

A SYSTEM
 or

SYNTHETIC PHILOSOPHY.

VOL. II

THE PRINCIPLES

B I O L O G Y.

日Y

HERBERT SPENCER,

"soouns beatios" "emodation," mog

VOL L

NEW YORK:
D. $\triangle P P L E T O N$ AND OOMPANY, 1, \& ATD 5 BOND BTREETT.
1891.
esteres, eocordlog to set of Congrese, th tho joer 18:9, BT D APPLETON \& CO.
In the Oart's OMce of the Dietrict Court of the Ualfal Statea for itw Eoushers Dletrict of New Iork

PREFACE TO THE AMERICAN EDITION.

Tex System of Philosophy now in course of publication by Mr. Herbirt Sprncer begins with a volume of First Principles, which was republished in this country a year or two since. The subject of Biology comes next in order, and is to be treated in two volumes, of which the present is the first; Volume II. will probably appear toward the close of the year. In accordance with the author's plan, the doctrine or method of Evolution unfolded in First Principles and applied to Biology in the present work, will be carried out in the subsequent treatment of the Principles of Psychology and the Principles of Sociologs:
In the preface to the English edition, Mr. Spencer remarks:
"The aim of this work is to set forth the general truths of Biology, as illustrative of, and as interpreted by, the laws of Evolution: the special trutbs being introduced only so far as is needful for elacidation of the general truths.
"For aid in executing it, I owe many thanks to Prof Huxley and Dr. Hooker. They have supplied me with information where my own was deficient; and in looking through the proofsheets, have pointed out errors of detail into which I had fallen. By baving kindly rendered me this valnable assistance, they must not, however, be held committed to any of the enunciated doctrines that are not among the recognized tiaths oí Biology."

Nsw Yoks, March, 1866.

CONTENTS OF VOL. I.

PART I:-THE DATA OF BIOLOGY.

ans. 800V.-DIDIVDONETKI201
TIL-QEMESTS 209
VIIR-REREDITY 289
EL-TARIATIOT 257
K-GMEAIE, HEREDITI, AND FARLATIOT 273
xi.-Onamifioatiox 202
218,DIBTELDUT104 311
PART III.-THE EVOLUTION OF LIFE.
R-PRELIMTHART 381
U.-EERERAL ABPRCTS OR THE EPECUL-OREATION-UY. cornazese 388
 348
IV.-THE AREUKKKTS FROM CLASGITICATIOX 856
V.-THE AROOMEXIE FROM EMBETOLOGT 365
 380
 388
TIII.-how re ogoario evorution catizd? 402
 411
E-DRTRKXAL FACTORA 420
 432
30i-mpltanct EqUILIERATIOT 443
EIII.-IMI CO-OHEMATIOE OV THE FAOTORE 485
 470

PARTI.

the data of biology

CHAPTER I.

- ORGANIC MATTER.
§ 1. Or the four chief elements which, in various combinations, make up living bodies, three are gaseous. While carbon is known only as a solid, oxygen, hydrogen, and nitrogen habitually maintain the aeriform slate. Only by intense pressures joined with extreme refrigerations have two out of the three (some say all) been reduced to the liquid form. There is a certain significance in this. When we remember how those re-distributions of Matter and Motion which constitute Evolution, structural and functional, imply motions in the units that are re-distributed; we shall see a probable meaning in the fact that organic bodies, which exhibit the phenomena of Evolution in so high a degree, are mainly composed of ultimate units having extreme mobility. The properties of substances, though destroyed to sense by combination, are not destroyed in reality: it follows from the persistence of force, that the properties of a compound are resultants of the properties of its components-resultants in which the properties of the components are severally in full action, though greatly obscured by each other. One of the leading properties of each substance is its degree of molecular mobility; and its degree of molecular mobility more or less sensibly affects the molecular mobilities of the various compounds into which it enters. Hence we may infer some relation between the gaseous form of three out of the four
chiof organic elemente, and that comparative readineen displayed by organic matters to undergo thoee changes in tho arrangement of parts which we call development, and thoee transformations of motion which we call function.

Considering them chemically instead of physically, it is to be remarked that three out of theee four main componente of organic matter, have affinities which are narrow in their range and low in their intencity. Hydrogen combines with comparatively few other elements; and such chemical energy as it does show, is scarcely at all shown within the limits of the organio temperatures. Of carbon it may iemilarly be auid that it is totally inert at ordinary heats; that the number of subatances with which it unites is not great; and that in most cases its tendency to unite with them is but feeble. Leatly, this chemical indifference is shown in the higheet dagree by nitrogen-an element which, as we shall horeafter see, plays the loading part in organic changes.

Among the organic elemente, including under the title not only the four chief ones, bat aloo the lces conspicuous romainder, that oapubility of assuming difforent stater, called allotropiem, is frequent. Carbon prosents itmolf in the three unlike conditions of diamond, graphite, and charcoal. Under oertain circumstancea, oxygen lakes on the form in which it is callod ozone. Sulphur and phosphorus (both, in emall proportions, essential conetituents of organic matter) have allotropic modifications. Silicon, too, is allotropic; whilo its axide, cilioa, which is an indispensablo constituent of many lower organiama, exhibite the analogue of allotropism -ieomeriom. And oven of the iron which plays an active part in higher organiame, and a paanive part in some lower once, it may be asid that though not knowa to bo jtcelf allotmopic, yet ieomeristn charactorives thowe compounde of it that ant found in liring bodien. Allotropimen being intorprotable as some chaage of molecular arrangement, this froquency of ita occurrenco arnong tho componento of organio matter, is rignificant as implying a furthor kind of molecular mobility.

One more fact, that is here of great interest for us, must be set down. These four elements of which organisms are almost wholly composed, present us with certain extreme antitheses. While between two of them we have an unsurpassed contrast in chemical activity; between one of them and the other three, we have an unsurpassed contrast in molecular mobility. . While carbon, by successfully resisting fusion and volatilization at the highest temperatures that can be produced, shows us a degree of atomic cohesion greater than that of any other known element, hydrogen, oxygen, and nitrogen, show the least atomic cohesion of all elements. And while oxygen displays, alike in the range and intensity of its affinities, a chemical energy exceeding that of any other substance (unless fluorine be considered an exception), nicrogen displays the greatest chemical inactivity. Now on caling to mind one of the general truths arrived at when anaiyzing the process of Evolution, the probable significance oi this double difference will be seen. It was shown (First Principles, § 123) that, other things equal, unlike units are more easily separated by incident forces than like units are-that an incident force falling on units that are but little dissimilar does not readily segregate them; but that it readily segregates them if they are widely dissimilar. Thus, these two extreme contrasts, the one between physical mobilities, and the otner between chemical activities, fulfil, in the highest degree, a certain further condition to facility of differentiation and integration.
§ 2. Among the binary combinations of these four chief organic elements, we find a molecular mobility much less than that of these elements themselves; at the same time that it is much greater than that of binary compounds in general. Of the two products formed by the union of oxygen with carbon, the first, called carbonic oxide, which sontains one atom of carbon to one of oxygen (expressed by the symbol CO), is an incondensible gas ; and the secoud
carbonic anid, containing an additional atom of oxygen (OO_{N}) asoumes a liquid form only under a presesure of nearly forty atmospheres.

The several compounds of oxygen with uitrogen, prevent us with an instructive gradation. Protoxide of nitrogen, which contains one atom of each element (N O), is a gas condeneible only under a pressure of some fint atmospheres; doutoxide of nitrogen ($\mathrm{N} \mathrm{O}_{\mathbf{2}}$) is a gas hitherto uncondensed (the molecular mobility remaining undiminished in consequence of the volume of the united gases remaining unchanged); nitrous acid ($\mathrm{N} \mathrm{O}_{\mathrm{s}}$) is gaseous at ordinary tomperaturce, but condenses into a very volatile liquid at the zero of Fahreaheit ; peroxide of nitmgen ($\mathrm{NO}_{\mathbf{4}}$) is gaceous at 71°, liquid between that and 16°, and becomes solid at a temperature below this ; while nitric acid (NO_{s}) may be obtained in aryotuls which molt at 85° and boil at 113°. In this ecrice wo eo, though not with complete uniformity, a docrease of molecular mobility as the weights of the compound molecules are increesed. The hydro-carbons illustrate the same gemeral truth still better. One seriee of thern will suffice. Maroh gan ($\mathrm{C}_{2} \mathrm{II}_{1}$) in permanently gaceona. Olefinat ges ($\mathrm{C}_{\mathbf{d}} \mathrm{H}_{4}$) may be liquefied by preesure. Oil gas, which is identical with olefinat gae in the proportions of itw conatituenta bat han double the atomic weights ($\left.\mathrm{C}_{3} \mathrm{H}_{\mathrm{H}}\right)$, becomes liquid without prosure at the sero of Fahrenheit Amyleac ($\mathrm{O}_{20} \mathrm{H}_{2}$) in a liquid which boils to 102\%. And the suocomively highor multiplean caproylene $\left(\mathrm{C}_{11} \mathrm{I}_{12}\right)$, caprylene ($\mathrm{C}_{10} \mathrm{H}_{10}$), alneno $\left(\mathrm{C}_{10} \mathrm{H}_{51}\right)$ and paramylone $\left(\mathrm{C}_{20} \mathrm{H}_{n}\right)$, are liquide which boil reapectively at $102{ }^{\circ}, 131^{\circ}, 257^{\circ}, 230^{\circ}$, and 329°. Cetylene ($\mathrm{C}_{\mathrm{m}} \mathrm{H}_{n}$) is a liquid which boile at 627°; while perefine ($\mathrm{C}_{\boldsymbol{\mu}} \mathrm{H}_{\mu}$) and mylone ($\mathrm{C}_{\mathrm{m}} \mathrm{H}_{\boldsymbol{n}}$) are colida. Only ane compound of hydrogen with nitrogen has been obtained in a froo etato-ammonin (H, N); and thit, which in guecous, is liquefiable by preseares, or by reducing ita temperatare to -40 F. In oynaogen, which is composed of nitrogeo and carbon ($\mathbf{N C}_{2}$), wo have a ges that becomes liquid at a preseare of Cour atroompharee and eolid at $-80^{\circ} \mathrm{F}$. And, in
paracyanogen, formed of the same proportions of these eloments in higher multiples ($\mathrm{N}_{3} \mathrm{C}_{0}$), we have a solid which does not fuse or volatilize at ordinary temperatures. Lastly, in the most important member of this group, water, (H O or else as many chemists now think $\mathrm{H}_{2} \mathrm{O}_{\mathbf{2}}$) we have a compound of two incondensible gases which assumes both th3 fluid state and the solid state within ordinary ranges of temperature; while its molecular mobility is still such that its fluid or solid masses are continually passing into the form of vapour, though not with great rapidity until the temperature is raised to 212°.

Considering them chemically, it is to be remarked of these binary compounds of the four chief organic elements, that they are, on the average, less stable than binary compounds in general. Water, carbonic oxide, and carbonic acid, are, it is true, difficult to decompose. But omitting these, the usual strength of union among the elements of the above-named substances is low considering the simplicity

[^0]of the substancce. With the exception of acetylene, thon rarious bydro-carbons are not producible by directly combining their elements; and the elements of moot of them are reedily aepurated by heat without the aid of any antagonistic affinity. Nitrogen and hydrogen do not unite with each other immediately; and the ammonia which reaulte from their mediate union, though it resists heat, yields to the electric epark. Cyanogen is stable: not being resolrod into its components at a red boat, unlese in iron reseels. Much lees stablo however are the exveral oxides of nitrogen. The protoxide, it is truc, doce not yield up its elements below a red heat; but nitrous acid cannot exist if water be added to it; hypo-nitric acid is docompoesd both by water and by contact with the various bases; and nitric acid not only readily parts with its oxygen to many metals, but when unhydrous, spontaneously decomposes.

Here it will be well to nota, as having a bearing on what is to follow, how charncteristio of most nitrogenous compounds is thie special instability. In all the farniliar cacos of sudden and violent docomposition, the change is due to the preweace of nitrogun The explocion of ganpowder results from the readiness with which the mitrogen contained in the nitrate of potash, yielde up the oxygen combined with it. The explosion of gun-cotton, which also contains nitric acid, is a subetantially paralal phenomenon. The various fulminating salts are all formed by the union with metala, of a certain nitrogenous acid oalled fulminic acid; which in 00 unstuble that it cannot be obtuined in a soparito state. Explocivences is a property of nitro-mannito, and also of nitro-glycorin. Iodide of nitrogen detonaters on the alightect towch, and often without any amigasble cause. Percuncion produces dotonation in sulphide of aitrogea. And the body which explodes with the most tremendous violence of any that is known, is the chlorido of nitrogen. Thus these easy and rapid decompositiones due to tho chemicul indifference of nitrogen, are charncterintio When we come herealter to obeerve the part which nitrogie

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

The like is atill more conspicuous in other groupe of the hydro-carbons, as in the essential oils: sixteen to twenty of which are severally isomeric with eseential oil of turpentine. Here the partioular kind of molecular mobility implied by these metamorphoses, is well shown : essential oil of turpentine being converted into a mixture of several of theee polymorides, by simple axposure to a heat of 460°.

There is one further fact respecting these binary compounde of the four ahief organic elemente, which must not be overlooked. Those of them which form parts of the living tiseues of plants and animals (excluding water which hae a mechanical function, and carbonic acid which is a product of decomposition) are confined to one group-the hydro-carbone. And of this group, which is on the average characterized by comparntive instability and inertnees, these hydro-carbona found in living tissues, aro among the moot unstable and inert.
8. Peseing now to the substances which contain three of theee chief organic elementa, we have first to note that along with the greator atomic weight which mootly accornpanice their increased complexity, there is, on the average, a further marked deoreace of molecular mobility. Scarcely any of them maintain a gaseons etate at ordinary temperaturea. One clem of them only, the alcohole and their derivatives, oraporate under the usual atmospheric presure; but not rapidly unlese heated. Thie fixed cilla, though they show that molecular mobility impliod by an bubitually liquid otata ahow this in a lower degree than the alcoholic compoundo; and they cannot be reduced to the gasoous atate without docomposition. In their allice, the fate, which are eolid anlees. heated, the loes of molecular mobility is atill more marked. And throughout the whole marice of the fatty acide, in which to a fixod proportion of oxygen there are succossively added higher equimultiples of carbon and hydrogen, we 800 how the malocular mobility decreecen with the increaring aisee of
the atoms. In the amylaceous and saccharine group of compounds, solidity is the habitual state : such of them as can assume the liquid form, doing so only when heated to 300° or $400^{\circ} \mathrm{F}$.; and decomposing when further heated, rather than become gaseons. Resins and gums exhibit general physical properties of like character and meaning.
In chemical stability these ternary compounds, considered as a group, are in a marked degree below the binary ones. The various sugars and kindred bodies, decompose at no very high temperatures. The oils and fats are also readily carbonized by heat. Resinous and gummy substances are easily made to render up some of their constituents. And the alcohols with their allies, have no great power of resisting decomposition. These bodies, formed by the union of oxygen, hydrogen and carbon, are also, as a class, chemically inactive. The formic and acetic are doubtless energetic acids; but the higher members of the fatty-acid series are easily separated from the bases with which they combine. Saccharic acid, too, is an acid of considerable power; and sundry of the vegetal acids possess a certain activity, though an activity far less than that of the mineral acids. But throughout the rest of the group, there is shown but a small tendency to combine with other bodies ; and such com binations as are formed have usually little permanence.

The phenomena of isomerism and polymerism are of frequent occurrence in these ternary compounds. Starch and dextrine are isomeric. Fruit sugar, starch sugar, eucalyn, sorbin, and inosite, are polymeric. Sundry of the vegetal acids exhibit similar modifications. And among the resins and gums, with their derivatives, molecular re-arrangements of this kind are not uncommon.

One further fact respecting these compounds of carbon, oxygen and hydrogen, should be mentioned; namely, that they are divisible into two classes-the one consisting of suoetances that result from the destructive decomposition of organic matter, and the other consisting of substances that
oxist as such in organic matter. These two clasess of subatances exhibit in different degrees, the propertics to whioh we have boen directing our attention. The lower alcohols their allies and derivatives, which poseses greater molecular mobility and chemical atability than the rest of these tornary compounde, are not found in animal or vegetal bodice. While the sugars and amylaceous substances, tho fixed oils and fatso the gums and resins, which have all of them much lees moleculur mobility, and are, chemically considered, more unstable and inert, are components of the living tissues of plante and animals.

3 4. Among compounds containing all the four chiel organic elementa, a division analogous to that just namod may be mode. There are some which result from the decomposition of living tissues; there are others which make parts of living tiseucs in their state of integrity; and these two groupe are contrasted in their propertics in the same way es are the parallal groups of ternary compounda.

