally betwixt its lines.
VIII. A plain angle is the inclination of two lines the one to the other, the one touching the other in the fame plain, pet not lying in the fame ftrait line.
IX. And if the lines which contain the angle, be right lines, it is called a right-lined angle.
X When a right-line $C(A$, ftanding upon a right-line $A B$, makes the angles on either fide thereof, CGA, CGB, equal one to the other, the both thore equal angles are right-angles; and the right-line CG, which ftandeth on the other, is termed a Perpendicular to that (AB) whereon it fandeth.

Note, When feveral angles meet at the fame point (as at G) each particular angle is defribed by three letters ; wbereof the middle letter bleweth the angular point, and the two otber letters the lines tbat make that angle : As the angle which the rigbt-lines CG, AG make at G , is called OGA , or. AGC.

XI. An obtufe-angle is that which is greater than a right-angle ; as ACD.
XII. An acute-angle is that

* which is lefs than a right-angle ; as ACB.
XIII. A Limit, or Term, is the end of any thing.
XIV. A Figure is that which is contained under one or more terms
XV. A Circle is a plain figure contained onder one line, which is called a circumference; unto, which all lines, drawn from one point within the figure, and falling upon the circumference thereof, are equal the one to the other.

XVI. And that point is called the center of the circle.

XVII A Diameter of a circle is a right-line drawn thro the center thereof, and ending at the circumference on either fide, dividing the circle into two equal parts.
XVIII. A Semicircle is a figure which is contained under the diameter and that part of the circumference .which is cut off by the diameter.

In the circle $\mathrm{EABCD}, \mathrm{E}$ is the center, AC the diameter, AEC the Semicircle
XIX. Right-lined figures are fuch as are contained under right-lines.

XX. Three

XX: Three-fided or trilateral figures are fuch as are contained under three right-lines.
, XXI. Four-fided or quadrilateral figures are fuch as are contained under four right-lines.
XXII. Many-fided figures are fuch as are contained under more right-liges than four.
XXIII. Of trilateral figures, that is, an equilateral triangle, which hath three equal fides; as the triangle \mathbf{A}.
XXIV. Irofceles is a triangle which hath only two fides equal; as the triangle B.

XXV̛.Scalenúm is is tríangle whofe three fides ate all unequal ; as \mathbf{C}.

. XXVL Of there arilateral figures, 2 right-angled tri-. angle is that which hath one right-angle; as the triangle A .
XXVII. An amblygonium, or obtufe-angled triangle, is that which hath one angle -bture ; as B_{d}

Xxvili. Ans.

feveral angles of the one figure bs equal to the feveral angles of the other. The lame is to be undertiod of equilateral figures.

XXIX: Of Quadrilateral, or four-fided figures, a fquare is that whole fides are equal, and angles right; as ABCD .
XXX. A Figure on the one part longer, or a long fquare, is that which hath right angles, but not equal fides; as ABCD.

XXXI A Rhombuc, or Diamond-figure, is that which has four equal fides, but is not right-angled; as A.
XXXII. A Rhomboides, is that whofe oppofite fides, and oppofite angles, are equal ; but has neither egual nor right angles; as GLMH.
XXXIII. AU other quadrilateral figures befides there are called traperia, or tables; as GNDH.

A XXXIV. Parallel, or equi-
B diftant right lines are fuch, which being in the fame fuperficies, if infinitely produced, would never meet; as A and B.
XXXV. A Parallelogram is a quadrilateral \mathbf{f} gure, whole oppofite fides are parallel, or equidiftant ; as GLMH.
XXXVI. In a Parallelogram $A B C D$, when a diameter AC, and two lines EF, HI, paraltel to the fides, cutting the diameter in one and the fame point G, are drawn, fo that the Parallelogram be divided by them into four Parallelograms;
 thofe two DG, GB, through which the diameter paffeth nor, are called complements; and the other two HE; FI, through which the diameter paffeth, the Parallelograms ftanding about the diameter.

A Problem is, wben fometbing is propopod to be done or effected

A Theorem is, wwhen fometbing is propofd to be demione frated

A Corollary is a Conjettary, or fome confequent tratb gained from a preceeding demonftration.

A Lemma is the demonftration of fome premife, wubereby. the proof of the thing in band bocomes the Jborter.

Poftulates or Petitions.

'FRom any given point to any other given point to draw a right-line.
2. To produce a finite right-line, ftrait forth continually

3 Upon any, center, and at any diftance, to defrribe a circle.

Axioms.

I.

T Hings equal to the fame thing, are alfo equal
As $\mathrm{A}=\mathrm{B}=\mathrm{C}$ Therefore $\mathrm{A}=\mathrm{C}$; or therefore all $A, B_{2} C$ are equal the one to the other.
Note, $W_{\text {ben }}$ feveral quartties are joyned the one to the ather continually with this mark $=$, the firft quantity is by virtue of this axiom equal to the laft, and every one to cvery one: In wbich cafe we often abfain from citing the axiom, for brevity's Jake; altho the force of the confequence depends thereon.
2. If to equal things you add equal things, the wholes thall be equal.
3. If from equal things you take away equal things, the things remaining will be equal
4. If to unequal things. you add equal things, the wholes will be unequal.
5. If from unequal things you take away equal things, the remainders will be unequal.
6. Things which are double to the fame third, or to equal things, are equal one to the other. Underftand the fame of triple, quadruple, © ${ }^{2}$ -
${ }_{7}$. Things which are half of one and the fame thing, or of things equal, are equal the one to the other. Conceive the fame of fubtriple, fubquadruple, ©゚c.
8. Things, which agree together, are equal one to the other.

The converfe of this axiom' is true in rigbt lines and angles, but rot in figures, unlefs they be like.

Moreover, magnitudes are faid to agree, when the parts of the one being apply'd to the parts of the otber, they fill up ais equal cr the fame place

9 Every whole is greater than its part.
10. Two right-lines cannot have one and the fame fegment (or part) common to them both.
11. Two right-lines meeting in the fame point, if they be both produced, they fhall neceffarily cut one the other in that point
12. All right-angles are equal the one to the other.

13. If a right-line BA , falling on two right lines, AD , CB, make the internal angles on the fame fide, EAD , $A B C$, lers than two right-angles, thofe two right-lines produced thall meet on that fide where the angles are lefs than two right-angles.

14 Two right-lines do not contain a ppace.
15. If to equal things you add things unequal, the excefs of the wholes thall be equal to the excels of the additions

16 If to unequal things equal be added, the excefs of the wholes thall be equal to the excers of thore which were at firft.
17. If from equal things unequal things be taken away, the excefs of the remainders shall be equal to the exce's of what was taken away
18. If from things unequal things equal be taken away, the excefs of the Remainders fhall be equal to the excets of the wholes.
19. Every whole is equal to all its parts taken together.
20. If one whole be double to another, and that which is taken away from the firft be double to that which is taken away from the fecond, the remainder of the firt thall be double to the remainder of the fecond.

The Citations are to be underffood in this manner; When you meet with two numbers, the firt Jbews the Propofition, the fecond the Book; as by 4 1. you are to.underfand the fourth Propofition of the firf Book; and fo of the reft. Moreover, ax. denotes Axiom m_{2} pof. Poftulate, def. Definition, Lcha Scbolium, cor. Corollary.

Tbe firft Book of

PROPOSITIONI.

a 3 .pof.
b r. pof: c 15. def. d I. ax. e 23. def.

UPon a finito rigbt-line given AB , to deforibe an equilateral triangle ACB.

From the centers A and B, at the diftance of $A B$, or $B A$, a defcribe two circles cutting each other in the point C ; from whence b draw two right-lines CA, CB. Then is $\mathrm{AC} c=\mathrm{AB} c=\mathrm{BC} \quad \angle A C$. e Wherefore the triangle ACB is equilateral. Wbicb was to be done.

Scbolixm.

After the fame manner upon the line iAB may be defcribed an Iforceles triangle, if the diftances of the equal circles be taken greater or lef's than the line $\mathbf{A B}$.

PROP. II.

From a point given A , to draw a rigbt-line AG equal to a right line given BC .

From the center C, at the diftance of $C B$, a defcribe the circle CBE. b Join AC; upon which c raife the equilateral triangle ADC. d Produce DC to E. From the center D , at the diftance of DE , defcribe the circle $D E H$; and let $D A e$ be produced to the point G in the circumference thereof. Then $A G=C B$.
f 15 .def. For DG $f=D E$, and $D A g=D C$. Wherefore AG g conftr.
h 3.ax.
k 15 . def.
II.ax.
a 3 . poft.
bI.pof.
ci.1.
d 2. poff.
c 2.poft. $=\mathrm{CE} k=\mathrm{BC} l=\mathrm{AG}$. Wbich was to be done.

The putting of the point A within or without the line BC varies the cafes; but the conftruction, and the demonftration, are every where alike.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
are equal. Wherefore the triangles, BAC, DEF, and the angles B, E, as alfo the angles C, F, do agree, and are $-\dot{-}$ qual. Wbicb was to be demonftrated.

PROP. V.

a 3. 1.
bl pof.
c byp.
d conftr. e 4 I. f 3 , $a x$. g. 4 .
h before. $\mathrm{k} \boldsymbol{3} \boldsymbol{a x}$. ABE , are $\mathrm{AB} c=\mathrm{AC}$, and $\mathrm{AE} d=\mathrm{AD}$, and the angle A common to them both, etherefore is the angle $A B E=$ ACD , and the angle $\mathrm{AEB} e=\mathrm{ADC}$, and the bare $\mathrm{BE} e=$ CD ; alfo $\mathrm{EC} f=\mathrm{DB}$. Therefore in the triangles BEC , BDC g will be the angle ECB $=$ DPC. Wbich was to be dem. Alfo therefore the angle $\mathrm{EBC}=\mathrm{DCB}$, bat the angle $\mathrm{ABE} b=\mathrm{ACD}$; therefore the angle $\mathrm{ABC} k=\mathrm{ACB}$. Which was to be dem.

Coroll.

Hence, every equilateral triangle is alfo equiangular:

PROP. VI.

If tevo angles ABC , ACB of a triangle ABC , be equal the one to the otber, the fides AC , AB , fubtended under the equal angles, Jball alfo be equal one to the otber.
If the fides be not equal, let one be bigger than the other, fuppofe $\mathrm{BA}=\mathrm{CA}$. a Make $\mathrm{BD}=$ CA , and b draw the line CD

In the triangles $\mathrm{DBC}, \mathrm{ACB}$, becaure $\mathrm{BD} c=\mathrm{CA}$, and the fide BC is common, and the angle DBC $d=\mathrm{ACB}$, the triangles $\mathrm{DBC}, \mathrm{ACB}$ e fhall be equal the one to the other, a part to the whole. f Wbich is impoffble.

Coroll
Herce, evcry equilateral triangle is alfo equilateral. PROP:
a 2.1
b 1 poft.
c \int upppof.
d byp. c 4 I.
f9.ax.

The angles ABC , ACB , at the bafe of an IJofceles triangle ABC , are equal one to the otber; And if the equal fides AB, AC, are produced, the angles CBD, BCE, under the bafe, Jball be equal one to the otber.
a Take $\mathrm{AE}=\mathrm{AD}$; and b join CD , and BE.

Becaufe, in the triangles ACD,

PROP. VII

Upon the Same rigbt-line AB two rigbt-lines being drawn AC, BC, two other rigbt-lines equal to the former, AD, BD, each to each (viz.) $\mathrm{AD}=\mathrm{AC}$, and $\mathrm{BD}=\mathrm{BC}$) cannot be drawn from the. Same points $\bar{A}, \mathrm{~B}$, on the fame fine C , to Several points, as C and D , but only to C .

1. Cafe If the point D be ret in the line $A C$, it is plain that $A D$ is a not equal to AC.
2. Cafe If the point D be placed within the triangle $A C B$, then draw the line $C D$, and produce BDF, and BCEE. Now you would have $A D=A C$, then the angle $A D C b=$ ACD ; as alfo, because $\mathrm{BD}_{c}=\mathrm{BC}$, the angle $\mathrm{FDC}=b \mathrm{ECD}$, therefore is the angle $F D C \subset-d A C D$, that is, the angle FDC-ADC. $d W$ mich is impofible.

3: Cafe. If D falls without the triangle $\Lambda C B$, let $C D$ be joined

Again, the angle $A C D e=A D C$, and the angle $B C D$ e 5. r. $e=B D C$. f Therefore the angle $A C D-B D C$, viz. the f 9. ax. angle $\mathrm{ADC}=\mathrm{BDC}$. Which is impofible. Therefore, Ese.

PROP. VIII.
If two triangles ABC , DEF have two fides AB , AC , equal to two fides DE , DF , each to each, and the base BC equal to the base EF, then the angles contain-
 ed under the equal right lines fall be equal, viz A to D .

Because, $\mathrm{BC} a=\mathrm{EF}$, if the bare BC be laid on the a hyp. bare EF, b they will agree : therefore whereas $\mathrm{AB} c=\mathrm{b} a x .8$. DE , and $\mathrm{AC}=\mathrm{DF}$, the point A will fall on D (for it can- c hyp. not fall on any other point, by the precedent propofition) and fo the fides of the angles A and D are coincident; d wherefore thole angles are equal. Which was to be de- d 8. ax. monferated.

Coroll.
$\times 41$.
a 3. 1.
bI. 1.
c comftr. d8. 1.

I Hence, triangles mutually equilateral are alfo motually x equiangular.
2. Triangles mutually equilateral x are equal one to the other.
P R O P. IX.

To bifect, or divide into two equal parts, a rigbo-lined angle given BAC.
a Take AD =to $A R$, and draw the line DE; upon which 6 make an equilateral triangle DFE, draw the right-line AF ; it frall bifect the angle.

For $\mathrm{AD} c=\mathrm{AE}$, and the fide $A F$ is common, and the bafe DF $c=F E$. d therefore the angle $\mathrm{DAF}^{=\mathrm{EAF}}$. Wbich was to be done. Coroll.
Hence it appears how an angle may be cut into 4, 8, 16, 32, Erc. equal parts, to wit, by bifecting each part again.

The method of cutting angles into any equal parts required, by a Rule and Compars, is as yet anknown to Geometricians.

$$
\text { PROP. } X_{i}
$$

T_{0} bifect a right-line given AB.
Upon the line given AB a ereCt an equilateral triangle $A B C$; and b bifect the angle G with the right line CD. That line thall allo bifect the line given AB.
For $\mathrm{AC} c=\mathrm{BC}$, and the fide CD is common, and the angle $A C D c=B C D$. therefore $A D d$
$=\mathrm{BD}$. Which evas to be done.
The practice of this and the precedent propofition is eafily fhewn by the conftruction of the Ift propofition of this Book.

PROP XL

From a point \mathbf{C} im a sigbt lime given AB to erect a right line CF at right angles.
a Take on either fide of the point given $\mathrm{CD}=\mathrm{CE}$, upon the right-line DE b erect an equilateral triangle. draw the line FC, and it will be the
 perpendicular required.

For the triangles DFC, EFC are mutually c equilateral; c confir. d therefore the angle $\mathrm{DCF}=\mathrm{ECF}$. e therefore FC is d 8 . $\mathrm{I} \cdot$ perpendicular. Wbick was to be done. . e 10. dof.

The practice of this and the following is eafily performed by the help of a fquare.

PROP. XII.

Upors ass infinite rigbt-line given AB , from a point given that is mot in it, to let fall as perpendicular right line CG.

From the center $\mathbf{C} \boldsymbol{a}$ defcribe a circle cutting the
 right-line given $A B$ in the points E and F Then b bi- b 10, 1 . fee EF in G, and draw the right-line:CG, which will be the perpendicular required.
Let the lines CE, CF be drawn. The triangles EGC, FGC are mutually c equilateral. d thereforre the angles C conftr. EGC, FGC are equal, and by e confequence right ed8.I Wherefore GC is a perpendicular. Which was to be done. e io def.

PROP. XIII.

When a right-line AB fanding upon a rigbt-line CD maketh angles ABC , ABD; it maketh either two right-angles, or two angles equal to two right.

If the angles $A B C, A B D$ be equal, a then they make a def io. two right-angles; if unequal, then. from the point $B b$ ir. I. let there be erected a perpendicular BE. Becaufe the angle $\mathrm{ABC} c=$ to a right +ABE , and the angle $A B D$ c. 19. $a x$ $d=$ to a right -ABE , therefore thall be $\mathrm{ABC}_{3}+\mathrm{ABD} \mathrm{d} 3 \mathrm{ax}$. $e=$ to t wo right angles $+\mathrm{ABE}=2$ right angles. $W_{\text {bicb }} \mathrm{e} 2 a x$. suas to be demonfotrated.

Corollaries.

1. Hence, if one angle ABD be right, the other ABC is alfo right; if one acute, the other is obture, and fo on the contrary.
2. If more right-lines than one fland upon the fame right-line at the lame point, the angles thall be equal to two right.
3. Two right-lines cutting each other make angles equal to four right.
4. All the angles.made about one point make four right ; as appears by Coroll. 2.

PROP. XIV.

If to any right-line AB , and a point therein B , two rigbt-lines, not drawn from the fame fide, do make the angles $\mathrm{ARC}, \mathrm{ABD}$, on each fide equal to two rigbt, the lines CB, BD, Jall make one fltait line.
If you deny it, let CB, BE make one right-line; then
a 13.1. b byp. c 9. $a x$.
a 13.1. b 3.ax.

PROP. XV.

If two rigbt lines AB, CD, cut tbro one anotber, then are the two angles which are oppofite, viz. CEB, AED, equal one to the otbet

For the angle AEC + CEB $a=$ to two right angles $=$ AEC + AED; b therefore CEB=AED. Which was to be done.

Schol. 1.

If to any right-line GH , and in it a point A , two tight lines being drawn EA, FA, and not taken on the fame fide, make the vettical (or oppofite) angles Dand B equal,
thofe right-lines EA, FA, do meet directly and make one Arait line.

For two right angles are a equal to the angle $\mathrm{D}+\mathrm{A} \mathrm{A}^{13}$ I. $b=B+A$. c Therefore EA, AF, are in a frait line. b 2. ax. Wbich was to be demonffrated.
C.I4.I.

Schol. 2.

If four right-lines EA, EB, EC, ED, proceeding from one point E, make the angles, vertically. oppofite, equal the one to the other, each two

- lines, $A E, E B$, and CE, ED, are placed in one ftrait line.

For becaufe the angle AEC--AED
 angle $\mathrm{AEC} \mid \mathrm{AED} b=\mathrm{CEB}+\mathrm{DEB}$ = to two right an- b byp. © gles. c Therefore CED and AEB are frait lines. Wbich 2 ax. was to be demonftrated.

PROP. XVI.

One fide BC of any triangle ABC being produc'd, the outward angle ACD will be greater tban either of the inevard and oppofite angles, CAB, CBA.

Let the right-lines AH, BE, a bifeat the fides AC, BC; from which lines produc'd, take $b \mathrm{EF}=\mathrm{BE}$, and $\mathrm{HI}, b^{2}=\mathrm{AH}$, and join FC, and IC;
 and produce AOG.

Becaure $\mathrm{CE} c=\mathrm{EA}$, and $\mathrm{EF} c=\mathrm{EB}$, and the angle c conftr. FEC $d=$ BEA; the angle ECF e fhall be equal to EAB. d is 1: By the like argument is the angle $\mathrm{ICH}=\mathrm{ABH}$ There- e 4 I . fore the whole angle $A C D$ ($f B C G$) g is greater than ei-f 15 . I. ther the angle CAB or AISC Which was to be demon-g 9. ax. frated.

> PROP XVII.

Two angles of any triangle ABC, which way foever they be taken, are lefs than two right angles.

Let the fide BC be produced. Becaufe the angle ACD + ACB $a=$ two right angles, and the
 angle $A C D \quad b-A, ' c$ therefore
right-angles. After the fame manner is the angle $\mathrm{B}+$ $A C B$ - than two right. Lafly, the fide $A B$ being produced, the angle $\mathrm{A}+\mathrm{B}$ will be alfo lefs than two right angles. Which was to be demonffrated.

Coroll.

* IT. I。

23. I.
b'5. I.
c I6. I.
d. 9. ax.
a 5. 1. $\mathrm{ADB} c-\mathrm{C}$; therefore is $\mathrm{ABD}{ }^{\circ} \mathrm{C}$; $\cdot d$ therefore the whole angle $A B C \subset$. After the fame manner thall be $\mathrm{ABC} \sqsubset \mathrm{A} . W_{\text {bich }}$ was to be demaryfrated

PROP: XIX.

In every triangle ABC , under the greateft angle A is subtended the greateff. fide BC.

For if $A B$ be fuppored equal to $B C$, then will be the angle $A=C$ which is contrary to the Hypothefis: and if $A B C-B C$, then b i8. i. "Shall be the angle $\mathrm{C} b \subset$ A, which is againft the Hypothefis. Wherefore rather $B C-A B$; and afier the fame manner $\mathrm{BC}=\mathrm{AC}$. Which was to be demonflrated.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
drawn cutting each other in \mathbf{K}, and the right lines KF ; c 15 . def. KG be joined, the triangle FKG shall be made, c whofe fides FK, FG, GK, are equal to the three lives DF, FG, d I. ax. GH, d that is, to the three linet given A, B, C. Wbicio was to be done.

PROP. XXIII.

a 1. pof. .
b \mathfrak{j}. . C 22. 1. d 8. 1 .
(9.ax.
kig. 1.

At a point A in a rigbt line given AB , to make a rigbt-lined angle A equal to a right-lined angle given D . a Draw the right-line CF cutting the fides of the angle given any weys; b make $A G=C D$; upon $A G$ c raife a triangle equilateral to the former CDF, fo that AH be equal to DF, and GH to CF. then thall you have the angle $A d=10$ Which was to be done. PROP. XXIV.

If two triangles $\mathrm{ABC}, \mathrm{DEF}$ bave two fides of the one triangle AB, AC equal to two fides of the other triangle DE , DF , each to other, and bave the angle Λ greater than the angle EDF contained under the equal right-lines, they Jball bave alfo the bafe BC greater than the bafe EF.
a Let the angle EDG be made equal to A, and the fide $\mathrm{DG} b=\mathrm{DF} c=\mathrm{AC}$; and let EG, and FG be joined.

1. Cafe. If EG falls above EF ; Becaure ABd=DE, and $A C_{e}=D G$, and the angle $A e=E D G, f$ therefore is $\mathrm{BC}=\mathrm{EG}$. But becaufe $\mathrm{DF} e=\mathrm{DG}, g$ therefore is the angle $D F G=D G F ; b$ therefore is the angle $D F G-$ EGF, and by confequence the angle EFG, b c- EGF. k wherefore $E G(B C) \subset E F$.
2. Cafe. If the bafe EF coincides with the bafe EG, l it is evident that $\mathrm{EG}(\mathrm{BC}) \sqsubset \mathrm{EF}$.

3. axd
min.th
n $5 \cdot 4$

PROP. XXV.

3. Cafe If EG falls below EF, then becaufe $\mathrm{DG}+\mathrm{GE} \mathrm{m}^{2}-\mathrm{DF}+$ FE, if from both be taten away DG, DF which are equal ; EG (BC) remains $n \mp \mathrm{EF}$. Wbich was to be dem.

If two triangles ABC, DEF, have two @des AB, AC , equal to two fides DE, DF, each to pather, and bave the bafe BC greater than the base EF , tbey fball alfo bave the angle A contained inder the equal rigbt lines greater than tbe angle D .
For if the angle A be faid to be equal to D, a then is $\# 4 . i$. the bate $\mathrm{BC}=\mathrm{EF}$, which is againft the Hypothefis. If it be faid the Angle $\mathrm{A} \rightarrow \mathrm{D}$, then b will be $\mathrm{BC} \supset \mathrm{EF}$; b 24 1. which is alfo againft the Hypothefis. Therefore $\mathrm{BC}=$ EF. Which was to be dem:

PROP. XXVI.

If two triangles $\mathrm{BAC}, \mathrm{EDG}$, bave two angles of the ona B, C, equal to two angles of the other $E, D G E$, each to bis correjpondent angle, and bave alfo one fide of the one equal to one fide of the other, either that fide which lyeth betwixt the
equal angles, or tibat which is subtended under one of the co qual angles; the other fides alfo of the one Ball be equal to the otber fides of the otber, each to bis correßpondent fide, and the otber angle of the one, Soall be equal to the ot ber angle of the otber.

1. Hypotbefis. Let BC be equal to \mathbf{E} G, which are the fides that lie between the equal angles. Then I fay $B A=E D$, and $A C=D G$, and the angle $A=E D G$. For if it be faid that ED-BA, then a let EH be made equal to $B A$, and let the line $G H$ be drawn

Becaure $\mathrm{AB} b=\mathrm{HE}$, and $\mathrm{BC} c=\mathrm{EG}$, and the angle $\mathrm{B} c=\mathrm{E}$, therefore thall be the angle $\mathrm{EGH} d=\mathrm{Ce}=$ DGE. $f W$ bieb is absurd, therefore $A B \doteq E D$. After the fame manner AC may be proved eqnal to DG, d then will the angle A be equal to EDG.
n. Hyp. Let AB be equal to DE, then I fay BC工 $E G$, and $A C=D G$, and the angle $A=E D G$. For if EG be greater than $B C$ make $E I=B C$, and join DI. Now becaufe $A B g=D E$, and $B C b=E I$, and the angle $\mathrm{B} g=\mathrm{E}$; therefore will be the angle EID k $=\mathrm{C} l=\mathrm{EGD} m$ Wbisb is abfurd. Therefore is $\mathrm{BC}=$ $E G$, and fo as before, $A C=D G$, and the angle $A=$ EDG. Which was to be dem.

PROP. XXVII.

If a rigbt line EF ; falling uppon two right lines AB, CD, makes the altervate angles AEF, DFE, equal the one to the otber, then are the rigbt lines $A B, C D$, parallel
If $A B, C D$ be faid not to be parallel, produce them till they meet in G, which being fuppofed, the outward angle AE F will be a greater than the inward angle DFE, to which it was equal by Hypothefis Wbich tbings are repugnant.

PROP. XXVIII.

If a rigbt line EF , falling upon two rigbt lines, $A B, C D$, makes the outward angle $A G E$ of the one line equal to CHG the incuard and oppofite angle of the otber on the fame fode, or make the incuard angles on the fame fide, AGH, CHG, equal to two rigbt angles, then are the rigbt limes $A B, C D$, parallel.
'Hyp: i. Becaure by Hypothefis the angle AGE $=$ CHG, a therefore are BGH, CHG, the alternate a is. I. angles equal ; And b therefore are $A B$ and $C D$ paral- b 27. 1. lel.

Hyp. 2. Becaure by Ilypothefis the angle AGH+ $\mathrm{CHG}=$ to two right, $a=\mathrm{AGH}+\mathrm{BGH}, b$ thall be the a 13 I. angle $\mathrm{CHG}=\mathrm{BGH}$; and c therefore AB, CD, are paral- b $3 . a x$. lel. Wbicb was to be demonftrated.

PROP. XXIX.

If a right line EF falls upon two parallels, AB, CD, it will make botb the alternate angles DHG, AGH, equal each to otber, and tbe outward angle BGE equal to the inward and oppofite angle on the
 fame fide DHG, as alfo the imward angles on the fame fide AGH, CHG, equal to two right angles.

It is evident, that $A G H-1-C H G=$ two right angles ; a otherwife $A B, C D$, would not be parallel, which is contrary to the Hypothefis : But moreoverthe angle DHG \rightarrow CHG $b=r$:wo right ; therefore is DHG $c=A G H d=$ BGE. Which was to be dem.
$\begin{array}{ll}a & 13 . \\ b & \text { ax. }\end{array}$ b 13. 1. c 3 ar. d 14. 1 .

Coroll.
Hence it follows that every parallelogram AC having one angle right A, the reft are alfo right.
For $A+B a=$ two A right angles Therefore, whereas A is right, b B muft

229 1. be alfo right. By the fame argument are G and D right angles.

> PROP. XXX.

Rigbt lines (AB, CD) parallel to one and the fame rigbt line EF, are allo parallel the one to the otber
Let GI cut the three right lines given any ways. Then becaufe AB, EF, are parallel, the angle AGI will be $a=E H I$. Alfo be-

eaute

2 29. 1. Caure C D and EF are parallel, the angle EHI will be b 1. $a x . \quad a=$ DIG. b Therefore the angle AGI $=$ DIG,c whence c 27. 1. AB and CD are paraltel. Which was to be demonftrated. PRO P. XXXI.

From a point gtven A zo draw a rithbt line AE , paralled to a right line given BC

From the point A draw a right line BD to any point of the given right 23 I. line ; with which at the point thereof a A make an ant b 2 J .1 . gle DAE=ADC. b then will $A E$ and BC be parallel. Wbich.evas to be done.

PROP XXXII.

Of amy triangle ABC one fids BC being thawn out, the outward angle ACD foall be equal to tbe troo inveaivd oppofite angles A, B, and the tbree inward angles of the triangle A, B, ACB, Jball be equal to two rigbt angles.
$\begin{array}{lll}\text { a } & 31 . & 1 . \\ b & 29 . & 1 .\end{array}$
c $2 a x$
d 19 ax.
e 13. 1.
f 1 ax.

From $C a$ draw $C E$ parallel to BA Then is the angle $\mathrm{A} b=\mathrm{ACE}$, and the angle $\mathrm{B} b=\mathrm{ECD}$. Therefore $\mathrm{A} \cdot \mathrm{B} c=\mathrm{ACE}-\mathrm{ECD} d=\mathrm{ACD}$. Wbicb was to be demonftrated.

I affirm $\mathrm{ACD}+\mathrm{ACB} e=$ two right angles f theree fore $\mathrm{A}+\mathrm{B}+\mathrm{ACB}=$ two right angles. Which was to be demonfrated.

Coroll.

1. The three angles of any triangle taken together are equal to the three angles of any other triangle taken together From whence it follows,
2. That if in one triangle, two angles (taken feverally, or together) be equal to two angles of another triangle (taken feverally, or together) then is the remaining angle of the one equal to the remaining angle of the other In like manner, if two triangles have one angle of the one equal to one of the other, then is the furm of the remaining angles of the one triangle equal to the fum of the remaining angles of the other.
3. If one angle in a triangle be right, the other two are equal to a right. Likewife, that angle in a triangle which is equal to the other two, is it relf a right angle.

4 When in an Ifofceles the angle made by the equal fides is right, the other two upon the bafe are each of them half a right angle.
5. An angle of an equilateral triangle makes two third parts of a right angle. For one third of two right angles is equal to two thirds of one.

Scbol.

By the help of this propofition you may know how many right angles the inward and outward angles of a right lined figure make ; as may appear by thefe two following Theorems.

THEOREMI.

All the angles of a rigbt lined figure do togetber make tavice as many right angles, abating four, as there are fides of the figure

From any point within the figure let right lines be drawn to all the angles of the figure, which hall refolve the figure into as many triangles as there are fides of the figure. Wherefore, whereas every triangle affords two right angles, all the triangles taken together will make up twice as many right angles as there are fides. But the angles about the faid point within the figure make up four right; therefore, if from the angles of all the triangles you take away the angles which are about the faid point, the remaining angles, which make up the angles of the figure, will make twice as many right angles, abating four, as there are fides of the figure. Which was to be demonfrated.

Coroll

Hence all right-lined figures of the fame fpecies have the fums of their angles equal

$$
\mathcal{T} H E O R E M \text { II. }
$$

All tbe outward angles of any right-lined figure, taken togetber, make ut four right angles

For every inward angle of a figure, with the outward angle of the fame, make two right angles; therefore all the inward angles, together with all the ourward, make twice as many right angles as there are fides of the figure: but (as has been juft hewn) all the
inward angles, with four right, make twice as many right as there as fides of the figure ; therefore the outward angles are equal to four right angles. Wbich was to be demonftrated.

Coroll.

Alt right-lined figures, of whatioever fipecies have, the' fums of their outward angles equal

PROP. XXXIII.

If two equal and parallel lines AB, CD, be joyned togetber with twoo otber right lines, AC, BD, then are thope lines alfo equal and parallel.
Draw a line from C to B . Now becaufe AB and CD 229. I. are parallel, and the angle A BC $a=$ BCD; and alfo by hypothelis $\mathrm{A} B=\mathrm{CD}$, and the fide CB common,
b 4. r.
\& 27 . 1 . thetefore is $\mathrm{AC} b=\mathrm{BD}$, and the angle $\mathrm{ACB} b=\mathrm{DBC}$ c whence alfo AC, BD, are parallel. PROP. XXXIV.

In parallelograms, as ABDC, the opprifte fides AB, CD, and AC , BD , are equal each to otber; and the oppofite angles A, D, and ABD , ACD , are alfo equal; and the diameter BC bifetts the fame. .
a byp. : Becaufe AB, CD, a are parallel, b therefore is the angle $\mathrm{ABC}=\mathrm{BCD}$. Alfo becaufe AC, BD, are a parallel, b therefore is the angle $A C B=C B D ; ~ c$ there-
c 2 ax. fore the whole angle $A C D=A E D$. After the fame manner is $\mathrm{A}=\mathrm{D}$. Moreover becaure the angles ABC , $A C B$, lie at each end of the fide $C B$, and are equal to $\mathrm{BCD}, \mathrm{CBD}, d$ therefore is $\mathrm{AC}=\mathrm{BD}$ and $\mathrm{AB} d=$ CD , and fo the triangle $\mathrm{ABC}=\mathrm{CBD}$. Which was to be demonftrated.

Schol.

Every fon-fided figure ABDC , baving the oppofite fides equal, is a parallelogram
2 2:. 1. For by 8. 1. the angle $\mathrm{ABC}=\mathrm{BCD}$; a wherefore AB, CD, are parallel In like manner is the angle BCA $=\mathrm{CBD}$; a wherefore AC, BD, are valfo parallel. b_{35} def. 1. b Therefore ABCD is a parallelogram. Which was to be demonfirated.

From hence we may more expeditioufly draw a parallel CD to a right line given $A B$, thro' a point affigned \mathbf{C}.

Take

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

The firft Book of
PROP. XXXVI.

Parallelograms BCDA, GHFE, ftanding xpon equal bafes BC, GHI; and betcovixt the fame parallels AF, BH_{3} are equal one to the other.
a byp.
b 34.
c. 33.1
d 35. 1. to be demonfrated.

PROP. XXXVIL

$\begin{array}{lll} \\ b & 31 . \\ & 1 .\end{array}$
c 35.1 . and 9 . ax.

Triangles,' BCA, BCD, ftanding upon tbe fame bafe BC, and between the fame BC, and betcueen the Jame
parallels BC, EF, are equal the one to the other.
a Draw BE parallel to CA, a and CF parallel to BD. Then is the triangle BCA $b=$ half Pgr. BCAE $c=$ half $\operatorname{BDFC} b=$ BCD. Wbicb wras to be demenfivated.

Triangles, BC A, EFD, fet upon equal bafes BC, EF, and betroeen the fame parallels GH , BF , are equal the ome to the otber.

Draw BG parallel to CA, and FH parallel to ED Then is triangle BCA a half Pgr. BCAG $b^{\prime}=$ half EDHF $c=E F D$. Wbich roas to be demonftrated. Schol.
If the bare B C be greater than EF, then is the triangle BAC $-E D F$, and to on the contrary.

PR OP. XXXIX.

Equal triangles BCA, BCD , Atarding on the fame bafe EC, and on the - Same fide are alfo betweem the Same parallels A D,
B C.

- If you dew it, let another line AF be parallel to EC; and let CF be drawn Then is the triangle CBE a a 37. I. $\mathcal{C} C B A=C B D . \quad c$ Whicb is abfud. PROP. XL.
Equal triangles BCA , EFD, farding upon equal bafes BC, EF, and on the Same fide, are betwixt the fame parallels.

If you deny it, let another line AH be parallel
 to $B F$, and let FH be drawn. Then is the triangle a 38. I. $\mathrm{EFH} a=\mathrm{BCA} b=\mathrm{EFD} \quad c W$ bich is $a b f u r d$.
b hyp.
PROP. XLI.
c 9. ax.
If a $P_{\text {gry }}$ ABCD bave the fame bafe BC with the triangle BCE, and be between the fame parallels AE, BC, then is the Pgr. ABCD double to the triangle BCE.
Let the line $A C$ be drawn Then is the triangle $B C A a=-B C E$, therefore is the 37.1 . Pgr. $\mathrm{ABCD} b=2 \mathrm{BCA} \cdot=2 \mathrm{BCE}$. Which was to be de- b monjtrated.

From hence may the area of any triangle BCE be found, for whereas the area of the Pgr. ABCD is produced by the altitude drawn into the bafe, therefore fhall the area of a triangle be produced by half the altitude drawn into the bare, or half the bare drawn into the altitude ; thus, if the bafe BC be 8 , and the altitude $\overline{ } 9$, then is the area of the triangle BCE 28.

PROP: XLII.

To make a Pgr ECGF equal to a triangle given ABC in an angle equal to a rigbt-lined angle given D .

Through

31: $2 \quad$ Through $A a$ draw $A G$ parallel to $B C$, b make the b 23. 1. angle $B C G=D, c$ bifect the bafe $B C$ in E, and druw © 10. 5 EF parallel to OG, then is the problem refolved.

For $A E$ being drawn, the angle ECG is equal to D d 3 8: 1 . by conftruction, and the triangle $\mathrm{BAC}_{d=2} \mathrm{AEC}_{\mathrm{e}} \mathrm{e}=$ c 41.10 Pgr. EOGF. W.bich was to be done.

PROP. XLIIII.

μ

In every Pgr. ABCD , the complements DG, GB, of tbofe Pgrs. HE, FI, wbich frand, about the diameter, are equal one to the otber.
For the triangle $\mathrm{ACD} a=$ $A C B$, and the triangle AGH. : 34. 1. $a=$ AGE, and the triangle GCF $a=$ GCI. b Thereb 3 . αx. fore the Pgr. DG三BG. Wbich was to be demonftrated.

PROP. XLIV.

To a given right-line ' A^{\prime} ' to apply a parallelogram FL , equal to a given triangle" B , in a given angle C .
a Make a Pgr FD equal to the triangle B, fo that

- 42 1. the angle GFE may be equal to C. Produce GF till FII be equal to the line given A. Through $\mathrm{H} b$ draw IL parallel to EF , which let DE produced meet in I ,
b 3r. 1.
c 43 I. d 15 . 1. let DG produced meet with à right line drawn from I through F in the point K , thro' $\mathbf{K} \boldsymbol{b}$ draw KL parallel to GH, which let EF diawn out meet at M, and IH at L . Then thall FL be the Pgir. required.

For the $\mathrm{Pgr} \mathrm{FL}_{c}=\mathrm{FD}=\mathrm{B}, d$ and the angle $\mathrm{MFH}=$ $\mathrm{GFE}=\mathrm{C}$. Which was to be done.

PROP: XLV.

Upon a right line given $F G$, and in a given angle E, \% make a Pgr. FL, equal to a rigbt lined figure given ABCD.

Refolve the right-lined figure given into two triangles $\mathrm{BAD}, \mathrm{BCD}$, then a make a Pgr. $\mathrm{FH}=\mathrm{BAD}$, fo that 244 E. the angle F may be equal to E. FI being produced, a make on HI the Pgr. IL $=\mathrm{BCD}$. Then is the Pgr. FL $b=F H-I L c=A B C D$. Wbich was to be done. \quad congft.

Scbol.

Hence is eafily found the excefs, HE, whereby any right-lined figure, A, exceeds a lefs right-lined figure, B ; namely, if to fome right-line, CD , be applied the $\mathrm{Pgr} . \mathrm{DF}=\mathrm{A}$, and $-\mathrm{DH}=\mathrm{B}$.

PROP. XLVI.

Upon a right line given AD to defcribe a fquare AC.
a Erect two perpendiculars $\mathrm{AB}, \mathrm{DC}, h$ equal to the line given $A D$; then join $B C$, and the thing required is done.
For, whereas the Angle A
 $-1-D_{c==t w o ~ r i g h t, ~}^{d}$ therefore are $A B, D C$ parallel. But they are alio e equal; f therefore AD, BC are both parallel and equal ; therefore the figure AC is a Pgr and equilateral Moreover the angles are all right, g becaufe one A , is right ; b therefore AC is a fquare. Which was to be done.

After the fame manner you may eafily defcribe a rectangle contained under two right lines given.

PR.O P. XLVII.

In right - angled
wrangles BAC, tb be
Square B E which
is made om the side BC that subtends the right angle BAC, is equal ta both the squares BG, CH, which are made on the fades AB, AC, containing the right angle.
Join $A E$, and AD; and draw AM parallel to CE,
a 12. ax.
b 29 def. c 4. I.
d 41. I.
e 6. $a x$.
f 2. $a x$.

Because the angle DRC $a=$ FBA, add the angle $A B C$ common to them both; then is the angle $A B D=$ FBC. Moreover, $\mathrm{AB} b=\mathrm{FB}$, and $\mathrm{BDb}=\mathrm{BC}$; c therefore is the triangle $\mathrm{ABD}=\mathrm{FBC}$. But the $\mathrm{Pgr} . \mathrm{BM} d=$ 2. ABD, and the Par. $d \mathrm{BG}=2$ FBC (for GAC is one right line by Hypothefis, and $14 \cdot 1$) e therefore is the Agr. BM_BG By the fame way of argument is the $\mathrm{Pgr} \mathrm{CM}=\mathrm{CH}$. Therefore is the whole $\mathrm{BE}=f \mathrm{BG}+$ Ci. Which was to be demonfrated.

School.

This mot excellent and useful theorem hath deferved the title of Pythagoras his theorem, because he was the inventor of it. By the help of which the addcion and fubtraction of fquares are performed; to which purpose ferve the two following problems.

Euciade's Elements.

PROBLEMI.

To make one fquare equal to ary number of Squares git ven.

Let three fquares be given, whereof the fides are $\mathrm{AB}, \mathrm{BC}, \mathrm{CE}$ a Make the right angle FBZ, having the fides infinite; and on them transfer $B A$ and $B C$; join AC. then is $\mathrm{ACq} b=\mathrm{ABq}+-\mathrm{BCq}$: Then transfer AC from B to X , and CE the third fide given from B to E; join $E X$. b Then is $\left.\mathrm{EXq}=\mathrm{EBq}_{(\mathrm{CE}}^{\mathrm{q}}\right)+$

PROBLEMII.

Two unequal right lines being
given AB, BC, to make a Squaire equal to the difference of the two Squares of the given lines AB, BC.

From the center B, at the diftance of BA, defcribe a cir-
 cle; and from the point C erect a perpendicular CE meeting with the circumference in E ; and draw BE ${ }_{B A}$ Then is $\mathrm{BEq}_{\mathrm{C}}(\mathrm{BAq})=\mathrm{BCq}+\mathrm{CEq}$. \quad o Therefore $\mathrm{BAq}-\mathrm{BCq}=\mathrm{CEq}_{\mathrm{q}}$. Whach was to be done.

PROBLEM III,

Any two fides of a rigbt angled triangle ABC , being known, to find out the tbird.

Let the fides $A B, A C$, encompalifing the right angle, be, the one 6 foot, the other 8. Therefore, whereas $A C q+A B q=64+$ $36=100=\mathrm{BC}$, thence is $\mathrm{BC}=$ $\sqrt{100}=10$.
Now, let the fides AB, BC, be known, the one 6 foot, the other 10. Therefore fince $\mathrm{BCq}-\mathrm{ABq}$ $=100-36=64=A C q$, thence is $A C=-\sqrt{64}=8$. Wbich was to be done

The firf Book of

PROP. XLVIII.

If the Square made upon one fide BO of a triangle be equal to the fquares made on tbe otber fides of the triangle AB, AC, then the angle BA C comprehended under the two other fides of the triangle AB, AC, is a rigbt angh Perpendicular to $A C$ draw $A D=A B_{3}$ and join $C D$.
a 47. 1. * See the following theor. b 8. 1 . c conftr.

Now is $a C D q=A D_{q}+A C q=A B q+A C_{q}=B C q$. $*$ Therefore is $\mathrm{CD}=\mathrm{BC}$. And therefore the triangles $\mathrm{CAB}, \mathrm{CAD}$, are mutually equilateral. Wherefore the angle $C A B b=C A D=$ right angle. Whicb was to be demonftrated.

Scbol.
We affumed in the demonftration of the laft Propofition, $C D=B C$, becaufe $C D q$ was equal to $B C q$: Our affamption we prove by the following theorem.

THEOREM.

The fquares $A F, C G$ of equal riebt lines $A \dot{B}, C D$, are equal one to the otber: And the fides IK, LM; of equal fquares $N K, P M$, are equal one to the other.

1. Hypotbefis. Draw the diameters $E B, H D$. Then
a 34 I. b 4. 1. 8
2. ax.

246 I. b I. part, c byp.
d 9.ax. it is evident that $A F$ is a equal to the triangle $E A B$ twice taken, and b equal to the triangle $H C D$ twice taken, and equal to a CG. Which was to be degmonftrated.
2. Hyp If it may be, let LM be greater than IK. Make LT=IK, and let LS $a=\mathrm{LT}$. Therefore is $\mathrm{LS} b=\mathbf{N K} c=\mathrm{LQ} . d$ Whicb is $a b f_{j u r d}$.

Coroll:
After the fame manner any rectangles equilateral one to another, are demonftrated to be alfo equal.

The End of the firft Book.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
its two complements is called a Gnomon. As the Pgr. $\mathrm{FE}+\mathrm{BI}+\mathrm{GA}$ (EHM) is a Gnomon; and likewife the Pgr. F в + BI- EM (GKA) is a Gnomon. PROP. I.

If two right lines AF, AB, are given, and one of them A B divided into as many parts or fegments as you pleafe; the rectangle comprebended under the two awbole rigbt lines AB, AF, Ball be equal to all the rectangles contained under the wbole line AF , and the feveral jegments, AD, DE, EB.
a II. I.
a Set AF perpendicular to AB. Thro ${ }^{\circ}$ a draw an infinite line FG perpendicular to AF . From the points. D, E, B, erect perpendiculars DH, EI, BG. Then is $A G$ a rectangle comprehended under $A F, A B$, and is
b $19 a x$ I. b equal to the rectangles AH, DI; EG, that is (bec 34. I. caufe $\mathrm{DH}, \mathrm{EI}, \mathrm{AF}, c$ are equal to the rectangles under AF, AD, under AF, DE, under AF, EB. Wbich was to be demonffrated.

Scbol.

If two rigbt lines given are both divided inito bow manis parts foever, one wwole multiplied into the other fball bring out the Same product, as the parts of one multiplied into the parts of the other.
\cdot For let Z be $=A+B+C$, and $Y=D+E$; then,
2 IU.
$62 . a x$.
$* 12$ 。 becaufe $\mathrm{DZ} a=\mathrm{DA}+\mathrm{DB}+\mathrm{DC}$, and $\mathrm{EZ}, a=\mathrm{EA}+$ $\mathrm{EB}+\mathrm{EC}$, and $\mathrm{YZ} a=\mathrm{DZ}+\mathrm{EZ}$, b thall ZY be $=\mathrm{DA}$ - DB \mid DC-FEA-EB+EC. Wbich was to be demonfrated.

From bence we bave a metbod of multiplying compound lines into compound ones. For if the retzangles of all the parts be taken, their fum Jball be equal to the rectangle of the wwoles.

But whenfoever in the multiplication of lines into themflyes you meet with thefe figns-intermingled with thefe 7 , you muft alfo have particular regard to tho figns. For of + multiplied into-arifeth - ; but of -into- arifeth +. ex. gr. let +A be multiplied into $B-C$; then becaufe $+A$ is not affirined of all B, but only of that part of it, whereby it exceeds \mathbf{C}, therefore AC muft remain denied; fo that the product will be ABAC . Or thus; becaufe B courifts of the parts C and $B-C$, * thence $A B=A C+A \times B-C$, take away $A C$ from both. then $A B-A C=A \times B-C$. In like man-
heir, if - -A be to be multiplied into $\mathrm{B}-\mathrm{C}$, then fince by virtue of the fign -, A is not denied of all B, but only of fo much as it exceeds C , therefore AC moft remain affirmed, whence the product will be $-\mathrm{AB}+$ $A C$. Or thus ; becaufe $A B=A C+A \times B-C$;- take away all from both fides, and there will be $-\mathrm{AB}=$ $-A C-A \times B-C$; add $A C$ to both, and it will be $-\mathrm{AB}+\mathrm{AC}=-\mathrm{A} \times \mathrm{B}-\mathrm{C}$.
This being fufficiently underftood, the nine following propofitions, and innumerable others of that kind, arifing from the comparing of lines multiplied into themfelves (which you may find done to your hand in W ieta, and other analytical Writers) are demonftrated with great facility, by.reducing the matter for the moft part to almoft a fimple work.

Furthermore, * it appears that the pirnduct arifing from the multiplication of any magnitude into the parts of any number is equal to the product arifing from the multiplication of the fame into the whole number: As $5 \mathrm{~A}+7 \mathrm{~A}=12 \mathrm{~A}$, and $4 \mathrm{~A} \times 5 \mathrm{~A}+4 \mathrm{~A} \times 7 \mathrm{~A}=4 \mathrm{~A} x$ 12A. Wherefore what is here delivered of the multiplying of right lines into themfelves, the fame may be undertood of the multiplying of numbers into themfelves, fo that whatfoever is affirmed concerning lines in the nine following Theorems, holds good alfo in numbers ; feeing they all immediately depend on, and are deriv'd from this firft.

PROP. II.

If a rigbt line tiv be divided any wife into two parts, the rectangles comprebended
 under the wbole line Z_{s}, and
der the wibole line Z, and one of the fegments \mathbf{E}, is equal te the redangle made of the fegments A, E, and tbe fquäre defaribed on the faid fegment \mathbf{E}.
á I. 2.
$=2$

PROP. IV.
free $=4 x$ equal to the fquares defcribed on the fugments A, E, and to twice a rettangle made of tbe fegments A, E taken togetber.
a 3. 2:
b $2 \cdot 2$
C I.ax.

I fay that $\mathrm{Zq} q=\mathrm{Aq}+\mathrm{Eq}-2 \mathrm{AE}$. For $\mathrm{ZA} a=\mathrm{Aq}+$ AE , and $\mathrm{ZE} a \cdots \mathrm{Eq}+\mathrm{EA}$. Therefore whereas ZA+ $\mathbf{Z E} \boldsymbol{b}=\mathrm{Zq}, c$ thence is $\mathrm{Z}, \mathrm{q}=\mathrm{Aq}+\mathrm{Eq}+2 \mathrm{AE} . W b i c b$ was to bo demonfitated

Otberwife tbus ; Upon the right line $A B$ make the fquare $A D$, and draw the diameter EB ; thro C°, the point wherein the line $A B$ is divided, draw the perpendicular CF; and thro the point G draw HI parallel to AB.
d $4 . c o r$. 32 1.
e 32 I.
f 6 .
g 34.1 .
h 29 def
k 19.ax. I.
$I_{\text {ray }} \mathrm{ZE}_{\boldsymbol{q}}=\mathrm{AE}+\mathrm{Eq}_{\mathrm{q}}$ a For $\mathrm{EZ}=\mathrm{EA}+\mathrm{Eq}_{\mathrm{q}}$.

Becaufe the angle $\mathbf{E H G}=\mathrm{A}$ is a right angle, and AEB is d half a right, e therefore is the remaining angle HGE half a right angle. Therefore is $\mathrm{IE} f=$ $H G g=E F g=A C$, fo that $H F b$ isthe fquare of the right line AC. After the fame manner is CI proved to be CBq. Therefore AG, GD, are rectangles under AC, CB, wherefore the whole fquare $\mathrm{AD} k=\mathrm{ACq}+$ $\mathrm{CBq}+2 \mathrm{ACB}$. Which was to be demenffrateds Coroll.

1. Hence it appears that the Pgrs which are about the diameter of a fquare are alfo fquares themfelves.
2. That the diameter of any fquare bifects its angles. That if $\mathrm{A}=\frac{1}{2} \mathrm{Z}$, then is $\mathrm{Zq}=4 \mathrm{Aq}$, and $\mathrm{Aq}=$ $\frac{2}{4} \mathrm{Zq}$. As on the contrary, if $\mathrm{Zq}=4 \mathrm{Aq}$, then is $\mathrm{A}=$

PROP. V.
$\mathrm{A}-\mathrm{C} \quad \mathrm{D}-\mathrm{B}$ into a rigbt line AR be cutt and into unequal parts AD, DB, the rectangle comprebended under the unequal parts AD, DB, together with the Square that is made of the difference of the parts CD , ia egual to the Square defcribed on the balf line CB.

I fay that $\mathrm{CBq}_{q}=\mathrm{ADB}+\mathrm{CD}_{9}$.
For thefe are $\left\{\begin{array}{l}\mathrm{CBq} . \\ a \mathrm{CD} q+\mathrm{CDB}+\mathrm{DBq}+\mathrm{CDB} . \\ \mathrm{CDq} .\end{array}\right.$
 CDq-d ADB
This theorem is fomewhat differently exprefs'd and more calily demonftrated thus; A Retlangle made of the fum and the difference of two rigbt lines A, E, is equal to the difference of the Squares of thofo lines.

For if A-E be multiplied into A-E, * there ari- * Sch 1.2. feth Aq-AE+EA-Eq=Aq-Eq. Wbich was to bo demonftrated.

Scbol.
If the line $A B$ be divided otherwife, (vir.) near-
 er to the point of bifection, in E; then is AEB \subset ADB.

For $\mathrm{AEB} a=\mathrm{CBq}_{q}-\mathrm{CE}_{4}$, and $\mathrm{ADR}_{a}=\mathrm{CBq}_{-}$ CDq . Therefore, whereas $\mathrm{CD}_{\mathrm{q}} \mathrm{C} \cdot \mathrm{CEq}$, thence is AEB ᄃAD B. Wbich was to be demonftrated.

Coroll

1. Hence is $\mathrm{ADq}+\mathrm{DBq}_{\mathrm{q}} \subset \mathrm{AEq}+\mathrm{EBq}$. For ADq_{q} $+\mathrm{DBq}+2 \mathrm{ADB} b=\mathrm{ABq} b=\mathrm{AEq}+\mathrm{EBq}+2 \mathrm{AEB}$. Therefore becaufe 2 AEB $\subset 2 A D B$, fhall $A D q+D B q$ $-\mathrm{AEq} \uparrow-\mathrm{EBq}_{\mathrm{A}}$. Which was to be demonftrated.
2. Hence is $\mathrm{ADq}_{q}+\mathrm{DBq}_{q}-\mathrm{AEq}_{q}-\mathrm{EBq}=2 \mathrm{AEB}-\mathrm{c} 3^{\circ}$ ax 2 ADB.

> PROP. VI.

If a rigbt line A be divided into two equal parts, and anotber rigbt line E , added
 to the Same divectly in one right line, then tbe rectangle comprebended under the whole and the line added, (viz. A+E, and the line added \mathbf{E}, togetber with the Square wobich is made of $\frac{1}{2}$ the line A, is equal to the fquare of $\frac{1}{2} A+E$ taken as one line.
I Gay that $\frac{3}{4} \mathrm{Aq}\left(a Q^{\frac{2}{2}} \mathrm{~A}\right)+\mathrm{AE}+\mathrm{Eq}_{\mathrm{q}}=\mathrm{Q}_{\frac{1}{3}} \mathrm{a}_{4}$ Er 3 . $\mathrm{A}+\mathrm{E}$. a For, $\mathrm{Q} \cdot \frac{1}{2} \mathrm{~A}+\mathrm{E}=\frac{1}{4} \mathrm{Aq}+\mathrm{Eq}+\mathrm{AE} \quad W b i c b \quad$ Cr. 42. was to be demonftrated.

Coroft

Hence it follows, that if 3 right lines E, E $+\frac{1}{2}$ A, E+ A be in arithmetical proportion, then the rectarggla contained under the extreme terms $\mathrm{E}, \mathrm{E}+\mathbf{A}$, to gether with the fquare of the difference $\frac{\frac{\pi}{2}}{2} A$, is equal ta the fquare of the middle term $E+\frac{1}{2}$ A.

If a right line \mathbf{Z} be divided andy dife into two parts, the Square of the whole line $Z, t o=$ sether with the Square made of one of the Segments \mathbf{E}, is equal to a double retyangle comprebended under the wwole line 2, and the faid Segment E , togetber with the Square made of the otber fegment A .
I fay that $\mathrm{Zq}+\mathrm{Eq}=2 \mathrm{ZE}+\mathrm{Aq}$. For $\mathrm{Zq} a=\mathrm{Aq}+$ $\mathrm{Eq}+2 \mathrm{AE}$, and $2 \mathrm{ZE} b=2 \mathrm{Eq}+2 \mathrm{AE}$. Whicb was to be demorfitated.

> Coroll.

Hence it follows, that the fquare of the difference of any two lines Z, E, is equal to the fquares of both the lines lefs by a double rectangle comprehended under the raid lines.
c. 7.2 and 3. $a x$.
17. 2. and 3. $4 x$.

If a right 'ine Z be dis,
 wided any wife into two parts, the rectangle comprebended under the wbole line Z, and one of the fegments E four times, together with the Square of the otber fegment A , is equal to the Square of the wbole line Z, and the fegment E , taken as one line $\mathrm{Z}+\mathrm{E}$. $+\mathrm{Eq}-\mathrm{Aq}$. Therefore $4 \mathrm{ZE}+\mathrm{Aq}_{q}=\mathrm{Zq}+\mathrm{E}_{q}+2 \mathrm{ZE} \bar{b}$ $=\mathrm{Q} \mathrm{Z}+\mathrm{E} . W$ bich was to be demonftrated.

PROP. IX.
 CB , and into wrequal parts AD, DB, then are the fquares of the unequal parts AD, DB, togetber, double to the Square of the balf line AC , and to the Square of the difference CD . I fay that $A D q+D B q=2 A C q+2 C D q$. For $A D q+$ $\mathrm{DBq} a=\mathrm{ACq}+\mathrm{CDq}+2 \mathrm{ACD}+\mathrm{DBq}^{\mathrm{But}} 2 \mathrm{ACD}$ $\left(b_{2} \mathrm{BCD}\right)+\mathrm{DBq}_{\epsilon}=\mathrm{CBq}(\mathrm{ACq})+\mathrm{CDq}_{q} d$ Therefore $\mathrm{ADq}+\mathrm{DEq}=2 \mathrm{ACq}+2 \mathrm{CDq}$. We bicb was to be dqmenfrated.
This may be otherwife delivered and more cafily demonftrated thus; the aggregate of the fquares made of the fum and the dijference of two rigbt lines A, E, is equal to the double of the fquares made from thofe lines.

Eucinde's Elements:
For $Q: A+E a=A q+E q+2 A E$, and $Q: A-E b$ a 4. 2. $=\mathrm{Aq}+\mathrm{Eq}-2 \mathrm{AE}$. There added together make 2 Aq b cor. 7.2. +2 Eq. Which vas to be demonftrated.

PROP. X.
If a right line \boldsymbol{A} be divoided into two equal parts, and another line be added
 in a right line with the fame, then is the Square of the whole line together with the added line (as being one line) together with the square of the added line \mathbf{E}, double to the Square of barf A , and the added line E , taken as one line.

1 fay that $\mathrm{Eq}+\mathrm{Q} \cdot \mathrm{A}+\mathrm{E}$, i.e. $a \mathrm{Aq}+2 \mathrm{Eq}+2 \mathrm{AE}=24.2:$ $2 Q \cdot \frac{1}{2} A+2 Q \frac{1}{2} A+E$ For $2 Q \cdot \frac{1}{2} A b=2 A$. And b cor. $4,2 n$ $2 Q \frac{1}{2} A+E c=12 q+2 E q+2 A E$. Which was to be c 4.2. - demonftrated.

PROP. XI.
To cut a right line git. ven $A B$, in a point G_{q} fo that the rectangle compretended under the wimble line AB , and one of the Segments BG, bal be et qual to the Square that is made of the other. fegn
 vents AG.

Upon $A B a$ defcribe the fquare $A C$. b Bifect the fine $a 46$. mo $A D$ in E, and draw the line EC; from the line EA $b i a$ in produced take EF=EG. On AF make the square AH. Then is $A H=A B \times B G$.

For IIG being drawn out to .I ; the reCtangle DH+ $\mathrm{EAq} c=\mathrm{EFq} d=\mathrm{EBq} e=\mathrm{BAq}+\mathrm{EAq}_{q}$: Therefore is c 6.2. $\mathrm{DHf}=\mathrm{BAq}_{\mathrm{q}}=$ to the square AC . Take away AI \mathbf{d} confer. common to both, then remains the fquare $A H=G C_{\text {. }}$ that is, $A G q=A B \times B G$. Which was to be done.
c 47. 1 . f 3. ax.

Scbok:
This propofition cannot be performed by numbers; * for there is no number that can be fo divided, that the product of the whole into one part fall be equalrto - Gi 13 the fquare of the other part.

PROP. XII.

Is obtufe-angled triangles ABC, the Square that is made of the fide $A C$, Jubtending the obtufe angle ABC , is greater than the Squares of the fides BC, AB, that contain the obtusa angle ABC , by a double retiangle contained under one of the fides BC, wwich are about tbè obtufe angle ABC, on wwbicb fide produced the perpendicular AD falls, and under tbe Tine BD, taken evithout the triangle fram the point on wbidb *be peiplendicular AD falls to the obtufe angle ABC .
I lay that $A C q=C B q+A B q+2 C$ © $\times B D$.
For thefe are aliequal

Scbolism:

Hence, the fides of any obtufe angled triangle ABC being known, the Segment BD intercepted betwixt the perpendicular AD , and the obtufe angle ABC , as alfo the perpendicular it felf AD , Sball be eafily found ount.
.Thus, Let AC be $10, \mathrm{AB}$ 7, CB_{5}. Then is $\mathrm{ACq} \mathrm{IOO}_{2}$. $\mathrm{ABq} 49, \mathrm{CBq} 25$. $\mathrm{Add} \mathrm{ABq}+\mathrm{CBq}=74$ Take that out of 100, then will 26 remain for 2 CBD. Wherefore CBD fhall be 13 ; divide this by CB 5, there will ${ }^{2 \frac{3}{3}}$ be found for BD . Whence AD will be found out by the 41. 1 .

PROP. XIII.

In acute angled triangles $A B C_{2}$ the fquave made of the fide $A B_{\text {, }}$ fubtending the acite angle A C B, is lefs than the Squares made of the fides AC, CB, comprebending the acute angle ACB, by a dooble rectangle coritained under one of the fides BC , wbich aree aboust the acute angle ACB on which the perpendicular AD falls; and under the line DC , taken. within the triangle from the perpendicular AD, to the acute autgle ACB.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

[42]

The Third Book.

0 F

EUCLIDEs - Elements.

Definitions.

1. Qual circles (GABC, HDEF) are fuch

II. A right line $A B$, is raid to touch a circle FEDC, when touching the fame, and being produced, it cutteth it not.

The right line FG cuts the circle FEDC.

III. Circles DAC, ABE (and alro FBG, ABE) are said to touch one the other, which touch, but cut not one the other

The cirele BFG cuts the circle FGH.
IV. In a circle GABD, right lines FE, KL, are faid to be equally diftant from the center, when perpendiculars $\mathbf{G H}, \mathbf{G N}$, drawn from the center G to them, are equalAnd that line $B C$ is raid to be furtheft diftant from it, on which the greater perpendicular GI falls.

V. A fegment of a circle (ABC) is a figure contained under a right line $A \mathrm{C}$, and a portion of the circumference of a circle ABC.

VI. An angle of a regment CAB, is that angle which is contained under a right line C A, and the circumference of a circle AB.
VII. An angle $A B C$ is faid to.be in a fegment $A B C$, when in the circumference thereof fome point B is taken, and from it right lines AB, CB, drawn to the ends of the right line $A C$, which is the bare of the regment; then the angle $A B C$ contained under the adjoined lines AB, CB, is faid to be an angle in a regment.
VIII. But when the right lines $A B, B C$, comprehending the angle $A B C$ ' do receive any periphery of the circle $A D C$, then the angle $A B C$ is faid to ftand upon that periphery.
IX. A fector of a circle (ADB) is when an angle ADB is fet at the center D of that circle; namely, that figure ADB comprehended under the right lines AD, BD, containing the angle, and the part of the cir-: cumferepge received by them $A B$.

X. Like

X. Like fegments of a circle (ABC, DFE) are thofe which include equal angles (ABC, DEF;) or, in which the angles ABC, DEF, are equal. PROP. I.

To find tbe center F of a given circle ABC.

Draw a right line AC anywife in the circle, which bifet in \mathbf{E}; thro \mathbf{E} draw a perpendicular DB , and bifect the lame in F; the point F fhall be the center.
If you deny it, let Gpoa point withour the line BD, be the center (for it cannot be in the line BD, fince that is divided unegually in every point but F;) let the lines
a 15:def.i. b 81 c $10 . \operatorname{def}$ I. d 12. anv. f 9. $4 \times$. GA, GC, GE, be drawn. Now if G be the center, a then is GA - GC, and AE=EC, by conftruction, and the lide GE common. 6 Therefore are the angles GEA, GEC, equal, and c confequently right. d Therefore the angle GEC=FEG. eWhich is $a b / \mathrm{srch}$

Cwoll.

Hence, if in a circle a right line BD bifect any right line AC at right angles, the center fhall be in the cutting line BD .

Andr. Gerq.

The center of a circle is eafily found out by applying the tot of a fquare to the circumference thereof. For if the right line DE that joins the points $D_{2} E_{2}$ in which the fides of
the fquare $Q D, Q E$, cut the circumference, be bifected in A, the point A hall be the center The demonfration whereof depends upon Prop. XXXI. of this Book.

PROP. II.

If in the circumference of a circle CAB, any two points A, B, be taken, the rigbt line AB, whicb joins thofe two points, Sall fall within the circle

Take in the right line $A B$ any point D; from the center C draw $\mathrm{CA}, \mathrm{CD}, \mathrm{CB}$. Becaure $\mathrm{CA} a-\mathrm{CB}$, therefore ${ }^{\circ}$ the a 15. def. 1 . angle $\mathrm{A} b=\mathrm{B}$. But the angle $\mathrm{CDB} c=\mathrm{A}$. therefore b 5.1 . is $\mathrm{CDB} d \mathrm{C}^{-} \mathrm{B}$, therefore $\mathrm{CB} d \mathrm{C}^{-} \mathrm{CD}$ But CB C 16. I. only reaches the circumference, therefore CDd19. \mathbf{D}_{0} comes not $f 0$ far ; wherefore the point D is within the circle. The fame may be proved of any other point in the line.A.B. And therefore the whole line AB falls within the circle W bibl was to be doms.

Coroll.

Hence, if a right line touch a circle, fo that it cut it not, it touches but in one point.

PROP. III.

If in a citrcle EABC, a rigbt line BD drawn tbro the center, $b i$ fats any otber line AC , not drawn tbro' the conter, it fball alfo cut it at rigbt angles: And if it cuts th at rigbt angles, it Joall alfo bifect the fame.

From the center \mathbf{E} let the lines EA, EC, be drawn.

1. Hyp Becaure $A F a=F C$, and $E A b=E C$, and a byp. the fide EF common; the angles EFA, EFC, c thall b is def. 1 . be equal, and d confequer.tly right. Which was to be c 8 I. demonffrated
2. Hyp. Becaure EFA $e=\mathrm{EFC}$, and the angle EAF f e byp and $=\mathrm{ECF}$, and the fide EF common; g therefore is AF 12 .ax. $=$ FC. Therefore AC is cut into two equal parts. f 5 . 1 . W bich was to be demonftrated.

Coroll.
Hence, in any equilateral or Ifofceles triangle, if a line drawn from the vertical angle bifect the bate, that line is perpendicular to it. And on the contrary, a pers pendicular drawn from the vertical angle bifects the bafe:

PROP. IV.

If in a circle ACD , two rigbt lines $A B, C D$, cut enich otbet, and neither of them pa/ss tbro ${ }^{\circ}$ tbe $c_{\text {center }} \mathrm{E}_{\text {, }}$ they fball not cut each oos ther into equal parts.

For if one line pars thro' the center, 'tis plain it cannot be bifected by the other ; becaufe by hypothefis, the other does not pafs thro the center.

If neither of them pafs thro the center, then from the center E draw EF ; now if $A B, C D$, were both bifected in F, then a wbuld the angles EFB, EFD, be both right, and confequently equal. b W licb is abjurd.
PROP. V.
a 15.def. I b 9.axo

If two circles $B A C, B D C$; cut each otber, they Jball not bave the fame center E.

For otherwife the lines $E B ; E D A$, drawn from E the common center, would be $D E a=E B a=E A, b$. Wbicb is abfurd.

PROP. VI.

If two circles $B A C, B D E^{\prime}$, inwardly toucb eash otber (in B) they bave not one and the Jame center F.
For otherwife the right lines $F B, F D A$, drawn from the center F, would be $F D_{a}=$ $F B a=F A$. b Wbich is $a b j u r d$.

PROP. VII.

If in $A B$ tbe diameter of a iircle fome poist G be taken, wbbicb is not the center of the circle, and from that point certain rigbt lines GC, $G D$, G E, fall on the cir cle the greateft line fball be tbat ($G A$) in wbich is the center F; the

- leaft, the remainder of the fam line (G B.) And of all the otber
 lines, the line GC, neareft to that wbich was dracwo tbro' the center is always greater tban any line fartber removed GD ; and there can but two equal lines fall from the fame point on the circle, viz. one on each fide of the leaft $G B$, or of the greatef $G: A$.

From the center F draw the right lines $F C, F D$, $F E$; * make the angle $B F H=B F E$.

1. $G F+F C($ that is $G A) a \Gamma^{-} G C$. Wbicb was to be a 20. 1. demonfrrated.
2. The fide $F G$ is common, and $F C b=F D$, and $b i s d e f .1$ the angle $G F C c \subset G F D ; d$ wherefore the bafe GCГ c 9. αx. G D.
3. $F B(F E) e \supset G E+G F$. Therefore $F G$, which e 20. 1 . is common, being taken away from both, there re-f 5 . ap. mains $B G \longrightarrow E G$.
4. The fide $F G$ is common, and $F E=F H$, and the angle $\mathrm{BFH} g=B F E ; b$ Therefore is $\mathrm{GE}=\mathrm{GH}$. But g conff. that no other line $G D$ from the point G, can be equal $\frac{h}{4}$. 1 . to GE , or GH , is already proved. Whicb was to be demongtrated.

The third Book of
 PROP. VII.

If fome point A be taken witbout a circle, and froms that point be drawin certaix rigbt lines $A I, A H, A G$, $A F$, to the circle, and of thofe one AI, be drawem tbro the center K, and the others any wifo; of all tbofe lines that fall on the concare of the ciycumference, that is the greateft AI, wbich is drawn tbro the center; and of the otbers, that (AH) whicb is neareft to the line tbat palfes tbro the center, is greater than that wibich is more diftant $A G$. But of all thofe lines that fall on the comeex part of the circle, the leaft is that ($A B$) which is drawn from the point A, to the diameter IB; and of the otbers, that ($A C$) wubich is meareft to the leaft, is lefs than that wibich is farther diftant A D. And from that point there can be only two equal right lines $A C, A L$, drawin, which Ball fall on the circumference on each fode of the leaft lime $A B$, or of the greateft AI:

From the center K, draw the right lines $K H, K G$, $K F, K C, K D, K E$, and make the angle $A K L=$ AKC.
a.20. 16
b 24 I
c 20. I.
d 5.ax.
e 21 I. f 5. ax.
g conftr.
h 4.1.

1. $A I(A K+K H) a \subset A H$.

2 The fide $A K$ is common, and $K H=K G$, and the angle $A K H \sqsubset A K G ; b$ therefore the bare $A H \Sigma$ AG.
3. $K A c \supset K C+C A$. From hence take away $K C$, $K B$, which are equal ; then will remain $A B, d \xrightarrow{\square} C$.
$4 A C, C K e \rightarrow A D+D K$. Take from both, $C K$, $D K$, which are equal ; then remains $A C f \sim A D$.
5. The fide $K A$ is common, and $K L=K C$, and the angle $A K L g=A K C ; b$ therefore $L A=C A_{0}$ But that no other line could be drawn equal to thefe, was proved above. Therefore, EPc.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
point than A; fo that not FGA, but FGDB, shall be a right line. Let the line GA be drawn. Now, becaufe a 15 def . I. GB $\alpha=G A$, and GB $b 工 G A$ (fince the right line FGB b 7, 3 .
c 9. aid

PROP. XII。

If two circles $\mathrm{ACD}, \mathrm{BCE}$. touch one the ot ber outevardly; the rigbt line AB , wbich joins their centers A, B, fball pafs tbro the point of contact C.

If it may be, let ADEB be a right line curting the circles, not in the point of contact C, but in the points 2 20. 1. D, E; draw $A C_{n} C B$, then is $A D+E B(A C+C B)$ a b 9.ax. ADEB. b Wbicb is abfurd.

PROP. XIII.
a 11.3.
b $15 . \operatorname{def} \mathrm{I}$.
cis def. I.
d 9.aso

2. If it be faid to touch outwardly in the points \mathbf{E} and F, then draw the line EF , e which will be in both

C 2. 3. circles. Therefore thofe circles cut one the other; whith is againft the Hyp,

PROP. XIV.

I_{n} a circle $E A B C$, equal rigbt lines $A C, B D$, are equally diAtant from the cinter E: and rigbt limes $A C, B D$, wbich are equally dijpant from the center, are equal anonig themfelves.
From the center E, draw the perpendiculars $E F, E G, a$ which will bifect the lines $A C, B D$,

a 3. 3: join $E A, E B$.

1. Hyp. $A C=B D$, therefore $A F b=B G$. But alfo b $\div . a x$. $E A=E B$; therefore $F E q c=E A q-A F q=E B q-B G q$ c 4i. 1. $t=E G q \cdot d$ Therefore $F E=E G_{0}$
2. Hyp. $E F=E G$. Therefore $A F_{q}=E A_{q}-E F q$ $=E B q-E G q=B G q$. Therefore $A F d=G B$, and e confequently $A C=B D$. Which was to be demonfrated.
d cibol. 48. 1. e 8. ati;

PROP. XV.