Of the first division, certain products found in the animal excretions are the snost important, and the only ones that noed be noted; such, namely, as urea, kreatine, kreatinine. Those animal buroo exhibit much loos molocular mobility than the arerago of the substances troatod of in tho lant eeotion: being walid at ordinary temperaturen, fusing, where fusible at all, at ternperatures above that of boiling water, and having no power to assume a greeove otatc. Chemically considered, their atatility is low, and their activity but emall, in comparieon with the stabilition and activition of the cimpler ontapounde.

It is, howornt, the nitrogroous conetitwents of living tissuca, that diaplay mont markedly, those charecteristics of which wo havo beon traving tbe growthe Albumen, Gbria, caooin, and their allice, are botice in which that molecular mobility oxhibited by threo of their componente in eo high a degree. is roducod to a minimum. These mbertancen are known only
in the solid state: that is to say, when deprived of the water usually mixed with them, they do not admit of fusion, much less of volatilization. To which add, that they have not even that molecular mobility which solution in water implies; since, though they form viscid mixtures with water, they do not dissolve in the same perfect way as do inorganic compounds. The chemical characteristics of these substances, are instability and inertness carried to the extreme. How rapidly albumenoid matters decompose under ordinary condicions, is daily seen : the difficulty of every house-wife being to prevent them from decomposing. It is true that when desiccated and kept from contact with air, they may be preserved unchanged for a long period; but the fact that they can only be thus preserved, proves their great instability. It is true, also, that these most complex nitrogenous principles are not absolutely inert ; since they enter into combinations with .some bases; but their unions are very feeble.

It should be noted, too, of these bodies, that though they exhibit in the lowest degree that kind of molecular mobility, which implies facile vibration of the atoms as wholes, they exhibit in a high degree that kind of molecular mobility resulting in isomerism, which implies permanent changes in the positions of adjacent atoms with respect to each other. Each of them has a soluble and insoluble form. In some cases there are indications of more than two such forms. And it appears that their metamorphoses take place under very slight changes of conditions.

In these most unstable and inert organic compounds, we find that the atomic complexity reaches a maximum : not only since the four chief organic elements are here united with small proportions of sulphur and phosphorus; but also since they are united in high multiples. The peculiarity which we found characteriz̀ed even binary compounds of the organic elements, that their atoms are formed not of single equivalents of each component, but of two, three, four and more equivalents, is carried to the greatest extreme in these
compounds, that take the leading part in organio actions, According to Mulder, the formuls of albumen is $10\left(\mathrm{C}^{\circ} \mathrm{H}^{11}\right.$ $\left.N^{\prime} O^{1 r}\right)+S^{2} P$. That is to say, with the sulphur and phoophorus there are united ten equivalents of a compound atom containing forty atoms of carbon, thirty-one of hydrogen, five of nitrogon, and twelve of oxygen : the atom being thon made up of nearly nine hundred ultimate atome.

5 5. Did apace permit, it would be useful here to consider in detail, the interpretations that may be given of the peculiaritice we have bean tracing: bringing to their solution, thoee general meahanical principles which are now found to hold true of molecules as of masees. But it must suffico briefly to indicate the conclusions that such an inquiry promises to bring out.

Proceeding on mechanical principlea, it may be argued that the molecular mobility of a subetance must depend partly on the inertia of ite moleoulea; partly on the intensity of their mutual polaritios ; partly on their mutual presure, as determined by the dencity of their aggregation, and (where the moleoules are compound) partly on the molecular mobilitiee of their component moleculea. Whence it is to be inferred that any three of these remaining constant, the molecular mobility will vary as the fourth. Other thinge equal, therefore, the moleoular mobility of atoms must decrease wa thoir mames increeso; and eo there munt resalt that general pro. grecion we hare tracod, from the high molecular mobility of the uncombined organio elementa, to the low molecular mobility of those largo-atomod oubetances into whioh thoy aro ulcimatoly compounded.
Applying to atoms the mechanical law which bolde of mameo, that aince inertia and gravity increace an the cubee of the dimemsioss whilo cohmion increasen as their equarea, the celf-mectaining power of a body becomes relatively amaller an its bulk becomes greater; it might be argued that theo loget aggrogate aloms which conetitute organic sub-
stance, are mechanically weak-are less able than simpler atoms to bear, without alteration, the forces falling on them. That very massiveness which renders them less mobile, enables the physical forces acting on them more readily to change the relative positions of their component atoms; and so to produce what we know as re-arrangements and decompositions.

Further, it seems a not improbable conclusion, that this formation of large aggregates of elementary atoms, and resulting diminution of self-sustaining power, must be accompanied by a decrease of those contrasts of dimension to which polarity is ascribable. A sphere is the figure of equilibrium which any aggregate of units tends to assume, under the influence of simple mutual attraction. Where the number of units is small and their mutual polarities are decided, this proclivity towards spherical grouping will be overcome by the tendency towards some more special form, determined by their mutual polarities. But it is manifest that in proportion as an aggregate atom becomes larger, the effects of simple mutual attraction must become relatively greater; and so must tend to mask the effects of polar attraction. There will consequently be apt to result in highly compound atoms like these organic ones containing nine hundred elementary atoms, such approximation to the spherical form as must involve a less distinct polarity than in simpler atoms. If this inference be correct, it supplies us with an explanation both of the chemical inertness of these most complex organic substances, and of their inability to crystallize.

8 6. Here we are naturally introduced to another aspect of our subject-an aspect of great interest. Professor Graham has recently published a series of important researches, which promise to throw much light on the constitution and changes of organic matter. He shows that solid substances exist under two forms of aggregation-the colloid or jelly-like, and the crystalloid or crystal-like. Examples of the last are too familiar to need specifying. Of the first may be named such
instances as "hydrated silicic acid, hydratsd siumina, and other metallio peroxides of the aluminous clees. when they exist ir the eoluble form ; with starch, dextrine and the gume, caramal, tannin, albumen, gelative, vegetable and auimal extractive matters." Describing the properties of colloide, Profesor Graham says :-"Although often largely soluble in water, they are held in eolution by a moot feeble force. They appear singularly inert in the capacity of acide and baces, und in all the ordinary chemical relations." - - "Although chemically inert in the ordinary seneo, colloide poseses a compensating activity of their own arising out of thoir phyzioal properties. While the rigidity of the cryatalline structure shuts out axternal impressions, the softness of the gelatinous colloid partakee of fluidity, and enables the colloid to become a medium of liquid diffusion, like water iteelf." - - - "Hence a wide sensibility on the part of colloide to external agenta. Another and eminently charaoteristic quality of colloids is their mutability." - - " "The colution of hydrated silicic acid, for instance, is easily obtained in a state of purity, but it cannot be preserred. It may remsin fluid for days or weeks in a sealed tobe, but in sure to golatinise and become ineoluble at last. Nor does the change of this colloid appoar to otop at that point ; for the mineral forme of silicic acid, deposited from water, anch as flint, ane oftan found to have pamed, during the geological agee of their existence, from the vitreous or oolloidal into the crystalline condition (H. Rowo). The colloid in, in fact, a dynamical utato of matter, the orystalloidal being the statical condition. The colloid poseemee energia. It may be looked upon as the primary cource of the force appearing in the phomomena of vitality. To the gradual manner in whioh colloidal ohangee take place (for they always dewand time as an element) may the oharacteristio protraotion of chemicoorganic changw aleo be referred."
The clame of colloide includes not only all thowe mont come plea nitrogeneous compounde characheriatic of organic tisaua

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

soid, the true numbers of its formula must be several timen greater. It is difficult to avoid associating the inertnces of colloids with their high equivalente, particularly where the high number appears to be attained by the repetition of a amall number. The inquiry suggeste itself whether the col. loid molecule may not be constituted by the grouping togother of a number of amaller crystalloid molecules, and whether the basis of colloidality may not really be this como posite charecter of the molecule."
87. A further contrast between colloids and crystalloide, is equally significant in its relations to vital phenomena. Profemor Graham pointe out that the marked differences in volatility diaplayod by different bodios, are paralleled by differences in the rates of diffusion of different bodies through liquids. As aloohol and ether at ordinary temperatares, and vurious other substancos at higher temperatures, diffuee thencolves in a geeoous form through the air; so, a subatance in equeous colution, when placed in contact with a mass of wator (in such way as to avoid mixture by circulating currente) diffueso ileclf through this mase of water. And juat as there are various degrees of rapidity in evaporation, eo there are varione degroce of rapidity in diffusion: "the rangegaleo in the dogree of diffusive mobility exhibited by different subotancos appearn to be as wide as the ccale of rapour-tensiona." This parallolism is what might havo boon looked for; since the rendency to asoume a preoorus atate, and tho tondency to epread in solution through a liquid, aro both consequencee of molecular mobility. It aleo turas out, as was to be expectod, that diffuribility, like volatility, hae, other thinge equal, a roe lation to atornic weigtt-(other thinge equal, we must any. becanse mulecular mobility must, as pointed out in $\$ 5$, be affected by other propartice of atoms, besiden their inertia). Thus the subetance moot rapidly diffued of any on which Profemor Graham exporimented, wea hydro-chloric acid-a compoand which is of low atomio weight, is gecoone save
ander a pressure of forty atmospheres, and ordinarily exists as a liquid, only in combination with water. Again, " hydrate of potash may be said to possess double the velocity of diffusion of sulphate of potash, and sulphate of potash again double the velocity of sugar, alcohol, and sulphate of magnesia,"differences which bave a general correspondence with differences in the massiveness of the atoms.

But the fact of chief interest to us here, is that the relatively small-atomed crystalloids have immensely greater diffusive power than the relatively large-atomed colloids. Among the crystalloids themselves, there are marked differ ences of diffusibility; and among the colloids themselves, there are parallel differences, though less marked ones. But these differences are small compared with that between the diffusibility of the crystalloids as a class, and the diffusibility of the colloids as a class. Hydro-chloric acid is seven times as diffusible as sulphate of magnesia; but it is fifty times as diffusible as albumen, and a hundred times as diffusible as caramel.

These differences of diffusibility manifest themselves with nearly equal distinctness, when a permeable septum is placed between the solution and the water. And the result is, that when a solution contains substances of different diffusibilities, the process of dialysis, as Professor Graham calls it, becomes a means of separating the mixed substances : especially when such mixed substances are partly crystalloids and partly colloids. The bearing of this fact on organic processes will be obvions. Still more obvious will its bearing be, on joining it with the remarkable fact, that while crystalloids can diffuse themselves through colloids nearly as rapidly as through water, colloids can scarcely diffuse themselves at all through other colloids. From a mass of jelly containing salt, into an adjoining mass of jelly containing no salt, the calt spread more in eight days than it spread through water in seven days; while the spread of "caramel through the jelly appeared scarcely to have begun after eight days had
elapeod." So that we must regard the colloidal compounde of which organisms are built, as having by their physical nature, the ability to separate colloids from cryatalloide, and to let the crystalloids pase through them with scarcely any recintanco.

One other result of theoe reesarches on the relative diffucibilities of different subetances, has a meaning for us. Profeseor Graham finde, that not only does there take place by dialysis, a separation of mixed substances which are unlike in their molecular mobilities; but also that combined subetancen between which the affinity is feeble, will separate on the dialyzar, if their molocular mobilities are strongly contrasted. Spoaking of the hydro-ohlorate of peraxide of iron, ho eaye, "such a compound poseceses an element of inclubility in the extremely unequal diffusibility of its constituenta; " and be points out that when dinlyzod, the bydro-rhborio acid gradually diffusen away, leaving the colloidal peroxide of iron behind. Similarly, ho remarke of the peracotate of iron, that it "may be made a source of caluble peroxide, an the eale referred to is iteolf decomposed to a great extent by diffumion on the dialyzer." Now this rendency to coparate diaphayod by substances that diffirs widely in their moleoular mobilities, though uoually so fir antagonized by their affinitirs as not to pioduce opontoperos decomposition, mast, in all caces, induco a certain readinesa to chango which would not deo axist. The uno equal mobilitice of the combined atoms, muat give disturbing forcoe a groastar power to work transformationa than they would otherwieo have. Hence the probublo significance of a froct named at the outeot, that while three of the chief organio elementa have the greatest atomic mobilitios of any clementa known, tho fourth, carbon, has the lesen atomic mobility of known demonte. Though, in its siuuple compoundes the affiaitioe of carbon for the rest aso atroag enough to prevent the effecte of this great differonco from clearly showing themcalree; yet there meems reason to think, that in thowe corso
plex compounds composing organic bodies-compounds in which there are various cross affinities leading to a state of chemical tension-this extreme difference in the molecular mobilities must be an important aid to molecular re-arrangements. In short, we are here led by concrete evidence to the conclusion which we before drew from first principles, that this great unlikeness among the combined units must facilitate differentiations.
88. A portion of organic matter in a state to exhibit those phenomena which the biologist deals with, is, however, something far more complex than the separate organic matters we have been studying; since a portion of organio matter in its integrity, contains several of these.

In the first place, no one of those colloids which make up the mass of a living body, appears capable of cairying on vital changes by itself: it is always associated with other colloids. A portion of animal-tissue, however minute, almost always contains more than one form of protein-substance: different chemical modifications of albumen and gelatine are present together, as well as, probably, a soluble and insoluble modification of each; and there is usually more or less of fatty matter. In a single vegetal cell, the minute quantity of nitrogenous colloid present, is imbedded in colloids of the non-nitrogenous class. The microscope makes it at once manifest, that even the smallest and simplest organic forms are not absolutely homogeneous.

Further, we have to contemplate organic tissue, formed of mingled colloids in both soluble and insoluble states, as permeated throughout by crystalloids. Some of these crystalloids, as oxygen,* water, and perhaps certain salts, are agents of decomposition ; some, as the saccharine and fatty

[^1]matters, are probably materials for decomposition; and some, as carbonic acid, water, urea, kreatine, and kreatinine, are products of decomposition. Into the mass of mingled colloide, mostly insoluble and where soluble of very low molecular mobility or diffusive power, we have constantly passing, crystalloids of high molecular mobility or diffusive power, that are capable of decomposing these complex colloids; and from these complex colloids, so decompoesd, there result other crystalloids (the two chief ones extremely simple and mobile, and the reat comparatively so) which diffuee away as rapidly $a s$ they are formed.

And now we may clearly ace the necessity for that pecaliar composition whioh we find in organic matter. On the ono hand, were it not for the extreme molecular mobility posecead by three of its chief elements out of the four; and wore it not for the consequently high molecular mobility of their simpler compounds; there could not be this quick eacape of the waste products of organic action; and there could not be that continuoualy active chango of matter which vitality implice. On the other hand, were it not for the union of theee extremely mobile elemonte into immeneoly complex compounds, having relativaly rast atoms that are made comparativaly immobile by their inertia, there could not result that mochanical fxity which prevente the components of living tisoue from diffusing away along with the effote matters produoud by the decompoaition of tisere.
f9. Thus in the substances of which organisms are composed, the conditions necemary to that ro-diatribation of Matter and Motion which constitutos Evalution, aro fulfillod in a far higher degree than at firot appeara.

The mutanl affinitice of tho chief organic elements are not active within the limite of thoee temperaturces at which organic eotions take place; and one of thees elements is eqpoielly charsotarisod by ite chemical indifferenco. Tho compounds formed by these aloments in mesending gredies of
complexity, become progressively less stable. And those most complex compounds into which all these four elements enter, together with small proportions of two other elements that very readily oxidize, have an instability so great that decomposition ensues under ordinary atmospheric conditions.
Among these elements out of which living bodies are built, there is an unusual tendency to unite in multiples; and so to form groups of products which have the same chemical components, but, being different in their modes of aggregation, posess different properties. This prevalence among them of isomerism and polymerism, shows, in another way, the special fitness of organic substances for undergoing re-distributions.

In those most complex compounds that are instrumental to vital actions, there exists a kind and degree of molecular mobility which constitates the plastic quality fitting them for organization. Instead of the extreme molecular mobility possessed by three out of the four organic elements in their separate states-instead of the diminished, but still great, molecular mobility possessed by their simpler combinations, the gaseous and liquid characters of which unfit them for showing to any extent the process of Evolution-instead of the properties of their less simple combinations, which, when not made unduly mobile by heat, assume the unduly rigid form of crystals; we have in these colloids, of which orgauisms are mainly composed, just the required compromise between fluidity and solidity. They cannot be reduced to the unduly mobile conditions of liquid and gas; and yet they do not assume the unduly fixed condition usually characterizing solids. The absence of power to unite together in polar arrangement, leaves their atoms with a certain freedom of relative movement which makes them sensitive to small forces, and produces plasticity in the aggregates composed of them.

While the relatively great inertia of these large and complex organic atoms, renders them comparatively incapable of being set in motion by the ethereal undulations, and so re-
duced to less coberent forms of aggregation; there is reason to think that this same inortia facilitates ohangee of arraagoment among thair constituent atoms ; since, in proportion as an incident force improseses but little motion on a mase, it is the better able to impres motion on the parts of tho mass in relation to each other. And it is further proballe that the extreme contrasts in molecular mobilitios among the components of theee aighly complex atoms, aid in producing modifiability of arrangement aroung them.

Leatly, the great difference in diffusibility between colloids and erystalloide, makes possible in the tissues of organismes, a apocially rapid re-distribution of matter and motion; both becunso collcide, being easily permeable by crystalloide, can be chemically acted on throughout their whole mass, inatead of only on their surfaces; and because the products of decomposition, being also crystalluids, can eecape as fast as they are produced, learing room for further like transformatione. So that while the composite atoms of which organio timesee aro built up, poseces that low molecular mobility fitting them for plectic purpoese, it results from the extreme molocular mobilities of their ultimate constituenta, that the wato producte of vital activity cecape as fant as thoy aro sormed.

To all which add, that the atate of warmth, or increseed molecalar vibration, in which all the higher organiame are keopt, inoremees these vasious fricilities for ro-distribution: not only an aiding chomical ohengea, but as acoclerating the dif. cuion of cryatalloid aubetanoer

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

as well as other matter that ezsumes the same state of molocular aggregation.

Colloids take up by a power that has been called "capillary affiaity," a largo quantity of water: undergoing at the same time great increase of bulk with change of form. Conversely, with like readinese, they give up this water by evaporation: rosuming more or less completely their original states. Whether rusulting from capillarity, or from the relatively great diffusibility of water, or from both; these changes are to be here noted as sbowing another mode in which the arrangoment of parts in organic bodice, is affocted by mechanical forces.

In what is called oumose, we have a further mode of allind kind. When on opposito side of a permeablo eeptum, and eapocially a ceptum of colloidal subotanco, aro placed miscible colations of different densities, a double transerer takes place: a large quantity of the lees dense solution finds ito way through the coptum into the more dense solution; and a small quantity of the more dence finds its way into the lees deneo-one resalt being a considerable increase in the bulk of the more dense at the oxponse of the less dense. This procese, which appeare to depend on eeveral conditions, is not yot fully understood. But be the explanation what it may, the procees is one that tends continually to work alterations in organio bodice. Through the curfuces of plants and animuls, transfors of this kind are cver taking place. Very many of the conepicwous changes of form undorgone by organic germa, aro doo mainly to the permention of their limiting membranee by the ourrounding liquids.

It should be added that beoidee the direot altorations which the imbibition and tranamiscion of water and watory solutione by colloide produco in organic mattor, they produce indireot altorationa. Being inetrumentul in conveying into tho tivences thn egoats of chemioal ohange, and conveying out of them the prodocts of chemical changen thoy aid in carrying ∞ wher ro-diatributions
§ 12. As elsewhere shown (First Principles, § 103) Heat, or a raised state of molecular vibration, enables incident forces more easily to produce changes of molecular arrangement in organic matter. But besides this, it conduces to certain vital changes in so direct a way as to become their chief cause.

The power of the organic colloids to imbibe water, and to bring along with it into their substafice the materials which work transformations, would not be continuously operative if the water imbibed were to remain. It is because it escapes, and is replaced by more containing more materials, that the succession of changes is maintained. Among the higher animals and higher plants its escape is facilitated by evaporation. And the rate of evaporation is, other thinge equal, determined by heat. Though the current of sap in a tree is mainly caused by some action, probably osmotic, that is at work in the roots; yet the loss of water from the surfaces of the leaves, and the consequent absorption of more sap into the leaves by capillary attraction, must largely aid the circulation. The drooping of a plant when exposed to the sunshine while the earth round its roots is dry, shows us how evaporation empties the sap-vessels; and the quickness with which a withered slip revives on being placed in water, shows us the part which capillary action plays In so far then, as the evaporation from a plant's surface helps to produce currents of sap through the plant, we must regard the heat which produces this evaporation as a part-cause of those re-distributions of matter which these currents effect. In terrestrial animals, heat similarly aids the changes that are going on. The exhalation of vapour from the lungs and the surface of the skin, forming the chief escape of the water that is swallowed, conduces to the maintenance of those currents through the tissues, without which the functions would cease. For though the vascular system distributes nutritive fluids in ramified channels through the body; yet the absorption of theee fluids into tissues, partly depends on the escape of fluide
which the tissues already contain. Hence, to the extent then meoh ceocapo is facilitated by evaporation, and this evaporation facilitatod by heat, heat becomee an agent of re-distribution in the animal organism.
8. 13. Light, which is now known to modify many inorganic compounds-which works those chemical changee utilizod in photography, causes the combinations of certain gase, alters the molecular arrangements of many crystuls, and leaves traces of its action even on substances that are extremely stable,-may be expected to produce marked effects on substancee so complex and unstable as thooe which make up organic bodies. It does produce such marked effects; and come of them are among the moot important that organic matter undergoes.

The molecular changee wrought by light in animals, are but of eccondary moment. There is the darkening of the skin that follows exposure to the sun's rays. There are those alterations in the retina which cause in us eensations of colours. And on certain eyelese creatures that are semitrunsparent, the light permeating their substance works some effoot orincod by movement. But speaking generally, tho opecity of animale limits the action of light to their curfaces; and so renders ite direct physiological influenco but amall. \quad On plante, however, the eolar rays that produce in us the impreesion of yellow, are the immediate agente of thoee molecular changee through which are bourly cocumalatad the materiale for further growth. Experimente have ahown that when the aun ahinee on living learea, they begin to exhale oxygon and to accumulate carbon and bydrogen-renulte which are traoed to the docomposition by the solar rays, of tho carbonio acid and water abeorbed. It is now an eccepted conclunima that, by the help of certain

[^2]classes of the ethereal undulations penetrating their leaves, plants are enabled to separate from the associated oxygen, thoes two elements of which their tissues are chiefly built up.

This transformation of ethereal undulations into certain molecular re-arrangements of an unstable kind, on the overthrow of which the stored-up forces are liberated in new forms, is a process that underlies all organic phenomena. It will therefore be well, if we pause a moment to consider whether any proximate interpretation of it is possible. Certain recent researches in molecular physics, give us some clue to its nature.

The elements of the problem are these:-The atoms of several ponderable matters exist in combination : those that are combined having strong affinities, but having also affinities less strong for some of the surrounding atoms that are otherwise combined. The atoms thus united, and thus mixed among others with which they are capable of uniting, are exposed to the undulations of a medium that is relatively so rare as to seem imponderable. These undulations are of numerous kinds: they differ greatly in their lengths, or in the frequency with which they recur at any given point. And under the influence of undulations of a certain frequency, some of these atoms are transferred from atoms for which they have a stronger affinity, to atoms for which they have a weaker affinity. That is to say, particular orders of waves of a relatively imponderable matter, remove particular atoms of ponderable matter from their attachments, and carry them within reach of other attachments.

Now the discoveries of Bunsen and Kirchoff respecting the absorption of particular luminiferous undulations by the vapours of particular substances, joined with Prof. Tyndall's discoveries respecting the absorption of heat by gases, show very clearly that the atoms of each substance have a rate of vibration in harmony with ethereal waves of a cortain length, or rapidity of recurrence. Every special kind of atom can be made to oscillate
by a spocial ordor of ethoreal waves, which are aboorbod in producing itsoecillations; and can by its oecillations generate this aame order of ethereal waves. Whence it appears that immense as is the difference in density between ether and ponderable matter, the wares of the one can set the atoms of the other in motion, when the succesive impacts of the wavcs are so timed as to correspond with the occillations of the atoms. Tho effocte of the waves are, in suoh case, oumulative; and each atom gradually acquires a momentum mado up of countlese infinitesimal momenta.

Noto further, that unlees the members of a chemically-compound atom are eo bound up as to be incapable of any relative movements (a oupposition at variance with the conceptione of modern ecience) we must conceive them as severally able to vibrato in unison or harmony with those same classes of ethereal waves that affeot them in their uncombined atatee. While the compound atom as a whole, will have some new rate of occillation dotermined by its attributes as a whole; its componente will retain their original rates of occillation, subject only to modibcations by matual influence.

Such being the circumatances of the case, we may partiolly underatand how the sun's rays can effect chomical docomponitions. If the members of a binary atom atund so roluted to the undulatione falling on them, that ono is thrown into a state of increseod occillation and the othor not; it is manifeet that there must arise a tendenoy towarde the dialocation of the two tendency which may or may not take effoct, eccording to the weaknees or atrength of thair union, and sccording to the presence or abeence of collateral affinition. This inference is in harmony with coveral aignificant fecta. Dr Draper somarken that " among motallic subetances (compounda) thoee first detected to be changed by light, such aes ailver, gold, moroury, lead, have all high alomic weights ; and such an codiam and potamium, the atomio waights of which are low, appeared to be lom ohangeable." As hero interproted, the fect aposibied aunounts to this; that the compounde moot
readily decomposed by light, are these in which there is a marked contrast between the atomic weights of the constituents, and probably therefore a marked contrast between the rapidities of their vibrations. The circumstance, too, that different chemical compounds are decomposed or modified in different parts of the spectrum, implies that there is a relation between special orders of undulations and specialorders of composite atoms-doubtless a correspondence between the rates of these undulations and the rates of oscillation which some of the components of such atoms will assume. Strong confirmation of this view may be drawn from the decomposing actions of those longer ethereal waves which we perceive as heat. On contemplating the whole series of binary compounds, we see that the elements which are most remote in their atomic weights, as hydrogen and the noble metals, will not combine at all: their vibrations are so unlike that they cannot keep together under any conditions of temperature. If again we look at a smaller group, as the metallic oxides, we see that whereas those metals that have atoms nearest in weight to the atoms of oxygen, cannot be separated from oxygen by heat, even when it is joined by a powerful collateral affinity; those metals which differ more widely from oxygen in their atomic weights, can be de-oxidized by carbon at high temperatures; and those which differ from it most widely, combine with it very reluctantly, and yield it up if exposed to thermal undulations of moderate intensity. And here indeed, remembering the relations among the atomic weights in the two cases, may we not suspect a close analogy between the deoxidation of a metallic oxide by carbon under the influence of the longer ethereal waves, and the de-carbonization of carbonio acid by hydrogen under the influence of the shorter ethereal waves?

These conceptions help us to some dim notion of the mode in which changes are wrought by light in the leaves of planta. Among the several elements concerned, there are wide differ-
ences in molecular mobility, and probably in the rates of molocular vibration. Each is combined with one of the others; but is capable of forming various combinations with the reet. And they are severally in presence of a complex compound into which they all enter, and which is ready to assimisato with itself the new compound atoms that they form. Certain of the ethereal waves falling on them when thus arranged, there results a detachment of some of the combined atoms and a union of the root. And the conclusion suggestod in, that the induced vibrations among the various atome as at first arranged, are so incongruous as to produce instability; and to give collateral affinities the power to work a rearrangerment, which, though lese otuble under other conditions, is more stable in the presence of thece particular undulntions. There seems, indeed, no ohoice but to concerive the matter thus. An atom united with one for which it has a etrong affinity, hea to bo transforred to another for which it has a weakor affinity. This transfor implices motion. The motion is given by the waves of a medium that is relatively imponderable. No one wave of this imponderable medium can give the requisite motion to this atom of ponderable matter: eapecially as the atom is held by a positive force busidee ite inertia. The motion required can hance be given only by ancoeseive waves; and that these may not destroy each other's effects, it is needful that each ahall strike the atom just when it hat completed that recoil produoed by the impect of previous oces. That is, the othereal undulations muat coincide in rate with the occillations of the atom, determined by its inortis and the forces acting on it. It is aleo requisite that the rate of occillation of the atom to be detached, shall diffor from that of the atom with which it is united; sinco if the two occilleted in unimon, the ethereal waves would not tend to eeparate them. And, finally, the suoceseive impacts of the ethereal waves must be eccumulated, until the reculting occillations have become so wile in their eweop as grostly to weaken the cohocion of the unitod atomes, at the asoue time

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

those milder effects termed medicinal-effecta inplying, like the others, molecular re-arrangementa. Indeed, nearly ull soluble chemical compounds, natural and artificial, produco, when taken into the body, alterations that are more or leas conspicuous in their results.

After what was shown in the last chapter, it will be manifest that this extremo modifiability of organio matter by chemical agencies, is the chief cause of that active molecular re-arrangement which urganisma, and especially animal organisms, display. In the two fundamental functions of nutrition and respiration, we have the meane by which the supply of materiale for this active molecular re-arrangement is maintained.

Thus the process of animal nutrition consists in the absorption, partly of thow complex substances that are thus highly capable of being chemically altered, and partly in the aboorp tion of simpler substances capablo of chemically altering them. Tho tissucs always contain small quantitics of alkaline and earthy salta, which enter the system in one form and are exencted in another. Though we do not know specifically the parts which ubew salts play, yet from their muivorsal presence, and from the tranaformations which they undergo in the body, it may be cafaly inferred that their chemical affinities are instrumental in working some of the meramorphoses ever going on.

Tho inorganio substance, however, on which mainly depend theeo metamorphosen in organio matter, in not ewallowed along with the eolid and liquid food, but in abeorbed from the surrounding medium-air or water, as the caoo may bo Whether the oxygen taken in, cither, as by tho lowrst animals, through tho geacral surface, or, as by the higher animals, through respiratory organs, is the immediato causo of thoso molecular changes that are ever going on throughout the living tissues; or whether tho oxygen, playing tho part of scavenger, meroly aide these changee by carrying away tho products of decompositious otherwiso cused: it
equally remains true, that these changes are maintained by its instrumentality. Whether the cxygen absorbed and diffused through the system, effects a direct oxidation of the organic colloids which it permeates; or whether it first leads to the formation of simpler and more oxidized compounds, that are afterwards further oxidized and reduced to still simpler forms; matters not, in so far as the general result is concerned. In any case it holds good, that the substances of which the animal body is built up, enter it in a but slightly oxidized and highly unstable state; while the great mass of them leave it in a fully oxidized and stable state. It follows, therefore, that whatever the special changes gone through, the general process is a falling from a state of unstable chemical equilibrium, to a state of stable chemical equilibrium. Whether this process be direct or indirect, the total molecular re-arrangement and the total motion given out in effecting it, must be the same.
§ 15. There is another species of re-distribution among the component units of organisms, which is not immediately effected by the affinities of the units concerned, but is mediately effected by other affinities; and there is reason to think that the re-distribution thus caused, is important in amount, if not indeed the most important. In ordinary cases of chemical action, the two or more substances concerned, themselves undergo changes of molecular arrangement; and the changes are confined to the substances themselves. But there are other cases in which the chemical action going on, does not end with the substances at first concerned; but sets going chemical actions, or changes of molecular arrangement, among surrounding substances that would else remain quieacent. And there are yet further cases in which mere contact with a substance that is itself quiescent, will cause other substances to undergo rapid metamorphoses. In what we call fermentation, the first species of this communieuted chemical action is exemplifich. One part of yeast,
while iteelf undergoing molecular changes, will convert 100 parts of sugar into alcohol and carbonic acid; and daring its own decomposition, one part of diastase "is able to effect the tranaformation of more than 1000 times its weight of starch into sugar." As illustrations of the second specice, many be mentioned thoee changee whioh are suddenly producod in many colloids by minute portione of various substancee added to them-subatances that are not undergoing any manifest transformation, and suffer no appreciuble effect from the contact. The nature of the firat of theee two kinds of communicated molecular change, which here chiefly concerns us, may be rudely represented by certain visible changee that are communicated from mass to mass, when a serios of mases has boen arranged in a special way. The simplest example is that furnished by the child's play of cotting bricks on end in a row, in such positions that when the frat is overthrown it overthrows the seoond; the cecond, the third ; the third, the fourth; and so on to the end of the row. IIere we have a number of units severally placed in unstublo equilibrium, and in sach relative positions that each, whilo fulling into a etate of etable equilibrium, gives an imbpulee to the nost, sufficiont to mako the next, aleo, full from unatable to atable equilibrium. Now since among mingled compound atoman, no one can undergo change in the arrangoment of its parte without a molocular motion that must canco come diaturbance all acound; and since an edjucent atom distarbod by this communicated monion, may havo the arrangomeot of its canatituent molecules altored, if it is not a stable arrangement ; and since we know, both that the atome which are ohanged by this so-callod catalyvie are unatable, and thats the atome reeulting from their chango are more etallow ; it coems probable that the tracoformation is really analogova, in principles to the familiar one nemod. Whothor thus intorpretable or not, bowever, there is great reason for thintlang chut to shis kied of action, in doe a large amount of vital
metamorphosis. Let us contemplate the several groups of facts which point to this conclusion.