In a citrle GABC, the greateft line is the diameter $A D$; and of all àtber lines, that FE, wbicb is meareft to the center G, is greater than any line BC fartber difant from it.
1 Draw GB, and GC. The diameter $A D(a G B)$ GC) b-BC.

?. Let the diftance $G I$ be $-G H$. Take $G N=$ $G H$ 'Thro' the point N draw $K L$ perpendicular to $G I:$ join $G K, G L$. Hecaure $G K=G B$, and $G L=G C$. and the angle $K G L=B G C$; c therefore is $K L(F I S)$ EBC. Which avas to be demonftratod

PROP. XVI.

A line CD, drasun from the extreme point of the diameter HA, of a circle BALH, perpendicular to the faid diameter, Jball fall witboxt the circile; and between the fame rigbt line and thecircumference, camnot be drawwn anotber line AL. And the angle of the femicircle BAI;' is greater than any rigbt-lined acute angle BAL; and the remaining angle without the circumference D A I, is lefs than any right-lined angle.

1. From the center B, to any point F, in the right line AC , draw the right line BF . The fide BF fubtenda 19. 1. ing the right angle BAF, is a greater than the fide BA, which is oppofite to the acute angle BFA. Therefore, whereas BA, (BG) reaches to the circumference, BF thall reach further; and fo the point F, and for the fame reafon any other point of the line AC, thall be without the eircle.
2. Draw BE perpendicular to AL. The fide BA, op-
b. 19. I. pofite to the right angle REA, is b greater than the fide BE, which rubrends the acute angle BAE; therefore the point E , and fo the whole line EA, falls within the circle.

3 Hence it follows, that any acute angle, to wit, $E A D$, is greater than the angle of contact DA I, and that any acute angle BAL is lef's than the angle of a femicircle BAI. Wbich was to be dem.

Coroll.

- Hence, a right line drawn from the extremity of the diameter of a circle, and at right-angles, is a tangent to the faid circle.

From this propofition are gathered many paradoxes, and wonderful confectaries, which you may meet with in the interpreters.

Euclidis Eloments.

PROP. XVII.

From a point given A, to draco a rigbt live AC , which Jall touch a circle given D BC.

From D, the center of the circle given, to the given point A, let the line $D A$ be drawn, cutting the circumference in B, from the center D, defcribe another' circle thro'
 the point A; and from B, draw a perpendicular to $A D$, which thall meet with the circle $A E$ in the point E; and draw $E D$ meeting with the circle $B C$, in the point C. Then a line drawn from A to C, thall touch the circle DBC.

For $\mathrm{DB} a=\mathrm{DC}$, and $\mathrm{DE} a=\mathrm{DA}$, and the angle D is common; b therefore the angle $A C D=E B D$ and right. c Therefore AC, touches the circle in C . Which
$215 . d e f .1$. b 4. 1. c cor. 16 3. avas to be done.
PROP. XVIII.

If avy right line A B touches a circle FEDC, and from the center to the point of contact E, a right line FE be drawin; that line FE Jball be perpendicular to the tangent AB.

If you deny it, let fome other line FG be drawn from the center F, perpendicular to the tangent, and a cutting the
 circle in D. Therefore, whereas the angle FGE is b cor. $1 \% . k$ faid to be right. b thence is the angle FEG acute; 6 c 19. 1. fa that $\mathrm{FE}(\mathrm{FD}) \square^{-F G}$. dW Wich is abfurd.

PROP. XIX.

If amy.right lime AB toncb a cincle, apd from the point of contait $\mathrm{C}_{\text {, }}$ a right line CE be erefted at vight angles to the tangent, the conter of the circle. Jball be in the lixe CE fa aretted

If you deny it, let the center be withour the line CE, in the point F; and from F, to the point of contact, let FC be drawn. Therefore the angle FCB is right, and a confequently equal to the angle ECB, which was right by Hypothefis. b Wbich is abfurd. PROP. XX.

In a circle DABC, the anole. BDC at the center is doubla of the angle BAC at the circumference, when the fame arch of the circle EC , is the bafe of the angles.

Draw the Dianieter ADE. The outward angle BDE $a=\mathrm{DAB}+\mathrm{DBA} b=2 \mathrm{DAB}:$ In like manner the angle $\mathrm{EDC}=2 \mathrm{DAC}$; Therefore in the firft cafe c the whole angle $\mathrm{BDC}=2 \mathrm{BAC}$, and in the third cafe the remainiug angle $\mathrm{BDC} d=2 \mathrm{BAC}$ Which was to be der monfirated:

RROP. XXL

In a circle EDA.C the angles DAC , and DBC , wubin. are in the Yame Segment, are e. gual ane to the otber

I Cafe. If the fegment DABC begreater than a femicircle, from the center E draw ED, EC. Then is twice the angle $\mathrm{A} a=\mathrm{E} a=$ \& B. Wkich was to be dempnftrated.
2. Cafe. If the fegment be lefs than a remicircle, then is the fum of the angles of the triangle ADF equal to the fam of the angles of the triangle $B C F$, from each Iet APD equal to BFC, b and $A D B c=A C B$, be
 taken away, then remains DAC $=\mathrm{DBC}$. Which avas to be demonftrated.

The angles ADC, ABC, of a quadrilateral figure ABCD , deforibed in a circle, wubich are oppefite one to the otber, are equal to two rigbt angles.

Draw AC, BD. The angle $A B C+B C A+$ $B A C a=2$ right. But $B D A b=B C A$, and BDC $6=$ BAC. c There

PROP. XXII.

 fore ABC-1-ADC=2.right angles. Wbich was to be demonftrated.
I. Hence, if one fide * AB of a quadrilateral, defcri- * See the bed in a circle, be produced, the external angle EBC following is equal to the internal angle ADC, which is oppolre Diage. to that ABC, which is adjacent to EBC, as appears by

23 3. 1
$b 213$.
C I. ax. 13. 1. and 3. ax.
2. A circle cannot be defcribed abourt a Rhombus becaufe its oppofite angles are greater, or lefs thanp tiwa right angles.

If in a quadrilateral ABCD , the angles A , and C, wubicb are appofite, be equal to two right, then a circle may be deforibed about tbat quadrilateral.

For a circle will pars through any three angles B, C, D, (as hall appear by 5.4) I fay that it thall
 alfo pals thro A the 4th angle of fuch a quarritatemat: For if you deny is, let the circle pafis thro' F : There-

$$
24
$$

fare
fore the right lines $\mathrm{BF}, \mathrm{FD}, \mathrm{BD}$ being drawn, the ant
a 22.3.
b byp.
c 3.ax.
d 21 . 1 . gle $C+F a=2$ right $b=C+A$; wherefore A_{c} is qual to F. $d W$ bich is abfurd.

PROP. XXIII.

> Trwo like and unequal fegments of circles $\mathrm{ABC}, \mathrm{ADC}$, camnot be fet on the Same rigbt lipe AC, and an the Same fide tbereof.

For if they are faid to be like, draw the line CB cutting the circumterences in D and B, j join $A B$ and $A D$.
a 10. def. 3 bi6. 1.
23.3
b 10. 3. c 8. $a x$: Becaufe the fegments are fuppofed like, a therefore is the angle $\mathrm{ADC}=\mathrm{ABC}$. $\mathrm{b} \boldsymbol{W} b \dot{b} b$ is $a b j u r d$.

PROP. XXIV.

Like Segments, of citrcles ABC, DEF utpan equal rigbt lines AC, DF, are equal one to tbe otber. The bale ACbeing laid on the bare DF, will agree with it, becaufe $\mathrm{AC}=\mathrm{DF}$. Therefore the fegment ABC thall agree with the fegment DEF (for otherwife it thall fall either within or withput ; and if fo a then the fegments are not like, which is contrary to the Hypothedis, and at leart it thall fall partly within and partly without, and fo cut in three points, b which is abfurd. c Therefore the regment $\mathrm{ABC}=\mathrm{DEF}, \quad$ Which was to be demonftrated.

PROR. XXV.

A segment of a circle A BC, b_{6}. ing given, to difcribe the whole circle wbereof that is a fegnent.
Let two right lines be drawn $A B, B C$, which bifect in the points D and E. From D and E draw the perpendiculars DF, EF, meet-

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

PROP. XXVIL

they be made et the corters G, H, or at Bey be mado at the centers G, H or at the circmmferences, B, E.

For if it be poffible, let one of the angles AGC be
26.3. b byp. c9.ax. - DHF, and make AGI $=\mathrm{DHF}$; thence is the arch $\mathrm{AI} a=\mathrm{DF} b=\mathrm{AC} . \mathrm{c} W b i c b$ is $a b$ furd. .

ScboL
A right line EF, wobich, being drawn from A the middle point of any periphery BC, toucbeth the circle, is parallel to the rigbt line BC, fubtending the Said peripbery.

From the center D draw a right line DA to the point of contact A, and join $D B, D C$.

The fide DG is common, ard $\mathrm{DB}=\mathrm{DC}$, and the a 27.3 . \cdot angle $\mathrm{BDA} a=\mathrm{CDA}$, (becaufe the arches BA, CA are b byp . kequal) therefore the angles at the bafe DGB, DGC c4. 1. are c equal, and d confequently right; but the inward d io. def I. angles GAE, GAF are alfo e right, f therefore BC, c byp. f 28 . 1. EF are parallel. Which was to be demoriffroted.

PROP. XXVIII.

leaf A IC to tbe leaft DKF.

In equal circles GABC, HDEF, equal rigbt lines AC, DF, cut off equal parts of the. circumference, the greateft ABC , equal to the greatefl DEF, and the

From the centers G, H, draw GA, GC, and HD, HF:
Becaufe $\mathrm{GA}=\mathrm{HD}$, and $\mathrm{GC}=\mathrm{HF}$, and $\mathrm{AC} a=\mathrm{DF}$, b therefore is the angle $\mathrm{G}=\mathrm{H}$; c whence the arch AIC $=$ DKF ; d and fo the remaining arch A BC $=$ DEF. Which was to be demonftrated.

But if the fubtended line $A C$ be $[$ or \square than a byp. b 8 . 1.
c 26.3. d $3.4 \times$. $D F$, then in like manner will the arch $A C$ be F or \longrightarrow than DF .

PROP. XXIX.
In equal circles GABC, HDEF, the right lines A C, DF, wubich fubtend equal peripheries $\mathrm{ABC}, \mathrm{DEF}$, are equal

Draw the lines GA, $G \mathbf{C}$, and HD, HF. Becaure $\mathrm{GA}=\mathrm{HD}$, and $G \mathbf{C}=$ HF, and (becaure the arches AC, DF are a equal) the angle $\mathrm{G} b=\mathrm{H}, c$ therefore is the bare $\mathrm{AC}=\mathrm{DF}$. Wbicb svas to be demonfltated

2 byp . b 27.3 c 4 .

This and the three precedent propofitions may be underftood alfo of the fame circle.

PROP XXX.

To out a Periphery given ABC wrto two equal parts.

Draw the right line AC, and bifect it in D; from D draw a perpendicular DB meeting with
 the $\operatorname{arch} \operatorname{in} B$, it thall bilect the fame
For join $A B$, and $C B$. The fide $D B$ is common, and $\mathrm{AD} a=\mathrm{DC}$, and the angle $\mathrm{ADB} b=\mathrm{CDB}$. \subset There- a conjft. forte $\overline{\mathrm{AB}}=\mathrm{BC}$; d whence the arch $\overline{\mathrm{AB}}=\mathrm{BC}$ Wlich b 12 . am evas to be dones.

PROP. XXXI.
In a circle the angle ABC , wbbich is in the Semicircle, is a rigbt angle ; but the angle, subich is in the greater fogment BAC, is lefistban a right angle, and the ang!e whicb is in the loffer fegment B F C is greater than a right angle. More-
 poer, the angle of the ireater fegment is greater than a right angle, and the angle if the leffer fegment is lefs than a rigbt axgle.

From the center D draw DB. Becaufe DB $=\mathrm{DA}$, 25. 1. . therefore is the angle $\mathrm{A} a=\mathrm{DBA}$, and the angle DCB b 2. ax. $a=D B C, b$ therefore the angle $A B C=A+A C B$, $\mathbf{c} \cdot \mathbf{j}^{2}$ I. $\quad c=\mathrm{EBC}, d$ to that ABC and EBC are right angles. d 10 def 1 . W:W. to be dem. e Therefore BAC is an acute angle. e cor. 17.1. W.W to be dem. And further, whereas $\mathrm{BAC}+\mathrm{BFC} f$ f22. 3. $=2$ right, therefore BFC is an obtuse angle. Laftiy, the angle contained under the right line CB, and the arch BAC is greater than the right angle ABC; but the angle made by the right line CB, and the peripheangle EBC. What was to be demanftrated. Scbol.
In a right angled triangle ABC , if the bypotbenufe (ar line Subtending the right angle) AC be bisected in D , a circle drawn from the center D through the point A bal also pass through the point B ; as you may deafly demonftrate from this prop and 2I. I,

+ PROP. XXXII.

a 26.3.
big. 3.
c 3 I- 3.
d 3^{2}. I .
e confer.
f 3 . 4 .

513.

$\begin{array}{ll}\mathrm{h} & 22 \mathrm{~g} \text {. } \\ \text {. } \\ \text {. }\end{array}$
k? max. was to be dem. spas to be dem.

If a right line AB touch a circle, and from the pint of contact be drawn a right line CE, cutting the circle, the ant gees ECB, ECA, wibich it -makes with the tangent line, are equal to those angles EDC, EFC, which are made in the alternate Segments of the circle

Let $C D$, the fine of the angle EDC be perpendicular to $A B$ (a for it's to the fame purpofe) b therefore CD is the diameter, c therefore the angle CED in a femicircle is a right angle; d and therefore the angle $\mathrm{D}+\mathrm{DCE}=\mathrm{to}$ a right angle e $=\mathrm{ECB}+\mathrm{DCE} . f$ Therefore the angle $\mathrm{D}=\mathrm{ECB}, \eta^{\prime} b i \phi b$,

Now whereas the angle ECB + FCA $g=2$ right ${ }^{-}$ $\bar{W}=\mathrm{D}+\mathrm{F}$, from both of there take away ECB and b, which are equal, k then remains ECA=F. W hic b

PROP. XXXIII

r
Upon a right line AB to defcribe a Segment of a ctrcle AIEB wubich Jball contain an angle A IB, equal to a rigbt linod angle given C .

a Make the angle $B A D=C$. Through the point $A^{2} 23$. 1: draw the line AE perpendicular to HD . At the other end of the line given $A B$ make an angle $A B F=B A F$, one of the fides of which thall cut the line $A E$ in F; from the center F through the point A , defcribe a circle, which shall pars through B. (Becaure the angle FBA $b=\mathrm{FAB}$, and c therefore $\mathrm{FB}=\mathrm{FA}$.) AIB is the fegment fought. For becaufe HD is perpendicular to the diameter $\AA \mathrm{A}$, therefore $\mathrm{HD} d$ pouches the circle
 $\mathrm{BAD} f \approx \mathrm{C}$. Wbich was to be done.
b confr.'
c 6.1 .
d cor. 16,3

PROP. XXXIV.

From a circle gitoen ABC to cut off a fegment ABC containing an angle Bequal to a rigbt lined angte given D
a Draw a right line EF which thall touch the circle given in Λ, b let $A C$ be
 drawn alfo making an angle $\mathrm{FAC}=\mathrm{D}$. This line thall: cur of ABC containing an angle $\mathrm{B} c=\mathrm{CAF} d=\mathrm{D}$. $\begin{array}{lll}\text { a } & 17.3 . \\ \text { b } & 23 . & 1 .\end{array}$ c 32. dachetr. Which was to be done.

> PROP: XXXV. †

If in a circle DBCA two rigbt limes AB, DC cut each otber,zhe reCtangle comprebended under tbe fegments AE, EB, of tbe one, naull be equal to the reetang'e comprebended under the fegments CE, ED of the otber.
I. Cafe. If the right lines cut one the other in the center, the ching is evident.

2. Cafe

2: Cafe If one line $A B$ paffes thro the center F, and bifects the other line CD, then draw FD. Now the rectangle $A E B+F E q a=$ $\mathrm{FBq} . \quad b=\mathrm{FDq}_{0} \cdot c=\mathrm{EDq}+\mathrm{FEq}$ $d=$ CED + FEq, \in Therefore the rectangle $\mathrm{AEB}=\mathrm{CED}$. Wbich was to be demonftrated.
3. Cafe. If one of the lines A B be the diameter, and cut the other line CD unequally, bifect CD by FG a perpendicular from - the center.

zo be demeonfrated

to be"demonftrated.
4. Cafa If neither of the right lines $A B, C D$ pars thro the center, then through the point of interfection E , draw. the diameter GH. By that which hath been already demonitrated. it appears that the rectangle $\mathrm{AES}=\mathrm{GEH}=\mathrm{mCED}$. Which avas

More eafily, and generally; thus; join AC and BD, then becante the angles $\triangle C E A$; $D E B$, and b alfo C, B (upon the fame arch $A D$) are equal. thence are thetriangles CEA, BED , ce equiangular. Wherefore CE, EA: : EBy $E D$, and e confequently $C E$ $\times E D=A E \times E B$. Which reas

The citations out of the 6. Book, both here and in the following prop. have no dependance on the fame; fo that it was tree to ufe them.

PROP. XXXVI if

If any poinn be taken wothbout a cticle EBC, and from that point two rigbt lines DA, DB, fall upon tbe civcle, wubercof one DA cuts the circle, the atber DB touccbes it, the retzangle comprebended under the awbole line DA tbat cuts the circle, and DC, that part evbicb is taken from the point given D to the convex of the peripbery, !ball be equal to the fquare made of the tangemt line.

1. Cafe If the fecant AD paffes thro' the center, then jom EB, this a will make a right angle a 18 . \mathfrak{s} with the the line DB , wherefore $\left.\mathrm{DBq}+d \mathrm{EBg}_{(\mathrm{ECq}}\right) 6=\mathrm{EDq}$ b 47. I. $c=\mathrm{AD} \times \mathrm{DC}+\mathrm{ECq}$. There-c 6.2 . fore $A D \times D C=D B q$. Which d 3. ax. evas to be demonftrated.

2. Cafe. But if AD paffes not thro' the center, then draw EC, EB, ED, and EF perpendicular to $A D_{1}{ }^{a}$ wberetore AC is bi- 2 3. 3. rected in F.
Becaufe $B D_{q}+E B q=D E q$ b 47. ${ }^{\prime}$. $b=\mathrm{FFq}+\mathrm{FD}_{q} \subset=\mathrm{EFq}+\mathrm{ADC}$ с 6.2. $+\mathrm{FCq}_{\mathrm{q}} d=\mathrm{ADC}+\mathrm{CEq}(\mathrm{EBq}) \mathrm{d}_{47}$. a. ${ }^{-}$Therefore is $B D q=A D C$. c_{3}. $4 \times$ W. bicib was to be demorffrated.

More eafily, and generally thus; draw $A B$ and $B C$. Then, becaufe the angles A ; and D . BC a are equal, and the angle a 32 D common to both, thence are the triangles $\mathrm{BDC}, \mathrm{ADB} \mathbf{6} \mathrm{b} 32 \cdot \mathrm{I}$. equiangular c WhereforeAD, 446. $\mathrm{DB}:: \mathrm{DB}, \mathrm{CD}$, and d confe- $\mathrm{d} \mathrm{I}_{1} .6$. quently $\mathrm{AD} \times \mathrm{DC}=\mathrm{DBq}$. Whicb was to be demonferated.
the tbird Book of.

Coroll.

i. Hence, If from any point $\boldsymbol{A}_{\mathbf{1}}$ taken without a circle, there be feveral lines AB, AC drawn which cut the circle; the rectangles comprehended under the whole lines $A B, A C$, and the outward parts: AE, AF, are equal between themfelves.

For if the tangent $A D$ be drawn; then is $\mathrm{CAF}=\mathrm{ADq}_{\mathrm{q}}=\mathrm{BAE}$.
2. It appears alio from hence, that if two lines. AB, AC, drawn from the fame point do touch a circle, thofe two lines are equal one to the other.

For if $A E$ be drawn cutting the circle, then is $\mathrm{ABq} a=\mathrm{EAF} b=$ ACq.
3. It is afferident, that from a point \AA taken with ${ }^{*}$ out a circle, there can be drawn but two lines $A B, A C$. that Kall touch the circle.

For if a third line AD be faid to touch the circle, c 2. cor. : thence is $\mathrm{AD} c=\mathrm{AB} c=\mathrm{AC}$. $\mathrm{d} W_{\text {bich }}$ is abfourd.
d 8. 3. \therefore 4. And on the contrary, it is plain, that if two equal right lines $A B, A C$, fall from any point A, upon the convex periphery of a circle, and that if one of there equal lines AB touch the circle, thén, the other AC touches the circle alfo.

For if poffible, let not $A C$, but anather line $A D$. e 2. cor. touch the circle; therefore is $\mathrm{AD} e=\mathrm{AC} f=\mathrm{AB}$. $\mathbf{g}_{\text {byp. }} \quad \mathbf{g} W^{\text {bich }}$ is abfurdd

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

The Fourth Book

OF

EUCLIDE's
 Elements.

Definitions:

Right-lined figure is faid to be infcribed in 2 right-lined figure, when every one of the angles of the infcribed figure touch every one of the fides of the figure wherein it is infcribed.

So the triangle DEF is infcribed in the triangle ABC .
II. In like manner a figure is faid to be delcribed about a figure, when every one of the fides of the figure circumfrribed touch every one of the angles of the figure about which it is circumfribed.

Sotbe triaugle ABC is defribed about the triangle DEF.

III. A right-lined figure is faid to be infcribed in a circle, when all the angles of that figure which is infcribed do touch the circumference of the circle.

IV A right-lined figure is faid to be defrribed about a circle, when all the fides of the figure which is circumfcribed touch the periphery of the circle
V. After the like manner a circle is faid.to be infcribed in a right-lined figure, when the periphery of the circle touches 'all the fides of the figure, in which it is intcribed.

Euciide's Elements.
VI. A circle is fad to be defcribed about a figure when the periphery of the circle touches all the angles of the figure, which it circumfcribes.
VII. A right line is raid to be fitted or applied in a circle when the extremes thereof fall upon the circumference; as the right line AE.

PROP. 1.
In a circle given ABC to apply a right line AB equal to a right line given D, whish doth not exceed AC the diameter of the circle.

From the center A at the diftance $\mathrm{AE}=\mathrm{Da}$ defrribe a circle meeting with the circle given in B, draw AB . Then is $\mathrm{AB}_{b}=\mathrm{AE}_{c}=\mathrm{D}$. W icc was to be done.

PROP. III

About a circle given IA BC to defribe a triangle L NM equiangular to a triangle given DEF.
a 23 . 1 !
b 17.3.
c $13 . a x$.
dil. 3 .

Produce the fide EF on both fides ; at the center I a make an angle $\mathrm{AIB}=\mathrm{DEG}$, and an angle $\mathrm{BIC}=\mathrm{DFH}$. Then in the points A, B, C, let three right lines $L N$, LM, NM, b touch the circle, and the thing is done.

For it's evident that the right lines L N, LM, MN, will meet and make a triangle c becaufe the angles LAI, LBI are right; fo that if the d right line $A B$ was drawn it would make the angles LAB, LBA, lefs than two right angles.
e ccb. 32.1. Since therefore the angle $\mathrm{AIB}+\mathrm{L} e=2$ right angles ${ }_{13}$. ax. $f=\mathrm{DEG}+\mathrm{DEF}$, and AIB $s=\mathrm{DEG} ; b$ therefore
 k 32 . I. is the angle $L=D E F$ By the like way of argument the angle $\cdot \mathbf{M}=\mathrm{DFE} . \quad k$ Therefore alfo the angle $\mathrm{N}=\mathrm{D}$. Aid therefore the triangle LNM deferibed about the circle is equiangular to EDF the triangle given. Wbich abas to be done.

PROP. IV.

29.I.

3 12. $1:$

E, will pafs through G and F, and touch the three fides of the triangle
For the angle DBE $\dot{c}=\mathrm{DBF}$; and the angle DEB d
c inftr.
1 12. ax.
c 26. 1.
In a triangle given ABC , to infcribe a circle EFG.
a Bifect the angles B and C with the right lines BD, CD, meeting in the point D, b and draw the perpendiculars DE, DF, DG. A circle defcribed from the center D thto 0° $=\mathrm{DFB}$; and the fide DB common, e therefore $\mathrm{DE}=$ DF.

Euciide's Eloments.

$D F$. By the like argument $D G=D F$, The circle therefore defcribed from the center \mathbf{D} paffes through the three poiuts E, F, G, and whereas the angles at E, F, G, are right, therefore it touches all the fides of the triangle. Wbicb quas to be done.

Scbol.
Hence, The fides of a triangle being known, their fogments wobich are made by tha touchings of the circle infcribed, Sball be found, Thus;

Let $A B$ be $12, A C 18, B C 16$, then is $A B+B C=28$. Out of which fubduct $18=A C=A E+F C$, then remains $10-\mathrm{BE}+\mathrm{BF}$. Therefore BE , or $\mathrm{BF}^{3}=5$; and confequen y FC_{4} or $\mathbf{C G}=11$. Wherefore $G A_{\text {, }}$ of $A E_{9}=7$.

> PROP: V.

About a triangle given ABC , to deforibe a circle FABC .

- Bifect any two fides BA, CA with perpendjculars a 10. \&e DF, EF, meeting in the point F. I lay this fhall be II. I. the center of the circle.

For, let the right lines FA, FB, FC be drawn. Now becaure $A D b=D B$, and the fide $D F$ common ${ }_{2}$ and b confta the angles $\mathrm{FDA} c=$ FDB, therefore is $\mathrm{FB} d=\mathrm{FA}$. coinf. © After the fame manner is FC=FA. Therefore a circle 12:ax. defcribed from the center F ghall pars through the an 141 . gles of the triangle given (eiz.) B, A, C. Wbich was tit be done.

Coroll.

* 31. 3. . * Hence, if a triangle be acute-angled, the center thall fall within the triangle ; if right-angled, in the fide oppofite to the right angle, and if obture angled, without the triangle?

Scbol.

By the fame method may a circle be defcribed, that Thall pafs through three points given, not being in the fame ftrait line.

PROP. VI.

In a circle given EABCD

日 II.I.
 to infcribe a Square ABCD .
a Draw the diameters AC, BD cutting each other at right angles in the center E. Join the extremes of there diameters with the right lines $A B, B C, C D$, DA. And the tbing is done.

Now becaufe the four b 26.3. angles at E are right, the b arches and c fubtended c 29. 3. lines $A B, B C, C D, D A$, are equal ; therefore is the figure $A B C D$ equilateral, and all the angles in temid 31, 3. circles, and fo d right. e Therefore ABCD is a e 29.def:I. fquare infcribed in a circle given. Wbich was to be done.

PROP.VII.

215.j.

About a circle given EABCD, to defcribe a fquare FHIG.

Draw the Diameters AC, BD, cutting one the other at right angles; through the extremes of there diameters a draw tangents meeting in F, H, I, G, then I fay it's done.

For becaure b the angles A and C are right, c there- $b 183$. fore is FG parallel to HI. After the fame manner is c 28 i. FH parallel to GI, and therefore FHIG is a Pgr.
and alfo right angled. It is equilateral becaure $\mathrm{FG} d \mathrm{~d} 34$. r . $=\mathrm{HI} d=\mathrm{D} \mathrm{B}_{e}=\mathrm{CA} d=\mathrm{F} \mathrm{H} d=\mathrm{GI} . \quad \mathrm{e} 15$ def. I .
Wherefore FHIG is a f fquare circumfcribed to the $\mathrm{f} 29 . \mathrm{def}$. I . circle given. Which was to be dons

> - Scbol.

A fquare ABCD defcribed about a circle is double of the fquare EFGH. infcribed in the fame circle.
For the rettangle $\mathrm{HB}=2 \mathrm{HEF}$ and $H D=2$ HGF by the 41. I.

P. ROP: VIII.

In a Square given ABCD , t_{0} infcribe a circle IEFGH.

Bifect the fides of the fquare in the points $\mathrm{H}, \mathrm{E}, \mathrm{F}, \mathrm{G}$, cutting one the other in I, a circle drawn from the center I thro H fhall be infcribed in the fquare.

For becaufe AH and BF
 are a equal and b parallel, c therefore is AB parallel to HF, parallel to DC. Af- b byp. ter the fame manner is $A D$ parallel to $E G$, parallel to $\mathbf{c} \mathbf{3 z . 1}$. BC; therefore IA, ID, IB, IC, are parallelograms. Therefore $\mathrm{AH} d=\mathrm{AE} e=\mathrm{HI}=\mathrm{EI}=\mathrm{FI}=\mathrm{IG}$. The $\mathrm{d} 7 . a x$. circle therefore defcribed from the center I through II, e 34 i. shall pafs through H, E, F, G, and touch the fides of the fquare fince the angles H, E, F, G, are right. W bich was to be done.

PROP. IX.

14. cor. 32.1. \%6.1.

2 11. 2:

$61: 4$
c. 5. 40
d 37.3 .
c 32. ${ }^{\circ}{ }^{\circ}$
f 2. $a x$.
gi2. 1.
h 5.1 .
k 1. ax.
16. 1. . was to be done.

PROP. X. is the triangle required.

About a Square given. ABCD, to defcribe a circle EABCD.

Draw the diagonals AC, BD , cutting one the other in E. From the center E through A defcribe a circle, I fay this circle is circumicribed to the fquare.

For the angles $A B D$ and BAC are half of right angles, b therefore $E A=E B$. After the fame manner is $E A \neq E D=E C$. The circle therefore defcribed from the center E paffes through A, B, C, D, the angles of the fquare given. Wiche.

To make an Ifoceles. triangle ABD, bacing each angle at tbe. bafe B, and ADB dowble to the remaining angle A .

Take any right line $A B$, and divide it in C, a fo that AB $\mp B C$ may be equal to ACq. From the center A through B, defribe the circle $A B D$; and in this circle b apply $B D=A C$, apd join $A D ; I$ fay $A B D$

For raw DC, and through the points C, D, A, c draw a circle. Now becaufe $A B \times B C=A C q=B D q, d$ it is evident that BD touches the circle ACD which $C D$ cutteth ; e therefore is the angle $B D C=A$, and therefore the angle $\mathrm{BDC}+\mathrm{CDAf}=\mathrm{A}+\mathrm{CDA} \dot{g}=$ $B C D$. But $B D C+C D A=B D A B=C B D, k$ therefore the angle $\mathrm{BCD}=\overline{\mathrm{CBD}}$, and therefore $\mathrm{DC} l$

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Scbol.

Pot.Herig. Generally all figures wubofe number of fides is odd, are inforibed in circles by the befh of Ifof feles triangles, wwore angles at tbe bafe are multiples of tbofe at the top: and figures whbofe number of fides is odd, are infcribed in a aircle by the belp of Ifibcoles triangles, whofe angles at the bafo are multiples fef guialker of tbofe at the top.
 ference, and likewife if $A=3 \frac{1}{2}$ then will $A B$ be the fide of an octagone.

PROP. XII:

Alowt a circle given FA BCDE, to defcribe a pentagon HIKLG, equilateral and equiangular.
2 11. 4 a Infribe a pentagon A BCDE in the circle given; and from the center draw the right lines FA, FB, FC, FD, FE ; and to thofe lines draw fo many perpendiculars GAH, HBI,.ICK, KDL, LEG, meeting in the bcor. $16{ }_{3}$. points H, I, K, L, G, then I fay it is done. For bec 2. cor ${ }^{2}$ t. caufe GA, GE from the fame point $G b$ touch the circle, d 8. 1. c therefore is $G A=G E$, and d therefore the anyle GFA $=\mathrm{GFE}$.
\doteq GFE, therefore the angle AFE $=$ 2GFA. After the fame' manner is the angle AFH $=\mathrm{HFB}$, and confor quently the angle $\mathrm{AFB}=2 \mathrm{AFH}$. e But the angle e 27.3. $\mathrm{AFE}=\mathrm{AFB}, f$ therefore the angle GFA=AFH.f 7 ax: But alfo the angle FAH $g=$ FAG, and the firde FA is com- g 12. ax. mon, b therefore $\mathrm{HA}-\mathrm{AG}=\mathrm{GE}-\mathrm{EL}$, E$_{c}$. k There- $\mathrm{h} 26 . \mathrm{I}_{\text {. }}$. fore HG, GL, LK, KI, IH, the fides of the pentagon $k 2$. ax: are equal, and fo alfo are the angles, becaure double of the equal angles AGF, AHF, therefore, Eor.

Coroll.

Atter the fame manner, if any equilateral and equiangled figure be defcribed in a circle, and at the extreme points of the femi-dianeters drawn from the center to the angles, be drawn perpendicular lines to the faid diameters, I fay that thefe perpendiculars thall make andther figure of as many equal fides and equal angles, citcumfrribed to the circle.

PROP. XIII.

In an-equilateral and equiangular pentagon given ABCDE to infcribe a circle FGHK.
a Bifect two angles of the pertagon A and B, with the right lines A I, BK , meeting in the point F. From F draw the perpendicularsFG,FH,FI,FK,

FL. Then a circle defcribed from the center F through G will touch all the fides of the pentagon.

Draw FC, FD, FE. Becaure $B A b=B C$, and the fide BF common, and the angle $\mathrm{FBA} c \equiv \mathrm{FBC}$, d there. fore is $\mathrm{AF}=\mathrm{FC}$, and the angle $\mathrm{FAB}=\mathrm{FCB}$, but the angle $\mathrm{FABe}=\frac{1}{3} \mathrm{BAE}=\frac{2}{2} \mathrm{BCD}$. Therefore the angle $\mathrm{FCB}=\mathrm{BCD}$. After the fame manner are all the whole
b byp.'
c conforo. d 4. I , e hyp. angles $\mathrm{C}, \mathrm{D}, \mathrm{E}$ bifzcted. Now whereas the angle FGB $f \cdot \mathrm{f}_{12}$. am $=$ FHB, and the angle FBH -.FBG, and the fide FB is common, g therefore is $\mathrm{FG}=\mathrm{FH}$ In like manner are all the right lines FH, FI, FK, FL, FG equal. Therefore a circle defcribed from the center F through G patfes through the points $\mathrm{H}, \mathrm{I}, \mathrm{K}, \mathrm{L}$, and b touches h cor. 16.3 . thes
the fide of the pentagon, becaufe the angles at thofe points are right. Which was to be dones

Corall.

Hence, if any two neareft angles of an equilateral and equiangular figure are bifected, and from that poipt in which the lines meet that bifect the angles be drawn right lines to the remaining angles of the figure, all the angles of the figure fhall be bifected.

Scbol.

By the fame method may a circle be inferibed in any equilateral and equiangular figure.

PROP: XIV.

- 'About a pentagon given ABCDE equilateral and equiave. gular to defcribe a circle FABCDE.
Bifect any two angles of the pentagon with the right lines AF, BF, meeting in the point F; the circle defrribed from the center F through A thall be defribed about the pentagon.
For let FC, FD, FE be drawn. a Then the angles C, acor. 13.4 ${ }^{\text {b }}$. D, E are bifected; b and therefore $\mathrm{FA}, \mathrm{FB}, \mathrm{FC}, \mathrm{FD}$, FE are equal ; theretore the circle defcribed from the center F paffes through A, B, C, D, E, all the angles of the pentagon Wbich was to be done.

Sabot.

By the fame method is a circle defcribed about any figure which is equilateral and equiangular.

PROP. XV.

In a circle given GABCDEF to infcribe an Hexagone (or fix faded figure) ABCDEF aquilaferal and equiangular.

Draw the diameter AD ; from the center' D through the center G describe a circle cutting the circle given in the points \mathbf{C} and \mathbf{E}. Draw the diameters CF, EB; and join $A B, \cdot B C, C D, D E, E F, F A$. Th ben I fay it's done

For the angle CGD $a=$
 $\frac{1}{2}$ of 2 right $a=\mathrm{DGE} b=$ $\mathrm{AGF} b=\mathrm{AGB}$. c Therefore $\mathrm{BGC}=\frac{7}{2}$ of 2 right $=$ FGE; therefore the d arches and e fubtenfes AB, BC, $\mathrm{CD}, \mathrm{DE}, \mathrm{EF}$, are equal. Therefore the hexagon is e quilateral; but it is equiangled alto, f because all the the angles of it ftand upon equal arches.

Carol.

1. Hence, the five of an hexagon inscribed in a circle is equal ta the femidiameter.
2. Hereby an equilateral triangle ACE may very eafirly be defcribed in a circle given.

Sabot. Prowl.

To make a true hexagon upon a right line given CD .
a Make an equilateral triangle CGD upon the line given CD; from the center G through C and D defcribe a circle. That circle fall contain the hexagon made upon the given line CD.

PROP. XVI.

- In a circle given AEBC, to infribe a quindecagon (er ffteen fided figure) equilateral and equiangular.
a 11 4.
b 2. 4
C confir.
${ }_{4}$ Infribe an equilateral pentagon AEFGH in the circle given, and b alro an equilateral triangle $A B C$, then I fay BF ' is the fide of the quindecagon required:

Por the arch $A B c$ is $\frac{1}{3}$ or $\frac{?}{5}$ of that periphery where. of $A F$ is $\frac{2}{5}$ or ${ }_{5} \frac{6}{5}$, therefore the remaining part BF is $\nabla^{\frac{2}{3}}$ of the periphery; and therefore the quindecagon, whof fide is BF , is equilateral ; but it is equiangular d 27% alfo d becaure all the angles infift on equal arches of a circle, whereof every one $\frac{1}{2} \frac{3}{2}$ of the whole circumference. Therefore, ${ }^{\circ}{ }_{c}$.

Scbol.

A circle is geometrically di-- $\{3,6,12, \& \mathrm{sc}$. by 15,4 , and 9,1 . vided into parts $5,10,20,8 \mathrm{cc}$. by 11, 4, and 9, 1 : $15,30,60,8 \mathrm{cc}$. by 16, 4 , and 9 , I .
Any other way of dividing the circumference into any parts given is as yet unknown; wherefore in the conftruction of ordinate figuzes, we are forced to have recourfe to mechanick artifices, concerning which you may confult the writers of practical Geomerry.

[79] The Fifth Book' OF

 EUCLIDEs

 EUCLIDEs Elements.

Definitions.

Abrie:16. M

Part, is a magnitude of a magnitude, a lets of a greater, when the lets meafureth the greater
II. Multiple is a greater magnitude in reflect of a lefter, when the lifer meafureth the greater.
III Ratio is the mutual habitude or reflect of two magnitudes of the fame kind each to other, according to quantity.
In every ratio that quantity which is referred to another quantity is called the antecedent of the ratio, and that to which the other is referred is called the consequent of the ratio, as in the ratio of 6 to 4, 6 is the antecedent and 4 the consequent.

Note, The quantity of any ratio is known by dividing the antecedent by the consequent; as the ratio of 12 to 5 is exA reffed by ' ${ }^{2}$; or the quantity of the ratio of $\mathrm{A} t o \mathrm{~B}$ is $\frac{\mathrm{A}}{\mathrm{B}}$. Wherefore, often for brevity fake we denote the quantities of ratio's thus; $\frac{-}{\mathrm{B}} \sqsubset$, or $\bar{\sim}$, or $\square \frac{\mathrm{D}}{\mathrm{D}}$. that is, the ratio of A to B is greater, equal, or less than the ratio of C to D. Which muff be well olferved by thole who would underfane this Books

Concerning the divers species of ratio's, you may pleafa to consult interpreters.
IV. Proportion is a fimilitude of ratio's.

T bat qubich is here termed proportion, is more rightly called proportionality or analogy; for proportion commonly denotes no more than the ratio betwixt two magnitudes

The ffitb Book of
V. Thofe numbers are faid to have a ratio betwixt them which being multiplied may exceed one the other.
 the firft A to the fecond B, and the thitd C, to the fourth D, when the equimultiples E and F of the firf A_{2} and the third C compared with the eqtaimultiples G, H, of the fecond B , and the fourth D , according to any multiplication whatroever, cither both together E, E are lefs than GH both together, or equal taken together, or exceed one the other together, if thofe be taken E, G, and F, H_{2}, which arfwer one to the other.
 is to B , fo is C to D . wwich figniffees that A to B , and C to D, are in the fame ratio. We Jometimes thus exprefs it A. C $\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{D}}$, that is, A.B: : C. D.
VII. Magnitudes that have the fame ratio (A, B :s C. D. are called proportional.

E, 30. A, 6. B, 4 G, 28 VIII When of equimul: F, 60. C, 12. D, 9 |H,6.3 tiples, E the multiple of the firft inagnitude A exceeds G the multiple of the fecond B, bit F the multiple of the third \mathbf{C} exceeds not H the multiple of the fourth D, then the firft A to the fecond B has a greater ratio than the third C to the fourth D .
If $\frac{\mathrm{A}}{\mathrm{B}}-\frac{\mathrm{C}}{\mathrm{D}}$, it is not neceffary from this definition, that
E foould always exceed G, when Fis lefs than H; but it is granted that tbis may be.
IX. Proportion confifts in three terms at leaft. W-bereof the focond fupplies the place of two.
X. When three magnitudes A, B, C, are proportional; the firft A is faid to have a dnplicate ratio to the third C , of that it hath to the fecond B: But when four magnitudes $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are proportional, the firft \mathbf{A} is faid to have a triplicate ratio to the fourth D , of what it has to the fecond B ; and fo always in order one more, as the proportion fhall be extended.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
the laft Or otherwife : it is a comparifon of the extremes together, the mean magnitudes being omitted,
T bus let A, B, C, be.tbree magnitudes and $\mathrm{D}, \mathrm{E}, \mathrm{F}$, three cthers, and taking them two by two, let them be is the fame propertion, that is, let A. B:: D.E, and B. C:: E. F; now if it be inferr'd that A tbe firft of tbe firft or der, is to C the laff, as D the firfo of the fecond order, is to F tbe laft, this form of arguing is faid to be ex xq40, or from equality
XVIII. Ordinate proportion is, when antecedent is to confequent, as antecedent to confequent, and as the conequent is to any orher, fo is the confequent to any other. As when A. B:: D. E alfo B. C:: E. F. and then it fball be A. C : : D. F: by the 22 of the 5 .
XIX. Perturbate proportion is, when three magnitudes being put, and others alfo, which are equal to thefe in multitude, as in the firft magnitudes the antecedent is to the confequent, fo in the fecond magnitudes is the antecedent to the confequent : and as in the firft magnitudes the confequent is to any other, 10 in the fecond magnitudes is any other, to the antecedent. Thus if $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and $\mathrm{E}, \mathrm{F}, \mathrm{G}$, are two fets of magnitudes, if A the firt of the firff fet, is to B the fecond, as F the focond of the fecond fet, is to G the laft; and alfo if B the fecond of the fir f fet is to C the laft, as E the fivft of the fecond fet is to F the fecond, fuch is called pertubate proportion, and by the 23.5. A. C:: E G.
XX. Any number of magnitudes being put; the proportion of the firft to the laft is compounded out of the proportions of the firft to the fecond, the fecond to the third, and the third to the fourth, Epc. to the laft.

Ler there be any number of magnitudes A, B, C, D A A B C
by this definition $-\frac{1}{\mathrm{D}} \times \frac{\mathrm{C}}{\mathrm{C}} \times \frac{\mathrm{D}}{}$.
Axiom.
Equimultiples of the fame, or of equal magnitudes. are equal to each other'

PROP. $I_{\text {, }}$

If there be any number of magnitudes AB, CD, equimulitiNes to a like number of magnitudes E, F, each to each; evbatever multiple one magnitude AB is of one E , the fame maltiple is all the magnitudes $\mathrm{AB}+\mathrm{CD}$ to all the other magnitudes $\mathrm{E}+\mathrm{F}$.
Let $\mathrm{AG}, \mathrm{GH}, \mathrm{HB}$, the parts of the quantity AB , be equal to E , and alfo let CI IK, KD, the parts of the quantity $C D$ be equal to F. The Number of thefe are put equal to thofe. Now whereas $A \mathrm{G}+\mathrm{CI} a=\mathrm{E}+\mathrm{a} 2 . \mathrm{adin}^{2}$ $\mathrm{F} ; a$ and $\mathrm{GH}+\mathrm{IK}=\mathrm{E}+\mathrm{F} ; a$ and $\mathrm{HB}+\mathrm{KD} \doteq \mathrm{E}$ $+F$, it is evident that $A B+C D$ doth fo often contain $\mathrm{E}+\mathrm{F}$ as one AB contains E . Wbicb was to be done.

PROP. II.

If the firft AB be the fame multiple of the fecond C , as the third DE is of the fourtb F , and if the fifth BG be the fame multiple of the fecond C , as the fixth EHI is of the fourth F ; then Jball the firft and fifth taken togetber (AG) be the fame multiple of the fecond C, as the third and foxtb. taken together (DH) is of the fourth F.

The number of parts in $A B$ ectal each to C is put equal to the num-' bers of part in DE, whereof each part is equal to F. Likewife the number of parts $B G$ is put equal to the number of parts in EH. Therefore' the number of parts in $A B+B G$ is equal to the number of parts in $\mathrm{DE}+\mathrm{EH}$. a That is, the whole line AG is the fame multiple of C , as the whole line DH is a $2 . a \hat{x}$ of F. Wbich was to be demonftrated.

The ffftb Book of
PROP. III.
a byp.

b 2. 5 .
c 2.5.
 $+\mathrm{HI})$ the fame multiple of B , as FM (FLf[LN) is of D. Which was to be demonftrateds

If the firs A have the fame ratio to the Second B , as the third C to the fourth D ; then also E and' F the equimulttples of the fir ft A and the third C , fall have the fame ratio to G and H the equimultipres of the Second B and the fourth D , according to any multiplication,"if So taken as they answer each to other (E.G:: F.H.)

Take I and K equimultiples of E and F; and alfo L and M equimultipies of G and H . a Then is I the fame multiple of A , as K is of C ; a amd alto L is the fame multiple of B, as M of D. Therefore whereas it is A. B $b:$: C.D ; according to the fixth definiton, if I be $\tau .,=\longrightarrow L$, then conSequently after the fame manner is \mathbf{K} $[,=\rightarrow \mathrm{M}$, Therefore when I and K are taken the fame multiples of \mathbf{E} and F , as L and M of G , and H , then will it be by the feventh definition E. G:: F. H. Which was to be demonftrated.

Copal.

From bence is wont to be demonstrated the proof of inverse ratio
For because A. $\mathrm{E}:=\mathrm{C}$. $\mathrm{D}_{\text {, therefore }}$ if $\mathrm{E} \subset$, $=$ \checkmark G, then is c likewife $F E,=, \longrightarrow \mathrm{H}$; there fore it is evident, that if $G \subset, \mathcal{E}$, then is c 2 def. 5. $\mathrm{H}\left\ulcorner^{-},=, \neg \mathrm{F} ; \boldsymbol{d}\right.$ therefore B. A: D. C. Which ques to be demonstrated.

PROP. V.

If a magnitude AB be the fame multiple of a magnitude CD , as a part taken from the one

AE is of a part taken from the other CF ; the refidue of the one EB, Bal be the fame multiple of the refidue of the ot beer. PD as the cywole AB is of the whole $\mathrm{C} D$.

Take another GA, which thall be the fame multitiple of FD the refidue, as AB is of the whole CD , or as the part taken away AE, is of the part taken away a 1. 5. CF. a Therefore the whole GA +AE is the fame multiple of the whole $\mathrm{CF}+\mathrm{FD}$, as the one AE is of the one CF, that is, as $A B$ is of $C D$; therefore $G E b=$

If two magnitudes AB, CD, are equimuslitiples of two magnitudes E, F; and fome magnitudes AG and CH equimul. tiples of the fame E, F, be taken awway ; then the refidues GB, HD, are eitber ${ }^{-}$ qual to thefe magnitudes E, F, or elfo equimultiples of tbem.
For becaufe the number of parts in $A B$, whereof each is equal to E, is put equal to the number of parts in CD , whereof each is equal to F ; and alfo the number of parts in AG equal to the number of parts in CH ; If from
i 3. $a x$. one you take AG, and from the other CH, a then remains the number of parts in the remainer GB equal to the number of parts in HD ; therefore if GB be once E, then is HD once C ; if GB be many times E , then is HD fo many times C. Wbich was to be demonfrated.

> P R O P." VIÌ.

Equal magnitudes A and B bave the 'fame proportion or ratio to the fame magnitude C. And one and the fame magnitude C bath the Same ratio to equal magnitudes A and B .
Take D and E equimultiples of the equal magnitudes
a 6. ax. \mathcal{A} and B , and F any multiple of C ; then is $\mathrm{Da}=\mathrm{E}$. b 6 def. So c cor. 4.5 . Wherefore if $D\llcorner, \neg F$, then alfo E will be $\left[-=, \mathcal{F}, b^{6}\right.$ therefore A. C: : B. C; and c by inverfion C. $\mathrm{A}_{:}: c \mathrm{C}$. W Wich was to be demonftrated. Sccbol-

- If inftead of the multiple F, two equimultiples be taken, it will be the feme way proved that equal magnitudes have the fame ratio to any other magnitudes that are equal between themfelves.

PR OP. VIII.

Of unequal magnitudes AB, AC, the greater AB bath a greater ratio to the
fame third line D, than the lefter AC; and the Same third line D bath a greater ratio to the lefter AC , than to the greater AB

Take EF, EG equimultiples of the fid AB, AC, fo that EH a multiple of D may be greater than EG, but lefter than EF, (which will early happen, if both EG and GF be taken greater than D.) It is manifeft from 8 def . 5 . that $\frac{\Delta B}{D}=\frac{A C}{D}$ and $\frac{D}{A B} \supset \frac{D}{A C}$.

Which was to be demonstrated.

PROP. IX.
Magnitudes wubich to one and the fame magnitude have the fame ratio, are equal the one to the other. And if a magnitude bave the fame ratio to other magnitudes, thole magwitudes are equal one to the other.

1. Hyp. If A. C: : B. C ; I fay that $\mathrm{A}=$ B. For let A be greater or less than C.
 a then is $\frac{A}{C}\left\ulcorner\right.$ or $\sqsupset \frac{B}{C}$. Which is contrary to

$$
\text { 2 } 8.5
$$

the Hypotbefis.
2. Hyp. If $\mathbf{C}, \mathrm{B}:: \mathrm{C}, \mathrm{A} . \mathrm{I}$ fay that $\mathrm{A}=\mathrm{B}$. For let \mathbf{A} C C be $ᄃ \mathrm{~B}, b$ then $\frac{-}{\mathrm{B}} \sqsubset \frac{\mathrm{A}}{\mathrm{A}}$. Which is againft the $\mathrm{Hy}-\mathrm{b} 8 \mathrm{~s}$. pettefis.

PROP. X

Of magnitudes having ratio to the Same magnitude, that which has the greater vas. tic, is the greater magnitude : and that magnitude to wobich the Jame bears a greater ratio, is the lefter magnitude.

1. $H_{y p}$. If $\frac{\mathrm{A}}{\mathrm{C}} \sqsubset \frac{\mathrm{B}}{\mathrm{C}}$. I fay that $\mathrm{A} \subset-\mathrm{B}$.
 $A^{\prime} \quad B$ $\overline{\mathrm{C}} \longrightarrow \frac{\mathrm{B}}{\mathrm{C}}$ Which is also againft the Hypotbefis.
2. Hyp. If $\frac{C}{B}-\frac{C}{A}$. I fay that $B \longrightarrow A$; for if you fay $B=A$, it's again the Hypothefis, for it will c 7. 5. $\quad c$ follow that C. $B:=C$. If you fay $B E-A, d$ then di. 5.

PROP. XI.

Proportions which are one and the fame to any third, are also the fame one to a another.
Let A. B:: E. F, and C. D:: E.F. I fay that A. B :: C.D. Take G, H, I, equimultiples of A, C, E; and K, L, M, equimultiples of B, D, F. Now' a be-

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
the firth F; then aldo fall the fret A have a greater proportion to the Second B , than abe fifth E to the fixtb F .

Take G, H, I, equimultiples of A, C, E, and $K, I_{\text {, }}$ M, equimultiples of B, D, F. Now becaure, that A. a 6. If. 5. $\underset{\mathrm{C}}{\mathrm{B}:: \mathrm{C}} \mathrm{D}$, if $\mathrm{H} \subset \mathrm{L}$, a then is $G \sqsubset \mathrm{~K}$; but because
b 8. def. 5. $\frac{-}{\mathbf{D}} \mathrm{F}_{\mathrm{F}}$, bit may be that $\mathrm{H} \subset \mathrm{L}$, and yet I not \sqsubset
A $\cdot \mathbf{E}$
c 8. def. 5. M. c Therefore $\frac{\mathbf{B}}{\mathbf{B}}$. Which adas to be demon.
Schorl.

$$
\begin{aligned}
& \text { PROP. XIV. }
\end{aligned}
$$

28.5.
b hyp.
c. 13. 5. AB CD

If the fir A have the fame ratio to the Second B, that the third C Bath to the fourth D ; and if the firft A be greater than the third C; then fall the Second B be greater than the fourth D. But if the fort A be equal to the third C , then the fecone B ball be equal to the fourth D ; but if A be less, then is B aldo less.

Let $A \subset C ; a$ then $\frac{A}{B} \sqsubset \frac{C}{B} b$ but $\frac{A}{B}=\frac{C}{D} ; c$ therefore $-C-\frac{C}{D} \cdot c$ therefore
$B \sqsubset D$. By the like way of argument, if $A \neg C$, d in 5. $\quad d$ then is $\mathrm{B} \longrightarrow \mathrm{D}$ But if A be put equal to C , then eT. 50 C. B::e A. Bf:: C.D. g Therefore B=D. Which f hyp. as was to be demonffrated. -

School.

By an argument a fortiori, if $\frac{B}{\mathrm{~B}} \cdot \frac{\mathrm{D}}{}$, and $\mathrm{A} \subset \mathrm{C}$, then is $B=D$. Likewife if $A=B$, then is $C=D$, and if $A \square$, or $\sqsupset B$, then also is $G \subset$ or $\square D$.

PROP. XV.
Parts C and F are in the fame ratio, with their like multiples AB and DE , if taken correfpondently: (AB. DE : : C. F.)

Let $A G, G B$, parts of the multiple $A B$ be equal to C ; and let DH, HE, parts of the multiple DE be equal to F. a The number of there parts is equal to the numbbeer of thole. Therefore whereas b AG. C : : DII. F, and GB. C : : FE .F ; therefore is $c \mathrm{AG}+\mathrm{GB}(\mathrm{AB}) \mathrm{DH}+\mathrm{HE}(\mathrm{DE})$
 : : C. F. Which was to be demonftrated.

PROP. XVI.

If four magnitude $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, are proportional, they also foal be alternately proportional (A. C : : B.D)

Take E and F equimultiples of A and B ; take alfo G and H equimultiples of C and D. Therefore E. $\mathrm{Fa}:$: $\mathrm{A} . \mathrm{Bb}:: \mathrm{C} . \mathrm{Da}:: \mathrm{G} . \mathrm{H}_{0} \quad$ Wherefore if $\mathrm{E} \subset$, $二$, $\supset_{c} G$, then likewise is $F \sqsubset, \Longrightarrow, \longrightarrow \mathrm{H} d$ Therefore A. C: : B. D. Which was to be demonftrated.
a 15.5°
b hyp.
c II. 5.80
145
d 6 def. 5 .

School.
Alternate ratio has place only when the quantities are of the fame kind For heterogeneous quantities are not compared together.

PROP. XVIII.
If magnitudes divided are proportional (AB. $\mathrm{BC}:: \mathrm{DE} . \mathrm{EF}$, the fame alfo being compounded Sall be proportional (AC.CB : : DF.FE.)
For if it can be, let AC.CB::DF. $\mathrm{FG} \longrightarrow$ FE. a Then by divifion will AB. BC : : DG.GF; b that is, DG. GF :: DE. EF, and fince DG ᄃ DE, c therefore is GFᄃEF. W bich is abfurd. The like abfurdity will follow if it be faid AC.CB::DF.GF들 FE.

PROR:

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
c 10. 5. fore $\frac{\mathbf{F}}{\mathrm{E}}-\frac{\mathrm{A}}{\mathrm{B}}$ or $\frac{\mathrm{D}}{\mathrm{E}}$, e therefore $\mathrm{D} \subset \mathrm{F}$. Wbich ebas to be demonftrated.
2. Hyp. By the fame way of arguing, if A $工 \mathrm{C}$, it will appear that $D \supset \mathrm{~F}$.
f7. 5. 3. Hyp. If $A=C$. Becaufe F.E: : C. B: : f AB :: giI. 5 © D.E. g therefore is $\mathrm{D}=\mathrm{F}$. Which was to be dem. 9. 5.

ABCDEF
P.ROP. XXI:

If there are tbree magnitudes A, B, C , and otbers alfo $\mathrm{D}, \mathrm{E}, \mathrm{F}$, equal to them in number, which taken two and two are in the Same ratio; and their proportion perturbate (A.B :: E.F, and B.C.: : D. E.) and if ex rquo the firft A be greater than the third C, then is the fourth D greater than the fixth F; but if the firt be equal to the tbirds then is the fourth equal to the fixtb; if lefs, fo is the atber likewifas
I Hyp. If A -C ; then becaufe a D.E::B.C, b 8. 5. therefore inverfely E. D: :C. B, but $\frac{C}{B} b=\frac{A}{B}$; cfch. 13.5.
d 10.5. c therefore $\frac{E}{D} \longrightarrow \frac{A}{B}$, that is, than $\frac{E}{F}, d$ therefore D [F.
2. Hyp. By the like argument, it $A>C_{\text {, then }}$ the $\mathrm{D} \sqsupset \mathrm{F}$
e 7. 5.
3. Hyp. If $\mathrm{A}=\mathrm{C}$; then becaufe $\mathrm{E} . \mathrm{D}:$: e $\mathrm{C} \cdot \mathrm{B}$ f byp. $:: e \mathrm{~A} \cdot \mathrm{~B}:: f \mathrm{E} . \mathrm{F}, \mathrm{g}$ therefore is $\mathrm{D}=\mathrm{F}$. Which was to be demonftrated.

PROP. XXII.
If there be any number of magnitudes $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and others equal to them in number D, E, F, which taken two and two are in the fame ratio (A.B::D.E and B C:: E, F.) they fball be in the fame ratio alfo by equality (A.C :: D.F.)

Take G, H, equimultiples of A, D; and I, K, of B, E; and alfo L, M, of E. F.
Becaufe a A. B::DE, b therefore G.I ::H.K; and in like manner $\mathrm{I} . \mathrm{L}:: \mathrm{K}$. M . therefore, if $G \subset, 二 \sqsupset L$, c then is $\mathrm{H}_{\square}=\square \mathrm{M}, \boldsymbol{d}$ theretore A.C $::$ D. F. By the fame way of demonftration if further C. N : F.O, then by equality $\mathrm{A} \mathbf{N}:$. D.O. Whicb was to be demonftrated.

PROP. XXIIL

If there are three magnitwdes A, B, C , and others $\mathrm{D}, \mathrm{E}, \mathrm{F}$, equal to them in number, wbicb taken two and two are in Jame ratio, and their pro. portion perturbate (A.B::E. F, and B. C: : D. E) they foall be in the fame ratio alfo by equality (A. C:: D. F.)

Take G, H, I, equimultiples of A, B, D; and alfo K, L, M, equimultiples of $\mathbf{C}, \mathrm{E}, \mathrm{F}$. Then G. H :: a A.B::bE.F. a :: L. M. Moreover becaufe b B. C : :D E, thence is $c \mathrm{H} . \mathrm{K}:: \mathrm{I} . \mathrm{L}$; therefore G, H, K , and $\mathrm{I}, \mathrm{L}, \mathrm{M}$, are as in 2 I .5 . 'Therofore if G ' be $[,=\beth$ \mathbf{K}, thẹn is likewife $\mathrm{I}=,=\square$ M , and fod confequently A,C: : D. F. Wbich was to be demonffrated.

GI L H KM
a byp.
c 20.5 . d 6. def. 5.
a 15.5.
b byp.
c 4.5 .
d 6. def' 5 -

Theffth Book of

If there are more magnitudes than tbree, this woay of de mongtration bolds good in them alfo.

Coroll.

* 22 Or23. 5. and 20 . def. 1 .
abyp.
b 22 5:
cbyp.

If the firft magnitiude $A B$, bas the fame ratio to the fecond C , qubich the third DE , bas to the foorth F ; and if the fifth BG bas the fame ratio to the fecond C, wibich the fixth EH bas to the fourth F; then Ball the firft compounded with the fifth (AG) have the fame ratio to the fecond C, wibich the third compounded with the fixth (DH) bas to the fourth F .
For becaufe a AB. C: : DE. F, and by the Hyp. and inverfion $C_{0} \mathrm{BG}:$: $\mathrm{F} . \mathrm{EH}$; therefore by b equality AB . BG::DE EH, whence by compounding, AG. BG: : DH. EH. Alfo cBG. C : : EH. F. Therefore again by b equality AG. C $: s$ DH.F. Wbich was be demonftraved

PROP. XXV:

If four magnitudes are proportional (AB. CD :: E. F) the greatef AB and the leaft F foall be greater than the reft C, D, and E . Make $A G=E$, and $C H=F$. Becaufe AB. CD : : a EF. b AG. CH, c thence is $\mathrm{AB} . \mathrm{CD}:: \mathrm{GB}$. HD; d but AB $ᄃ$ CD, e therefore $G B \subset \mathrm{HD}$. But $A G+$ $\mathrm{F}=\mathrm{E}+\mathrm{CH}$, therefore $\mathrm{AG}+$, $\mathrm{F}+\mathrm{GB}=\dot{\mathrm{E}}-\mathrm{HH}+\mathrm{HD}$ that is, $\mathrm{AB}+\mathrm{F} \subset-\mathrm{E}+\mathrm{CD}$. Wbich was to be demonftrated.

T'befe propofitions aubich follow are not Euclide's, but taken out of cther Autbors, and bere subjoyned because of theit frequent ufe.

PROP.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

$$
A B
$$

AC DF

$$
G B-D E
$$

10. 5 conceive $\frac{}{\mathrm{BC}}=\frac{}{\mathrm{EF}}$, a therefore is, $\mathrm{AB} \subset \mathrm{GB}$, add b 4. ax. , BC to each part, then b will $A C \subset G C, c$ therefore c 8. 5. ' AC GC
d 18.5. $\frac{}{\mathrm{EC}} \subset \frac{}{\mathrm{BC}}, d$ that is, $\frac{- \text { Which was to be dem. }}{\mathrm{EF}}$.

PROP. XXIX.

If tbe firft compounded with tbe fecond bas a greater proportion to the Second, than the third compounded with the fourth bath to the fourth; tben by divifion the firft Jball bave a greater proportion to tbe fecond, tban the tbird to the fourtb. Let $\frac{A C}{B C}\left[\frac{D F}{E F}\right.$, then I fay $\frac{A B}{B C}\left[\frac{D E}{E F}\right.$. For GC DF
a 10. 5. conceive $\frac{\mathrm{BC}}{\mathrm{EF}}$, a therefore $\mathrm{AC}[\mathrm{GC}$. Take b 5. ax. away $\bar{B} C$, which is common; then b remains $A B=$ ct. 4. AB GB DE d 17. 5. GB ; c therefore $\frac{\mathrm{BC}}{-} \frac{\mathrm{BC}}{\mathrm{B}}$ or $\overline{\mathrm{EF}}$. Wbicb was to be demonffrated

PROP. XXX

If the firf compounded with the fecond, bas, a greater profortion to the fecond, than the third compounded with tbe fourtb, bath to tbe fourth, then by converfe tatio Sball the firft compounded with the fecond bave leffer tatio to the firft, than the third compounded with the fourtb Sall bave to the third.

$$
\text { Let } \frac{A C}{B C}\left[\frac{D F}{E F} \text {. Then I fay that } \frac{A C}{A B}-\frac{D F}{D E}\right.
$$

Euclid's Elements.

DE

For becaure that $\frac{\mathrm{AC}}{\mathrm{BC}} \mathrm{a}_{\mathrm{D}}^{\mathrm{DF}}$, therefore by division a hyp. BC EF, b 29.5. $\frac{A B}{B C} \sqsubset \frac{D E}{E F}$, by converfion c therefore $\frac{B C}{A B} \square \frac{E F}{D E}$ c 26. 5. and d therefore by composition $\frac{\mathrm{AC}}{\mathrm{AB}} \longrightarrow \frac{\mathrm{DF}}{\mathrm{DE}}$. Which d 28.9.! was to be demonstrated.

PROP. XXXI.
If there are three magsitudes $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and σ
 thees also D, E, F, qqual to them in number; "and if there be a greater proc portion of the fir $\hat{\beta}$ of the former to the Second, thana there is of the firft of the taft to their second $\left(\frac{A}{B}-\frac{D}{E ;}\right)$ and there be also a greater proportion of the Second of the frt magnitudes to the third; than there is of the Second of the last magnitudes to their third
 the firf of the former magnitudes to the third, be greater than the ratio of the frt of the latter magnitudes, to the third $\left(\frac{A}{C} \sqsubset \frac{D}{F_{i}}\right)$
G

Conceive $-\frac{-}{\mathrm{F}}$, a therefore is $\mathrm{B}\left[\mathrm{G}\right.$, and 6 there- a io. ξ°.

$$
A \quad A \quad H \quad D
$$

fore $\frac{A}{G} \subset \frac{A}{B}$, Again conceive $\frac{\mathbf{H}}{\mathbf{G}}=\frac{\mathrm{D}}{\mathbf{E}}$, c therefore ci ns. $\frac{\mathbf{H}}{\mathbf{G}}=\frac{\mathbf{A}}{\mathbf{B}}$; therefore muck i more $\frac{\mathbf{H}}{\mathbf{G}}=\frac{\mathbf{A}}{\mathbf{G}}$. wherefore d io. j :

$$
\mathrm{GI}_{2} \quad \mathrm{PROP}
$$

PROP. XXXII.

If there be three magnitrides. A, B, C, and others $\mathbf{D}, \mathbf{E}, \mathbf{F}$, equal to them in number; and there be a greater proportion of the firft of the former magnitudes to the Second, that there is of the fo cond of the latter to the third $\left(\frac{A}{B}, \frac{\mathbf{E}}{\boldsymbol{F}^{\prime}}\right)$ and also the ratio of the Second of the former to the third be greater than the ratio of the fir: of the latter to the Second $\left(\frac{B}{C}-\frac{D}{E}\right)$ then by equality atfo fol the proportion of the fire of the former to the third, be greater than that of the fir ft of the latter to the third $\left(\frac{\mathrm{A}}{\mathbf{C}} \subset \frac{\mathrm{D}}{\mathrm{E}}.\right)$

$$
\text { G } \quad \mathbf{D}
$$

a 10. 5. Suppofe $\frac{1}{\mathbf{C}}=\frac{-}{\mathbf{E}}$ therefore is a $B \in G_{\pi}$ and there
b 8. 50 A A II E
 HA
$\rightarrow \rightarrow-$, and consequently a $A C_{C} H_{2}$ and thence $\%$ d 13.5. $\frac{\mathrm{A}}{\mathrm{C}}-\frac{\mathrm{H}}{\mathrm{C}}$ d or $\frac{\mathrm{D}}{\mathrm{F}}$. Which was to be demonftrated. PROP. XXXIII.

If the proportion of the quote AB ta $A=1-B \quad$ the whole CD be greater than the proportion of the part taken aw nay AE ta the part take" assay CF ; thenathall alto the ratio of the remainder E B to the remainder FD bo greater than that of the whole AB to the wubole CD.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

[102]

The Sixth Boor

OF

$E U C L I . D E \cdot s$ Elements.

Definitions.

I. T Ike right-lined figures ($\mathrm{ABC}, \mathrm{DCE}$) are fuch whofe feveral angles are equal one to the other, and alfo their fides about the equal angles, proportional.
T he angle $\mathrm{B}=\mathrm{DCF}$, and $\mathrm{AB} . \mathrm{BC} ;: \mathrm{DC} . \mathrm{CE}$. Alfo tbe angle $\mathrm{A}=\mathrm{D}$, and $\mathrm{BA} . \mathrm{AC}:: \mathrm{CD}$. DE. Laftign the angle $\mathrm{ACB}=\mathrm{E}$, and $\mathrm{BC} \mathrm{CA}:$: CE ED.

II Reciprocal figures are (BD, BE) when in each of the figures thereare terms both antecedent and confequent (that is, $A B . B G:: E B . B C$.)
III. A right line $A B$ is raid to be cut according to extreme and mean proportion, when as the whole $A B$ is to the greater fegment $A C$, fo is the greater fegment $A C$ to the lefs $C B$ ($A B . A C:: A C, C B$)
IV. The
IV. The altitude of any figure $A B C$, is a perpendicular line AD drawn from the top A to the bafe BC.

V. A ratio is faid to be compounded of ratio's, when the quantities of the ratio's, being multiplied into one another, do produce a ratio. As the ratio of A to C_{B} is compounded of the ratio's of A to B and B to C. For $_{\mathrm{B}} \times \frac{\mathrm{B}}{\mathrm{C}}$ $a=\frac{A B}{B C} b=\frac{A}{C}$.
a 20 . det. 5 . b 15.5 ;
a 3. 1.

Triángles ABC, ACD, and parallelograms BCAE, CDFA, which have the Jame beight, are to each otber, as their bafes, BC, CD.
a Take as many as you pleafe, $B \mathrm{G}, \mathrm{GH}$, equal to to BC , and alfo $\mathrm{DI}=\mathrm{CD}_{2}$
 and join AG, AH, AI. . b The triangles $A C B, A B G, A G H$, are equal, and b alfo the triangle ACD=ADI. Therefore the triangle ACH is the fame multiple of the triangle ACB, as the bafe IIC is of the bare BC; and the triangle ACI the fame multiple of the triangle ACD, as the bare CI is of CD. But if $\mathrm{HC}[, \Rightarrow \mathrm{CI}$, c then is likewife the c cob. 38.x. triangle AHC $\ulcorner, \Rightarrow, \overrightarrow{A C I}$; and d therefore $B C$. CD:: the triangle ABC. ACD: : Pgr. CE.CF. Which was to be demonforaed.

Hence triangles, ABC, DEF, and Pgrs. AGBC, DEFH, whofe bafes BC , EF are equal, are to each other as their altitudes, AI, DK.
3.1.
b 7.5
c 1.6.
d 41.18 Js 5.
$C B$, and $K M=E F$; \quad nd join LA, LG, MD, MH. then is it evident, that the triangle ABC DEF: : b ALI. DKM $:: c$ AI. DK $:: d$ Pgr. AGBC. DEFII. Whicb was to be demonfrated.

PROP. II.
If to one fide BC of a triangle ABC , bo drawn a parallel rigbt line DE , the fame Sball int the fides of the triangle profortionally (AB. BD: : AE EC.) And if the fides of the triangle are cut proportionally (AD. BD : A E EC) then a right line DE , joining the points of fection P, E, /ball be parallel to BC , the otker fide cf the triaugle. Draw CD and BE .

1. Hyp. Becaufe the triangle $\mathrm{DEB} a=\mathrm{DEC}, b$ there
a 37.1 .
b 7.5.
c I. 6.
d 11.5
e 1.6.
f 9.5 .
2. 3. fore fhall be the triangle ADE. DBE : : ADE. ECD. But the triangle AED. DBE $:: c A D, D B$, and the triangle ADE . $\mathrm{DEC}: ~: ~ \mathrm{AE}$. EC , d therefore AD . $\mathrm{LB}:$: AE.EC.
1. Hyp. Becaure $\mathrm{AD} . \mathrm{DB}:: \mathrm{AE}$. EC, e that is the triangle ADE DBE:: ADE ECD ; f therefore is the triangle $\mathrm{DBE}=\mathrm{ECD}$; and g therefore DE, BC are parallels. Wbich was to be demonffrated.
Sckol.

If there are drawn feveral lines DE, FG parallel to one fide $B C$ of a triangle, all the fegments of the fides thall be proportional.

For

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
bbyt．Becaure the augle $B b=E C D, c$ therefore BF， c 28．1． CD are parallel ：Alfo becaure the angle BCA $b=$ CED，e therefore are CA，EF parallel．Therefore the figure CAFD is a Pgr．d therefore $A F=C D$ ，and $A C$
d 34.1 ． e 2.6. f16． 5. g22．5． $\overline{=}{ }^{d} \mathrm{FD}$ ．Whence it is evident，that $\mathrm{AB} . \mathrm{AF}(\mathrm{CD}):: e$ $\mathrm{BC}, \mathrm{CE} . f$ by permutation therefore $\mathrm{AB} . \mathrm{BC}:: \mathrm{CD} . \mathrm{CE}$ ， alfo BC．CE ：：FD（AC．）DE f and thence by permu－ tation BC．AC ：：CE．DE g Wherefore alro by equality AB．AC：：CD．DE．Therefore，Éco

Coroll．

Hence AB．DC ：：BC．CE ：：AC．DE．

Scbol．
Hence，if in a triangle FBE there be drawn AC a parallel to one fide FE ，the triangle ABC fhall be like to the whole FBE

> PROP. V.

If two trianigles $A B C$ ， D EF，bave their fidespro－ portional（AR．BC：：DE． EF，and AC．BC：：DF． EF ，and alfo AB AC ：：DE． DF）thofe triangles are e－ quiangular，and thofe angles equal under which are fkb－
rended the homologous fides．
a 23．10 b 32.1. c 4.6
d bypo
CII．5．80 2． 5 iS．I． をおこ．I．

At the fide EFa make the angle $\mathrm{FEG}=\mathrm{B}$ ，and the angle $\mathrm{EFG}=\mathrm{C} ; b$ whence the angle $\mathrm{G}=\mathrm{A}$ ．There－ fore GE EF $c:: \mathrm{AB}$ ．BC ：：$d \mathrm{DE}$ ．EF．e and therefore $\mathrm{GE}=\mathrm{DE}$ Likewife GF．FE $c:: \mathrm{AC}$ CB ：：$d \mathrm{DF}$ ． FE, e therefore $\mathrm{GF}=\mathrm{DF}$ ．Therefore the triangles DEF，GEF，are mutually equilateral．f Therefore the angle $\mathrm{D}=\mathrm{G}=\mathrm{A}$ ，and the angle $\mathrm{FED} \mathrm{f}=\mathrm{FEG}$ $=\mathrm{B}$ ，and g confequently the angle $\mathrm{DFE}=\mathrm{C}$ ．There tore，©c．

PROP. VI.