In the last chapter (\$2) we incidentally noted the extreme instability of nitrogenous compounds in general. We saw that sundry of them are liable to explode on the slightest incentive-sometimes without any apparent cause; and that of the rest, the great majority are very easily decomposed by heat, and by other substances. We shall perceive much significance in this general characteristic, when we join it with the fact, that the substances capable of initiating extensive molecular changes in the manner above described, are all nitrogenous ones. Yeast consists of vegetal cells containing nitrogen,-cells that grow by assimilating the nitrogenous matter contained in wort. Similarly, the " vinegar-plant," which so greatly facilitates the formation of acetic acid from alcohol, is a fungoid growth, that is doubtless, like others of its class, rich in nitrogenous compounds. Diastase, by which the transformation of starch into sugar is effected, during the process of malting, is also a nitrogenous body. So too is a substance called synaptase-an albumenous principle contained in almonds, that has the power of working several metamorphoses in the matters associated with it. These nitrogenized compounds, like the rest of their family, are remarkable for the rapidity with which they decompose; and the extensive changes produced by them in the accompanying oxy-hydro-carbons, are found to vary in their kinds according as the decompositions of the ferments vary in their stages. We have next to note, as having here a meaning for us, the chemical contrasts between those organisms which carry on their functions by the help of external forces, and those which carry on their functions by forces evolved from within. If we compare animals and plants, we see that whereas plants, characterized as a class by containing but little nitrogen, are dependent on the solar rays for their vital activities ; animals, the vital activities of which are not
thus dependent, mainly consist of nitrogenous substancen Thare is one marked exception to this broed distinction, however; and this exception is specially instructive. Among plante, there is a considerable group-the Fungi-many members of which, if not all, cun live and grow in the dark; and it is their pecaliarity that thay are very much more nitrogenous than other plants. Fet a third eclase of facts of like significanoe, is discloeed when we compare different portions of the same organisms. The seod of a pleat contains nitrogonous substance in a far higher ratio than the rest of the plant; and.the seed differs from the rest of the plant in ite ability to initiate, in the absence of light, extensive vital changes-the changes constituting germination. Similarly in the bodies of animals, thoes parts which carry on active functions are nitrogenous; while parts that are non-nitro-genono-as the deposits of fat-carry on no active functions. And we even find that the appearance of non-nitrogenone muttor, throughout tissuce normally composed almost whally of nitrogenous mattor, is accompanied by loes of netivity : what is called fatty dogeneration, being the concomitunt of filing vitality. One more faot which morvee in make atill cloarer the monning of the foregoing onee, still remainatho fret, mamely, that in no part of any argenism where vital changes are going on, is nitrogenous matter wholly abecat. It is common to epeak of plants-or at leest all parta of plante but the seode-as non-nitrogenous. But they are only selatively 00 ; not abeolutely. The quantity of alburnenoid subetaxce contained in the tisouce of plants, is extremely emall comparod with the quantity contained in tho tisuces of animalo; but all plant-timevee which are dimeharging active functiona, contain nome albumenoid cubetance. In overy living vegetal call there is a cortain part that containe nitrogea. This part initiatos thow obangee which constitute the developronent of the coll. And if it cannot bo mid that the primoodial atricte, as this nitrogenoos part is callod, in the workor of all suberywarat chungse undorgone by the coll, is
nevertheless continues to be the part in which the independent activity is most marked.
Looking at the evidence thus brought together, do we not get an insight into the part played by nitrogenous matter in organic changes? We see that nitrogenous compounds in general, are extremely prone to decompose : their decomposition often involving a sudden and great evolution of force. We see that the substances classed as ferments, which, during their own molecular changes, set up molecular changes in the accompanying oxy-hydro-carbons, are all nitrogenous. We see that among classes of organisms, and among the parts of each organism, there is a relation between the amount of nitrogenous matter present and the amount of independent activity. And we see that even in organisms and parts of organisms where the activity is least, such changes as do take place are initiated by a substance containing nitrogen. Does it not seem probable, then, that these extremely unstable compounds, have everywhere the effect of communicating to the less unstable compounds associated with them, molecular movements towards a stable state, like those they are themselves undergoing? The changes which we thus suppose nitrogenous matter to produce in a body, are clearly analogous to those which we see it produce out of the body. Out of the body, certain oxy-hydro-carbons in continued contact with nitrogenous matter, are transformed into carbonic acid and alcohol, and unless prevented the alcohol is transformed into acetic acid : the substances formed being thus more highly oxidized and more stable than the substances destroyed. In the body, these same oxy-hydro-carbons together with some hydro-carbons, in continued contact with nitrogenous matter, are transformed into carbonic acid and water : substances which are also more highly oxidized and more stable than those from which they result. And since acetic acid is itself resolved by further oxidation into carbonio acid and water; we see that the chief difference between the two cases, is, that the process is more completely effected in the
body, than it is out of the body.- Thus, to carry further the simile usod above, the atoms of hydro-carbons and oxy-hydrocarbons contained in the tiseses, are, like bricks on end, not in the stablest equilibriom, but still in an equilibrium 80 stable, that they cannot be overthrown by the chemical and thermal Corcee which the body brings to bear on them. On the other hand, being like similarly-placod bricks that have very narrow ends, the nitrogenous atoms contained in the tissues are in so unstable an equilibrium that they cunnot withstand these forcos. And when those dalicatoly-poisod nitrogenone atoms fall into stable arrangermente, they give inpulees to the moro firmly-poised non-nitrogenous atome, which causo them aloo to full into stable arrangements. It is a carioue and aignificant fact, that in the arts, we not only utilize this samo priaciplo of initiatiog oxtonsive changes among comparatively stable compound, by the help of compounde much lees atable; but we employ for the purpose compounde of the same general clase. Our modern method of firing a gun, in to place in cloce proximity with the gunpowdor which we wish to docompose or explode, a emall portion of fulminating powder, which is docomposed or exploded with extresse fecility; and which, on docomposing, communicates the consequent molecular distarbance to the lose-casily decomposed gunpowdor. When we aek what this fulminating powdor is compooed of, we find that it in a nitrogenous salt.
. Thus rarious ovidences point to the conclasion, that beesidee the molecular ro-arrangomenta proluced in organic mattor by dirroct chomical action, there arv others of kindred importance producod by indirect abomical action. Indood, the inferenco

[^3]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

CHAPTKR III.

THE RR-ACIIONS OF ORCANIC MATTER ON FORCLES

17. Re-distributions of Matter, imply concomitant rodistributions of Motion. That which under one of its appecta we contomplate as an alteration of arrangement among the parts of a body, is, under a correlative aspect, an alteration of arrangemont among certain momenta whereby these parts are impolled to their now positions. At the same time that a force, acting differently on the different units of an aggregate, changee their relations to each other; these units, roeoting differently on the different parts of the foroc, work equivalent changes in the relations of these to ono another. Inecparably connected as they are, these two orders of phonomena are liable to be confounded togother. It is very needful, however, to distingriah between them. In the last chapter, we took a rapid eurver of tho ro-distributions which foroce produce in organic matter ; and here we must take a like survey of the simultaneous re-distributione undergone by the forcos.

At the outcot we aro mot by a difficulty. The parts of an inorganic mane undargoing re-arrangomont by an incident Coseo, are, in moot canes, pasivi-do not complionte thoes secemary ro-ections that rosult from their inertia, by uther forcee which thoy originate. But in organio mattor, the re-arrangod parte do not ro-eot in virtue of their inertin only: they are eo constitutod that tho incident force usually sote up
in them, other actions which are much more important. Indeed, what we may call the indirect re-actions thus caused, are 80 great in their amounts compared with the direct reactions, that they quite obscure them.

In strictness, these two kinds of re-action should not be dealt with together. The impossibility of separating them, however, compels us to disregard the distinction between them. Under the above general title, we must include both the immediate re-actions and those re-actions mediately produced, which are among the most conspicuous of vital phenomena.

8 18. From organic matter, as from all other matter, incident forces call forth that re-uction which we know as heat. More or less of molecular vibration almost necessarily results, when, to the forces at work among the molecules of any aggregate, other forces are added. Experiment abundantly demonstrates this in the case of inorganic masses; and it must equally hold in the case of organic masses. In both cases the force which, more markedly than any other, produces this thermal re-action, is that which causes the union of different substances with each other. Though inanimate bodies admit of being greatly heated by pressure and by the electric current, yet the evolutions of heat thus induced, are neither so common, nor in most cases so conspicuous, as those resulting from chemical combination. And though in animate bbdies, there are doubtless certain amounts of heat generated by other actions; yet these are all secondary to the heat generated by the action of oxygen on the substances composing the tissues and the substances contained in them.

Here, however, we see one of the characteristic distinctions between inanimate and animate bodies. Among the first, there are but few which ordinarily exist in a condition to evolve the heat caused by chemical combination; and such as are in this condition soon cease to be so, when chemical combination
and genesis of heat once begin in them. Whereas among the second, there universally existe the ability, more or lowi decided, thus to evolve heat ; and the evolution of heat, in some cases very alight and in no caece vary great, continuces as long as they remain animate bodies.

The relation between active change of matter and re-active genesis of atomic vibration, is clearly shown by the contraste between different organisms, and between different states and parts of the same organiam. In plante, the genesis of heat is oxtremely amall, in correapondence with thoir extremely emall production of carbonic acid : thooe portions only, as flowers and germinatiag seeds, in which coneiderable oxidation is going on, having a docidedly raised temperature. Among animals, we eee that the hot-blooded are thoee whioh expond much force and respire actively. We see that though such creatures as insectearescarcely at all warmer than the surrounding air when they are atill, they rise eeveral degrees above it when they exort themselves; and that in creatures like oureelve, which habitually maintain a heat much greater than that of their medium, exerciso is accompanied by an additional production of heat, often to an inconvenient extent.

This molecular agitation accompanying the molecular ro-arrangesmonts that are caused by oxygen taken into the animal organim, muat result both from the union of oxygen with those nitrogenors matters of which the timues are compored, and from its union with thone non-nitrogenoue matters which aro diffueed through the tiserces. Juot as much hoat as would be cansed by the oxidation of such mattors out of the body, muat be caused by their oxidation in the body. In the one case as in the other, the boat muat be regarded un a concomitant. Whethor the distinction made by Liobig between nitrogenous aubetances as timuofood, and non-nitrogenous subetadioes as heet-food, be truo or not in a narrowor sense, it cannot be acooptod in the sonse that timeno-food is not aloo heat-food. Indeed he docen not himedf amort it in this sense. The ability of carnivorom
animals to live and generate heat while consuming matter that is almost exclusively nitrogenous, to say nothing of the constant relation above shown between functional activity and the evolution of heat, suffices to prove that the nitrogenous compounds forming the tissues are heat-producers, as well as the non-nitrogenous compounds circulating among and through the tissues. But it is possible that this antithesis is not true even in the more restricted sense. It seems quite an admissible hypothesis that the hydro-carbons and oxy-hydrocarbons which, in traversing the system, are transformed by communicated chemical action, evolve during their transformation, not heat alone, but also other kinds of force. It may be that as the nitrogenous matter, while falling into more stable molecular arrangements, generates both that molecular agitation called heat, and such other molecular movements as are resolved into forces expended by the organism; so, too, does the non-nitrogenous matter. Or perhaps the concomitants of this metamorphosis of non-nitrogenous matter, vary with the conditions. Heat alone may result when it is transformed while in the circulating fluids, but partly heat, and partly another force, when it is transformed in some active tissue that has absorbed it : just as coal, though producing little else but, heat as ordinarily burnt, has its heat partially transformed into mechanical motion if burnt in a steam-engine furnace. In such case, the antithesis of Liebig would be reduced to this; -that whereas nitrogenous substance is tissue-food both as material for building-up tissue and as material for its function; non-nitrogenous substance is tissue-food only as material for function.

There can be no doubt that this thermal re-action which chemical action from moment to moment produces in the body, in from moment to moment an aid to further chemical action. We before saw (First Principles, § 103) that a state of raised molecular vibration, is favourable to those re-distributions of matter and motion which constitute Evolution. We saw that in organisms distinguished by the amount and
rapidity of such re-distributions, this raised state of moleculas vibention is conepionoos. And we here eee that thin raised ctate of moleoular vibration, is itealf a continuous consequence of the continuous molecular re-distributions it facilitates. The heat generatod by eaoh increment of chemical change, makes poseible the succeeding increment of chemical change In the body this connexion of phenomena is the same as we w_{0} it to be out of the body. Just as in a burning piece of wood, the heat given out by the portion actually combining with oxygon, raices the adjacent portion to a temperature at which it uleo can combine with orygen; so, in a living animal, the heat produced by oxidation of cach portion of tiverc, maintains the tomperature at which the unoxidired portions can be readily oxidized.
519. Among the forces called forth from organisms by ro-metion against the actions to which they are subject, is Light. Pbosphorenconco is in come few asese displayed by plants-eapecially by cortain fungi. Among animale it is conaparatively common. All know that thero are several kinde of luminous insects; and many aro fumiliar with the fact that laminosity is a oharacteristio of various marino crentures.

Moat of the ovidence goes to ahow that this evolution of light, en wall an the evolution of haet, is coneoquent on oxidation of the tissuce. Light, like heat, is the expression of a nined atate of molocular vibration: the difference between them boing a differenco in tho rales of vibration. Mence by chemical sotion on subatances contained in the organism, heat or light may be producod, ecoording to the character of the resulting molocular vibrations. The inference that oxidation is the cause of this luminowity, does not, howerees, reat only on α priori grounda. It is supported by exporimental evidence. In phoephorescent ineecta, the oontinuance α the light is found to depend on the continumece of reapirvo. tion; and any esertion which readers smpiration more active
increases the brilliancy of the light. Moreover, by separating the luminous matter, Prof. Matteucci has shown that its emission of light is accompanied by absorption of oxygen and escape of carbonic acid. The phosphorescence of marine aninals has been referred to other causes than oxidation. In some cases, however, it is, I think, explicable without assuming any more special agency. Considering that in creatures of the genus Noctiluca, for example, to which the phosphorescence most commonly seen on our own coasts is due, there is no means of keeping up a constant circulation, we may infer that the movements of aerated fluids through their tissues, must be greatly affected by impulses received from without. Hence it may be that the sparkles visible at night when the waves break gently on the beach, or when an oar is dipped into the water, are called forth from these creatures by the concussion, not because of any unknown influence it excites, but because, being propagated through their delicate tissues, it produces a sudden movement of the fluids and a sudden increase of chemical action. Nevertheless, in other phosphorescent animals inhabiting the sea, as in the Pyrosoma and in certain Annelida, light seems to be really produced, not by direct re-action on the action of oxygen, but by some indirect re-action involving a transformation of force.
§ 20. The re-distributions of matter in general, are accompanied by electrical disturbances; and there is abundant evidence that electricity is generated during those re-distributions that are ever taking place in organisms. Experiments have shown " that the skin and most of the internal membranes are in opposite electrical states;" and also that between different internal organs, as the liver and the stomach, there are electrical contrasts-such contrasts being greatest where the processes going on in the compared parts are most anlike. It has been proved by M. du Bois-Reymond that whau any point in the longitudinal section of a muscle is
connected by a condactor with any point in its transverve section, an electric current is eetablished; and further, that like results occur when nerves are substituted for muscles. The apecial causes of these phenomena have not yet bean determined. Considering that the electric contrasts are most marked where active secretions are going on-considering, too, that while they do not exist between external parts which are cimilarly related to the vascular currente, they do exist betwoen external parts which are dissimilarly related to the rascular currents - and considering also that they are extremaly difficult to detect where there are no appreciable movemente of fluids; it may be that they are due simply to the friction of heterogeneous substances, which is universally a cause of electric disturbance. But whatever be the interpretation, the fact remains the same, thut there is hroughout the living organism, an unccasing production of differences between the clectric statee of different parta; and consequently an unceasing restoration of electric equilibrium by the establishment of currents among theso parts.