If two triangles ABC, DEF bave one angle B equal to one angle DEF, and the fides aboust the equal angles B, DEF proportional (AB. BC: : DE. EF) then thofe triangles ABC, DEF, are equiangu-
 lar, and bave thofe angles equal, wonder whbich are fubtended the bomologous fides.

At the fide EF' make the angle $F E G=B$, and the angle $\mathrm{EFG} \doteq \mathrm{C}$; a then will the angle $G=A$. There fore GE. EF : : $b \mathrm{AB}$. $\mathrm{BC}:: c \mathrm{DE}$. EF, d and therefore $\mathrm{DE}=\mathrm{GE}$. But the angle DEF $c=\mathrm{B} f=\mathrm{GEF}$; therefore the angle $\mathrm{Dg}_{g}=\mathrm{G}_{=}=A, b$ and confequently the angle EFD=C. Wbich was to be demonftrated

PROP. VII.

If two triangles ABC, DEF bave one angle A equal to one angle D , and the fides about the otber angles ABC, E, proportional (AB. BC :: DE EF) and if they bave the remaining aniges C, F, either botb lefs or botb not lefs than a right angle ; then fball the triangles ABC , DEF , be equiangular, and bave thofe angles equal about wwbtc the profortional fides are.

For, if it can be, let the angle $A B C-$, and make the angle $A B G=E$. Therefore, whereas the angle $\mathrm{A} a=\mathrm{D} b$ thence is the angle $\mathrm{AGB}=\mathrm{F}$. Therefore AB. $\mathrm{BG} c:: \mathrm{DE}$. EF $:: d \mathrm{AB}$. BC, e therefore $\mathrm{BG}=\mathrm{BC}_{\text {, }} f$ therefore the angle $\mathrm{BGC}=\mathrm{BCG}$. g Therefore BGC or C is lefs than a right angle, and b confoquently $A G B$ or F is greater than a right : Therefore the angles C and F are not of the fame fipecies or kind, which is againft the Hypothefis.

\square

the roble $A B C$, and to ans another,
For because $B A C, A D B$ are a right angles, 6 and fo equal, and B common; the triangles $B A C, A D B, c$ are like. By the fame way of arguing $B A C, A D C$, are like; d whence alfo $A D B, A D C$ will be like. Which was to be demonfirated.

Cool.

PROP. IX
23.1.
b ${ }^{\text {gi. }}$ I,
c 26. $\$ 18.50$

From a right line given $A B$ to cut off any part required, as one third (AG)

From the point A draw an infinite line $A C$ any wife, in which a take any three equal parts $A D, D E, F E$, join $F B$, to which from $D b$ draw the parallel $n G$; and the thing is done.

For $G B$. $A G::=c F D$. $A D$; whence by d compofition $A B . A G:: A F$. $A D$, therefore fence $A D=$ one third of $A F$, hall $A G$ be $=$ one third of $A B$. Which was to be done.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
a 33. 1. For RL, ST, VX, NZ, are a parallels ; therefore, b conftr. whereas AR, RS, SV, VN are b equal ; c thence $\mathrm{AM}_{\text {; }}$ c 2. 6. MO, OP, P, are equal alfo. Likewife, becaure that $\mathrm{BZ}=\mathrm{ZX}$, therefore is $\mathrm{BQ}=P Q$, and therefore AB is cut into five equal parts. Which soas to be done.

PROP. XI.

Twvo rigbt lines being given AB, AD, to find out a tbitrd in proport tion to them (DE)
Join BD, and from $A B$ being produced take $B C=A D$. Through C draw CE parallel to BD; with which let AD produced meet in E , then is DE the proportional required.
2. 6. For $\mathrm{AB} . \mathrm{BC}(\mathrm{AD}) a:: \mathrm{AD}$. DE. Wh bicb was to be dome.
b I cor.8.6.
 Or thus: make the angle ABCright; and allo the angle $A C D$ right, them 6 AB. BC: : BC. BD.

PROP. XH.

T'bree rigbt lines being given, $\mathrm{DE}, \mathrm{EF}, \mathrm{DG}$, to find out a fourth protortional GH .

Join $E G$, and through F draw $F H$ parallel to $E G$, with which let DG produced to H meet. Then it is cvident that DE EF a : : DG. GH. Wbich was to be doñe:

Tiwo right lines being given AE, EB, to find a mean, proportional EF.

Upon the whole line A.B as a diameter, defcribe a femi-
 circle AFB, and from E erect a perpendic - lar FE meeting with the periphery in F, then AE EF: : EF. EB. For let AF and FB be drawn; a then from the right angle of the right angled triangle AFB is drawn a right line FE perpendicular to the bare. 6 There b cor. 86. fore AE, FE: : FE. EB. Which was to be done.

Coroll.

Hence, a right line drawn in a circle from any point of a diameter, perpendicular to that diameter, and produced to the circumference, is a mean proportional betwixt the two fegments of that diameter.

PROP: XIV.

Equal Parallelograms BD, BF , baving one angle ABC , equal to one EBG, bave the fides wbich are about tbe equal angles reciprocal ($\mathrm{AB} . \mathrm{BG}:: \mathrm{EB} . \mathrm{BC}$;) and tbofe parallelograms BD, BF, wibich bave one angle ABC equal

to one EBG, and the fides wbich are about the equal angles reciprocal, are equal

For let the fides AB, BG, about the equal angles make one right line ; a wherefore EB, BC, fhall do the fame. a $\int c b$. 15.1 , Let FG, DC, be produced till they meet.

1. Hyp. AB. BG $b:: \mathrm{BD}$. $\mathrm{BH}:: c \mathrm{BF}$. BH $:: d \mathrm{BE}$.RG, b 1.6. - therefore, EOc.
2. $H_{y p}$ BD. BH: :f AB. BG:: g BE BC : : b BF. BH. c 7.5. k Therefore the Pgr. $\mathrm{BD}=\mathrm{BF}$. Whbich was to be demonfrated.
di. 6.
e II. 5 .
± 1.6.
g byp.
PROP. h i. 6.
k II. and
3. 5.

PROP. XV.

'and have alpo the fides that are about the equal angles rectprocal (AB. BE : : DB. BC) are equal.

Let the fides CB, BD, which are about the equal an-
a fob. 19. 1. b 1.6.
c 7.5
dI. 6. e II 5°. fir. 6. g hyp. h I. 6. k 11. and 25.

4 12. 4 \%。
114.6. oles be fer in a frit line; a therefore ABE is a right line: Let CE be drawn.

1. Hyp AB. BE: : b the triangle ABC . $\mathrm{CBE} c::$ the triangle DBE. $\mathrm{CBE}:: d \mathrm{DB} . \mathrm{BC}$, e therefore E C .
2. Hyp. The triangle $\mathrm{ABC} . \mathrm{CBE}:: f \mathrm{AB} . \mathrm{BE}:: g \mathrm{DR}$. $\mathrm{BC} b:$: the triangle DBE CBE. k Therefore the riangle $\mathrm{ABC}=\mathrm{DBE}$. Which was to be demonftrated.

> PR OP. XVI.

If found right lines are proportional (AB. FG: :EF, CB) the rectangle \bar{A} comprehended under the extremes $A B, C B$, is equal to the rectangle EG comprehended under the means' FG, EF. And if the rectangle AC comprehended under the extremes AB, CB, be equal to the rectangle EG , compress herded under the means FG, EF, then are the four right lives proportional. (AB FG:: EF. CB)
$1_{1} H_{y p}$. The angles B and F are right, and a confess quently equal, and by hypothefis $A B . F G:: E F . C B$, b therefore the rectangle $A C=E G$.

\author{

* Hyp:
}

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Upon a right line given AB , to defcribe a rigbt-lined figure A GHB, like and alike fituate to a rigbt-lined figure given CEFD.
a 23.1.
b confir. c 32. 1.
d 2. $2 x$.

Refolve the right-lined figure given into triangles; a Make the angle $A B H=D$, and the angle $B A H=D C F$, a and the angle $A F G=C F F, a$ and the angle $H A G=$ FC8, then AGHB thall be the right-lined figure fought.

For the angle $B b=D$, and the angle $B A B b=D C F$, c wherefore the angle AHB $=C F B, b$ alfo the angle $\mathrm{HAG}=\mathrm{FCE}$, and the angle $\mathrm{AHG} b=\mathrm{CFE}, c$ wherefore the angle $G=E$, and the whole angle $G A B d=E C D$, and the whole angle GHB $d=E F D$. The Polygons therefore are mutually equiangular. Moreover becaufe
e 4. 6. the triangles are equiangular, therefore AB . $\mathrm{BH} e:$: CD. DF ; and AG. GHe : : CE. EF. Likewife AG. AH f22. 5 : :e CE. CF, and AH.AR : :CF. CD. , f From whence by equality $A G . A B: ~: C E . C D$. After the fame mangI def. 6. ner GH. HB: : EF.FD. g Therefore the Polygons ABHG, CDFE are like and alike fituate. Wbicb woas to be done.

PROP. XIX.'

a'11. G

Like triangles ABC, DEF, are in duplicate ratio of their bomologous fides, BC, EF.
a Let there be made BC.EF : : EFF. BG, and let $A G$ be drawn. Be-
b cor. 4. 6 caure that AB. DE $b::$ BC.EF $c::$ EF. BG, and the confin angle $B=E, d$ therefore is the triangle $A E G=D E F$. d 15. 6. But the triangle $A B C A B G:: ~ B C, B G$, and f
$e_{\text {I. }}$. f fio. def.s.
$\frac{B C}{B G}=\overline{E F}$ twice; therefore $\frac{A B C}{A B G}$ that is, $\frac{A B C}{\frac{D E F}{E F}} g=\frac{B C}{E F} g$ II. 5. twice. Wbich was to be demonfirated.

Coroll
Hence, If three right-lines (BC, EF, BG) are pron portional, then as the firft is to the third, fo is a triangle made upon the firft BC , to a triangle like and alike de - fcribed upon the fecond EF; or to is a triangle defcriber upon the fecond EF, to a triangle like and alike dot fribed upon the third.

PROP. XX.

Like Polygons ABCDE, FGHIK, are divided into equal triangles $\mathrm{ABC}, \mathrm{FGH}$, and $\mathrm{ACD}, \mathrm{FHI}$, and ADE , FIK ; botb equal in number and bornologous to the wboles (ABC. FGH: : ABCDE. FGHIK : :ACD. FHI: : ADE. FIK. And the Polygons A BCDE, FGHIK, bave a duplicate ratio one to the otber of what one boniologous $\sqrt{ }$ ide BC bath to the otber homolgous fide GH.
I. For the angle $\mathrm{B} a=\mathrm{G}$, and $\mathrm{AB} \cdot \mathrm{BC} a:$: FG. GH. a byph b Therefore the triangles ABC, FGH, are equiangular. After the fame manner are the triangles AED, b 6. 6. FKI like. Since therefore the angle $\mathrm{BCA} b=\mathrm{GHF}$, and the angle ADE $b=$ FIK, and the whole angles $\mathrm{BCD}, \mathrm{GHI}$, and the whole angles CDE, HIK are c e- c byp. qual, there remains the angle $\mathrm{ACD} d=\mathrm{FHI}$, and the ${ }^{\mathrm{d}} 3 \cdot a x$. angle $\mathrm{ADC}=\mathrm{FIH}$; efrom whence alfo the angle $\mathrm{CAD}{ }^{\mathrm{e}} \mathbf{3}^{\mathbf{2} .1}$. $=\mathrm{HFI}$, therefore the triangles $\mathrm{ACD}, \mathrm{FHI}$ are like. Therefore, 8
2. Becaufe the triangles $\mathrm{BCA}, \mathrm{GHF}$ are like, f
is $\frac{B C A}{G H F}=\frac{B C}{G H}$ twice. For the fame reafon is $\frac{C A D}{H E I}$
CD
$=\frac{\mathrm{DI}}{\mathrm{HI}}$ twice ; laftly $\frac{\mathrm{DEA}}{\mathrm{IK} \mathrm{F}}=\frac{\mathrm{DE}}{\mathrm{IK}}$ twice. Now where.
H 2
$\mathrm{g}_{\text {hyp. }}$ © as that $\mathrm{BC}: \mathrm{GH}_{g}:: \mathrm{CD} . \mathrm{HI}_{g}:: \mathrm{DE}$ IK, b therefore is 165 . the triangle BCA. GHF: : CAD. HFI: : DEA. IKF k

Coroll.
I. Hence if there are three right-lines proportional, then as the firft is to the third, f 0 is a polygon made upoi the firft to a polygon made on the fecond like and alike defrribed; or 10 is a polygon made upon the fecond, to a polygon made on the third like and alike defcribed.

Hence woe bave a metbod of tularging or diminibing any rigbr-lived figure in a ratio given : For if you would make a pentagon quintaple of that pentagon whereof $C D$ is the fide, then betwixt AB and $5 \AA B$ find out a mean proportional, * upon this raife a pentagon like to that given, and it thall be quintuple of the pentagon given.
2. Hence alfo, If the homologous fides of like figures be known, then will the proportion of the figures be 0 vident, viz. by finding out a third proportional.

PROP. XXI.

Rigbt lined figures A BC, DIE, wubich are like to the Same rigbt-limed figure HFG, are alfo like one to the otbers a 1.def. 6. \quad For the angle $\mathrm{A} a=\mathrm{H} a=\mathrm{D}$; and the angle $\mathrm{C} a=$ $\mathrm{G} a=\mathrm{E}$; and the angle $\mathrm{B} a=\mathrm{F} a \underset{\mathrm{I}}{ }$. Alio a AB AC ::HF. HG: : DI.DE, and a AC. CB: :IIG. GF :: DE EI. And AB. BC::HF. FG:: DI. IE. Therefore a ABC, DIE, are like. Wbith was to be dermomfated.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

$$
\mathcal{T} H E O R E M,
$$

Pet, Herig. If a rigbt-line AB be cat any-wifs in D , the rectangle comprehended under the parts AD, DB, is a mean propertonal betwixt their Squares. Likewife the rectangle comperebended under the whole AB , and one part AD , or D B is a mean proportional betwixt the Square of the wobble AB, and the Square of the Said part, AD , or DB .

Upon the diameter AB defrribe a femicircle; from D erect a perpendicular DE , meeting with the periphery in E , join AE, RE

2 cor. 86.
b 22.6.
c 17.6.
d cor 8. 6.
e 22.6. f il 17.

It's evident that $\mathrm{AD} . \mathrm{DE} a:: \mathrm{DE} . \mathrm{DB}, 6$ therefore $\mathrm{ADq} . \mathrm{DEq}:: \mathrm{DEq} \mathrm{DBq}, \mathrm{c}$ that is, ADq . $\mathrm{ADB}:$: ABB. DBq . Which was to be demonstrated.

Moreover BA. AE : $: d \mathrm{AE}$ AD, e therefore BAg. $\mathrm{AEq}:=\mathrm{AEq} . \mathrm{ADq} . f$ that is, $\mathrm{BAq} \cdot \mathrm{BAD}:: \mathrm{BAD} . \mathrm{ADq}$. After the fame manner ABq. ABD : : AB D. BD. Which was to be demcnifrated

Or thus fuppofe $Z=A+E$. It is manifest that Aq. af. 6. $\mathrm{AE}:=a \mathrm{~A}, \mathrm{E}:=a \mathrm{AE}$ Eq. alpo Zq . $\mathrm{ZA}:: a \mathrm{Z} \mathrm{A}:=$ ZA. Aq, and Zq. ZE: : a Z.E :: ZE. Eq.

PROP. XXIII

3. cb .15,

Equiangular parallelograms AC , CF, have the ratio one to the other, wubich is compounded of their fees. $\left(\frac{\mathrm{AC}}{\mathrm{CF}}=\frac{\mathrm{BC}}{\mathrm{CG}}+\frac{\mathrm{DC}}{\mathrm{CE}}\right)$

Let the fides about the equal, angles C be a ret in a direct line b20.def. 5 . \& I: 6 . and let the Mgr. CH be compleated. Then is the ratio of $\frac{A C}{C F}=\frac{A C}{C H}+\frac{C H}{C F}=\frac{B C}{C G}+\frac{D C}{C E} \quad W b i z b$ was to be demonfirated.

Coroll.

Hence, and from 34. 1. it appears, I. That triangles Andr. wbicb bave one angle equal (as at C) bave a ratio compound- Tacq. 15.5 ed of the ratio's of the right-lines, AC to CB, and LC to CF,) containing the eqkal angle.
2. That all reitanglos, and * confequently all parallelograms, bave tbeir ratio one to the otber compounded of the ra. tio's of bafe to bafe, and altitude to altitude. Affer the like manner you may argue in triangles
3. From bence is apparent bow to give the proportion of
 triangles and parallelograms. Let there be two Pgrs. X and Z, whofe bares are A C, $C B$, and altitudes CL , CF . Make CL $\mathrm{CF}:: \mathrm{CB} . \mathrm{O}$, * then will it be $\mathrm{X} . \mathrm{Z}:$: AC. O .

* 14. 6. and 1. 6.

P.ROP. XXIV.

In eveny parallelogram ABCD , the parallelograms EG, HF which are about the diameter AC, are like. to the avbole, and alyo one to the other.

For the Pgra, EG, HF, have each of them one antole common with the
 whole; a therefore they are equiangular to the whole, and alfo one to the other Alfo both the triangles $\mathrm{AHC}^{2} \mathrm{AEI}, \mathrm{IHC} a$ and the triangles a 29. I. ADC, AGI, IFC are equiangular mutually; b therefore AE. EI : : AB. BC , and $b \mathrm{AE} . \mathrm{AI}: \mathrm{AB} . \mathrm{AC}$, and b 4.6. b AI. AG: : AC AD. c Therefore by equality, A E. $A G: A B \cdot A D$. d. Therefore the Pgrs EG, BD are like. After the fame manner are HF, BD like alfo. Therefore, $8{ }^{5}$ c.

PROP. XXV.

Unto the rigbt-lined figure given ABEDC, to deforibe another figure P , like and alike fituate, wubich alyo Sball be equal to ametber rigbt-lixed figwre given F -
245. 7^{7}
b 44 I. c 13.6. d 18.6.
a Make the reCtangle $\mathrm{AL}=\mathrm{ABEDC} ; b$ alfo upon $B L$ make the rectangle $B M=F$; betwixt $A B$ and $B H$ c find out a mean proportional NO; Upon NO d make the polygon P like to the right-lined figure given ABEDC. I fay the polygon P fo made; thall be equal to F, that was given.
e cor 20.6. For ABEDC(AL.) P.: AB. BII : :fAL: BM. There£ 1. 6. fore $\mathrm{P} g=\mathrm{BM} \mathrm{B}=\mathrm{F}$. Which creas to be dope.

PROP. XXVI.

If from the parallelograw A BCD, be taken arvay another parallelogrenn AGFE, lite sente the apbole, and in like foot fent baving alfo are argle EAG common with it ; there is thast parallelogram about the fame diagonal AC with the qubole.
If you deny AC to be the common diagonal, then let AHC be it, cutting EF in H , and let HI be.drawn paa 24. 6. rallel to AE. Then are Pgrs EI, DB, a like, b thereb i. def. 6. fore $\mathrm{AE} . \mathrm{EH}:: \mathrm{AD} . \mathrm{DC}:: c \mathrm{AE}$. EP , and d confequentc byp. ly $\mathrm{EH}=\mathrm{EF} . \quad f$ Which is abfurd
d 9.5 .
f $9 . a x$:

RROR

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
deonffr. Eb 246 c conffr. f3. ax. f 2. αx : h^{\prime} 43. 1 .

For the Pgrs. D, EG, O', NT, ZR, are all d like one to the other, and the Pgr. $\mathrm{EG}=e \mathrm{NT}+\mathrm{C}=\mathrm{OQ}$ $+\mathrm{C}, \mathrm{f}$ wherefore $\mathrm{C}=$ to the Gnomon $\mathrm{OBQ}_{\mathrm{g}}=\mathrm{AO}+$ $\mathrm{PG}=b \mathrm{AO}+\mathrm{E} \mathrm{P}=\mathrm{AP}$. W bich was to be done.

PROP. XXIX.

Upon a right-line given AB , to applly a parallelogram AN equal to a rigbt-limed figure given C , exceeding by a Pgr. OP, wbich bball be like to anotber Pgr. given D.
a 18.6. b 25.6. c 3. 1.
d conft.
e 24.6. f conftr. \$3.ax. ${ }^{6} 3^{6 .}$. k 43 . 1. 12. and I . Ex.
aII. 2.
b 17.6a

Bifect AB in E. Upon EB a make a Pgr. EG like to the given one D, and blet the Pgr: $H K=E G+C$, and like to the given one D, or to EG. Make FEL=c IH; and c FGM $=I K$. Thro' L, M, draw the parallels MN and RN; and AR parallel to NM. Produce ABP, GBO; draw the diameter FBN. Then is AN the parallelogram required
For the Pgrs. D, HK, LM, EG, are a like, e thetefore the Pgr. OP is like to the Pgr. LM, or D. Ako LM f. $=\mathrm{HK}_{f}=\mathrm{EG}+\mathrm{C}$. g Therefore $\mathrm{C}=$ to the Gnomon ENG. But AL $b=\mathrm{LB} k=\mathrm{BM} ; l$ therefore $\mathrm{C}=\mathrm{AN}$. Which was to be dosle.

PROP. XXX.

To cut a finite right-line given AB , according to extreme and mean ratio (AB. AG: : AG.G…)
a Cut $A B$ in G, in fuch wire that $A B \times B G=A G g$. b Then BA.AG:: AG. GB. Wbich was to be done.

PROP. XXXI.

In right-angled triangles BAC , any figure BF defcrtbed upon the fide BC fubtending the right angle BAC , is equal to the figures BG, AL, which are lis and alike fituate to the former BF, and defcribed upon the fides BA, AC, containing the rigbt angle.

From the right-angle BAC let fall the perpendicular $A D$. Becaufe DC. CA : : a CA. CB, b therefore $A L$. BF : : : DC GB. Alfo, becaut DB. BA : : a BA. BC, b therefore BG . $\mathrm{BF}:: \mathrm{DB} . \mathrm{BC} ; c$ therefore $A L+B G$. BF : : $\mathrm{DC}+\mathrm{DB}(\mathrm{BC}$. $) \mathrm{BC}$. d Therefore $\mathrm{AL}+\mathrm{BG}=$ BF. Which was to be demonftrated.

Or thus: BG. BF: : © B Aq. BCq: And e AL. BF $:: A C q . B C q, f$ therefore $B G+A L$. $B F:: B A q+A C q$. $B C q \cdot g$ Therefore whereas $B A q+A C q=b B C q$; 6 thence is $B G+A L=B F$. Wbiç was to be demonftra?
a cor. 8. 6. b cor20.6. c 245. d/ch.14.5. e 22. 6. f 245. g fcho1419 h 47. I. ted

Coroll.

From this propofition you may learn how to add or fubtract any like figures, by the fame method that is ured in adding and fubtracting of Tquares, in Scbol. 47. 1.

PROP. XXXII.

A

If two triangles ABC, DCE baving two fides proportional to two (AB. AC : : DC. DE.) be fo compounded or fet togetber at one angle ACD, that tbeir bomologous fides are alfo parallel (AB to DC , and AC to DE) then the remaining fides of thofe triangles (BC, CE) Jbell be fousd placed in one frait line.

For the angle $A a=\mathrm{ACD}_{a}=\mathrm{D}$, and AB.AC $b:$: f I. ax. g 14. 1. DC. DE c therefore the angle $\mathrm{B}=\mathrm{DCE}$. Therefore the angle $B+A d=A C E$; but the angle $B+A+A C B$ e $=2$ right, f therefore the angle $A C E+A C B=2$ right ; g therefore BCE is a right-line. Wbich was to be domonfrated.

PROP. XXXIII.

In equal circles DBCA, HFGP, the anglas BDC, FHG, bave the fame ratio with the peripberies BC, FG, on whicb they infff; whether the angles be fet at the centers (as BDC, FHG) or at the circumfereasces, A, E: And fo likevife bave the Sectors BDC, FHG.

Draw the right-lines BC, FG. Make $\mathrm{CI}_{\text {IF }} \mathrm{CB}_{2}$ and $\mathrm{GL}=\mathrm{FG}=\mathrm{LP}$, and join DI, HL, HP.

The arch $\mathrm{BC} A=\mathrm{CI}, \alpha$ alfo the arches $\mathrm{FG}, \mathrm{GL}, \mathrm{LP}$, are equal ; b therefore the angle BDC=CDI, b and the angle $\mathrm{FHG}=\mathrm{GHL}=\mathrm{LHP}$. Therefore the arch BI is the fame multiple of the arch BC , as the angle BDI is of the angle BDC. And in like manner is the arch FP, the fame multiple of the arch FG, as the angle FHP is of the angle FHG. But if the arch BI $\subset,=\sim \mathrm{FP}$,
 Thera

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

The Seventhe Book

OF.
 E UCLIDEs
 . Elements.

Definitions.

'UNity is that, by which every thing that is, is called One.
II. Number is a multitude compofed of units.
III. Part is a number of a number, the leffer of the greater, when the leffer meafureth the greater.

Every part is donominated from tbat number, by wubicb it meafures tbe number wobereof it is a part; as 4 is called the t bird part of 18, becaufe it meafures 12 by 3 .
IV. But when the leffer number does not meafure the greater, then the leffer is call'd, not a part, but parts of the greater.

All parts whatfoever are denominated from thofe two numbers, by wubich the greateft common meajure of the two numbers meafures each of tbem; as 10 is said to be tuwo thirds of the number 15 ; becaufe the greateft common meajure, wbich is 5, meafures 10 by 2 , and 15 by 3 .
V. A multiple is a greater number compared with a leffer, when the leffer meafures the greater.
VI. An even number is that which may be divided into two equal parts.

VII: But an odd number iis that which cannot be divided into two equal parts; or that which differeth from an even number by unity.
VIII. A mumber evenly even, is that which an even. number meafureth by an even number.

- se IX. But a number evenly odd, is that which an even number meafureth by an odd number.

X A number oddly odd, is that which an odd numher meafureth by an odd number.
XI. A prime (or firft) number is that which is meafured only by unity.
XII. Numbers prime the one to the other, are fach as only unity doth meafure, being their common meafure.
XIII A compofed number is that which fome certain number meafureth.
XIV. Numbers compofed the one to the other, are thofe, which fome number, being a common meafure to them both, doth meafure.

In tbis, and the preceding defnition, unity is not a nummber.
XV. One number is faid to multiply another when the number multiplied is fo often added to it felf, as there are units in the number multiplying, and another number is produced.

Hence in every multiplication uyzity is to the multiplier, as the multiplicand is to tbe produci.

Obr. That mary times, wben any numbers are to be murtiplied (as A into B) the conjunction of the letters denates tbo product: $S_{0} \mathrm{AB}=\mathrm{A} \times \mathrm{B}$, and $\mathrm{CDE}=\mathrm{C} \times \mathrm{D} \times \mathrm{E}$
XVI. When two numbers multiplying themfelves produce another, the number produced is called a plain number; and the numbers which multiplied one another, are called the fides of it : So 2 (C) $\times \mathfrak{j}$ (D) $=6=$ CD is a plane number.
XVII. But when three numbers multiplying one another produce any number, the number produced is termed a folid number; and the numbers multiplying one another, are called the fides thereof: So 2 (C) $\times 3$ (D) $\times 5(\mathrm{E})=30=\mathrm{CDE}$ is a folid number.
XVIII. A fquare number is that which is equally equal ; or, which is contained under two equal numbers. Let A be tbe fide of a Square; the Square is tbus noted, AA, or Aq,
XIX A Cube is that number which is equally equal equally ; or, which is contained under three equal numbers. Let A be the fide of © Cube; the Cube is thus noted, AAA, or Ac.

In tbis definition, and the three foregoing, wnity is number.
XX. Numbers are proportional, when the firf is the fame multiple of the fecond, as the third is of the fourth;
fourth ; ot, the fame part ; or, when a part of the firth number meafures the lecond, and the fame part of the thind meafires the fourth, equally: and vice vorra. So A. B. :: C. D, that is, $3.9:: 5.15$.
XXI. Like plane, and folid numbers, are thofe which have their fides proportional : Namety, not all tbe jides, but fome
XXII. A perfect Namber is that which is equal to fts own parts

As 6, and 28. But a mumber that is lefs than it's parts is called an Abounding number; and ome qubicb is greater, a Diminutive: fo 12 is an abounding, 15 a diminutiog nnmber.
XXIII. One number is faid to meature another, by a third number, which when it either maltiplies, of is maltipfied by the meduring mimber, produces the number meafured.

In Dievficom, sunty is to the quotiemt, as the divijor is to the dividend. Note, that a nurrber placed wnder anotber
 vided by B, and $\frac{C A}{B}=C x A$ divided by B.
Thofe two mumbets are called the Terms or Roots of a Proportion, than which leffer cannot be found in the fame proprtion.

Pgforatess, or Petitions.

1. Hat numbers equal or multiple to any number may be taken at pleafure.
2. That a number greater than any other whatroever may be taken.
3. That Addition, Subtraction, Multiplication, Divifion, and the Extractions of Roots or fides of fquare and cube mambers be alfo granted ae poffible.

Axioms.

1. TTT Hatoever agrees with one of many equal mumbers, agrees likewife with the reft.
2. Thofe parts thitt are the fame to the fame party or parts, are the fame among themfelves.
3. Numbers that are the fame parts of equal numbers, or of the fame number, are equal among themfelves.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

PROP: II.

Two numbers AB; CD being given, not prime the one to the otber, to find out their greateft common meafure FD.

Take the leffer number $C D$ from the greater $A B$ as a 6 ax. 9. often as you can. If nothing remains, a it is manifeft that CD is the greateft common meafure. But if there remains lomething (as $E B$) then take it out of $C D$, and the refidue FD out of EB, and fo forward till fome num' b 1. 7. ber (FD) meafure the faid EB (b for this will be, before you come to unity) FD fhall be the greatef common meafure.

c confir.

For FD_{c} meafures EB , and d therefore alfo CF ; and din.ax. i.e confequently the whole-CD; d therefore likewife e $12 . a x . \%$. AE ; and fo meafures the whole AB . Wherefore it is e vident that FD is a common meafure. If you deny it to be the greatef, let there be a greater (G) then whered in ax 7 as G meafureth CD , it d muft likewife meafure AE , e e 12. ax. 7 . and the refidue EB , d as alfo CF, e and by confequence g suppof. the refidue FD, g the greater the lefs. W bich is abbsurd. h9.ax. 1 .

Coroll.

Hence, A number that meafures two numbers, does alfo meafure their greateft common meafure.

PROP. III.

T'bree numbers being given, A, B, B........ 8 C, not prime one to anotber, to find out D..... 4 theirgreateft common meafure E . meafure of the two numbers A, B. If D meafures C the third, it is clear that D is the greateft common meafiure of all the three numbers. If D does not meafure C , at leaft D and C will be compoted the one to the other, by the Coroll. of the Propofition preceding. Therefore let E be the greateft common meafure of the faid numbers D and $C_{\text {, }}$ and it thall be the number which *as required.

For E a meafures C and D, and D meafures A and $\dot{B} ;$ a conff. therefore $b \mathrm{E}$ meafires each of the numbers $\mathrm{A}, \mathrm{B}, \mathrm{C}: \mathrm{b}_{11}$. ax. 7: neither thall any greater (F) meafure them; for if you affirm that, c then F meafuring A and B, does likewife c cor. 1. \%. meafure D their greateft common meafure; and in like manner, F meafuring D and C, does alfo meafure $E c$ their greateft common meafure, d the grea:er the lefs. d fuppof. - Which is abjurd.

Coroll.

Hence, a number that meafures three numbers, does alfo meafure, their greateft common meafure.

PROP. IV.

the number B, as there are units
 that A is a part of B (as $6=\frac{1}{3}$ of 18 .) Laftly, if A and B be otherwite compored to one another, c the greateft c 4. def. i. common meafure fhall determine how many parts A does contain of B; as $6=\frac{2}{3}$ of 9 .

PROP. V.

If a number A be a part of a number BC , and anotber number D the fame part of another number EF; then botb the numbers togetber ($\mathrm{A}+\mathrm{D}$) תball be the fame part of both the numbers together ($\mathrm{BC} \mid-\mathrm{EF}$) which one number A is of one number BC.

For if BC be refolved into its parts BG, GC, equal to A ; and EF alfo into its parts EH, HF, equal to D ; a the number of parts in $B C$ fhall be equal to the num- a byp: ber of parts in EF . Therefore fince $\mathrm{A}+\mathrm{D} b=\mathrm{BG}+\mathrm{b}$ conff. \mathcal{E}. $\mathrm{EH}=\mathrm{GC}+\mathrm{HF}$, thence $\mathrm{A}+\mathrm{D}$ fhall be as often in $\mathrm{BC}+{ }^{2}$ ax. 2. EF , as A is in BC . Wbich was to be demonftrated.
c 2.ax. 1. Or thus. Let $a=\frac{x}{2}$, and $b=\frac{y}{2}$, then $2 a=x$, and $2 b=y$, tharefore $2 a+2 b=x+y$, therefore $a+b=$ $\frac{x+y}{2}$. Wbictb was to be demingitrated.

PROP. VI.

If a number AB be parts of a number C , and arvother number DE the fame parts of another number F ; then botb numbers togetber $\mathrm{AB}+\mathrm{DE}$ תball be of both numbers togetber $\mathrm{C}+\mathrm{F}$ the same parts, tbat one number AB is of one number C .

Divide $A B$ into its' parts $A G, G B$; and $D E$ into its parts DH, HE. The multitude of parts in both AB, DE, is equal by fuppofition; fince then AG a isthe fame part of the number C , that DH is of the number $\mathrm{F}, \mathrm{AG}+$ DH 6 shall be the fame part of the compounded numt ber C+F, that one number AG is of one number C. b In like manner GB+HE is the rame part of the faid $C+F$, that one number GB is of one number \mathbf{C} c Therefore $A B+D E$ is the fame parts of $C+F$, that AB is of C . W bich was to be demonftrated

Or thus. Let $a=\frac{2}{3} x$, and $b=\frac{2}{2} y$, and $x+y=g$ then, becaufe $3 a=2 x$, and $; b=2 y$, is $3 a+3 b=$ $2 x+2 y=2 g$, therefore $a+b=\frac{2}{8} g=\frac{2}{8}: x+y$.

PROP.VII.

If a number AB be
the fame part of a
number CD, that part taken away A.E is of a part taken acuay CF ; then Sball tbe refidue EB be the fame part of tbe refidue FD that the wbole AB is of the wbole CD.
$2110 \% . \frac{1}{9}$.
b 5.7
c 6.ax. 1.
d $3 . a x$. 1. - 2 ax. \%

- a Let EB be the fame part of the number GC that $A B$ is of $C D$, or $A E$ of $C F, b$ therefore $A E+E B$ is the fame part of CF + GC that $A E$ is of $C F$, or $A B$ of CD, c therefore $\mathrm{GF}=\mathrm{CD}$. Take away CF common to both, and d there remains $G Q=F D$, e Wherefore

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

PROP. IX

If a number A be a part of a number BC, and anotber number D the Same part of anotber number EF; tben alternately wobat part or parts the firt A is of the tbird D , the Jame pait or parts fball the fecond BC be of the fourth E F.
A is fuppofed $\supset D$, therefore let BG, GC, and EH , HF, parts.of the numbers BC, EF be equal ; BG and GC to A ; and EH, HF to D . The multitude of parts a $1.4 \times .7^{-}$is put equal in both. But it is clear that BG is a the O0 4. 7. fame part or parts of EH , that GC is of HF ; b wherefore b 5.0 or $6.7 . \mathrm{BC}(\mathrm{BG}+\mathrm{GC})$ is the fame part or parts of EF ($\mathrm{EH}+$ HF) that BG alone (A) is of EH alone (D.) Which was to be demonffrated.
Or thus. Let $a=\frac{b}{3}$, and $c=\frac{d}{3}$; or $3 a=b$, and

* 15: 5.

$$
\begin{gathered}
3 c=d \text {, then is } \frac{c^{*}}{a}=\left(\frac{3 c}{3 a}=\right) \frac{d}{b} . \\
\therefore \text { PROP. } X .
\end{gathered}
$$

 the fame parts or part foall the fecond C be of the fourth F . $A B$ is taken $\sqsupset D E$, and $C \longrightarrow F$. Let AG, GB, and DH, HE, be parts of the numbers C and F , viz, as
many in AB as in $\mathrm{DE}-$ It is manifeft that AG is the and DH, HE, be parts of the numbers C and F , viz. as
many in AB as in DE . It is manifeft that G is the
2 9. 7. fame part of C , that $\mathrm{D} H$ H is of F, a whence alternately bs 9.9 . AG is of DH, and likewife GB of HE, and b fo conjointly $A B$ of $D E$ the fame part, or parts, that C is of F : Whicb was to be demonftrated.

$$
\begin{aligned}
& \text { Or thus. Let } a=\frac{2 b}{3} \text {, and } c=\frac{2 d}{3} ; \text { or } 3 a=2 b \text { b } \\
& \text { and } ; c=2 d \text {. Then is } \frac{c}{a}=\frac{3 c}{3 a}=\frac{2 d}{2 b}=\frac{d}{b} \text {. }
\end{aligned}
$$

If a number AB be parts of a number C , and anotber number DE tbe Jame parts of antother number F ; then alternately, what parts or part tbe firft AB is of the third DE ,

PROP. XI.

If a part taken awway AE be $4{ }^{4} \mathrm{E}^{3}$. B ; the wubole AB is to the wivbole $8 \quad 6$.
CD, the refidue adfo E B fball be C........ F....... D 14 to the refadue FD, as the whole AB is to the whole CD :

Firft, let $A B$ be $\longrightarrow C D$; a then $A B$ is either a part a 47.1 or parts of the number CD; and likewife $A E$ is b the $b 20 . d e f, g$. fame part or parts of CF; a therefore the refidue E B c g.or8. \%. is the fame part or parts of the refidue $F D$ that the whole $A B$ is of the whole CD, b and fo AB. CD: : EB. FD. But if $A B$ be $-C D$, then according to what is already thewn, will $C D . A B:: F D . E B$, therefore by in ${ }^{-}$ verfion $A B, C D: ~: E B, F D$.

PROP. XII.

$\mathrm{A}, 4 . \mathrm{C}, 2 . \mathrm{E}$ 3. If there be numbers, bowe many $\mathrm{B}, 8 . \mathrm{D}, 4 . \mathrm{F}, 6$. foever, proportional (A. $\mathrm{B}:$: C. $\mathrm{D}:: \mathrm{E}_{\mathbf{p}} \mathrm{F}$;) then as one of the antecedents A is to one of the confequerts B, fo sball all the antecedents $(\mathrm{A}+\mathrm{C}+\mathrm{E})$ be to all the consequents ($\mathrm{B}+\mathrm{D}+\mathrm{F}$.)

Firft, let A, C, E, be \rightarrow B, D, F ; țhen (becaure of the fame proportions) a fhall Λ be the fame part or a 20. def. 9. parts of B that C is of $D ; b$ and likewife coniointly $A+$ b 5, 80 6, 9 . C thall be the fame part or parts of $B \nmid D$ that A alone is of B alone. In the like manner $A+C+E$ is the fame part or parts of $B+D+F$ that A is of B. c Therefore $c 20 . d_{f} 1$ $A+C+E, B+D+E ;$ A. B. Buat if A, C, E, be put greater than B, D, F, the fame thing may be fhewn by inverfion.

PROP. XIII.

If there be faur numbers proportional
(A.B::CD) then alternately they fball alfo be proportional, (A.C:: B. D.)

Firft, let A and C be $\sqsupset B$ and D, and $A \longrightarrow C$. By reafon of the fame proportion a thall A be the fame a 2e,def, γ part of parts of B_{2} that C is of D. b Therefore alter. $b_{1} g_{2}$ ER t

I 4
nately A is the fame part or parts of C that B is of D, and fo A.C :: B. D. But it A be $\subset C$, and A and \mathbf{C} fuppofed $\subset B$ and D, it will come to the fame thing by inverting the proportions.

PROR. XIV.

A,9. D, 6 . If there be numbers, bow mamy foever, B,6. E, 4. A, B, C, and as many more equal to C, 3 . F, 2. tbem in multitude, wbisc' may be compared two and two in tbe fame proportion (A. B:: D. E. and B. C::: E. F ;) they faall alja by eguality, be in tbe fame proportion (A. C:: D. F.)

For becaufe A. B:: D. E, a therefore alternately is A.D:: B. E:: aC.F ; a therefore again, by permutation, A.C:: D.F. Wbicb was to be dempugtrated.

PROP. XV.

I. D..
B...3.E......6.

If an unite meafure any mumber B_{x} and anotber number D do equally meafure fome other number E; altermately alfo faall an unite meafure the tbird numberD, as often as the fecond B dotb the fourtb E .
For fecing 1 is the fame part of B, that D is of E; 2. 9. 7. a therefore alternately fhatl I be the fame part of D, that B is of E . Which was to be demonfrated.

PROP. XVI.

B,4.	A,	If two numbers A, B, mutually
A 3.	B, 4.	ing themfolves, pro
B		AB, ${ }^{\text {A }}$,
		produced AB , and BA , pall

the one to the other.
a 15. def. ic For Becaufe $A B=A \times B$, a therefore fhall I be as b is 7. offen in A, as B in $A B, b$ and by confequence alternately I Thall be as often in B as A in $A B$. But becaure $B A=$ $\mathrm{B} \times \mathrm{A}, a$ therefore thall i be as often in B, as A in BA , therefore as often as I is in AB , fo often is I in BA, and 4. $a x_{1} i \cdot c$ โo $\mathrm{AB}=\mathrm{BA}$. Wbicb was to be demonftrated.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

1. Hyp. For AC. AD $a:: \mathrm{C} . \mathrm{D} b:: \mathrm{A} . \mathrm{B}_{c}:: \mathrm{AC}, \mathrm{BC}$,
2.17 .7.
b bye. d therefore $\mathrm{A} \mathrm{D}=\mathrm{BC}$. Which wo as to be dem.

2 Hyp. Because e $\mathrm{AD}=\mathrm{BC}$, therefore $\mathrm{AC} . \mathrm{AD}_{f}:$: AC. BC. But AC.ADg::C.D, and AC. BC $b:$: A. $\mathrm{B} ; k$ therefore C. $\mathrm{D}: .:$ A.R. Which was to be demonfiltrated.

PROP. XX.

A. B. C. If there are three numbers in pro. ${ }^{4}{ }^{4}, \quad{ }^{6},{ }^{6}$. portion (A. B:: B. C) the number contained under the extremes (AC) is equal to the square made of the middle (BB.) And if the number contained under the extremes be equal to that (Bq,) produced of the middle, those three numbers foal be in proportion $\left(\frac{A}{B}:: \frac{B}{C}\right)$

1. Hyp. For take $\mathrm{D}=\mathrm{E}$, a therefore A. B:: D (B) $\mathrm{C} ; b$ wherefore $\mathrm{AC}=\mathrm{BD}$, a or BB . Which was to be demonffrated
2. Hyp Because $\mathrm{AC} c=\mathrm{BD}, d$ therefore $\mathrm{A} . \mathrm{B}:: \mathrm{D}$ (B) C. .Which was to be demorytrated.

PROP. XXI.
A...G..B 5. E.......... 10. Numbers AB, CD, C..H.D 3. F...... 6. being the leafs of all that have the fame proportion cuitb them (\mathbf{E}, F,) do equally measure the numbers E, F, having the fame proportion with them; the greater AB the greater E , and the lifer CD the le fer F .
a hyp.
b 13.7
c 20. def. $\mathrm{i} \cdot$
d 13.7
cl ep.

For AB. CD $a:: \mathrm{E} . \mathrm{F}, b$ therefore alternately $\mathrm{AB} . \mathrm{E}:$: CD. F, c therefore $A B$ is the fame part or parts of E that CD is of F ; but parts it cannot be, for if fo, then let AG, GB, be parts of the number E ; and CH, HD, parts of the number F, c therefore AG. E:: CH. F, and by inverfion AG: CH d:: E. Fe:; AB. CD; therefore AB, CD, are not the leaf in their proportion; which is contrary to the hypothefis. Therefore, © cc.

PROP. XXII.

If there are three numbers $\mathrm{A}, \mathrm{B}, \mathrm{C}$; $\mathrm{A}, 4 . \mathrm{D}, 12$. and otber numbers equal to them in mul- $\quad \mathrm{B}, 3$. E. 8. titude, D, E, F; which may be com- C, 2. E, 6 . pared two and two in the fame proportion: and if alfo the proportion of tbem be perturbed (A. B: : E: F. and B. C: : D. E) then by equality they fball be in the fame propertion (A.C :: D. F.)

For becaufe A.Ba::E.F, therefore thall AF= BE ; and becaufe B. C: : a D.E, b therefore $\mathrm{BE}=\mathrm{CD}$, c and confequently $A F=C D$. d Therefore $A . C: D$. F. Wbich was to be demonftrated.
a byp.
b 19. 7.
c 1. $a x . I_{p}$
d 19.1.

PROP. XXIII.

Numbers prime the one to the otber, A, B, are the leaft of all numbers that bave the fame proportion with
 them.

If it be.poffible, let C and D be lefs than A and B, and in the fame proportion; a therefore C meafures A equally as D meafures B, fuppofe by the fame number F; and fo C hhall be b as often in A as I is in E; clikewife alternately, \mathbf{E} as often in A as I in C . By the like reafoning as many times as 1 is in D, fo many times thall 221.7. confequently are not prime the one to other, comtrary to the bypotbefis.

PROP. XXIV.

Numbers A, B, being the leaft of $\quad \mathrm{A}, 9$.
B, 4. them, are prime the one to the others.
D...E..

If it poffible, let A and B have a common meafure C; and let the fame meafure A by D, and B by E; a therefore $C D=A, b$ and $C E=B . b$ Wherefore A.B :: D. E. Bur D and E are leffer than A and B, as being but parts of them. Therefore A and B are
a 9.ar b 1 if. not the leaft in their proportion, againft the Hybotbefis!

PROP. XXV.

$\mathrm{A}, 9 \cdot \mathrm{~B}, 4$.
$\mathrm{C}, 3 \cdot \mathrm{D}$

If two Numbers A, B, ase prima the one to the othen, the mumber C maxfuring one of them A, Jball be prime to the ather.
number B.
For if you affirm any other. D to meafure the numbera Band C, a then D meafuring C does alfo meafure A; and confoquently A and B are not prime the ane to the other: Wbicb is againft the Elepotbefis.

PROP. XXVI.

A, 5.	C, 8.	bers A, B, are prime
B, 3 .		to any number C , tbe mumber alfo
AB, 15 .	E	produced of them AB , Jballbe prime
	F.	to the fame C.

If it be poffible, let the number E be a common meafure Q9.ax. j. to $A B$, and C; and let $\frac{A B}{E} b=F$; athence $A B$
b 19.70 c 25.7 d 23.7. c $21 . \%$
$=\mathrm{EF} ; \boldsymbol{b}$ wherefore alfo E.A : : B. F. But becaufe A is prime to C , which E meafures, \boldsymbol{c} therefore E and A are prime to one another, d and $f 0$ leaft in their own proportion, a and confequently they muft meafure B and F; namely F fhall meafure B, and A thall meafiure F. Therefore feeing \mathbf{E} 'meafures both \mathbf{B} and \mathbf{C}, they thall not be prime to one another : Contrary to the Hypothefis.

A, 4. $\mathrm{B}, 5$. . If two numbers A, B, are prime to Aq, 16. one anotber, tbat alfo wbicb is produced D, 4 . of one of tbem. (Aq) Jball be prime to the otber B.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

Coroll.

Hence, A number, which being compounded of two, is prime to one of them, is alfo prime to the other.

PROP. XXXI.

A, 5. B, 8. Every prime number A is prime to every number B , wubich it meafureth not.
For if any common meafure doth meafure both, A,
a II def \%. B, a then A will not be a prime number; contrary to the Hypotbefis.

PROP. XXXI.

A, 4. D,3. If two numbers A, B, multiplying one another produce another AB , and fome prime Number D, meafure the number produced of them AB ; then J ball it alfo meafure one of thofe numbers, A , or B , wwhich were given at the beginning.
. Duppofe the number D not to meafure the number $A_{\text {, }}$,
a 9. $a x .7$. and $\operatorname{let} \frac{A B}{D}$ be $=E$, a then $A B=D E ; b$ whence D. b 19. 7. A : : B. E. c But \mathbf{D} is prime to $\mathrm{A} ; d$ therefore D and c byp. and A are the leaft in their proportion; e and confequently 31. 7. D meafures B as often as A meafures E. T ' be proppofition d 23.7 tberefore is civident.

PROP. XXXIII.

A, 12. Every compofed number A, is meafured by B, 2 . Jome prime number B.
213 def . i . Let one or more numbers a meafure A , of whici let the leaft be B; that fhall be a prime number: For if it be faid to be compofed, then fome a leffer number
b II ax. 7. fhall meafure it, b which thall alfo confequently meafure A. Wherefore B is not the leaft of thofe which meafure A, contrary to the Hyp.

PROP. XXXIV.

A, 9. Every nimber A, is eitber a prime, or meafured by fome prime number.
For A is neceffarily either a prime or a compofed number. If it be a prime, 'tis that we affirm. If compofed, a then fome prime number meafureth it. W bich a $33 . i$ was to be demonjfrated

PROP. XXXV.

```
A, 6. B, \(4 . \quad\) C, 8 .
D, 2. H.. I.. K....
E, 3. F, 2: G, 4 , L...
```

How many numbers foever A, B, C, being giben to find the leaft numbers E, F, G, tbat bave the Jame proportion withtbem.
If A, B, C, be prime to one another, a they fhall be the leaft in their proportion., If they be compofed, b let their greateft common meafure be D, which let meafure them by E, F, G. Thefe are then the leaft in the proportion $\mathrm{A}, \mathrm{B}, \mathrm{C}$:

For $\mathrm{D} \times \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{c}$ produceth $\mathrm{A}, \mathrm{B}, \mathrm{C}, d$ therefore thefe and thofe are in the fame proportion. But allow other numbers $\mathrm{H}, \mathrm{I}, \mathrm{K}$, to be the leaft in the fame proportion; e which fhall therefore equally meafure A, B, C, namely by the number L, f therefore $\mathrm{L} \times \mathrm{H}, \mathrm{I}, \mathrm{K}$, fhall produce $\mathrm{A}, \mathrm{B}, \mathrm{C}, g$ and confequently $\mathrm{ED}=\mathrm{A}=\mathrm{HL}$;万 from whence E. H: : L. D But E $k-\mathrm{H} ; l$ therefore $L \subset D$, and fo D is not the greateft common meafure of A, B, C. 'Wbich is againft tbe Hypotbefis.

Coroll.

Hence, The greateft common meafure of how many numbers foever, does meafure them by the numbers which are leaft of all that have the fame proportion with them. Whereby appears the vulgar method of reducing fractions to the leaft terms.

PROP. XXXVI.

Trwo numbers being given, A, B, to find out the leaft number wbich they meajure.

A 5. B, $4 \quad$ I. Cafor If A and B be prime the one

AB, 20.
D......
E...F.... to the other, $A B$ is the number required. For it is manifeft that A and B mealiure AB. If it be poffible, $\operatorname{let} A$ and B meafure fome other number D 2 9. ax. 70 $\square \mathrm{AB}$, fuppofe by E_{F} and F a therefore $\mathrm{AE}=\mathrm{D}=$ Y 1.ax. I. b 19.7. chyp. d $23 . \%$ c 21. 7 f17.7. g20.def.9:
k 19.7. in the fame proportion. k Therefore $A D=A C$ and D and 17.ax.7. AD or BC . hhall be the nimber fought.

For it is l plain that B and A do meafure AD or BC . Conceive A and B to meafure $F \longrightarrow A D$, namely A by $\mathrm{m} 9, a \times .7 \cdot \mathrm{G}$, and B by $\mathrm{H}_{\text {; }}$ 't therefore $\mathrm{AG}=\mathrm{F}=\mathrm{BH}, n$ whence n $19.1 \cdot$ o conftr. P 21. 7. q 177. $t 20$ def. 7. A. $\mathrm{B}:: \mathrm{H} . \mathrm{G}_{0}:: \mathrm{C}_{\mathrm{D}} \mathrm{D}, p$ and confequently C equally meafures H as D does G . But D . Gq : : AD. AG (F,) therefore ADr meafures F , the greater the lefs. Whitb is abfurd.

Coroll.

Hence, If twe numbers multiply the leaft that are in the fame proportion, the greater the lefs, and the lefs the greater, the leaft number which they meafure thall be produced.

PROP. XXXVII.

If you deny it, take \mathbf{E} from $\mathbf{C D}$ as often as you can, a byp. $B F, b$ and fo A. B:: F.E. But becaufe A and Bc are prime the one to other, d and fo leaft in their proportion, A thalle equally meafure F as B does E . But B . $\mathrm{E}_{f}:$: AB . AE (D.) g Therefore AB thall alfo meafure D , which is lefs than it felf. Whicb is abford.
h 35.7. C, 3. D, 2, G… H...

2. Cafa. But if A and B be compoled one to $a-$ nother, b let there be

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

The Eighth Book .

OF

EUCLIDE's
 Elements.

PROP. I.

$$
\begin{gathered}
A, 8 . \quad \text { B, } 12 . \quad \text { C, } 18 . \quad D, 27 \% \\
E-F-G-H_{-}
\end{gathered}
$$

1F there be dfvers numbers bow many foever in contimal proportion, A, B, C, D, and their extremes A, D, prime-to owe apother, ; then thofe mumbers A, D, C, D, are the leaf of all numbers that bave the Same proportion exith tbem.
For, if it be poffible, let there be as many others E, F, G, H, lefs than A, B, C, D, and inthe fame propora 14 \%. tion with them. © Therefore from equality A.D ::E H , and fo A and D which are prime numbers, b and confequently the leaft in their proportion, c equally meafure E and H , which are lefs than themetves. Whicb is abfurds.

PROP. II.
1
A, 2. B, 3.
$\mathrm{Aq}, 4$. $\mathrm{AB}, 6 . \mathrm{Bq}, 9$. $A c, 8 . \quad A q B_{2}$ 12: $A B q, 18 . \mathrm{Bc}, 27$.

To find out the leaft numbers continually proportional, as many as foall be required, in the proportion given of A to B .
. Let A and B be the leaft in the proportion given ; Then $\mathrm{Aq}, \mathrm{AB}, \mathrm{Bq}$, thall be the three leaft in the fame continual proportion the A is to B.
$\begin{array}{ll}\text { a } 17.7 . \\ b & 24 \\ 5\end{array}$
b 247.
c 29. 7. d 1.8 .

For $\mathrm{AA} . \mathrm{AB} a:: \mathrm{A} . \mathrm{Ba} a: \mathrm{AB}$. BB. Likewife becaufe. A and B are prime one to another, c fhall $A q, B q$, be: alfo prime to one another, d and fo $A q, A B, B q$, are \because the leaft in the proportion of A to B.

Moreover, I fay $\mathrm{Ac}, \mathrm{AyB}, \mathrm{ABq}, \mathrm{Bc}$, are the four leaft in the proportion of A to B. ForAqA. AqBe: :A. B.e:: e $17 . \%$ ABA (AqB .) $\mathrm{ABB} . e$ and $\mathrm{A} . \mathrm{B}:: \mathrm{ABq}: \mathrm{BBq}$ (Bc.) Therefore f 29.70 Cince $A C$, and $B c$, are fprime to one another, likewife g g $\mathbf{~ . ~ 8 . ~}$ thall $A c, A q B, A B q$, $B e$ he the four leaft en in the proportion of A to B. In the farne manner may you find out as many propottional numbers as you pleafe. Which was to be dowe.

Coroll.

1. Hence, If threè numbers, being the leatt, are proportional, their extremes fhall be fquares; if four, cubes. 2. The extremes of any number of proportionals found by this propofition, if fluch proportionals are the leaft of sill in a given ratio, are prime to one another.
$\therefore 3$. Two numbers, being the leaft in a givet ratio, do meafure all the mean numbers of proportionals, be they ever to many, provided they are the keaft in the fame proportion; becaure they arife from the multiplication of them into certain other numbers.

4 Hence it alfo appears by the conifruction, that the feries of nümbers $\mathrm{I}, \mathrm{A}, \mathrm{Aq}, \mathrm{Ac} ; \mathrm{x} ; \mathrm{B}, \mathrm{Bq}, \mathrm{Bc} ; \mathrm{Ac}, \mathrm{AqB}$, $\mathrm{ABq}, \mathrm{Bc} \ldots$ confirt of an equal multitude of numbers; and confequently, the extreme numbers of how many foever the leaft continually proportionals are the laft of as many other continually proportionals from unity; thus the extremes Ac, Bc, of the cortinually proportionals $\mathrm{Ac}, \mathrm{Ay} \mathrm{B}_{3}$ $A B q, B C$, are the laft of as many proportionals from unity $\mathrm{I}, \mathrm{A}, \mathrm{Aq} \mathrm{q}_{\mathrm{A}} \mathrm{Ac}$, and $\mathrm{I}, \mathrm{B}, \mathrm{Bq}, \mathrm{BC}$.
5. $1, \mathrm{~A}, \mathrm{Aq}, \mathrm{Ac}$; and $\mathrm{B}, \mathrm{BA}, \mathrm{BAq}$; and $\mathrm{Bq}, \mathrm{AP}_{\mathrm{q}}$ are 4 min the ratio of I to A . Alfo $\mathrm{B}, \mathrm{Bq}, \mathrm{Bc}$; and $\mathrm{A}, \mathrm{AB}, \mathrm{ABq}$; and $A q, A q B$ are \div in the ratio of I to B_{6}

PROP. III.

If there be numbers. A, 8. B, 12. C, $18 . \mathrm{D}, 2 \%$ tontinually proportional, bow inany foever, A, B, C, D, being alfo the leaft of all that bave the fame proportion witb them; their extremes A, D , are prime to one another.

For if there be a found as many numbers the leatt ins a 2. S. the proportion of \mathbf{A} to B, they thall be no other than A; B, C, D; therefore, by the fecond Coroli. of the precedent prop. the extremes A and D are prime to one another. W bich swas to be demonflvated.

$$
\mathbf{K}_{2} \quad \text { PROP. }
$$

> Proportions bowi mis ny farver being gioen in the leaft numbers (A , to B ; and C to D) to find out tibe leaft numbers continually proportional in the proportidns given. . a 36. i. \quad Find out E the leaft number which B and C do meab 3 poft. 7 . fure; and let B meafure E as often as A does another F, viz. by the fame number $H . b$ Alfo let Cmeafare the faid E as often as D meafures another G, then F, E, G, thall
 ei. 5. like manner C.D: : E. G; therefore F, E, G, are continually proportional in the proportions given. And they are moreover the leaft in the faid proportions; for conceive other numbers I, K, L, to be the leaft ; f then A and B muft equally meafore I and K, f and C and D likewife K and L ; and fo B and C meafure the fame K. g Wherefore alfo E meafures the fame number K, which is lefs than it felf. Wloich is abfurd.

$$
\mathrm{A}, 6 . \mathrm{B}, \mathrm{~s} . \mathrm{C}, 4 . \mathrm{D}, 3 . \mathrm{E}, 5 . \quad \mathrm{F}, 7
$$

$$
\mathrm{H}, 24 . \mathrm{G}, 20 \text {. I, Is K; } 2 \mathrm{I} .
$$

But three proportions being given, A to B, C to D_{j} and E to F; find out as before three numbers H, G, I_{*} the leaft continually in the proportions of A to B, and C which may be equally meafured by F ; and thofe four numbers $\mathrm{H}, \mathrm{G}_{\mathbf{\prime}}, \mathrm{I}, \mathrm{K}$, Thall be continually the leaft in the given proportions; which we need go no other way to prove than we did in the firf part.

$$
\begin{aligned}
& \text { A, 6. B, 5. C, 4. D, 3. E, 2. F, \%. } \\
& \text { H, 24. G, } 20 \text {. I, i5. } \\
& \text { M, 48. L, 40. K, 30. N, } 105 \text {. }
\end{aligned}
$$

If E doth not meafure I, let K be the leaft which E and I do meafure ; and as often as I meafures K, let G as often meafure L , and H alfo M , fo likewife let F meafure \mathbf{N} as often E meafures K . The four numbers $\mathbf{M}, \mathrm{L}, \mathrm{K}$, \mathbf{N}, thall be leaft continually in the given proprortions; which we may demonftrate as before.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

PROP. VIII.

If betweent twoo numbers A, B, there fall maan numbers in sontinual proportipn C, D; as many mean numbers in contimual proportion as fall between them, fo many mean sumbers alfo L, M, in continnal propertion, Jball fall between two otber mamberes E, F, wibich bave tbe fame proportion with them (L. M.)
a Take G, H, I, K, the leaft \because in the proportion of
a 35.7
b 14.70 chyp.
d 3.8 .1 e 21. 7. \ddagger confr.

A, 24 C, 36. D. $_{54}$ B, 8 r . G, 8. H, 12. I. 18. K, 27
E, j2. L, 48. M, i2 F, 108.
${ }^{a}$ Take $G, \mathrm{H}, \mathrm{I}, \mathrm{K}$, the leat -A in the proportion of But G ; and $\mathrm{K} d$ are prime one to another. e Wherefore G meafures E as often as K does F. Let H meafure $L_{\text {, }}$ and I likewife M by the fame number; f therefore E, L, M, F, are in fuch proportion as G, EI, I, K, that is, as $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$. Which was to be domonfirated.

PROP. IX.

If two numbers A_{2} B are prime to one anotber, and mean num$\mathrm{A}, 8, \mathrm{C}, \mathrm{D}, \mathrm{D}, \mathrm{B}, 21$. bers in contimual pro portion C, D, fall beteveen them; as many mean mumbers in continual proportion as fall between tbem, fo many means alfo in contimualproportion (E, G; and F, I) Jball fall between either of them and unity.

It is evident, that I, E, G, A, and I, F, I, B, are \because, and as many as A, C, D, B, namely by the 4 th Coroil. 2. 8. Which was to be demonftrated.

> PROP. X.

A, 8. I, i2. K, 18. B. 27. If between two num-$\underset{-}{E} \underset{\mathrm{D}, 2 .}{\mathrm{DF}, \mathrm{G} . \mathrm{G}, 3 .} 9$. I. bers A, B, and an unit, numbers continually pros pertional (E, D, and F, G, do fall, boxp many mean numbbers in continual proportion fall between eitber of them and unity, fo many means alfo sball fall in continual proportion between tbem, I, K.

For $E, D F, G$, and $A, D_{q} F(I) D G(K) B$ are नें by 2. 8, thereforef $\underbrace{\circ}$.

Euclid's Elements.
PROP. XI.

Beteocen taro Square nam--hers Aq, Eq, there is ens mean proportional number AB: and Aq to Bq , is in deqplicate proportion of the fade A to the fie B.

It is manifeft that $A q, A B, B q$, are $\div b$ and corrsequently also $\frac{A q}{B q}=\frac{A}{B}$ twice. Wbteb ares to be demona 19.9. b $10 . d$ ff. grated.

PROP. XII.
Betroven two cube numbers, Ac, BC, there are tao mean proportional numbers $\mathrm{AqB}, \mathrm{ABq}$: arse the cube Ac is to the cube Bc in triplicate ratio of the fade A to the fade B.
e For Ac, AqB, ABq, Bc, are $\because \because$ in the proportion 22.8. of A to $B ; B$ and therefore $\frac{A C}{B c}=\frac{A}{B}$ thrice. Which b 10.def.s. was to be demonferated

PROP. XIII.
A, 2. B, 4. C, $8 .{ }^{-}$
$A q, 4 . A B, 8 . \mathrm{Bq}, 16 . \mathrm{BC}, 32 . \mathrm{Cq}, 64$
AC ,8. AqB, 16. ABq,32. BC,64. BqC, 129. BCq,256. Cc, 512.
If there be numbers in continual proportion bow many forever A, B, C; and every of them inultiplying it fofl produces corm tain numbers; the numbers produced of them Aq, Bi, Cq, Sal be proportional: And if the numbers first given A, B, C, multiplying their products $\mathrm{Aq}, \mathrm{Bq}, \mathrm{Cq}$, produce other numbers Ac, BC, Cc, they also fool be proportional; and this bal doer happen to the extremes.

For $A q, A B, B q, B C, C q a$ are $\because ; b$ therefore by 22.8

- equality Aq. Aq ::Sq. Cq. W rich quad to be demonstrated b 14.9 ,

A Alfo Ac, Aq, ABq, Bc, BqC, BC, Cc, are $\div 6$ therefore again by equality Ac. Bc: : Bc. Cc. Which was. to bo domonffrated.

PROP. XIV.

$\mathrm{Aq}, 4 \mathrm{AB}, 12 . \mathrm{Bq}, 36$. If a fquare number Aq meas A ; 2. $\quad \mathrm{B}, 6$. fure a fquate number Bq , the fide alfo of the one (A) fball meafura the fide of the other (B): and if the fide of one fquaxe \mathbf{A} meafure the fide of anotber. B, the fquare Aq Jball likewife meafure tbe Square Bq.
22 Əिir.8. 1. Hyp For Aq. $\mathrm{AB} a:=\mathrm{AB}$. Bq , therefore feeing by b 9.8. c 20.def. 7. AB. But Aq: $\mathrm{AB}:: \mathrm{A} . \mathrm{B}, \mathrm{c}$ therefore alfo A meafures B. Which was to be demponfrated
2. Hyp. A meafures B, c therefore Aq thall as well d II. ax. j: meafurie AB, c as AB meafures $\mathrm{Bq} ; d$ confequently Aq meafures Bq. Wbicb was to be demonforated.

PROP XV.
$A, \quad \mathrm{~A}, 6 . \quad$ If a cube number Ac meafures a cube mumber Bc , then the Fide of the one (A) Jkall meafuret the fide of the otber (B.) -And if tbe fide A of one cube Ac meafurre tbe fode B of tbe otber BC , allo the cube Ac /ball meafure the cube BC.

1. Hyp. For $A c, A q B, A B y, B c a$ are \because, therefore
22.5012 .8
b bjp.
c 7.7 .
d $20 . d e f \%$
e II. ax.j. $A c, b$ meafuring the extreme $B C$, thall alfo c meafure the fecond AqB . But Ac . AqB :: $\mathrm{A} . \mathrm{B}, d$ therefore' A . Thall alfo meafure B. W bich was to be dem.
2. Hyp. A meafures B; d therefore Ac meafures $A q B$, which alfo meafures $A B q$, and this Bc ; e therefore Ac thall meafure Bc. Wh bicb wpas to be demonffrated.

PR QP. XVI.

A, 4. B, g. If a fquare number Aq do not mea$\mathrm{Aq}, 16 . \mathrm{Bq}, 8 \mathrm{I}$. fure a fquare number Bq , neither ball the fide of the one A meafure the fide of the other B: And if A the fide of the one fqiuare Ag do not meafure B the fide of the otber B, G , veither Sball the fquare Aq meafure the Square Bq.

1. Hyp. For if you affirm that A meafures B_{1} then 4×4.9. Aq alfo thall meafure Bq . Againf t the Hopotbefis.

2 Hyp If you maintain Aq to meafure Bq ; a then Iikewile A thall meafure B_{q} Gontrary to tbe Hypotbefs.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

* 21 def. 7.
213.7 b. 17.7 c 11.5. d 17. 7. CDE.DFE;:DFE FGE::E H: : FGE FGH. There c 1odef. 5. fore between CDE, FGH, fall two mean proportionals DFE, FGE And fo it is plain that the proportion of CDE to FGHI is triplicate to that of CDE to DFE , or C to F. Wbicb was to be demonftrated.

Caroll.

Hereby it is manifeft, that between two like Solid numbers there tall two mean proportionals in the proportion of the homologous fides.

PROP. XX.
A, 12. C, 18. B, 27. If between two numbers A, D, 2. E, 3. F, 6. G, 9. B, there falls one mean propori. tional number C ;' tbople num bers A, B, are like plame nambers.
a Take D and E the leaft in the proportion of A to C_{3} or C to B, then D meafures A equally as E does C; fuppofe by the fame number F; b alfo D equally meafures C , as E does B , fuppofe by the fame number G. c 'Therefore $D F=A$, and $E G=B$, d and cousequently A and B are plane numbers. But becaufe $E F_{c}=C_{c}=D G$, e hhall D. E: : F. G, and alternately D. F::E. G. f Therefore the plane numbers A and B are alfo like. Wich was to be demonfrated.

PROP. XXI.

A, з6. C, 24. D, ${ }_{2}$ 6. B, 54 E, 4. F, 6. G, 9 .
H,2. P,2.M,4.K,3.L,3. N,6:

If between two mumbers A, B, there fall twe mean proportional numbers C, D; thofe numbers A, B, are
like folid mumbers.
a 2.8. a Thle E, F, G, the leaf it in the proportion of A b io. 8. to C, b then D and G are like plane numbers: let the c 21 def. 7 . fides of this be H and P , and of that K and $\mathrm{L}_{\text {, }} c$ thered cor. 18.8. fore II. K ; : P, L:: d E. F. But E, F, G, do e eçually e 21. \%. meafiure A, C, D, fuppofe by the fame number M, and likewife the faid numbers $\mathrm{E}, \mathrm{F}, \mathrm{G}$; do equally meaftre
₹ the numbers $\mathrm{C}, \mathrm{D}, \mathrm{B}$, fuppofe by the fame number N . f9, $n x$ i. f Therefore $A=E M_{-1} H_{P M} f$ and $B=G N=K L N$;
and fo A and B are folid numbers. But becuure $\mathrm{Cf}=\mathrm{g} 19 \mathrm{def} 9^{\circ}$ FM, and $\mathrm{Df}_{\mathrm{F}}=\mathrm{FN}$, therefore shall $\mathrm{M} \cdot \mathrm{N} \mathrm{B}::$ FM KN $\mathrm{h}_{17} . \%_{0}$
 are like folid numbers. Which aquas to be demonstrated. Lemma.

For because $\mathrm{AEDH} a=\mathrm{BFCG}, a$ and $\mathrm{AD}=\mathrm{BC}, 6$ a 19. 70 EDH BFCG , that is, EH =FG ${ }^{\text {b }}$ 1 ax. 9
 - Therefore E F: : G. H. WF hick avar to be demon Carol.

 $\times \frac{B}{A}$. In like manner $\frac{B}{A c} \times \frac{B}{A C}=\frac{B c}{A c c}$ and fo of the reft

PROP. XXII:

It throe \#ymbers $\mathbf{A q}, \mathrm{B}, \mathrm{C}$, are counting- $\quad \mathrm{Aq}, \mathrm{B}, \mathrm{C}$; ally proportional, and the fief Aq a squares $4,8,16$. the third Cabal also be a Square.
 $c=Q \frac{B}{A}$. But it is plain that $\frac{B}{A}$ is a number, d be c cor. of the cause ${ }_{\overline{A g}}^{\mathrm{Bq}}$, or C is a number. Therefore if three, E_{c}
lens. pec. d hyp. and $148:$

PROP. XXIII.

If four er numbers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, are contimually proportional, and the frit of them Ac a cube, the fourth also D, fall be a cube:
$A C, B, C, D^{\prime}$
8, 12, 18, 27 :

219 7. For becaure $\mathrm{Ac} \mathrm{D} a=\mathrm{BC}, b$ therefore $\mathrm{D}=\frac{\mathrm{BC}}{\mathrm{AC}}$ $\begin{aligned} & \text { B 7. ar. 7. } \\ & \text { c or of the }\end{aligned}=\frac{B}{A c} \times C$; that is, (becaure $A c C=d B q$, and fres. lem. d 20.7 . 6 thence $\mathrm{C}=\stackrel{\mathrm{Bg}}{\overline{A c}}) \mathrm{D}=\stackrel{\mathrm{B}}{\overline{A c}} \times \frac{\mathrm{Bq}}{\overrightarrow{A c}}=\frac{B c}{A c c} c \Rightarrow \mathrm{C}: \frac{\mathrm{B}}{\mathrm{Ac}}$
e 15. 8.
But it is evident e that $\frac{B}{A c}$ is a number, becaure $\frac{B c}{A c c}$ or \mathbf{D} is fuppofed a number. Therefore iffour numbers, Θ_{6}

PROP. XXIV.

If two numbers A, B, be in the fame A, 16. 24 B, 36. proporition one to anotber, that a fquare C, $4.6 . \mathrm{D}, 9$. minuber C is to a Square number D_{2} and the firft A be a Square number, the facond alfo B/ball be aifquare number.

Between C and D the fquare numbers, * and fo be-

* 8. 8.

a 11.8. b byp.
c 22.8.

* 11. and

18. 8 . tween A and B having the fame proportioh, a falls one mean proportional. Therefore b fince A is a fquare number, $c \mathrm{~B}$ alfo thall be a fquare number. Whicb wuas to be demonffrated.

Coroll

1. Hence, if there be two like numbers $A B, C D,(A$. $B:=C . D$) and the firf $A B$ be a square, the fecond alfa CD fhall be a fquare.

* For AB. CD: : Aq. Cq.

2. From hence it appears, That the proportion of any rquare number to any other not fquare, cannot poffibly be declared into two fquare numbers. Whence it can-

PROP. XXV.

C, 64. 96. ${ }^{\circ} 144^{\circ} \mathrm{D}, 216 . \quad$ If two numbers A, B, are A, 8. 12. 18. B, 27. in the fame proportion one to another, that a cube nowber C is to a cube number D, the firft of them A being a cube number; the fecond B fall likewife be a cube number. c byp. \& 23.8.
A and B having the fame proportion, fall two mean pro-
a Between the cube numbers C and D, b and fo between portionals; therefore c becaufe A is a cube, d fhall B be a çube alfo. Which quas to be demonftrated.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

The Ninth Book

 OF
E UCLIDEs : Elements.

PROPOSITION I.

A, 6. B, 54 .
$\mathrm{Aq}, 36$. $108 . \mathrm{AB}, 324$.
T F two like plane wombers A, B, multitlying ane a anotber, produce a number AB , the naxmber produced AB sall be a Square number.
2 17. 7. For A. Ba $:=\mathrm{Aq} . \mathrm{AB}$; wherefore fince one mean prob 18. 8. portional b falls between A and B, c likewife one mean c 8. 8. proportional number fhall fall between Aq and AB: d22.8. therefore fince the firft Aq is a fquare number, d the third $A B$ thall be a fquare number alfo. Wbich was to be demonftrated.

Or thus, Let ab, cd, be like plane numbers; name$\times 19.7 . \quad \mathrm{ly}, \mathrm{a} . \mathrm{b}:$: $\mathrm{c} . \mathrm{d}, x$ therefore $\mathrm{ad}=\mathrm{bc}$, and fo likewife abcd y l. ax. j. or adbc $y=$ adad $=Q$: ad.

PROP. II.

A, 6. B, 54 $A,{ }^{\prime}$ 36. AB, ${ }^{24}$.
are like plane numbers.
217.7
bin. 8. c 8.8 . d 20.8.

For A. Ba: : Aq. AB; wherefore fince between Aq $A B, b$ there falls one mean proportional number, c likewife one mean thall fall between A and B, d therefore A and B are like planes. Wbich was to be demonfirated.

PROP. III

If a cube number Ac mul- A, 2. Ac, 8. Acc, 64 tiplying it felf produce a num-

- ber Acc, the number produced Acc/ball be a cube mumber.

For, I. Aa:: A. Aq $b::$ Aq. Ac, therefore between a $15 . d e f .7-$ 1 and Ac fall two mean proportionals. But I. Ac $a:$: $b 17.7^{\circ}$ Ac. Acc, c therefore between Ac and Acc, fall aifo two c 8.8. mean proportionals; and fo by confequence, fince Ac is a cube, d Acc Thall be a cube alfo. Which was to d 23.8 be demonffrated

Or thus; aaa (Ac) multiplied into it felf maker anaaza ($A_{c c}$) this is a cube, whofe fide is aa

PROP. IV.
If a cube number Ac mul-
$A c, 8 . \quad B C, 27$.
tiplyding a cube number Bc pro- Acc, 64 AcBC, 216. duce a number AcBc , the prodiced number AcBc ball be a cube.

For Ac. Bc a : : Acc. AcBc. But between Ac and Bc 217.7. 6 two meàn proportional numbers fall; c therefore there bin. \& fall as many between Acc and AcBc. So that whereas c $8 . \therefore$ Acc is a cube number, d AcBc fhall be fuch alfo. Wbich d $2 ; 8$. was to be domongfrated.

Or thus AcRc=aaabbb (ababab) $=\mathrm{C}: a b$.
PROP. V.

If a cube number Ac multiplying a number B produce a cube number. AcB, the number multiplied B Jball alfo be a cube.

For Acc. AcB a : : Ac. B. But between Acc and AcB 217% b fall two mean proportionals; c therefore alfo as many b i2.8. thall fall between Ac and B, whence Ac being a cube c 8.8 . number, $d \mathrm{~B}$ fhall be a cube number alfo. Which, was d 23.8 to be demonffrated.

PROP. VI.

A, 8. Aq, $64 A C, 512$.
If k nimber A niultiplying it self produce Aq a cubé, that
number A it felf is a cube. à $b j p$. For becaure $\mathrm{Aq} a$ is a cube, and Aq A (Ac) b affo a b 19.df.7. cube; therefore cfhall A be a cube. W bith wivas to be C 5.9 . demongfiated:

戸́ROP. Viti.

ced AB fball be a folid number.
a 13. def. 7. Since A is a compofed number, a fome other number b 9.ax. 7. D meafutes it, conceive by E, b therefore $\mathrm{A}=\mathrm{DE}$: © 1 i.def. i. c whence $\mathrm{DEB}=\mathrm{AB}$ is a ofid number. Wbich ewas to be demonfirated.

PROP. vini.

If from unity tbete ate nwirbers continually proportional Sow many fuever ($\mathrm{L} . a, \mathrm{a}^{2}, \mathrm{a}^{3}, \mathrm{a}^{4}, \Theta^{\circ} c$) tbe tbird number.from wnity a^{2} is a fquaric number; and fo atc all forwatd, leaving one betticen ($\mathrm{a}^{4}, \mathrm{a}^{6}, \mathrm{a}^{3}, \theta^{0} c$.) But the fourth a^{3} is a cube number; and fo are all forward, leaving two betrueen ($a^{6}, a^{9}, \mathcal{O}^{c}$) The feventb alfo a^{6} is bath a cube number and a Square; and fo are all forwart, beaving five between ($\mathrm{a}^{22}, \mathrm{a}^{18}, O_{c}$)
For 1. $a^{2}=Q^{\prime} a$, and $a^{4}=$ aata $=$ Q. aa; and $a^{6}=$

2. $a^{3}=$ àa $=C$. a, and $a^{6} \doteq$ a aaaaa $=C$. aa, and дааааааха $=C$. а̀аа, \mathcal{O}° c.
a byj. 3. a° =aaaaata $=C$. aa $=Q$ aaia, therefore, E_{c}.
b 20.7
c 12.
d $22^{5} .8$.

Or atcording to Emclide; Becaufe 1. $a a:: a . a^{2} ; b$ Shall $a^{2}=Q: a$, therefore feeing $a^{2}, a^{3}, a^{4}, a \operatorname{atc} ; i ; c$ the third ${ }^{4}$ Thall be a quare number; and fo likewife a^{6}; a^{3}, Occ. Alfo becaufe 1. $a a:: a^{2}$. a^{3}, therefore fhall a^{3} $b=a^{2} \times a=C: x, d$ therefore the fourth from a^{3}, namely a^{a}, Shall be likewife a \cdot cube, E_{c} c. and confequently a^{a} is both a cube and a fquare number, \mathcal{O}° c.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Tbe ninth Book of

a byp.
b apppof .8 89. c 24.8.
d 14. 7.
e 25.8.

1. Hyp. For if it be poffible, let a^{3} be a fquare num ${ }^{\text {a }}$ ber; therefore becaufe a a $a^{2} a:: a^{4}, a^{5}$, and by inverfion, a^{5}. $a^{4}: a^{2}, a$; and alfo a^{5} and $a^{4} b$ fquare numbers, and the firft a^{2} a fquare, c therefore a Shall be likewife a fquare; contraty to tbe byp.
2. Hyp. If. it may be, let a^{4} be a cube; fince d by equality $a^{4}-a^{6}:: a . a^{3}$, and inverely $a^{6} . a^{4}:: a^{3}$. $a^{\text {a }}$ and alio fince a^{6} and a^{4} are cubes, and the firft a^{3} a cube, etherefore a thall be a cube alfo ; againff tbe by potbefis.

PROP. XI.

1. $a_{1} a^{2}, a^{3}, a^{4}, a^{5}, a^{6}$. If there are numbers bowo $1,3,9,27,81,243,729$. many foever in contimual proportion from unity $(1, a$, $\mathrm{a}^{2}, \mathrm{a}^{3}$, Orc.) the lefs meafureth the greater by fome one of $^{\circ}$ them that are amongft the proportional mumbers.
a 5. ax. 9.
\& $20 . \mathrm{def} . \mathrm{F}$ b is. -10

Becaure r. a::a.aa, a therefore $\frac{\mathrm{aa}}{\mathrm{a}}=\mathrm{a}=\frac{\mathrm{aaa}}{\mathrm{aa} .}$ Alro becaufe I. aa $b::$ a. aaa, a therefore $\frac{\text { aaa }}{2}=$ aa $=$
 $\frac{a^{4}}{a^{4}}=a^{3}=\frac{a^{6}}{a^{3}}, 8 c$.

Coroll.

Hence, If a number that meafures any one of proportional numbers, be not one of the faid numbers, neither fhall the number by which it meafures the faid proportional numbers, be one of them.

PROP. XII.

It there are numbers bow many Soever in.continual profortion from unity $\left(1, a, a^{2}, a^{3}, a^{4}\right.$.) wobat) prime numbers B meafure the laft \mathbf{a}^{4}, the fame (B) fball alfo meafure the number (a) wbict follow next after unity.
a 31. 1.
If you fay B does not meafure a, a then B is prime to a;
b $27 i$ c26.7. b and therefore B is prime to $a^{2} ; c$ and fo comequently to a^{4}, which it is fuppofed to meafure. Wbicb is abfurd.

Coroll.

1. Therefore every prime number that meafires the laft, does alfo meafure all thofe other numbers that precede the laft
2. If any number not meafuring that next to unity, does yet meafure the laft, it is a compofed number.
3. If the number next to the nuit be a prime, no 0 . ther pime number thall meafure the laft.

PROP. XIII.

If from unity there àre humbers $\quad \mathrm{I}, \mathrm{a}, \mathrm{a}^{i}, \mathrm{a}^{3}, \mathrm{a}^{4} ;$ in continual proportion, bow many $1,5,25,125,625$: foever ($\mathrm{r}, \mathrm{a}, \mathrm{a}^{2}, \mathrm{a}^{3}, \& \mathrm{c}$.) and that H-G--F--E-A after unity (a) a prime; then Jball
tho otber meafure the greateft number, but thofe wbich ard amonkt the faid proportional numbers.

If it be polfible, let fome other E meafure a^{4}, viz. by F, a then F thall be fome other different from $\mathrm{a}, \mathrm{a}^{2}$; \mathbf{a}^{3}. But becaure E meafuring a^{4}, does not meafure a , b therefore E fhall be a compofed number, c therefore Tome prime number meafines it, d which does confequently meafure a^{4}, e and fo is no other than a, therefore a meafures \mathbf{E}. After the fame manner alfo may F be fhewn to be a compofed number, meafuring a^{4}; and to that a meafures F . Therefore feeing $\mathrm{EF} f=\mathrm{a}^{4}$ 。 $=a \times \mathrm{a}^{3}, \mathrm{~g}$ thall a. E: : F. a^{3}. Confequently, whereas i meafures E, b likewite F thall equally meafure a^{3}, siz. by the fame number G : k Nor fhall G be a, or a^{2}, theirefore, as before, G is a compofed numper, and a meafures it. Wherefore fince $\mathrm{FG} f=\mathrm{a}^{3}=\mathrm{a}^{2} \times \mathrm{a}, \mathrm{g}$ Thall a. F :: G. a^{2}, and fo becaure A meafures $F, b G$ hhall qually meafure a^{2}, viz. by the fame number H, k which is not a. Therefore fince $\mathrm{GH}=\mathrm{a}^{2}=\mathrm{aa}, l$ thence H. a :: a . G, and becaufe a meafiures G (as before) $m \mathrm{H}$ alfo thall meafure a, which is a prime number. Which
a cot. 12.9.
b 2.cor. 12.
9.
c 33.7
dii ax. 9 s
e 3 .cor.12. 89.
f9.ax. 9. g 19. ${ }^{\circ}$
h 20. def. $\%$
k cor.11.9.
120. 9.
im 20 def. i. is impofible.

PROP. XIV.

befides tofose that meafured it at forf.]
29.ax. 70 b 32.9

If it is poltible, let $\frac{A}{E}$ be $=F$, a then $A=E F, b$ therefore every of the prime numbers B, C, D, meafures one of thofe E, F. Not E, which is taken to be a prime; therefore F, which is lefs than A it felf ; contrary to the byppotbefis.

PROP: XV.

A, 9. B, 12. C, 168 If tbree numbers contimually D, 3. E, 4 proportional A, B, C, are the leaft of all that bave the famo proportion wwith tbem; any two of them added togetber /ball be a prime to the third.
a Take D and E the leaft in proportion of A to $B ; b$
a 35.9.
${ }^{6} 2.80^{\prime}$
c 24.
d 30.7.

* 26.7.
e 3.2 f before g2i. $\%$
h26. 7.
k 4.
$1 \mathrm{j} \rho$. i . then $\mathrm{A}=\mathrm{Dq}$, and $b \mathrm{C}=\mathrm{Eq}, \quad b$ and $\mathrm{B}=\mathrm{DE}$. But becaufe D_{c} is prime to $\mathrm{E} d$ therefore thall $\mathrm{D}+\mathrm{E}_{\mathrm{be}}$ prime to both D and E, *therefore $D \times D+E e=D q$ $4 D E(f A+B)$ is prime to E, and fo to C or $E q$. W bicb was to be demonftrated.
g In like manner $D E+E q(B+C)$ is prime to D, and comfequently to $\mathrm{A}=\mathrm{D}$. Whish was to be demonfrated.

Lafly, :becaufe B b is prime to $\mathbf{D}+\mathbf{E}_{y}$. it thall alfo be prime to the fquare of it $k \mathrm{Dq}+2 \mathrm{DE}+\mathrm{Eq}$ ($\mathrm{A}+2 \mathrm{~B}+\mathrm{C} ;$) l wherefore the faid B thall be prime to $A+B+C, l$ and fo likewife to $A+C \quad W$ bich was to be domonffrated.

PROP. XVI.

If twoo numbers A, B, are $\mathrm{A}, 3 . \mathrm{B}, 5 . \mathrm{C} \cdots$ prime to one another, it fball not he as the firft A, to the fecond B, fo is the fecond B'to any 0^{--} ther C.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

But if A does not meafure $B C$, then there can no fourth proportional be found; which may, be thewn as in the prec.prop.

PROP. XX.

A, 2. B, 3. C, 5, D, 33. G-...

More prime numbers may be gi ven than any multitúde wbat σ° ever of prime numbers $\mathrm{A}, \mathrm{B}, \mathrm{C}$, propounded.
a 38. 7. a Let D be the leaft which A, B, C, meafure ; If D $\mathrm{b}_{33.7}+\mathrm{I}$ be a prime, the cafe is plain; if compofed; b then rome prime number, fuppofe G, meafures $D+1$, which
c fuppof. d conffr. е 12 .ax. 7. is none of the three A, B, C; For if it be, feeing it c meafures the whole $\mathrm{D}+\mathrm{i}, d$ and the part taken away D , e it fhall alfo meafure the remaining unit. Which is $a b$ furd. Therefore the propounded number of prime uumbers is increafed by $D+1$, or at leaft by G.

PROP. XXI.

$$
\text { A....E.....B... }{ }^{3} \ldots C^{2} . G_{i D}^{2} D_{20}
$$

If even numbers, bow many foever: $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, are added togetber, the wwole AD ball be even.
a 6 def.: \quad Take $\mathrm{EB}=\frac{1}{2} \mathrm{AB}$, and $\mathrm{FC}=\frac{1}{2} \mathrm{BC}$, and $\mathrm{GD}=\frac{1}{2}$ b 12. 7. $C D, b$ it is plain that $E B+F C+G D=\frac{1}{2} A D,{ }_{6}$ c 6. def. 7. therefore AD is an even number. Which was to be demonfrated.

PROP. XXII.

 $\stackrel{9}{9}$ numbers, bosw many foever, $\mathrm{AB},{ }^{7} \mathrm{BC}, \mathrm{CD}, \mathrm{DE}$ If odd numbers, bow many Joever, $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}$,
ar added toeether, and the multitude of tbem be even, the wwbole allo AE Jall be even.
Unity being taken from each odd number, there will
a $7 . \operatorname{def} \%$ b 21. 9 . c byp. d2I. 9. a remain $\mathrm{AF}, \mathrm{BG}, \mathrm{CH}, \mathrm{DL}$, even numbers, b and thence the number compounded of them will be even, add to them the c even number made of the remaining units, and the d whole AE will thereby be even. Whicb was to be derronffrated.

PROP. XXIII.

of them be odd, the wwbole AD /ball be odd.
For CD one of the odd numbers being taken away, the aggregate of the others AC a is even. Whereto add $C D$ - i, b the whole $A E$ is alfo even; wherefore the unit being reftored the whole AD c will be odd. $\mathrm{c} 7 . \mathrm{def}$. 7. Wbich was to be demonfrated.

PROP. XXIV.

For if $\mathrm{BD}(\mathrm{BC}-1)$ be odd, a $\mathrm{BC}(\mathrm{BD}+1)$ will be even. a 7 def. $\%$. Which ruas to be dem. But if you fay BD is even, becaufe b byp. $\mathrm{AC} b$ is even, c thence AD will be, fo; a and confe- c 21. 9 . quently AC (AD+-1) will be odd, contrary the Hypotbefis, theretore BC is even. Wbich was to be demonftratesh

PROP. XXV.

If from an even number AB , an add number. AC be taken away, the remaining number

$$
\begin{aligned}
& \text { A...... }{ }^{\mathbf{I}} \mathrm{C}^{3} .{ }^{3} \text {. } \mathrm{B} \text { iq. } \\
& 7
\end{aligned}
$$ CB Jall be odd.

For $\mathrm{AC}-1$ (AD) a is even, b therefore DB is even; ${ }^{2}$ ' 7 . def. \%o c and confequently $\mathrm{CB}(\mathrm{DB}-1)$ is odd. Wbich was to be demoftrated.
b 249 C $7 . \operatorname{def}$. iq

PROf XXVI.

If from an odd number AB be: taken away an odd number. CB, that wbich remaineth. AC Jball be even.

27.def 7 : b 24.9 .

For $A B-1(A D)$ and $C B-1(C D) a$ are even; b therefore $\mathrm{AD}-\mathrm{CD}(\mathrm{AC})$ is even. Whith was to be demonfrated.

PROP. XXVII.

5

If from an odd number A B be taken asway an evex number CB , the refidue AC fiball be odd.
a 9.def. 7. For $\mathrm{AB}-\mathrm{I}(\mathrm{DB}) a$ is even, and CB is fuppofed to be. b 24.9 . c $7 . \operatorname{def.}_{\text {i- }}$ even; b therofore the refidue $C D$ is even: c therefore $C D$ $千_{1}(\mathrm{CA})$ is odd. Wbich evas to be demonfirated.

PROP. XXVIII:

$\mathrm{A}, 3$
$\mathrm{~B}, 4$
$\mathrm{~A} \mathrm{~A}_{1}, 12$.
If an odd sumber A , multidlying an even number B , produces a number AB , the numben jroduced AB foall be even.
abyp. and 15 def. 7. b21.9. bet A taken as many times as an unite is contained in B. an even number. b Therefore $A B$ is ant even number.

Scbol.

In like manner, if A be an even number, $A B$ flall be be an even number alfo.

PROP. XXIX.

A,3 - If an odd number A multiplying an odd nam$B, 5$ - ber B, produces a number AB , the number produ$\overline{\mathrm{A}}, \overline{\mathrm{F}} 5$. ced AB, J ball be odd.
$a^{\prime} 15 . d e f$. For $A B a$ is compounded of the odd numben B taken as often as an unit is included in A likewife an b 23.9. odd number. b Therefore $A B$ is ap odd number. Whicb swas to bo demonftrated.

Scbol.

B, 12. (C, 4: I. An odd number A meafuring an evem $\overline{\mathrm{A}},{ }_{3} \quad$ number. B, meafures the fame by an even
a 9. ax. 7. For if C be affirmed to beodd, then becaufe $a \mathrm{~B}=\mathrm{AC}$ b 29 9. b therefore B fhall be_odd ; againgt tbe byp.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

PROP. XXXII.

$$
\text { 1. A, 2. B4. C, 8. D, } 16 . \quad \text { All numbers A, B, C, D, }
$$ \&c. in dowble progrefion from two, are evenly even only.

26. def. 7. It is evident that all thefe numbers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, a$ are b_{20} def $i \cdot$ even, and $b \ddot{\because}$, namely in a double proportion, c and cii. 9 fo every lefs meafures the greater by fome one of them d 8. def. 7. d Wherefore all are evenly even. But becaure A is a f 139. prime number, e no number befide thefe Thall meafure any of them. Therefore they aree evenly even only. W bich quas to be demonfirated.

PROP. XXXIII.

A, 30. B, 15. D...E.-

If of a number A, the balf B be odd, tbe fame A is evenly odd only.
Since an odd number Ba meafures A by two an even number, b therefore B is evenly oddIf you affirm it to be evenly even, c then fome even number D meafures it by an even number E , whence $2 \mathrm{~B} d=\mathrm{A} d=\mathrm{DE}$; e therefore 2.E:: D. B, and therefore as $2 f$ meafures the even number E, g fo D an even number meafures B an odd. Whicb is impo $\mathrm{I}_{\text {ible. }}$

PROP. XXXIV.

A, 24 If an even numbler A be neither doubled from tww, nor bave' it's balf part odd, it is both evenly even and evienly odd.
It is evident that A is evenly even, becaure the half of it is not odd. But becaufe, if A be divided into two equal parts, and the half of it be again divided into two equal parts, and if this be always done, we thall at length
a 7. def. 7. fall upon fome a odd number, (for we cannot fall upon the number two, becaufe A is not fuppofed to be doubled upward from two) which fhall meafure A by an even bi. $\int c b 29$. ? number; for (b otherwife A it felf fhould be odd, againgt the Hyp)'Therefore A is evenly odd. Wbicb was to be dcmonffrated.

Eucride's Elements.
PROP. XXXV ${ }_{\text {i }}$

If there are numbers in continual proportion bow mas ny foever A, BG, C, DN, and tbe number FG, equal to the fir $f \mathrm{~A}$, be taken from the fecond, and KN alfo equal to the frit, from the laft; it fball be as the exce/s of the fecond BF is to the firft A, So is the excefs of the laft DK to all the numbers tbat precede it, A, BG, C.
From DN take $\mathrm{NL}=\mathrm{BG}$, and $\mathrm{NH}=\mathrm{C}$. Becaufe DN. C (HN) $a:: \mathrm{HN} . \mathrm{BG}(\mathrm{LN}) a:: \mathrm{LN}(\mathrm{BG}) .\mathrm{A}(\mathrm{KN}$. b therefore by dividing every where, fhall DH. HN :: HíLN : : LK KN, c wherefore DK. C- $\mathrm{BG}+\mathrm{A}::$ LK (d BF.) . KN (A.) Wbicb was to be demonftrated.
a byp.
b 17.5.
c 12.5.
d 3. $a x$. $1 \mathbf{i d}$

Coroll.
Hence e by compounding, $D N+B G+C . A+B G+e x 8.5$. C: : BG. A.

PROP. XXXVI.

$$
\begin{aligned}
& \text { I. A, 2. B, } 4 \text { C, 8. D, } 16 . \\
& \text { E, } 3 \text { i. G, } 62 \text { H, } 124 \text { L, } 248 . \text { F, } 496 . \\
& \text { M, } 3 \text { I. } \\
& \text { P--- Q-- }
\end{aligned}
$$

If from unity be taken bow many numbers foever $1, A, B$, C, D, in double proportion continually, until the wubole added togetber E be a prime number; and if this wwbole E multiDh'd into the laft D , produce a number F , that wbich is praduced F , Jball be a perfect number.
Take as many numbers E, G, H, L, likewife in daus ble proportion continually; then a by.equality A. D: : $\mathbf{E} L, b$ therefore $\mathrm{AL}=\mathrm{DE} c=\mathrm{F}, d$ whence $\mathrm{L}=$ $\frac{\mathbf{F}}{2}$. Wherefore $\mathrm{E}, \mathrm{G}, \mathrm{H}, \mathrm{L}, \mathrm{F}$, are \because in double pro- $\begin{aligned} & \text { c byp. } \\ & \mathrm{d} j .\end{aligned}$ 214.9. portion. Let $G-E$ be $=\mathbf{M}$, and $F-E=N$; e e 35.9 .
 there- gits.
${ }^{\text {h }}$ 2. $a x$. 1. therefore $\mathrm{N}=\mathrm{E}+\mathrm{G}+\mathrm{H}+\mathrm{I}$, b therefore $\mathrm{F}=\mathrm{I}+\mathrm{A}+$
$k_{\text {7.ax. } .1 .}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{G}+\mathrm{H}+\mathrm{L}=\mathrm{E}+\mathrm{N}$. More1 in. ax \%. over becaufe $D k$ meafures $D E$ (F) l therefore every one, min. 9. I, A, B, C $; m$ meafuring D, and m alfo E, G, H, L, do meafure F . And further, no other number meafures the faid F. For if there does, let it be P, which let
n 9. ax. 7. meafure F by Q, n therefore $P Q=F=D E$, ot therefore - 19. 7. E. Q:: P. D, therefore feeing A a prime number meap 13. 9. fures D, p and to no other P meafures the fame, q confe4 20. def.7. quently E does not meafure Q. Wherefore fince E is r 31. 7. fuppoted a prime number, r it thall be prime to $Q \int$ f 23.7. wherefore E and Q are the leaft in their proportion ; t t 21. 7. and fo E meafures P as many times as Q does D, u thereuis 9: fore Q is one of them A, B, C. Let it be B, feeing $\times 19.7$. then by equality B . $\mathrm{D}:: \mathrm{E}, \mathrm{H}, x$ and $\mathrm{fo} \mathrm{BH}=\mathrm{DE}=\mathrm{F}$ y 14.5. $=P Q, x$ and fo alfo Q. B: H. P, y therefore $\mathrm{H}=\mathrm{P}$, therefore P is alfo one of them A, B, C, Occ. Aguing the Hopotbefis. Therefore no other befide the forefaid numbers meafures F, and z confequently F is a perfen 1. 32 . def. 7 . number. "Whicb qaas to be demonflrated.

Thee estd of the nintb Books

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

T be mark of tbis commenfurability is 7 ; as AB qCD, i.e. the line AB of 6 foot is in power commenfurable to the line CD , whicb is expreffed by $\sqrt{ } 20$, becaufe E the fpace of one foot fquare does as well meafure $\mathrm{ABq}(36)$ as the rectangle XY (20) to wobich tibe square of the line $\mathrm{CD}(\sqrt{ } 20)$ is equat T The fame note \square Sometimes fgnifes commeafurable in power only.
IV. Lines incommenfurable in power are fuch, to whofe fquares no fpace can be found to be a common meafure.
This incommenfurability is denoted thus; 5 乌v $\sqrt{8}$. i. io the numbers or lines 5, and $थ \sqrt{ } 8$ are incommenfurable in power, becaufe tbeir fquares 25 and $\sqrt{ } 8$ are incommenfurable.
V. From which it is manifeft, that to any right line given, right lines infinite in multitude are both commenfurable and incommenfurable; fome in length and power, others in power only. The right line given is called a Rational line.

The note of qubich is \dot{p}.
VI. And lines commenfurable to this line, whether in length and power, or in power only, are alfo called Rational, f.
VII. But fuch as are incommenfurable to it, are called Irrational,

And denoted thus p.
VIII. Alfo the fquare which is made of the faid given right line is called Rational, $\mathrm{\rho} v$.
IX. And likewife fuch figures as are commenfurable to it, are Rational pe.
X. But fuch as are incommenfurable, Irrational po.
XI. And thofe right lines alfo, which contain them in power, are Irrational p.

Schol.
$T_{\text {bat the laft feven definitions }}$ may be rendered more clear by ap example, let there be a circle ADBP, whofe femidiameter is CB , infcribe therein the fodes of the ordinate figures, as of a Hexagone BP , of a triangle AP , of a Square BD, of a Penta-: gose

Euciade's Elements.

gone FD. Therefore, if according to the 5 . def. the femidiameter CB be the Rational line given, expreffed by the number 2, to which the otber lines BP, AP, BD, FD, are to be com-
 according to the 6 def. $A 1 / j_{0} \mathrm{APb}=\sqrt{ } 12$ (for ABq (16) b 47 . I. $-\mathrm{BPq}(4)=\mathrm{I} 2)$ therefore AP is $; \mathrm{GC}$ likecuife according to the 6 . def. and APq (12) is ox by the 9 def. Moreower $\mathrm{BD} \mathrm{b}=\sqrt{ } \mathrm{DCq}+\mathrm{BCq}=8 ;$ whence BD is $\dot{\rho}$ q BC ; and BDq pr. Laftly, $\mathrm{FDq}=10-\sqrt{ } 20$ (as fbalt appear by the praxis to be delivered at the 10. 13.) תball be pa, according to the 10. def. and confequently $\mathrm{FD}=\sqrt{ }: 10-\sqrt{20}$ is ${ }^{\prime}$, ac erding to the II. def.

A Pofulate.

That any magnitude may be fo often multiplyed, till it exceed any magnitude whatfoever of the fame kind.

Axioms.

1. A magnitude meafuring how many magnitudes foever, does alfo meafure that which is compofed of them.
2. A magnitude meafuring any magnitude whatfoever, does likewife meafure every magnitude which that meafures.
3. A magnitude meafuring a whole magnitude and a part of it taken away, does alfo meafure the refidue.
PROP. I.

Trwo unequal magnitudes AB, C, being given, if from the greater AB there be taken away more than balf(AH) and from the refidue (HB) be again taken away more than balf (HI) and tbis be done continually, there fball at length be left a certain magnitude IB, lefs tban the lefer of the magnitudes firft given C .
a Take C fo often, till its multiple does Comewhat exceed $A B$, and let $D F=F G=$ GE_C. Take fromAB more than half AH, and from the remainder HB , more than half

2 pof. 10. ver. HI, and fo continually, till the parts AH, HI, IB, be equal in multitude to the parts DF, FG, GE, Now it is plain, that FE which is not lefs than DE , is greater than HB , which is lefs than $\frac{2}{2} \mathrm{AB} \longrightarrow$ DE. And in like manner GE, which is not lefs than $\frac{1}{2}$ FE, is greater than IB $\longrightarrow \frac{1}{2} \mathrm{HB}$, therefore C , orGE -IB . Wbich was to be demorffrated.

The fame may alfo be demonftrated, if from AB the half AH be taken away, and again from the refidue HB . the half HI, and fo forward.

PROP. II.

 $\square E$ thall be left, therefore $E b$ meafuring $A B, c$ and ${ }^{\text {c } 2 . a x .}$ io. fo CF, b and the whole $\mathrm{CD}, \boldsymbol{d}$ thall allo meafure the d 3. $a x$ 10. refidue FD, c confequently alfo AG; d wherefore it fhall likewife meafure the remainder GB , lefs than it felf. W bich is abjurd.

PROP. III

Ṫưo commenfuráble magnitudes being giz ven AB, CD, to find out tbeir greateff common meafure FB.

Take AB from CD , and the refiduo ED from $A B$, and $F B$ from $E D$, till $F B$ meafure ED (which will come to pars at length, a becaufe by the Hyp. $A B \not \subset C D$) FB thall be the magnitude required.
For FB b meafures ED, c and fo alfó AF ; but it meafures it felf too, d therefore likewife AB, c and confequently CE , 4 and fo the whole CD. Wherefore FB is the common meafure of $A B, C D$. If you affirm G to be a common meafure greater than that, then G meafuring AB and CD , e meafures alfo CE and f the remainder ED, e and fo AF ; and fonfequently the remainder FB , the greater the leff. W bich is alfjurd.

Coroll.

Hence, a magnitude that meafures two magnitudes, dod alfo meafure their greateft common meafure.
\mathbf{R} R $\boldsymbol{F}_{\mathbf{F}}$

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

PROP. VL

D, tbofe magnitudes A, B, Ball be commenfurable
is ccb. 10.6. b conftr.
c byp:
d 22.5 . g conftr.
hi.def.ic:

What part I is of the number C, a that let E be of A. Therefore becaufe E. A $b:: 1$. C, and A. B $c:$: $\mathrm{C}, \mathrm{D}, d$ therefore by equality thall $\mathrm{E} B: 1 \mathrm{I} . \mathrm{D}$. Wherefore feeing i e mealures the number D, f likewife E meafures B; but it g alfo meafures A, b therefore $A \square B$. W bich wias to be demonftrated.

P.R OP. VII.

Incommenfurable magnitudesA, B; bave hot that proportion one to another, which number batb to number.
a 6. 10. If you affirm A.B::N.N, a then $A \perp B$, againf the Hypothefis.

PROP. VIII.-

A
B

If two magritudes A, B, bate not that proportion one to a^{-} notber, wubich number bath to number, tbofe magnitudes are inicontmensurable.

Conceive A B, a then A. B: : N. N, contrary to the Hypothefis.

PROP. IX.

B E, 4. F, 3 .

The Squares defcribed upon right lines commenfurable in length, bave that proportion cne to another, tbat a Square number bath to a fquare number. Aind fquares, wobichbavet that proportion one to arotber, that a Square number batb to a Square number, Jball allo bave their fides commenfurable in lengtb. Rus fuch fquares as are made upon rigbt lines incommenfurable in length, bave not that froportion one to another, which a Square number bath to a Square number. And Squares which bave not fuch proportion one to another, as a Square number batb to a Square number, loave not their fides commenfurable is longtb.

Eucíida's Elements.

För a let A. B:: number E. number F; therefore a 5.10.
$\stackrel{A}{\mathrm{~Bq}_{q}}\left(b \frac{\mathrm{~B}}{\mathrm{~B}}{ }^{\text {twice }}\right)=\frac{\mathrm{E}}{\mathrm{F}}$ twice, $d=\mathrm{Eq}_{q}$, e therefore A_{4}. $\mathrm{Bq}_{\mathrm{q}}:: \mathrm{Eq} . \mathrm{Fq}:: \mathrm{Q}, \mathrm{Q}, W \mathrm{Wicb}$ was to be demonftrated
b 206.
cfcb 23.5 dir. 8.
2. Hyp. Aq. $\mathrm{Bq}:: \mathrm{Eq}_{\mathrm{E}} \mathrm{Fq}:: \mathrm{Q}, \mathrm{Q}$. I fay A ㅁ. B. For e II 5.

 be demonfitated.
3. Hyp. A \square B. I deny that Aq. $\mathrm{Bq}::$ Q.Q. For fuppore Aq. $\mathrm{Bq}:: \mathbf{Q}$, then A In B, as is thewn before, againft the Hypotbefis
4. Hyp. Not Aq. Bq:: Q. Q, I fay that A ${ }^{\text {n }}$ B. For conceive A ㅁ. B, then Aq. Bq:: Q. Q as above, a^{-} gainft tbe Hypotbefis.

Coroll.

Lines \square are alfo \mp, but not on the contrary. And lines \square are not therefore \ddagger, but Lines \ddagger are alfo —.

PROP. \mathbf{X}

If four magnitudes are proportional (C. A $:: B . D)$ and the firft C be cammensurable to the fecond A, the third B Jball be commenfurable to the fourth D. And if the frrts C be incommenfurable to the fecond A, alfo the tbird B fball be incommenfurable to the fourtb D.

If C In A, a then C. A :: N. N. $b:$: B. D, b^{\prime} theretore $B \square$ D. But if C C A,

a 5.10.
b 6. 10.
c 9.10.
d 8. 10. D. Wbich evas to be demonftrated.

Lemmaì.

To find out two plane numbers, not baving the proportion wobich a Square number bath to a Square.
Any two plane numbers not like, will fatisfy this Lemma, as thofe numbers which have fuper-particular, fuperbipartient, or double proportion; or any two prime numbers, See Scbol. 27. 8. .

The rentb Book of

Lemma 2.
$\mathrm{B}, 5 \cdot \mathrm{~K}=1-1-1-\mathrm{M}$ $\mathrm{C}, 3 . \mathrm{H}-\mathrm{I}-\mathrm{l}$ - R

To fiwd out a line HR, to which a rigbt line given $K M$ bath the praportion of two numbers given B, C.
ach. 10.6. a Divide KM into as many equal parts as there are units in the number B, and let as many of thefe, as there b 3. 1.
a 2 lem. 10. are units in the number C, b make the right line $H R$, it is manifeft that KM. IIR : : B. C.

Lemma 3.

To find out a line D , to the Square of qubich the Square of a vigbt line given KM batb the proportion of two numbers given B, C.

10.

10. $\quad 6$ find a mean propor
b_{13} 6. $:: \mathrm{KM} . \mathrm{HR} d:: \mathrm{B}$. C.
c 20. 6. d conftr. 6 find a mean proportional D. Therefore KMq. Dq:

PROP. XI.

	B, 20.	To find two right lines in-
E	C, 16.	commenfurable to a right line
D		given A ; one D in lengtb only,

2 I lem. 10. 10.
$\begin{array}{ll}\text { 10. } & \text { Q. } \mathrm{Q}, \mathrm{b} \text { and let } \mathrm{B} \text {. } \mathrm{C}:: \mathrm{Aq}: \mathrm{Dq}, \text { c it is } \mathrm{pl} \\ \mathrm{b} 3 & \text { lem.10. But Aqd } \square \mathrm{Dq} \text {. Which was to be done. }\end{array}$
10.
c 9.10. d 610. d 13.6. e 206. ± 10. 10.
a 5.10. b 4. 8.
corrfir. d 225. c 6. 10. Q. Q, b and let R. $C:: A q: D q, c$ it is plain that $A{ }^{\circ}$ ㅁ D.
2. d Make A. E: : E. D. I Fay Aq n Eq. For A. D_{e} : : Aq. Eq, therefore fince $\mathrm{A}^{4} \mathrm{I}$. D , as before; f therefore Aq Eq. Wbich was to be done.

PROP. XII. the other. to E_{3} and F to G. Now becaufe A. $C c:: D E c: \cdot H$. I , and C.Bc::F.G::I.K, d therofore by equality, A. B::H.K:: N.N, e therefore A T B. Wbichwas

1. Take the numbers B, C, a fo that it be not B. C : :

Magnitudes (A, B) commenfurable to the fame magnitude C , are alfo commenfurable one to

Becaufe A $\square C$, and $C \square \square, a$ let A.C D, 8. E. 8. : : N. N:: D. E, and C. B F, 2. G, 3. : : N. N: : F.G, b take three H, $5 . \mathrm{I}, 4 . \mathrm{K}, 6$. numbers $\mathrm{H}, \mathrm{I}, \mathrm{K}$, the leaft ب in the proportions of D to be demonfirated.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

PROP. XVI.'

parts AB, BC. And if the whole magnitude AC be commenfurable to either of the parts AB, or BC, thofe tevo mag. nitudes given at firft AB, BC, fall be commenfurable,
a 3. 10.
bI. ax. 1n. c 1.def. 10 .
d 3.ax. 10.

1. $F_{\text {体 a a }}$ Let D be the common mealure of $A B_{4}$ $\mathrm{BC} ; b$ therefore D meafures AC , and therefore AC AB , and BC . Wbich was to be demonftrated.
2. Hyp. a Let D be the common meafure of AC, AB, d thererefore D meafures $A C-A B(B C)$ and confen quently $A B$. $B C$. Wich was to be demonfirated.

Coroll.

Hence it follows, if a whole magnitude compored of two, be commenfurable to any one of them, the fame thall be commenfurable to the other alfa.

PROP. XVII.

If twoo incommenfunable magni-

D tudes AB, BC, are compoofed, the evolole. magnitude alfo AC fball bp incommenfurable to eitber of the-taso parts AB, BC. And if. the whole magnitude $A C$ be incommenfurab'e to one of them $A B$, the magnitudes firft given AB, BC, ball be incommenfurable.

1. Hyp. If it can be; let D be the common meafure 23 ax.10. of AC, AB, a therefore D meafures $\mathrm{AC} \simeq \mathrm{AB}(\mathrm{BC}) \quad b$ b 1.'def.10. c 16. 10.
and therefore alfo $A B \sim B C$, againft the bypotbefis.
2. Hyp Conceive $A B \square B C$, a therefore $A C \square A B$, againft the bypotbefis.

Coroll.

Hence alro, if one magnitude, compofed of two, be ipcommenfurable to any one of them, the fame alfo thall be incommenfurable to the other.

PROP. XVIII.

If tbere aretrwo nnequal right limes AB, GK, and upos the greater AB a parallelogram ADB qual to the fourth part of a Square made of the lefs line GK, and deficiant in figure by a Square, be applied, and divides the
 faid AB into parts commenfurable in lengtb AD, DB; then Sball the greater line AB be more in power than the lefs GK by the Square of a rigbt line FD commenfurable in length to the greater. And if the greater AB be in power more than the lefs GK , by tbe fquare of the right line FD commenfurabla in lengtb to it Self, and a parallelogram ADB equal to the fourth part of the Square made of the lefs livie GK, and deficient in figure by a Square, be applied to the greater AB, then Jball it divide the fame into parts AD, DB, commensunable in length.
a Divide GK equally in H , and b make the rectangle $A D B=G H q$. Cut off $A F=D B$, then is $A B q=4 A D B$ $d(4 \mathrm{GElg}$ or GKq$)+\mathrm{FDq}$. Now in the firt place, if $A D \square D B$, then thall $A B e \square B D e \square 2 D B f(A F+$ DB , or $\mathrm{AB}-\mathrm{FD}) \mathrm{g}$ therefore AB IFD. Whicb was to be dem. But fecondly, if AB 므․ $2, b$ then thall AB $\square \mathrm{LAB}-\mathrm{FD}(2 \mathrm{DB}) k$ therefore AB — DB, l wherefore AD a DB. Which was to be demonftrated.

PR OP. XIX.

a 10. 1.
b 28, 6.
c 8. 2.
d conftr. \&o 42.
e 16.10. f conftr. gcor.16. 10 heor. 16 10. k 12. 10. 116. 10.

If there are two right lines unequal AB, GK, and to the greater AB a parallelogram ADB equal to tbe fourth part of a Square made upon tbe lefs GK, and deficient in figure by a fqware
 ba applicd and divides the faid AB , inta paris AD, DB, commenfurable in length; the greater line AB fball be in power poore than the lefs GK by the fquare of the right line FD

$$
\mathrm{M}_{4}
$$

夜

Tbe tentb Book of

incommenfurable to the greater in length. And if the greater lime AB be more in powver than the kefs GK by the fquare of a right line FD incommenfurable to it felf in length, and if alfo upon the greater AB be applied a pavalellogram ADB equal to the fourth part of the Square of the le/s GK, and deficient in figure by a Square, then foall it divide the faid greater line $A B$, into parts incommenfurvo ble in length AD, DB.
a19. 10.
b 13.10. c cor. 17. 10.
d 13.10. C 17: 10.
346. 1.
b r. 6.
c byp
d 10. 10. e byp. \&o
9. def. 10 fi2. 10.

Suppofe all the fame that was done and faid in the prec prop. Therefure firt, If $A D \sim D B$, a then thall $A B$ ㄷ. DB. $\quad b$ Wherefore $A B$ ㄷ 2 DB (AB - FD) therefore AB 므N. Which was to be demonftrated.

Secondly, If AB ${ }^{4}$. $F D$, then $A B^{2}$ a $A B-F D$ (2 DB) d wherefore $A B$ in $D B, e$ and confequently $A D P D B$. Wbich was to be demonftrated.

PROP. XX.

Becaufe DC. CE (BC) $b:$: BD. BE, and DC; $\overline{\text { In }}$ BC, a therefore fhall the rectangle BD be $\square 1$ fquare BE , wherefore feeing the fquare BE_{e} 므 Aq, fhall alfo $f \mathrm{BD}$ be \square Aq, ard to the roctangle BD $\rho \mathrm{pr}$. Whicb was to be dedemonftrated.

Nore, There are tbree kinds of rational lines commensurable one to anotber. For eitber of two rational lines commenfurable in length one to the other, one is equal to the rational line propounded, or neither of them is equal to it, notwitiffanding botb of them are commenfurable to it in length; or laftly both of thém are commenfurable to the ratio. nal line given only in power. And thefe are the ways which, the prefent T'beorem Jpeaks of.

In numbers, let there be $B C, 18(2 \sqrt{2})$ and $C D \sqrt{ } 18(3 \sqrt{ } 2)$ then thall the rectangle $B D=\sqrt{ }$ $144=12$.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Schol.

Every reftangle that can be contained under two rational right lines commentiurable only in power is medial, although it be contained under two right lines irrational: and every medial rectangle may be contained under two rational right lines, commenturable ouly in power; as for example, the $\sqrt{ } 24$ is $\mu \nu$, becaufe it is contained under $\sqrt{ } \hat{5}$ and $\sqrt{ } 8$, which are $\dot{i}, 7$ although it may be contained under $v \sqrt{ } 6$, and $\approx \sqrt{ }$ g ${ }^{\circ}$ irrationalls; for $\sqrt{24}=2 \sqrt{5 ; 6}=v \sqrt{ } 6 \times v \sqrt{96}$.

PROP. XXIII:

If the refirangle BD made of a medial line A , be appled to a rational line BC , it makes the breadtb CD rational, and incommenfurable in lengtb to tbe line BC, wberoynta tbe rectavgle BD is applied.
a ${ }^{\prime} \dot{b} b .22$. Becaure A is μ, a therefore fhall Aq be equal to fome 10. rectangle (EG) contained under EF and FG $\dot{\rho}$ 母. b b 1. ax. 1. therefore $\mathrm{ED}=\mathrm{EG}$. d whence BC . EF :: FG . CD . d therec 14.6. fore BCq . EFq :: FGq . CDq . $\mathrm{But} \mathrm{BCq}_{q}$ and $\mathrm{EFq} e$ are d 22. $6 . j a f$ and 10 til. g therefore FGq Ti CDq . Where e byp.
f $f=b$. 12. 10.
g 10.10. h fcb. 12. 10. ki. 6. 1 10. 10. m fch. 12.
10
n 1310. 01.6.
p 10. 10:
11. 6. byp. 23.10. fare fince FG is $\dot{\rho}$, $\frac{b}{6}$ therefore CD fhall be $\dot{\rho}$. Moreover, becaufe EF. FG k :: EFq. EG (BD ;) for fince EF FG, e fhall EFq be $\mathrm{m}^{\square} \mathrm{BD}$. But $\mathrm{EFq} m \square \mathrm{CDq}_{\mathrm{g}}$ * therefore the rectangle $\mathrm{BD} \mathrm{D}^{\prime} \mathrm{CDq}$. Whence fince
 fore, © ©.

PROP. XXIV.

Eucride's Elements.

 $D F$. g therefore DF is $\dot{\rho} \square \mathrm{CD}$. b whence the rectan- c hyp. gie CF (Bq) is μ, and fo B is μ, Which was to be de- f 10. 10 . monfrated.
Dbl. that the note 7? for the molt part Signifies common. 1 13. 12 furable in power only, as in this aud the prececedett demonfra- $\mathbf{h} 22.10$. tons, \&c.

Carol.

Here by it is manifeft that a pace commensurable to a medial face, is alto medial.

Lemma.

To find out two medial right limes A, B, A commensurable in length, and alpo trow, A, B C, commensurable only in power.

C
 and 'ti evident the thing is done.

> PROP. XXV.

A rectangle DB contained under DC , $\triangle C B$ medial right lines commensurable in length, is medial.

Upon DC defcribe the Square DA. Because AC (DC.) CB a :: DA. DB, and DC 프 CB; 6 shall DA \square DB ${ }^{8}$
 10 and 13 . 6. b 2. lem. 10. 10. cs lem. 10 . 10. d conff.and 24. 1 . a therefore DB is μ. Which was to be demonftrated.
b 10. 10.
c 24.10.

Tbe tentb Book of

PROP. XXVI.

A reCZangle AC comprebended under medial right lines AB , BC commenfurable only in power, is eitber rational or medial. a 46. 1. Upon the lines $A B, B C$, a defcribe the fquares $A D$, b cor 166 . CE; and upon FG \& b make the rectangles $\mathrm{FH},=\mathrm{AD}$; c byp. $\mathcal{E}^{\circ} b$ and $\mathrm{IK}=\mathrm{AC} . b$ and $\mathrm{LM}=\mathrm{CE}$
24. 10. The fquares AD, CE, that is, the rectangles FH, LM, d 23. 10. c are $\mu \alpha$ and 7 . therefore GH, KM, having the fame e 10. 10. proportion d are $\dot{\rho}, e$ and $\square f$ therefore GH $\times K M$ is f 20. 10. fo. But becaufe AD, AC, CE, that is, FH, IK, LM, s g/ib22.6. are $\because \cdot ; b$ and fo GH, HK, KM alfo $\div ; \boldsymbol{k}$ thence HKg hi. 6. $=\mathrm{GH} \times \mathrm{KM}$. l therefore HK is ρ, or \square, or 7 IH k $1 ;$. 6. ($\mathrm{GF} ;$) if 7 , m then the rectangle IK or AC is $\dot{p} \nu$, but 112. 10. if G, n then $A C$ is μv. Wbich was to be dem.
m 2010.
n 2210.
Lemma.

If A and E are 7 only, Then firf, fhall $A q$, $\mathrm{Eq}, \mathrm{Aq}+\mathrm{Eq}, \mathrm{Aq}-\mathrm{Eq}$ a byp and a \mathbb{D}. And fecondily $\mathrm{Aq}, \mathrm{Eq}, \mathrm{Aq}+\mathrm{Eq}, \mathrm{Aq}-\mathrm{Eq} \mathrm{m}^{2}$ 16. 10. AE and 2 AE. For A. E $k:: \mathrm{Aq}$: AE $6:$: AE. Eq. $\mathrm{b}_{\text {I. }}$. therefore feeing $\mathrm{A} c$ © $\mathrm{E} . d$ fhall $\mathrm{Aq} \square \mathrm{AE}, e$ and c byp. 2 AE . alfo $\mathrm{Eq} d$ ' 2 I AE, e and 2 AE wherefore bed 10. 10. caure $\mathrm{Aq}+\mathrm{Eq}_{q}$ ㄱ Aq and Eq ; and $\mathrm{Aq}-\mathrm{Eq}$ II Aq e 14. 10. and $\mathrm{Eq} ; f$ therefore fhall $\mathrm{Aq}+\mathrm{Eq}, f$ and $\mathrm{Aq}-\mathrm{Eq}$ +1410 . be \square. AE , and 2 AE

Hence alfo tbirdly, Aq, Eq, Aq $+\mathrm{Eq}, \mathrm{Aq}-\mathrm{Eq}, 2$ $\mathrm{AE} g T \mathrm{Aq}^{2}+\mathrm{Eq}+2 \mathrm{AE} ;$ and $\mathrm{Aq}+\mathrm{Eq}-2$ g 14 10. $\mathrm{AE}^{g} g$ and $\mathrm{Aq}_{q}+\mathrm{Eq}+2 \mathrm{AE}^{\prime}$ 口 $\mathrm{Aq}_{q}+\mathrm{Eq}-2$

h cos. 7.2 .
PROP.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

In numbers, let A be $\sqrt{ } 2$; and $B \sqrt{ } 6$. therrefore C is $v \sqrt{ } 12$. make $\sqrt{ }$ 2. $\sqrt{ } 6:: v \sqrt{ } 12$ D. or $v \sqrt{ } 4 . v \sqrt{ }$ $36: ข \sqrt{ } 12$.. D. then thall D be $v \sqrt{ }$ 108. but $v \sqrt{ } 12 x$ o $\sqrt{ } 108=v \sqrt{ } 1296=\sqrt{ } 3^{6}=\sigma$. therefore $C D$ is 6 , likewife C. D:: 1. $\sqrt{3}$. wherefore C \varsubsetneqq D.

PROP. XXIX.
alem.21.10 b 13.6. c 126. d 17.6. e 22. 10. fconfir. ${ }_{5} 10.10$. h 24.10.
k comftr. and cor 4.5 1166. m 22.6.
T_{0}^{\prime} find out medial rigbt lines commex. furable in power only, D and E , containing a medial rectangle DE.
${ }_{a}$ Take A, B, C \dot{f}. make A D 6 :- D. B. c and $B . C::$ D.E. I fay the thing defired is performed.

For $A B d=D y$. and $A B e$ is μ, therefore D is $\dot{\mu}$; and $B f \square C$, whence D q. E therefore $b \mathbf{E}$ is μ. Moreover B. C $f::$ D.E. and by permutation B. D:: C. E i.e. D. A: C. E. l therefore $D E=A C$. But $\mathrm{AC} m$ is $\mu \nu$. therefore DE is $\mu \mathrm{r}$. Whicb was to be done.
In numbers, let A be 20. and $B, \sqrt{ } 200$, and $C \cdot \sqrt{ } 80$. Therefore D is $\sqrt{ } \sqrt{ } 80000$; and E $\vee \sqrt{ } 12800$. Therefore $\mathrm{DE}=\sqrt{ } \sqrt{ } 1024000000=\sqrt{ } 32000$, and D. $E:: \sqrt{ }$. 10. 2. wherefore D 母 E.

Scbod.

Lemma.

To find out two fquare numbers (DE_{4} and CDq_{q}) fo that tbe number compofed of thom (CEq) be fquare alfo.
Take AD, DB like plane numbers (of which let both be even, or both odd) viz. AD, 24. and DB, 6. The total of thele (AB) is 30 ; the difference (FD) 18. half of whith (CD) is $9 . a$ Now the like plane numbers AD, a 18.8. DB , have one mean number proportional, namely DE. therefore it is evident that every of thofe numbers $C E$, CD, DE, are rational, and by confeqence $\mathrm{CEq}_{\mathrm{q}}\left(6 \mathrm{CDq}_{q}\right.$ b 47. I, $+\mathrm{DEq})$ is the fquare number required.
Whereby it will be eary to find out two fquare numbers, the excefs of which is a fquare or not a fquare number, namely by the fame confruction c fhall $\mathrm{CEq}_{\mathrm{q}}$ - c 3.4 al . CD_{q} be $=\mathrm{DEq}$
But if AD, DB be plane numbers unlike, the mean proportional line (DE) fhall not be a rational number, and fo neither fhall the exeefs (DEq) of the fquare numbers, $C E q, C D q$. be a fquare number.

Lemma 2.

2 To find out two fucb square numbers B, C, as the number compounded of them D is not Square. Alfo to diwide a Square number A into two numbers B, C, not fquares.

$$
\text { A, 3. B, 9. C, } 36 . \quad \text { D, } 45 .
$$

1. Take any fquare number B, and let C be $=4 B$, and $D=B+C$. I fay the thing is done
For B is Q, by the confr. likewife becaufe B, C:: 1 . 4 : : Q. Q. a therefore C alfo thall be a fquare number. a 24.8 . But becaute B +C (D).C:: 5.4 :: not Q. Q. 6 there- bcor. 24.8. fore fhall not D be a fquare number. Whicb evas to be done.

$$
A, 36, B ; 24 . C, 12 . D, 3 . E, 2 . F, 1 .
$$

2. Let A be fome fquare number. Take D, E, F; plane numbers unlike, and let D be $=E+F$ make D. E::A.B. and D.F::A.C. I fay the thing required is done.

For becaure $\mathrm{D} . \mathrm{E}+\mathrm{F}:: \mathrm{A} . \mathrm{B}+\mathrm{C}$, and $\mathrm{D}=\mathrm{E} \vdash \mathrm{F}, a$ b 21 . def. 7 therefore fhall $\mathrm{A}=\mathrm{B}+\mathrm{C}$ Now fuppofe B to be fquare, c 26.8 . 6 then A and B, c and confequently D and E are like plane numbers W bich is contraxy to the $H y p$.
The fame abfurdity will follow if C be fuppofed a Iquare number, Therefore, Eoc. PROP.
a 1.lem 29. Let AB be $\dot{\rho}$. a Take the fquare numbers $C D_{;}$. 10.
bs.lem.10: 10.
c 1.4° d conftr. e 6. 10 . f $\int c b$. 12. 10.
g 9. 10. h 31.3. k 47. 1 . 19.10.

To find out two rational rigbt lines AB, AF, commensurable only in powver, fo tbat the greater $A B$ fball be in porver more than the lefs AF by the fquare of a right line BF commenfurable to it felf in

C....E.....D length. CE. fo that CD-CE (ED) be not Q. b and make CD. ED :: ABq. AFq. In a circle defcribed upori the diameter $A B c$ fit $A F$, and draw $B F$. Then I fay AB, AF, are the lines required

For $A B q, A F q d:: C D$. ED. e therefore $A B q \square$ AFq. but $A B$ is $\dot{\rho} . f$ therefore $A F$ is alfo $\dot{\rho}$. But becaure $C D$ is $Q:$ and ED not $Q: g$ therefore thall $A B$ be n AF. Moreover by reafon of the b right angle $A F B$, is $A B q R$ $=A F q+B F q$; therefore feeing $A B q A F q:: C D$. ED. by converfion of proportion thall $\mathrm{ABq} \mathrm{BFq}:$: CD . $\mathrm{CE}:$ Q. Q I therefore AB Z BF. Which quas to be done:

In numbers, let there be $\mathrm{AB}, 6 ; \mathrm{CD}, 9 ; \mathrm{CE}, 4$; wheres fore $\mathrm{ED}, 5$. Make 9 5:: $36 .(\mathrm{Q}: 6$.) AFq. then AFq fhall be 20. and confequently AF $\sqrt{ }$ 20. therefore BFq $=3^{6-25}=16$. wherefore $B E$ is 4 .

PROP. XXXI.

To find aut the rational lines AB , AF commeinfurable only in pocver, fo that the greater AB fall be in posver more than the lefs AF by the Square of a right line BF incommerjurable to it felf in length.

a 2. lem .29. Let AB be $\dot{\rho}$. a Take the fquare numbers CE, ED, fo 10. that $\mathrm{CD}=\mathrm{CE}+\mathrm{ED}$ be not Q and in the reft follow the confruction of the preced. prop. I fay then the thing required is done.

For, as above, AB, AF, are $\dot{\rho} \ddagger$. alfo $\mathrm{ABg} . \mathrm{BFq}::$ b9. 10. $C D$. ED. therefore fince $C D$ is not $Q A B, B F b$ hall be tri. Whicb was to be done.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

In numbers, let there be $\mathrm{A} 8, \mathrm{C} \sqrt{ } \sqrt{28} \mathrm{~B} \sqrt{ }$ 28. then D 0 $\sqrt{ }$ 3072. and $E \subset \sqrt{ }$ 588. wherefore D. $E:: 2 \cdot \sqrt{ } 3$. and $D E=\sqrt{ } 1344$.

PROP. XXXIV. .

231.10.
$b 10.1$.
c 286.
di2. 6.
ecor. 86.
Є6 $1 \% 6$. $f 7.5$.
g 19. 10. h 10.10. k31. 3 6゚ 47. 1.

1 conftr. mIax. I. n 22. 10. be demonfrated.
o 24. 10 .
p fch.22.6. lines required.

To find out twe rizhbt lines AF, BF , incomntenfurable in pawer, wbofe fquares added togetber make a rational fgure, and the retiangle contained under tbem medial.
a Let there be found $A B$, $\mathrm{CD}, \mathrm{j} 7$; fo that $\sqrt{ } \mathrm{ABq}-\mathrm{CDq}$ 모 AB , divide CD equally in G. c make the rectangle $A E B=G C q$. Upon $A B$ the diameter draw a femicircle $A F B$, erect the perpendicular EF, and draw AF, BF. Thefe are the

For AE. $\mathrm{BE} d:: \mathrm{BA} \times \mathrm{AE} . \mathrm{AB} \times \mathrm{BE}$ But $\mathrm{BA} \times \mathrm{AE}$ $e=\mathrm{AFq}$; and $\mathrm{AB} \times \mathrm{BE}=\mathrm{FB}$. f therefore AE . EB :: AFq . FBq. therefore fince $\mathrm{AE}_{g} \square \mathrm{~EB}, \quad b \mathrm{AFq}$ thall be $\square \mathrm{FBq}$. Moreover ABg ($k \mathrm{AFq}^{\mathrm{S}}+\mathrm{FBq}$) l is f . . Laflf $\mathrm{EFg} l=\mathrm{AEB} l=\mathrm{CGq} . m$ therefore $\mathrm{EF}=\mathrm{CG}$. therefore $C D \times A B=2 E F \times A B$. But $C D \times A B n$ is μv. o therefore $\mathrm{AB} \times \mathrm{EF}, p$ or $\mathrm{AF} \times \mathrm{FB}$ is $\mu \nu$. Wbicb was to

The Explication of the fame by numbers.

Let AB be 6.CD $\sqrt{ } 12$, then $\mathrm{CG}=\sqrt{ }{ }^{\frac{2}{4}}=\sqrt{ }$ 3. Bat $\mathrm{AE}=3+\sqrt{ }$ 6. and $\mathrm{EB}=3-\sqrt{ } 6$ whence AF thall be $\sqrt{ }: 18+\sqrt{ } 216$. and $F B \sqrt{ }: 18-\sqrt{ } 216$. Alfo AFq $1-\mathrm{FBq}$ is 36 , and $\mathrm{AF} \times \mathrm{FB}=\sqrt{ } 108$.
But AE is found in this manner. Becaufe BA (6.) AF $\therefore \mathrm{AF}$. AE . therefore $6 \mathrm{AE}=\Lambda \mathrm{Fq}=\mathrm{AEq}+3(\mathrm{EFq})$ therefore $6 \mathrm{AE}-\mathrm{AEq}=3$. Put $3+\mathrm{e}=\mathrm{AE}$. then, $18+6 \mathrm{e}-9 .-6 \mathrm{c}-\mathrm{ee}$, that is, $9-\mathrm{ce}=3$.oree $=61$ wherefore $\mathrm{e} \geq \sqrt{ }$ 6. and fo $\mathrm{AE}=3+\sqrt{ } 6$.

PROP. XXXY.

To find out two rigbe lines AE, EB, incommenfurable in power, wubofe fquaves added togetber make a medial figure, and tbie rebtanigle contaimed under them rational.
a Take $A B$ and $C F \mu$, fo that $A B \times C F$ be $p r$, ahd a 3i. 10. $\sqrt{ } \mathrm{ABq}-\mathrm{CFq}^{\square} \mathrm{D} A$, and let the reft be done as in the prec. prop. $A E, E B$ are the lines required

For, as it is hewn there, AEq^{2} EBq. alfo ABq $(\mathrm{AEq}+\mathrm{EBq}) \mu \%$ and laftly $\mathrm{AB} \times \mathrm{CF} b$ is $\mathrm{p}_{\mathrm{o}} . c$ therefore alfo $\mathrm{AB} \times \mathrm{DE}$, that is, $\mathrm{AE} \times \mathrm{EB}$, is p p , therefore, ©oc.

PROP. XXXVL
b cönfit. c fcb. $12{ }^{\prime}$ 10.
dfch. 22.6.

To find out two right lines BA, AC, incommenfurable in power, avbofe Squares added togetber make a medial figure,and the rectangle alfa contained under them medial, and
 incomimenfurable to the figure compofed of tbe fquares.
a Take BC and $\mathrm{EF} \mu$ 7, to that $\mathrm{BC} \times \mathrm{EF}$ be μ r. and a 3 . 10
$\checkmark \mathrm{BC}_{q}-\mathrm{EFq}^{\prime}$ - BC , and fo forward, as in the prec. BA, $A C$, fhall be the lines fought for.

For (as abovie) $B A q \square A C q_{2}$, alro $B A q+A C q$ is $\mu \gamma_{0}$. and $\mathrm{BA} \times \mathrm{AC}$ is $r v$. Lafly, $\mathrm{BC} b \square \mathrm{EF}$, and c fo $\mathrm{BC} \mathrm{C}_{\square} \mathrm{B}$ conjfor. EG; likewife BC. EG d:: $B C \mathrm{C}$. $\mathrm{BC} \times \mathrm{EG}$ ($\mathrm{BC} \times \mathrm{AD}$, or c 13 . 10 ?
 therefore, $\mathcal{E O}_{6}$.

- 14 10

The tenth Book of

Salols

To find out tevo medial lines incommensurable both in length and poser.
a 36. 10. a' Fake BC μ, and let $\mathrm{RA} \times \mathrm{AC}$ be' $\mu \%$, and ${ }^{2} \square \mathrm{BCq}$ b 13. 6. ($\mathrm{BAq}+\mathrm{ACq}$) m make $\mathrm{BA} . \mathrm{H}:: \mathrm{H}$. AC . then I fay BC and C 1;.6. H are μ ' G. For $^{\text {BC }}$ is μ. a and $B A \times A C(c H q)$ is μ. d 14. 10. wherefore H is alfo μ d Likewife BA x AC $\square \mathrm{BCq}$; therefore EIq ' DCq . therefore, Etc.

Here begin the fenaries of limes irrational by composition.

PROP. XXXVII.

If two rational lines $A B, B C$; commerifurable only in power, ane added together, the ruble live AC is irrational, and is called a binomial line, or of two names. a typ. . For because $\mathrm{AB} a{ }^{2}$ — BC, thence b hall ACq be ${ }^{\text {b }} \mathrm{\square}$ b lem. 26. $A B q$. But $A B a$ is $\dot{\rho} . c$ therefore $A C$ is \hat{p}. WV hick was to 10. cII.def.io.

PROP. XXXVIII.

If trod medial lines $A B, B C$, commensurable in poser only, ate compounded, and contain a ratiosal rectangle, the wibole line AC is irrational, and called a fort bimedial line.
a hyp. For because $A B a{ }^{\prime} \square \mathrm{BC}, b$ shall $A C q$ be ${ }^{4} \square \mathrm{ABx}$ blem.26. BC , $\hat{\rho}$. c therefore AC is \hat{p}. Which was to be dem.
10.
cis def. 10 .

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
a byp. For whereas $A B q+B C q a$ is ρv, and $b{ }^{c} \square \square_{2} A B C c$ b fch. 12. $\mu \mathrm{r}$; and 10 $\mathrm{ACq}\left(d \mathrm{ABq}+\mathrm{BC}_{q}+2 \mathrm{ABC}\right)$ e ${ }^{2} \mathrm{IL} A \mathrm{ABq}_{q}$ so. $+\mathrm{BC}_{\mathrm{q}} \mathrm{p}$. f therefore chall AC be $\dot{\rho}$. Wrbieb cpas to be c byp. and demonftrated
24. 10.
d4.2. . \quad IROP. XLI.
e 17. 10.
findef. $\mathrm{rO} . A-B_{C}^{C}$
If two nigbt limes AC, CB, incommonfurable in pocver, are added togetber, baving that wobich is made of their fquares added togetber medial, and the redangle contained under tbemt rational, the wubole rigbt line AB Jall be irrational, and is called A line containing is power a rational and a medial rettangle.
a byp. and
 sch. 12. 10. therefore $2 \mathrm{ACB}_{d}$ पू ABq . wherefore $e \mathrm{AB}$ is \dot{p}. W. $b i c h$ b fch. 12. was to be demonftrated. 10. c lyp.
d 1710. e in. def. . 10. $\mathrm{HKg}(\mathrm{CF}) a$ is $\mu \mu$, the breadth $\mathrm{CB} b$ thall be \dot{p}. Alfo be-
.If two right lines GH, HK, incommenfurable in fower, are added iogetber, baving botb tbat wbicb is compoped of their Squares medial, and tbe reftangle contained under them medial, and incom menensuable to tbat uwbich is compofed of tbeir Squares, tbe wbole rigbt line GK is irrational2 and is called A line containing in power two medial fggures.
Upon the propounded line FB p make the rectangles $\mathbf{A F}=\mathbf{G K q}$, and $\mathbf{C F}=\mathbf{G H q}+\mathrm{HKq}$. Becaure $\mathrm{GH} q+$ caufe 2 rectangles GHK ($c \mathrm{AD}$) a is $\mu \mathrm{p}$, therefore $\mathrm{AC} b$
10.
h in.def:
so.

PROP. XIII.

A line of two names, of binominal, AB , can at one point only D be divided into its names, AD, DB.

If it be poffible, let the binominal line AB be divided at the point E , into other names AE, EB. It is manifeat that the line $A B$ is in both cares divided unequally, mince $A D \square D B$, and $A E \sim$ LB

Because the rectangles ADB, AEB a are μa; a and each of $A D q, D B q, A E q, E B q$ is $\dot{a} . ~ b$ and $f 0 A D q+$ $D B q \quad b$ and $A E q+E B q$ are also pow. 6 therefore $A D_{q}+$ $\mathrm{DBq}_{q} \rightarrow \mathrm{AEq}_{q}+\mathrm{EBq}$ с i. e. $2 \mathrm{AEB}-2 \mathrm{ADB}$ is pr. d therefore AEB - ADB is $p y$, therefore μv exceeds μy by pr. \in Which is absurd.
b f ct. 27. 10. c ch. 5. 2. d cb. 12. 10. c2\%.10.

PROP. XIV.

A fret bimedial line AB is in one point only D divided into. its names AD, DB.

Conceive $A B$ to be divided into other names $A E, E B$, whereupon every one $A D q_{1}, D B q, E B q$, will be a μa. a 38 . Ia. and the rectangles $\mathrm{ADB}, \mathrm{AEB}$, and the doubles of them, $\mathrm{b} f 15.2 \%$ poe b therefore $2 \mathrm{AEB}-2 \mathrm{ADB}$. cine. $A D q+\mathrm{DBq}-:$ $A F_{q}+E B q$ is pr. ${ }^{2} W W^{2} b i c h$ is $a b f u r d$.
c fab. 5.2. d 27.10.

PROP, XLV.

alfo $\mathrm{EK}=\mathrm{ADq}_{q}+\mathrm{DB} \mathrm{B}_{\mathrm{q}}$.
Becaufe ACq, BCq a are μa Tri; $b \mathrm{ACq}+\mathrm{CBq}_{\text {(}}$ (EH) thall be $!\prime . c$ therefore the breadth FIl is ${ }^{p}$. a moreover the rectangle $A C B, d$ and fo 2 ACB (e $I G$) is $\mu v . c$ therefore HG is alfo ρ. And fince EH is $f{ }^{4}$ IG, g and EH IG :: FH. HG. b therefore FH, HG thall be r. k there fore FG is a binomial, whofe names are FH, HG. By the fame reafon FG is binomial, and the names of it Fl , KG: centrary to tbe 43. of tbis Book. .

PROP. XLVI

A Major line AB is at one point only D divided into ixi names AD, DB.

Imagine other Names AE, EB, whereupon the rectangles $\mathrm{ADB}, \mathrm{AEB}, a \mu \alpha$. a and as well $\mathrm{ADq}+\mathrm{DBq}$, 'as $A E_{q}+E B q$ are $\dot{\rho} \cdot b$ therefore $A D q+D B q-A E q$ +EBq , c i. c. 2 AEB - 2 ADB is $\rho \gamma . d$ Whicb is impof. fable.

PROP. XLVII.

A line AB containing in power a rational and a medial figure is divided at one point only D into its names AD, DB.

Con-

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
V. If the leffer name be 50 , a fifth.
VI. If neither, a fixth.

PROP. XLIX.

apch. 29 10 $\mathrm{E} \longrightarrow \mathrm{F} \longrightarrow \mathrm{G}$ a Take $A B, A C$, fquare numb 2 lem. 10. 10.
c 3 J em. 10. 10.
d comftr. c 6. def. 10.
f 6. 10.
g/ch. 12. 10.
h 9. 10.
k9. 10.
1 1. def. 48. 10.

D
 bers, whofe excefs CB is not Q. let D be propounded $\dot{p} . b$ Take EF $\square 1$, and c make $A B, C B: E F q, F G 9$, then EG Ghall be a 1 bin.

For EF $\&$ 미 . e therefore $E F$ is $f=f$ alfo EFq \square. FGq. g therefore FG is alfo \dot{p}. likewife d becaufe EFg. FGq :: AB. CB :: Q. not Q b thorefore EF \sim. FG. Laftly, becaufe by converfion of propertion, EFq. EFq -FGq::AB. AC:: Q. Q thence Ef k thall be $\frac{\square}{\square}$ $E F q-F G q . l$ therefore $E G$ is a 1 binominal. Wbich cuas to be done.

In numbers thus; let there be D 8. EF 6 AB a CE 5 wherefore becaufe $9.5:: 36.20$, therefore $F G$ is $\sqrt{20}$. and confequently $E G$ is $6+\sqrt{20}$. PROP. L.

To find out a fecond binomial line,

 EG.Take $A B$ and $A C$ f fuare numbers, the excels of which is $C B$ not Q. Let the line D be pro-
Prooe' it as pounded f. take $F G$ II. D, and make $C B, A B:=F G q$. the prec. EFg. then EG will be the line defired.

For FG $\square 1$. . wherefore FG is ρ. Alro EFq 므 FGq therefore EF is $\dot{\rho}$. Likewife becaufe FGq , $E F q$:: CB . $A B:=$ not Q. Q. thence $F G$ is in EF. Laltip, feeing $C B . A B:: E G q . E F q$. and inverfly $A B . C B:: E F q, F G q$. therefore as in the foregoing Prop. EF $\mathbb{I} \sqrt{ } \mathrm{EFq}_{q}$ FGq. a whereby, EG is 22 binomial. Wbich was te be done.
2 2. def48. In numbers; let there be D8, FG $10, \mathrm{AB} 9, \mathrm{CB} 5$.then 10. EF is $\sqrt{ } 180$, wherefore $E G$ is $10+\sqrt{ } 180$. PROP.LI.

To find out a third binomial line, DF.
${ }_{a}{ }^{\text {T Take }} A B, A C$, fquare numbers, the excess of which $C B$ is not Q and let L be a number not Q next greater than $C B$, viz. by a unit or two. Let G be the line propounded
pounded p. 6 Make L. AB :: Gq. DEq. b and AB. CB :: b glem.ıo. DEq. EFq then DF thall be a third binomial. 10.

For becaure DEq^{\prime}; $\mathrm{mL}_{\mathrm{L}} \mathrm{Gq}, d \mathrm{DE}$ is ρ. allo Gq . DEq c confir. 6 $::$ L $A B:=$ not Q Q e therefore $G \square D E$ Likewife 10. fince $\mathrm{DEq}_{\mathrm{e}} \mathrm{II}$. $\mathrm{EFq}, 4$ alfo EF is ρ_{0}. Mureover becaufe $\mathrm{d} f$ ch. 12. DEq. EFq:: AB. CB:: Q net Q is DE \square EF. and 10. fince by conftr. and equality Gq. EFq :: L. CB :: not Q. Q. e σ. ıo. (for $g \mathrm{~L}$ and CB are not like plane numbers) b therefore $f 9$. io.
 $\mathrm{DEq}_{\mathrm{q}}$ - EFq m_{L} DE. k therefore DF is a 3 binomial. h 9.10 . W bich was to be done.

In pumbers; let there be $\mathrm{AB}, \mathrm{9} CB,$. s. L, 6. G, ${ }^{9} 10$. then thall be DE $\sqrt{ } 96$, and $E F \sqrt{ } \frac{3}{9} \circ \cdot$ wherefore $D F$ $=\sqrt{ } 96+\sqrt{ }{ }^{4 \frac{1}{9}}$,

PROP. LII.