Beeides theno general, and not conspicuous, electrical phonomens which appear to be common to all organisms, vagetal a woll as animal, there aro cortain special and otrongly marked onee. I refer, of course, to those which have made the Torpode and the Gymnotus objects of so muah interest. In theee creatures we have a genesis of elootricity that is not incidental on the performanoe of their different functions by the difforent organa; but one which is itealf a function, having an organ appropriate to it. The charactor of thia organ in both thoso fishoe, and its lergely-doveloped connexions with the nervous contres, have raised the suspicion, which various experimente have thus far juesifiod, that in it thore takes plece a transformation of what we call nervo.force into the force known as eloctricity : this condusion being coure expocially supportad by the feoch, that subatancos, such an morphiis and etryobnia, which are known to be powarful

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

beget eotions in muecles or other organa. Beriden neural discharges that follow the direct incidence of external forces, there are others ever being caused by the incidence of forces thich, though originally external, havo become intornal by abeorption into the organiam of tho agenta exerting therr. For thus may be claseed those neural discharges that from moment to moment result from modifications of the tissues, wrought by subetances carried to them in the blood. That the unceasing change of matter which oxygen and other agents produce throughout the eystem, is accompanied by a genesis of nerve-force, is shown by various facts; -by the fact that nerve-force is no longer generated, if oxygen be with. held, or the blood preventod from circulating; by the fact that when the chemical transformation is diminished, as during aleep with its slow respiration and circulation, there is a diminution in the quantity of nerve-force ; in the fact that an esceseive expenditure of nervo-force, involvos excessive reopiration and ciroulation, and excesaive waste of tisoue. To these proofs that norvo-force is evolved in greater or lees quantity, according as tho conditions to rapid molecular change throughout the body, are well or ill fulfilled; may be added proofe that cortoin epecial molecular actione, are the causce of these epecial re-actions. The effecte of alcohol, ether, chloroform, and the vegeto-alkalios, pat beyond doubt tho inference, that the ovartbrow of molocular equilibrium by chemical affinity, when it cocurs at certain plecos in tho body, secalte in the ovorthrow of equilibrium in the nervee proo coeding from thee pleose-rocalte, that is, in the propagation through theos nervea, of the change callod a nerrous discharge. Indeod, looked at from this point of viow. the two clasees of nervous changee-the one initialod from without nod the other from within-ano seen to merge into nne clese. Both of them may be traood to metamorphosis of tissue. Thure can be littlo doubt that the sensations of louck and premenre, are cossequent on scooloratod changce of maller, produced by mechanical didturbance of the mingled
fuids and solids composing the parts affected. There is abundant evidence that the sensation of taste, is due to the chemical actions set up by particles which find their way through the membrane covering the nerves of taste; for, as Prof. Graham points out, sapid substances all belong to the class of crystalloids, which are able rapidly to permeate animal tissue, while colloids, which cannot pass through animal tissue, are all insipid. Similarly with the sense of smell. Substances which excite this sense, are necessarily more or less volatile; and their volatility being the result of their molecular mobility, implies that they have in a high degree, the power of getting at the olfactory nerves by penetrating their mucous investment. Again, the facts which photography has familiarized us with, make it clear that those nervous impressions called colours, are primarily due to certain changes wrought by light in the substance of the retina. And though, in the case of hearing, we cannot so clearly trace the connexion of cause and effect; yet as we see that the auditory apparatus is one fitted to intensify those vibrations constituting sound, and to convey them to a receptacle containing fluid in which nerves are immersed; it can scarcely be doubted that the sensation of sound proximately results from atomic re-arrangements caused in these nerves by the vibrations of the fluid: knowing, as we do, that the re-arrangement of atoms is in all cases aided by agitation. Perhaps, however, the best proof that nerveforce, whether peripheral or central in its origin, results from chemical transformation, lies in the fact that most of the chemical agents which powerfully affect the nervous system, affect it whether applied at the centre or the periphery. Various acids, mineral and vegetal, are tonics-the stronger ones being usually the stronger tonics; and this which we call their acidity, implies a power in them of acting on the nerves of taste, while the tingling or pain that follows their absorption through the skin, implies that the nerves of touch are acted on by them. Similarly with certain vegeto-alkaliea
which are poculiarly bitter. These by their bitternces, show that they affect the extremities of the nerves; while by their tonic properties, they show that they affect the nervous centres-the most intensely bitter among them, strychnia, being the most powerful nervous stimulant. However true it may be that this relation is not a regular one, since opium, hashish, and some other drugs, which work marked effectes on the brain, are not remarkably sapid-however true it may be that there are rolations between particular subetancee and particular parts of the nervous system; yet such instances do but qualify, without negativing, the general proposition. The truth of this proposition can scarcely be doubted when, to the evidence above given, is added the fact that various condiments and aromatic; drugs are given as nerrous etimuLants ; and the fact that anopethetics, besides the general effects they produce when inhaled or awallowed, produce local effects of like kind when abeorbed through the skin; and the fact that ammonia, which in consequence of its extreme molecular mobility, so quickly and eo violently excites the nerves be nouth the akin, as well as thoee of the tongue and the noees is a rapidly-acting stimulant when taken internally.

Whethor we shall ever know anything more of this nervoforce, than that it is come epecies of molocular dirturbance that is propagated from ond to ond of a nerve, it is imposesible to cay. Whether a nervo is merely a conductor, which delivera at one of its extremities an impules received at the other; or whether, as some now think, it is itsolf a generator of furce whioh is initiated at one oxtremity and accumulateo in ite course to the other extremity; are also queotions which cannot yet be anowered. All wo know in, that forces capablo of working molecular changee in nerves, are capable of calling forth from them manifestations of activity-dioobargew of come force, which, though probably allied to clootricity, is not identical with it. And our ovidence that nervoforco is thus originatod, consiate not only of such facta as the aboves but aloo of more conclusire facts catablished by direct
experiments on nerves-experiments which show that nerveforce is generated when the cut end of a nerve is either mechanically irritated, or acted on by some chemical agent, or subject to the galvanic current - experiments which thue prove that nerve-force is liberated by whatever disturbs the molecular equilibrium of nerve-substance. And this is all which it is necessary for us here to anderstand.
§22. The most important of these re-actions called forth from organisms by surrounding actions, remains to be noticed. 'l'o the above various forms of insensible motion thus caused, we have to add sensible motion. On the production of this mode of force, more especially depends the possibility of all vital phenomena. It is, indeed, usual to regard the power of generating sensible motion, as confined to one out of the two organic sub-kingdoms; or, at any rate, as poesessed by but few members of the other. On looking closer into the matter, however, we see that plant-life as well as animal-life, is universally accompanied by certain manifestations of this power; and that plant-life could not otherwise continue.

Through the humblest, as well as through the highest, vo. getal organisms, there are ever going on certain re-distributions of matter. In protophytes the microscope shows us an internal transposition of parts, which when not active enough to be immediately visible, is proved to exist by the changes of arrangement that become manifest in the course of hours and days. In the individual calls of many higher plants, an active movement among the contained granules may be wit. neseed. And well-developed cryptogams in common with all phanerogams, exhibit this genesis of mechanical motion still more conspicuously in the circulation of sap. It might, in. doed, be concluded a priori, that through plants displaying much differantiation of parts, an internal movement must be going ou; since, without it, the mutual dependence of organs heving unlike functions would scem impossible.

Boside these motions of fluids kept up internally, planta, espo
cially of the lower orders, are able to move their extornal parts in relation to each other, and also to move about from place to place. Illustrations in abundance will occur to all stadents of recont Natural History -uch illustrations as the active locomotion of the eoospores of many Alga, the rhythmical bendings of the Oscillatorie, the rambling progression of the Diatomaceco. In fact many of these smallest regotale, and many of the larger ones in their carly stages, display a mechanical activity not distinguishable from that of the simpleat animale. Among well-organized plants, which are never locomotive in their adult states, we etill not unfroquently moet with selative motions of parts. To such familiar cuses as those of the Sensitive plant and the Venues fly.trap, many others may be addod. When its boce is irritated, the stamon of the Berberry flower leane over and touches the pistil. If the stamens of the common wild Cistus be gently bruahod with the finger, they apread themselveabooding away from the seod-ressel. And some of the orchidflowers, as Mr Darwin has rocently shown, shoot out masses of pollon on to the entering bee, when its trunk is thruat down in esarch of honuy.

Though tho powor of moving is not, as wo coe, a charactorintio of animale alone, yet in thern, considered as a clases, it is manifortad to en extent so marked, as practically to beoome one of their dietinotive characters-indeod, we may say, their moot dintinotive oharacter. For it is by their immensely greator ability to generate mechanical motion, that animala are oanblod to perform those actions which constituto their visiblo lives ; and it is by their immonoly greatar ability to genorate mechanioal motion, that the higher onders of unimale uro moot obvioualy diatinguiabod from the lowor ordora. Though, on remernbering the meomingly active movements of infusoria, come will perhape queetion this last-named contruat; jet, on comparing the quantitioe of matter propolled through given oppoces in given timea, thoy will meo that the momentum ovalred is far lees in the protozoe than in the
telcozoa. These sensible motions of animals are effected by various organs under various stimuli. In the humblest forms, and even in some of the more developed ones which inhabit the water, locomotion results from the vibrations of cilia: the contractility resides in these waving hairs that grow from the surface. Some of the Acalepho, and their allies the Polypes, move when mechanically irritated: the long pendant tentacle of a Physalia is suddenly drawn up if touched; and, as well as its tentacles, the whole body of a Hydra collapses if roughly handled, or jarred by some shock in its neighbourhood. In all the higher animals however, and to a smaller degree in many of the lower, sensible motion is generated by a special tissue, under the special excitement of a neural discharge. Though it is not strictly true that such animals show no sensible motions otherwise caused; since all of them have certain ciliated membranes, and since the circulation of fluid in them is partially due to osmotic and capillary actions; yet, generally speaking, we may say that their movernents are effected only by muscles that contract only through the agency of nerves.

What special transformations of force generate these various meohanical changes, we do not, in most cases, know. Those re-distributions of fluid, with the alterations of form sometimes caused by them, that result from osmose, are not, indeed, quite incomprehensible. Certain motions of plants which, like those of the " animated oat," follow contact with water, are easily interpreted; as are also such other vegetal motions as those of the Touch-me-not, the Squirting Cucumber, and the Carpobolus. But we have as yet no clue to the mode in which molecular movement is transformed into the movement of masses, in animals. We cannot refer to known causes the rhythmical action of a Medusa's disc, or that slow decrease of bulk that spreads throughout the mass of an Alcyonium, when one of its component individuals has been irritated. Nor are we any better able to say how the insensible motion tranamitted through a nerve, gives rise to sensible motion in
a muscle. It is true that Science has given to Art, several methode of changing insensible into sensible motion. By applying heat to water we vaporize it ; and the movement of its expanding rapour, we transfer to solid matter; but it is clear that the genesis of muscular movement is in no way analogona to this. The force covolved during chemical transformations in a galvanic battery, we communicate to a soft iron magnet through a wire coiled round it; and it would be quite posible, by placing near to each other several magnets thus excited, to obtain, through the attraction of each for its neighbours, an accumulated movement made up of their coparate movementes, and thus to mechanically imitate a muscular contraction; but from what wo know of organic matter, and the structure of muscle, there is no reason to suppose that anything analogous to this takes place in it. We can, however, through one kind of molecular change, produce eonsible changes of aggregution such as posesibly might, when occurring in organic subetance, anuse monsible motion in it: I refer to allotropic change. Sulphur, for example, assurnos different crystalline and non-orystallino forms at difierent temperatures; and may be made to pass backwards and forwards from one form to another, by slight variatione of temporature: undergoing each time an alteration of bulk. We know that this allotropiom, or rather its analogue inomerism, prevails among colloids - inorganic and organic. We aleo know that some of these metamorphome among colloide, are accompanied by vivible re-arrangemonta: instance hydratod ailicio moid, which, atter pasaing from its soluble state to the atate of an insolublo jolly, boging, in a fow daye, to contrect, and to give out part of its contained water. Now, coneidering that ouch icomeric ohangee of organic as well as isorganic colloids, are ofton very rapidly produced by very alight cumees, it seems not impomible that some of the colloide conetitating muscla, may be thum changod by a nervous dia-chargo-secuming their provious condition when the discharge ceeses And it is conceivable that by structural

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

follows from the persistence of force, that each portion of mechanical or other energy which an organism exerts, implies the transformation of as much organic matter as contained this energy in a latent state. And on the other hand, it follows from the persistence of force that no such transformation of organic matter containing this latent energy can take place, without the energy being in one shape or other manifested.

CHAPTER IV:

RROXIMATE DEFINITION OF LIFE.

6 24. To those who accept the general doctrine of Evulk tion, it needs scarcely be pointed out that classifications are subjective conceptions, which have no absolute demarcations in Nature corresponding to them. They are appliances by which we limit and arrange the matters under investigation; and so facilitate our thinking. Consequently, when we attempt to define anything complex, or make a generalization of facts other than the most simple, we can scarcely ever avoid including more than we intended, or leaving out something that should be taken in. Thus it happens that on sceking a definition of Life, we have great difficulty in finding one that is neither more nor less than sufficient. Let us look at a few of the most tenable definitions that have been given. While recognizing the respects in which they are defective, we shall see what requirements a more complete one must fulfil.

[^4]Schelling said that Life is the tendency to individuation. This formula, until studied, conveys little meaning. But it needs only to consider it as illustrated by the facts of development, or by the contrasts between lower and higher forms of life, to recognize its value; especially in reapect of comprehensivenees. As before shown, however, (First Principles, 856), it is objectionable, partly on the ground that it refers, not so much to the functional changes constitating Life; as to the structural changes of thoee aggregations of matter which manifest Life; and partly on the ground that it includee under the idea Life, mach that we usually exclude from it: for instance-crystallization.
Tho definition of Richerand, - "Life is a collection of phenomena which succeed each other during a limited time in an organizud body,"-is lisble to the fatal criticism, that it equally applies to the decay which goes on after death. For this, too, is "a collection of phenomena which succoed cach other during a limited time in an organized body."
"Life," according to De Blainville, "is the two-fold internal morement of composition and decomposition, at once general and continuous." This conception is in ecme roepecte too narrow, and in other respectes too wide. On the one hand, while it oxpresses what phyviologiste distinguish as vegetative life, it excludes thoso nervous and muscular functions which form the most conspicuous and distinctive clasees of rital phenomena. On the other hand, it decoribes not only the intograting and diaintegrating procemes going on in a living body, but it equally well doncribes thoee going on in a galvanio battery; which uleo exhibits a "two-fold internal movement of composition and decompoaition, at anco. general and continuous."
Eleowhose, I have mymolf proposed to define Lifo as "the co-ordination of actione ; "9 and I still incline towarde this dofinition as one anowering to the facte with tolerablo precision.

[^5]It includes all organic changes, alike of the viscera, the limbs, and the brain. It excludes the great mass of inorganic changes; which display little or no co-ordination. By making co-ordination the specific characteristic of vitality, it involves the truths, that an arrest of co-ordination is death, and that imperfect co-ordination is disease. Moreover, it harmonizes with our ordinary ideas of life in its different gradations : seeing that the organisms which we rank as low in their degree of life, are those which display but little co-ordination of actions; and seeing that from these up to man, the recognized increase in degree of life corresponds with an increase in the extent and complexity of co-ordination. But, like the others, this definition includes too much; for it may be said of the Solar System, with its regularlyrecurring movements and its self-balancing perturbations, that it, also, exhibits co-ordination of actions. And however plausibly it may be argued that, in the abstract, the motions of the planets and satellites are as properly comprehended in the idea of life, as the changes going on in a motionless, unsensitive seed; yet, it must be admitted that they are foreign to that idea as commonly received, and as here to be formulated.