> To find out a fourtb binomial line A... 3 C......, 6 B DF.
> a Take any fquare number AB , and divide it into AC, CB not fquares. Let G be the line propounded \dot{p}. b take $D E$ - \mathcal{G}, c and make $A B$. CB:s $b 2 \mathrm{lem}$. ya DEq EFq, then DF fhall be a 4 binomial.

For, as in the 49 of this Book, DF may be thewn to c 3 .lemero, be a binomial, and alfo becaure by conftr. and converfion 10. of proportion DEq. DEq - $\mathrm{EFq}:: \mathrm{AB} . \mathrm{AC}::$ Q. not Q. d thall DE be $\square \sqrt{ } \sqrt{D E q}$ - EFq. e therefore DF is 24 binomial.

In numbers, let G be $8, D E, 6$. then EF chall be $\sqrt{ }$ d 910. e 4. $\mathrm{def}_{4} \mathrm{~B}_{4}$ 24. therefore $D F$ is $6+\sqrt{ } 24$.

PROP. LIII.

[^1] "
b $5 . \operatorname{def} 48$: $\square \sqrt{ } \sqrt{ } \cdot \mathrm{DEq}$ - EFq. b therefore DF is a 5 binomial 10 Whicb was to be done.
In numbers, let there be G, 7. EF, 6. then DE fhall be $\sqrt{ } \cdot 54$. wherefore DF is $6+\sqrt{ } 54$.

PROP. LIV:

$\text { A.... }{ }_{\text {E.......... } \text { i }^{B}}$	To find out a fixtb 'binomial lime
G	Take AC, CB, prime num
E-- P	fo that $\mathrm{AC}+\mathrm{CB}(\mathrm{AB})$ be not
H-	Q. take alfo any number fquare

2 3. lem 10. ed $\rho . a$ and make $\mathrm{L} . \mathrm{AB}:: \mathrm{Gq} \mathrm{DEq}$, and AB . CB :: DEq . 10. EFq. then DF thall be a 6 binomial.
For DF may be demonftrated binomial as in the 51 . of this Book; and alfo by reafon that DE and EF \square G. laftly likewife becaure by conftr. and converfion of proportion DEq.DEq - EFq :: AB. AC:: not Q.Q. (For AB
 c9. 10 $\sqrt{ } \mathrm{DEq}$ - EFq: d therefore DF is a 6 binomial. $W_{b i c b}$ d $6 \operatorname{def} 4^{\circ}$. was required.
1p. In numbers, ler there be G 6. DE $\sqrt{ } 48$. then EF fhall be $\sqrt{ }$ 2S. wherefore $D F$ is $\sqrt{ } 4 S+\sqrt{ } 28$.

Let AD be a reftangle, and tbe fide therenf AC divided unegually in E ; alfo let the leffer portion EC be equally divided in F . upan the line AE a make the recangle $\mathrm{AGE}=\mathrm{EFq}$, and from the points $\mathrm{G}, \mathrm{E}, \mathrm{Fb}$ draw GH , EI, FK, parallel to AB, c Let the fquare LM be made equal to the reCtangle A11, and xfon OMP produced the fquare $\mathrm{MN}=$ G1, and let the right lines LOS, LQT, NRS, NPT be produced.

I fay 1. MS, MT, are recangles. For by realon of the a cin. 15 1. right angles of the fquares OMQ, RMP, a fhall QMR b 13. 1. be a right line. b therefore RMO, QMP, are right angles, wherefore the parallelograms MS, MT, are rectangles.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

PROP. LVI.

If a facee AD be comprebended under a rational line $\mathrm{AB}_{\text {, }}$, and a fecond binomial $\mathrm{AC}(\mathrm{AE}+\mathrm{EC}$) the rigbt line OP ; wbicb contaimetb tbat fpace AD in power; is itrational, and called a firft medial line.

The forefaid Lemma of the 54. of this Book beifg

2 byp. and Lem 54 10. blyp. c/cbi2.10. tangles AH, GI, ie. OMq, MPq. dare ua. e Moreover d22.10. OM 马 MP. Lafly, EF $\square \mathrm{EC}$, and $\mathrm{EC} f \square \mathrm{AB}$. clem. 54. 10.
f byp. 12. 10. g 20: 10. $\mathrm{h}_{3} 8.10$. again fuppofed, then shall $O P$ be $=\mathcal{A} A D$. a alio $\mathrm{AE}, \mathrm{AG}, \mathrm{GE}$, are 7 . therefore fince $\mathrm{AE} b$ is $\dot{\rho}$ 표 AB,likewife AG,GE c thall be of C . AB ,therefore the recg wherefore EK, ie.SM, or OMP, is ip. b ConfequentIy OP is a firft bimedial. Wbich was to be dem.

In numbers, let there be $A B 5$, and $A C, \sqrt{ } 48:+6$. then the rectangle $A D=V: 1200+30=O P q$. there-

- Lyp. and 22. 10

3910 .

See Scbeme 97.

Pr OP. LVII.

fore $A D$ is $\sqrt{800}+\sqrt{ } 6 n 0=\mathrm{OPq}_{\text {. and }} \mathrm{fo} O P$ is $v \sqrt{ }$. $450+$ ov 50, that is a fecond bimedial.

PROP. LVIIL

If a fpace AD be comprebend-: ed under a rational line $A B^{\prime}$ and a fourtb binomial $\mathrm{AC}(\mathrm{AE}$ +EC) the right line OP contain. ing the fpacs AD in power, is that irrational line wbicb is called a Major line.

For again, OMq4 ${ }^{\circ}$ 口 MPq ; and the rectangle AI , i. e. OMq + MPq b is jr. c alfo EK or OMP is μ. dtherefore OP $(\sqrt{ }$ AD) is a Major line. Wbich avas to be demonftrated.

In numbers, let there be AB 5. and $\mathrm{AC}_{4}+\sqrt{ }$ 8. then the
 rectangle AD is $20+\sqrt{ } 200$. wherefore OP is $\sqrt{ }: 20^{\circ}$ $+\sqrt{200}$.

PROP. LIX.

If a pace AD be contained under a rational line AB , and a fifth binomial AC, the right lize OP which containeth the fpace AD in power, is that irrational line, which is a line coutaintng a rational and a medial reffangle in power.

Again OMP TI MPq. and the reatangle AI or OMq + MPq is μ_{r}. a Likewife the rectangle EK or OMP is a as in tho iv. b therefore $\mathrm{OP}(\vee \mathrm{AD})$ contains in power fy and μv. W bich suas to bedem.

In numbers, let there be $A B 5$. and $A C_{2}+\sqrt{ } 8$. then prec.
he rectangle $A D=10+\sqrt{200}=0$ Oq. Wherefore OP is $\sqrt{ }: 10+\sqrt{ } 200$.

PROP. LX.

If a pace AD be contained under a rational line AB and as fixth binomial $\mathrm{AC}(\mathrm{AE}+\mathrm{EC})$ the line OP containing the Space AD in pocuer is irrational, aubich containeth in powver tevo medial reCtangles

As often before, $\mathbf{O M q}$ n $\mathrm{MPq}^{\text {, }}$, and $\mathrm{OMq}-1-\mathrm{MPq}$ is μ. and alfo the rectangle (EK)OMP is μv. a there- a 42 . ic. fore $O P=\sqrt{ }$ AD contains in power $2 \mu \alpha$ Wbich was to be depre.

In numbers, let there be $A B 5$. $A C \sqrt{ } 12+\sqrt{ } 8$ therefore the rectangle AD or OPq is $\sqrt{ } 300+\sqrt{ } 200$ and fo OP is $\sqrt{ }: \sqrt{300}+\sqrt{ } 200$.

Lemma.

Let a rigbt linte AB be umequally divided in C , and let AC be tbe graater fop ment, and upon forme line DE atply the reltangles $\mathrm{DF}=$ ABq , and $\mathrm{DH}=\mathrm{ACq}$, and $\mathrm{IK}=\mathrm{CBq}$, and let LG , be divided equally in M , and alfo MN dratun parallel to GF.
24.2.and 3. ax. 1. $2 A C B=L F$.
b7.2. ci.6.
di6 10.
e lem: 26. 10.
f 10.10 DL \square LG.
5. Moreover DL $\square \sqrt{ } / \mathrm{DLq}-\mathrm{LGq}$. For ACq. ACB 5 1.6. $g::$ ACB. CEq. that is DH. LN:: LN. IK. c wherefore DI. LM :: LM IL, b therefore DI \times IL $=$ LMq. therefore feeing $A C q k$ 믄, that is, DH IK, and l do DI ㄴ. IL, m fhall DL be $\square \sqrt{ }$ DLq - LGq Wbich was to be dem
 \checkmark DLq - LGq.

Tbis. Lemma is preparatory to the fix following Props. fitions.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

PROP. LXIY.

The Square of a Major line ($\mathrm{AC}+\mathrm{CB}$) applied to a rational lime DE, makes the breadth DG a fourth binomial lime.
a byp and fch. 1210. b 21.12. c byp. and 24. 10. d 23. 10. to. be dem.
e1310. flem. 60 .

Again $\mathrm{ACq}_{q}+\mathrm{CBq}$. i e $\mathrm{DK} a$ is $\dot{p r} . b$ therefore DL is $\dot{p} D \mathrm{DE}$ alfo ACB, and fo LF (2 ACB) c is $u r$. d therefore LG is ρ in DE, e and confequently DL tri. LG. Laftly becaufe AC $\ddagger \mathrm{BC}$. f shall DL be ${ }^{\circ} \mathrm{DLq}$ LGq. s whence $D G$ is a fourth binomial. Wbicb was
10.
g4 def.48. T'be fquare of a line containing in posver a rational and a 10. medial rectangle ($\mathrm{AC}+\mathrm{CB}$) applied to a rational line DE makes the latitude DG a fifth binomial.
a 23. 10.
Again, DK is $\mu \cdots$ a therefore DL is $\dot{\rho}^{\circ}$ n DE alfo $\mathrm{b}_{21} \mathrm{I}$. 10. c 13.10. d lem. 60. 10.
e 5. def. 48 .
10. LF is $\dot{\rho} v . b$ therefore LG is \dot{p} 믄 DE c therefore DL \square LG. d likewife DL $\square-\sqrt{ }$ DLq-LGq. e and fo by coniequence $D G$ is a fifith biromial. Wbich woas to be demonfirated.

PROP. LXVI.

The square of a lime containing in power two medial rew tangles ($\mathrm{AC}+\mathrm{CB}$) applied to a rational line DE , makes the latitude DG a fixtb binomial line.

As before, DL and LG are $\dot{p}{ }^{\circ} \square \square$ DE. But becaufe
 c 16. d 10.10.
e lem. 60. 10. DL be $\square \square$ LG. e Lafly DL $n, \sqrt{\text { DLq }}$ - LGq. f by which it appears that $D G$ is a fixth binomial.
f 6. def. 48 .

30.

Let AB, DE be Zl . and make AB . $\mathrm{DE}:: \mathrm{AC} \mathrm{DF}$. 1 fay 1. AC ㅁ DF. as appears by 10. 10. alfo $\mathrm{CB} \square$. FE a becaufe AB. DE :: CB . FE.
2. AC CB ::DF. FE. For AC DF :: AB. DE :: CB. FE. thereforefore by permutation AC. CB :: DF. FE
 AC CB $c:: \mathrm{DF}$ ．EF ：：DFq．DFE wherefore by per－ c beforé mutation ACq．DFq ：：ACB．DFE．therefore fince ACq \square DFq．d hall ACB be $\square 1$ DFE．
4． $\mathrm{ACq}+\mathrm{CBq}$ ㅁ $\mathrm{DFq}+\mathrm{FEq}$ ．For becaure ACq． $\mathrm{CBq} e:=\mathrm{DFq}$ ．FEq．therefore by compounding ACq．$+\mathrm{e}^{-} 22.6$ ． $\mathrm{CBq}, \mathrm{CBq}:: \mathrm{DFq}+\mathrm{FEq}$ ． FEq ．therefore fince CBq ㅁ $\mathrm{FEq}_{\mathrm{q}} \mathrm{f}$ fhall alro $\mathrm{ACq}+\mathrm{CBq}$ ，be $\square \mathrm{DFq} .+$ FEq． f 10 ．10． 5 Hence，If AC 母 or $\ddagger \mathrm{CB}, \mathrm{g}$ then likewife thall g 10． 10 ． DE be 马 or 马EF。

PROP．LXVII．

A line DE ，commenfu－ $\mathrm{A}-\mathrm{C}-\mathrm{B}$ vable in lengtb to a binomial $\mathrm{D} \longrightarrow \mathrm{C}$ lime（ $\mathrm{AC}+\mathrm{CB}$ ）is it felf a btinomial line，and of the fame order．
Make AB．DE：：AC DF．a then are AC，DF TD．aं à lem． 66. and $\mathrm{CB}, \mathrm{FE} \square \square$ ．whence fince AC and CB, b are \dot{p} 가； c thence DF，FE p ；therefore DF is a binomial．Bui becaufe AC．CB $a:$ ：DF．FE．If AC \sim or $\square \vee A C q$ -BCq ，d then in like mamner $\mathrm{DF} \rightarrow$ or $\square \sqrt{ } \sqrt{ } \mathrm{DFq}$ － FEg alfo if AC or or $\dot{\rho}$ propounded，e then thall DF be in or 2 디 propounded．But if CB TI
 in．p．f then alfo both DF，FE， foever binomial AB is，DE thall be of the fame order．f by def 48 ． W bicb was to be dem．
10.
b byp：\quad. clem．66． 10．and fch．12． 10. d 15．10： e 12.10. and 1410.
f by $\operatorname{def} 48$. 10.
81410.

PROP．LXVIII．

Aline DE commenfurabe in length to a bimedial line（ AC +CB ）is alfo a bimedial line，and of the fame order
Make AB．DE：：AC DF．b therefore AC $\square 2$ DF．and $\mathrm{CB} \square \mathrm{FE}$ ．thetcfore feeing AC and $\mathrm{CB} c$ are n ，d allo DF and FE fhall be μ ．and becaufe ACe q CB，e there－ fore FD 7 FE f therefore DE is $2 u$ ．Wherefore if c byp． the reetangle ACB be $\dot{\rho}$ ．becaufe DFE b 끄․ ACB，g a 24.10 ． likewife DPE is ρ pr and if that be $\mu v, b$ this thall ber，y $t 00 k$ That is；whether AB be 1 bimed．or 2 bimed．DF thall be of the fame order．Wbicb was to be dem：
a i2． 6.
blem． 66. 10. f 3 8． 10 ． g fch． iz ． 10 PROP． $\begin{aligned} & \text { h } 24.10 . \\ & 38.0 r 39 .\end{aligned}$ 10．

PROP. LXIX.

A line DE commenfurdble tö a Major line (AC+ CB) is it feff a Major lime.
a b̈yp. Make AB. DE:: AC. DF. Becauré AC $a \nmid \mathrm{CB}, 6$
 10. caufe $\mathrm{DFq}+\mathrm{FEq}$ b $\square \mathrm{ACq}+\mathrm{CBq}, c$ alfo $\mathrm{DFq}+$ cfcb. 1210 FEq is ip laftly, the rectangle ACB a is μp, d therefore. the rectangle DFE is μv. (becaufe DFE is b TL ACB) 424. 10. e 40. io. e wherefore DE is a Major line. Wbicb was to be demonfrated.

PROP. LXX.

A line DE commenfurable to a line containing in potver a rational and a medial reitlangle ($\mathrm{AC}+\mathrm{CB}$) is a line containing in power a rational and a medial reftangle.
Again make AB. DE::AC. AC. DF. Becaure AC $a \nless$ CB, b alfo $\mathrm{DF} 马 \mathrm{FE}$. likewife becaure $\mathrm{ACq}+\mathrm{CBq}_{\mathrm{a}}$ is
c 24. 10: ascb.12.10. e 41 . 30 : $\mu v, c$ therefort $\mathrm{DFq}+\mathrm{FEq}$ thalll be $\mu \nu$ laftly becaure the rectangle ACB a is $f v, d$ alfo DFE is $f v$. Therefore DE contains in power $\dot{\rho} y$ and μ p. Which was to be demt.

PROP. LXXXI.

 tangles in power ($\mathrm{AC}+\mathrm{CB}$) is alfo line conntaining in power two medial rettangles.
Divide DE, as in the prec. Becaure $\mathrm{ACq}_{4}{ }^{\circ} \square \mathrm{CBq}_{;}$ b thence fhall DFq be $\mathrm{D}-\mathrm{FFq}$, alfo becaure $\mathrm{ACq}+$ CBq_{a} is $\mu \dot{\nu}, c$ hhall $\mathrm{DFq}+\mathrm{FEq}_{q}$ be alfo $\mu \mathrm{v}$. And in like manner becaure ACB a is $\mu \nu, d$ alfo DFE is μ.
 FEq be \square I DFE. f From whence it follows that DE contains in power z $1 / \infty_{0}$ Whach was to be dem.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

Therefore becaufe CE and FI a are $\mu a . b$ the latitudes a byp. CF, FK, thall. be $\dot{f} \square \mathrm{CD}$. alfo becaure $\mathrm{CE} a{ }^{\circ} \square \mathrm{FI}$,
b 23. 10 .
c 16.
d 10 . 10. c $3 . \operatorname{def} 48$. $10 \cdot$
f57. 10 . g 6 def 48.
10.
h 60.10 . and CE. FI $c:: \mathrm{CF} . \mathrm{FK}, d$ therefore CF D - FK.e therefore $C K$ is a $;$ bin namely, if $C F=\sqrt{C F q}-$ FKq , whence $\mathrm{H}=\sqrt{ } \mathrm{CI} f$ fhall be 2ν. But if CF $\square \cdot \sqrt{C F q}-\mathrm{FKq}, g$ then CK thall be a 6 binom. b and confequently H contairs in power $2 \mu \mathrm{a}$. Whbicb was to be demonftrated.

Here begins the Senaires of lines irrational by Subtraction.

PROP. LXXIV.

D ——E—— F If from a rational line DF a rational line DE , commenfurable in powver only to tbe wbole DF, be taken arvay, the refaduc EF is itrational, and is called an Apotome or refidual line.

For $\mathrm{EFq}{ }^{\prime}$ 'ti. $\mathrm{DEq} ; b$ but DEq is $\rho_{\nu} ; c$ theretore EF is ${ }^{\rho}$. Whicb was to be dem.

In numbers; let there be DF, 2. DE, $\sqrt{3}$. then EF Ghall be $2-\sqrt{3}{ }^{\circ}$

PROP. LXXV:
$\mathbf{D} \longrightarrow \mathrm{E}$ —— If from a medial line DF a medial line DE commenfurable only in power to the wbole DF, and comprebending with the wubole DF a rational reltangle, be taken away, the remainder EF is irrational, and is called a firft refidual line of a. medial
a $\int c b .26$. For $\mathrm{EFq} a$ a to the rectangte FDE therefore fee10.
bbyp.
c 20. and ing FDE b is $\dot{p} r . c$ EF fhall be \dot{p}. Wibicb was to be de. monfrated.
ii. def. 10. fore $E F$ is $v \sqrt{ } 54-v \sqrt{ } 24$.

PROP. LXXVI.
$\mathbf{D} \longrightarrow \mathbf{E}$ _ \mathbf{F} If from a medial line DF , a medial line DE, be taken atwaj being commenfurable only in power to the wwole DF,' and com'prebending together with the wwole line DF a medial re\&tangtle, the remainder EF is irrational, and is called a fecond refidxal of a medial lixe.

Be-

Becaure DFq and $\mathrm{DEq} a$ are $\mu_{x} \mathrm{Z}$, k therefore fhall a byp . $\mathrm{DFq}+\mathrm{DEq}$ be $\square \mathrm{DEq} . c$ wheretore $\mathrm{DFq}+\mathrm{DEq}_{\text {is }} \mathrm{b} 16.10$. μ. alfo the rectangle FDE, and To 2 FDE, a is uv, e 24. 10. therefore $\mathrm{EFq}\left(d \mathrm{DFq}+\mathrm{DEq}-2 \mathrm{EDE}\right.$) e is ${ }^{\text {p }} \mathrm{p}$. where- d cor. 7.2 . fore EF is ${ }^{j}$. Wbich wias to be dem.
In numbers, let DF be $v \sqrt{ }$ 18. and $\mathrm{DE} v \sqrt{ }$ 8. then EF $v \sqrt{18-v \sqrt{8} \text {. }}$

PROP. LXXVII.

If from a rigbt line $A C$ beta- $A \longrightarrow B \longrightarrow C$ ken awway a rigbt line AB being incommenfurable in power to the wwbole BC , and making with the whole AC that wubich is compofed of their fquares rational, and the rectangle contained under them medial, the remain$\operatorname{der} \mathrm{BC}$ is irrational, and is called a Minor line.
For $A C q+A B q a$ is ρv. but the rettangle $A C B a$ is $\mu_{\text {p. }} b$ therefore 2 CAB D $A C q+\mathrm{ABq}\left(\boldsymbol{r}_{2} \mathrm{CAB}-1\right.$ $B C q$.) d therefore $A C q+A B q{ }_{q-1} B C q$, e therefore $B C$ is \dot{p}. Which was to be dem

In numbers, let $A C$ be $\sqrt{ }: 18+\sqrt{ }$ 1n8; $A B \sqrt{ }=18$ $-\sqrt{ }$ 108. then $B C$ is $\sqrt{ }: 18+\sqrt{ }: 108-\sqrt{ }: 18-\sqrt{ }$ 108.

PROP. LXXVIII.

If from a rigbt line DF be $\mathrm{D} \longrightarrow \mathrm{E}-\mathbf{P}$ taken away a right line DE, being incommenskrable in power to the ewbole line DF , and with the wbole DF making tbat wbich is compofed of tbeir fquares medial, and tbe rectangle contained under tbe fame lines rational, the line remaining EF is irrational, and is called a line making a whole Space medial with a rational fpace.

For $2 \mathrm{FDE} a$ is $p . ~ b$ and $\mathrm{DFq}+\mathrm{DEq}$ is $u ., \mathrm{c}$ there- a byp. © fore $2 \mathrm{FDE} \square_{1} \mathrm{DFq}+\mathrm{DEq} d(2 \mathrm{PDE}+\mathrm{EFq}) e$ there- fcb. 12.10 . fore EF is $\dot{\rho}$. Which was to be dem.
In numbers, let DF be $\sqrt{ }: \sqrt{ } 216+\sqrt{ }$ i2; DE $\sqrt{ }$: cfib.i2.10:
 $\sqrt{ }: \sqrt{ } 216 \div \sqrt{ }{ }^{2}$.

PROP. LXXIX:
e/cb.12.10. and i I. def: 10.

If from a right line DF be $\mathrm{D} \longrightarrow \mathrm{E}$ —— taken away a rigbt line DE , incommenenjurab'e in power to the whole DF , and wbicb togor 04 thee
thee with the whole makes that which is compofod of their Squares medial, and the rectangle contained under them al/f medial and incommensurable to that which is composed of their Squares, the remainder is irrational, amdis'called a line making a a whole /pace medial with a medial face.
a hyp. 8 24. 10 b 29.10 . cor. 72 $\mathrm{H}_{1} 1$ def 10

For 2 FDE, and PDq + Eq a are $\mu \alpha ; b$ therefore $\mathrm{EFq}(c \mathrm{DFq}+\mathrm{DEq}-2 \mathrm{FDE}$) is pr. d and fo conte quently EF is $\stackrel{p}{ }$. W bach vas to be dem.
In numbers; let DF be' $\sqrt{ }: \sqrt{ }=180+\sqrt{ } 60$ DE $\sqrt{ }$: $\sqrt{180}-\sqrt{60}$. then EF shall be $\sqrt{ }: \sqrt{180}+\sqrt{60}$
$\sqrt{ } 180-\sqrt{60 .}$

Lemma.

If there be the fame. excess betevepn the firft magnitude BG and the fecond C (MG) as is beteveen the third magnitype DF and the fourth H (EF;) thew alteveriately, the fame excess foal be between the fort magnitude BG and the third DP, ass is between the Second C and the fourth II.
a bap. For because that a to the equals BM, DE, are added the equals MG, EF, that is, C, H; the excels of the b15.ax.1. Wholes BG, DF, b thill be equal to the excels of the parts added C, H. Which aquas to be dem.

Corot.
Hence, Four magnitudes Arithmetically proportional, are alternately also Arithmetically proportional:

PROP. LEX.
A ——————CTotor an Apotome or refilial line AB only one national right line BC , being commeinfurable in power only to the whole AB ; is congruent, oi can be joyned.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
is congnuent, by the fame reafon alfo thall KM be congruent to the faid EK. Which is ropugname to the 80. prop. of tbis Book.

PROP. LXXXIII.

To a Minor lise AB only $\mathrm{A}-\mathrm{B}-\mathrm{D}-\mathrm{C}$ one right line BC can be joined being incómmenfurable in power to the whole, and making to. getber with the swbole line tbat which is compoped of their Squares rational, and tbe rectangle wbicb is contained under them medial.

Conceive any other BD to be congruent to it; Therea 1. byp. fore whereas $\mathrm{ACq}+\mathrm{BCq}$, and $\mathrm{AD}_{q}+\mathrm{BD}_{q}$ a are ρ x. b lem 97. their excefs (26 ACB $-: 2 \mathrm{ADB}$) c is $\mathfrak{j r}$. W Wicb is ab-
10.
cfcb 27.10. d 27.10 furd; becaufe ACB and ADB are μx by the Hyp.

PROP. LXXXIV.

Unto a line (AB) making $\mathrm{A}-\mathrm{B}-\mathrm{D} \longrightarrow \mathrm{C}$ with a rational 今pace a whole fpace medial only one right line BC can be joined, betng incommenfurable in power to the wbole, and making togetber with the whole tbat wbich is compofed of tbeir fquares medial, and the reltangle which is contained under them rational.
a byp . : Suppofe fome other BD to be congruent alfo to it ; a bfcb 12 10. then the rectangles ACB, ADB, b and fo $_{2}$ ACB and 2 clem. 79. ADB are $\dot{\rho}$. therefore $2 \mathrm{ACB}-2 \mathrm{ADB}, c$ that is, 10. d fcb. 27.
 fince $\mathrm{ACq}_{q}+\mathrm{BCq}$, and $\mathrm{AD}_{q}+\mathrm{BD}_{q}$ are μx by the 10. - Hyp.

PROP. LXXXV.

To a line AB , wbich woith a medial Jpace makes a wobole Space medial, can be joined only one rigbt line BC, imommenfurable in poser to the whcle, and making with the whole both that wbich is comp. Sed of their Squares medial, and the rectangle which is contained un.
 der them medial and incommenfurable to that wbich is compoSed.of their Squares.

Thofe things being fuppofed which are done and fhewn in the 82 prop. of this Book; it is clear that EH and KH are $\rho \mathrm{EF}$. Befides, fince $\mathrm{ACq}+\mathrm{CBq}^{2}$, that is, the rectangle EG. a is $t 工 A C B, b$ and fo EG a byp. पI 2 ACB (KG;) and EG. KG $c::$ EH. KH; fhall EH b 14.10. be $\square \mathrm{KH}$. therefore EK is a refidual line, and the ci. 6. line congruent to it is KH. In like mamer may KM be Thewn to be congruent to the refidual EK, againft the Bo. prop. of this Book.

\mathcal{T} bird Definitions.

ARational line and a refidual being propounded, if the whole be more in power than the line joined to the refidual, by the fquare of a right line commenfu: rable unto it in length ; then
I. If the whole be commenfurable in length to the rational line propounded; it is called a firf refidual line.
II. But if the line adjoined be commenfurable in kength to the rational line propounded, it is called a fecond refidual line.
III. If neither the whole nor the line adjoined be commenfurable in length to the rational line propound ed, it is calied a thind refidual line.

Moreover, if the whole be more in power than the line adjoined by the fquare of a right line incommenfurable to it in length, then
IV. If the whole be commenfurable in length to the rational line propounded, it is called a fourth refidual line.
V. But
V. But if the line adjoined be commenfurable inlength to the rational line propounded, it is a fifth refidual.
VI. If neither the whole nor the line adjoined be commenfarable in length to the rational line propounded, it is termed a froth refidual line.

PROP. LXXXVI, 87, 88, 89, 90,91.
To find out a fire, Second, third, A.... 4 C..... 5 B fourth, fifth, and Sixth refidual line.

Residual lines are found out by fobdinting the less names or parts of binomials from the greater Ex.

H Er: Let $6+{ }^{\prime}{ }^{\prime} 20$ be a firft binemil, then Shall $6-\sqrt{ } 20$ be a frt refidual. So that it is not neceffary to repeat more concerning the finding of them out.

Lemma.

Let AC be a rectangle contained murder the right lines AB, AD. Let AD be drawn forth to. E , and DE squally divided in F. and lot the rec tangle AGE be $=\mathrm{FEq}$ and the recce tangles AI, DK, FH, fimijbed. Then let the Square $\mathrm{LM}=\mathrm{AH}$ be made, and Square $\mathrm{NO}=\mathrm{GI}$; and the limes NSR, OST, produced.

1 fay, I. The rectangle $\mathrm{AI}=$ $\mathrm{LM}+\mathrm{NO}=\mathrm{TOq}_{\mathrm{q}}+\mathrm{SOq}_{\mathrm{q}}$, which appears by the conf
2. The rectangle $\mathrm{DK}=\mathrm{LO}$. For because the rectangle AGE a $=$ FEq. b thence are AG, FE, GE

a confer.
b 1%.
ci. 6. $\because c$ and fro AH, FI, GI $\because \because \cdot \mathrm{O}, a$ that is, LM, FI, NO, \because; but LM, LO, NO d are $\ddot{-}$; therefore $\mathrm{FI}=e \mathrm{LO}$ $f=\mathrm{DK}=g \mathrm{NM}$.
3. Hence, $\mathrm{AC}=\mathrm{AI}-\mathrm{DK}-\mathrm{FI}=\mathrm{LM}+\mathrm{NQ}-$ $10-N M=T R$.
4. It is manifeft that $\mathrm{DF}, \mathrm{FE}, \mathrm{DE}$, are D .

5 If $\mathrm{AE} \square \mathrm{DE}$, and $\mathrm{AE} \rightarrow \sqrt{ } \mathrm{A} \mathrm{A} \underline{q}-\mathrm{DEq}, \mathrm{k}$ ibsen fall AG, 'GE, AE be <compat>ᄆ<compat>ᅳ<compat>ᄂ.

6:Alfo, becaúfe AE 1 t
 4
d fobs 22.6. e 9.5 . f 36.1 .
g43. 1.
h 16. 10.
k I8. and
10. 10. 10. 10.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

PROP. XCIV.

See Scheme 92.

If a space AC be contained undef a rational line AB and a third refidual $\mathrm{AD}(\mathrm{AE}-\mathrm{DE})$ the rigbt line TS contaiving in power the space AC is a fecond medial refidual lime.

As in the former, 'TO and SO are μ. Therefore be-
a byp. b22. 10. c 24.10. di6. 10. caufe $\mathrm{DE} a$ is $\dot{p} \square \mathrm{AB}, b$ the rectangle DI, c and fo DK , or TOS, thall be μ. therefore TS $=\sqrt{ }$ AC is a fecond medial refidual. W bich was to be dems

PROP. XCV.

Ste Scbeme 92.
If a fpace ACbe contained under a rational line AB and d fourth refidual $\mathrm{AD}(\mathrm{AE}-\mathrm{DE})$ the right line TS containing the fpace AC in power, is a Minor line.
tlem 91.10
b byp.
c 20.10 .
d77.10.

As before, TO a \square SO Therefore becaufe AE b is $\dot{\rho}$ ㄴ AB, c thall $\mathrm{AI}^{\prime}(\mathrm{TOq}+\mathrm{SOq})$ be $\dot{\rho} v$ but, as before, the rectangle TOS is $\mu \nu$. d therefore $T S=\sqrt{ } A G$ is a Miñor line. Wbich was to be dem.

PROP. XCVI.

See Scbeme 92.

If a space AC be contained under a rational line AB and a fifth refidual $\mathrm{AD}(\mathrm{AE}-\mathrm{DE})$ the rigbt line TS contain: ing in posver the Jpace AC ; is a line wbich maketh witb a rational Space the whole fpace medial.
 b 22.10. c 703.10 . $\mathrm{AB} b$ alio AI , that is, $\mathrm{TOq}_{\mathrm{q}}+\mathrm{SOq}_{q}$ fhall be $\mu \mathrm{r}$. But, as in the 93 the rectangle TOS is $\rho \cdot \mathrm{p} . \mathrm{c}$ whence $\mathrm{TS} \doteq \sqrt{ }$. AC is a line which with fr makes a whole. μv. Wbich cuas to be dem.

PROP. XCVIL

If a space AC be contained under a rational line AB , and a faxth refidual $\mathrm{AD}(\mathrm{AE}-\mathrm{DE})$ the rigbt line TS containing in power the jpace $\Lambda \mathrm{C}$ is a line making woith a medial reltangle, a whole fpace medial.

As often above, TO 马: SO. alfo, as in 96. TOq +SOq is μ.". but the rectangle TOS is $\dot{\rho} v$. as in 94. a Laftly, $\mathrm{TOq}^{\mathrm{TO}}+\mathrm{SOq}$, TOS b therefore TS $=\sqrt{ } \mathrm{AC}$ is a line which with $\mu \nu$ makes a whole ful. Which was to be demonftrated.

Lemma.

Upon a rigbt line DE * apply the reCtangles $\mathrm{DF}=\mathrm{ABq}$, and $\mathrm{DH}=\mathrm{ACq}$, and $\mathrm{IK}=$ BCq. and let GL be bifected in \mathbf{M}, and the line $\mathbf{M N}$ drawn parallel to GF.

Then 1. The rectangle DK is $=A C q+B C q$. as the confruction manifefts
2. T be rectangle $\mathrm{ACB}=\mathrm{GN}$ or MK . For $\mathrm{DK} a=a$ conftr. $\mathrm{ACq}+\mathrm{BCq} b=2 \mathrm{ACB}+\mathrm{ABq}$. but $\mathrm{ABq} a=\mathrm{DF} . \mathrm{b} \% .2$. therefore GK $c \doteq 2$ ACB. and confequently GN or MK c 3.ax. r. $=\mathrm{ACB}$.

3 The reCtangle DIL $=$ MLq. For becaufe ACq. e 1. 6 . $\mathrm{ACB} e:: \mathrm{ACB}, \mathrm{BCq}$, that is, DH MK:: MK. IK. e f 17. 6 . thence is DI ML : : ML. IL, f therefore DIL $=$ MLq.
4. If AC be taken 7 BC , then DK foll be T1. ACq.

For $A C q+B C q(D K) g$ ACq. g 16.10.
5. Likewise DL $\square \sqrt{ }$ DLq - GLq. For becaure DH(ACq) \square IK (BCq) b thence thall DI be 1. k therefore $\sqrt{\prime}$ DLq-GLq in DL. $k 18$ 10.

6 Alfo DL \square

7. But if AG be taken $\square^{-} \mathrm{BC}$, then DL thall he $\mathrm{T}_{\mathrm{L}} \mathrm{n}$ 19.10. $\sqrt{ }$ DLq - GLq.

РヘOP.

Ťbe tentb Book of

PROP. XCVIII.

The fquare of a refidual line AB (AC - BC) adplyed to a rational line DE, makes the Greadtb DG a fingt reficduat Eive.

Do as is enjoined ih the Lemma - next preceding. Then becaure $A C, B C$, a are © 7 alro DK (ACq +
 BCq) thall be \square ACq c therefore DK is $\rho v . d$ wherefore DE is p _ DE. e Likewife the re民tangle GK 10.
c fcb. 12. $\left.\int^{2} A C B\right)$ is : $y . f$ therefore GL is $f=D E, g$ and cion10.
 DG is a retidual, l and that of the firt oider (becaufe m e 22. and AC q BC, and therefore DL $\square, ~ \sqrt{\text { DLq }}$ - GLq.) Wlicich avas to be dem.

PROP. XCIX:

See the following Scheme:

Tibe fquare of a firf medial refidual line $A B(A C-B C)$ applied to a rational lize $\mathrm{DE}_{\text {, makes }}$ the breadtb DG a second tefidual line.
Suppofing the for gogoing Lemma; becaure AC and BC a are $\mu 7, b$ thence thall DK $(A C q+B C i)$ be \square $A C q \cdot c$ wherefore $D K$ is $\mu v \cdot d$ therefore $D L$ is p " \square DE. e alfo GK (2 ACB) is $\tilde{\rho}^{\prime \prime} . f$ therefore GL is $\dot{\rho}^{4}$, DE; g wherefore DL ${ }^{2}$ GL b But DLq $\square 1$ GLq. E therefore DG is a refidual line: And becaule DL is $\square, ~ D_{q}-\mathrm{GL}_{q}, m$ therefore thall DG be a fecond refidoal Which was to be dem.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

PROP. CIII.

See the fame Scheme as before.
T゙be fquare of a line $\mathrm{AB}(\mathrm{AC}-\mathrm{BC})$ making witb a medial /pace the wwole /pace medial, applied to a rational line DE , makes the breadtb DG a ix itb refidual line.
225. 10. As above, DK and GK are μa; a wherefore DL b byp. and and GL are f © DE alfo DK $b{ }^{\circ} \square \mathrm{GK}$. whence lem.97.10. DL \square ㄴ․ d therefore DG is a refidual. b And where-
 d i4. io. therefore DG fhall be a fixth refidual. Which was to a 6. def. 8 g. be demonferated.
10.

PROP. CIV.

Lemma.
Let AB . DE :: AC. DF, and AB ' $\sim \mathrm{DE}$
I fay $\mathrm{AC}-1 \mathrm{BC} \mathrm{Z}_{2} \mathrm{DF}+\mathrm{EF}$. For $\mathrm{AC} \cdot \mathrm{BC} a:: \mathrm{DF}$, EF. therefore by compounding $\mathrm{AC}+\mathrm{BC} B C:: \mathrm{DF}$
a lem. б6. + EF . EF therefore by permutation $\mathrm{AC}+\mathrm{BC}$. DF 10.
b 10.10 . $\mathrm{BC} \square \mathrm{DF}+\mathrm{EF}$. Whicb was to be dem.
a Make AB. DE :: AC. DF, b therefore AC +BC a 12. 6. $\quad \mathrm{DF}+\mathrm{EF}$. therefore fering $\mathrm{AC}+\mathrm{BC} c$ is a bi . blem. 103. nomial, $d \mathrm{DF}+\mathrm{EF}$ fhall be a binomial too, and of 10.
c byp. the fame order. e wherefore DF - EF is a refidual of d 67.10 . eby def 85.
10.

PROP. CV.

Again a make AB. DE :: AC. DF. b whence $\mathrm{AC}+$ a 12.6. $\mathrm{BC} \frac{\mathrm{DF}}{\mathrm{L}} \mathrm{DEF}, \mathrm{c}$ therefore $\mathrm{DF}+\mathrm{EF}$ is a bime- blem. 103: dial of the fame order with $\mathrm{AC}+\mathrm{BC}, d$ and confe- 10 : quently DF - FF thall be a medial refidual of the c 68. 10.' fame order with AC - BC Whicb was to be dem. d 75. and

PROP. CVL.

a then is $A C+B C$ 万 D D $+E F$. but $A C+B C b$ a lem. 103: is a Major line ; c therefore DF -EF is alfo a Major 10. line; d and confequently $\mathrm{DF}-\mathrm{EF}$ is a Minor line b byp. Wbich was to be dem.

PROP. CVII.

PROP. CVIII.

For according to the preceding $\mathrm{DF}+\mathrm{EF}$ fhall con. tain in Power 2μ ata a therefore DF - EF fhall be, as in the Prop.
a 19. 10.]
\mathbf{P}_{2}
PROP.

PROP. CIX.

dkal line, or a Minor line.
Upon $\mathrm{CD} \dot{\rho}$ make the rectangles $\mathrm{CI}=\mathrm{A}+\mathrm{B}$, and
a3. $2 x .1$
b byp. and conftr.
c 21. 10.
d 23. 10 .
e 13.10.
f 74.10.
g $1 . \operatorname{def} .85$.
92. 10.
k4.def. 85 .
10.
195. 10. $\mathrm{FI}=\mathrm{B}$. whence $\mathrm{CE} a=\mathrm{A}=\mathrm{Hq}$. wherefore becaufe CI b is $\rho v . c$ therefore CK is ρ पCD. but becaure FI b is $\mu v, ' d$ hall FK be ρ $\square \mathrm{CD}$. e whence $\mathrm{CK} \square$ FK. f therefore CF is a refidual line. Wherefore if CK be $\square \sqrt{ } \mathrm{CKq}-\mathrm{FKq}, \mathrm{g}$ then CF shall be a firft refidual. b therefore $\sqrt{ } \mathrm{CE}(\mathrm{H})$ is a refidual line. But if CK $\quad \sqrt{ } \mathrm{CKq}-\mathrm{FKq} k$ then CF thall be a fifth refidual; and confequently $\mathrm{H}(\sqrt{ } \mathrm{CE}) l$ fhall be a Mi nor line. Wbicb was to bp dem.

PROP.CX.

See the preceding Scbeme.
A rational rec̈̀angle B being taken away from a medial rettangle $\Lambda+B$, otber two irrational lines are made, name$l y$; eitber a firft medialrefidual line, or a line making witb a rational fpace the wwo'e space medial.

Upon CD the propounded ρ make the rectangles CI
a 3. $a x$ r. $=A+B$, and $\mathrm{FI}=\mathrm{B} a$ whence $\mathrm{CE}=\mathrm{A}=\mathrm{Hq}$.
b byp. and conffr.
c 23. 10
d21. 10
e 13. 10. CE) is a firft medial refidual. But if $\mathrm{CK} \square \square \mathrm{CKq}$
f i4 10. - FKq, k then fhall CF be a fifth refidual ; and l cong 2.def. 85 . fequently H ($\checkmark \mathrm{CE}$) fhall be a line making $\mu \nu$ with 10. for. Which was to be dem.
h 9j. 10 .
$\mathbf{k} \boldsymbol{5} \operatorname{def} .85$.
10.

PROP.
196.10.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies ing one from another.

1. A Medial line.
2. A binomial line; of which there are fix fecies.
3. A firf bimedial liner
4. A fecond bimedial.
5. A Major line.
6. A line containing in power a rational fuperfcies, and a medial fuperficies.
7 A line containing in power two medial fuperfcies.
7. A refidual line; of which thereare alfo fix kinds.
8. A firft medial refidual line.

10 A recond medial refidual line.
11. A Minor line.
12. A line making with a rational fupesficies the whole fuperficies medial.
13. A line making with a medial fuperficies the whole fuperficies medial.
Since tbe differences of breadtbs do argue differences of vigbt lines, wobofe fquares are applied to fome rational line, and it is demonftrated in the preced. Propofitions that the breadtbs wubich arifo from applying of tbe fquares of thefe 13 limes do differ onofrom another, it covidently follows that thefe 13 limes do aljo differ one from aspotber.

PROP. CXIII.

Tbe Square of a ratiosal line A applied to a binomial $\mathrm{BC}(\mathrm{BD}+\mathrm{DC})$ makes the breadtb EC a refidual line, whofe names EH, CH, are comimenfurable to the names BD , DC, of the binomial line; and in the fame proportion: (EH BD :: CH. DC;) and moreover, the refidual line EC qubich is made, is of. the fame ordor with BC the binomial.
acor.16.6. b 146.

Upon DC the lefs name a make the rectangle DP.二 Aq =BE, whence BC. CD b:: FC. CE. there fore by divifion, BD DC:: FE. EC. And whereas c byp. $\quad \mathrm{BD} \subset\llcorner\mathrm{DC}, d$ thence FE thall be $\leftarrow \mathrm{EC}$, Take EG d 14.5. $=\mathrm{EC}$, and make FG. GE :: EC. CH. Then EH, and CH thall be the names of the refidual EC, where-
unto all is agreeable that is propounded in the theorem: For by compounding, FE. GE (EC):: EH. CH. therefore FH . $\mathrm{EH} e$:: EH. $\mathrm{CH} f$: : FE. EC $f:: \mathrm{BD}$ e e 12, 50 DC. wherefore fince $B D g$ DC b thence fall EH f before. be $7-\mathrm{CH}, b$ and FHq an EHq Therefore because FHq . $\mathrm{EHq} \mathrm{k}:$: FH . CHI. b hall FH be CL CH. l and so FC <compat>I<compat>ᅳ CH. Moreover CD g is $\dot{\rho}$, and DF (Ag) g is $\dot{\rho} v . m$ therefore FC is ρ_{ρ} <compat>ᄁ CD. whence alto $\mathrm{C} F$ is $\dot{\rho}$ TI. CD. n therefore EH, CH are $\dot{\rho}$ and 7 , as before. o therefore EC is refidual line, to which CH may be joined. Furthermore EH. CH $f:: \mathrm{BD}$. DC, and fo by permutation EH. $\mathrm{BD}:: \mathrm{CH}$. DC whence because CH_{f} $\square \mathrm{DC}, p$ hall EH be 므 BD. But fippofe BD 므 $\checkmark B D_{q}-\mathrm{DCq}, q$ then shall EH be $\square \sqrt{ }$ EHf. CHI. Also if BD in ρ propounded, then shall EH be to to the fame ρ. f that is, if BC be a firft dinomial, $t \mathrm{EC}$ shall be a first refidual. In like manner, if DC be to the $\square \square$ propounded ρ, r then is CH , to the fame $\dot{\rho} . u$ that is, if BC be a fecund binomial, x EC Shall be a fecond refidual : And if this be a third binomial, then that shall be a third refidual, ec. But
 $\sqrt{ } \mathrm{EHq}-\mathrm{CHq}$. therefore if BC be a 4,5 , or 6 binominal, EG hall be likewife a 4 , 5 , or 6 refidual. y 15.10 s Which was to be dem.

PROP. XXIV.

gcor.20.6. becaufe RGq. GEq $s:$ BG. GF. b thall BG be $\square 1$ GF. h 10. 10. k and fo $B G$ BF. moreover $B D$ is ρ, and the rec-
 121 . io. therefore alfo $B G$ is $\dot{p} \square B D$. n therefore $B G, G E$ m 12.10: are ρ \#. 0 wherefore BE is a binomial. Laftly, benfcb.12 10. caure BD. CD:: BG. GE. and by permutation BD. BG :: - 3\%. 10. CD. GE, andBD \quad BG p thence fhallCD be \square GE p io. 10. therefore if CB be a firft refidual, BE fhall be a firft binomial, $\mathcal{E}_{c} c$ as in the prec. therefore, \mathcal{O}_{c}.

PROP. CXV.

If a fpace AB be contained under a refidual line AC (CE-AE) and a binomial CB ; wbofe names CD, DB are commenfurable to the names CE, AE, of the refidual line, and in the fame proportion (CE. AE::CD. DB) then the right line F wbich containetb in power tbat 今pace AB , is rational.

Let G be $\dot{\rho}$. and make the rectangle $\mathrm{CH}=\mathrm{Gq} ; a$ 2 inj. 10. then thall $\mathrm{BH}(\mathrm{HI}-\mathrm{IB})$ be a refidual line, and $\mathrm{H} a$ b byp.
 c 19 5. DB b :: CE. EA. therefore by permutation HI. CE:: d 12. 10. BI. EA. c therefore BH. AC :: HI. CE :: BI. EA; e 10. 10. wherefore fince $d \mathrm{HI} \square \mathrm{CE}_{\text {, }} e$ thence $\mathrm{BH} \square \square \mathrm{AC}$. f 1. 6 . and f therefore the rectangle $\mathrm{HC}\{\mathrm{BA}$. But $\mathrm{HC}(\mathrm{Gq})$ 10. 10. b is $f v . g$ therefore $B A(F q)$ is $f o$ and confequently F g fch. 12. is ρ_{0} Wbich was to be dem.

Coroll.

Hereliy it appears that a rational fuperficies may be contained under two irrational right lines.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

The Eleventh Book

0 F

EUCLIDEs

> Elements.

Definitions.
1.

Solid is that which hath length, breadth and thicknefs.
II. The term, or extreme of a folid is a Superficies.

III. A right line $A B$ is perpendicular to a Plane CD , when it makes right ' angles $\mathrm{ABD}, \mathrm{ABE}, \mathrm{ABP}$, with all the right lines BD , BE, BF, that touch it, and are drawn in the faid Planẹ.

IV. A Plane $A B$, is per, pendicular to a Plane $C D_{2}$ when the right lines FG, HK, drawn in one Plane $A B$ to the line of common fection of the two Planes EB, and making right angles therewith, do alfo make right angles with the other Plane CD
Y. The
V. The inclination of 2 right line AB to a Plane CD, is when a perpendicular AE is drawn from A the higheft point of that line $A B$ to the plane CD , and another line EB drawn from the point E, which the perpendicular AE makes in the plane CD , to the end B of the P aid line $A B$ which is in the fame plane, whereby the angle ABE which is contained under the infiting line $\AA B$, and the line drawn in the plane EB is acute.
VI. The inclination of a plane $A B$ to a plane $\mathrm{CD}_{\text {, }}$ is an acute angle FGH contained under the right lines FH, GH which being drawn in either of the planes AB , CD to the fame point H
 of the common fection BE , make right angles FHB , GHB, with the common fection BE.

VII Planes are faid to be inclined to other planes in the fame manner, when the faid angles of inclination are equal one to another.

VIII Parallel planes are thofe which being prolonged never meet.
IX. Like folid figures are fuch as are contained under like planes equal in number.
X. Equal and like folid figures are fuch as are contained under like planes equal both in multitude and magnitude.
XI. A folid angle is the inclination of more than two right lines which touch one another, and are not in the fame fuperficies.

Or thus;

A folid angle is that which is contained inder more than two plane angles not being in the Tame fuperficies, but confifting all at one point.
XII. A Pyramide is a iolid figure comprehended under divers planes fet upon one plane (which is the
bare of the pyramide, and gathered together to one point.
XIII A Prifme is a folid figure contained under planes, whereof the two oppofite are equal, like, and parallel; but the others are parallelograms.
XIV. A Sphere is a folid figure made when the diameter of a femicircle abiding unmoved, the femicircle is turned round about, till it return to the fame place from whence it began to be moved.

Coroll.

Hence, all the rays drawn from the center to the fuperficies of a fphere, are equal amongft themelyes.
XV The Axis of a fphere, is that fixed right line, about which the femicircle is moved.
XVI The Center of a fphere, is the fame point with the centes of the femicircle
XVII. The Diameter of a fphere, is a right line drawn thro the center, and terminated on either fide in the fuperficies of the fphere.
XVIII. A Cone is a figure made, when one fide of a rectangled triangle (viz. one of thofe that contain the right angle) remaining fixed, the triangle is turted round about till it return to the place from whence it firlt moved. And if the fixed right line be equal to the other which containeth the right angle, then the Cone is a rectangled Cone : But if it be lefs, it is an obtufe-angled Cone; if greater, an acute-angled Cone.
XIX. The Axis of a Cone is that fix'd line about which the triangle is moved.
XX. The Bate of a Cone is ethe circle, which is defcribed by the rigkt line moved about.
XXI. A Cylinder is a figure made by the moving round of a right-angled parallelogram, one of the fides thereof, (namely, which contain the right angle) abiding fix'd, till the parallelogram be turned about to the fame place, where it began to move.
XXII. The Axis of a Cylinder is that quiefcent right line, about which the parallelogram is turned.
XXIII. And the Bates of a Cylinder are the circles which are defcribed by the two oppofite fides in their motion.
XXIV. Like Cones and Cylinders, are thofe both. whofe Axes and Diameters of their Bafes are propnstional.

XXY. A

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

Whbich is absured Therefore the triangle EDB is in one and the fame plane ; and fo alfo are the right lines. ED, EB; a wherefore the whole lines AB, DC, are in one plane. Wbith was to be dem.

PROP. III

If two planes AB, CD, cout one the other, their common fection EF is a right lime.
If EF the common fection be - not a right line, a then in the plane AB draw the right line EGF. a and in the plane CD the right line EHF. therefore two right lines $b_{\text {I4.ax. }}$ 1. EGF. EHF include a fuperficies. $b W$ bicb is $a b f u r d$.

PROP. IV.

If at \mathbf{E} tbe common fection of twwo rigbt lines AB, CD, a right line EF fands at rigbt angles to them, it Jball aljo be at rigbt angles to the plane ACBD drawn tbro the faid

Take EA, EC, EB, ED, equal one to the other, and join the right lines $\mathrm{AC}, \mathrm{CB}, \mathrm{BD}, \mathrm{AD}$. draw any right line GH thro ${ }^{\circ} \mathrm{E}$, and join FA, FC, FD, FB, FG, FH. Becaure AE is $a=$
à conftr. b 15 . 1 . C 4 I. d/ch. 34 I. e 29. 1. f confr. j26. 1. h 4 I. k8.1.
14.1. m8. 1 . n 120 def.I. EB , and $\mathrm{DE} a=\mathrm{EC}$, and the angle $\mathrm{AED} b=\mathrm{CEB}$, c therefore AD is $=\mathrm{CB}$, clikewife $\mathrm{AC}=\mathrm{DB}$. d therefore AD is parallel to CB, d and AC to BD . e wherefore the angle $G A E=E B H$, and the angle AGE $=$ EHB. But alio $\mathrm{AE} f=\mathrm{EB}$. g therefore $\mathrm{GE}=\mathrm{EH}, g$ and $\mathrm{AG}=\mathrm{BH}$. whence by reafon of the right angles, by the hyp. and fo equal, at E, b the bales $F A, F C, F B, F D$, are equal. Therefore the triangles ADF, EBC, are equilateral one to another, k and thence the angle DAF $=$ BCF Therefore in the triangles AGF, FBH, the fines FG, FH l are equal; and fo by confequence the triangles FEG and FEH are mutually equilateral. m therefore the angles FEG, FEH are equal, and n fo right angles. In like manner, FE makes right angles with ail the lines drawn thro E in the plane ADBC°, 03 def.in. O and is therefore perpendicular to the faid plane.

PROP. V:

If a right line AB be errected perpenNicular to tbree rigbt lines $A C, A D$, AE, toucbing one the otber at the common feEtion, thoofo tbree lines are in the fame plane

For $A C, A D, a$ are in one plane FC; a and AD , AE , are in one plane
 BE, which if you conceive to be reveral planes, then let their interfection b be the right line AG; therefore becaufe BA by the Hyp. is perpendicular to the right lines $\mathrm{AC}, \mathrm{AD} . c$ and to to the plane FC , d it is alfo perpendicular to the right line AG. therefore (fince a that $A B$ is in the fame plane with $A G ; A E$) the angles BAG, BAE, are right angles, and confequently equal, the part and the whole. Wbich is abfurd.

PROP. VI.

If two right lines AB, DC, be evected perpendicular to one and the fame plane EF, thofe right lines AB, DC, are parallel one to the otber.

Draw AD, whereunto let DG $=\mathrm{AB}$ be perpendicular in the
 plane EF , and join $\mathrm{BD}, \mathrm{BG}, \mathrm{AG}$. Becaufe in the triangles BAD, ADG, the angles DAB, ADG a are right angles, and $A B b=D G$, and $A D$ is common, c therefore BD is $=\mathrm{AG}$. whence in the triangles AGB, BGD , equilateral one to the other, the angle BAG is $d=$ BDG; of which fince BAG is a right angle, BDG fhall be fo alfo, but the angle GDC is fuppofed right, therefore the right line GD is perpendicular to the three lines $\mathrm{DA}, \mathrm{DB}, \mathrm{CD}$. e which are therefore in the fame plane f wherein AB is. Wherefore fince $A B$ and $C D$ are in the fame plane, and the internal angles $B A D, C D A$, are right angles, $\Omega A B$ and CD chall be parallels. Which was to be dem.
a byp:
b conftr:
c 4.1. d 8. 1.
e 5. 1: f 2.11 g 28. 1.

PROP. VII.

If there are two parallel rigbt lines AB, CD, and any points E, F, be taken in both of tbem, the line EF wbich is joined at thefe points, is in the fame plane with the parallels AB, CD.

Let the plane in which AB, CD, are, be cut by another plane at the points E, F. then if EF is not in the plane $A B C D$, it fhall not be the common fection. Therefore let EGF be the common fection; which a then is a right line, therefore two right lines EF, EGF, in$\mathrm{b}_{14} \mathrm{ax}$. I . clude a fuperficies. $\mathrm{b} W_{b i c b}$ is $a b$ furd.

PROP. VIII.

If tbere are two parallel rigbt limes $A B, C D$, wbereof one $A B$, is perpendicular to a plane EF. tben the other CD Sball be perpendicular to the fame plane EF.

The preparation and demonftration of the fixth of this Book being transferr'd hither; the angles GDA, and GDR are
24.IT.
b 7.11
c 3.def.11.
d 29. 1 .
e4. 11. right angles : a Therefore $G D$ is perpendicular to the plane, wherein are $A D, D B$ (b in which alfo $A B, C D$, are.) \& therefore GD is perpendicular to CD . but the angle CDA is alro d a right angle, e therefore CD is. perpendicular to the plane EF. Which was to be det mongtrated.

PROP. IX.

Rigbt lines (AB, CD) wwbich are parallel to the fame'rigbt line EF, but not in the fame plane with it, are alfo parallel one to the otber.

In the plane of the parallels $A B$, EF, draw HG perpendicular to EF ; alfo in the plane of the parallels EF, CD, draw IG perpendicular to EF : at therefore EG is perpendicular to the plane wherein HG, GI are; and AH, CI are perpendicular to the fame plane, c therefore $\mathrm{AH}^{\text {and }} \mathrm{Cl}$ are parallels. Wbicb was to be dem.

PROP. X.

If two rigbt lines AB, AC, toucbing one anotber be parallel to two other right limes ED, DF, toucbing one anotber, and not b_{-}^{-} ing in the fame plane, tbole rigbt lines contain equal angles, $\mathrm{BAC}, \mathrm{EDF}$.
Let $A B, A C, D E, D F$, be equal one to the other, and draw $\mathrm{AD}, \mathrm{BC}, \mathrm{EF}, \mathrm{BE}$, CF . Since $\mathrm{AB}, \mathrm{DE}, a$ are parallels and e^{-}

2 byp and confr b 33 . 1 . qual, b alfo BE, AD, are parallels and equal. In like

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
parallels ; which is repugnant to the definition of parallel lines.

PROP. XIV.

Planes CD, FE, to wbich the Jame right lite AB is perpendicular, are parallel.
If you deny this; then let the planes CD, EF meet, fo that their common fection be the right line GH, in which take any point I, draw to it the right lines IA, IB, in the faid planes. whereby in the triangle IAB, two angles a byp and IAB, IRA a are right angles. b Wich is $a b$ furd.
3. def. 1 I.
blion.
a II. II.
b li I.
c 9. II.
d 3 def. II.
e 29. 1.
f4. II.
oconftr.
$\mathrm{h}_{\mathrm{h}}^{\mathrm{I}} \mathrm{Con}$. 1.

PROP. XV.

If two right lines AB, AC, toucbing one the otber, are parallel to twaother right lines DE, DF, toucbing one the otber, and not being in the fame plane witb them, the planes BAC, EDF, drawn by tbofe right lines are parallel one to. the other.
From A a draw AG perpendicular to the plane EF: b and let GH, GI be parallel to DE, DF. c thefe alfa Shall be parallel to $A B, A C$. Therefore fince the angles IGA, HGA, d are right angles, alfo CAG, BAG, e fhall be right angles. f therefore GA is perpendicular to the plane BC ; but the fame is perpendicular to the plane EF, b therefore the planes BC, EF, are p^{2} rallel. Whicb awas to be dem.

PROP. XVI.

If two parallel planes AB, CD, are cut by fome otherplane HEIGF, their commcn fections EH, GF are parallel one to the otber.

For if they are faid to be not parallel, then, fince they are in the fame cutting plane, they muft meet fome where, fuppofe in I, wherefore fince the whole lines

HEI, FGI a are in the planes $A B, C D$, produced, the a I. in. planes alfo fhall meet. contrary to the Hyp.

PROP. XVII.

If two right lines ALB, CMD, are crut by parallel planes EF, GH, IK; they sball be cut proportionally, (AL LB :: CM. MD.)

Let the right lines AC, BD, be trawn in the planes EF, IK ; as alio AD meeting the plane GH in the point N . and join NL, NM, the planes of the tri-
 angles $\mathrm{ADC}, \mathrm{ADB}$, make the fections BD, LN, and AC , NM, a parallels. Therefore AL. LB :: AN. ND 6 :: CM. MD. Which was to be derio

PROP. XVIIL

If a rigbt line AB be perpendicular to fome plane CD , all the planes EF paffing tbro that right line AB Jball be perpendicular to the fame plane CD.

Let there be fome plane $B F$ drawin thro ${ }^{\circ} \mathrm{AB}$, mak-
 ing the fection EG with the plane CD; from fome point whereof $\mathrm{H}, \boldsymbol{a}$ draw HI parallel to AB in the plane EF ; b then fhall HI be perpendicular to the plane CD , and fo likewife any other lines, that are perpendicus lar to EG c therefore the plane EF is perpeudicular to the plane CD ; and for the fame reafon any other planes drawn thro' AB fhall be perpendicular to $C D$. W bich was to be dem.

> PROP. XIX.

If two planes AB, CD, cutting one the other, are perpendicular to Jome plane GH, their line of common fection EF fball be perpendicular to the fame plane (GH)

Becaufe the planes $A B, C D$, Q_{2}

are taken perpendicular to the plane GH , it appears by 4. def. I1. that from the point F there may be drawn in both planes AB, CD, a perpendicular to the plane GH , which Thall be a one and the fame line, and therefore the common fection of the faid planes. Wbich was to be demonftrated.

PROP. XX.

If a folid angle ABCD be contained under tbree plane angles, $\mathrm{BAD}, \mathrm{DAC}$, BAC, any two of them bowfoever taken are greater than the third.

If the three angles are equal, the affertion is evident ; if unequal, then let the greatef
a 23. 1.
b conftr. c 4.
d 20 I.
e 5.ax. I.
f 25.1 .
g 4 ax. 1 . be BAC ; from whence a take away $\mathrm{BAE}=\mathrm{BAD}$, and make $\mathrm{AD}=\mathrm{AE}$; and alfo draw $\mathrm{BEC}, \mathrm{BD}, \mathrm{DC}$.

Becaufe the fide BA is common, and $\mathrm{AD} b=\mathrm{AE}$; and the angle $\mathrm{BAE} b=\mathrm{BAD}$, c thence is $\mathrm{BE}=\mathrm{BD}$. but $\mathrm{BD}+\mathrm{DC}$ is $d=\mathrm{BC}$. e therefore $\mathrm{DC} \sim \mathrm{EC}$ Wherefore fince $A D b=A E$, and the fide $A C$ is common, and $\mathrm{DC} \subset$ EC. f the angle CAD thall be \sqsubset EAC, g therefore the angle $\mathrm{BAD}+\mathrm{CAD} .-\mathrm{BAC}$. Which was to be dem.

PROP. XXI.

Every folid angle A is contained under lefs angles than four plane right angles.

For let a plane any-wife cutting the fides of the folid angle A make a many-fided figure BC$D E$, and as many triangles $A B C$, $\mathrm{ACD}, \mathrm{ADE}, \mathrm{AEB}$. I denote all the angles of the polygone by X ; and I term the fum of the angles at the bates of the triangls Y. whereof $X+4$ right angles a
a $32 \times 8=Y+A$. but becaufe that (of all the angles at B) 6 fib. 311. b 20. I't. c $5 . a x$. 1 . the angle $A B E+A B C$ is $\subset C B E$, and the fame is true alio of the angles at C , at D , and at E, c it is manifeft that Y is $-X$, and confequently A thall be \beth 4 right angles. Which was to be dem.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
e 3.def. In. wherefore fince the angle IILM e is a right angle, f. $\mathrm{f}_{47 . \mathrm{I}}$. thence is $\mathrm{MHq}=\mathrm{HLq}_{\mathrm{q}}+\mathrm{LMq}_{\mathrm{g}}=\mathrm{ADq}_{\text {. }}$ therefore g conftr. $\mathrm{MH} \ldots \mathrm{AD}$. By the fame way of reafoning MK, MI, h conftr. AD (that is $\mathrm{AE}, \mathrm{EB}, \theta^{\circ} c$.) are equal; therefore fince k. 8.1 . $H \mathrm{M}=\mathrm{AD}$, and $\mathrm{MI}=\mathrm{AE}$, and $\mathrm{DE} b=\mathrm{HI}, k$ the angle A fhall be $\boldsymbol{\sim}$ HMI, k as likewife the angle IMK $=B, k$ and the angle $\mathrm{HMK}=\mathrm{C}$, wherefore a folid angle is made at M of the three given plane angles. Which was to be done. AD is affumed to be - HL. But this is manifeft. For if AD be $=$ or \triangle HL, then 1 conftr. ©o is the angle A $l=m$ or 5 HLI. In like manner 8. I.
m2I. 1 .
${ }^{*}$ *. 4 or. 13.1 Thall B be equal or \subset HLK, and $\mathrm{C}=$ or -KLS , wherefore $A+B+C$ *hall either equal or exceed four right angles. contrary to the Hyp. therefore rather let AD be $[\mathrm{HL}$. Whicb was to be dem.

PROP. XXIV.

16 If

If a folid AB be contained under parallel planes, the oppofite planes thereof (AG, BD, \&cc) are like andequal paral. lel:grams.

The plane AC curting the parallel planes AG, $D B, a$ makes the fections AH, DC, parallels, and for the fame reafon $A D$, HC are parallels. Therefore ADCH is a pgr . By the like argument the other planes of the pab 35 . def. I. rallelepipedon are b pgrs wherefore fince AF is paralc io. in. lel to HG, and AD to HC, c the angle FAD thall be. d 34. I. $=\mathrm{GIHC}$, therefore becaufe $\mathrm{AF} d=\mathrm{HG}$, and $\mathrm{AD} d=$ c 7.5 . $\overline{H C}$, and fo AF. AD :: HG. HC, the triangles FAD, g 6. G. GHC g are like and h equal; and confequently the pgrs. h 4 I. AE, HB are like and k equal, and the fame may be $\mathbf{k} 6 \mathrm{ax}$. I. Thewn of the reff of the oppofite planes, therefore, ©゚.

PROP. XXV.

If a folid Parallelen pipedon ABCD be cat by a plane EF parallel to the oppofite planes AD, BC; then astbe bafe All is to the bafe BH, fofball folid AHD: be to jolid BHC.

Conceive

Eucíiof's Elements.

Conceive the parallelepipedon ABCD to be extended on either fide, and take $\mathrm{AI}=\mathrm{AE}$; and $\mathrm{BK}=\mathrm{EB}$, and put the planes IQ, KP , parallel to the planes AD , BC; then the pgrs. IM, AH, and a DL, DG, band IQ, $\mathrm{AD}, \mathrm{EF}, \mathcal{O}^{\circ} \mathrm{c}$. are a like and equal, c wherefore the $\mathrm{Pa}-$ rallelepipedon AQ is $=\mathrm{AF}$; and for the fame realon the Parallelepipedon $\mathrm{BP}=\mathrm{BF}$. therefore the folids IF , EP are as multiple of the folids AF, EC, as the bafes IH, KH, are of the bares AH, BH. And if the bare IH be $\subset,=\beth$ KII, d likewife thall the folid IE be $[,=\sqsupset \mathrm{EP}$. e confequently AH. BH:: AF.EC. Which was to be dem.
T be fame may be accomodated to all foots of prifmes, e $6 . d e f .5$. wobence

Coroll.

If any prifme whatioever be cut by a plane parallel to the oppofite planes, the fection thall be a figure equal and like to the oppofite planes.

PROP. XXVI.

Upon a right line given AB, -and at ap pornt given in it A , to make a folid angle AHIL equal to a folid angle given CDEF.

From fome point Fa

aII.II, draw FG perpendicular to the plane DCE, and draw the right lines DF, FE, EG, GD, CG. Make $\mathrm{AH}=\mathrm{CD}$, and the angle HAI $=D C E$, and $A I=C E$; and in the plane HAI make the angle $\mathrm{HAK}=\mathrm{DCG}$, and $A K=O G$, then erect KL perpendicular to the planeHAI, and let KL be $=$ GF, and draw AL : Then AHIL fhall be a folid angle equal to that given CDEF. For the conffruction of this does wholly refemble the framing of that, as will eafily appear to any who examine it.

PROP. XXVII.

Upon a right line git. ven AB to defcribe a paos rallelepipedon AK, like, and in like manner fituate, with a folid parallelepipedon givenCD.
Of the plane angles, BAFI, HAI, BAI, which are e-
a 26.11. b 12.6 . c 22.5 .
d 1. def. 6. e 24. 11. qual to FCE, ECG, FCG, a make the folid angle A equal to the folid angle C. alío b make FC. CE :: BA. AH. b and CE, OG : : AH. AI (c whence by equality FC. CG :: BA. AI) and finith the parallelepipedon AK, which thall be like to that which is given.

For by the conftruction, the Pgr. d BH is like to $\mathrm{FE}_{\text {, }}$ and d HI to EG, and d BI to FG, and e fo the oppofites of there to the oppofites of them: Therefore the fix planes of the folid AK are like to the-fix planes of the f 9.def.I 1. folid CD, f and confequently AK, $C D$, are like folids. Wbich was to be dem.

PROP. XXVIII

If a solid parallelepipedon $A B$ be cut by a plane FGCD drawn tbro the diagonal lines DF, CG, of the oppofite planes AE, HB, that fold AB fball be equally bi. Sected by the plane FGCD.
a 24. 1. For becaufe DC, FG, are a equal and parallels, 3 the b 34. I. plane FGCD is a Pgr and becaufe a the Pgrs. AE HB, are equal and like, b alfo the triangles $A F D, H G \dot{C}$, CGB, DFE are equal and like. But the Pgrs. AC. AG, are equal and like to FB and FD, therefore all the planes of the prifme FGCDAH are equal and like to
c9.def II. all the planes of the prifme, FGCDEB, and c confe- quently this prifme is equal to that. Which was to.be demonftrated.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies $\mathrm{HG}, \mathrm{EF}, \mathrm{PQ}, \mathrm{ON}$ be as well equal and parallel one to b 29.11. the other as AD, HE, GF, BC, KL, IM, QN. PO. 6 wherefore the parallelepipedon ADCBPONQ thall be c 1. ax. I equal to either paralkelepipedon ADCBHEFG, ADCBIMLK; and c confequently thefe two are equal one to the other. Wbich was to be dem.

PROP. XXXI.

Solid parallelepipedcns, ALEEGMBI, CP OHQDN, * by beigbt being confituded upon equal byes ALEK, $\mathrm{CP} \omega \mathrm{O}$, and* underfitand in the fame beight are equal, one to the other.
the perpen- Firft, let the parallelepipedons AB, CD, have the dicular fides perpendicular to the bafes, and at the fide CP bedrawnfrom ing produced, a make the Pgr. PRTS equal and like the plane of to the pgr. KELA. b and fo the parallelepipedon PRthe bafe to TSQVYX equal and like to the parallelepipedon AB. the oppcfite Produce $\mathrm{O} \omega \mathrm{E}, \mathrm{ND}$, $, \omega \mathrm{FZ}, \mathrm{DQF}, \mathrm{ERB}, \delta V_{\gamma}, \mathrm{TSZ}$, plane. YXF; and draw E $\delta, \mathrm{B} \gamma, \mathrm{ZF}$.
a 13.6 The planes $\mathrm{O}_{\xi} \Omega \mathrm{N}$, CRVII, ZTYF, c are parallels $\mathrm{b}_{2} \mathrm{i} .11$ §o one to the other; d and the Pgrs. ALEK, $\mathrm{CP}_{\omega} 0$. 10. def.uI. PRTS, PRBZ are equal. Therefore fince the parallele-
 d byp. and lelepipedon $\operatorname{PRBZQV}{ }_{2}$ F. $\mathrm{PV} \delta^{\circ} \omega$; the parallelepipedon
 e 25 . 11 . AB. Which was to be dem.

But if the parallelepipedons AB, CD, have fides obf 9.5 .
g 29. II. h confr. k29. ir. mi. ax. I. ther, and to thofe that are oblique, m whence alfo the oblique parallelepipedons $\mathrm{AB}_{2} \mathrm{CD}$ are equal. W bich was to be demonfrated.

PROP. XXXI.

Solidparallelepipedons ABCD, EPGL, of the fame beigbt, are one to the otber, as their bafes, AB, EF.

Produce EHI, a and make the pgr. $\mathrm{FI}=\mathrm{AB}$, and a 45. I. b compleat the parallelepipedon FINM. It is clear that b27. 114 the parallelepipedon FNNM. (c ABCD) EFGL d :: FI c 31.11 . (AB) EF . Which was to be dem.

PROP. XXXIII:

Like Solid parallelepipedons, $\mathrm{ABCD}, \mathrm{EFGH}$, are to one another in triplicate ratio of tbeir homologous fides AI, EK.

Produce the right lines AIL, DIO, BIN, and a make IL, IO, IN, equal to EK, KH, KF, b and fo the parallelepipedon IXMT equal and like to the parallelepipedon EF-

DK GH. c Let the parallepps. IXPB, DLYQ be finifhed. d $\mathbf{c} 3$ 1. I. Then Thall be AL. IL (EK) :: DI. IO (HK):: BI. IN. d byp. (KF) e that is the pgr. AD. DL :: DL. IX :: BO. IT. e I. 6. f i.e the parallepp. ABCD. DLQY :: DLQY. IXBP $\mathrm{f}_{32 \text {. } 11}$. : : IXBP. IXMT. (g EFGH.) b therefore the proporti- g conftr, on of ABCD to EFGH is triplicate of the proportion $\mathrm{h} 1 \mathrm{n} . \mathrm{def} .5$. of ABCD to DLQY, k or of AI toEK. 'W bich was to k I. 6. be demonftrated.

Caroll.

Hence it appears that if four right lines be continually proportional, as the firft is to the fourth, fo is a parallelepipedon defcribed on the firft to a parallelepipedon defcribed on the fecond, being like and in like manner defcribed.