It remains to add the definition since suggested by Mr G. H. Lewes-"Life is a series of definite and successive changes, both of structure and composition, which take place within an individual without destroying its identity." The last fact which this statement has the merit of bringing into view-the persistence of a living organism as a whole, in spite of the continuous removal and replacement of its parts -is important. But otherwise it may be argued, that since changes of structure and composition, though probably the causes of muscular and nervous actions, are not the muscular and nervous actions themselves, the definition excludes the more vis:ble movements with which our idea of life is most associated; and further, that in describing vital changes as a series, it scarcely includes the fact that manv of them, as

Nutrition, Circulation, Reapiration, and Secretion, in their many subdivisions, go on बimaltaneously.
Thus, however well each of thees definitions expreece the phenomena of life under some of its aspects, no one of them ia more than approximately true. It may turn out, that to find a formula which will bear every test is impoesible. Meanwhile, it is posesible to frame a more adequate formula than any of the foregoing. As we shall presently find, these all omit an cesential peculiarity of vital changee in general-a peculiarity which, perhape more than any other, distinguishes them from non-vitul changes. Before apecifying this peouliarity, howevor, it will be well to trace our way, atep by atep, to as completo an ides of Life as may bo reached from our present stand-point : by doing which, we ahall both moo tho necosoity for enoh limitation as it is made, and ultimately be led to feel the need for a further limitation

And hore, as the best mode of determining what are those geoeral characteristics which distinguish vitality from nonvitality, we ohall do well to compare the two most unlike kinds of vitality, and $e 0$ in what they agree. Manifeatly, that which is cecontial to Life must be that which is common to Life of all ordera. And manifcatly, that which is common to all forme of Lifa, will most reedily be ecen on contrasting those forme of Life which have the least in common, or are the moot unlike."
s 25. Choosing assimilation, then, for our example of bodily lifo, and reasoning for our example of that lifo known as intulligence ; it is first to be obeerred, that they are both procesees of change. Without change, food cannot bo taken into the blood nor tranaformod into tisene: without

[^6]change, there can be no getting from premisses to conclusion. And it is this conspicuous manifestation of change, which forms the substratum of our idea of Life in general. Doubtless we see innumerable changes to which no notion of vitality attaches : inorganic bodies are ever undergoing changes of temperature, changes of colour, changes of aggregation. But it will be admitted that the great majority of the phenomena displayed by inorganic bodies, are statical and not dynamical; that the modifications of inorganic bodies are mostly slow and unobtrusive; that on the one hand, when we see sudden movements in inorganic bodies, we are apt to assume living agency, and on the cther hand, when we see no movements in organic bodies, we are apt to assume death. From all which considerations it is manifest, that be the requisite qualifications what they may, a definition of Life must be a definition of some kind of change or changes.

On further comparing assimilation and reasoning, with a view of seeing in what respect the change displayed in both differs from non-vital change, we find that it differs in being not simple change, but change made up of successive changes. The transformation of food into tissue, involves mastication, deglutition, chymification, chylification, absorption, and those various actions gone through after the lacteal ducts have poured their contents into the blood. Carrying on an argument necessitates a long chain of states of consciousness; each implying a change of the preceding state. Inorganic changes, however, do not in any considerable degree exhibit this peculiarity. It is true that from meteorologic causes, inanimate objects are daily, sometimes hourly, undergoing modifications of temperature, of bulk, of hygrometric and electric condition. Not only, however, do these modifications lack that conspicuousness and that rapidity of succession which vital ones possess, but vital ones form an additional series. Living as well as not-living bodies are affected by atmospheric influences; and beyond the changes which these produce, living bodies exhibit other changes, more nu-
merous and more marked. So that though organio change is not rigorously distingaished from inorganic change by preventing auccessive phaseo-though some inanimate objecten, as watches, display phases of change both quick and nu-merous-though all objects are ever undergoing change of some kind, risible or invisible-though there is ecarcely any objoct which doee not, in the lapee of time, undergo a considerable amount of change that is fairly divisible into phaseo; yet, vital change so greatly exceeds other change in its diso play of varying phasea, that we may consider this as praotically one of its characteristics. Life, then, as thus roughly differentiated, may be regarded as change presenting successive phaces; or otherwise, as a series of changes. And it should be obeerved, as a fact in harmony with this conception, that the higher the life the more conspicuous tho variations. On comparing inferior with superior organimens, thoee last will be seen to display more rapid changes, or a more lengthened ceries of them, or both.

Contemplating afreah our two typical phenomena, we may soo that rital change is further distinguished from nonvitul change, by boing enude up of many simullancous changea Ascimilation is not simply a sories of actions, but includes many actions going on together. During mastication the stomach is busy with the food already swallowed; on which it is both pouring out solvent fluide and expending muscular eforta. While the stomach is etill active, the intestinee are performing their mooretive, contractile, and abeorbont funotione; and at the same time that one meal is boing digested, the nutriment obtainod froun a provious meal is undergoing that tramformation into tissue which constitutes tho final act of mimilation. So aleo is it, in a cortain sense, with mental changen. Though the atalcs of conaciousnees which make up an argument oocur in ecrice, yet, as anch of those atatee is complax-impliee tho aimultapeoves excitoment of those many frocalties by which the percoption of any objoot or relation then boen effectod; it is obvious that each such obange in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

mootly mechanical actions that are to a great degree similar; and in this reapect widely differ frum the actions at any moment taking place is an organism: which not only belong to the reveral clasees, mechanical, chemical, thermal, eleotric, but present under each of theee clasees, innumerable unlike actions. Even ehere life is nearly simulated, as by the working of a atcon-engine, we may ree that considerable as is the number ol cimultancous changes, and rapid as are the succesive anes, the regularity with which they soon recur in the same order and degree, reanders them unlike thoee varied changes exhibited by a living creature.

Still, it will be found that this peculiarity, like the foregoing ones, doee not divide the two classes of changes with precision; inasmuch as there are inanimate things which exhibit considerable heterogeneity of change : for inctance, a cloud. The variations of state which this undergoes, both simultaneous and successive, are many and quick; and thoy differ widely from each other both in quality and quuntity. At the anme inatant there may occur in a cloud, change of poxition, change of form, change of cize, change of density, change of colour, change of ternperature, olange of electric atate; and these neveral kinds of change are continuously displayed in different degrees and combinations. Yot notwithstanding this, when we consider that very fuw inorganic objectu manifeot betongeneity of change in a marked manner, while all organic objecta manifeat it; and further, that in asceading from low to high forme of life, we meet with an increasing rariety in the kinde and amounte of changes diaptayed; we 200 that there is bere a further leading distinction between organic and inorganio ections. According to this madified conception, then, Lifo in made up of hoterogencous changee both simultancous and ' mecomive.

If now wo look for some point of agreement between the amimilative and logical procemea, by which thoy are distinguistred from thome inorganio procomes that are most like them in the hotefogeneity of the simultancoun and succeesite
elanges they comprise, we discover that they are distinguished by the combination subsisting among their constituent changes. The acts that make up digestion are mutually dependent. Those composing a train of reasoning are in close connection. And generally, it is to be remarked of vital changes, that each is made possible by all, and all are affected by each. 'Respiration, circulation, absorption, secretion, in their many sub-divisions, are bound up together. Muscular contraction involves chemical change, change of temperature, and change in the excretions. Active thought influences the operations of the stomach, of the heart, of the kidnoys. But we miss this union among inorganic processes. Life-like as may seem the action of a volcano in respect of the heterogeneity of its many simultaneous and successive changes, it is not lifelike in respect of their combination. Though the chemical, mechanical, thermal, and electric phenomena exhibited, have some inter-dependence ; yet the emission of stones, mud, lava, flame, ashes, smoke, steam, usually takes place irregularly in quantity, order, intervals, and mode of conjunction. Even here, however, it cannot be said that inauimate things pre. sent no parallels to animate ones. A glacier may be instanced as showing nearly as much combination in its changes as a plant of the lowest organization. It is ever growing and ever decaying; and the rates of its composition and decom. position preserve a tolerably constant ratio. It moves; and its motion is in immediate dependence on its thawing. In emits a torrent of water, which, in common with its motion, undergoes annual variations, as plants do. During part of the year the surface melts and freezes alternately; and on these changes are dependent the variations in movement, and in efflux of water. Thus we have growth, decay, changes of temperature, changes of consistence, changes of velocity changes of excretion, all going on in connexion; and it may te as truly said of a glacier as of an animal, that by cesseless integration and disintegration it gradually undergoes an entire change of substance without losing its indiviluality.

This exceptional instance, however, will scarcely be held to obscure that broad distinction from inorganic procesese, which organic processee derive from the combination among their constituent changes. And the reality of this distinctiou becomes yet more manifest when we find that, in common with previous ones, it not only marks off the living from the not-living, but also thinge which live little from things which live much. For while the changes going on in a plant or a zoophyte are so imperfectly combined that they can continue after it has been divided into two or more pieces, the combination among the changea going on in a mammul is so close that no part cut off from the rest can live, and any considerable disturbance of one function causes a cessation of the others. Life, therefore, as we now regard it, is a combination of hetarogeneous changes, both simultaneous and succesaive.

Once more looking for a characteriatic common to theee two kinds of vital action, we perceive that the combinations of heterogencous changes which constitute them, differ from the few combinationa which they otherwise resemble, in reapect of definitemens. Tho associsted changee going on in a glacior, admit of indefinite variation. Under a conceivable altoration of olimate, its thawing and ite progression may be etopped for myriads of yours, without disnbling it from again displaying these phenomena under appropriate conditions. By a geological convulsion, its motion may be arrested without an arreat of its thawing; or by an increase in the indination of the surface it alides over, ite motion may be sccelerated without sccolerating its rate of diseolution. Other thinge remaining the same, a more rapid doporit of snow may cause an indefinite incroaso of bulk; or, conversely, the accretion may entirely cease, and yot all the other netions continue until the mass disappeare. Here, then, the combination has none of that definiteness which, in a plant, marks the mutual dependence of asemimilation, reepiration, and circulution; muca less has it that definitonon soon in the
mutual dependence of the chief animal functions: no one of which can be varied without varying the rest: no one of which can go on unless the rest go on. It is this definiteness of combination which distinguishes the changes occurring in a living body from those occurring in a dead one. Decomposition exhibits both simultaneous and successive changes, which are to some extent heterogeneous, and in a sense combined ; but they are not combined in a definite manner. They vary according as the surrounding medium is air, water, or earth. They alter in nature with the temperature. If the local conditions are unlike, they progress differently in different parts of the mass, without mutual influence. They may end in producing gases, or adipocire, or the dry substance of which mummies consist. They may occupy a.few days, or thousands of years. Thus, neither in their sinultaneous nor in their successive changes, do dead bodies display that definiteness of combination which characterizes living ones. It is true that in some inferior creatures the cycle of successive changes admits of a certain indefiniteness-that it may be apparently suspended for a long period by desiccation or freezing; and may afterwards go on as though there had been no breach in its continuity. But the circumstance that only a low order of life permits the cycle of its changes to be thus modified, serves but to suggest that, like the previous characteristics, this characteristic of definiteness in its combined changes, distinguishes high vitality from low vitality, as it distinguishes low vitality from inorganic proceesecs. Hence, our formula as further amended reads thus:-Life is a definite combination of heterogeneous changes, both simultaneous and successive.

Finally, we shall still better express the facts, if, instead of saying a definite combination of heterogeneous changes, w $\boldsymbol{\epsilon}$ say the definite combination of heterogeneous changes. As it at present stands, the definition is defective both in allowing that there may be other definite combinations of heterogeneous changes, and in directing attention to the hetero-
geneous changes rather than to the definiteness of their combination. Just as it is not so much its chornical eloments which constitute an organism, as it is the arrangement of them into special tissues and organs ; so it is not so much its neterogeneous changes which constitute Life, as it is the definite combination of them. Obeerve what it is that ceases when life ceass. In a doed body there are going on heterogencous changes, both simultaneous and successive. What then has disappeared? The definite combination has dieappeared. Mark, too, that however heterogeneous the simultancous and successive changes exhibited by an inorgunio object, as a volcano, wo much less tond to think of it as living, than wo do u watch or a steam-engine, which, though displaying homogeneovis changea, displaye them definitcly combined. So dominant an element is this in our ides of Life, that even when an object is motionlese, yet, if its parts be definitaly combined, wo conclude either that it has had life, or has boen made by something having life. Thus then, we conclude that Lifo is-the definite combination of heterogeneous ahanges, borh aimultaneous and succossive.
f 26. Such is the conception at which wo arrive without changing our stand-poink. It is, however, an incompleto conception. Thin ultimate formula (which is to a considerable extont identical with one above given-" the co-ordination of actions;" eecing that "definite combination" is cynonymous rith "co-ordination," and "changes both nimalthaeove and coccomive" are comprehonded under thin surm "sotions;" but which differs from it in apecifying the furt, that the ectione or changre are "heterogeneous ")-this a! Iimate formula, I eay, is afore all but proximately corrict. It in treo that it doee not fuil by including the growth of a cryatal; for the succemive changee this impliee cannot bo oalled boterogeneova. It is true that tho action of a galvanio battery in not compried in it ; since bere, too, hotarogencily is not exhibitod by the awceesaive abanger. It ia true that by
this same qualification the motions of the Solar System are excluded; as are also those of a watch and a steam-engine. It is true, moreover, that while, in virtue of their heterogeneity, the actions going on in a cloud, in a volcano, in a glacier, fulfil the definition; they fall short of it in lacking dofiniteness of combination. It is further true that this definiteness of combination, distinguishes the changes taking place in an organism during life, from those which commence at death. And beyond all this it is true that, as well as serving to mark off, more or less clearly, organic actions from inorganic actions, each member of the definition serves to mark off the actions constituting high vitality from those constituting low vitality; seeing that life is high in proportion to the number of successive changes occurring between birth and death ; in proportion to the number of simultaneous changes; in proportion to the heterogeneity of the changes; in proportion to the combination subsisting among the changes; and in proportion to the definiteness of their combination. . Nevertheless, answering though it does to so many requirements, this definition is essentially defective. It does not convey a complete idea of the thing contemplated. The definite combination of heterogeneous changes, both - simultaneous and successive, is a formula which fails to call up an adequate conception. And it fails from omitting the most distinctive peculiarity - the peculiarity of which we have the most familiar experience, and with which our notion of Life is, more than with any other, associated. It remains now to supplement the definition by the addition of this peculiarity.

CHAPTER ∇.

THE CORRESPONDENCE BETWEEN LFE AND ITB CIhCusstances.

827. We habitually distinguish between a live object and a dead one, by obeurving whether a change which wo make in the surrounding conditions, or one which Nature makes in them, is or is not followed by some perceptible change in the object. By diecovering that certain things shrink when touched, or dy away when approached, or start when a noise is made, the ohild first roughly discriminates between the living and the not-living; and the man when in doubt whether an animal he is looking at is dead or not, stirs it with his stick; or if it be at a distance, ahoute, or throws a etono at it. Vegetal and animal life are alike primarily recognized by this procese. The tree that puts out leares when the apring bringe a change of temperature, the flower which opene and clowes with the rising and solting of the nun, the plant that droops when the soil is dry, and reerects iteelf when waterod, aro considored alivo bocause of thees in. duced changes ; in common with the zonphyto which contracts on the paming of a cloud over the sun, the worm that comes to the surface when the ground is continuoualy ahaken, and the hedgehog that rollo iteelf up when attacked.
INot only, howover, do we hebitually look for some seeponce when an external atimulus is Appliad to a living organism, but wo perceive a fitness in the reaponse. Deed as well ne living thinge display changee under certain changee of 000 -

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

Grouping together the casce first named, in which a particular change in the circumstances of an organisen is followed by a particular chango in it, and the cases last namod, in which the constant actions occurring within an orgunima imply some constant actions occorring without it; we see that in both, the changee or proceseses diaplayed by a living body aro epecially related to the changes or proceses in its che vironment. And here we have the needful supplement to our conception of Life. Adding this all-important chnracteristio, our conception of Life becomes-The definite combination of heterogeneous changes, both simultaneous and succesaive, in correspondence rith_erternat ce-crislencet and oequencos. That the full significance of this addition may be soen, it will be neccesary to glanco at the correspondence under same of its leading aspectes.
\& 28. Neglecting minor requiremente, tae actions going

[^7]stance in the environment capable of transformation into ite own tisaus ; but that tho introduction of thoso masese into its stomach, ahall be followed by the secretion of a solvent fluid that will reduce them to a fit otate for aboorption. Special outer propertioe must be met by special inner propertice.

When, from the proceses by which food is digested, we turn to the procesees by which it is seired, we perceive the same general truth. The etinging and contractile power of a polype's tentacle, correepond to the censitiveness and etrength of the creatures serving it for prey. Unlees that extoraal change which brings one of these creatures in contact with the tentacle, were quickly followed by thoee internal changes which resalt in the coiling and drawing up of the contucle, the polype would die of inanition. The fundamental procemos of integration and disintegration within it, would get out of correspondence with the agencies and processes without it; and the life would cease.

Similarly, it may be shown that when the creature becomices so large that its tisesue cannot be efficiently supplied with nutriment by mere abeorption through ite limiting membrance, or duly oxygonatod by contact with the fluid that bathee ite eurfuce, thero aricos a neceusity for a circuLatory aystem by which nutriment and oxygen may bo distributed throughout the mases; and the functions of this ayretem, being subsidiury to the two primary functions, form links in the correopond tonco between intornal and oxternal actions. The like is obvioualy true of all those cubordinate functiona, cocrotory and axcrotory, that fucilitato oxidation and amimilation-functions in which wo may treco, both 00 tomporancous changee answering to co-existences in the en. viroament, and auccesive changos enawrering to thoee changes of comporition, of temperature, of light, of mointure, of pressure, which the environment andergoee.
Anconding from the viecoral actions to the muscular and nervous ections, wo find tho correppondonco displayed in a manner atill more obriona. Every ect of locomotion implive
the expenditure of certain internal mechanical forces, adapted in amounts and directions to balance or out-balance certain external ones. The recognition of an object is impossible without a harmony between the changes constituting perception, and particular properties co-existing in the environment. Escape from enemies supposes motions within the organism, related in kind and rapidity to motions without it. Destruction of prey requires a particular combination of subjective actions, fitted in degree and succession to overcome a group of objective ones. And so with those countless automatic processes exemplified in works on animal instinct.

In the bighest order of vital changes, the same fact is equally manifest. The empirical generalization that guides the farmer in his rotation of crops, serves to bring his actions into concord with certain of the actions going on in piants and soil. The rational deductions of the educated navigator who calculates his position at sea, constitute a series of mental acts by which his procecdings are conformed to surrounding circumstances. Alike in the simplest inferences of the child, and the most complex ones of the man of science, we find a correspondence between simultaneous and successive changes in the organism, and co-existences and sequences in its environment.
829. This general formula, which thus includes the lowest vegetal ptocesses as well as the highest manifestations of human intelligence, will perhaps call forth some criticisms which it is desirable here to meet.
It may be thought that there are still a few inorganic actions included in the definition ; as for example that displayed by the mis-named storm-glass. The feathery crystallization which, on a certain change of temperature, takes place in the solution contained by this instrument, and which afterwards dissolves to reappear in new forms under new conditions, may be held to present simultaneous and successive changes that are to some extent heterogeneous, that occur with some do-

Giniteness of combination, and, above all, occur in correopondence with external changes. In this caee vegetal life is sinn. ulated to a considerable extont; but it is merely simulatul. Tho relation between the phenomena occurring in the storniglase and in the atmosphere respoctively, is really not a correepondence at all, in the proper sense of the word. Outside there is a certain change ; inside there is a change of atomic arrangement Outaide there is another certain change; in. side there is another change of atomic arrangement. But sublle as is the dependence of each internal upon each ex. ternal change, the connexion between them does not, in the ahetract, differ from the connexion between the motion of a straw and the motion of the wind that disturbe it. In either caeo e change_producae a change and thare it anda. The alteration wrought by gome environiog azency on an inanimato objoct, doce not tend to induce in it s recondary allarenHon, that anticipatee some secondary altoration in the envirommont. but in overy living body there is a tendency towands secondary alterations of this nature; and it is in their produotion that the correspondence conaista. The difference may be best expreesed by gymbola. Lot A be a change in tho environment; and B some resulting olinngo in an inorganic mase. Then \mathbf{A} having produced B, the notion ccesecs. Though the change \mathbf{A} in the environment, is collowed by come consequent change a in it; no parallal ece. quence in the inorganic mass simultaneomaly generates in is come ohange b that hee reference to the change a. But if we take a living body of the requisite organization, and let the chango A imprese on it come change ($)$; then, while in the enriroument A is occasioning a, in the living body C will be oocasioning c : of which a and c will show a certain concord in time, place, or intensity. And while it is in the corstinuous production of auoh concords or correupondences that Lisi concines it is by the continnome prodnotion of them lhat Lifo is maintained.

The lurther erilicism that may be expected, concorns cor
tain verbal imperfections in the definition, which it seems impossible to avoid. It may be fairly urged that the word correspondence will not include, without straining, the various relations to be expressed by it. It may be asked :-How can the continuous processes of assimilation and respiration, correspond with the co-existence of food and oxygen in the environment? or again :-How can the act of secreting some defensive fluid, correspond with some external danger which may never occur? or again :-How can the dynamical phenomena constituting perception, correspond with the statical phenomena of the solid body perceived? The only reply to these questions, is, that we have no word sufficiently general to comprehend all forms of this relation between the organism and its medium, and yet sufficiently specific to convey an adequate idea of the relation; and that the word correspondence seems the least objectionable. The fact to be expressed in all cases, is, that certain changes, continuous or discontinuous, in the organism, are connected after such a manner that, in their amounts, or variations, or periods of occurrence, or modes of succession, they have a reference to external actions, constant or serial, actual or potential-a reference such that a definite relation among any members of the one group, implies a definite relation among certain members of the other group; and the word correspondence appears the best fitted to express this fact.

8 30. The presentation of the phenomena under this general form, suggests how our definition of Life may be reduced to its most abstract shape; and perhaps its best shape. By regarding the respective elements of the definition as relations, we avoid both the circumlocution and the verbal inaccuracy; and that we may so regard them with propriety is obvious. If a creature's rate of assimilation is increased in consequence of a decrease of temperature in the environment; it is that the relation between the food consumed and heat produced, is so re-adjusted by multiplying both its members, that the
altared relation in the sarrounding modium between the quantity of heut absorbed from, and radiatod to, bodies of a given temperature, is counterbalanced. If a sound or a scent waftod to it on the breeze, prompte the atag to dart away from the deer-stulker; it is that there exists in its nelghbourhood a relation betwoen a certain senaible property and cero thin actions dangerous to the stag, while in its organisma there exists an adapted relation between the impression thio ecnsible property pruduces, and the actions by which dangus is cecaped. If inquiry has led the chemist to a law, enabling him to tell how much of any one element will combine with so much of another; it is that there has been cutablished in him specific mental relations, which accord with epecifio chemical relations in the things around. Seeing, then, that in all cuncs wo may considor the external phenomena as simply in relation, and the internal phenomenu aloo as simply in rolution; the hroadost and most complete definition of Life will be-The consinmous adjuatment of internal relations to external relations.
While it is simpler, this modifed formula has the further advantage of being somewhat more comprebensive. To say that it includes not only those definite combinations of simultancous and aucceasive changes in an organiam, which correopond to co-existences and eequencee in the environments but also thoee structurul arrangementer which enable the organiam to adapt its actions to actions in the environment. may perhape be going too far; for though thooe structur.al arrangomonte precent internal relations edjusted to exterial relationa, yet the continmome adjuatment of relations can coariely be held to include a fixed adjuctment already mando. Clearly, Eife, which is mude up of dymamioal phenomenn, cannot be defined in terms that chall at the same time define the apparatue manifesting it, which preeente only datical phesomena. But whilo this antitheain servee to remind us that the fundamental diatinction betwoen the organiom and

[^8]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

SHE DEOLEE OF LIFE FARTES AS THE DEOLEE OY CORRESPONDENCE.

5 31. Already it has been shown reapecting each other qualitication included in the foregoing definition, that the lifo is high in proportion as that qualification is well fulfilled; and it is now to be remarked, that the same thing is capecinlly true respecting this last qualification-the correspondence botwoen internal and external relatione. It is manifest a priori, that since changes in the physical otate of the environment, as aleo thoee mechasical retions and those variations of available food which occur in it, are liable to stop the procesen going on in the organiem ; and since the adaptivo changee in the organiam bave the offects of directly or indirectly counterbaluncing theee ahangee in the environment; it follows that the life of tho organimm will be short or long, low or high. cocurding to the extent to which changes in the environment ane met by corropponding changes in the organism. Allowing a margin for purturbations, tho life will continue only whilo the correepondence continues; the complotences of the life will be proportionato to the completenees of the corroepandence; and the lifo will be perfoct only when the cermeappadenco is parfoct. Not to dwell in gencral statcmenta, Howover, lot us eantemplate this trath under ite concrete equecta
832. In life of the lowest onder, we find that only the
most prevalent coexistences and sequences in the ellvironment, have any simultaneous and successive changes answering to them in the organism. A plant's vital processes display adjustment solely to the continuous coexistence of certain elements and forces surrounding its roots and leaves; and vary only with the variations produced in these elements and forces by the sun-are unaffected by the countless mochanical and other changes occurring around ; save when accidentally arrested by these. The life of a worm is made up of actions referring almost exclusively to the tangible properties of adjacent things. All those visible and audible changes which happen near it, and are connected with other changes that may presently destroy it, pass unrecognizedproduce in it no adapted changes : its only adjustment of internal relations to external relations of this order, is seen when it escapes to the surface on feeling the vibrations produced by an approaching mole. Adjusted as are the proceedings of a bird, to a far greater number of coexistences and sequences in the environment, cognizable by sight, hearing, scent, and their combinations; and numerous as are tho dangers it shuns and the needs it fulfils, in virtue of this extonsive correspondence; it exhibits no such actions as those by which a human being counterbalances variations in temperature and supply of food, consequent on the seasons. And when we see the plant eaten, the worm trodden on, tho bird dead from starvation; we see alike that the death is an arrest of such correspondence as existed; that it occurred when there was some change in the environment to which the organism made no answering change; and that thus, both in shortness and simplicity, the life was incomplete in proportion as the correspondence was incomplete. Progress towards more prolonged and higher life, evidently implies an ability to respond to less general coexistences and sequences. Each step upwards must consist in adding to the previously-adjusted relations which the organism exhibits, some further relation parallel to a further relation in the environment. And tho
greator correspondence thus established, must, other things equal, show itself both in greater complexity of life, and greater length of life \rightarrow truth which will be duly rentized on remembering that enormous mortality which prevails among lowly-organized creatares, and that gradual increase of longovity and diminution of fertility which wo meet with on ascending to creatures of higher and higher development.

It must, however, be remarked, that while length and complexity of life are, to a great extent, associated-while a more extended correspondence in the successive changre, commonly implies increased correspondence in the simultaneous changes; yet it is not uniformly so. Between the two great divisions of lifo-animal and regetal-this contrast by no means holds. A tree may live a thousund yeara, though the simultaneous changes going on in it answer only w tho few chemical affinities in the air and the earth, and though its eerial changes answer only to thooe of day and night, of the weather and the seasons. A tortoice, which exhibits in a given time nothing like the number of internal actions adjusted to external ones, that are exhibited by a dog, yot lives far longer. The tree by its massive trank, and the rortoine by its hard carapeoc, are saved the necessity of roeponding to those many surrounding mechanical actions which organiums not thus protoctod must respond to or die; or rather-the tree and the torloise display in their etructurce, cortain simple atatical relations adapted to moet countless dynamical relations extornal to them. But notwithetanding the qualifications suggested by such cawns, it neede but to compare a microscopio fungus with an oak, an animalcule with a shark, a mouse with a man, to recognize the fact that this increacing correopondonce of its changee with thove of the environment, which characterizes progreasing life, ha. bitually ahows itcelf at the same time in continuity and is complication.

Kiven were not the connexion between length of life and comploxity of life thus conapiouoas, it would atill be tree
that the degree of life varies with the degree of correspond. ence. For if the lengthened existence of a tree be looked upon as tantamount to a considerable degree of life; then it must be admitted that its longthened display of correspondences is tantamount to a considerable degree of correspondence. If otherwise it be held, that notwithstanding its much shorter existence, a dog must rank above a tortoise in degree of life, because of its superior activity ; then it is implied that its life is higher, because its simultaneous and saccessive changes are more complex and more rapid-because the correspondence is greater. And since we regard as the highest life, that which, like our own, shows great complesity in the correspondences, great rapidity in the succession of thom, and great length in the series of them; the equivalence between degree of life and degree of correspandence, is unquestionable.
833. In further elucidation of this general truth, and especially in explanation of the irregularities just referred to, it requires to be observed, that as the life becomes higher the environment itself becomes more complex. Though, literally, the environment means all surrounding space with the coexistences and sequences contained in it ; yet, practically, it often means but a small part of this. The environ. ment of an entozoon, can scarcely be said to extend beyond the body of the animal in which the entozoon lives. That of a fresh-water alga is, virtually, limited to the ditch inhabited by the alga. And understanding the term in this restricted sense, we.shall see that the superior organisms inhabit the more complicated environments.
Thus, contrasted with that found on land, the lower life is that found in the sea; and it has the simpler environment. Marine creatures are affected by a smaller number of coexistences and sequences than terrestrial ones. Being very nearly of the same specific gravity as the surrounding medium, they have to contend with less various mechanical
ectione. The zoophyte rooted to a stone, and the acalephe passivoly borne along in the current, need to undergo no internul changes such as thoee by which the caterpillar meete the varying effects of gravitation, while creeping over and under the leares. Again, the sea is liable to none of those extreme and rapid alterations of temperature which the air suffers. Night and day produce no appreciable modifications in it ; and it is comparatively litulo affected by the seasons. Thus its contained fauna show no marked correspondences similar to thoes by which air-breathing creatares connterbalance thermal changes. Further, in reepect to the supply of nutriment the conditions are more simpla. The lower tribes of animals inhabiting the water, like the plants inhabiting the air, have their food brought to them. The same current which brings oxygen to the oyster, also brings it the microocopio organisms on which it lives: the disintograting matter and the matter to be intogratod, cooxist under the simplest relation. It is otherwise with land animals. The oxygen is overywhere; but that which is neoded to neutralize its action is not everywhere : it hee to be cought; and the conditions under which it is to be obtained are more or less complex. So too with that liquid by the agoncy of which the vital proceses are carried on. To marine creaturce, water is evor present, and by the lowest is pamivoly abeorbod; but to most croaturee living on the earth and in the air, it in made available only throagh thowe nerrous obangee conatituting perception, and those musoular ones by which drinking is offectod. Similarly, the contrast might bo continued with reapect to tho electric and hygromotrio variations; and the greater multiplicity of optioal and acouatio phonomens with which terreatrial lifo is surrounded. And tracing upwards from the amphibia the widoniog extent and comploxity which the anvironmenth as pructically considored, asaumes-obeorving further how incroming heterogoneity in the flora and founs of the globe, itnalf progroscivaly complicates the envisonnout
of each species of organism-it might finally be shown that the same general trath is displayed in the history of mankind: whose advance in civilization has been simultaneous with their adrance from the less varied requirements of the torrid zone to the more varied requirements of the temperate zone; whose chief steps have been made in regions presenting a complicated physical geography ; and who, in the course of their progress, have been adding to their physical environment a social environment that has been growing even more involved. Thus, speaking generally, it is clear that those relations in the environment to which relations in the organism must correspond, themselves increase in number and intricacy as the life assumes a higher form.
\$34. To make yet more manifest the fact, that the degree of life varies as the degree of correspondence, I may here point out, that those other distinctions successively uoted when contrasting vital changes with non-vital changes, are all implied in this last distinction-their correspondence with external coexistences and sequences. And to this may be added the supplementary fact, that the increasing fulfilment of those other distinctions which we found to accompany increasing life, is involved in the increasing fulfilment of this last distinction. To descend to particulars:-We saw that living organisms are characterized by successive changes; and that as the life becomes higher, the successive changes become more numerous. Well, the environment is full of successive changes, both positive and relative; and tho greater the correspondence, the greater the number of successive changes an organism must display. We saw that lifo presents simultaneous changes; and that the more elevated it is, the more marked the multiplicity of them. Well, besides countless phenomena of coexistence in the environment, there are often many changes occurring in it at the same moment ; and hence increased correspondence with it, suppsis an increased display of simultaneous changes in the
orgnaism. Similarly with the heterogeneity of the changee In the environment the relations are very variod in theis kinds; and hence, as the organic actions come more and more into correspondence with them, they also must become very varied in their kinds. So again is it, even with definitencss of combination. For though the inorganic bodies of which the environment mainly consists, do not present definitelycombined changes, yet they present definitely-combined properties ; and though the minor meteorologic variations of the eavinonment, do not show much definitenese of combination, yet those reeulting from day and night and the seasons do. Add to which, that as the environment of each organism comprehends all thoee other organisms existing within its sphere of life-as the most important and most numerous surrounding changee with which each animal has to deal, are the definitoly-combined changes exhibited by other animals, whother proy or enemios; it results that definiteness of combination is a general characteristic of the external ohangee with which internal onee have to corrospond. Hence, increses of correspondence involves incrensed definiteness of ommbination. So that throughout, the correspondence of the intornal relatione with the external onee, is the eseontiul thing; and all the epecial characteristios of the internul relatione, ure but the collatoral results of this correapondence.
835. As affording the simplest and moot conclusive proof that the degree of life varies as the dogree of correapondence, it remains to point out that perfect correopondenco would be perfoot life. Wore thare no ahangus in the environment but cuch as the organiam had adapted changore to meot; and were it novor to fuil in tho efficioncy with which it met them ; thero would be oternal exittence and univoral knowlodgo. Death by natural docay, cocurs bocauno in old ago tho relations brotwoen amimilation, oxidation, and gencosia of farce going on in the organiom, gradually fall out of correepondence with tho selations botween axygun and food and abeorption of heat bv