PROP. XXXIV.

Coroll.

'All that hath been dem. of parallelpps. in the 29, 30,31, ;2, 33, 34. Prop. does alfo agree to triangular prifmes, wbicb are balf parallelpps. as appears by Prop 28. Therefore,

1. Triangular prifmes are of equal height with their bafes.
2. If they have the fame or equal bafes and the fame altitude, they are equal.
3. If they are like, their proportion is triplicate of that of their homologous fides.
4. If they are equal, their bafes and altitudes are reciprocal ; and if their bafes and altitudes are reciprocal, they are alfo equal.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
taining equal angles with the lines firft given, each to each ; perpendiculars drawn from the extreme points of thole elevated lines to the planes of the angles firft given, are equal one to the other, viz. $\mathrm{LM}=\mathrm{HK}$.

PROP. XXXVI.

If there are three rigbt Iines DE, DG; DF proportional, the folid parallelpp. DH. made of them, is equal to the fold parallelpp. IN made of the middle line DG(IL) which is 'alfo equilateral, and equiangular to the faid parallelepipedon DH.
a byp: Becaufe DE. IK $a::$ IL. DF, b the pgr. IK thall be bi46. =FE, and by reafon of the equality of the plane angles at D and I , and of the lines GD, IM, alfo the altitudes of the parallelepps. are equal by the preceding Coroll.
c 31. II. c therefore the parallelepps. are equal one to the other. Which was to be dem.

PROP. XXXVII

If there are four rigbt lines $\mathrm{A} ; \mathrm{B}, \mathrm{C}, \mathrm{D}$, proportional, the folid parallelepps. A, B, C, D being like, and in like fort defcribed from them, Jball be proportional. And if tbe folid paralletps. being like and in like fort defcribed, be proportional (A. B:: C. D.) then thofe right lines A, B, C, D, ball be proportional.
233.11.
b fcb. 235 .
For the proportions of the parallelepps: a are triplicate of thofe lines; therefore if A.B::C.D, b then fhall the parallelpp. A. parallelpp. B :: parallelpp. C. parallelpp. D. and fo alfo contrarily.

PR O.P. XXXVIII.

If a plane AB be perpendicular to a plane AC , and a perpendicular line EF be drawn from a point E in
 one of the planes (AB) to the other plane AC, that perpendicular EF Jball fall upon the common fection of the planes AD.

If it be poffible, let F fall without the interfection $A D$. and in the plane $A C a$ draw $F G$ perpendicular to a 12.1 . $A D$, and join $E G$. Tise angle FGE b is a right angle, $b 4$ and 3 . and EFG is fuppofed to be fuch alfo; therefore two right def. iI. angles are in the triangle' EFG. c Which is ablurd C 17.1.

PROP. XXXIX.

If the fides (AE, FC, AF,耳C, and DH, GB, DG, HB) of the opprofete planes AC, DB, of a folid parallelpp. AB, be divided into two equal parts, and planes ILQO, PKMR, be drawn tbro their fections, the D common Section of the planesST, and the diameter of the Jolid parallelpp. AB Jall' divide one the
 other info two equal parts.

Draw the right lines SA, SC, TD, TB. - Becaufe a the fides DO, OT are equal to the fides $\mathrm{BQ}, \mathrm{QT}, b$ and the alternate angles TOD, TQB equal, alfo c the bales DT', TB, and the angles DTO, BTQ are equal, d therefore $D^{\prime} T B$ is a right line. and fo in like manner is ASC. Moreover e as well AD is parallel and equal to FGe as FG to CB, and f thence $A D$ is parallel and equal to $\mathrm{CB} ; g$ and confeqently AC to $\mathrm{DB} b$ wherefore AB and ST are in the fame plane ABCD. Therefore fince the vertical angles AVS, BVT , and the alternate angles $\mathrm{ASV}, \mathrm{BTV}$ are equal ; k and $\mathrm{AS}=\mathrm{BT}$; therefore fhall AV be $=\mathrm{BV}, l$ and $\mathrm{SV}=\mathrm{V} \mathrm{T}$. Which was to be dem.
a 34. 1: b 29. I. c 4.1. d /ch. 15.1. e 34. I. f9. 11 .and 1 ax. gis. I.
$\mathrm{j} . \mathrm{I}$.

Coroll.
Hence in every parallelepipedon. all the diameters bifect one another in one point, V.

PROP.

If two pri/mes ABCFED, GHMLIK, be of equal alti: tude, whereof one bath its bafeABCF a parallelogram, and the otber GHM atriangle; and if the parallelogram ABCF be double to the triangle GHM; tbofe prijmes ABCFED, GHMLIK are equal.
a 3r. ir. For if the parallelepps. AN, GQ, be compleated, a b 34 - I and they thall be equal, becaure of the equality b of the bai. ax. fes AC, GP, and c of the altitudes, d therefore alfo the chyp. . prifmes, e the halfs theereof fhall be qual. Whicb was d 28 . II. to be dem.
c 7 . ax. 1 .

Scbol.

-From the preceding demonftrations, the demenfion of triangular pri/mes, and guadrangular, or parallelepps: is learnt; Andr. Taci viz. by multiplying the altitude into the bafe.

As if the altitude be 10 foot, and the bafe 100 fquare foot (the bate may be meafured by $\int c b .35$. 1. or by 41.1) then multiply 100 by 10 , and 1000 cubic foot hall be produced for the folidity of the prifme given.
For as a rectangle,fo alfo is a right parallelepp.produr ced from the akitude multiplied into the bare. Therefore every parallelepp. is produced from the altitude multiplied into the bafe, as appears by 3 1. of this Book.

Moreover, fince the whole parallelepp. is produced from the altitude drawn into the bafe, the half thereof (that is, a triangular prifme) thall be produced from the altitude drawn into half the bare, namely the triangle.

An Advertifement
Obr That of thofe letters wbich denote a folid angle, the firft is always at the point in wubich the angle is; but of tbofe letters which denote a pyramide, the laft is at the fupreme point thereof.

Ex. gr. the folid angle $A B C D$ is at the point A; and the fupreme point of the pyramide BCDA is at the point A and the bafe is the triangle $B C D$.

Tbe End of the eleventh Book.
THE

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

The twelfib Book of

PROP. II.

1

Circles AB'T, EFN, are in propori: tion one to another, as the Squares of their diameters $A C, E G$ are.

Suppore ACq. EGq : : the circle ABT. I. I fay then I is equat to the circle EFN.
For firft, if it be poffible, let I be lefs than the circle EFN, and let K be the excefs or difference. Infcribe the fquare EFGH in the cira fcb. 7.4. cle EFN, a it being the half of a circumfcribed fquare, b 30. 3. and fo greater than the femicircle. b Divide equally in two the arches EF, FG, GH, HE, and at the points of the divifions join the right lines EL,LF, (toc. thro' L c fch 27.3. draw the tangent $P Q$ (c which is parallel to EF) and d41. I. produce HEP, GFQ. then is the triangle ELF d the half of the Pgr. EPQF, and fo greater than the half of the fegment ELF; and in like fort the reft of thofe triangles exceed the halfs of the reft of the fegments. And if the arches EL; LF, FM, Esc. be again bifected, and the right lines joined, the triangles will likewife exceed the half of the fegments Wherefore if the square EFGH be taken from the circle EFN, and the triangles from the other fegments, and this be done

C 1. $\mathbf{I O}^{\circ}$
f. hyp. and 3.ax.
g 30.3 عo 1. poft I.
h I. 12. k byp. continually, at length e there will remain fome magnitude lefs thai K. Let us have gone fo far, namely, to the fegments EL, LF, FM, E${ }_{c}$. taken together lefs than K. Therefore I (f the circle EFN $-K$) \beth the polyg ELFMGNHO (the circle EFN - the fegment $\mathrm{EL}+\mathrm{LF}$, Orc.) In the circle $\mathrm{ABT} g$ conceive a like polygon AKBSCTDV infcribed. therefore fince AKBSCTDV. ELFMGNHO $b::$ ACq. EGq $k::$ the circlo
tircle ${ }^{-} A^{\prime}$ T. I. and the polyg AKBSCTDV 1 ? the 19.ax. I^{-} circle ABT. the polyg. ELFMGNHO m Shall be $\longrightarrow \mathrm{mi} 14.5$. 1. but before, I was \longrightarrow ELFMGNHO. which is repugnant.
Again, if it be poffible, let I be - the circle EFN. Therefore becaure ACq. EGq n : : the circle ABT I; n byp. and inverfely I. the circle ABT:: EGq. ACq. fuppofe I. the circle $A B T$:: the circle EFN. K. o therefore the 0 I4. 5: circle ABT ᄃK. p and EGq. ACq: : the circle EFN. P II. $5:$ K. which was juft now thewn to be repugnant.

Therefore it muft be concluded, that I is $=$ to the circle EFN. W bich was to be dem.

Coroth.

Hence it follows, that as a circle is to a circle, 10 is a polygon inicribed in the firft to a like polygon infctibed in the fecond.

PR O P. III.

Eviery Pyramide ABDC baving a triangular bafe, may be divided into two pyramides AEGH, HIKC, equal, and like one to the otber, baving bafes triangular, and like to the wbole ABDC; and into two equal prifmes, BFGEIH, FGDIHK; wbbich two pri/mes are greater tban
 tibe balf of the wbole pyramide ABDC

Divide the fides of the pyramide into two partsat the points E, F, G, H,I, K, and join the right lines EF, FG, GE, EI, IF, FK, KG, GH, HE. Becaufe the fides of the pyramide are proportionally cut, a thence HI, AB; a 2.6 . and GF, AB ; and IF, DC ; and HG, DC; ©o.- are pa.rallels, and confequently HI, FG; and GH, FI are atfo parallels, therefore it is apparent that the triangles ABD, AEG, EBF, FDG, HKK, b are equiangular, and b 29. I: that the four laft are cequal: In like manner the trian- C 26. I. gles ACB, AHE, EIB, HIC, FGK are equiangular; and the four laft are equal one to the other. Alfo the triangles BFI, FDK, IKC, EGH ; and laftly, the triangles AHG, GDK, HKC, EFI are like and equal. Moreover the triangles, FHK to ADB, EGH to BDC, and EFI to $A D C$, and FGK to $A B C$, d are parallel From d is. ir. R $\begin{aligned} \text { 亿 } \\ \end{aligned}$
whence it evidently follows, firf, that the pyramides e 10. def. AEGH; HIKC are equal, and e like to the whole ABDC, II. and to one another. Next, that the folids BFGEIB, FGDIHK are prifmes, and that of equal height, as being placed between the parallel planes ABD, HIK, but f 2. ax. I. the bafe BFGE is f double of the bafe FDG. wherefore g 40. II. the faid prifmes are equal ; whereof the one BFGEIII is greater than the pyramide BEFI, that is, than AEGII, the whole than its part ; and confequently the two prifmes are greater than the two pyramides and fo exceed the half of the whole pyramide ABDC. Wbicb, was to be dem.

If there are two pyramides ABCD, EFGH, of the fame altitude, •baving triangular bafes ABC, EFG; and eitber of them be divided into twu pyramides (AILM, MNOD; and EPRS, STVH) equal one to the otber and like to the

- whole; and into two equal prifmes (IBKLMN, KLCNMO ; and PFQRST, QRGTSV ;) and if in like marner either of thofe pyrs. made by the former divifion be divided, 'and tbis be done continually; then as the bafe of one pyramide is to the bafe of the other pyramide, fo are all tbe prifmes which are in one pyramide, to all the prifmes which. are in the other pyramide, being equal in multitude.

For (applying the conftruction of the precedent
2155.
b 226 .
c 26.80_{c}. d 165. efch.34.11 11.5. g 12.5 . prop.) BC . KC $a:$: FG. QG. b therefore the triangle $A B C$ is to the like triangle LKC as EFG is to c the like RQG. therefore by permutation ABC. EFG $d:=$ LKC. RQG e :: the prifme KLCNMO. QRGTSV (for thefe are of equal altitude) $f:$:IBKLMN. PFQRST, g wherefore the triang. ABC. EFG :: the prifme KLCMNO + IBKLMN. the prifme QRGTSV + PFQRST. Whicb was to be dem. \because But

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

Pyramides ABCDEF, GHIKLM, being of the fame aftitude, and baving polygosous bafes ABCDE, GHIKI, ara to one another as their bafes ABCDE GHIKL are.

Draw the right lines $\mathrm{AC}, \mathrm{AD}, \mathrm{GI}, \mathrm{GK}$. then is the bare ABC.ACD a:: the pyr. ABCF.ACDF, b therefore by compofition, $A B C D$. ACD: : the pyr. ABCDF. ACDF. a but alro ACD ADE :: the pyr. ACDF. ADEF. c therefore by equality $\mathrm{ABCD} \mathrm{ADE}:: \mathrm{ABCDF}$. AD EF , and b thence by compofition. ABCDE ADE:: the
a 5. 12.
b 18.5
c 22. 5.
d5.12.

C5.12.
724.5 pyr. ABCDEF, ADEF, moreover ADE GKL $d::$ the Pyr. ADEF GKLM; and as before, and inverfely GKL. GHIKL : : the pyr. GKLM. GHIKLM. c therefore again by equality ABCDE GHIKL: : the pyr. ABCD. EF. GHIKLM. W bich rwas to be aem.

If the bafes have not fides of equal multitude, the demonftration will proceed thus. The bafe ABC. GHl a : : the pyr. ABCF: GHIK.e and ACD.GHI:: the pyr.ACDF.GHIK, ftherefore the bare ABCD. GHI :: the pyr. ABCDF. GHIK. e Moreover the bare ADE.GHI :: the pyr. ADEF. GHIK. f therefore the bafe ABCDE GH! :: the pyr. ABCDEF. GHIK.

PROP. VII.

Every prifme, ABCDEF, having a triangular bafe, may be digided into tbree pyrs. ACBF, ACDF,CDFE, equal one to the otber, and baving triangular bafes.
Draw the diameters of the parallelograms AC, CF ,
che pyramides of equal height ACBF, ACDF are equal.
In like manner the pyr. DFAC = the pyr. DFEC, but ACDF and DFAC are one and the fame pyr. c therefore c I. $\dot{x} \cdot \underline{x}$ the three pyramides ACBF, ACDF,DFEC, into which the prifme is divided, are equal one to the other. $W_{b i c h}$ was to be demonftrated.

Hence, every pyramide is the third part of the prifme that has the fame bafe and height with it, or every prifme is treble of the pyramide that has the fame bare and height with it.

For refolve the polygonous prifme ABCDEGHIKP into triangular prifmes ; and the pyr. ABCDEH into triangular pyramides;
 a then all the parts of the prifme fhall be treble to all a $7.12 ;$ the parts of the pyramide, b confequently the whole prif bi. $\mathbf{5}$. me ABCDEGIIIKF is treble to the whole pyr. ABCDEH. Wbich was to be dem.

PROP. VIII.

Like pyramides ABCD, EFGH, wbbich bave triangulaw bafes ABC, EFG are in triplicate ratio of their homolegous fides AC, EG.
a Compleat the parallelpps. ABICDMKL, EFNG- a 2\%. 1 i HQOP, which b are like, and c fextuple of the pyra- b9.def. in. mides ABCD, EFGH. d and therefore the pyrs. have c 28. 11 . the fame proportion to one another as the parallelpps. and 7.12 have, that is, e triplicate of their homologous fides. \& 15 . 5 : e 33.1 .
Coroll.
Hence, alfo like polygonous pyramides are in triplicate ratio of their homologous frdes; as may be eafly prev'd by refolving them ipto triangular pyramides.

$$
\mathrm{R} 4
$$

The twelffb Book of

PROP. IX.

See the prec. Scheme.
In equal pyramides ABCD, EFGH, baving triangular bafes ABC, EFG, the bafes and altitudes are reciprocal; pyramides baving triangular bafes, wbofe altitudes and kajes are reciprocal, are equal.

1. $H_{y p}$ The compleated parallelpps. ABICDMKL,
a 28.11. and 7. 12. b 34. 11.
c 15.5.
d byp.
e 15.5.
f 34 . 11 .
g6.ax. 1. EFNGHQOP are a fextuple of the equal pyramides AB. $\mathrm{CD}, \mathrm{EFGH}$ (each to each) and fo equal one to the other, therefore the altitude (H) the altitude (D) b :: ABIC. EFNG $c::$ ABC. EFG. Which was to be dem.

2 Hyp. The altitude (H.) the altitude (D) $d:: \mathrm{ABC}$. EFG $e::$ ABIC EFNG f therefore the parallelpps. ABICDMKL, EFNGHQOP are equal, g confequently alfo. the pyramides ABCD, EFGH being fubfextuple of the fame, are equal W bich was to be dem.

The fame is applicable to polygonous pyramides, for tbey may alfo in like manner be reduced to triangulars.

Coroll.

Whatfoever is dem. of pyramides in prop. 6, 8,9 does likerwife agree to any fort of prifmes; feeing they are tripla of the pyramides that have the fame bafe and altitude with them. Therefore

1. The proportion of prifines of equal altitude is the fame with that of their bares.
2. The proportion of like prifmes is triplicate of that of their homologous fides.
3. Equal prifmes have their bafes and altitudes reciprocal; and prifmes which are fo reciprocal; ;are equal.

Scbol.

From what has been hitherto dem. the dimenfion of any prifmes and pyramides may be collected.
a The folidity of a prifme is produced from the altude multiplied into the bare; b and therefore likewife. that of a pyr. from the third part of the altitude multiplieg into the baces.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Cylinders and Cones ABCDK, EFGHM, being of the Jame altitude, are to one anotber as their baxes ABCD, ERGH are.

Let the circle ABCD. the cir. EFGH: : the cone AB CDK. N. I ray Nis equal to the cone EFGHM.

For if it be polible, let \mathbf{N} be \neg the cone EFGHM, and let the excefs be 0 . The preparation and argumentation of the prec. prop. being fuppofed; then fhall \mathbf{O} be greater than the fegments of the cone EP, PR,FQ, Ecc. and fo the folid $\mathrm{N} \supset$ the pyr. EPFQGRHSM. In
130.3.and

1. pof.
b 6.12 .
cor.2.12.
d byp.
e 14.5.
flbyp ${ }^{6}$ by inverfion. \$ 14.5 . the circle ABCD a make a like polyg. fig. ATBVCXDY. Becaufe the pyr. ABVYK the pyr. EFQSM $b:$: the polygon ATBVY. the polygon EPFQS $c:$: the circle $A B C D$.the cir.EFGHI $d:$:the cone $A B C D K$. N. e thence the pyr. EPFQGRHSM thall be $乙$ N. contrary to. what was affirmed before. Again conceive \mathbf{N} - the cone EFGHM. and make the cone EFGHM. O:: N. the cone ABCDK f :: the cir. EFGH. ABCD. g therefore $\mathrm{O} \rightarrow$ the cone ABCDK ; wbicb is abfurd, as appears by what is thewn in the firft part.

Therefore rather admit ABCD. EFGII: : the cone ABCDK. EFGHM. Whicb was to be dem.

The fame may be dem. of cylinders, if cylinders and prifmes be conceived in the place of cones and pyra: mides. therefore, Eoc: Schol.
Hence, is gathered the dimenfon of all forts of, glimders and cones. The folidity of a right cyl. is prowiced a 1 .Prop. de from the circular bafe (a the dimenfion whereof is ta demenf.cir. ¢ 11.12. ! 10. 12. be learnt out of Archimedes) multiplied into the height; b whence in like manner that of every cylinder.
c 'Therefore the folidity of a cone is produced from the third part of the altitude multiplied into the bafe.

PROP. XII.

Like cones and cylinders $\mathrm{ABCDK}, \mathrm{EFGIIM}$, are in triplicate ratio of tbat of the diameters 'TX, PR, of tbeir bafes ABCD, EFGH.

Let the cone A have to Na triplicate ratio of TX to PR. I fay \mathbf{N} is $=$ the cone ERGHM For if it be poffible let \mathbf{N} be EFGHM, and let the excefs be \mathbf{O}, therefore $\mathbf{N} \longrightarrow$ the pyr EPFQGRHSM. Let the axes of the cones be IK, LM, and join the right lines VK, CK,VI,CI, and QM,GM,QL,GL Becaure the cones are like, a thence VI IK :: QL, LM. but the angles YIK, QLM b are right angles, c therefore the triangles VIK, QLM are equiangular, d whence VC. VI::QG QL alfo VI. VK: : QL QM. therefore by equality VC VK :: QG QM. e moreover VK. CK :: QM MG. therefore again by equality VC. CK::QG. GM, f therefore the triangles VKC, QMG are like; and by a like way of reafoning the other triangles of this pyr.are like to the other of that, g wherefore the pyrs. themfelves are like b But thefe are in triplicate proportion of that of VC to QG, k that is, of VI to QL, l or TX to PR. m therefore the pyr. ATBVCXDYK. the pyr. EPFQGRHSM:: the cone ABCDK. N. n whence the pyr. EPFQGRHSM $工$ N. which is repugnant to what was affirmed before.

Again, take N -- the cone EFGHM make the cone EPGHM. $0::$ N. the cone ABCDK o :: the pyr. EPRM. ATCK $p::$ GQ. VC thrice :: q PR. TX thrice, therefore $\mathrm{O}_{\boldsymbol{r}}$ is -ABCDK . which was before hewn to be repugnant. Wherefore $\mathbf{N}=$ the cone $\mathrm{EFGHM} . W$ bicb suas to be dem

But forafmuch as what proportion foever cones have, alfo cylinders, being triple of them, have the fame; thercfore cyl. Thall be to cyl. in triplicate ratio of the diameters of their bafes.
23.1.
b 11. 12:
c 11. 12. d 6. def. 5 .

P R O P. XIII.

If a cyl. ABCD be divided by a plano EF parallel to the oppofite planes BC, AD, then as one cyl. AEFD is to the other cyl. EBCF, fo is the axis GI to the axis IH.

The axis being produced, a take $\mathrm{GK}=\mathrm{GI}$, and $\mathrm{HL}=\mathrm{IH}=\mathrm{LM}$. and conceive planes drawn at the points K, L, M, parallel to the circles $\mathrm{AD}, \mathrm{BC}, 6$ therefore the cyl. $E D=$ the cyl.AN, and the cyl.EC $b=\mathrm{BO} \quad b=\mathrm{OP}$. therefore the cyl EN is the fame multiple of the cyl. ED as the axis IK is of the axis IGe and in like manner the cyl EP is the fame multiple of the cyl. BF , as the axis $I M$ is of the axis $I H$. but as $I K$ is $=,\ulcorner, \longrightarrow I M$, c fo is the cyl.EN $=\boxed{\square}, \square$. d therefore the cyl. AEFD. the cyl. EBCF ::GI. IH. Wh bich quas to' be dem. PROP. XIV.

Cones AEB, CFD, and cylixders AII, CK, infifting upon equal bafes AB, CD, are to one anotber as their altitudes ME, NF.
The cyl. HA, and the axis EM being produced, take $\mathrm{ML}=$ FN; and thro the point Ldraw
a II. 12.
bI3.12.

* apply 9, and j. 12 .
214.12. b comptr. c byp.
d II 12. e byp.
f 1412. F11.5.
h II. 12.
k 9 s.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

The twelfth Book of

Trwo Jpberes ABCV, EFGH, confifing about the famie center D, being given, to infcribe a folid of many fides (or Poiyedron) in the greater Jphere ABCV, wbicb Jball not touch the fuperficies of the leffer sphere EFGH.
Let both the fipheres be cut by a plane paffing thro ${ }^{\circ}$ the center, making the circles EFGH, ABCV; and the diameters AC, BV drawn, cutting derpendicularly: In
2 16. 12. the circle ABCV, a infribe the equilateral polygon VMLNC, © ${ }^{\circ} c$. not touching the circle EFGH: Then draw the diameter Na , and erect DO perpendicular to the plane ABC thro DO , and thro the diameters AC, $N a$, conceive planes DOC, DON erected, which
b 18.11. c cor.33.6. d4. 1. thall be b perpendicular to the circle ABCV, and fo in the ruperficies of the rphere make c the quadrants DOC, DON. In which let the right lines $\mathrm{CP}, \mathrm{PQ}, \mathrm{QR}, \mathrm{RO}$; NS, ST, T $y, 2 \mathrm{O} d$ be fitted, equal, and of equal multitude with CN, NL, $\mathcal{E}^{\circ} \mathrm{c}$ make the fame conftruction in the other quadrants OL, OM, $\mathcal{E}_{饣}$. and in the whole fphere. Then I fay the thing required is done.

From the points P, S, to the plane $A B C V$ draw the

е் 38. 11. f 12. ax:
827.3.
h 32. I.
conff.
126 I. m 3.ax. I.
n 7.5 .
d 2.6.
p6. If.
433. I .
r9. 1 .
f7. 11.
12.11. perpendiculare PX, SY, e which fhall fall on the fections $A C, N_{\alpha}$ Therefore becaufe both f the right angles PXC, SYN, g and PCX, SNY infifting on b equal circumferences, f are equal, the triangles alfo PCX, SNY b are equiangular Wherefore fince $P C k=S N$, l alfo is $\mathrm{PX}=\mathrm{SY}, l$ and $\mathrm{XC}=\mathrm{YN} ; m$ whence DX $=\mathrm{DY}, n$ and therefore DX. XC :: DY. YN. o therefore YX, NC are parallels, but becaufe PX, SY are equal, and fince being perpendicular to the fame plane ABCV^{\prime}, they are alfo p parallels, q therefore YX, SP' thall be equal and parallels, t whence SP , NC , are parallel one to the other; and fo the /quadrilateral NCPS , and for the fame reafon SPQT, $\mathrm{T}^{\prime} Q R \mathrm{G}$, as alro the t triangle 2 RO are fo many planes In like manner the whole Tphere may be thewn full of fuch quadrilaterals and triangles, wherefore the figure infcribed is a poIyedron.

- $11.1 \%^{\circ}$.

From the center $\mathrm{D} u$ draw DZ . perpendicular to the plane NCPS; and join ZN, ZC, ZS, ZP. Becaufe DN. ± 4 6. $\mathrm{C} x:=\mathrm{DY} . \mathrm{YX}$, thence NC is $y \subset \mathbf{Y X}$ (SP.) and ir
 $z_{\text {g. def. }}$ ir. the angles DZC, DZN, DZS, DZ:P z are right, and a 15 def 1 . the fides DC, DN, DS, DP, a equal, and DZ common, b 47. I. $\quad b$ thence $\mathrm{ZC}, \mathrm{ZN}, \mathrm{ZS}, \mathrm{ZP}$ are equal one to the other; c 15. def. $\boldsymbol{\gamma}$. and confequently about thequadridateral NCPS, c a cif-
cle may be defrribed, in which (becaufe NS, NC, CP', are d equal, and NC $\subseteq S P$) NC e fubtends more than d conftr. a quadrant, f therefore the angle NZC at the center is e 28.3. obtufe, g therefore $\mathrm{NCq}{ }^{-}{ }_{2} \mathrm{ZCq}(\mathrm{ZCq}+\mathrm{ZNq}) \mathrm{f} 33.6$. Let NI be drawn perpendicular to AC, therefore fince g 12.2. the angle ADN (b DNC + DCN) k is obture, the half of it DCN fhall be greater than the half of a right angle ; and fo that which remains of the right angle CNI thall be lefs than it, n whence IN - IC, therefore $\mathbf{N C q}\left(\mathbf{N I q}_{q}+\mathrm{ICq}\right): \beth 2 \mathrm{INq}$, therefore $\mathrm{IN} \subset \mathrm{ZC}$, and confequently $\mathrm{DZ} p \subset \mathrm{DI}$. but the point I is q without the \int phere EFGH. and fo , much more, the point Z . wherefore the plane NCPS, (of which r the neareft point to the center is Z_{4}) does not touch the fphere EFGH. r 4i. n. And if a perpendicular D δ be drawn to the plane SP-. $Q T$, the point δ, and fo alfo the plane SPQT is yet further removed from the center, which is alfo true of the other planes of the polyedron Therefore the polyedon ORQPCN, Θ^{c} c. infcribed in the greater fiphere, does not touch the leffer. Which was to be done.

Coroll.

Hence it follows, that if in any other /pbere a folid poIyedron, like ta the abovefaid folid polyedron, be infrribed, the proportion of the polyedron in one spbere to the polyedron in the otber is triplicate of that of the diameters of the Spberes.

For if right lines be drawn from the centers of the Spheres to all the angles of the bafes of the faid polyedrons, then the polyedrons will be divided into pyrs. equal in number and like; whofe homo. fides are femidiameters of the fpheres; as appears, if the leffer of thefe fipheres be conceived defcribed within the greater about the fame center. For theright lines drawn from the center of the Iphere to the angles of the bafes will agree one to the other by reafon of the likenefs of the bafes; and fo will like pyramides be made. Wherefore fince every pyr. in one 1phere to every pyr. like it in the other fphere a has proportion triplicate to that of acor.8. 12i the homologous fides, that is, of the femidiameters of the foheres; and b as one pyr. is to one pyr for all the b12. g. pyrs.that is, the folid polyedron compofed of thefe, are to all the pyrs. that is, the folid polyedron compofed of the others; therefore the polyedron of one fphere fhall have to the polyedron of the other fphere, proportion triplcate of that of the femidiameters, c and for of the C 15.5 . diameters of the fipheres:

PROP. XVIII.

Spheres BAC, EDF, are in triplicate ratio of their diai meters BC, EF.
Let the fphere BAC be to the fphere G in tripli. proportion of that of the diameter $B C$ to the diameter EF.

- Ifay $G=E D F$. For if it be poflsbe, let G be $\sqsupset E D F$. and conceive the fphere G concentrical with EDF. In the fphere EDF a infcribe a polyedron not touching 2 17. 12. the fphere G, and a like polyedron in the fphere BAC. bcor 17.12. Thele polyedrons b are in triplicate proportion of the chyp. d 14.5.
e byp.inverfe.
f14.5. diameters $\mathrm{BC}, \mathrm{EF}, c$ that is, of the P phere BAC to G . d coniequently the fphere G is greater than the polyodron inferibed in the fphere EDF, the part than the whole.

Again, if it be poffible, let the fphere G be - EDF. and as the fphere EDF is to another fphere H , fo let G be to BAC, e that is, in triplicate proportion of the diameter EF to BC , therefore fince $\mathrm{BAC} f \subset \mathrm{H}$, we fhall incur the abfurdity of the firft part, wherefore rather the fiphere $\mathrm{G}=\mathrm{EDF}$. Which was to be dem.

Coroll.

Hence, as one fphere is to another fphere, fo is a polyedron defcribed in that to a like polyedron def. cribed in this.

The end of the twelfth Book.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

I fay z_{0} a : : a. e. Becaufe by the hyp. ${ }^{*}$ a $4 \frac{1}{4}$ zz 4 a 2. 2. $\quad z 2=2 z+\frac{1}{4} z z$; or $2 a+z a=z z a z e+z a, b$ chence b 3.ax. I. Thall aa be =ze, c wherefore $z, a:: a, e_{1}$ which was to c 17. 6. .be demonftrated.

> PROP. II.

If a rigbt line z be divided according to astreme asd mean proportion (\mathbf{z}. a: : a. e.) ibe lime made of the lefs fegment e and balf of the greater Jegment a, is in powver quintuple to the Squave, which is deforibed of the balf lise of the greateft fegment a.
2.2.
b 3. ax.
c 3.2.
d byp. and 17.6.
24.1
b3.2.
c 17.6. d 2. 480

1 fay $Q: e+\frac{1}{4} a=s Q:$ $\frac{1}{2} a: a$ that is ce $+\frac{1}{4}$ aa + ca $=a 2 .+\frac{1}{4} 2 a$. b or ee-f ea= aa. For ce + ea $c=$ ze $d=$ aa. which was to be demonfrated.

R R O P. IV.

If a right lime 2 be cut according to ewitreme asd ment proportion (z a:: a.e) tbe fquave made of the wobole live z_{3} and that made of the leffer fogment e, both togetber, are triple of the fquarie made of the greater fegment a.

1 fay zz +ce $=382$. a or aa + ee 十 2 ae + ee
$=3$ aa. For ae + ee ze $c=$ a2. d therefore az十izae +2 ee $=3$ aa. Frbich was to be demonftrated.
PROP. V.
 acconding to extreme and mean proportion in C, and a bine $A D$, eqtal to the groivir fegment BC, added to it, the aubole rigbt lime DB is diorded according to extreme and mean proportion; and the greater fegment is the rigbt lime AB givem at tbe begine zing.
a byp, For becaufe AB, AD a:: AC. CB , and by imverfion $\mathrm{AD} . \mathrm{AB}:=\mathrm{CB}$. AC. therefore by compofition DB. AB : : AB. AC (AD.) which was to be demonferated. sebool.
But if BD.BA : : BA. AD. then fhall be BA.AD. : :AD. BA-AD. For by dividing BD-BA (AD) BA: : BA AD. AD. therefore inverfely $B A_{1} A D: ~: A D . B A-A D$.

PROP. Vi:
D AB be cut according to exxtreme and meah proportion in C, eitber of tbe fegments ($A C$; $C B)$ is at itrational line of tbat kitd wubicb is called apotome or refidual.

To the greater fegment $A C$ add $A D=\frac{1}{2} A B$. therefore DCq= $\{$ DAq. c therefore DCq 7 DAq. confequently a fince $A B$, e and fo the halt thereof $D A$ are \dot{p}, likewife DC is \dot{p}. But becaufe $5.1: 1$ not $Q, Q_{f} f$ thence is $D C \subset \mathcal{L} A$. \dot{g} therefore $D C-A D$, that is, $A C$, is i refidual line. Further; becaufe $A C q b=A B \times B C$, and AB is $\dot{\rho}, i$ likewife BC is a refidual line. Whicb quas to be demboffrated.

PROP. VII.
a 3. 1: b 1. 13: c 6. 10. d byp. e fch. 12: 10. f 9.10 . 874.100 h 17.6. 198.10%

if tibree didgles of an equilateral pentagone ÄBCDE, zube=: tber they follow in order, ($B A B, A B C, B C D$) or not, ($E A B$, $\dot{B C D}, \mathrm{CDE}$) are equal, tbe pentagone $A B C D E$ ßall bé kquiangular.

Let the right lines $\mathrm{BE}, \mathrm{AC} ; \mathrm{BD}$, be fabterded to the equal angles in ö́der.
Becaufe the fides $\mathrm{EA}, \mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, and the included angles d are equal, b therefore flall the bafes BE, AC, a byff. $B D, c$ and the angles $A E B, A B E, B A C, B C A$, be e-b 41 r. qual. d Wherefore $\mathrm{BF}=\mathrm{FA}$, and confequently $\mathrm{FC}=\mathrm{c} 4$. and $\xi:$ PE ; therefore the triangles FCD, FED, are equilateral I. one to the other : f whence the angle $\operatorname{FCD}=$ FED. g d 6. 1. confequently the angle $A E D=B C D$. In like mannet es.ax. 1 , the angle CDE is equal to the reft ; wherefore the pen- f 8 . I .

But if the angles EAB, $B C D, C D E$, which are noi h 4. r. in order, be fuppored equal, b then thall the angle AEB
k 5 . 1 . 12. ax. be $=B D C$, and $B E=B D . k$ and thence the angle BED $=$ BDE. l confequently the whole angle AED $=\mathrm{CDE}$, therefore becaufe the angles A, E, D, in order, are equal; as before, the pentagone fhall be equiangular. Which was to be demonftrated.

PROP. VIII.

If in an equilateral and equiangrai lar pentagome $A B C D E$, two right limes $B D, C E$, fubtend two angles $B C D$, CDE following in order, thofe lines do cut one anotber according to extreme: and mean propertion; and their greater fegments BF or EF are equal to the. fide of the pentagone BC.
a Defrribe about the pentagotie the circle ABD. b The arch $\mathrm{ED} \mathrm{i}=\mathrm{BC}, \mathrm{c}$ therefore the angle $\mathrm{FCD}=\mathrm{FDC} . d$. therefore the angle $B P C=2$ PCD (FCD + FDC.) But the arch BAE is=2 $=2$, and confequently the angle BCF. e $=2 \mathrm{FCD}=\mathrm{BFC} . f$ wherefore $\mathrm{BF}=\mathrm{BC}$. wibicb evas to be demonfirated. Moreover, becaufe the triangles BCD , FCD, are g equiangular. b therefore BD. DC (BF.) :: CD. (BF.) FD. and likewife EC. EF :: EF. FC. whicb was to be demonftrated.

PROP. IX.

If the fide of an Hexagone $B E$, and the fide of a Decagone $A B$ botb deforibed in the fame circle $A B C$, be added togetber, the whole rigbt line $A E$ is cwt according to extreme and mean proportion (AE. BE :: BE. AB) and the greater Jegment therefore is the fide of the Hexagone BE.
Draw the diameter ADC, and join the right lines a byp. a id. DB, DE. Becaufe the angle $\mathrm{BDC} a=4 \mathrm{BDA}$ and the 27.3. angle $\mathrm{BDC} \boldsymbol{b}=2 \mathrm{DBA}$ ($\mathrm{DAB}+\mathrm{DBA}$) thence fhall b 32. 1 . c $7 . \Delta x$. 1 . d s. 1. angles $A D E, A D B$, are equiangular : f wherefore $A E$. e 1.ax. I. AD ($g \mathrm{BE}):: \mathrm{AD}$. (BE.) AB. Which was to be demonf 4. 6. fitated.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

Tbe Tbirtecuth Book of
scbol.
Elove, cecordime to our promife, we foall lay down 9 peady praixis of tike $11^{\text {th }}$ prop. of the $4^{\text {th }}$ Bopk.

Probl.

IT find owt the fide of a pentagene to be inforibed ins circle ADB.
'Draw the diameter AB, to which erect a perpendi' cular $C D$ at the center C, divide $C B$ equally in \mathbb{B}, and make $\mathrm{EP}=\mathrm{ED}$. then DF flall be the fide of the pentagone.

a cor. IO. dius. FH ; and $\mathrm{CM}=\boldsymbol{+} \mathrm{CA}$.
13°

- Becaufe the angles AKP, AIC, are a right angles, and
b 32.1 .
c 4.6
His.5.
CAI common, the triangles AKF, AIC, are b equiangular : c therefore CI. FK $c: ;$ CA. PA (FB) $d::$ CM.

FL. therefore by permutation FK. FL: ; CI. CM $d:$:
CD. CK (2 CM) and fo by e compofition $C D+C K$. CK e 18 . s. :: KL. FL. f confequently $\mathbf{Q}: \mathbf{C D}+\mathrm{CK}$. (g s CKq) f 22.6. CKq :: KLq. FLq. therefore. KLq=\{ FLq. wherefore if g 1. 13. BH (ρ) be taken 8, FH fhall be 4, FL is' and FLq i, BL 5, and BLq 25, KLq 5 . by which it appears that
 KL its congruent or adjoining line. but Gince BLq- $\mathrm{k} 74 \cdot 10$.
 BK mall be a fourth refidual line. Therefore becaufe ${ }^{4}$ def. 85. $\mathrm{ABq} m$ is $=\mathrm{HB} \times \mathrm{BK}, n$ fhall AB be a minor line. 10 . Wbicherwas to be demonjifated.

> PROP. XII.

If in a circle $A B E C$ an equilateral triangle $A B C$ be inforibed, tbe fide of tbat triavgle $A B$ is in powier triple to the lise $A D$ drawn from D the center of the circle to the circumferener.

The diameter being extended to E, draw BE. Becaufe the
 arch $\mathrm{BE} a=\mathrm{EC}$, the arch BE is the fixth part of the circumference, b therefore $\mathrm{BE}=\mathrm{DE}$. hence $\mathrm{AEq} c=4 \mathrm{DEq}(4 \mathrm{BEq}) d=\mathrm{ABq}+\mathrm{BEq}(+$ ADq .) econfequently $\mathrm{ABq}=3 \mathrm{ADq}$ phbich was to be demonferated.
coroll.
2 cor. 10.
13.
b cor. 15.4.
c 4.2.
d 47. 1.
e 3. ax. I.
I. $\mathrm{ABq}, \mathrm{ABq}:: 4$ 3.
2. $A B q . A F q:: 4 \cdot 3 \cdot f$ For $A B q . A F q:: A E q$, $A B q$,
3. $\mathrm{DF}=\mathrm{FE}$. For the triangle EBD g is equilateral, of and $B F$ perpendicular to ED. b therefore $E F=F D$.
4. Hence, $A F=D E+D F=3 D F$. P.R \cap P. XIII.
f cor. 8.6. and 22.6. $\mathrm{gcor} .15 .4-$ h cop. 3. 3.

To deforibe a pyramid EGFL, and comprebend it in a Aphere given: and to demonfltate tbat the diameter of the fphere $A B$ is in poween fefquialter of the fide $E F$ of the pyramid EOFL.
210.6.

About AB defribe the femicircle ADB; a and let AC be $=2 \mathrm{CB}$. From the point C ered the perpendicular CD, and join AD, $D B$, then at the interval of the ra-
b cor. 15.4 c 12.1 I .
d 3.1. econfir.

E4. 1. g 20.6. h 2. ax. k 12.13. 1 1. ax, 1 . fore $A D, E F, I E, I F$, IG are equal, and fothe pyramid EFGI
is equilateral. But if the point C be placed upon H, and m8.ax.1. n $15 . \operatorname{def} . \mathrm{t}$. * $3 \mathrm{I} . \mathrm{def}$. 11.
o cor. 8. 6. p conftr.
912. 13. y conftro. dius $\mathrm{HE}=\mathrm{CD}$ defcribe the circle HEFG, b wherein infcribe the equilateral triangle EFG. from H cered IH $=\mathrm{CA}$ perpendicular to the plane EFG, produce IH to K, d fo that $\mathrm{IK}=\mathrm{AB}$; and join the right lines IE, IF, IG. Then EFGI thall be the pyramid required.

For becaufe the angles $A C D$, IHE, IHF, IHG, e are right angles; and $C D, H F, H F, H G e e q u a l, ~ e$ and $I H=A C ; f$ therefore $A D, I E, I F, I G$, thall be equal among themfelves. But becaufe $\mathrm{AC}(2 \mathrm{CB}$.) $\mathrm{CB} g$:: $A C q$. $C D q$. thence thall $A C q$ be $=2 C D q$. therefore $A D q$ $f=\mathrm{ACq}+\mathrm{CDq} b=3 \mathrm{CDq}=3 \mathrm{HEq} k=\mathrm{EFq} .1$ there $A C$ upon HI, the tight lines $A B$, IK, m thall agree, as being equal. Wherefore the femicircle $A D B$ being drawn about the axis $A B$ or IK n fhall pafs by the points E, F, G, * and fo the pyramid EFGI Inall be infcribed in a fphere. wibich was to be done.

Alfo it is manifeft that BAq. ADq $0::$ BA. AC $p:=3.3:$ which was to be demonftrated.

Coroll.

1. ABq. HEq:: 9. 2. For if $A B q$ be put 9, then $\mathrm{ADq}(\mathrm{EFg})$ Thall be 9.9 confequently HEq shall be 2.
2. If L be the center, then fhall AB. LC :: 6. I. For if $A B$ be put 6 , then $A L$ thall be 3. rand thence $A C 4 \cdot$ wherefore LC Thall be 1 . Hence,
3. $\mathrm{AB} \mathrm{HI}:: 6.4:: 3.2$. whence
4. ABq. HIq :: 9.4.

> PR O P. XIV.
 the enater B 'eredt the perpendicular $B C$. draw $A C, H C$; KEFGDL, and comprebend it in tbe given Spbere, whereis a pyramid is: and to demoryftrate that AH, the diameter of the Spbere, is in power double of $A C$, the fide of that OEaedron.

About AH defcribe the remicircle ACH, and from

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
and connett them with the right lines IR, KL, LM, IM, The folid EPGHIKLM, is a cube, as is fufficiently ape parent from the conftrution.

In the oppofite fquares EFKI, HGLM, draw the dia: meters EK. FI, HL, MG, through which let the planes EKLH, FIMG be drawn, cutting one anocher in the line
k 47. 1. 1.13 .13. al 15.13.

In. Hence it is manifect chat all the diametefs of the cube are equal one to anocher, and do equally bifect one another in the center of the fphere. And for the fame reafon the right lines which codjoin the centers of the oppofite fquares are bifeeted in che fame center.
2. The diameter of a fphere containeth in power fthe fide of a terraedron and of a cube, ouiz. $\mathrm{ABq} k=2 \cdot \mathrm{BCg}$ $+m A C q$.
PROP. XVI,

It deforibe an Icofactron ZGHET FTVXRST, and encompa/s it ixp tbe Pbeve, wherein were contained then forefaid folids; and to demonflrate that FG the fide of the Icofacedrase is bate irrational lim, which is fratled a miswor lime.

Upon AB the diameter of a fiphere deferibe the femicircle $A D B$;; find a make $A B=; B C$ then from C erect $C D$ perpendicular, and draw AD and BD. At the difance $\mathrm{EF}=\mathrm{BD}$ defcribe the circle BFKNG; 6 whercin infcribe the equilateral pentagone PKIHG. Divide equally in two parts the ar-
 ches FG, GH, \&c. and join the right lines FL, LG, \&se. being the fides of a decagone. Then cereat $E Q, L R, c$ 12. II. WS, NT, OV, PX equal to ER, and perpendicular to the plane FKNG; and conneat.RS, ST, TV, VX, XR ; as alco FX, FR, GR, GS, HS, HT, IT, IV, KV, KX. Laftly, produce $E Q$, and tabe $Q Y=F L$, and $E Z=F L$, and conceive the right lipes $2 \mathrm{Z}, \mathrm{ZH}, \mathrm{ZI}, \mathbf{2 K}, \mathrm{ZP}$ to be drawn; as alfo YV, YX, YR, YS, YT. Then I fay the tcofaedron required is made.

For becaufé EQ, LR, MS, NT, OV, PX, are d equal d conffr: and e parallel, alfo thofe lines that join them EL, $Q R$, e 6. if: $\mathbf{E M}, \mathbf{Q S}, \mathrm{EN}, \mathrm{QT}, \mathrm{BO}, \mathbf{Q V}, \mathrm{BP}, \mathbf{Q X}, f$ are equal and f 33 . i. parallel. And thence likewife LM (or FG) RS, MN, ST, \& cc. are equal one to the ocher. 8 cherefore the plane \mathbf{g} 15. II. drawn through EL, EM, \&rc. is equidiftant from the plane pafling through $Q R, Q S, \& c_{0} b$ and the circle h I. def. 3. QXRSTV drawn from the center Q is equal to the circle EPLMNO; and RSTVX is an equilateral pentagone. But EF, EG, EH, \&c. and QX, QR, QS, \&c. being con-k 47. Í. ceived to be drawn; then becauinng $k=F L q+1 R q$, l or $\mathrm{EFg} m=\mathrm{FGq}$. n thetefore F, FG, and to all $\mathrm{RS}, 1 \operatorname{conft}$. FG, FR, RG, GS, GH, \&c thall be equal one to the 0 - mio. 13. ther, and confequently the ten triangles RFX, RFG, $n / c b .48$.1. RGS, \&cc are equilateral and equal. Moreover, becaufe and 1.ax. $\mathbf{X Q Y}$ is a oright angle; therefore $X Y q p=Q X q+0$ cor. 14. QYq $q=V X q$ or $P G q$. wherefore $X Y, V X$, and like- 1 . wife YV, YT, YS, YR, ZG, ZH, \&c. are equal. There- p 47. 1. fore other ten triangles are made, equilateral and equal q 10. 13. i., $1 .$.
boch to one another, and to the ten former; and fo an Icofredron is made.

Moreover, divide equally $E Q$ in a_{s} draw the right r19.def.I. lines, $a P$, αX, $a V$; and becuufe $Q X r=Q V$, and $a Q$ the common fide, and $E Q X, E Q V$ are right an[4. I. gles, δ sherefore fhall $a X$ be $=a V$; and for the fame reation all the lines $a X, a R, a S, a T, a V, a F, a G$, t 9. 13. $\alpha \mathrm{H}, \alpha \mathrm{I}, \propto \mathrm{K}$ are equal. But beeaufe ZQ . $\mathrm{QE} t:$: QE . u 3. 13. ZE. therefore $\mathrm{Z}_{a \mathrm{q}} x=\varsigma \mathrm{Eaq} x=\mathrm{EQq}_{\mathrm{q}}(\mathrm{EFq})+\mathrm{E} \alpha \mathrm{q}$ $\times 4$. $y=a \mathrm{Fq}$. therefore $\mathrm{Za}=a \mathrm{~F}$. in like manner $a \mathrm{~F}=\mathrm{Ya}$.
y 47. . therefore the fphere, whofe center is a and $a \mathrm{~F}$ the radius, thall pafs through the 12 angular points of the Icofaedron.
Lafly, z becaufe Zas $\alpha E::$ ZY. QE; a and fo Zaq,
215.5. 2 22.6. $\alpha \mathrm{Eq} \quad \mathrm{ZYq}$. QEq .6 therefore $\mathrm{ZYq}=5 \mathrm{QEq}$, or $\varsigma \mathrm{BDq}$: b 14. 5. but KBq . $\mathrm{BDq}_{\mathrm{q}} \mathrm{c}:: \mathrm{AB}$. $\mathrm{BC}::$ 5. 1. d therefore $\mathrm{ZY}=$ ccor. 8.6. AB. wrbicb avas to be done. Therefore if AB be put ρ_{2} $\mathrm{d} \mathrm{I} . a x .1$. e then $\mathrm{EF}=\sqrt{ } \mathrm{AB} \times \mathrm{BC}$ fhall be alfo p_{0} and confequente fob. 12. ly FG the fide of the pentagone, and likewife of the Ico10. § 11. 13.

Coroll

I. From hence is inferred, that the diameter of the Sphere is in power quintuple of the femidiameter of the circle encompafling the five fides of the Ioofaedron.
2. Alfo it is manifeft that the diameter of the fophere is compofed of the fide of a hexagone, that is, of the fe: midiameter, and two fides of the decagone of a circle encompafing the five fides of the Icofiedron.
3. It appears likewife that the oppofite fides of an Ico333. I. faedron, fuch as RX, HI, are parallels. For RX a is b fch. 26. parallel to LP. 6 parallel to HI. 3.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
12. 11. k compto. 16. 11 . m 32. 6. an 1 gaid 2 . 11.

- 5.13. P 47. 1: 9 I. dex. 2. and 4. 13. $t 4.2:$ 18. ${ }^{10}$
. 7.13.
t 15.13. u I. ax. I. ※29.1. 247.1. a 4. 13. b 19.13.

2

 $\mathbf{D X}$, and for the fame reafon $\mathbf{X S}_{5} \mathbf{X T} ; \mathbf{A X}$, are equal one to another. And if by the fame method whereby the pentagone DTCSR was made, twelve like pentagones, touching the twelve fides of the cube, be made, they Ihall compofe a Dodecsedroin;' and a fphere paffing through their angular points, whofe radius is AX, or RX, Thall comprehend thiat Dodeciedron. thbich avas wis be done.

Laftly, becaufe KN. NO $t:$: NO. OR: d thetice KL. OP : : OP. OK + PL. Therefore if AB the diameter of the fphere be fuppofed ρ, then thall-RL $d=\downarrow \frac{A B}{3} f$ be alfo $\dot{p} ; g$ whence $O P$; or RS the fide of the Dodecaedrori shall be a refidual line. which was to be demongtated. coroll.

From this demonfration it follows; T. That if the fide of a cube be cut in extreme and mean proportion, the greater - fegment fl be the fide of the Dodecaedron deferibed in the fame fphere.

女. If the leffer fegment of a right line, cut in' extreme and mean proportion, be the fide of the Dodecaedrons the greater fegment thall be the fide of the cube infcribed in the fame fphere.
3. It is manifeft alfo, that the fide of tine cube is equal to the right line which fubitendech the angle of a pentagone of the Dodecaedton infcribed id the fame fphere.

PROP. XVII.

To fond out the fices of tbe five priccedent figwies, and compare them togetber.

Let AB be the diameter of the fphere given, and AEB the femicircle, and let AC be $a=\frac{1}{2} A B$, and $A D b=\frac{1}{5}$ AB. then eret the perpendiculars CE, DF, and $\mathrm{BG}=\mathrm{AB}$. join AF, AE, $\mathrm{BE}, \mathrm{BP}, \mathrm{CG}$; and let fall the perpendicular HI

© 10. 1. b 10.6. from H , and CX being taken equal to CI , from K ereat the perpendicular $K L_{j}$ and join AL. Laftly, cmake AR. c 30. $\mathbf{W}_{\text {. }}$ AO: : AO. OR.

Therefore $3.2 \mathrm{~d}:: \mathrm{AB} . \mathrm{BD} e:: \mathrm{ABq}, \mathrm{BFg}$ the fide of d confers.
 fide of an Ottaedron.

Alfo .3. $1 \mathrm{~d}:=\mathrm{AB}$. AD : : : ABq. AFq. \& the fide of g 15. 13. an Hexaedron:

Moreover, becaufe AF. AO $b::$ AO. OF. k thence k cor. ifo fhall AO be the fide of a Dodecaedron. Laftly, BG, 13. (2 BC .) $\mathrm{BC} 1:: \mathrm{HI}$. IC. m therefore $\mathrm{HI}=2 \mathrm{CI} n=\mathrm{KI} .14 .6$. therefore $\mathrm{HIq} o=4 \mathrm{Clq}$. confequently $\mathrm{CHq} p=5 \mathrm{CIq}$ m 14.5. q therefore $\mathrm{ABq}=\varsigma \mathrm{KIq}$. $\boldsymbol{\tau}$ therefore KI , or HI is a radi- n conffo. us of a circle enclofing the pentagone of an Icofaedron; 0 4.2. and AK or IB r is the fide of a decagone infribed in the P47. I. fame circle. \int whence AL mall be the Gide of a penta- 9 I 9.5. gone, t and alfo the fride of an Icofaedron. Whereby it rcor . 16 d appears that $\mathrm{BF}, \mathrm{BE}, \mathrm{AF}$ are $\dot{\rho} \boldsymbol{F}$. and $\mathrm{AL}, \mathrm{AO} \dot{\rho} \boldsymbol{q}, 13$. and $\mathrm{BF}=\mathrm{BE}$, and $\mathrm{BE}-\mathrm{AF}$, and $\mathrm{AF}-\mathrm{AO}$. And be- f 10. 13. caufe $3 \mathrm{APq}_{\mathrm{q}}=\mathrm{ABq} \approx=; \mathrm{KLq}$, and $\mathrm{AF} \times \mathrm{AO} \subset \mathrm{AF} \times \mathrm{t} 16.13$: $O F, x$ and to $\mathrm{AF} \times \mathrm{AO}+\mathrm{AF} \times \mathrm{OF}^{-2} \mathrm{AF} \times \mathrm{OF}, \mathrm{y}$ that \mathbf{u} I. 6.
 -6AOq. confequently KLᄃ-AOy and much rather y 1.2. ALc-AO.

That we may exprefs thefe fides in numbiers; If AB a 47. I. be fuppofed $\sqrt{ }$, 60 , then, reducing what is already Shewn to fupputation, $\mathrm{BF}=\sqrt{ } 40$, and $\mathrm{BE}=\sqrt{ } 30$, and AF
 $-\sqrt{3}$. and $\mathrm{KL}(\mathrm{HI})=\sqrt{12}:$) Laflly, $\mathrm{AO}=\sqrt{ }: 30$ $-\sqrt{500}(\sqrt{25}-\sqrt{ } 5$.)

In is very appareut tbat befides the five aforefaid figures; there caimot be defavibed avy otber regular folid figwre (viz. fuct as mray be cowtained woder ordinate and equal plane pgures.)

For three plane angles at leaft are required to the cona 21. 11. flituting of a folid angle ; a sll which mutt be lefs than b seofob. four right angles. 6 But 6 angles of an equilateral trit 32. 1. angle, 4 of a fquare, and 6 of a hexagon, do feverally equal 4 right angles; and 4 of a pentagon, 3 of a heptagon, 3 of an otagone, \&cc. do exceed 4 right angles: Therefore only of 3,4 , or s equilateral triangles, of s fouares, or 3 pentagones, it is poffible to make a folid angle. Wherefore befides the five above mentioned, there cannot be any other regular bodies.

Out of P. Herigon.

The proportions of the spbere and the five regular fogures inforibed in the Jamte.

Let the diameter of the fphere be 2 , then Thall the peripherie or circumference of the greater circle, be 6.28318.
The fuperficies of the greater circle, 3. 14159.
The fuperficies of the Iphere, 12. 56637.
The folidity of the fphere, 4. 1879.
The fide of the tetraedron, I. 62299.
The fuperficies of the tetraedron, 4.6188.
The folidity of the tetraedron, $0.1\lceil 132$.
The Gide of the hexaedron, $\mathbf{1 .} 1547$.
The fuperficies of the hexaedron, 8.
The folidity of the hexaedron, $1,5396$.
The fide of the octaedron, I. 4142 I . The fuperficies of the octaedron, 6. 9282: The folidity of the otaedron, 1. 33333.

The fide of the dodecaedron, 0.71364 .
The fuperficies of the dodecaedron, 10.51452. The Lolidity of the dodecaedron, 2.78 § 16 .

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

THE

Fourteenth BOOK
 OF
 EUCLIDE's ELEMENTS.

PROPOSITION I.
. Take FG=FE, and draw CG:a b 5 I . Then CE is $=\mathrm{CG}$. therefore the angle CGE $b=\mathrm{CEG}$ c 32. I. $\quad b=\mathrm{ECD}$. therefore the angle $\operatorname{ECG} c \Rightarrow \mathrm{EDC} . d=\frac{1}{4}$ d byp. and $\mathrm{ADCe}=\frac{1}{2} \mathrm{CED}$ ($\frac{1}{2} \mathrm{ECD}$.) f confequently the angle 33.6. $G C D=E C G=E D C . g$ wherefore $D G=G C(C E$. e 20. 3. therefore $\mathrm{DF}=\mathrm{CE}(\mathrm{DG})+\mathrm{BF}=\frac{\mathrm{DE}+\mathrm{CE}}{2}$. Wbich
7. ax. was to be demonftrated. g 6. r.

APerpendicular line DF drawn from D the center of circle $A B C$ to $B C$ the fide of : a pers tagone inforthed in the fuid circle, is the lalf of thefo two lines taken toges ther, viz. of the fide of the bexagone $D E$, and the fide of the decagone EC infcribed in the fame circle ABC. $b=\mathrm{ECD}$. therefore the angle ECG $c=\mathrm{EDC} d=.\frac{1}{4}$ PROP. II.

If two rigbt lines $A B, D E$, are cut according to oxtreme and mean proportion (AB. AG :: AG. GB. and DE. DH:: DH. HE.) they foll be cut after the fame manser, viz. in the 2 17.6. Same proportions (AG. GB:: DH. HE.) b 8.2. Take $B C=B G$; and $E F=E H$. Then $A B \times B G$ is с ェ. ax. х. $a=A G q$. wherefore $A C q b=4 A B G+A G q \cong s A G q$. d 22. 5. In like manner Inall DFq $\ddagger 5 \mathrm{DHq}$. d therefore AC . and 22.6.
I

AG:: DF. DH. whence by compounding. AC+ AG. AG i: $\mathrm{DF}+\mathrm{DH} . \mathrm{DH}$. that is, $2 \mathrm{AB} . \mathrm{AG}$?: $2 \mathrm{DE} . \mathrm{DH}$. e e 22 . 5: confequently AB. AG :: DE. DH; f whence by divilion $f 17.5$. AG. GB : : DH. HE which was to be demenjisated.

PR OP. III.

The fame circle $A B D$ comprehends both $A B C D E$ the pen: a fck.47. ix: tagore of a Dodecahedron, ard LMN the triangle of an b 30.6. Icofaedrom inforibed in the fame Sphere. - c 47. 1.

Draw the diameter AG, and the right lines AC, CG. d 4.2. and let IK be che diameter of the Sphere, a and IKq =e e1c.130. 5 OPq. b and make OP. OQ:: OQ QP. Because A f_{2}, and $\mathrm{Cq}+\mathrm{CGq}=\mathrm{AGq} d=4 \mathrm{FGQ}$; and $\mathrm{ABq}=\mathrm{FGq}+\mathrm{CGq}$. 3. ax. f.thence $A C q+A B q=S$ Gq. moreover, because CA. g 8. 13. $A B g:: A B . C A-A B$; and OP. OQ:: OQ. QP. 6 and $h 2.13 .9^{\circ}$ Io CA. OP :: AB. OQ k therefore $3 \mathrm{~A}^{\circ} \mathrm{Cq}(\mathrm{l} \mathrm{IKq}$.) 5. 16.5. $\mathrm{OPq}(m \mathrm{lKq}):=3 \mathrm{ABq}$. \{ Qq. therefore $3 \mathrm{ABq}=\mathrm{k} 22.6 .8$. 3.OQg. But becaufe ML z is the tide of a pentagons in- 4. 5. scribed in a circle, whole radius is $O P$, chentec $151 \mathrm{Ig.13}$. RMq. $=S \mathrm{MLq} \cdot \mathrm{p}=5 \mathrm{OPq}+5 \mathrm{OQq}={ }^{*} 3 \mathrm{ACq}+\mathrm{m}$ confer. $3 \mathrm{ABq} q=1 \rho \mathrm{FGq}$. r therefore $\mathrm{RM}=\mathrm{FG}$. \int and conte- n cor. 16 . quently the , circle ABD is=to the circle LMN. rivas to be dexionforated.

0 12.13.
p 10.13.
q15.5. and above. * before. rI. ax. $\mathrm{I}_{\text {. }}$ and jehol. 48. 1. f 1. def. 3

If from F sbe center of a circle encompaffing the penta gone of a Dodecaedron $A B C D E$, a perpendicular line $F G$ be drawn to one fide of the Pentagone $C D$; tbe rectangle contained under the faid frde $C D$ and the perpendicular $F G$; being tbirty times taken, is equal to the faperficies of a Dodecaedron. Alifo,

If from the center L of a circle inclofing the triangle of. - un Icofacdron HIK, a perpendicular line LM be drawn to one fide of the triangle $H K$, the rectangle contained under the faid fide HK and the perpendicular LM, being tbirty times taken, foall be equal to the Juperficies of an Icofacdrons.
28.1. Draw FA, FB, FC; FD, FE. a then thall the triangles CFD, DFE, EFA, 1 FB, BFC be equal, but CDX FG $b=2$ triangles CFD. therefore $30 \mathrm{CD} \times \mathrm{GF} c=$
c 15.5.
d 6. ax.
c 17. 3.
4.41.
g 15.50
h 16.13. 60 CFDd $=12$ pentagones $A B C D E=$ to the fuperficies of a Dodacaedron. Wbich was to be demonftrated.

Draw LI, $4 \mathrm{H}, \mathrm{LK}$; then $\mathrm{HK} \times \mathrm{LM} f$ is= 2 tringies LHK. therefore : $30 \mathrm{HK} \times$ LM $g=60 \mathrm{HLK}=20$ HIK b $=$ to the fuperficies of an Icofaedron. Wbich was to be demonfirated.

Coroll.

k 19.5.
CD \times FG. HK \times LM $k:$: the fuperficies of a Dodecac: dron to the fuperficies of an Icofaedron,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

4 Dodecaedron is to an Icofaedron, as the fade of a Cube is to the jide of an:Icofaedron, infcribed in one and the fame /pbere.
a 3. 14.
b 47. 1.
Bectule a the fame circle compreltends both the pentasonc of a Dodecaciron. and the triangle of an Icofaedron, b the perpendicolars drawn from the center of the fphere to the plawes of the pentagone and triangle, thall be equal one to anorher. Therefore if the Dodecaedroa and Ionfaedron be conceived divided jnto pyramids, right lines being drawn from the center of the fphere to all the angles, the altitudes of all the pyramids fhall be equal ono to the other. Wherefore fince the pyrne s.and 6. mids are c of equal height with the bafes, and the fux perficies of the Dodecaedron is equal to twelve pentagones; and the fuperficies of the Icofaedron to twenty triangles, the Dodecaedron thall be to the Icofaedron, as the fuperficies of the Dodecaedron is to the fuperficies of d 5. 14. . the Icofaciron, d that is, as the.fide of the cube is to the Gde of the licofaedron.

PROP. VIII.

The fame circle BCDB compiprebends botb ible Square of the cube $B C D E ;$ ased the triangle of sbe - EFacdron FGH infcribed in one and tbe fant Abere.

Let A be the diame115.13 . ter of the fphere. Becaufe Aqa=3.BCq $=6$ BIq; b47. 1: and álo $A q c=2 \mathrm{GPq}$; 6 KFq ; thence ofhall BI c 14. 13. be=KF. e therefore the circle CBED=GFH. Which wais d I2. 13. to be demonftrated. e I. def. 3.

Tho End of the Fourtecwtb Book

THE

Fifteenth BOOK

OF

$$
\begin{gathered}
\text { EUCLIDE's. } \\
\text { ELEMENTS. }
\end{gathered}
$$

PROPOSITION OL

$\int$$N$ a cube given $A B G H D C F E$ to defcribe a jyvamid AGEC.
From the angle C draw the diamerers $C A, C G$, CE; and conneat them with the diameters AG, GE, EA. All which are a equal among themfelves, as being the a 47. I. diameters of equal fquares: therefore the triangles CAG, CGE, CBA, EAG are equilateral and equal ; and confequently AGEC is a pyramid, which infifts upon the angles of the cube, and therefore b is infcribed in it. b 31. def. mpbich quas to be donen.
T 4
RROP.

Tbe Fifteenth Book of

PROP. II.

In a pyramid given ABDC to de: foribe an OCtaedros EGKIPH.
a Bifect the fides of the pyramid in 'the points; $F_{工} I, F, K$, G, H, which join with the iz right lines EF, FG, GE, \& c. All thefe are b equal one to the other; confequently the 8 triangles EHI, IHK, \&c. are equilateral and equal, and fo make
c. 27.def.
11.
d 31. def. II.
b4ir. -
 c an Ottaedron defcribed d in the given pyramid. Wbich. was to be done.

PROP. IIL

In a cube given CHGBDEFA to .defcribe am Otacdron NP2SOR.

* 8. 4. Connet * the centers of the fquares N, P, Q, S, O, R 24.1 . b 38 . and 27. def. II. with the twelve right lines $N \mathrm{~F}, \mathrm{PQ}, \mathrm{QS}, \& \mathrm{c}$. which are a equal among themfelves; and to make 8 equinteral and equal triangles: wherefore b the Otaedron NPQSOR b is infcribed in the cube. Which was to:be done.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

For the right lines FM, FN, FO, PP, FQ paffing a com 3. 3. through the centers of the trianglis, ia do bifect their bab 41 . c 4. fes. 6 therefore the right lines $\mathrm{MN}, \mathrm{NO}, \mathrm{OP}, \mathrm{PQ}, \mathrm{QM}_{\text {c }}$ are equal othe to the other; d whence alfo the angles MFN, NPO, ORP, PFQ, QRM are equal; therefore the pentagone GHIKL is equiangular, e and confequently equilateral, Gnce FG, PH, FI, FK, FL f are equal. And if in the other eleven pyramids of the Icofaedron, the centers of the triangles be in like fort conjoined with right lines, then will pentagones equal and like to the pentagone GHIKL be defcribed. Wherefore iz of firch pentagones Myall conftitute a Dodecaedroa; which alfo - Chall be defrribed in the Icofaedroin, feeing the twenty angles of the Dodecaedron confid upon the centers, of the \&wenty bafes of the Icofiedron. Wheroby. it ipp peart that we have defribed a Dodeciedron in an Icons: edron given. phicb was to be dome,

(299)

 DEFINITIONS.

PLannes or Spaces, Liner, and Anglos, to wbicb we can find otbers equal, are faid to be given in Magmitude.
II: A Ratio is faid to be givors ewben we ann find it, or one equal to it.
III. Rettiline figures, wbofe angles ave gioom, aud alfo the ratio of tibe fodes to owo maosbet, ate frid to be given in Specios or Kind. .
IV. Points, Lines and Angles, wubicb bave and kecp always one and the fame place and fituation, "are faid to be given in Pofition or situation.
V. A Circle is faid to be given in Mognitude, wiben the femidiameter tbereof is given is Magnitude.
VI. ACircle is faid to be given in Poftion, and Magnitude, woblen the Center therreof is given is Pofition, and the femidiameter in Magmitude.
YIL segments of Circles, wubefe angles awd bafes awo givem in Maggnitude, ave faid to be gioen in Magmizade.
YIII: Segments of a Circh, wubofe angles are givem is Magnitude, and the bafes of tbe fagmonts in Pofition and Magnitude, are faid to be given in Pofition and Magnitude.
IX. A Magnitude AB, is greater D than anotber Magnitude C; by A————B given Magnituda BD, wuben bawing takon acvay she givan luatmistuds $D \mathrm{DB}$, the ref $A D$, is equal to the other Magnitude C.
X. A Magnitude AB, is Lefs thans awotber Magnitude C,

- by a given Magivitude BD, wown baving added tbercto the given Mragnitude BD, the wobole $A D$ is equal to the otber Magnitude C.

B

XI. A Magnitude $A B$, is faid to be greater than awotber Naggitude CB,by a givenMagninude $A D$; and in ratio, tuben taking from the fanme.A

D $\cdot \mathbf{C}$ Magnitude the given Nagnitude $A D$, the reft. $D B_{2}$ bath to the otber Magnitude $C B$, a given ratio.
XII. 1 Magnitude $A B$ is faid to be lefs tham anotber Magnitude BC, by a givers A B Magnitude AD, and in ratio,
 AD being added thereto, the wiwole DB batb to tbe otber Magnitude BC, a given ratio. XIII. A rigbt line is faid to be drawn down from a given point, anto a rigbt line given in Pofition, the rigbt line being drawn in a given angle.
XIV. A rigbt live. is faid to be drown up from a given poimt, to a rigbt lime given in Pofition, the rigbt lime be-. ing drawn in a given angle.
XV. A rigbt line is againf anotber rigbs line in Pofition, wben it is drawn parallel therete through a given point.

PROPOSITIONI.

h! 1TWO Magnitudes A and. B being given, tbe ratio thay bave to one anotker A to B is alfo giver.
Demonferation. For feeing that the Mag:
AB.CD nitude A is given, a we can find oine equal thereto, which let be C. Again, foraifmuch as the Magnitude B is given, we can allo find one equal to that, and let that be D^{\prime}. Therefore feeing that A^{\prime} is equal to C, and B to D_{2} as A is to C, b fo is B to D_{2} and by permutation, c as A flall be to B, fo C fhall be to D . Therefore d the ratio of A to B is given, for it is the fane ratio as of C to D, as we have found, and which ought to be demonatrated.

PROP. K_{R}

If a given Magnitude A, batb to jome otber Maguitude B, a given ratio, that otber Magnitude B, is alfo gives. in Magnitude.

Demonft. For feeing that \mathbf{A} is given, we can find one equal thereto, which let be C: And forafmuch as the ratio of \mathbf{A} to $\mathrm{B}_{\text {, }}$ is alfo given, we can find a one of the fame. Let it be found, and let the ratio be of C to D . Now feeing that as A is to $B, f_{0} C$ is to D; and by permutation, as A is to C, fo B is to D : But A is equal to C, therefore $b \mathbf{B}$ mall be alfo equal to \mathbf{D}. Therefore c the Magnitude B is given, fecing that thereto there hath been found one equal, to wit, ${ }^{\text {D }}$

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

Scholium o.

From this isis covidont that if a Magnitude bath to fame, part thereof a given ratio, by divifion, the ratio that ane. part bath to the other, foul be aldo given. For freeing. that as $D E$ is to $F B, f o$ is $A B$ to $C B$; by dievition, as $D F$ io $F E_{2}$ fo AC to CB. But it bath been demonfirated that the parts DF and BF are giver, and consequently their ratio is aldo. gives: In like namer, tbengore, the ratio of $4 \dot{C}$ to $C B$ is given.

$$
\dot{\mathbf{P}} \mathrm{R} \text { OP. }
$$

a 2. prop. b 3. prop. of them DE and PE, is given. Wherefore b the whole c I. prop.
d 18.5.
e 2. def.

PROP. VII.
C If a given Magnitude A B be divided
 according to a given ratio $A C$ to $C B$, each fegronet $A C$ and $C B$ is given.
Demonfor For Seeing the ratio of $A(;$ to $C B$ is givens, ab. prop. the ratio of a AB to each of them (AC and $\bar{C} B$) in b 2. prop.' alto given. But AB is given: Therefore b each of the Segments $A C$ and $C B$ is alto given:
traguitudos A amd G " wubicb have to one and the fame a given ratio B_{3} fall be to ane another in a given ratio 4 to C

Demorftr. For let the given magnitude D be exposed, and feting
$\frac{\mathbf{B}}{\frac{B}{B}}$ that the ratio of A to B is given, let the fame be done of the fail D to E. Now feting that D is given, $\triangle \mathrm{E}$ is also given. Again, feoing that a 2. prof. the ratio of \mathbf{B} to C is given, let the fame be dope of E to F. But E is given, and therefore F is alfo given. But facing that D is given, b the ratio of the fame D it prop. to B is given ; and fleeing that as A to B, fo D to B, and as B to C, fop is E to F; in ratio of equality, C c 22.5 . as A is to C, fo is D to F; but the ratio of D to F is given. Therefore the ratio of A to C is alto given:

> PR OP. IX.

If two or more magnitudes A, B, and C, are to one another in a given patio, and that the fame magnitudes A, B, and C, Dave to other magnitudes $D_{;} E_{3}$ and F , given ratio's, alkbougb
 they be not the fame, bora other magnitudes D, E, and F fall be also to one amatbet in given ratio's.

Demoxfir. Forafmuch to the ratio of \mathbf{A} to \mathbf{B} is given, as alto that of A to. D, the ratio of D to B hall. be given; But the ratio of B to E is also given.; therefore the ratio of the frame D to E shall be in like manner given. Again, freeing that the ratio of B to Cis given, and aldo that of B to E, the ratio of E to C shall be given. . But the ratio of C to F is also given. Therefore a the ratio of E to F fall be gi- 28 . prog. ven. But is hath been demonfrated that the ratio of D to E is aldo given ; and therefore b the ratio of $D b 8$. prop. to F shall be given. Therefore the magnitudes D, E, and F are to one another in given ratio's.
PROP: X

If a magnitude $A B$, be
 greater than another magnitude $B C$, by a given migguitude; and in ratio, the magnitude AC compounded
of botb, fall be'alfo greater tbas tbat Same magnitude, by a given magnitude, and in ratio; but if that compormad ed magwitude be greater tbas the fame magnitude, by do given magnitude, and in ratio; eitber sthe remaimder jall be alfo greater tban tbat fame, by a given magnitude, aind in ratio; or elfo the fame remainder is given witb the following, to wibicb the otber magnitude bath a gives ratio.

Dentonftr. For feeing that AB is greater than BC by 2 given wagnitude, and in ratio, let the given mag-
2 II. def. nitude AD be taken away. Therefore a the reaton of the remainder DB to BC is given ; and by compoundb 6. prop, ing, 6 the ratio of DC to BC is alfo given. But the magnitude AD is alfo given; therefore AC is. greater chan the fame BC by a given magnitude, and in ratio. D B E Again, Let the mag-
 nitude AC be greater than the magnitude BC_{3} by a given magnitude, and in ratio: I fay, that the reft AB , is either greater than the fame BC by 2 given magnitudé, and in ratio; or that the fame AB, with . that which followeth, to which BC hath a given ratio, is given.

Forafmuch as the magnitude AC is greater than the magnitude BC, by a given magnitude, and in ratio, cut off from it the given magnitude: Now the fame given magnitude is either lefs than the magnitude AB; or greater: Let it in the firft place be lefs, and let it be AD. Therefore the ratio of the remainder DC to $C B$ is given. Wherefore by divigion, the ratio of DB to BC is given. But the magnitude AD is alfo given; therefore the magnitude $A B$ is greater c than the magnitude BC by a given magnitude, and in mtio. Now let the given magnitude be greater than the magnitude $A B$, and let $A B$ be put equal thereto; therefore d the ratio of the remainder EC to CB is given; and by converfion, e the racio of the fame BC to BE, is alfo given. But the fame EB with BA is given, for that the whole AE is given: Therefore there is given AB , with that which follows BE , to which BC hath a given rasio.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

306
 Euclide's DATA.

Thall be given that of DC to DB . Wherefore by divifion, n fcbol. 5. wthe ratio of BC ta DB is given; and confequently alfo prop. Thall be given that of DB to BC. But it hath been de-- Is. def. monftrused that AD is given : Therefore $\rho A B$ is greater than the fame $B C$ by a given Magnitude, and in ratio.

PROP. XII.

If tbere are tbree magnitudes AR, BC, and CD, and tbat the $f f \circ f A B$, with the ficond $B C$, to wit, $A C$, be given. And the Jecond $B C$, with tbe tbivd $C D$, so wit, $1 D_{\text {, }}$ be ulfo given: Eitber tbe furft AB fall be equal to the Abive CD, or tbe one fall be greator tbase the ewber by x groes Magmitude.

Demonftr. Forafinuch as each of the Magnitudes AC and BD, are given, the given Magnitudes are either equal ∞ one another, or unequal. Let them be firt equal: Therefore $A C$ is equal to $B D$; take away the common a 3.Mos. I. Magnikude BC, and there will remain a AB, equal to CD. But fuppofe them to be unequal as in this $f f$ cond figure, and lee RD be greater than AC: Let then BE be pur equal to AC:
 Now feeing that AC is given, BE is alco given. But the whole BD is alfo given, the ref ED b thall be fo alfo; and forafmuch as $B E$ is equal to AC, taking away the common Magnitude c BC, there will remain $A B$ equal to $C E$. But $E D$ is given: Therefare $C D$ is greater than $A B$ by the given Magnicude.ED.

PROP. XII.

If there are tbree magnitudes AB, CD, and E , and tbat the furfo of sbem AB, batb a given ratio to the focomd CD; but the fecond $C D$ is greater than the tbive E, by a given magnitude, and ix ratio; alfo tbe forft $A B$, foall be greater than the stbird B, by a given magmtwode, and in vatio.

Damouflr. For feeing that CD is greater than E by a given Magnitude, and in ratio; let the given Magniwude CF be taken therefrom: Therefore the ratio of the Reff FD to Eis given. And forafouch as the ratio of $A B$ to $C D$ is given, let the fame be done of $A H$ to CR. Therefore the ratio of the fame AH mo io given.
given. But CF is given: Therefore a AH it alfo givend a i prop. And feeing that as the whole $A B$ is to the whole $C D$, So the part cut oft AH is to the part cut off CF , and fo δ alfo the reft HB is to the reft FD, the ratio of the $b 19.5$. fapie.HB to FD is aliog given. But the ratio of FD to E is alfo given: Therefore i the ratio of HB to F is C 8. prop. given. But it hath been demonftrated that $A H$ is given : Therefore $d \mathrm{AB}$ is greater than the faid E by a gi- d 11 . def. ten Magritude, and in ratio.

$$
\mathrm{P} \cdot \mathrm{R} O \cdot \mathrm{P} . \quad \mathrm{X} \mathrm{~V}
$$

If truo Mafinitudes $4 B$ hand CD, bave to one anozen a given rattio, ahd thbat to each of there there
 be added a given Magniiucte, to wit, TE and DF; either tbe wibole AE and CF.foallibave to. one anotber a given ratio, or the one fall be greatet than the atber by a given Magnitude, and in ratio.

Demenftr. For teeing that each of thofe Magnitudes BE and DF, is given, a the ratio of the raid $\mathrm{BE}_{2} \mathrm{I}$. poop. and DF is alifo given; and if that ratio be the fame with that of AB to $C D$, that of the whole AE to the whote CP, 6 fhall be the fame ; and therefore the ratip $b 12$. s. $^{\text {a }}$ of the "haid $A E$ to $C P$ is given.

Now let the ratio of BE to DF be not the fame with that of $A B$ to $C D$, and let $\mathfrak{i r}$ be as $A B$ to $C D$, fo BG to DF. Therefore the ratio of the faid BG toDF is given." But the Magnitude DF is given, therefore. c BG is alfo given; , and feeing that the whole BE c 2 prof. is given, at he reft GE fall be affo given. But fqrafmuch d 4-prep. is AB is to CD , as BG 'is to DF, e $\mathrm{f} p$ alfo is the whole e i2. s_{0}. AG to the whole CF ; and therefore the ratio of the faid AG to CF is given: Buc the Magnitude GE is given: Therefore f the Magnitude AE is greater than the Mag- $f 11$. def, מitude CP.by a given Magnitude; and in ratio.

PR,OP. XV.
: If twa Magnitudes . $4 B$ and $C D$, bave to one another a.given Tatio, and that from ouib of them be taken awway a given
 Magnitude (to wit, from the Magnitude $A B$ the Magnitude $A E$, and from the Magnitude CD the Magnitude CF) the remaining Magnitudes EB and ED; 2 eitber fallhbave to one anotber; a given ratio,

Euctide's $D A T A$.

or the owe of them foall be greater than the otber by a given Magnitude, and in ratio.

Demonftr. For feeing that each Magnitude AE and CF is given, the ratio of $A E$ to CF is given; and if it be the fame with that of $A B$ to $C D$, that of the remainder
a 19. 5. EB to the remainder FD, a thall be alfo the fame; and therefore the ratio of the faid EB to FD fhall be alt fo given. But if it be not the
 fame, let it be as AB to CD , fo $A C$ to CF. Now the ratio of $A B$ to $C D$ is given, therefore alfo that of AG to CF fhall be given. But CF is given, thereb 2.pry. fore b AG is given. But AE is alfo given, therefore 6 c4. prop. the reft EG is given; and feeing that as AB is to $C D$, fo the purt cut off AG is to the part cut of CF, and to d 4. prop. alfo is d the reft GB to the ref FD; the ratio of the faid GB to FD is alfo given. Therefore feeing that EG
e in. def. is given, EB is greater than FD e by a given Magnitude, and in ratio.

PROP. XVI.
If two Magnitudes AB and
 $C D$, bave to one anotber a given vatio, and tbat from one of them, to wit, CD, there be taken awway a given Magnitude DE, and to the otber AB tbere be added a given Magnitude $B F$, tbe wbole $A F$ fall be greater than the ref CE, by a gives Magnitude, and in ratio.

Demonftr. For feeing that the ratio of $A B$ to $C D$ is
2. 2. def. . given, let the fame be made of BG to DE: Therefore a the ratio of the faid BG to DE is given. But DE is
b_{2} prop. given therefore b BG is alfo given. But BF is alfo given, therefore c the whole GF is given. And feeing that as $A B$ is to $C D$, fo the part cut off BG, is to the part cut
d 19. 5. off DE ; and d fo alfo is the remainder AG to the remainder CE; the ratio of the faid AG to CE is given : But GF is given, therefore the Magnitude AF is greater than the Magnitude CE by a given Magnitude, and in ratio.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

Again, feeing that the fame CD is greater than EF by 2 given Magnitude; and in ratio; let the Magnitude DI be cut off therefrom: Therefore the ratio' of the remainder CI to EF is given: Ler the Yame be nade of DI to FR. Therefore the reafon of the faid DI' to FK fhall pe alfo given. But DI is given, therefore FK is atfo given. And feeing that as Ct is to EF ; fo is 1 D to FR ;
5 12. 5. To alfo is the whole $\epsilon \mathrm{CD}$ to the whole EK_{j}; the ratio of the faid CD to FK fhall be' given. Bue the ratio d 8. prop, of the fame CD to AH is alfo given: Therefore d the ratio of the faid $A^{\prime} H$ to ER Thall be given. And feefng that from the faid AH and ${ }^{\prime}$ EK, the given Magnitudes e $15 \cdot \mathrm{prop}$. BH and FK are cut off the Magnitudes AB and EF ; are cither in 2 given ratio to one another, or the one is greater than the other by a given Magniude, and in ratio. PR O P. XIX.

If there are three Magxi.. Fades $A B, C D$, and E, aiml tbat tbe ffift $A B$ be greatere tbay tbe fecond CD, by a givien Magnitude, and in rutio; and that tbe focond CD be greater than the tbird E, by a given Magmitude, and in ratio ; allo the firt Magnt tude AB pall be greater thay the tbird E, by a given Magnimde, andin ratio.

Demonftr. For fecing that $C D$ is greater than E by a given Magnitude, and in ratio; lec the given Magnitude, CF be taken therefrom: Therefore the ratio of the remaindér $\mathfrak{F} D$ to E is given. Agdin, feeing that $A B$ is greater than the fame CD by a given Magnizude, and in ${ }^{\text {ratio }}$: Let the Magnitude $A G$ be raken therefrom: Thercfore the ratio of the remainder GB to CD is given : Let the fame be made of GH to CF. . Therefore the ratio of the faid GH to CF is given. But CF is given: Therefore alfo GH is given, and then AG is alfo
-3. prop..
p19.5.

* given, the whole a AH manl Be alfo given. But as GB is to CD, fo is GH to CF , and fo alfo b the remainder HB to the remainder FD: Therefore the ratio of the faid HB to FD is given. Bat the ratio of the fame FD to Ein alfo given: Therefore the ratio of HB to E is in like manner
given, and fo is alfo the Magnitude AE: Wherofore, the Magnitude AB_{c} is greater than F by giver Mag- $\mathbf{c} 11$. dof. nitude, and in racio.

OTHERWISE

Conforution. Let there be three Magnitudes $A B, C$, and D, and let $A B$ be greater than C by a given Magniiude, and ia ratio; but lec C be alfo greater than D, by a givea
 Magnitude, and in ratio: I fay, that AB is greater than D by a given Magnitude, and in ratio.

Demonfor. Forafrouch as AB is greater than \mathbf{C} by a given Magnitude, and in ratio, let the given Magnizude AE be cut off therefrom: Therefore the raxio of the remainder EB to C is given. But the Magnitude C is greater than the Magnitude \mathbf{D} by a given Magnitude, and in ratio; therefore d EB is greater than D by a d 13 .prop. given Magnitude, and in ratio: Wherefore let the given Magaitude EF be cut off therefrom; and the ratio of the remainder PB to \mathbf{D} flall be given. But AF is e given. Therefore AB is greater than D by a given e 3 - prop. Magnitude, and in ratio.

> P R O P. XX.
 and CF, baving to one another a given ratio; either the remaining Magnitudes ER and FD, foall bave to one anotber given ratio's; or elfe the one ball be greater then the otber by a giom Magnitude, and is rativ.

Demonfir. For fering that both the Magnitudes $A B$ and $C D$, are given, the ratio of the faid $A B$ to $C D$ is a alfo a 1. prof;; given; and if it be the fame as of AE to CF, that of the remainder EB to the reminder FD thall be b alfo the fame; b 19. 5. and therefore the ratio of the faid EB to FD Ma!l be alfo given. But if it be not the fame, let it be 50 as that AE be to CF, as AG to CD. Now the ratio of the faid AE to CF is given : Therefore the ratio of the faid AG to $\mathbf{C D}$ is given. But CD is given, therefore \boldsymbol{c} AG $\mathbf{c} 3$. prop.
is alfo given. But the whole AB is likewife given, d 4. prof, therefore d the remainder BG is given. And feieing'that. as AE is to CF , fo is AG to CD , and alfo the remainder EG to the remainder PD, the ratio of the faid EG to FD is given. But GB is alfo given: Therefore the Mag\& II. def. nitude EB is greater e than the Magnitude BD by a given. Mapaikude, and in ratio.

PROP. XXI.

- If tbere are two Magnitudes given, $A B$ and $C D$; and to tbem are added otber Magnitudes BE and DF, baving to owe anotber a given ratio; eitber the wbole $A E$ and CE ball bave to one anotber a given ratio, or elfe tbe ow pall be greater tbay the otber by a given Maguitude, and in ratio.

Demonftr. For feeing that both the Magnitudes AB

- 1.prop. and CD are given; their ratio a is alfo given; and if it be the fame ratio as of BE to DF , the ratio of the whole $A E$ to the whole CF thall be alfo given; for it b 12. 5. fhall be b the fame. But if it be not the fame, let it be as BE is to DF , fo BG to CD : Thetefore the ratio of the faid BG to CD is given. But CD is given;
c 8. prop. d 4 . prop.
c 12. 5. therefore c alfo BG thall be given. But the whole AB is given ; therefore alfo the d remainder AG ghall be given. And feeing that as BE is to DF, fo is BG to CD, and alfoe the whole $G E^{\text {s }}$ to the whole CP , the ratio of the faid GE to CF fhall be likewife given. But AG is given ; therefore the Magnitude AE is greater than the Magnitude CF by a given Magnitude, and in ratip.

fall bave to the fame Magnitude D, a given ratio. '
Demonftr. For feeing that each Magnitude AB and
a 8. prop. . $B C$ hath a given ratio to D, the ratio a of $A B$ to
b 6. prop. BC is given; and by compounding, the ratio of AC to BC is given. But that of BC to D is alfo given, c ε, prop. therefore c the ratio of the faid $A C$ to D thall be likewịf given.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

©ROP. XXIV.

A	D	If of abme toble limes A, B, and C,
B	E	${ }^{1}$ bath to the shivd Cagioes
C	F	

b 89.6. c $3 . \operatorname{dif}$. sigha lines D and P, lee there be takea a a mean propor. tional B. Therefore the retangle made under D and \mathbf{P} is eqgal b to the fquare of E . But the fame retangle of D sad \mathbf{F} is o given: (for all the angles of that rectangle are given, being right angles, and the ratio's that the fides have to one another are alfo given;) therefore the fitmare of E is given, amd confequently the fame right Hine \mathbf{E} is alifo given (for one equal thereto may be found, d fecipg that the retangle of D and F is given.) Buc D is given, therefore e the ratio of D to E in given, and as A in to C, fo D is to P. But as A is to C, f fo the square of A is to the retangle of A and C, and atio as D is to F, fo the §quare of D is to the retungle of D and \mathbf{F}. Thetefore as the fquare of A is to the rectangle of A and C, to the fquare of D is to the redangle of Dand P. Bur the rectangle of A and C is equal to the fquare of B, (feeing that A, B, and C, are proportional) and that of D and F to the fquare of E, therefore as the fquare of A is to the fygare of B, fo the fquare of D is to the fquare of B : Wherefore g as A is to $B, 60 \mathrm{D}$ in to E : But the ratio of D to E is given, therefore B alfo the ratio of A to B is given.

PROB. XXV.

If twoo limes AB ased CD, gioon by pofither do i marfart, tbe point \mathbb{E} in wwich tbey jow toufate one amotbor, is giocs by pofition.
Demonftr. For if it change les place, the one or the other of the lines $A B$ and $C D$, would change its pofition : But fo it is that by Suppofition
frion it changeth not : Therefore a the point E it gimel $₹ 4$ def. by partition.

PR OP. XXVI.
If the extremities A and in of angel A ———B line $A B$, are given in paftions, thant same right lime $A B$ is given in position and in magnitude.

Demonfir. For if the point Abstaining in its place, the position, or the Magnitude of the right line AB fall change; the point B will fall eft cohere. But fo it is, thane by Supposition it doth not fall alfewhere. Therefore the right line AB is given in pofitior, and in magitads.

PROP. XVII.
If one of the oxtromes A of a right line $A-B$ AB, given. in poperion and magetiadt, be given, the other extremity y farl be alto given.
Durronft. For if, the point A remaining in iss places, the point B tall change and foll in come other places: either the potion of the right line AB , or its magnitude would change: Bar fo it is that according to the SappoPrion, neither the one nor the other doth change. Therefore the point \mathbf{B} is given.

OTHERWISE.

Comfit. On the center A, with the distance $A B$; deferibe the ciroulu terence BC.

Deinonfr. Therefore a that circumference BC is given by pofiction. But the right line AB is aldo given by pofition; therefore the point $6 B$ is given.

b 25. proper
PROP. XXVIII.
Fibrowgh the given point A, there be drawn a right line DAE, against another right Wine BC, given in position, the right line DAE fo drawn, is given in pofficom.

Demonfir. For if it be not given, the point A remanning in its place, the portion of the right line DAE may change: Let it then change if it be poffible, and Gall effewhere, remaining parallel to BC, and let it be the line PAG: Therefore BC is parallel to the fid line

2T3. def b30. 1

PAG. But a the fameBC is alfo parallel to DAE : Therefore 6 DAE is parallel to the faid line FAG, which is abfurd; feeing they join together, and meet in A: Therefore the pofition of the right line DAE falls not elfewhere. Wherefore the faid line DAE is given in pofition.

PROP. XXIX.
If to rigbt line $A B_{3}$
 given in pofition, and to a point C gives tbercip, there be drawn a rigbt line $C D_{\text {, }}$ wibich pall make a givers angle ACD, the line draws CD is given in pofitiom.
Demonftr. For if it be not given in polition, the point C remaining in its place, the pofition of the line CD obferving the Magnitude of the angle $A C D$. will fall elfewhere. Let it fall elfewhere then if it be poffible, and let it be CE. Therefore the angle ACD is equal to the angle $A C E$, the greater to the leffer, which is abfurd. Therefore the pofition of the right line $C D$, Phall not fall elfewhere; and therefore the faid line $C D$ is given in policion.

> PR P P. XXX.

If from a given point A, be drawn to a rigbt line $B C$, giome is pofition, a rigbt line AD, making a given angle ADB, that live drawn $A D$ is gives is pofition.

Demonftr. For if it be not given, the point A remaining in its place, the polition of the right line AD changing, the Magnitude of the angle ADR, will change. Let it change then, and let it be the right line AE: Therefore the angle
2 16.1. \quad ADB is equal to the angle AEB, the greater a to the leffer, which is abfurd. Therefore the pofition of the right line AD doch not change; and therefore the faid line $A D$ is given in pofition.

OTHERWISE.

Conftr. Through the point A let there be drawn the line EAF, parallel to the right line $B C$.
Demonftr. Then feeing that through the given point A, and againft the right line BC, given in poftion, there is drawn

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
that to s the right lime AP given in portion, and so chap given point therein A there is drawn she night line: DA. making the given angle DAF, 't that fane live DA in given in potaioth.

Scholium.
 sion in pofticeri and inclining to ave another, do make en given and le; which fane do detrouffrate afore spic :mar. mo

Domineer. Forafnuch as the two right lines given, ix position, do incline to one another; the inclination of those lines is given. But the angle is the inclimation of the lines: Therefore the angle © which makes the right lines given in puffing, sand inclining to simeanoi the, is given.

Confer. Let there be two right line inclining to cone onothery s. AB and CB_{3} given in portion and in. the line $A B$ let there be taken a given point A, and BC also fame point, as C; and let the right line AC be drawn.

Demorifir. Seeing that as well the point B, as each of the point A and C is given, k the three right lines $A B, B C$, and $A C$, ane given in Magnitude. Wherefore of three direct lines equal unto them; a triangle may be conflituted: Let there then be made the trimangle $F D E$, having the fine $F D$ equal to the fides $A B_{\text {, }}$ the five PE equal to the ride. AC, aid the bate DE equal to the bate BC.

Seeing then the angles comprifed of equal night lines are equal, we have found the angle FDE equal to the angle $A B C$; and therefore the frame l angle $A B C$ is given.

PROP. XXXI.

If from a given point 4 there be drawn to a rigbt line given in pofition $B C$, a rigbt line $A D$, given in magnitude, that lime AD faill be alfogiven in poofition.

Conftr. From the center A, with the diftance $A D$, let the sircle DEF be defaribed.

Demonftr. Forafruuch as the center A is given in polition, and the femidiameter $A D$ in magnituate, the circle DEF a is given in pofition. But the sipht Bine $B C$ is 2δ. def . alfo given in polition: Therefene the pains af inserfection D b is given, and fecing shat the poins A is alfo given: $b 25$.prop. c the right line $A D$ is givep in pafitiga.

PROR. XXXU.
If unto pavallel right lines AB and $\overline{C D}$, given in pofition, tbere be drawn a right line EF, making tbe givesp angles BER and EFD, the line drawn EF pall be gionn in magnitude.

Conffr. For let there be
 taken in the line CD a given point G, and from that point let be drawn GH parallel to FE.

Demonftr. Forafmuch as the lines EF and HG are parallels, and that on them doth fall the line $C D ; a 2291$. the angle EFD is equal to the angle FGH. But the angle EFD is given, therefore the angle FGH is alfo wiven. And forafnuch as to the right line CD given, in popition, and to the point G given in the fame, there is dramin the right line GH, making the given angle FGH, b the faid b 29. prop. line GH is given in pofition. But AB is allo given in pofition, therefore c the point H is given. But she pojnt $c 25$. prop. \mathbf{G} is alfo given: Therefore d the line $G H$ is given 3 A d 26 . prop.
 line is given in Magnicude.

PROP.

PROP. XXXIII.

 and $C D$, given is pofition, there be draws a rigbt lime EF given ins inaguitude, that lime BF ball make the gioun angles BEF and DFE.Compr. For let there be caken in the right line $A B$ the point G, ánd through that poinc let there be drawn the line GH parallel to EF.

Demonfts. Therefore EF is equal to the faid a GH. But EF is given in Magnitude, therefore GH is alfo given in Magnitude. But the point G is given, and therefore if on that point, with the diftance GH , there be defcribed a circle, b that circle fhall be given in poficion: Let it be then defcribed, and let it be HKL, the faid circle HKL is therefote given in pofition. But the line CD which doth cut the circumference FHL in H, is alfogiven in pofition. Therefore the faid point of incerc 25. prop. fetion H c is given. But thie point G is given : Thered 26. prop. fore d che right line GH is given in pofition. But the right efcb. 30. line $C D$ is alfo given in pofition: Therefore e the angle prop. GHP is given. But to that angle f the angle ERD is equal: E 29. 1. g 29. 1. g right angles.

OTHERWISE:

Conftr. Let there be taken in the right line CD_{2} the point G, and let GD be put equal to $E F$, then from the center G, with the diftance $G D$, let there be defcribed the circle HDB, and draw GB.
h 6. def.
i 25.100%

k 26.prop: given in poftion.

Demonfit. Forafmach as the center G is given in pofition, and the femidiameter GD in magnitude, the circle BDH bis given in poftion. But thé lide AB is alfo given in pofition : Therefore i the point B is given. But the point G is alfo given, therefore k the right line GB is But the right line CD is alfo given

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Demonft. For from the point E let there be drawi to CD the perpendicular EH, and produced to the point \mathbf{K}; feeing therefore that from the point \mathbf{E} to the right line CD , given in poficion, there is drawn the line EH , a 30. prop. making the given angle EHG, a the faid line FH is given in pofition. But each line $A B$ and $C D$ is alfo b 25 . mop. given in pofition: Therefore b each point of interfetion H and K is given. But the point E is alfo given, therec 26. prop. Fore c each of the lines EH and IK is given in Magnitude; d I. prop. and cherefore d the ratio of the faid EH to EK is given. © 4. 6 . Bute as EH is to FR fo is EG to EF (for the oppofite angles at the point E being equal, and the lines AB and CD parallels, the triangles EHG and EKP are equiangled; and therefore as EH is to EG , fo is EK to EF ; and by permutation as EH to EK, fo is FG to EF.) Therefore the ratio of the faidlines EG to EF is given.

PROP. XXXV.

If from a given point A, to a rigbt line $B C$, 'givets is pogfitom, there be drawn a rigbt lime $A D$, wbicb let be di wided in E , in a.given ratio (to wit) as AE to ED, and that by tbe point of fetion E tbore be drawn a rigbt lime FEG, oppofite to the right line BC, given in pofition, the lime FG drawn fanll to given in pogition.

Conftr. For from the point \mathbf{A}, let there be drawn the line AH , perpendicular to the line BC.

Demonffr. For feeing that from the given point A^{\prime} there is drawn to BC given in pofition, the right line AH making the given amgle AHD, a the faid line AH is given in poftion. But BC is alfo given in poffition:
 Therefore b the point H is given. But the point \mathbf{A} is als given: Therefore c the line AH is given in magnitude and in poftion. And feeing that d as $A E$ is to $E D$, So $_{0}$ is $A K$ to KH, and that the ratio of AB to ED is given, alfo the ratio of AK to KH is given; and by compounding, e the ratio of AH to AK is given. But AH is given in Magnitude : There-

$$
\text { f } 2 . \text { prop. }
$$ given. But the point A is als

given point K there is drawn the line FG , oppofite to the h is. proo. tight line BC given in pofition; the faid line FG b^{6} is given in pofition.

> P R O P. XXXVI.

If from a given point A, there be drawn to a rigbt line BC given in pofition, a rigbt line $A D$, and to it be added a rigbt line $A E$, baving to tbe fame $A D$ a given ratie, and that through the extremity E of the wdded line $A B$, there be drawn a figbt line SER, oppofite to the line BC, given in pafision, that fame line FEK faall be given in pafition.

Conftr. For from the :point A let there be drawn to the line $B C$, the perpendicular $A L$, and let it be prolonged to the point G.

Demonftr. 'Forafmuch as from the given point A, there is drawn to the right line $B C$, given in pofition, the righ line GL, which makes the given angle GLD, a that line GL is given in pofition. But BC is alfo given in pofition, thertfore b the point L is given; and feeing that the pornt A is alfo given, the line $c A L$ is given. But forafmuch as the ratio of $A E$ to $A D$; is given; $d 46.6$. and that d as the faid $A E$ is to $A D$, fo is $A G$ to $A L$; (becaufe the triangles $A L D$ 'and $A G E$ are equiangled) the ratio of AG to AL is alfo given. But $A L$ is given in Magnitude: Therefore e AG is giten in Magnitude. e 2. prot. But it is alfo given in pofition, and the point A is given: Therefore f the point G is alfo given. And feeing that f_{27} prop. by the fame given point G there is drawn the line $F K$, oppofite to the right line BC, given in polition, g the $g 28 . \operatorname{cpopfo}$ faid line FK is given in pofition.

PROP. XXXVII.
If unto parallel right lines AB and CD, given is pofition, there be dratw a rigbt line $E F$, divided in the point G, in a given ratio, (to wit; of EG to GF; 1 and if through the point of Section G, there be drawn oppofite to the rigbt lines $A B$ or $C D$, given in pofi-
 tion, a rigit l ne HGK, that ture draioun flall be given in pafitios:

Euclide's $D \boldsymbol{A T} \mathcal{A}$.
Conftr. For let there be takcn in the line AB the given pbint L, and from that point let there be drawn the line LN, perpendicular to CD.
Demonftr. Seeing that from the given point I, there is drawn to the right line $C D$, the line LN , making the a 30. prop. given angle LND, the faid $\mathrm{LN} a$ is given in poficion. But CD is alfo given in pofition : Therefore the point b 25 .prop. $\mathrm{N} b$ is given. But the poine L is alfo given : Therefore c 26. prop. c the line LN is given; and feeing that the ratio of FG to GE is given, and that * as FG is to GE, fo is NM to ML, the ratio of the faid NM to ML is given; and
d 6. prop. by compounding, d the ratio of LN to LM is alfo given. But LN is given in Magnitude, therefore ML e 2. prop. is e given in Magnitude. But it is alfo given in pooftion, and the point L is given: Therefore the point M f 27. prop. fis alfo given. And confidering that through the faid point M there is drawn the right line KH, oppofite to the right line CD , given in pofition, the faid line. KH is alfo given in pofition.

Scholium.

* EUCLIDE [uppofetb bere, that as FG is to GE, fo 2 NM is to ML ; but by anotber it is thus demonfitrated.

The lines EF and LN are parallels or not parallels: Let them in the firft place be parallels, and forafmuch as by Confiruction the lines EL, FN, EF, and LN, are parallels, ENBall be a parallelogram; and tberefore the fide EF is equal to the fode LN Again, feeing that MG is parallel to NF, and GF to MN, GN fall be alfo a parallelogram; and therefore the fide GF is equal to the fide MN. Wherefore the equal fides $E F$ and $L N$, ball bave to the equal fides $F G$ g. 5. and MN, gone and the fame ratio. Tberefore as $E F$ is fo is LM to MN.

Noev Suppofe that the lines $E F$ and $L N$ are not parallels, but that they meet in the point 0 . Farafmucb as in the triangle OFN tbere is drawn HK, parallel to FN one of the fides; \mathbf{i} the fodes OP and ON are divided proportionally; and tberefore as FO is to GO, fo is NM to MO. Again, feeing that in the triangle OGM there is

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

PROP. XXXIX.

 If all the fides of a triangla ABC are given in magyitude, the triangle is given in kind.Conffir. For, let there be expofed the right line DG given in pofition, ending in the point D; but being infinite towards the other part G, and therein let be taken $D E$, equal to $A B$.
Demonfit. Now feeing the faid $A B$ is given in magnitude, $D E$ isfo alfo; but the fame DE is alfo given in poficion, and the point D is given: Therefore at the point E is given.

Again, Let EF be put equal to BC ; and feeing that BC is given in magnitude, EF fhall be fo alfo. But the faid EF is in like manner given in pofition, and the point E $\$ 27$. prop. is given : Therefore b the point F is given.

Furthermore, Ler FG be taken equal to AC. Now forafnuch as the faid AC is given in magnitude, FG is fo alfo. But FG is alfo given in pofition, and the point. F is given : Therefore the point G is alfo given. Now from the center E , with the diflance ED , let there be de-: frribed the circle DHK, c and that circle fhall be given in pofition. Again, on the center F, and diftance $F G$, d 6 . def. let there be defcribed the circle GLK. Therefore d the c 25. prop. faid circle GLK is given in pofition ; and therefore e the point of Interfection K is given. But each of the points § 26. prop. \mathbf{E} and \mathbf{F} is given: Therefore each line $f \mathrm{EK}, \mathrm{EF}$, and FK, is given in pofition and magnitude. Therefore the triangle $F K$ is given * in kind; but it is equal and alike to the triangle $A B C$; and therefore the triangle $A B C$ ia alfo given in kind.

Scholium. - EUCLIDE Juppefotb bere, ibat a triangle, whofe fides ave given in magnitude and pofition, is given in kind; but tbe antient Interpreters demonfrate it in a manver tbus. Forafmuch as the rigbt lines $K E$ and $E E$ are given, g the ratio wbich tbey bave.te one another is given. Also the right lines EF and FK being given, their ratio is allo given; and in like manner, the ratio of tbe. faid EK avd FK is given. Again, feeing that the fame lines KE and EF ave given in poftion, h the angle KBF is given in
 magnitude: Moreover, the right lines EF and FK being given in pofition, the angle EFK is given in magnitude, as is alfo the refidue EKF, and fo in the triangle EKF arp all the angles given, and alfo the ratio's of the fides: Therefore i the faid triangle EKP is given in kind.

PROP. XL.
If the angles of a . triangle A BC, are given ir magnitude, the triangle is given in kind.

Conftr. Let there be expo-
 fed the right line $D E$, given in pofition and in magnitude; and let there be conflituted at the point D the angle EDF, equal to the angle CBA; and at the point E the angle DEF, equal to the angle BCA ; therefore the third angle BAC is equal to the third angle DFB.

Demoryff. For each of the angles conftituted in the points \mathbf{A}, \mathbf{B}, and C, is given: Therefore each of thofe which are pofited in the points D, F, and E, is alfo given ; and feeing that to the right line DE given in pofition; and to the point D given therein, there is drawn the . right line $D F$, which makes the given angle EDP, a a 29 profi.
the line $D F$ is given in pofition ; and for the fame reafon b25. prop. the line EP is given in pofition: Therefore b the ppint F is given in pofition. But each of the points D and c 26. prop, E is given: Therefore c each of the lines DF, DE, and EF, is given in magnitude. Wherefore the triangle DFE is given in kind; and is alike to the triangle ABC: Therefore the triangle ABC is given in kind.

PROP. XLI.
If a triangle $A B C$, bath one angle $B A C$ given, and that the two fides $B A$ and $A C$, wbich do confitute it, baive to one anotber a givon ratio, tbe triangle is given in kind.

Conftr. For, let there be expofed the right line DF given in magnitude and pofition. And thereon, and at the given point F, let there be conflituted the angle DFE equal' to the angle BAC.

Demonftr. Now the angle BAC is given: Therefore alfo the angle DFE is given, and feeing that to the right line DF given in pofition, and from the given point F therein is drawn a right line $F E$, making the given angle DFE, a the faid line PE is given in pofition. But feeing that the ratio of AB to AC is given, let the fame be made of DF to FE, then let DE be drawn. Therefore the ratio of DF to FE is given. But DF is given : Therefore b FR is
d 26. prop.

b 2. prop.
c 27. prop.
given in magnitude. But the fame $F E$ is alfo given in poftion, and the point F is given. Therofore ϵ the point E is alfo given. But each of the points D and F is given: Therefore d each of the
right lines DF, FE, and DE is given in polition and
e 39. prop. miagnitude. Wherefore e the triangle DEF is given in kind. And feeing that the two triangles ABC and DEF have an angle equal to an angle, that is to fay, the angle BAC to the angle DFE, and the fides which con-
(6. 6. fitute thofe equal angles, proportional; fthe triangle ABC is alike to the triangle DEF. But the triangle DEP is given in kind: Therefore the triangle ABC is givea jn kind.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies Evcirde's $D A T A$

PROP. XIII.

If the fides BC and BA, about
 owe of the acute angles of a rectangled triangle ABC, bare to one another a given ratio, that triangle is given in kind.

Confer. Let there be exposed the right line DE given in magnitude and pofition, and on it let there be defcribed the femicircle DGE: There-' fore a the femicircle DGE is given in pofition.

Demonftr. For the line DE being given, and divided in two equal parts, the center of the.faid circle is given in position, and the femidiameter in magnitude. And forafmuch as the ratio of BC to BA is given, let the fame be made of DE to F ; Therefore the ratio of DE to F is given. But DE is
b 2. prop. c 19. 1.
d 14.5 .
e 6. def." given, therefore $\mathrm{F} b$ is alfo given. Now BC is greater than c AB: Therefore ED is d also greater than F_{9} Let $D G$ be fitted equal to F, and let EG be drawn; then on the center D, with the distance $D G$, let the circle GK be delcribed. Now that circle e is given in pofition, freeing that the center D is given, and the femidiameter DG is alpo given in magnitude. But the feme; § 25 . prop. circle DGE is alfo given in pofition: Therefore f the point of interfection G is given. But the points D and \mathbf{g} 26. prop. E are alpo given, therefore g each of the right lines $D E, D G$, and $E G$, is given in position and magnitude. h 39. prop. Wherefore b the triangle DGE is given in kind. And freeing that the triangles $A B C$ and $D G E$ have an angle equal to an angle, to w it, the right angle BAC to the i ir. 3. right angle $i \operatorname{DGE}$, and the fides about the angles $C B A$ and EDG proportional. But each of the others ACB and DEG are left than a right angle: Thole triangles k 7.6. ABC and DEG k are alike. But the triangle DGE is given in kind: Therefore the triangle $A B C$ is alfo given in kind.

If a triangle $A B C$, bath ane angle B gisen, and tbat the fides $B A$ and $A C_{\text {a }}$ about anotber angle BAC, bave to one another a gives ratio, the triangle $A B C$ is given in kind.

Confir. Now the given angle B is either acute or ob-
 ture, (for it was a right angle in the foregoing propofition.) Let it be in the firt place acute, and from the point A let AD be drawn perpendicular to BC.

Demonftr. Therefore the angle ADB is given: But the angle B is alfo given; and therefore the third angle $B A D$ is given: Wherefore a the triangle $A B D$ is given a 40 . prop. in kind; and therefores the ratio of $B A$ to $A D$ is given. b 3. def. But the ratio of the fame BA to AC is alfo given: Therefore c the ratio of $A D$ to $A C$ is given, and the $c 8$. prop. angle ADC is a right angle: Wherefore the triangle d d 43 . prop. ACD is given in kind: Therefore e the angle C is given, e 3.def. But the angle B.is alfo given; and therefore the other angle $B A C$ is given: Therefore f the triangle $A B C$ is f_{40} prop: given in kind.

Conftr. Now let the angle $A B C$ be obtufe, and on the fide CB prolonged, let there be drawn the perpendicular AD.

Demonffr. Forafmuch as the angle $A B C$ is given, the angle $A B D$, which follows it, thall be given. But the angle ADB is alfo given : Therefore the third angle UAB i given. Wherefore g the triangle $A B D$ is given in $g 4 \sigma$. prop. kind; and therefore b the ratio of DA to AB is given. But the ratio of AB io AC is alfo given: Therefore i the ratio of DA to $A C$ is given, and the angle D is a right angle. Therefore the triangle DAC is given in kind, and therefore the angle ACB is given. But the angle ABC is alfo given: Therefore the third angle BAC is given. Wherefore the triangle $A B C$ is given in kind.

PROP.

RR OP. XIV:
If a triangle ABC bath one angle B iC given, and that. the line compounded of the two fides $A B$ and $A C$, about the Said given angle BAC, batt to. the other fade BC a given ratio, the triangle ABC is given in kind.

Conftr. For, let the angle BAC be divided into two
a 7. prop. equal parts by the line AD , therefore a the angle CAD is given.
b 3. 6. Demonftr. Seeing that as $A B$ is to $A C$, fo b is $B D$ to c18. 5. CD; by compounding, c as the line compounded of $C A B$ is to $C A, f o$ is $B C$ to $C D$, and by permutation, as the line compounded of CAB is to CB , fo is CA to. CD. But the ratio of the line compounded of CAB to $\mathrm{B} C$, is giver ; therefore the ratio of CA to CD is alfo d 44. prop, given, and the angle CAD is given. Therefore d the triangle $A C D$ is given in kind, and therefore the angle C is given. But- the angle BAC is also given : Therefore the third angle B is given: Wherefore e the triangle ABC is given in kind.

OTHERWISE.

Confer. Let BA be prolonged directly unto the point D, in fuck fore as that $A D$ may be equal to $A C$, and let $\in D$ be joined.
Demonffr. Forafmuch as the ratio of the line compounded of CAB to ${ }^{\circ} \mathrm{CB}$ is given, and that $A D$ is equal to AC , the ratio of the whole
 line $B D$ to $B C$ is given. But the angle ADC is alfo given, for it is the half of the given angle BAC (for that the fid angle BAC f is equal to the two internal angles $A C D$ and ADC, which are g equal to one another, being the fides $A C$ and $A D$ are equal:) Wherefore the triangle BDC h 44, prop. b is given in kind, and therefore the angle B is given. But the angle BAC is alfo given. Therefore the res $A B C$ is given in kind.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

834
 E\#CHIDI's DATA

EROP. XLVII.
Retioline jifues, as $A B C D E$, gioon in kinds are dioided into toianglo giece in kind.
congty. Per lat che right lines EB and BC be drawn.

Deinonfor. Foratonuch as the rectiline figure $A B C D E$ is given in kind, the angle a BAE is given, and the ratio of the lide AB to AE is allo given: There fore l the triangle BAB is.given in kind. Wherefore the angle ABE is given. But the c 4. prop.
d 8. puqp. s 41. pro.

b 48. prop.
- 3. def. whole amgle ABC is allogiven: Therefore o the remaining angle EBC is given. But the ratio of the fide AB to the cide BE , and alfo that of AB to BC is given: Therefore d the ratio of $B C$ to $B B$ is givens, and the augle CBE is alfo given : Therefore a the triangle BCB is given in kind. By the fame way it may be domonfrated that the triangle $C D E$ is given in kind. Therefore retiline figures given, in kind divide thensolves into triangles given in kind.

PROP. XLVIII.

If on ome and the fame rigbit line $A B$, are deforibed triangles, as $A C B$ and $A B D$, given is kind, thoofe triaggles foall bave to one anotbor a given ratio, as ACE to ABD.
Conftr. For from the points \mathbf{A} and B, let there be drawn at right angles on the line $A B$, the lines $A E$ and $B G$, and prolonged unto the points F and H ; through the points C and D , let there be drawn the lines ECG and FDH, parallel to AB.
Demonftr. Forafmuch then as the triangle $A B C$ is a $\overline{3}$. def. given in kind, a the ratio of $C A$ to $B A$ is given, and the angle CAB is alfo given; but the angle BAE is given: Therefore the remaining angle $C A E$ is alfo given; but the angle CAE is given; and therefore the other angle $A C E$ is alfo given. Wherefore b 40. prop. b the triangle AEC is given in kind. Now the ratio c 8. prop. of EA to AB c is given; (for d the ratio of EA to AC; d 3. def. and that of $A C$ to $A B$ is given ;) and in like manner,

Evcuide's $D A T A$.

the ratio of FA to AB is given. Therefore e the ratio of e 8. prop; EA to AF is given; but as $A E$ is to $A F$, fo f the paral- $f 1.6$. lelogram AH to the parallelogram AG; but ACB is $g \mathrm{~g} 4 \mathrm{I} . \mathrm{r}_{\text {. }}$. the half of AH, and ADB the half of AG; therefore the ratio of the triangle ACB to the triangle ADB is given ; for it is the fame ratio with that of AH to AG $h_{\%}$, that $\mathrm{h} \mathbf{I} 5$. $\overline{\mathrm{g}}$. is to fay, of EA to AF , which is given.

> P R O P. XLIX.

If on one and the fame rigbt line $A B$ there are deforibed avy two rectiline figures AECPB and ADB, given in Kind, they Ball bave to one anotber a given ratio (to soit) $\triangle E C F B$ to ADB.

Conftr. For let the lines TA and FE be drawn: Therefore each of the triangles a ABF, AFE, and ECF is given in kind.

Demorftw. Seeing that on one and the fame right line EF there are defcribed the triangles ECF and EAF, given in kind; the ratio of ECF to EAF b is given. $b 48$. prop. Therefore by compounding, c the ratio of AECF to EAF c 6 . p pop? is given. But the ratio of the faid EAF to PAB is登rerv, ${ }^{\text {ribed }}$ becaufe they are triangles given in kind, de. d 48 . prop. ${ }^{10}$ ribed on one and the fame right linie AF: There Gore the ratio of AECF to FAB is given. Where- e 8.prop: Eore by compounding, f the ratio of AECFB to FAB f 6.prop. is given. But the ratio of the fame FAB to ABD g g 48 .prop. 13 given: Therefore bothe ratio of AECPB to ABD is ${ }^{2}$ 8.prop. alfo given.

PROP. L:

If tworigbt lines AB änid
 CD, bave to one anotber a - givens ratio, and that on tbofe lines tbore be deforibed reatiline figures AEB and CFD, alike, and alike pofited, they will bave to one anotber a given ratio.

Demorffis. To the two lines $A B$ and $C D$, let there be taken a third proportional G: Therefore as AB is to $C D$, fo is $C D$ to G. But the ratio of $A B$ to $C D$ is given: Therefore the ratio of $C D$ to G is alfo given: Where:fore a the ratio of $A B$ to G is given. But b as $A B$ is to G, fo is ARB to CPD: Therefore the ratio of the fame ABB to CFD is given.

> PROP. it

Iftwo rigbt lines $A B$ and CD bave to ome anotber a given ratio, and tbat upon tbem tbere be deforibed any rectiline figures AEB and CFD, given in kinds tbey, quill bave to one anotber a given ratio, (to wuit, tbat of $\triangle E B$ to CFD.) PConftr. For on AB let the rectangled figure AH be de: fribed alike, and alike pofited to DF.
i Demonftr. Now DF is given in kind : Therefore alfo AH is given in kind. But AEB is alfo given in kinds 9. 49. prop. and defcribed on the fame line AB: Therefore a the ratio of AEB to AH is given : And feeing that the ratio of $A B$ to $C D$ is given, and that on thofe lines are defrribed the rectiline figures AH and DF alike, and alike pofited; so. prop.' the ratio b of the faid line AH to DF is given. But the ratio bf AEB to AH is alfo given: Therefore the ratio ce 8.prod. 6 of AEB to DF is given.
$\underline{P R O P} P_{j}$

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Euclid's DATA.

IV.

If tasso figures 14 and B given in kind, bate to one another a given ratio, also their fides fall be to one another in a given ratio. Comply. For either the figure A is alike and alike posited to B, or is not: Let it in the firs place be alike, and alike posited; and let there be taken the line G, a third proportional to the lines CD and EF . acer. 19. Demonftr. As CD is to G, a fo is A to B . But the 20. 6. ratio of A to B is given; therefore alto the ratio of $C D$ to G is given. And freeing that CD, EF, and G , are b 24. prop. proportional, b also the ratio of CD to EF is given. But C 5 3. prop. A and B are given in kind: Therefore c the other fides Shall have given ratio's to the ocher fides.

Now let the figure A be not alike to the figure B, and let there be described on EF the figure EH, alike and alike posted to A: Therefore the figure EH is given in kind ; but the figure B is also given in kind: 'There-
d 49. prop. fore d the ratio of B to EH is given; and therefore the ratio of A to the fame EH e is also given: But A is alike to EH: Therefore (by what is abovefaid) the ratio of $C D$ to 'EF' is given; and in like manner the ratio of the other fides to the ocher fides is given.

OTHERWISE.

Confer. Let there be exported the given line GH: Now elithe the figure A is alike to the figure B, or not. Let it in the first place be alike, and let it be as CD it to EF , fo is GH to LK ; then on GH and IK let the figures M and N be deScribed alike, and alike posited to the said \mathbf{A} and \mathbf{B}, which figures M and N hall be con: frequently given in kind.

Demonftr. Therefore freeing that ${ }^{*}$ as CD is to EF , fo is GH to LK. and that on
thofe lines $\mathrm{CD}, \mathrm{EF}, \mathrm{GH}$, and LK, are defcribed the figures $\mathrm{A}, \mathrm{B}, \mathrm{M}$, and $\mathrm{N}_{\text {; }}$ alike and alike pofited; f as $\mathrm{A} £ 22.6$. is to B, , Co is M to N . But the ratio of A to B is given : Therefore, the ratio of M to N is given. But $g M$ is $g 52$. prop! given, confidering that it is a figure given in kind, defacribed on a right line given in magnitude; therefore \mathbf{N} is alfo given.

Comfin, 2. Noww, on LK let the fquare \mathbf{O} be defribed: Therefore \boldsymbol{k} the figure O is given in kind. other fides of the fame figures fhall alfo have to the other Gides given ratio's. But if the figures be not alike, the later part of the demonftration here above mult be obferved.

> PROP. LV.

If $a . \int p a c t ~ A b p$ given in kind's and in magnitude, the fides tbereof foall be given in magnitude.

Comfr. For, let the right line $B C$, given in pofition and in magnitude, be expofed; and thereon let there be
 defcribed the fpace. , alike and alike pofited to A; therefore the faid fpace D is given in kind.
Demonffr. For that it is defcribed on the line BC, given in magnitude, it is alfo a given in magnitude. a sa. propo: But the figure A is alfo given : Therefore b the ratio of, b 3 . prop. A to D is given. But thofe figures A and D are given in kind: Therefore c the ratio of che line EF to the c 54 . prop. line BC is giyen. But BC is given: Therefore d EF d 3 . def. . is alfo given. But the ratio of the fame EF to FG is given: Therefore e FG is given. And by the fame, ways of e 2. prop: reafoning it may be demonftrated that each. of the othe: fides are.given in magaitude.

h 2. prop. magnitude; and feeing that GM is the fquare of the line i fcb. s2t GH, ithat line GH is given in magnitude. Wherefore poip. in like manner, each of the other hines $\mathrm{HI}, \mathrm{IK}, \mathrm{KI}$, and LG, is given.

PROP. LVI.

If trvo equiangled parallelograms A and B, bave to osn anotbor a given ratio, as one fide CD of the sfinf A, is to one jelde FG, of the for cond B ; fo the otber fode CB , of the fecoud B, is so sbat to webich DH ate oiber fide of ibe fruff A, batb able given ratio that the parallidigram A bath to the parallelograme B.
comftr. For let HD be prolonged direttly to L, to that as $C D$ is to $P G$, fo HD may be to DL; and finith the parallelogram DK.

Demonftr. Seeing that as $C D$ is to FG, fo $H D$ 234 I. is to DL , and a that CD is equal to KL ; as LK is to FG , fo is GE to DL; and thius the fides about the equal angles DLK and EGF are reciprocally b 14.6. proportional: Wherefore 6 DK is equal to B ; and therefore feeing the ratio of A to B is given, and that B is c 1.6. equal to DK , the ratio of A to DK it given. But as 6 A is to DK (that is to B) fo is HD to DL : therefore the ratio of HD to DL is alfo given : and feeing that as CD is to $F G, 60$ GE is to $D L$, and that the right line

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

Demonftr. Seeing the figure FG is defcribed on the right a ${ }^{2}$. prop. line $F C$ given in magnitude, the faid rectiline $F G$ is a alfo given in magnitude. But FG is équal to $A B$ and
b 36. I. IL; (for b AI and FEbeing equal, and \subset FB and BG c 43. I. alfo equal, the Gnomon ICL is equal to AB ; and therefore their added figure IL common to both, FG thali be equad to $A B$ and IL:) Therefore the figures $A B$ and IL together are given in magnitude. But $A B$ is given in d 4. prop. magnitude: Therefore d the remaining figure IL is alfo c 24. 6. F55.prop. S34. 1. $h 4$. prop. i $3 . \mathrm{dkf}$.

PROP. LIX.

space $A B$ be applied according to a given rigb line $A C$, excceding it by af gure CB gioén in kind, the breadtbs of tbe exceffes $C E$ and CFare givien.
Confir. Por DE being divided into two equal parts in G_{p} let there be defcribed on GE the rectiline figure GH , plike and alike pofited to $\mathrm{CB}_{\text {, }}$.

Demonflr, Now feeing that CB is alike to GH , thofe figures CB and GH * are about one and the fame diameter, and GH is given in kind, as is CB . But it is de32. prop. frribed on the given lime GE: Therefore a the fame GH is alfo given in magnitude. But AB is given: Therefore AB and GH are given in magnitude. Now phole figures AB and GH , are equal to LI , (for AG, LE, and EI, being equal, the Gnomon GFH is equal to AB; and therefore adding GH common to both, LT fhall be equal to $A B$ and $G H$;) therefore $L I$ is given in magni-
is given, and in a given ratio e to CE. Wherefore f e 3 . def. CE is given.

Scholiun.

* EUCLIDB fuppofetb bere that CB and GH are about one and the fame diameter, but we foall thous demonfirate it: Let CB and GH be two alike parallelograms dijpofed as above, that is to Say, that the equal angles jorn togetber in E, the Gde CE meets divectly with
 bis bomologous fide EH, and tbe. Fide BE, bis corre/fondesst fide EG; and let the diametor FE be draew, I fay that the faid diameter FB prolonged, witl pafs tbrough the point R; that is to fay, the paralldograms $G H$ asd $C B$, conjiff about one and the fame diameter. Pop if it be dewied, the diameter EF being produced, will pa/s above the point K, or below it. Let it in the froft place pals above it, and let it cut GK, prolonged in the point M, and tbrough the point M let there be draum $M N$, parallet to RH, wbicb pall meet $E H$, prolowged in the point N_{3} and FB in 0 .

Demonftr. Forafmuch as the parallelograms GN and CB are with the parallelogram LO about one and the fame diameter, they are g alike to one another. Where- g 24. 61 fore as FC is to CE , fo is EG to GM. In like manner, feeing the parallelograms CB and GH are alike, as FC is to CE, fo is EG to GK: Therefore b as EG is to h 11. s? GM, fo is EG to GK. Wherefore i GM and GK are i 9. s. equal, a part to the whole, which is abfurd: By the fame way of reafoning it may be demonitrated, that the diameter prolonged will not fall below the point K : Therefore the parallelograms CB and GE confít about one and the fame diameter.

PROP. LX.

If a paralielogrann AB, given' in kind 'and in magnitude, be aug-: mented of diminibed by * Gromow CFD, Hitio breadebs of the Ghomon (confftings of the lints CE and DG) are given.

Demonftr. For feeing that $A B$ is given; and the Gnomon CPD alfo given, the whole parallelo grath Bt is given: But it is alfo given in kind, feerng it is alike to BA: Therefore a the gides of the fatme BP are given; and therefore each of the lines BE and BG is givent. But each of the lines $B C$ and $B D$ is given; therefore ench of the remaining lipes CB and DG is aifo gir. ter.

Comfiti: Now let the parallelogram BF, given in kind and in tnàgnitude, be dimitiflied by the given Gúthon CFD: Ifat that each of the lines CE and DG is given. Deitriduftr. For feeing that BF is given, and the Ghomen CFD giten, the remaining figure $A B$ is alfo given. But it. is alfo given in kind, feeing it is
 given, and therefore each of the lines $C B$ and $B D$ is given: But etctiof the lines BE and BG is given: Theirefore alf6 each of the remaibing lines CE and: DG is givè̈.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Evcliog's DATA.

clave; ρ_{0} it is motevithflanding that the antient interppeter dotb thous demonffrate it.
secing that in the parallelograins CF the angle BCD is given, the angle CEH is alfo given; for the rigbt lime EC falling on the parallels EH ased CB, doth make the twe internal argles on the fams part equal to two rigbt angles. And therefore foeing that the angle BCB is given, the otber angles are given; and feeing that the ratio of EC to $C B$ is gives, and that $B H$ is equal to $C B$, and $E H$ to $B C$, the patio of ibe fides to ane anotber is alfo gives.

PROP. LXII.

If tevo rigbt limes $A B$ and $C D$, bave to one amotber a given ratio, and that on one of them $A B$, there be dofribod a figure CAEB, given in kind; but ow the otberCD, a perarat-
iologravermieffrace DE in $\frac{1}{}$ given angle DCR, and that the figure ABB batb to the parallelogram DF a given ratio, the parallelogram DF is given in kind.

Confftr. For on the line $A B$ let there be defcribed the parallelogram AH, alike and alike pofited to DF.

Damonftr. Secing that the ratio of AB to CD is given, and that on thofe lines are deferibed the rectiline figures a so. prop. AH and FD, alike and alike pofited, a the ratio of AH to FD ' is given. But the ratio of FD to AEB is alfo b 8 peop. given; Therefore b the ratio of AH to AEB is given, But the angle ABH is. alico given, being equal to the angle FCD, and fo the figure AEB is given in kind; and to AB one of the fides thereof, the parallelogram - AH is applied in a given angle ABH, and the ratio of the faid figure $A E B$ to the frid parallelogram AH is gi-
© 61 . prop. ven: Therefore c the parallelogram Ah is giyen in kind; and therefore FD which is alike thereto, is alfo given in kind.

If a triangle $A B C$ be given in kind, the Square $B E, C D$, and CF, wubich is deforibed on each of tbe fides, Gall bave a given ratio to the triangle 'ABC.

Demonftr. For feeing that on one and the fame right line BC , there are deferibed the two reatiline figures $A B C$ and CD, given in kind,
 a the ratio of the rame $A B C$ to $C D$ is given; and thērefore the ratio of the fquares BE and CF , to the triangle $A B C$ is alfo given.

> PROP LXIV.

If a triangle ABC, bath an obtuffe angle ABC gioen, that face 'by wbich the fade AC fubtending tbe obtufe angle ABC, is more in power tban the fides $A B$ and $B C$, tbat' comprebend' the faid angle, 'Gall baïe a' givien ratio to the ernangle ABC.
"Coriftro." Let the line CB be prolonged directly; and 'from the poitht A let the perpendicular
 AD be drawn: I fay that the fpace by which the fquare of the line $A C$ doth exceed the fquares of the lines $A B$ and BC, that is to $\mathrm{M}_{\mathrm{a}} \mathrm{y}$, a the double of the retangle $\mathbf{a} 12.2$. contained undet $C B$ and $B D$, shall have a given ratio to the triangle $A B C$.

Demonft. For 'feing that the angle ABC is given, the angle ' ABD is alfo given'; but the angle ADB is alfo "given; "therefore the other angle BAD is given: Wherefore ' b the triangle ABD is given in $b 40$. prop. kind; therefore o the ratio of AD to DB is given. c 3 . def. But as $A D$ to $D B$, fo d the rectangle of $A D$ and $B C$ is d I. 6 . to the rettangle of $B C$ 'and $B D$.' But the ratio of $A D$ to $B D$ is given:' Therefore alfo is the ratio of the rettangle
of $A \overline{A D}$ and $B C$ to the retangle of $B C$ and $B D$ given Wherefore the ratio of the double of the faid retangle $B C$ and $B D$ to the rectangle of $A D$ and $B C$ is alfo given. But the faid rettangle of AD and BC hath alfo a given racio to the triangle ABC (to. wit, double racio; for the rettangle is e double to the triangle) therefore the ratio of the double of the retangle of BC and BD f to the triangle $A B C$ is given. But the fame double of the reftangle of $C B$ and $B D$ is that space by which the §quare of the line $A C$ doth exceed the £quares of the lines $A B$ and $B C$: Therefore the fame fpace hath a given [a: tio to the triangle $A B C$.

PROP. LXV.

If a triangle $A B C_{2}$ bath one acute angle $A D B$ given, that pace, by qubicb the fide jubtending the faid acute angle is lefs. in power than the fides compre-. bending tbe fame acute angle: fall have a giqen retio to the triangle.
Confir. From the point A let there be drawn the line 'AD, perpendicular to BC: I fax, that Space by which the fquare of the line $\mathbf{A B}$ is lefs than the §quares of the lines $A C$ and $C B$, that is to fay, a. the double of the rettangle of BC 'and CD , hath a given ratio to the triangle ABC.

Demonftr. For feeing that the angle C is given, and the angle $A D C$ alto given, the other anglo DAC is
b 40. prop. given : Wherefore the triangle b ADC is given in kind; and therefore the ratio of AD to DC is given, and con-
d 41 . I. c 8.prop. fequently alfo c that of the retangle of $B C$ and $C D$ to the rettangle of $B C$ and $A D$: Therefore the zatio of the double of the retangle of $B C$ and $C D$ to the retangle of. $B C$ and $A D$ is given. But the ratio of the fame reqangle of $B C$ and. $A D$ to the triangle $A B C$ is given (for d the rectangle is double to the triangle:) Therefore e the ratio of the double of the retangle of $B C$ and $C D$ to the sriangle $A B C$ is given. "And feeing that the fame double of the retangle of $B G$ and $C D$ is that whereby the Iquare of the line AB is lefs than the fquares. of the lines $A C$ and $B C$, that fpace by which the Iquare 'of the line $A B$ is lefs than the fquares of the lines $A C$ and $B C$, fhall have a given ratio to the triangle $A B C$.

RROR.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
the fame BD is compounded of BA and AC ; therefore thie §quare of the comptound of $A B$ and $A C$ is greater than che fquare of BC , of the retangle of DC and CE .
Now I fay that the rectangle of DC ánd CE haith' k given ratio to the triangle ABC: Porafmuch' as the angle BAC is given, the angle DAC is alfo given. But each of the angles ADC and ACD' is given, it being the half b 40.1 wep. of the angle BAC which is given. Therefore b the tri angle ADC is given in kind; and therefore the ratio of c so. prop. DA to DC is given. Therefore \bar{c} the ratio of the fquare of the faid $D A$ to the fquare of $D C$ is alfo given. And

2.6

ex. 6.

Es.6.
 feeing that as $\mathbf{B A}$ is to $\mathrm{AD}, \boldsymbol{d}$ To is EC to CD; and alfo as BA is to $\mathrm{AD}, 6 \mathrm{fo}^{\circ}$ is the rect: angle of $B A$ and $A D$ to the Square of $A D$; and as $E C$ is to CD, f fo alfo is the rectangle of $E C$ and $C D$ to the fquare of $C D$; by permutation; as the rectangle of $B A$ and $A D$ is to the rectangle of EC and CD , fo is the fquare of AD to the fquare of DC. But the ratio of the faid Square of AD to the fquare of DC is giveth: Therefore the ratio of the rectangle of $B A$ and $A D$ to the rectangle of EC and CD is alfo given. But $A D$ is equal to AC: Therefore the ratio' of the rettangle of BA and $A C$ to the rettangle of $E C$ and $C D$ is given. But the ratio of the rectangle of $B A$ and $A C$ to the triangle' ABC g is given, becaule the angle BAC is'given: Therefore b the ratio of the rectangle EC and CD to the triangle ABC is given. But the rectangle of EC and $C D$ is that whereof the fquare of the line compounded of BA and AC is greater than the fquare of BC: There: fore that fpace by which the fquare of the line compounded of BA and AC is greater than the fquare of BC , Thall have a given ratio to the triangle ABC.

Scholium.

Euclide's DATA.

Onffr. Let ABC be an Ifofceles triangle, whofe lega are $A B$ and $A C$; and.from the top A let $A D$ be drawn to the bafe BC: I fay, that the fquare of $A D$ with the rectangle of $B D$ and $D C$, is equal to the fquare of either of the legs AB or AC

Domenefft. Now the line AD . is perpendiculas to BD , or not: Let it in the firft place be perpendicular : Therefore is will cut the bafe BC into two equal parts in the point D; and therefore the retangle contained under BD and DC is equal to the Equare of the faid BD, and adding to them the common \{quare of $A D$, the redangle of $B D$ and DC with the fquare of AD , fhall be equal to the fquares of $D B$ and AD. But to thofe fquares of $A D$
 and $D B i$ the fquare of $A B$ is equal: Therefore the $i 47 . \mathrm{r}$.〔quare of AB is equal to the rectangle of BD and DC , and the fquare of $A D$ together.

Now fuppofe AD not to be perpendicular, but that from the point A there doth fall on $B C$ the perpendicular AE , that being fo, BC fhall be cut into two parts equally in the point E , and unequally in D . Wherefore the retangle of $B D$ and $D C$, with the fquare of $D E, k k s .2$. is equal to the fquare of BE ; and adding the common fquarc of AE , the retaugle of BD and DC , with the squares of $D E$ and $A E$, fhall be equal to the fquares of BE and AE . But l the fquare of AD is equal to the two 147. 1. Squares of DE and AE : Therefore the retangle of BD and $D C$, with the fquare of $A D$, is equal to the fquares of BE and AE . But to thefe fiquares of BE and AE the fquare of $A B$ is equal: Therefore the fquare of $A D$, with the rectangle of $B D$ and $D C$, is equal to the fquare of AB.

> OTHERWISE.

Conftr. Having done, as in the foregoing Demonfration, from the point A, let $A F$ be drawn perpendicular to $C D$, and let AE be drawn.
Dimonftr. Porafmuch as the angle BAC is given, the half thereof ACP thall be alfo given. But the angle AFC is given; and therefore the triangle AFC is given in kind: Therefore the ratio of AF to FC is given. But the ratio of $C D$ to the fame $P C$ is alfo given, feeing

Evcisïn's $\ddot{D} \dot{A} \boldsymbol{q} \dot{\boldsymbol{\lambda}}$

- 8. mpo. ahre $C D$ is double to FC: Therefore sis che ratio of $C D$ 20 AF is given; and therefore alfo the racio of the roitangle of $C D$ and $E C$, to the retangle of $A P$ and in 1.6. EC, is givon; (for fit is che fume ration as that of CD) to AF.) But the ratio of che refuangle of AF and FC to the triangle ACE is given; feeing it in double - to the fame triangle. Therefore the riatio of the rettangle of $C D$ and OF to the triangle ACB is also given. But the triangle ACE is equal to the eriangle ABC p, they being both confitituted on one and the fame bare $A C$, and between the 98. Mays same parellels $A C$ sind BEs. Therefore q the ratio of the coceningle of CR apd CD wo the triapgle ABC is given. But the faid retangle of $C E$ and CD is dhe fpacerby whidh she fquare of the line compounded of $A B$ and $A C$; ij greeter aben the rguare of BC: Therefore that fpace by Which the Iquare -ff the line compounded of AB and AC in greater than che fquate of $B C$, hath a given ratio of the criangle ABC.
- THERWISE

For the given angle A. is ejcher a fight, acute, or sbrufe angle: Let it in the firft place be fuppofed a right angle: Therefore the square of the. line compounded of BAC; is greater than the Equare of BC, by twice.the retangle of BA and AC; (heeing
547. 1. that the tguart of BC is equal to the fquares of BA.and AC; and the fquare of the line compounded of
gos. BAC. sis equal to thofe ewo fquares of $B A$ and $A C$, and twice: the rectangle of the fiid : BA and AC:) Wherefore the ratio of domble the redangle of $B A$ and $A C$ to the riangle ABC is.given

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

- be fuppofed to be obcufe, and having prolonged BA_{3} from the point C, let the perpendicular CE be drawn on the faid line BA prolonged; and let AF be propofed te beequal to $A E_{\text {. }}$

Demonftr. Forafmuch as the angle BAC is obrufe, and the perpendicular $C E$ being drawn, the fquares of $A B$ and $A C$, and the double of the regnagle under $B A$ and $A E$, or $A F$, are all alike equal c to the fquare of $B C_{0}$ and adding the common double rectangle of $B A$ and $A C_{2}$ the Íquates of the faid AB and AC , with the double $\boldsymbol{o f}$ the rectangle of the fame $A B$ and $A C$, that is to fay, d the fquare of the line compounded of BAC and the double of the redangle of BA and AF are together oqual to the fquare of $B C$, with the double of the reat angle o§ BA and AC. Let the common double of the redangle of BA and AF be taken away, and there will at main the fquare of the line compounded of $B A C_{2}$ equal so the fquare of BC , with the rectangle of AB and CP ; (for the rectangle of $A B$ and $A C$ is equal 0 to the two rectangles of $A B$ and $A E$, and of $A B$ and $C F$:) Therefore the fquare of the line compounded of BAC is greater than the fquare of BC by the double of the realangle of AB and CF. And forafmuch as the angle BAC is given, the angle $C A B f$ is given. But the angle $A B C$ in alfo given; therefore the other angle ACE is given: Whesefore g the triangle ACE is given in kind, aod cherefore the ratio of CA to AR, that is to fay, to -AP is given. Therefore ob the racio of the faid CA to FG is ald given. But the ratio of the fame CA to CE is given; therefore i the rasio of $C E$ to $C F$ is alfo given Wherefore the racio of the rectangle of EC and AB to the retangle of $F C$ and $A B$ is given; (for the redangle is to the rectangle k as CE is ∞ CF) and alfo that of the rectangle of $A C$ and $A B$ to the rectangle of $E C$ and $A B$. Therefore l the ratio of the rectangle of $F C$ and $A B$ to the rettangle of $A C$ and $A B$ is given. But the ratio of the rectangle of $A C$ and $A B$ to the triangle $A B C$ ws is given: Therefore alfo the ratio of the double of the rectangle of $F C$ and $A B$, to the triangle $A B C$ is given. But the fame double of the retangle of FC and AB, is that whereby the \{quare of the line compounded of BAC
is greater than the fquare of $B C$, wherefore that fpace by which the fquare of the line compounded of BAC is greater than the Iquare of $B C$; hath a given ratio to the triangle ABC .

OTHERWISE.

Comftr. Let the line BA be prolonged to the point D, in fuch fort as AD may be equal to $A C$, and let CD be drawn.
Demonfr. Forafmuch as the angle BAC is given", each of the angles ADC and ACD; which is the half thereof, Shall be alifo given; and therefore the other angle DAC is alfo given : Therefore n the triangle $A C D$ is given in kind. Wherefore che ratio of AC to CD is given. And forafmuch as the angle $A D C$ is given: Lat eich of the angles DEC and AFC be made tequalto the faid ADC: Therefore feeing that the
 angle BDC is equal to the angle DEC, and the angle DBE is coramon to the triangles DBE and DBC, the other angle' BDE is equal to the other angle BCD ; and therefore the triangle BDE is equiangled to the triangle BDC. Therefore θ as BB is to BD ; to is 04.6 . BD to CB : Wherefore the retangle of EB and CB , that is to fay, p the rettangle of EC and CB, q with the $p 5.2$: Square of CB is equal, r to the fquare of BD , that is q 5.2. to fay, to the fquare of the line compounded of BAC; r 17.6 . for $A D$ is equal to $A C$; and therefore the rettangle of EC and CB with the fquare of CB , that is to fay, the fquare of the line compounded of BAC in greater than the fquare of the rettangle of BC and CE : I fay therefore that the ratio of the faid rettangle of BC and CE to the triangle ABC is given. Porafmuch as the angle BDE is equal to the angle $B C D$, and the angle ADC equal to the angle $A C D$, the other angle CDE is equal to the other angle ACB : But the angle DEC is alfo equal to the angle AFC; therefore the remaining angle CAF is equal to the remaining angle DCE. Wherefore the triangle AFC is equiangled to the triangle $D C E$; and therefore s as $C A=4: 6$, is to $A F$, fo is $C D$ to $C E$; and by permutation, as $A C$ is to $C D$, fo is $A P$ to $C E$. But the racio of $A C$ to $C D$
is given: Therefore alfo the ratio of $A F$ to CE is giveñ From the point A let AH be drawn perpendicular to BC: Forafmuch as the angle AFC is given, and the angle AHF alfo given, the third angle HAF is given: $t 40$ prop. Wherefore t the triangle AHP is given in kind; and by confequence the ratio of AF to. AH is given. Bat the ratio of AF to CE is alfo given : Therefore $*$ the ratio of AH to CE is given; and therefore the ratio of the retangle of AH and BC

玉 1.6.
y41. 1. x to the reCtangle of BC and CE is alfo given. But the ratio of the rettangle of $A H$ and $B C$, to the triangle ABC is likewife given; (for the retangle y is double to the triangle) and the rectangle of BC and CE is that whereby the fquare of the line compounded of BAC is greater than the fquare of $B C$. Therefore that fpace'by which the fquare of the line compounded of BAC is greater than the fquare of BC has a given ratio to the triangle ADC.

Scholium.
\dagger Tbe antient Interpreter pretinding to feew the confarution of the angle DEB equal to the angle ADC, Jaitb tbat on the line BD and in the point D, the angle BDE ought to be made equal to the angle BCD, and that the rigbt Jines $B C$ and $D E$ be drawes until they interfety in E, in fucb fout as ke fuppofetb tbe angle BCD, to be gives, but it is noto.

Tbe fame Interpreter afterwards Bews' bow there may univerfally from a given point be drawn a rigbt line, given in pofition to a right line, making an angle equal to a given angle. But we will alfo rejod ybis way, feeing we bave elfewbere foewn anotber more brief and eafy. For example, if we would from the point D draw to the line $B C$ given in pofition a rigbt lime, making an angle equal to a given angle ADC, as is bere required, we bave so more to do but to afwme tbe point \bar{X} in the Said line BC, and there make the trigngle CKL equal to the given angle ADC: If the line $K L$ dotb mest witb the point D, it ball be the line required. But if it,moet not wutth it, from the paint D let there be drawn the line DB

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
two right angles, and taking away the common angle BEA, there will remain the angle A, equal to' the angle BEG; and corfequently their oppofite angles EBK and 'Hare ald equal to one another. Again, feeing that mG is a parallelogram, the two lines $B E$ and $H G$ are parallels, on wbitib BH doth fall; and therefore the two internal angles h and EBH d are equal to two right angles. But it bath been demonftrated that H is equal to EBK: Therefore the two angles EBK and EBH are aldo equal to two right
E14. 1. angles; and therefore e the two lines RB and BH do, meet directly according to EUCLIDE.

\therefore OTHERWISE.

Contr. Let the given right line K be expoled, and fleeing that the ratio of A to B is given, let the fame be made of K to L; therefore the ratio of K to L is aldo given.

Demonftr. But K is given; therefore $f \mathrm{~L}$ is aldo given. Again, feeing that the ratio of CD to EF is given, let the fame be made of K to M : Therefore the ratio of K g^{-1}. prop. to M is given. But K is given, therefore $\mathrm{g} M$ is aldo given; and therefore
 the ratio of L to M is given. Now freeing that A is equiangled to B, b the ratio of the laid \mathbf{A} to B is compounded of that of the fides, that is to ray, of CD to EF; and of CG to EH. But aldo the ratio of K to L is compounded of K to M , and of M to L ; therefore the ratio compounded of CD to FF, and of CG to EH, is the fame with that which is compounded of K to M, and of M to L (the ratio of K to L being the fame as of A to $B:$) But the ratio of CD to EF is the fame as of K to M : There: fore the other ratio of CG to EH is allot the fame as of $M_{\text {to }} \mathrm{L}$. But the fid ratio of M to I is given : There: fore alfo the ratio of CG to EH is given.

PROP. LXIX.

If two parallelograms, CB and EH, having the angles D and F given, and that a fide batb alfo a given vatio to a fide; in like manner athe otber fide Ball bave agiven ratio to the otber fide.

Conftr. Let the ratio of BD to FH be alfo given : I fay that the ratio of $A B$ to $E P$ is given. For if $C B$ be equiangled to HE, it is manifef by the precedent Propofition; but if it be not equiangled thereto, let the right line DB be conftituted, and in the given point B therein, ler the angle DBK be made equal to the angle EFH, and finifh the parallelogram DK.

Demonfir. Porafinuch as each of the angles BKL and BAK is given, t the other angle KBA is given : Wherefore the triangle a $A B K$ is given in kind; and 2 40.prop. therefore the ratio of AB to BK is given. But the ratio of CB to EH is fuppofed to be given, and 6 CB $b 35$. 1 rep. is equal to DK; therefore the ratio of DK to EH is given; and feeing that $D K$ is equiangled to $E H$, and the ratio of the faid DK to EH is given, as alio that of DB to FH, c the ratio of BK to FE is given. But c 68 . prop. the ratio of the faid BK to BA is alfo given: Therefore d the ratio of $A B$ to $F E$ is given.

d 29. 1.

Scholium.

\dagger EUCLIDE fuppofeth bere, that a parallelogram baving ome angle given, all the otber angles are alfo given, and as arell the antient Interpreters as otbers, do give the reafows anby, the angle P being given, the otber angle E pall be alfo given, it being the remainder of 1 aso rigbt angles, for that on the parallel lines EG and FH there dotb fall the

- lime EF, wubich miakes e the tzio internal angles (of the e 29. i. (ame part) F and G , equal to two rigbt angles. But to etbofe angles f the oipofitito angles G and H are equal, $f 34$. I: and tberefore they are alfo given.

From wwbence it follows tbat the angles BDC and F being given by fuppofition, all tbe otber angles of the Dwo parallelogram $C B$ and EH, are alfo given: Therefore the

360 - Euclide's DATA
angle DBE baving been made equal to the angle F, the angle K fall be equal to tbe amgle B , and given as that is: But the angle $B A L$, wbich is oppofite to the given angle $B D C$, is alfo given; and therefore $B U K$, wbich is the remainder of two rigbt angles, foall be allo given ; in fucb fort as in tbe triangle $A B K$, the two angles $B A K$ and BKA are given, as EUCLIDE dotb declare in tbis place.

PROP. LXX.

If of two parallelogriams $A B$ and $E B$, tbe fodes about the equal angles, or about the unequal angles (yet neverthelefs given angles) bave to one anotber a given ratio, to wit (AC to EF, and CB to FH) alfo the fame parallelograms AB. and EH fall bavé to one anotber a given ratio.
Conftr. Por let $A B$ be prolonged to EH , and on the right line CB let the parallelogram CM be applied equal to the parallelogram $E H$, in fuch foit as AC may be direct to CN ; that is to fay, that AC and CN make one rịght line; and by confequence DB Ihall be adirealy with BM.

Domonftr. Forafmuch then as $C M$ is equiangled and equal to EH , the fides about the equal angles shall be reciprocally b proportional: Wherefore as BC is to HF , So is FE to NC.
 But the ratio of $B C$ to $H P$ is given:

Therefore the ratio of PE to NC is alfo given. Bat the ratio of AC to the fame EF is
c 8. prop. given: Therefore c the ratio of $A C$ to $N C$ is alfo given. Wherefore the ratio of $A B$ to $C M$ is given; (for it is the fame d as of AC to CN .) But CM is equal to EH : Therefore the ratio of AB to EH is given.

Confit. Now fuppofe AB not to be equiangled to EH , and on the right line CB, and in the given point C therein : Let there be conflituted the angle BCK, equal to the given angle F, and fo finif the parallelogram CL.

Demonftr. Forafnuch as the angle ACB is given, and the angle BCK alfo given, the remaining angle.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
and DH, making the equal.angles $A O C$ and Dtrr, allos muequal (yet nevertbelefs given) wubich foall bace to ane anotber given ratio's $A G$ to DH, tbofe triangles $A B C$ and DEFpall bave alfo a given ratio to ome ametber, to wis, ABC to DEF.

Conftr. For let the parallelograms KC and LP be fir nifhed.

Demonftr. Porafinuch as the angles AGC and DHF are equal, or unequal (yet given) and thai the angle
2 29. 1. $A G C$ a is equal to the angle $K B C$, and alfo the angle DHF equal to the angle LEF, the angles at the points B and E are equal, or elfe unequal (yet given, and becuufe the ratio of $A G$ to $D H$ is given, and AG is equal to KB, and DH is equal to LE, therefore the ratio of KB wo LE is given. But the ratio of BC to EF is alfo given, and the angles at the points B and E are equal, or elfe
b 70. pyop. unequal (yet given:) Therefore b the ratio of the parallelogram KC to the parallelogram LF is given; and therefore the ratio of the triangle ABC to the trianglo DEF is given, feing thofe triangles c are the one hiff of the parallelograms.

PROP. LXXIII.

If of tuto $A B a n d E G$,tbe fides abuet the equal andes C and F, elfe aboust the umequal angles (but nevertbelefs given) ave in fuct fort to one awotber, that as the fide $C B$ of the firft, is to tbe fide $F G$ of the fecond; fo the otber fide EF of the focond, is to fome otber rigbt line CN. But zbat the otber fide AC, batb alfo to the jame rigbt line CN a given ratio, thofe paralkelograms will bave alfo to one anotber a given ratio AB to EG.
Conftr. For in the firft place, let the parallelogram 'AB be equiangled 20 EG , and having placed CN direetly to AC : Let the parallelogram CM be finifhed.

Demonftr. Porafmuch then as CB or NM its equal, is to FG, to is EF to CN, and that the angles N and F are equal (for N is equal to the angle $A C B$, which is put equal to F) the parallelograms $C M$ and $E Q$ are
equal: But as $A C$ to $C N$, fo b the parallelogram $A B$ is b 1. 6 . to the paralelogram CM or EG: Therefore fecing that the ratio of $A C$ to $C N$ is given, the ratio of AB wo EG is alfo given.

Conftr. 2. Now fuppofe the parallelogram AB not to be equiangled to the parallelogram EG, and let there 'be tonftituted at the given point C in the line CB , the angle $B C K$, equal to the angle EFG, and fo finiin the parallelogram CL.

Demonftr. 2. Seeing that each of the angles ACB and $K C B$ is given, the remaining angle $A C K$ is alfo given. But c the angle Cak is given, as alfo the remaining an- c fob .89. gle AKG: Therefore d the triangle ACK is given in prop. kind ; and therefore the ratio of AC to CK is given. d 40 . pocq. But the ratio of the fame $A C$ to $C N$ is alfo given: Therefore e the ratio of CK to CN is given. And feeing e 8. prop. that as CB is to FG ; to is EF to the right line CN , to which the other fide KC hath a given ratio, and that the angle $B C K$ is equal to the angle F, the ratio of the parallelogran.CL to the parallelogram EG is given (by the firl part of this propofition) but the parallelogram CL is equal to the parallelogram AB: Therefore the ratio of the parallelogram $A B$ to the parallelogram $E G$ is given.

P. R O P. LXXIV.

Ifturo parallelograms (as in tbe former figure) AB and EG; in equal angles C and F or elf f° in wnequal angles (yet mevertbelfss given angles) bave a gioen ratio to one anotber, as one faie CB of tbe forff fall be to ome fide PG of tbe feconds, So tbe ouber fide EF of tbe fecond, fall be to that to the wbich the otber fade $A C$ of the firft bath a givew ratio. (See the foregoing Scheme.)
conftr. For either $A B$ is equiangled or not ; fuppofe it in the firt place to be equiangled, and to the right line BC let there be applied the parallelogram CM. equal to the parallelogram EG, and to pofited, as that AC and CN may be direct: Therefore a DB and BM fhall be a $f 6 b_{0}, 68$. alfo dired (that ia, as one right line.)

Demonfor. Secing that the ratio of $A B$ to $E G$ is given, and that $C M$ is equal to $E G$, the ratio of $A B$ to CM is alfo given; and therefore the ratio of AC to CN is given (feeing $A B$ is to $C M, b$ as $A C$ is to $C N$;) and $b 1.6$. for that $C M$ is equal and equiangled to $E G$, the fides about the equal angles of the parallelograms CM and EG, care reciprocally proportional; and therefore as CB is C 14.6 .
to FG , to is EF to CN . But the ratio of AC to C is given: Therefore as CB is to $\mathrm{FG}, \mathrm{Co}_{0}$ is EF to that to which AC hath a given ratio.

Confr. 2. Now fuppofe AB not to be equiangled to EG, and in the given point $\cdot \mathrm{C}$ of the line CB_{2} let there be conftituted the angle BCK equal to the angle EFG; and finifh the parallelogram $C L$.

Demonffr. 2. Seeing then that the ratio of AB to EG is d 36. 1. given, and d that $A B$ is equal to $C L$, alfo the ratio of CL to EG is given, and the angle BCK is equal to the angle F, and therefore $C L$ e is equiangled to $E G$: Therefore (by the firt part of this propofition) as CB is to FG, fo is EF to that to the which CK hath a given ratio. But the ratio of $A C$ to $C K$ is given ; (as appears by what hath been densonftrated in the latter part of the precedent propofition.) Therefore as CB is to FG , to is EF to that to which ACC hath a given ratio.

If two trianglos $A B C$ and DEF, in equal angles A amd D, or elfe unequal. (yet nevertbelefs given) bave to ome. annotber a given ratio, as tbe fide AB of the foff, fall bo to the fade DE of the facound, fo tbe otber fide DF of tbe. fecond, foall be to that rigbt lime to the qubich ibe otber. fide AC of the furf batb a given ratio.

Comfor. For let the parallelograms AG , and DH be fir nifhed.

Demomftr. Forafmuch as the ratio of the triangle 'ABC to the triangle DEF is given, alfo the ratio of the parallelogram AG to the parallelogram DH is gi : ven.

Seeing therefore that the two parallelograms AG and DH in equal angles, or unequal angles (neverthelefs gi-: a 74. prop. ven) have to one another a given ratio; as $a \mathrm{AB}$ is to. $D E$, to is $D F$ to that to which $A C$ hath a given ratio.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

PROP. LXXVIII.
afci. 68 sero.
to the right line $D B_{\text {, }}$ let the pacallelogram $D K$ be applied equal to BH_{2} in fuch a manuer, as that GD and DI may be placed direaly, and by confequence PE and EK alfo diredly.

Demonfor. Therefore feeing that on one and the fante right line $B C$ are defcribed the two redtiline figures $A B C$ b 49. prop. and BH, given in kind, b the ratio of ABC to BH is given. But the ratio of the faid $A B C$ to $D F$ is alfo gic 8. prop. ven: Therefore c the ratio of BH to DF is given. But BH is equal to DK : Therefore the ratio of DK to DF is alfo given. And feeing that BH is equal and equiangled to DK, both the one and the other being retangles, d 14. 6. d the fides of thofe figures are reciprocally proportional; and as BC is to DE , fo is DI to CH. But by fuppofrtion, the ratio of BC to DE is given; therefore alfo the ratio of DI to CH is given; but the ratio of DI to DG e I. 6. is alfo given: (for DI is to DG e as DK to DF:) E8. pro. pop. Therefore f the ratio of DG to CH is given. But CH is equal to BC , feeing that BH is a fquare; therefore the ratio of the fame BC to DG is given: But the ratio of the fame BC to DE is alfo given : therefore the ratio of $D E$ to $D G$ is given, and the angle at D is a right angle: Therefore $g D P$ is given in kind.

> PROP. LXXIX.

- If tevo triangles $A B C$ and EFG, bave an angle B equal to an angle F. And from the equal angles B and F tbere be drasum perpendiculars BD and FH, to the bafes $A C$ and

Evclide's $D \boldsymbol{A T} \boldsymbol{A}$.

EG; and that as tbe bafo AC of tbe firft triangle ABC, is to the perpendicular BD, fo alfo the bafe EG of the otber ariangla EFG, is to tbe perpendicular FH_{2} tboje trianghs ABG and BFG are equiangled.

Conft. For about the triangle EFG let there be described the circle EFLG, then on the right line EG, and in the point E given therein, let there be made the angle GEL, equal to the angle $\mathrm{C}_{\text {, }}$ and let FL and LG be drawn, and the perpendicular LM.

Demonftr. Seeing then that the angle GEL is equal to the angle C_{5} and che angle ELG is equal to the angle EFG, a they being in onẹ and the fame fegment of the 2 21. 3. circle; the third angle EGL is equal to the third angle A: Wherefore the friangle $A B C$ is alike to the triangle ELG, and the perpendiculars BD and LM are drawn: Therefore \dagger as AC is to $B D$, fo is $E G$ to $L M$; but by Guppofition as AC is to BD ; fo is EG to FH : Therefore LLM is equal to FH. But the faid LM is c parallel to b \%. 9 : FH: Therefore d FL is alfo parallel to EG; and there- $\mathrm{c} 28 . \mathrm{r}$: fare the angle FLE a is equal to the angle LEG. But $\mathrm{d} 33 . \mathrm{I}$. the angle C is alro equal to the faid angle LEG, and the angle FLE to the angle FGE f : Therefore alfo the angle f 21. 3. C is equal to the angle FGE. But by fuppofition the angle ABC is equal to the angle EFG: Therefore the third angle BAC is equal to the third angle FEG: Wherefore the triangle $A B C$ is equiangled to the triangle EFG.

Scholium.
t Niver tbat as $A C$ is to $B D$, fo EG is to $L M$, it is by Gone tbus demonfrated. Forafmuch as the angle C is. cqual to tbe angle GEL, and the angle BDC to the angle take, each boivg a rigbt angle, the other angle CBD is
equal to the otber angle ELM：inberefore g as Ein is f_{0} $M L$ ，fo is $C D$ to DB．Agair，feeing the angle $A B C$ is equal te the angle ELG，aind the angle CBD to tbe angle ELA， the remaining angle $A B D$ is equal to the revaibing angte MLG；but the angle ADB is alfo equal to the angle LMG； and therefore the third angle A is equal to the third angle LGM ：Tberefore has AD is to DB，厅o is GM to ML．But it batb been demonfirated，that as $C D$ is to．$D B$ ，fo is E 贞 1 14．5．to ME：Tiderefore i as $A C$ is to $B D$ ， $\int 0$ is $B G$ to $L \dot{i}$ ．

> PROP. LXXX

If K_{h} triangle ABC bath one angle A given，asd that the retasigle contained under the fidos $A B$ ，and $A C$ ，comprefining the gives angle 4 ，batb a given ratio to the Squate of the otber fide $B C$ ，the triangle $A B C$ is given in kind．

Comfer．For from the points A and B ；let there be drawn the perpendiculars $A D$ and $B E$ ．

Demonftr．Forafmuch as the angle BAE is given， and alfo the angle AEB，the triangle ABE is given in \dot{a} kind；and therefore the ratio of AB to BE is given： Therefore the ratio of the rettangle of AB and AC to the rettangle of $B E$ and $A C$ is alfo given（for it is the
b 1.6.
c 41． 1.
d S．prop．
e 1.6.
f 8．def．
$84 \cdot d e f$
 fame ratio 6 as of $A B$ to $B E$ ．） But the rectangle of AC and BE is equal to the rectangle of BC and AD；for that each of thofe rectangles is c double to the triangle ABC．Therefore the ratio of the rectangle of AB and AC to the rectangle of BC and AD is alfo giveh．But the ratio of the rettangle of $A B$ and $A C$ to the fquare of $B C$ is given：Therefore alfo the ratio of the rectan－ gle of $B C$ and $A D$ to the ！quare of $B C$ is given；and therefore the ratio of the right liae BC tit the right line $A D$ is given．（For that e the rectangle is to the fquare as AD to BC．）Now let the right 谁e FD，given in po－ fition and magnitude，be expofed ${ }^{\text {dith }}$ thereon let there be defcribed the fegmote a circle TID；capable of an angle equal to the angle A ．And feeing the faid angle A is given，alfo the angle in the fegment FLD Mall be given；and therefore f the fame fegment is given in pofition．From the point D let there be erected at right angles on the line $\mathrm{FD}_{\text {，the }}$ the line DH ，which g is given

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies rectangle of $A B$ and $A C$ is given. But the ratio of the rectangle of $A B$ and $A C$ to the fquare of $B C$ is alfo given: Therefores the ratio of the fipace D to the fquare \& 6 prop. of BC is given. Wherefore by compounding, the ratio of the fpace D, with the fquare of $B C$ to the faid fquare of BC is given: Therefore the ratio of the fquare of the line compounded of BAC , to the fquare of BC is given; (for that the fpace D with the fquare of $B C$ is equal to the fquare of the line compounded of (fcb. 52. BAC;) and therefore z the ratio of the faid line comprop. ± 46. prop. alfo given : Therefore \pm the triang!e $A B C$ is given in kind.

PROP. LXXXI.

If of tbree rigbt lines A, B, and C, proportional to three other proportional rigkt lines D, E, and F, the extremes A and D, C and F, arc is a gives ratio (to wit, as A to D_{2} and C to $F_{\text {, }}$) alfo the mears, B asd E pall be in a given ratio, and if one extreme bath a given ratio to an extreme, and the mean to the means, tbe otber will bave alfo a given ratio to the otber.

Demonftr. Forafmuch as the ratip of A to D, and of a 70 prop. C to F is given, the rectangle of A and D a hall have a given ratio to the reatangle of C and F. But the rectangle of A and D is equal b to the fquare of B; and the rectangle of C and F to the fquate of E . Therefore the ratio of the fquare of B to the fquare of E is given;

Again, let the ratio of A to D, and B to E, be given: I fay that the ratio of C to F is alfo given. For feeing that the ratio of A to D, and of B to E is given, alf
so. prop. the ratio of the fquare of $\mathrm{B} d$ to the fquare of E is given. But the fquare of B is equal to the reftangle of A and C, and the fquare of E to the rectangle of D and F : Therefore the ratio of the rectangle of A and C to the rectangle of D and F is given. But the ratio of a fide A to a Gide D is given: Therefore e the ratio of thie ather lide C to the other. Gde F is alfo given.

PROP. LXXXII.

If there be four rigkt lines A, B, C, and D, proportional,. as the fruft A fall be to tbat line to wobich the fecond B batb a C given ratio, fo the third C fball be to D that to wubich the fouth D batb a given ratio.

Conftr. Let E be the line to which B bath a given ratio, and let it be fo as that B may be to E, as D is to F .

Demonftr. Now the ratio of B to E is given, therefore alfo the ratio of D to F is given. And fecing that as A is to B, fo is C to D. And again, as B is to E, fo is D to F, by ratio of equality, as A is to E, fo is C to F. But E is that line to which B hath a given ratio, and F that to which D alfo hath a given ratio: Therefore ast A is to that to which B hath a given ratio, fo C is to that to which D hath a given ratio.

> PROP. LXXXIII.

If four vight lines A, B, C, and D, are in fuch fort to one anotber, that of any three of them A, B, C, and a fourth E, taken proportional, to wbich that lime D, wbich remains of the four lines, bath a given ratio, it Ball be as the fourth D is to the tbird C, fo the fecond B foall be to that to wbicb the forft A bath a given ratio.

Demonfor. Forafmuch as A is to B, as C is to E, the rectangle contained under A and E a is equal to the 216.6 . rectangle contained under B and C; and feeing that the ratio of D to E is given, alfo fhall be given the ratio of the rectangle of A and D to the rectangle of A and E (for b it is the fame ratio as of D to E.) But the rectangle b I. σ. of A and E is equal to the rectangle of B and C. Therefore the ratio of the rectangle of A and D to the rectanple of B and C is given. Wherefore c as D is to C_{3} fo c 56 . prop. is B to that to which A hath a given ratio.

PROP. LXXXIV.
If taio rigbt lines $A B$ and
 AE comprebending a given fpace AF in a given augle BAE, and that the one AB be greater than the otber $A E$ by a given line $C B$, alfo each of the limes $A B$ and $A E$ is given.

Demonftr. For feeing that $A B$ is greater than $A E$ by the given line CB, the remainder $A C$ is equal to $A E$: Finifh the parallelogram AD. Therefore feeing that
efcb. 6 I. prop.
b 59 . prop. fo the given right line CB, exceeding it by the given of the excels is given. Therefore AC is given. But $C B$ is alfo given: Therefore the whole AB is given. But $A E$ is alfo given: Therefore each of the righs lines $A B$ and $A E$ is given.

> PROP. LXXXV.

If two rigbt lines $A C$ and $C D$, do comprebend a given fpace $A D$ in a given angle ACD, the line compounded of tbofe lines $A C$ and $C D$ is given, alfo each of tbofe limes $A C$ and $C D$ is given.

Confir. For let ACbe prolonged to the point B, and let $C B$ be put equal to $C D$, then through the point B let $B F$ be drawn parallel to CD , and fo finifh the parallelogram CF.

Demorffr. Seeing then that $C B$ is equal to $C D$, and the angle DCB is given; for that angle that follows a fcb. 6 s . is the given angle; and therefore a the parallelogram prop. DB is given in kind: and again, feeing that the line compounded of ACD is given, and CB is equal to $C D$, alfo $A B$ is given. And thus to the right line $A B$ there is applied the given fpace $A D$, deficient by the 6 58. trop. figure LB given in kind ; and therefore b the breadths of the defects are alfo given: Therefore the right lines

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies But the retangle of $B C$ and $B E$ is given : Therefore m the fquare of BE is afo given, and confequently the line BE is given. Wherefore BC is alfo given, feeing that the ratio of BE to BC is given. But the fpate a 97 .prop. AC is given, and alfo the angle B: Therefore n AB is given. Wherefore each of the lines $A B$ and $B C$ is given.

Scholium.
\dagger Inftead of faging in this place [what is under, Sec.] we bave ufed this woord rectangle, it being manifeft by cubat follows that fuch was the intention of ECCCLIDE, feeing be makes isfe in the faid Demonftration of tbe feconed and eightb proiofition of the fecond Element; and alfo that the fpace or parallelogram given being not rectangled, it may be reduced tberete, making ow BC, and in the gioen point B, a rigbt angle $C B A$, fo as sbat there will be two parallelograms conftiented on one axd tbe fame bafo $B C$, and between the fame parailels, as in the 69tb fropafition, by means euberecf this conclufion is drawn.

Note, This ferves alfo for the next Prop.

LXXXVII.

If two sight lines $A B$ and $B C$, do comprebend a given ßace $A C$, in a given angle B, the fquare of the owe BC is greater tham the Square of tike otber $A B$, by a given Space; alfo eacb of tbofe lines $A B$ and $B C \not ̣ a l l$ be given. Demonftr. For feeing that the fquare of $B C$ is greater than the fquare of $A B$ by a given fpace: Let the given fpace be taken away, and let the rectangle be contained under BC and BE: Therefore the remainder which is the rettangle of BC and CE , is equal to the fquare of AB . Aud feeing that the rectangle of $B C$ and $B E$ is given, and alfo the fpace or rettangle $A C$, the ratio of the faid rectangle of $B C$ and
br. 6. BE to AC is given. But as b the rectangle of BC and BE is to the rectangle of AB and BC , fo is BE to AB : Therefore the ratio of $B E$ to $A B$ is given, and therefore c so. prop, c the ratio of the fquare of the faid $D E$ to the fquare of $A B$ is alfo given. But to that fquare of $A B$ the rettangle of $B C$ and $C E$ is equal : Therefore the ratio of the faid rectangle of $B C$ and $C E$ to the fquare of $B E$
. given; and therefore the ratio of the quadruple of the faid rectangle of BC and CE to the fquare of BE is alfo given; and by compounding, d the ratio of four $d 6$. prop. times the rectangle of BC and CE , with the fquare of BE to the faid fquare of BE is given. But four times the rectangle of $B C$ and $C E$, with the fquare of $B E ; e$ is the Iquare e 8. 2 : of the compound line BCE : Therefore the ratio of the fquare of that compound line BCE to the fquare of BE is alfo given; and therefore the ratio fof the compound line f 54. prop BCE to BE is given. Wherefore by compounding $g \mathrm{~g} 6$. prop. the ratio of the faid compound line BCE and EB, that is to fay, twice BC to BE is alfo given; therefore the ratio of the only line $B C$ to $B E$ is given. But the ratio of the fame BE to AB is alfo given: Therefore b the ratio of $A B$ to $B C$ is given. And feeing that the h 8. pros ratio of BC to BE is given, and that as the faid BC is to BE, to the fquare of $\mathrm{BC} i$ to the rectangle of BC i i. 6 . and $B E$, the ratio of the fquare of $B C$ to the rectangle of BC and BE is alfo given. But the faid rectangle of $B C$ and $B E$ is given, it being that which was jaken awny, and which was given. Therefore the fquare of $B C k$ is given, and therefore the line $B C$ is given. But $k 2$. prop the ratio of the fame $B C$ to $B A$ is given, therefore AB is alfo given.

> P R O P. LXXXVIII.

If in a circle $A B C$, gives in magnitude, tbere be drawe a rigbt line AC, qubicb ball take away a fegment $A B C$, wbich dotb comprebend a gixen angle $A E C$, that line $A C$ is given in magnitude.

Comftr. For let D be the center of the circle;
 and let the diameter thereof $A D B$ be drawn, and let EC be joined.

Demonfon The angle ACE is given, for a it in a right a 31.3 ; angle. But the angle AEC is alfo given, and therefore the other angle CAE is given. Wherefore the tri-angle ACE b is given in kind; and therefore the b 40. prote ratio of EA to AC is given. But AE is given in magnitude, feeing that the circle ABC is given in magmitude. Therefore c AC is alfo given in magnixude. © 2. profe $A_{2} 4$
$P R \not P_{0}$

PROP. LXXXIX.

If in a circle ABC, given in magnitude, there be drawn a right line $A C$, given in magnitude, tbat line $A C$ will take awway a. Segment $A B C$, comprebending a given angle.

Conftr. For having taken the point D for the center of the circle, let the diameter ADE be drawn, as alifo the right line EC.

Demonfr. Forafmuch as each of the right lines AE a 1. prop. and AC are given, the ratio of the line AE to AC a is given ; and the angle ACE is a right angle: Therefore b 43 .prop. 6 the triangle ACE is given in kind, and therefore the angle AEC is given.

> P R O P. XC.

If in the circumference of a circle $\triangle B C$, given in pofition and in magnitude, there be taken a given point B, and that from the point B to the circumference of the circle $A B C$, a rigbt line BAC be infected fo as to make a given angle BAG, the otber extremity C of the inflected line fall be given.

Conffr. For let the center of the circle be D, and let the right lines BD and BC be drawn.

Demonfr. Forafmuch as each
26. prop.
 point B and D is given, the right line $B D, a$ is given in pofition; and feeing that the angle BAC is given, the angle BDC is alfo given. Wherefore to the right line BD, given in pofition, and in the point D given therein, there is drawn the right line $C D$; which makes the given angle BDC; and therefore b the line DC is given in pofition. But the circle $A B C$ is given in pofition and magnitude: c 6. def. Therefore c the right line $D C$ is given in pofition and d 27 .prop. in magnitude. But the point D is given : Therefore d the point C is "alfo given.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Evclidis'DAT A.
OTHERWISE.

- Comfty Let E be the
 center of the circle, and through the fama eenter let there be drawn from the poiard the fight line DA.

Demonfir. Forafmurch as each point D and E is given, the right line DE is d given in poGtion and in magnitude. But the circle ABC is given in pofition and is e 25 . priq. magnitude: Therefore each point A and Fe is given, and the point D is alfo given; and therefore eack line $A D$ and $F D$ is given. Wherefore the rettangle of the liaes $A D$ and $D F$ is alfo given. Burt the faid rectangle of AD and DF is equal to the rectangle of DB and DC: Therefore the rectangle of DB and DC is given.
P R O Pa XCIII.

If in a circle given in por ftion there be taken a given point A, and tbrougb that point A tbere be ditawn a rigbt line BC to the circle, the rettangle comprijed under the fegments of tbe fame live BC fall be given.

Comftr. For let D be taken for the center of the circle, and having drawn the right line AD prolong it to the points E and F .
Demonftr. Forafmuch as each point A and D is given, i 26 . prop. the right line $\mathrm{AD} a$ is given in pofition. But the circle BEC is alfo given in pofition : Therefore each point \mathbb{R} and F is allo given in pogtion, and the point A is gi-
b 35. 3. ven. Wherefore each line b AE and AF is given: Therefore the retangle of the fame lines AE and AF is given, and is equal to the retangle b of $A B$ and $A C$: Therefore the faid rectangle of $A B$ and $A C$ is given.

If in a circle $A B C$, given in magnitude, there be drawn a right line BC, wbich doth take away a fegment wbicb dotb comprebend a given angle BAC, and that the faid angle is tbe fegment is cut into two equal parts, the line compounded of the rigbt lines $B A$ and $A C$, wvkich comprebend the given angle BAC fall bave a
 given ratio to the line AD, wbich dotb divide tbat angle into two equal parts; and the rettangle contained under the line compounded of thofe lines $B A$ and $A C$, comprebending the given angle $B \triangle C$, and that part ED of the interfacting line wbbich is below the fegment between the bafe BC and the circumference, 乃all be given.

Conffr. Let BD be drawn.
Demonftr. Forafriuch as in the circle ABC given in magnitude, there is drawn the right line' BC , which takes away the fegment BAC, comprehending the given angle $B A C$, that line $B C$ a is given; and therefore BD a 88. prop. is alfo given: Therefore the ratio of BC to $\mathrm{BD} \quad b$ is b 1. prop. given. And feeing that the given angle BAC is cut in two equal parts by the righe line $A D$, as $\subset B A c 3.6$. is to CA , fo is BE to CE ; and by compounding, as BAC is to CA, fo is BC to CE ; and by permutation, as BAC is to BC, fo is CA to CE. And feeing that the angle BAE - is equal to the angle CAE, and the angle ACE d to the angle BDE, the other angle AEC d 21. 3. is equal to the other angle $A B D$; and therefore the triangle $A C E$ is equiangled to the triangle $A B D$: Therefore e as AC is ro CE , fo is AD to BD . Bute 4. 6 as $C A$ is to $C E$, fo the line compounded of $B A$ and $A C$ is to $B C$: Therefore as the compound line BAC is to $B C$, fo is $A D$ to $B D$; and by permutation, as the compound line $B A C$ is to $A D$, to is $B C$ to BD. Bur the ratio of BC to BD is given : Therefore the ratio of the compound line BAC to AD is alfo given. Moreover, I fay that the retangle under the compound line $B A C$ and ED is given. For feeing that the triangle AEC is equiangled to the triangle BDE, (for the angle $A C E d$ is equal to the angle $B D E$, and the angle AEC
© 15.1.
g16.6.

Euclide's DATA.
f to the angle BED) as $B D$ is to $D E, f o$ is $A C$ to $C E$. But as $A C$ is to $C E$, fo is alfo the compound line BAC to $B C$: Therefore as the compound, line BAC is to $B C$, fo is BD to DE. Wherefore the rectangle of the compound line BAC and DE g is equal to the redangle of $B C$ and $B D$. But the rettangle of $B C$ and $B D$ is given, (for that thofe lines $B C$ and $B D$ are given :) Therefore thep rectangle under the compound line BAC and ED is alfo given.

OTHERWISE.
 Conftr. Let CA be

 prolonged to the point E, and let $A E$ be put equal to BA , and let $B E$ and BD be joined.Demonftr. Porafmuch as the angle BAC is double to each of the angles CAD and AEB (for the angle BAC is cut into two equal parts by the line ΛD, and equal b to the two angles $A B E$ and $A E B$, which i are equal) the angle ABE is equal to the angle CAD, that is to $\{2 y, k$ to the angle CBD; adding therefore the common angle ABC , the whole angle ABD hall be equal to the whole angle FBB. But the angle $A C B$ is k equal to the angle ADB: Therefore the third angle AEB is equal to the third angle BAD; and therefore the triangle CEB is equiangled to the triangle $A B D$: Wherefore as CE is to CB , fo is AD to BD . But the right line $C E$ is compounded of the two lines $C A$ and $A B$: Therefore as the compound line $B A C$ is to $C B$, to is $A D$ to $B D$; and by permutation, as the compound line BAC is to $A D, f o$ is $C B$ to $B D$. But the ratio of $C B$ to BD is given, feeing that each of thofe lines is given: Therefore the ratio of the compound line BAC to AD is alfo given. And feeing that the triangle CEB is equiangled to the triangle FBD (for the angle AFC is equal l to the angle $B F D$, and the angle $E C B m$ to m 16. 6.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

If in tbe diaméter BC of a circle ABC gives in pofftion, zbere be takon a given poist D, and from tbat poixt D there be drawwa vigbt line DA, to the circumference of the circle, And if from the fection of tbe faid lime tbere be dracus a rigbt line AE, perpendicular tbereto, and tbrougb tbe point B where tbat perpendts cular dotb meet witb the circumferewce, tbere be drawn a parallel EF, to the firft lime drawm $A D$, that point F in cubtch tbe parallel meets witb tbe diameter, is given; and tbe refiangle contained under tbe parallel lines AD and EF is alfo given.

Conffr. Let the right line EF be prolonged to the point G, and let the right line AG be drawn.
Demonffr. Forafmuch as the angle AEG is a right angle, the right line AG is the diameter of the circle. But BC is alio the dismeter : Therefore the point H is the center of the circle. Now the point D is given; a 26. prop. and therefore a the line DH is given in magnitude. But feeing chat AD is parallel to EG, and AH equal to GH ; b 26. prop 6 DH is equal to PH , and AD to FG : (for the angles c 19. I. AHDand FHG c are equal, and DAH and FGH d are d 26. I. alfo equal.) But the line DH is given: Therefore FH is alio given. But each of thofe lines DH and HF is also given in poftion, and the point H is given: Therefore -27. prop. e the point F is alfo given. And feeing that in the circle $A B C$ given in pofition, is taken the given point F, and through the fame is drawn the right line § 93. prop. EFG; the rectangle under EF and FG f is given. But FG is equal to AD. Therefore the retangle comprehended under AD and EF is given. ' Which was to.be do. somfirated.

A

Brief Treatise

(Added by F.LUSS $A S$)

$$
\mathbf{O E}
$$

Regular Solids.

REgular Solids are faid to be compofed and mix'd when each of them is transformed into other Solids, keeping ftill the form, number and inclination of the bafes, which they before had to one another; fome of which yet are tranoformed into mix'd Solids, and other fome into fimple. Inco mix'd, as a Dodecaedron and an Icofaedron, which are transformed or altered, if you divide their fides into two equal parts, and take away the folid angles fubtended by plane fuperficial figures, made by the lines coupling thofe middle fections; for the Solid remaining after the caking away of thofe folid angles, is called an Icofidodeesedron. If you divide the fides of a Mube and of an Otroegdron

ATreatise of

OAoedron into two equal parts, and couple the fections, the folid angles fubtended by the plane fuperficies made by the coupling lines, being taken away, there fhall be leff a Solid, which is called an Exotoedron. So that boch of a Dodecaedron, and alfo of an Icofaedron, the Solid which is made fhall be called an Icofidodecaedron; and likewife the Solid made of a Cube, and alfo of an Ottoedron, thall be called an Exoctoedron. But the ocher Solid, to wit, a Pyramis or Tetraedron, is transformed into a fimple Solid ; for if you divide into two equal parts each of the fides of the Pyramis, triangles defcribed of the lines which couple the fections, and fubcending and taking away the folid angles of the Pyramis, are equal and like unto the equilateral triangles left in each of the bafes, of all which criangles is produced an Otoedron, to wit, a Gimple, and not a compofed Solid. For the Oetoodron hath foar bafes, like in number, form, and mutual inclination with the bafes of the Pyramis, and hath the other four bafes with like fituation oppofite and parallel to the former. Wherefote the application of the Pyramis taken twice, maketh a fimple Ottoedron, as the other Solids make a mix'd compound Solid.

[^2]
THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

II.

An Loofdodecaedrom is i folid figure contained under treeloe equilateral, equal, and equiangled Pentagons, and troonty equal and equilateral triangles.

For the better undertanding of the two former Definitions, and alfo of the two Propofitions following, I have here fet two figures which if you firft defcribe upon pafte-board, or fuck like matter, and then cut them and fold them accordingly, they will reprefent unto you the perfect forms of an Exoctoedron, and of an Icofidodeciedron.

> PROBLEMI.

Ib deforibe an equilateral and cquiawted Exodroedrons, and to comacion it is agiven Abbere, and to prove that tbe digmoter of tho fibere is double to the fide of whe faid Exattocdrom.

Conftr. Suppofe a Sphere whofe diameter let be AB, and about the diameter AB let there be defcribeda £quare

; a 6.7. a, and upon the Iquare let there be defcribed a Cube b, b 15. 13. which let be CDEPQTVR; and let the diameter thereof
be $Q R$, and the center S. Divide the fides of the Cube into two equal parts in the points G, H, I, K, L, M, N, $\mathrm{O}, \mathrm{P}, \Theta_{c}{ }_{c}$ and couple the middle fetions by the right lines IN, NO, OP, PI, and fuch like, which fubtend the angles of the Squares or bafes of the Cube; and they are equal c, and contain right angles, as the angle NIP. c 4. r.
For the angle NID, which is at the bafe of tie Ifofceles triangle NDI, is the half of a right angle, and fo likewife is the oppofice angle RIP. Wherffore the refidue NIP is a right engle, and fo the reft. Wherefore NIPO is a fquare. And for che fame reafon fhall the reft NMLK, KGHI, ©c. infcribed in the bafes of the Cube, be Lquares, and they fhadl be fix in number, according to the number © the bafes of the Cube. Again, foralmuch as the triangle RIN fubtendeth the folid angle D of the Cube, and likewife the triangle KGL the folid angle C_{2} and fo the reft which fubtend the right folid angles of the Cube, and thefe triangles are equal and equilateral (to wit) being made of equal Gides, and they are the li-,

axits or bordens of the Iquares, and the fquares the limits or borders of them; as hath been before proved. Where-

Sore LMNOPHGK is an Excetoedron by the definition, and is equilateral, for it is contained by equal fubcendans lines; it is alfo equiangled, for every folid angle thereof is contained under two fuperficial angles of two fquares, and two fuperficial angles of two equilateral triangles.

Demonftr. Forafmuch as the oppofite fides and dinmeters of the bafes of the Cube are parallels, the plane extended by the right lines QT and VR, thall be a parallelogram, And for that alfo in that plane lieth $Q R$, the diameter of the Cube, and in the fame plane alfo is the line MH, which divideth the faid plang into two equal parts, and alfo coupleth the oppofite angles of the Exotoedron : this line MH therefore divideth the diamed.cor.34. 1. ter into two equal parts d; and alfo divideh it felf e 4. I. in the fame point, which let be S, into two equal parts e. And by the fame reafon may we prove that the refl of the lines which couple the oppofite angles of the Exoctoedron, do in S the center of the Cube, divide one anocher into two equal parts, for each of the angles of the Exotocdron are fet in each of the bafes of the Cube. Wherefore making the center the point S , with the diftance SH or SM defcribe a Sphere, and it fhall touch every one of the angles equidifant from the point S.

And forafmuch as AB the diamerer of the fphere given, is put equal to the diameter of the bafe of the cube, to wit, to the line RT, and the fame line RT is equal
£33. т. to the line $M H f$, which line MH coupling the oppofite angles of the Exoctoedron, is drawn by the center. Wherefore it is the diameter of the Sphere given which containeth the Exoctoedron.

Lafly, forafmuch as in the triangle RET, the line PO doth cut the fides into two equal part, it thall cut them proportionally with the bafes, to wit, as FR is
g 2.6. - to PP, fo fhall RT be to FO g. But FR is double to FP by fuppofition: Wherefore RT, or the diameter HM, is alfo double to the line PO, the fide of the Exotocdron. Wherefore we have defcribed, \mathcal{O}_{c}. Which was required to be doae.

PROBLEMII.

Todefcribe an equilateral and equiangled Icoffdadocacdrom, and to comprebend it in a fipere given, and toprove that the diameter being divided in extream and mean propertion, maketb tbe greater. Segment double to the fide of tbe Icofidodecaedras.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

E 12.4: SII.40

B3.cor. of 17.13. h idem. the Dodecaedron g; which lines alfo b do in the center divide one another into two equal parts. Therefore right lines drawn from that point to che angles of the Icofidodecaedron (which are fet in thofe middle fections) are equal; which lines are thirty in number, according to the number of the fides of the Dodeciedron, for each of the angles of the Icolidodecaedron are fet in the middle fections of each of the fides of the Dodecaedron. Wherefore making the center of the Dodeciaedron, and the fpace, any one of the lines drawn from the center to the middle fettions, defcribe a Sphere, and it hall pafs through all the angles of the Icofidodecaedron, and mall contain it.

And forafmuch as the diameter of this folid, is that right line whofe greater fegment is the fide of the Cube

ATEEATise of

che Dodecaedfon. And the faid Pentagon is contained in a circle, to wit, whofe center is the center of a Pentagon of the Dodecaedron. For the lines drawn from that center to the angles of this Bentagon are equal, for that they are perpendiculars upon the bafes cur a Wherefore the Pentagon QRSTV, is equiangled f. And by the fame reafon may the reft of the Pentagons defcribed in the bafes of the Dodecaedron, be proved equal and like.

Wherefore thofe Pentagons are twelve in number: And forafmuch as the equal and like triangles do fubrend and take away twenty folid aogles of the Dodecaedron; therefore the faid triangles fhall be tyenety in number. Wherefore we have defcribed an Icofidodecaedron by the definition, which Ioofidodecaedron is equilateral; for that all the Gides of the triangles are equal and common with the Pentagons; and it is alfo equiangled. For each of the folid angles is made of two fuperficial angles of an equilateral Pentagon, and of two finperficial angles of an equilateral triangle.
Now let us prove that it is contained in the given Sphere whofe diameter is NL. Forafmuch as perpendiculars drawn from the centers of the Dodecaedron, to the middle fections of his fides, are the halfs of the lines which couple the oppofite middle fections of the fides of divide one another into two equal parts. Therefore infcribed in the Dodecaedron i, which Gide is NI by fuppoltion. Wherefore that folid is contained in the Iphere given, whofe diameter is put to be the line NL.

Now let us prove that the great fegment of the diameter is double to QV the fide of the folid. Forafmuch as the fides of the triangle AEB are in the points Q and V divided into two equal parts, the lines $Q V$ and $B E$ are parallels k. Wherefore as AE is to AV, fo $^{\prime}$ is EB to VQ k cor.39. 1. 1. But the line AE is'double to the line AV . Wherefore 12.6. the line BE is double to the line QV m . Now the line m 4.6. BE is equal to NI, or to the fide of the Cube n; which $\mathbf{n}_{2} \mathrm{cor}$. of line NI is the greater fegment of the diameter NL. 17.13. Wherefore the greater fegment of the diameter given is double io the fide of the Icofidodecaedron infcribed in the given Iphere. Wherefore we have defcribed, orc. Which was required to be done.
ADVERTISEMENT.
-To the underftanding of the nature of this Icofidodecaedron, you muft well conceive the palfions and proprieties of both thefe folids, of whofe bafes it confifteth, to wit, of the Icofaedron and of the Dodecaedron. And altho' in it the bafes are placed oppofitely, yet have they to one another one and the fame inclination. By reaton whereof there lie hidden in it the actions and paffions Bb 4 of
of the other regular Solids. And I would have thoughte it not impertinent to the purpofe to have fet forth the infcriptions and circumferiptious of this Solid, if want of time had not hindred. Biut to the end the Reader may the better attain to the underfanding thereof, I havehere following brielly fet forth, how it may' in or about every one of the five regular Solids be infcribed or circumferibed; by the help whereof he may; with frall travel, or rather none at all, having well poifed and 'oonfidered the Demonftrations appertaining to the forefaid five regular Solids, demonfrate both the infcription of the faid Solids in it, and the Infcription of it in the faid Solids.

Of the Inforiptions and Circumforiptions of an Icofidadera-- . edron.

An Icofidodetaedron may contain the other five regular bodies. For it will receive the angles of a Dodecaedron in the centers of the triangles which fubtend the folid angles of the Dodecaedron, which folid angles are fwenty in number, and are placed in the fame order in which the folid àngles of thé Dödecaedron, taken away, or fubtended by them, are. And for that reafon it fhall receive a Cube and a Pyramis contained in the Dodecaedron, when as the angles of the one are fet in the angles of the other.

Aï Icofidodecaedron receiveth an OAoedron, in the angles curting the fix oppofite fections of the Dodecaeyron, even as if it were 'a fimple Dodeceedron.

And it containeth an Icofaedron, placing the twelve angles of the Icofaedron in the fame centers of the twelve Pentagons.

It may alfo by the fame reafon be infcribed in each of the five regular bodies; to wit, in a Pyramis, if you place four triangular bafes concentrical with four bafes of the Pyramis, after the fame manner that you infcribed an Icofaedron in a Pyramis; fo likewife may it be infcribed in an Ofoedrop, if you make eight bafes thereof concentrical with the eight bafes of the Otioedron. It thall alSo be infcribed in a Cube, if jou place the anyles whith receive the Octoedron in it, in the centers of the baffs of the Cube. Again, you Gall infcribe it in an Icofaedron, when the triangles compalied in of the Pentagon bafe, are concentrical with the triangles which make a folid anyle of the loofaedroa.

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
ramis, fet upon the faid equilateral triangles, there thall be produced a folid comfifting of two equal and like pyramids.

And now if in thefe folids thus compofed, you take away the folid angle, there 'fhall be reftored again the firt compofed folids, to ${ }^{\text {wit }}$, the folid angles taken away from a Dodecaedron and an Icofaedron compofed into one, there thall be left an Icofidodecaedron, the Solid angles taken away from a Cube and an OCtor'rod compored into one folid, there fhall be left an Exotoedron. Moreover, the folid angles taken away from two pyramids compofed into one folid, there fhall be left an Otoedron.

Of the nature of a trilateral and equilateral Pyramis.

1. A trilateral equilateral Pyramis is divided into two equal parte, by three equal fquares, which in the center of the Pyramis cut one another into two equal parts, and perpendicularly, and whofe angles are fet in the middle fections of the fides of the Pyramis.
2. From a Pyramis are taker away four Pyramids like unto the whole, which utterly take away the fides of the 'Pyrumis, and that which is left is an Otroedron, inferibed in the Pyramis, in which all the folids inferibed in the Pyramis are contained.
3. A perpendicular drawn from the angle of the Pyramis to the bafe, is double to the diameter of the Cube infribed in it.
4. And a right line coupling the middle fections of the oppofite fides of the Pyramis is triple to the fide of the fame Cube.
5. The fide alfo of a Pyramis is triple to the diameter of the bafe of the Cube.
6. Wherefore the fame fide of the Pyramis is in power double to the right line which coupleth the middle fection of the oppofite fides.
7. And it is in power fefquialter to the perpendicular which is drawn from the angle to the bafe.
8. Wherefore the perpendicular is in power fefquitertia to the line which coupleth the middle fetions of the oppofite fides.
9. A Pyramis and an Ottoedron infcribed in it, afto an Icofaedron infribed in the fame Ottoedron, do contain one and the fame fphere.
10. Four perpendiculars of an Ottoodrom, drawn in fout bafes thereof from two oppolite anglos of the finid Otoodron, and coupled togecher by thole fours bafes, defcribe a Rhombus, or Diamond figure; one of whofe diame. tera is in power double to the ocher diameter.
11. For it hath the fame proportion that the diemeter of the Otoedron hath to the fide of the Octoedron.
12. An Otoedron and an Icofaedron inscribed in it do contain one and the fame fophere.
13. The diameter of the folid of the Otoodron is in power fefquialter to the dianctor of the aircle which containeth the bafe, and is in power duple fuperbipartiens terias (that is, as f to 30) to the perpendicular or Gide of the forefaid Rhombus; and moreover is in length triple to the line which couplech the centers of the next bafes.
14. The angle'of the inclination of the bafes of the OAOedron, doth, with the angle of the inclination of the bafes of the Pyramis, make angles equal to two right angles.

Of the sature of a Cubr. .

1. The diameter of a Cube is in power fefquialter to the diameter of his bafe.

2, And is in power triple to his fide
3. And unto the line which coupleth the centers of the next bafes, it is in power fextuple.
4. Again, the fide of the Cube, is to the fide of the Icofaedron infcribed in it, as the whole is to the greater fegment.
5. Unto the fide of the Dodecaedron, it is as the whole is to the leffer fegment.
6. Unto the fide of the Otoedron it is in power. duple.
7. Unto the fide of the Pyramis it is in potwer fubduple.
8. Again, the Cube is triple to the Pyramis, but to the Cube the Dodecaedron is in a manner double. Wherefore the fame Dodecaedron is in a manner Extuple to the fid Pyramis.

Of the nature of the Icofadaron.

1. Five triangles of an Icofaedron, do make a folid angle; the bafes of which criangles make a Pentagon. If therefore from the oppofite bales of the Icofaedron be caken the other Pentagon by them deferibed, thefe Pentagons fhall in fuch fort cut the diameter of the Icofaedron which couplech the forefaid oppofite angles, that that part which is contained between the planes of thefe two Pentagons shall be the greater fegment, and the refidue which is drawn from the plane to the angle, fhall be the lefler fegment.
2. If the oppofite angles of two bafes joined together, be coupled by a right line, the greater fegment of that right line is the fide of the Icofidron.
3. A line drawn from the center of the Ioofaedron to the angles, is in power quintuple to half that line which is taken between the Pengegons, or of the half of that line which is drawn from the center of the circle which containeth the forefaid Pentagon, which two lines are cherefore equal.
4. The fide of the Icofaedron containeth in power either of them, and alfo the leffer fegment, to wit, the line which fallethe from the folid angle to the Pentagon.
S. The diameter of the Icofaedron containeth in power the whole line, which coupleth the oppofite angles of the bafes joined together, and the greater fegment thereof, to wit, the fide of the Icofaedron.
5. The diameter alfo is in power quintuple to the line which was taken between the Pentagons, or to the line which is drawn from the center to the circumference of the circle which containeth the Pentagon compored of the fides of the Icofaedron.
6. The dimetient containeth in power the right line which coupleth the centers of the oppofite bafes of the Icofaedron, and the diameter of the circle which containoch the bafe.
7. Again, the faid dimetient containeth in power the diameter of the circle which containeth the Penragon, and alfo the line which is drawn from the center of the Same circle to the circumference: that is, it is quintuple to the line drawn from the center to the circumference.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

a Treatise, forc.

7. The line which fabreadecth the angle of the bafe of the Dodeciedrom, together wich the fide of the bafe, are in power quintuple to the line which is drawn from the cencer of the circle which containeth the bafe, to the circumference.
8. A foction of a fphere comexining three bafes of the Dodecnedroa, catech a third part of the diameter of the frid fphere.
9. The fide orthe Dodecaedroa and the line which fubtemdeth the angle of the Pentagon, are equal to the night line which couplech the naiddle fections of the oppoGite fides of the Dodecredron.

THE

THEOREMS

OF

ARCHIMEDES.

Concerning the Sphere and Cylinder, inveftigated by the Motbod of imdiujfibles, and briefly demonftrated by the Reverend and Learned Dr. Isaac BARROW.

THE main Defign of Avobionciles in his Tveatije of tbe spbere and Cylimders is so refotve thefe four Problems.

1. Io find the propertion of the superfioios of agibere to any determinate circle; as to find a cumel equai tortion.fryme ficies of a given $/ p$ bere.
2. To find the proportion of the funtraficics of any fromant
 to the fuperficies of any afrogred fognomit.
3. To find the proportion of the finer iafinf (wof its folid content) to asy detcrminate cons or Cylinder; or to

[500]

4. To fiod the proportion of a fogment of a jpbere to airy determimate Cone or Cylinder; or to find a conse or Glizadot equal to a given fegment.

Thefe four Problems Atcbimedes profecurtes feparately, and lays down Theorems immediactly fubfervient to their Solution; but we reduce them to two: For fince an Hemiffhere is the fegment of a Yphere, and the mechod of finding out ita relations, in refpeet to the fuperficies and folid content, is comprehended in the general method of invefigating the proportion of the fegments : And from the fuperficies and folid content of an Hemifphere already found, the double of them, (that is the. fuperficies and content of the whole fphiere) is at the fame time given. And indeed 'tis fuperfluous and foreign from the Laws of good Method, to inveftigate their relacions diftinaly and Ceparately; fo that if it were not a crime, I might on this account blame even $4 \mathrm{Am}^{\prime}$ cbimedes himfelf.

The whole matter therefore is redued to thele two Problems.

1. Io find the proportion of the fuperficies of any fogment of a Sbere to a doterninate circle ; or to fived a circlo equal to the Superfacies of a given fegment.
2. To find the groportion of the folidity of any fegment of a.phere to any determinate cone or Cylinder ; or to find a Cone or Cylinder equal to ase affign'd fegment of a spbere.
i shall refolve thefe Problems by another much eafier and fhorter method: In which thie order being inverted; firft, I hall feek the folidity of a fegment, and from thence deduce its fuperficies; a thing which is in my judgment well worth obferving, and perform'd (as I know of) by none.

Firft therefore, for finding the folidity of a fegment, 1 hall lay down two, commonly known and receiv'd, Suppofitions, viz.

1. Tbat a fories of magnitudes proceeding in Aritbmetical Progreffiom from notbing (inclufive) or wwbofe commans diffe. vonce is equal to tbe leaft magnitude, is fibduple of as many quamtitios equal to the greateft: (i. e. Jubduple of the produrit of the greateft. term and number of terms:) So that if the fum of tibe terms be called z, the greateft term g, and the number of terms m, then will

The

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

[50]]

- After the fame manner we may fappore thep fector, AEZ to confint of as many concentric Arcs $\mathrm{BZ}, \mathrm{CZ}, \mathrm{DZ}, \mathrm{EZ}$, as there are points (or equal parts indefinitely frall) in the
 radius AE, which Arcs, 28 their radii, proceeding from a point or nothing in an Arithmetical progreflion, the fedos alfo will be equal to half the radius drawn into the ex: treme Arc EZ. Which may, be made evident alfo after; this manner: Let us fuppoie the right line EY to be perpendicular to the radius. $A E$, draw the right line $A Y$, and from the points. $\mathrm{B}, \mathrm{C}, \mathrm{D}$, of divifion in the radius, draw BY, CY, DY, parallel to EY, and terminated-at AY. Becaufe EY: DY (: read, AE: rad. AD) :: Anc. EZ: Anco $D Z$ and $E Y=E Z$, then will $D Y=A r c, D Z$; and: in like manner will $C Y=C Z$, and $B Y=B Z$. Whence the triangle AEY Will be $=$ to the fetor. AEXEY
$A E Z_{?}$ that. is $\frac{T_{i}}{i}$
$\left(\frac{\mathrm{AE} \times \mathrm{EZ}}{\dot{2}}\right)=$ fector AEZ. By. 2
this means. We .collect that celebrated Theorem of Ancbir. medes, that circle is equal to a triangle whofe bafe is equal to sbe radius, and altitude equal to the pexiploery; of the civcle; and that without any infcription or circumfeription of figures, by only fuppofing that the Ayea or Superficies of the circle confits of infinitely miny concentric Peripheries. Which metbod of Indivifiklow, (now firt of all known to me) feems no lefs cvident (nay more evident) and perhaps lefs fallacious than that wherein plapes are fuppoted to confift of . parallel right lines, and folids of parallel planes; as. hereafter thall be evident, when we thall colled, by this method, the proportions of fpheric and cylindric fuperficies to one another, by knowing the folid contept; and on the ocher hand, the folid content, by knowing the fuperficies, with admirable: facility, and moot full fatisfation in thofe things which are rigidly gather'd by pure Geometry.

[503]

Let' izs Juppdfe' a feries of quantities's to proceed from 0 . (inclufive) in a duplicate Arizbmetic proportion, that is, $0,1,4,9,16, \& c$ the Syuares of numbirs in a fimple Avithmetic progreflion, $0,1,2,3,4 ; 8 \mathrm{c}$; And the triple of this feries will always exceed the greateft term multiplied by the number of terms; but the number of terms increafing, the propurtion conitimually approximates; till at llaft. it comes to an equallty, qubein the number of rothes is increafed in infinitum.

$$
\begin{aligned}
& 3 \times 0+1=3.3 \\
& 2 \times 1=2.2 \\
& 3 \times 0+1+4=15.15 \\
& 3 \times 4=12.12 \\
& 3 \times 0+1+4+9=42 . \frac{42}{4}-\frac{7}{6} \\
& 4 \times 9=36.36 \\
& 3 \times 0+1+4+9+10=90.93 \\
& 5 \times 16=80.80 \\
& 3 \times 0+1+4+9+16+25=165.165 \\
& 6 \times 25=150.150 \\
& 3 \times 10
\end{aligned}
$$

As for example; if the terms are two; the triple of the cerms will be to the greatelt term drawn into the number of terms as 3 to 2 ; if there be three terims as 9 to 4 ; if 'four, as 7 to 6 ; if five, as 9 to 8,' and fo continually: So' that the antecedents of thefe proportions always mutually exceed one another by the numbet 2 ; and fo every antecedent its confequent by 1 . Whence it is evidenc that by how much the greater the number of terms is, by fo much the more the proportion tends to equality. So 100 to 09 is lefs diftant from the proportion of cquality than 10 to 9 . From heace, fuppofing the number of terms imfinite (or infinitely great;) the criple of quantitiés proceeding thus in a duplicate proportion (or as the Squares of the numbers, $0,1,2,3,4$, Esc. will be equal to as many quancities equal to the greated rerm.

The Same, as to the fubfiance of it, is laid down by, Aitbimedes in his Book of Spitals, as the Foundation of many Argumentations, in that, and other Books, and is well demonitrate'd by our'learned Country-man Dr. Wall's': However, I thought fit to inl:Atrate the macter by this

[504]

method, as being not unworthy our Confideration, and very perfpicuous and intelligible in this, that'tis free from Prations: And by the way 'ris obferv'd, that from hence we may eafily find the proportion of a feries triple to as many terms equal to the greateft, oiz. as twice the number of terms lefs one, to twice the number of terms lefs two. So that if the number of the terms be 6 , the proportion of a feries triple to as many terms equal to the greateft will be as 11 .
If will be a very eafy and apt Illuftration of this Rule, if we infer hence, That a Cone is fubtriple of a Cylimder, baving na equal bafo and altitude. For let us fuppole the allitude AE of the Cone ZY to be divided into equal and indefinitely many parts, by as many parallel right lines ZY , and the lines ZY will be as the numbers $\mathrm{I}, 2$, 3, 4, Uc. and the fquares or circles conflituted upon the diameters $\mathbf{Z Y}$, as $1,4,9,16 ;$ Ec. Whence all thofe circles, or the whole Cone AZY (made up of the fame)
 will be fuberiple of as many circles equal to the greatef, conftituted on the greatef diameter ZEY, that is, fubtriple of a cylinder whofe bafe is AEY, and altitude AE.

There occur two other moft apt examples of this Rule, viz. by inferring, That the complement of a semiparabola is fubtriple of a parallelogram baving the fame bafe and beigbt; as alfo, That the frace comprebeended by the spiral and Radius is subtriple of the circle in wbich the fpiralis generated: But of thefe in another place. Wherefore to go on with what we be-
 gan, thefe two Rules being fuppofed; let us conceive ZAY to be a fegment of a fphere, \mathbf{X} iss center, AT its diameter, and ZAYT a great circle paffing thro' the vertex, and the part AE of the Axe to be di--vided into an indefinitely many equal parts; and let us imagine parallel lines to be drawn thro' the points of diviGon generating circles in the fphere, whofe Radii let be BZ, CZ, DZ, and diameters ZY. I fuppofe the fog-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies
and altitude is $\frac{1}{3}$. n; or to 2 Cone having the fame bafe, but the altitude n. or which is all one, having a bale

$$
6 \overline{n d-4 n^{2}}
$$

whofe radius is $\sqrt{ }$ or $\sqrt{\text { 3 }}$ man- n^{2}, and altitude n as before. Which Cone.we may change into a Cone upon the fame bafe ZY with the fegment ZAY, by faying, as ZE 2 (i, a. $d n-n^{2}$) to $\frac{3}{2} n d-n^{2}$ or (both terms being divided by n) as $d-n$ to $\frac{3}{2} d-n$, fo reciprocally n to the altitude of the Cone fought: Or in the figure by making, as TE to TE+XA, fo is EA to ES. For ES wull be tbe altitude of the Cone zST equal to the fegment- of tbe fipbere ZAT. Which is that noted Theorem of drchimedes, demonftrated by him with fo much labour and prolixity.

Hence, if the given fegment be a Hemijpbere, and fo $n=\frac{1}{2} d$ or r, then d or $2 r$ will be the altitude of a Cume, which having a bafe equal to the bafe of the He$m 1 / \mathrm{pbere}$ (or to the greateft circle in the fphere) will be equal to the Hemifpbere. And a cowe whofe bafe is double of the greateft circle, and the altitude 2 r, or the Cylinder whofe bafes is $\frac{7}{3}$ of the greateft circle, and altitude 2.r. win be equal to the whole spbere. Whence the whole sppbere is $\frac{2}{3}$ of a Cylinder, the diameter of whofe bafe is $2 r$, and the altitude alfo 2 r . And this is the chief Theorem of Arcbimedes, viz. Tbat a fpbere fubfefquialter or $\frac{2}{3}$ of tbat Cylinder, wbofe Altitude and Diameter of the bafe is equal to the Diameter of tbe Spbere.

Furthermore, not to pals over any thing in our Author which feems to be to our purpofe:

If to the fum firft found, reprefenting a fegment, siz. $\frac{6 n d n-4 n n n,}{3}$ we add $\frac{2 d^{2} n-6 d x^{2}+4 y^{3}}{3}=\frac{4 d n-4 x^{2}}{3}$ $\times \frac{d-2 n}{2}=\frac{4}{2} \mathrm{ZE}^{2} \times \mathrm{XE}$) reprefenting the Cone ZXY , the aggregate $\frac{2}{3} d d n$ will reprefent the Setor of the Sphere ZXYA, which for that reafon will be equal to a Cylinder, the diameter of whofe bafe $\gamma \mathrm{d} n$, and the alritude $\frac{2}{3} d$, or to 2 Cone, the diamerer of whofe bafe is $\checkmark d n$, and the alcitude $2 d$, or alfo to 2 Cone, the Radius of whofe bafe is $\sqrt{ } / d n$, and the altitude $\frac{1}{2} d=r$ (it being reciprocally as $4 d x: d x:: 2 d: \frac{1}{2} d$) that is, to 2 Cone, the Radius of whofe bafe is the Line AZ, drawn from

[507]

ffom the vertex to the circumference of the bafe of the fegment, (for $\mathrm{AZ}_{2}=\mathrm{TA} \times \mathrm{AE}=d n_{3}$) and the altitude $\mathrm{r} \cdot \mathrm{S}$ And this is the next famous Theorem of Arcbimedes, concerning the folidity of the fetor of the Sphere, viz. Tbat the jector of a /pbere is eqwal to a Cone, wbofe bafo is a circle defcribed by a Radius equal to a line drawn from the vertex to the circumference of the bafe of the fogment, and wbofe altitude is equal to the Radius of the fpere.

And thus I think I have compleated that which belongs to the folidity of a fphere, and its parts, with fufficient brevity and perfpicuity. From hence we fhall dedure the Refolution of the other Problem, which I propofed concerning the furface of the fegment of a Tphere ; and then of the whole fphere. To obtain this, es we fuppofed before, a Circle to confift of concentric Peripheries, and the Selfor of a Circle of concentric Arcs, (in the number of which, the greateft, and the leaft, or a point is reckon'd: So now we fuppofe fpheres to confint of concentric fpherical fuperficies, and the seffors of spheres of like concentric fuperficies; as for example, the fetar of the fphere ZAE, of the fuperficies $\mathrm{BZ}, \mathrm{CZ}, \mathrm{DZ}$, EZ, ©oc.) which fuppofition indeed feems fo eafy and natural, that in my judgment 'tis fufficient only to propofe it; neither is a further explication wanting to gain
 in affent to it.
2. We fuppofe thefe fyherical fuperficies to be in a duplicate Ratio of the Radius of the fpheres: This is the common affetion of all like fuperficies, and it feems to agree very weli with the fuperficies of fpheres, becaule they appear ta be moft uniform and fimilar. But this Supporition might eafily be evinc'd and èfablinh'd by the fame fort of arguing, as fpheres are proved to be in triplicate proportion to their Diameters or Radii ; or might have been join'd as a Corollary to Prop.17, and 18. Elem, 12. where the fuperficies of like Polygones are fuppos'd to be infcribed in fpheres, having 2 w well the fuperficies in a duplicate, as the folidity in a triplicate Ratio of the Diameters of the Spheres. Thefe things being premis' d, let us fuppore AE a Radius, or the fide of the Sector of a Sphere EAZ, to be divided into equal and indefinitely many fmall parts, and the fetor AEZ to confill of thefe fpheri-
cal fuperficies $B Z, C Z,{ }^{\prime} \mathbf{D Z}, E Z$ ', it will be evident that a!l thofe fuperficies in the Progreffion are as the fquares of the Radii, that is, as $\overline{\mathrm{AB}^{2}}, \overline{\mathrm{AC}^{2}} \overline{\mathrm{AD}^{2},} \overline{\mathrm{AE}}, \dot{Q} c_{0}$ or as the fquares of the numbers $1,2,3,4,8_{0} c$. whence by our fecond Rule, the fum of all thefe fuperficies, that is, the fcetor AEZ, will be $\frac{5}{3}$ of as many fuperficies equal to the greateft EZ, that is, $\frac{1}{3}$ of the greateft EZ, drawn into r the number of terms. Whence a fector is equal to a Cylinder, whofe bafe is $\frac{1}{3}$ of the greateft or extreme fuperficies of the fector, and whofe alcitude is $r:$ Or to a Cone whofe bafe is equal to the fuperficies of the fector, and ics altitude x, which is the laft of Lib. 1. but we jult now prov'd that a fector is equal to a Cone whofe altitude is r, and bafe a circle, defcrib'd by the Radius YE, drawn from the vertex of the fegment EYZ to the circuanference of the bafe. Wherefore a Cone, whofe alcitude is r, and bafe equal to the fuperficies of the fectur, is equal to a Cone of the fame altitude, whof bafe is a circle deferib'd by the Radius YE.

And fo the fuperficies of the fector EYZ is equal to a circle defcrib'd by the Radius YE.' Which certainly is the principal Theorem of all thofe that occur in the Books of Arcbimedes, nor is there found a more excel: lent one in all Geometry; viz. That the fipperfivies of any fegment of a fphere is equal to a circle wibofo Radius is a, right line dracen from the vertex of the fegment to the circumference of the bafes: And hence, that tbe fuperficies of ass Hemifpbere is double ta the bafe, or equal to two great circles of the fubere.

For in this Cafe $\overline{Y_{E}^{2}}=\overline{A_{Z}^{2}}+A \overline{Y^{2}}=2 \overline{\mathrm{AE}^{2} \text {, and }}$ confequently a circle defcribed by the Radius YE is equal to two circles defcrib'd by the Ra-
 dius AE. Whence alfo, the fuperficies of tbe wbola spbere is quadruple, a circle baving the fame Radius with tbe Jphere, that is, quadruple tbe greateft circle in the /pbere; and equal to a curcle wibofe Radius is the diameter of the Splere. From hence it Soliows, that the fuperficies of a Sphere is equal to the fufe ficies of a Cylinder of tbe fame beigbt and breadtb; for the fuperficies of that Cylinder is quadruple to the bafe, as we fhall thew hereatier. And thefe are the polf ncted Theorems of archimedes. Nay, from hence

THIS PAGE IS LOCKED TO FREE MEMBERS Purchase full membership to immediately unlock this page

FORGOTTEN BOOKS

MEMBERSHIP
797,885 Books!
All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Sor inftance, (Pup. 2. lib. 2. Cylimdr.) For the ufual procefs of that method feems to exhibit the dimenfion of the Enperficies of a Cone, (as alfo of a Sphere, and of other Carves) different enough from what our Author and ochers have demonftrated: As for ex-
 ample, let us fuppofe $A B C D$ a right Cone, whofe Axe is AX, and bafe BCD, and plane $\beta \chi^{\delta}$ drawn, at pleafure, parallel to the bale BCD. And fince, as Diam. BD: perith. BCD : : Diam. $\beta \delta$: Periph. $\beta \chi \delta$, and fo every where it will be (according to the Metbod of Indivifibles, and by 12. 5.) as Diars. BD, to Periph. BCD, fo it the eriangle $A B D$, confifting of thole parallel Diemeters, to the Conic superficies ABCD, confiting of thof Peripheries, i. e. Diam. ${ }^{-1} \mathrm{BD}$: Peripb. BCD : : AX \times BD $: \mathbf{A X} \times$ peripb. BCD

Whence

2
 2
 AX \times Peripb. BCD
 will be equal to the Iuperficies of 2

che Cone; which is fale and contrary to what was demonitrated juft now. For we demonltrated that the AB \times Periph. BCD
fuperficies of the Cone was
2
In anfwering this Objection, we fay, that the Metbod of Imdiojpbles, in the fpeculation of Perimeters, and of Curve Surfaces, proceeds otherwife than in the fpeculation of plane Surfaces and folid Contents. It does indeed fuppofe that the Area of plane Figures confits as it were of patallel right lines, and the contents of colids of parallel Planes, and that their number may be exprefid by the alcitude of the Figures: But it by no means fuppofer, that the Perimeters of plane figures conGit of points, or the fuperficies of folids of lines, the number of which may be exprefs'd by the alcitude of the figure. As for example, altho the triangle ABD (in the laft figure) confifs of lines parallel to $B D$, the number of which is expreffed by the number of points in the perpendicular AX, that is, by the lemath of
the. perpendicular: Yet it woald be abfurd to fuppens that the line. AB confifts of, points, whofe number maty be exprefs'd by the number of points in a lefs line AX. For altho the right lines $\beta \delta$ drawn thro each infipitely fmall part of $A X$, divide $A B$ into as many infinitely fmall parts, yet thofe parts are not of the fame Denomipation or Quality with the parts of $A X$, but fomewhat greater than them; fo that if the .parts of AX be look'd upon as points, the parts of $A B$ are not to be called points, but greater than poimes; and on the contrary, if the parts of $A B$ be called points, the parts of $\mathbf{A X}$ are to be' look'd upon as lefs chan points, if it be lawful to fpeak fo. For the points which are treated of in the Matbod of Imdigiffblas are not abfolurely points, bat indefinitely finail parts, which ufurp the name of points, becaufe of their affinity to them. Since therefore points. don't admit of greater and lefg, the name of points is not at the fame time to be attributed to the parts of different mag? nitudes; confequently, tho' the number of the greater parts of $A B$ may be exprefs'd by the number of. the leffer parts of $A X$, yee the number of points in $A B$ ean no ways be expreffed by the number of. points in AX, (that is, by the number of parts in AX, equal to the number of parts in $A B$, which are ealled poines.) The line $A B$ has as many points se there are in it felf. alone, af another line equal to it felf, nor can it be determin'd by any other meafire. After the fame manner, this method don't fuppofe the conic Surface ABCD to confift of as many parallel circumferences perpetually increafing from the vertex A, or decreafing from the bafe $B D$, as there are points in the Axe AX, bur rather of as many thus increafing or decreafing as there are points in the Gide $A B$ For in the Revolution of the line $A B$ about the Axis AX, (whereby the fuperficies of the Cone is generated).every poirt in the line $A B$ protuces a circumference, and confequently more circumferences are produced than the points contained in the Axis AX. Therefore if you would extead the Metbod of Indivifibles to the fuperficies of folida, and fuppofe thofe fuperficies to confift of parallel lines, you ought not to compure this by the parallel Areas conftituting the folid, that is, not to number thafe Areas by the alritude of the folid, but by other lines agreeable of

[512]

the condition of each figure. Which lines, in figures that are not irregular, may eafily be determin'd : For inftance, in the equilateral Pyramid ABCD , whofe Axe is AX, fupb pofing that the lateral furface of the pyramid confifts of Pcrimeters of triangles, parallel to the bafe BCD, there can neither be computed by the altitude AX, nor by. the fide AB, (for by the formen, the thing requir'd would be wanting of the true Dimenfion, and by the latter 'rwould exceed it) but by the line AE drawn from the vertex A perpendicular to the fide BC of the bafe: The reafon of which is, that every plane fide of a Pyramid, as ABC, confifts of parallel right lines computed by the altitude AE. After the fame manner, fuppofing that the fuperficies of the Hemifphere BAD, confifts of Peripheries of circles parallel to the bafe
 $B C D$, the number of them is not to be computed by the Axis AX, but by the Quadrantal Arc AB, becaufe that every point of the Are AD in revolving produces a circumference; and fo any fuperficies, whether plane-or curv'd, which is conceived to confift of equidiftant right or curv'd lines, is to be computed by a line cutting thofe equidiftant lines perpendicularly. For fince thofe equidiftant lines, in this Metbod of Indivifibles, are not confider'd abfolutely as lines having an infinitely fmall breadth, which is the fame with the breadth or thicknefs of the point defcribing thofe equidffant lines in their Circumvolution, and fince the fame equidifant lines divide the line cutting them perpendicularly into parts meafuring its breadth, thofe parts are to be look'd upon as Juch fort of points, and confequently the number of equidiftent tines, or the fum of thofe breadths is to be computed by the number of points in the line cutting them perpendicularly, that is, by the kngth of that line, and not by a line of any 0 -

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer A library in your pocket for \$8.99/month

Continue

*Fair usage policy applies

[^0]: $\mathbf{a}^{2} \pm$

[^1]: To find out a ffth bizomial line DF.
 T.ike any fquare number $A B$, whofe fegments $A C, C B$ are not

 Q. Let G be the line prapounded $\dot{\rho}$. take EF ' \square. and make CB AB:: EFq. DEq. then .thall DF be a 5 binomial.

 For DF fhall be a binomial as in the 50 . of this Book, and becaufe by conftruction, and inverfion, DEq . EFq :; AB . CB and fo by converfion of proportion, DEq . DEq τ EFq :: AB, AC:: Q not Q. a theréfore thall bE be
 \qquad

[^2]: DEPE