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

undergo changes so comparatively numerous as to render the cuccesiveness of their changes a marked charwoteristic. And it will follow a priori, as we found it to do a pooteriori, that the organisms exhibiting Evolution in the higheet degrea exhibit the longest or the most rapid successions of changes. or both. distinguiahed from non-vital change by being mado up of many oimultancous changee; and also that oreatures poseses ing high vitality aro marked of from thome poememine low vitality by the far greater number of their simultaneosa ahangea. Hars too there is ontire congruity. In Fived Principlea, § 116, we reached the conclusion, that a furco falling on any aggregate is divided into several forcees that when the aggregate consiste of parts that are unlike, eech part beoomes a centre of unlike differentiations of the incident force; and that thus the multiplicity of such differentistions must increase with the multiplicity of the unlike parta. It follows necesaarily, therefore, that organic aggrogateo, which as a clase are distinguished from inorganio aggregalos by the greater number of their unlike parts, must be aloo distinguished from them by the greater number of simultanoous changes thoy display; and further that the higher organio aggregatee, having more numerous unlike parts than the lower, muat undergo more numerous simultancoun changea. We next found that the changee occurring in living bodice, are contracted with thowe occorring in ocher bodice, as boing much more haterogoncows; and that the changes occurring in the superior living bodios, are cimilarly contracted with thoos ocourring in inferior onee. Well, heterogeneity of function is the correlate of heteroo geceity of atructure; and botarogeneity of alructure is the bading diatinotion between arganio and inarganio aggregatea, at well as betwoen the more highly organized and the more lowly organized. By reaction, an incident force mant be renderod multiform in proportion to the multiformity of the aggrogato an which it fillo; and heace thove moot mul.
siform aggregates which display in the highest degree the phenomena of Evolution structurally considered, must at the came time be aggregates which display in the highest degree the multiform actions which constitute Evolution functionally considered. These heterogeneous changes, exhibited simultaneously and in succession by a living organism, prove, on further inquiry, to be distinguished by their combination from certain non-vital changes which simulate them. Here, too, the parallelism is maintained. It was shown in § 56 of First Principles, that an essential characteristic of Evolution is the integration of parts, which accompanies their differentiation - an integration that is shown both in the consolidation of each part, and in the consolidation of all the parts into a whole. Now, manifestly, combination among the changes going on in different combined parts, must be proportionate to the degree of combination among these parts : the more mutually-dependent the parts, the more mutually-dependent must be their actions Hence, animate bodies having greater co-ordin. ation of parts than inanimate ones, must exhibit greater co-ordination of changes. And this greater co-ordination of their changes must not only distinguish organic from inorganic aggregates; but must, for the same reason, distinguish higher organisms from lower ones, as we found that it did. Yet once more, it was pointed out that the changes constituting Life, differ from other changes in the definiteness of their combination; and that a distinction like in kind, though less in degree, holds between the vital changes of superior creatures and those of inferior creatures. These, also, are contrasts in harmony with the contrasts disclosed by the analysis of Evolution. We saw (First Principles, $\$ 5$ 54, 55) that during Evolution, there is an increase of definiteness as well as an increase of heterogeneity. We saw that the integration accompanying differentiation, has necessarily the effect of increasing the distinctness with which the parts are marked off from each other; and that so, out of the inco-
herent and indefinite, there arises the coherent and definita But a coherent whole made up of defnite parts definitely combined, mast exhibit more definitely combined changes than a whole made up of parts that are neither definite in themeelves nor in their combination. Hence, if living bodice display more than other bodiee this structural defnitenese, then, definiteneess of combination must be a characteristio of the changes constituting life; and must also distinguish the vital ahanges of higher organisme from thoee of lower organimma

Finally, however, we discovered that all these peouliarities are subordinate to the one fundamental peculiarity, that vital changes take place in correepondence with external co-axistences and requences ; and that the higheat powiblo Life is reached, when there is some inner relation of cotions fittod to meet every outer relation of actions by which the organiam can be affected. But this conception of the higheat posesible Life, is in perfect harmony with the conoeption, before arrived at, of the ultimate limit of Evolution. When treating of equilibration as exhibited in organic phenomena (Firat Principles, 133, 134), it was pointed out, that the continual tendency is towards the establishment of a balance betwoen inner and outer changee. It was abown that "the final etructural arrangomenta must be such es will meet all the forces acting on the aggregate, by equivalent antagoniatio forces," and that "tho maintenance of auch a moring equilibrium" as an organiam diaplaga, ${ }^{*}$ requires the habitual genceis of internal forcos correoponding in number, direotiona, and amounte, to the external incident forcoe-a many inner functione, single or combined, as there aro singlo or combined outer notions to bo met" It was abown, too, that the relatione among conoepLiome and idene, are ever in progresa lowarde a botter balance botween mental actione and those actions in the environment to which conduof muat bo adjosted. So that that maintramees of a correapondence botwoen innor and outer reletiones, which we have hece fcund to constitute Lifo, and the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

CHAPJEK VIL

TIE SCOPE OP BIOLOGY.

837. We are now in a position to map-oat the boundarica und divisions of our subjeot. Grouping together the general results arrived at in the firat three chapters, and joining with them the results which the leot three chapters have brought us to, we ahall be prepared to comprehend the science of Biology as a whole ; and to eee how its trathe may beat be clacuified.

In the chapters treating of Organic Matter, the Actions of Forcen on it, and ite Reactions on Forcea, the generalizatione reeched were these:-that organic matter is opecinally acneitive to surrounding agencies; that in consequence of tho cxtreme instability of the componnds it contains, minute disturbances can cause in it large amounte of ro-dintribution; and that during the fall of ite unetably-arranged atoma into atable arrangementa, there are given out proportionately large amounts of motion. We eaw that organio matter is so conatituted, that amall incident actions aso capable of initialing great reaotione-setting ap extensive atructural modifice. tiona, and liberating lerge quantitice of power. In the chapters juat concluded, the changee of which Life is made up, were shown to be so edjusted as to balance outor changes. And tho general procese of the adjustment wo found reeolves iteelf into this; that if in the environment there are any selated seltione, A and B, by which the ore
ganism is affected, then if A produces in the organism some change a, there follows in the organism some change b, fitted in time, direction, and amount to meet the action B-a change which is often required to be much larger than its antecedent.

Mark, now, the relation between these two final results. On the one hand, for the maintenance of that correspondence between inner and outer actions which constitutes Life, an organism must be susceptible to small changes from small external forces (as in sensation), and must be able to initiate large changes in opposition to large external forces (as in muscular action). On the other hand, organio matter is at once extremely sensitive to disturbing agencies of all kinds, and is capable of suddenly evolving motion in great amounts. That is to say, the constitution of organio matter specially adapts it to receive and produce the internal changes required to balance external changes.
This being the general character of the vital Functions, and of the Matter in which they are performed, the science of Biology becomes an account of all the phenomena attendant on the performance of such Functions by such Matteran account of all the conditions, concomitants, and consequences, under the various circumstances fallen into by living bodies. If all the functional phenomena which living bodies present, are, as we have concluded, incidents in the maintenance of a correspondence between inner and outer actions; and if all the structural phenomena which living bodies present, are direct or indirect concomitants of functional phenomena; then the entire Science of Life, must consist in a detailed interpretation of all these functional and atructural phenomena in their relations to the phenomena of the environment. Immediately or mediately, proximately or remotely, every trait exhibited by organic bodies, as distinguished from inorganio bodies, must be referable to this continuous adjustment between their actions and the actions going on around them. Such being the extent and nature of our subject-matter, it may be thus divided.

1. An account of the structural phemomena presented by organisms. And this subdivides into:-
a. The structural phenomena presented by individual organiams.
b. The structural phenomens presented by secceceione of organisma.
2. An account of the functional phenomena which organiems preeent. And this, too, admits of sub-division into :-
a. The funotional phenomena of individual orgenisme.
b. The fanotional phenomens of successions of organiame.
3. An account of the actions of Structure on Function, and the re-actions of Function on Structure. And like the others, this is divisible into :-
a. Tho actions and re-actions as exhibited in individual organiama.
4. Tho actione and reactions as exhibited in succeamions of organiame.
5. An account of the phenomena attending the production of successions of organiams: in other words-the phenomens of Granesio.

There in, indeod, another mode of grouping the facts of Bialogy, with which all are familiar. According as they are facts of animal or vegotal life, they may be claseed under the hoade of Zoology and Botany. Bat this dirision, though convenient and indeod necemary for practioul purposes, is one that does not here concern us. Dealing with organic otructures and functions in connexion with thair cancea, conditions, concomitante, and consequences, Biology cannot divide itrelf into Animal-Biology and Vego-tal-Biology; aince the samo fundamental clesses of phenomens are common to both. Recognixing this familiar diatinction colly as much es convenience obliges ua to do, lot us now pees on to consider, more in dotail, the clmaification of biologic phonomena, above eet down in its leading aullinem
f38. The feote of structure which an individan ar

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

and types of organisms, there are hidden fundamental similarities; and that the coursee of development in such groupa and clusses and types, though iu many reapects divergent, are in solue eseential reepects, coincident. The wide truthe thus disclosed, come under the heade of General Morphology and General Embryology.

By contrasting the structures of organiems, there is also achieved that grouping of the like and eoparation of the unlike, called Clesaification. Firet hy obeervation of external characters ; second by obvervation of internal charaotera; and third by obeervation of the phaces of development; it is ascertained what organisms are most similar in all particulars; what organisms are like each other in every important attribute; what organisme bave common primordial characters. Whence there finally results such an arrangement of organiems, that if certain atructural attributee of any one be given, ite other structural attributes may be empirically predicted; and which prepares the way for that interpretation of their relations and genevin, which forms an impartant part of rational Biology.
839. The cocond main division of Biology, above do ecribed as embracing the functional phenomena of organiame, is that which is in part signifed by Physiology : the remainder being what we distinguiah as Paychology. Both of these full into cubdivisiona that may beat be treated eeparatedy. That part of Physiology which is concerned with the molecular changes going on in orgenisms, is known as Orgenic Chemiatry. An acoount of the modes in which the force generated in organismes by cherrical change, is traneformed into other forcos, and made to work the vurious orgrans that carry on the funotione of Iife, comea undor the head of Organic Phyaice. Paychology, which in mainly concerned with the adjuatment of vital actione to actione in the environment (in contrast with Physiologs. mhiah in mefoly cosocerned with vital section apart from
actions in the environment) consists of two quite distinct portions. Objective Psychology deals with those functions of the nervo-muscular apparatus by which such organisms as possess it, are enabled to adjust inner to outer relations; and includes also, the study of the same functions as externally manifested in conduct. Subjective Psychology deals with the sensations, perceptions, ideas, emotions, and volitions that are the direct or indirect concomitants of this visible adjustment of inner to outer relations-considers these several kinds of consciousness in their genesis, and their connexions of co-existence and succession. Consciousness under its different modes and forms, being a subject-matter radically distinct in nature from the subject-matter of Biology in general ; and the method of self-analysis, by which alone the laws of dependence among changes of consciousness can be found, being a method unparalleled by anything in the rest of Biology; we are obliged to regard Subjective Psychology as a separate study -not absolutely, of course, but relatively to the mind of each student. And since it would be very inconvenient to dissociate Objective Psychology from Subjective Psychology, we are practically compelled to deal with the two as forming an independent sub-science, to be treated apart from the lower divisions of Biology.

Obviously, the functional phenomena presented in successions of organisms, similarly divide into physiological and peychological. Under the physiological, come the modifications of bodily actions that arise in the course of generations, as concomitants of structural modifications; and these may be modifications, qualitative or quantitative, in the molecular changes classed as chemical, or in the organic actions classed as physical, or in both. Under the peychological, come the qualitative and quantitative modifications of instincts, feelings, conceptions, and mental changes in general, that occur in creatures having more or less intelligence, when certain of their conditions are changed. This, like the preceding department of Paychology, has in
the abstract two different aspects-the objective and the aubjective. Practically, however, the objective, which deale with there mental modifications as exhibited in the changing habits and abilities of successive generations of creatures, is the only one that admits of scientific investigation; since tho correeponding alterations in consciousness, cannot be immediatcly known to any but the subjecte of them. Evidently. convenience requires us to closes this part of Psychology along with the other partes in a distinct sub-ecience.

Light is thrown on functions, as well as on etruotures, by comparing organiams of different kinds. Comparativo Phyaiology and Comparative Prychology, aro the namee given to thoes collections of frets respecting the homologies and anulogica, bodily and mental, that are brought to light by thin kind of inquiry. Theee claseified obeervations concerning likenowes and differences of functions, are helpers to interpret functions in their cesential natures and relationa. Henco Comparativo Physiology and Comparative Psychology are names of methode, rather than names of true subdivisions of Biology.

Here, however, as before, the comparioon of special trathen beaides facilitating their interpretation, brings to light certain gencral truthe. Contrasting bodily and mental functions as exhibited in various orders of orgenisme, shows that thore exista, more or looe extencivaly, a community of procoesen and methode. Hence realt two groupe of abotract propositions, conatituting General Physiology and General Pogchology.

1. 40. In theee various divisions and cub-divisions of the firat two great dopartmente of Biology, the phenowena of Burweture are concidered eoparataly from the phenomens of Function, $\infty 0$ far as separato treatment of them is poseiblo. The third great dopartment of Biology deale with them in their necceeary connoxione. It comprehende the doterrioin.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

tated, worke, by re-action, altered etructure; and howin succoeding generations, this altered structure may be made continually more marked by this altered function. Though logically distinct, these two sub-divisions of biologio inquiry cannot in practice be carried on apart. A apeciality of structure which leads to an excese of function in any direotion, is, by the perpetual re-action of function, rendered ever more decided. A speciality of function, by calling forth a corroeponding speciality of structure, produces an increasingly efficient discharge of such function. Whichever of the two initiates the change, there goes on between them an unceseing action and re-action, producing in them co-ardinate modificationa.
f 41. The fourth greet division of Biology, comprehending the phenomens of Genesin, may bo conveniently eoparated into three rub-divicions.

Under the first, comee a deccription of all the apecial modes whereby the multiplication of organiems is carried on: which modee range themeelves under the two chief hends of cexual and acexval. An account of Sexual Multiplication includee the varions methods by which germe and ova are Sartilized, and by which, after fertilization, they aro furniohed with the materiale, and maintained in the conditione, needful for their development. An account of Aecxual Multiplican tion inoludes the various methode by which, from the same fertilised germ or ovam, there are producod many organimes that are partially or totally indeppeadont of each other.

The eccoud of theee cab-divisions deale with the phenomena of Genosia in tho abeatract. It takes for ite mabjeot-raatter, such geosenc questione co-What in the end cubberved by the union of eperm-oill and germ-cell ? Why cunnot all multiplication be carried on altar the aecrual mothodif What are the lawe of bereditary tranemisaion 8 What are the caunes of variation ?
The thind cub-divimion is doroted 20 atill more ubotract
aspects of the phenomena. Recognizing the general facts of multiplication, without reference to their modes or immediate causes, it concerns itself simply with the different rates of multiplication in different kinds of organisms, and different individuals of the same kind. Generalizing the numerous contrasts and variations of fertility, it seeks a rationale of them in their relations to other organic phenomena
42. Such appears to be the natural arrangement of divisions and sub-divisions which Biology presents, when regarded from the highest point of view, as the Science of Life-the science which has for its subject-matter, the correspondence of organic relations, with the relations amid which organisms pxist. This, however, is a classification of the parts of Biology when fully developed; rather than a classification of the parts of Biology as it now stands. Several of the sub-divisions above named have no recognized existence ; and sundry of the others are in quite rudimentary states. It is therefore impossible now to fill in, even in the roughest way, more than a part of the outlines here sketched.

Our course of inquiry being thas in great measure determined by the present state of knowledge, we are compelled to follow an order widely different from this ideal one. It will be necessary first to give an account of those empirical generalizations which naturalists and physiologists have established : arranging them rather with a view to facility of comprehension than to logical sequence; and appending to those which admit of it, such deductive interpretations as First Principles furnish us with. Having done this, we shall be the better prepared for dealing with the lending truths of Biology, in connexion with the doctrine of Evolution.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

CHAPTER L

GROWTH.

543. Perhaps the widest and most familiar inductior of Biology, is that organisms grow. While, however, this is a characteristic so habitually and markedly displayed by plants and animals, as to be carelessly thought peculiar to them, it is really not so. Under appropriate conditions, increase of size takes place in inorganic aggregates, as well as in organio aggregates. Crystals grow ; and often far more rapidly than living bodies. Where the requisite materials are supplied in the requisite forms, growth may be witnessed in non-crystalline masses: instance the fungus-like accumulation of carbon that takes place on the wick of au unsnuffed candle. On an immensely larger scale, we have growth in geologic formations: the slow accumulation of deposited sediment into a stratum, is not distinguishable from growth in its widest acceptation. And if we go back to the genesis of celestial bodies, assuming them to have arisen by Evolution, these, too, must have gradually passed into their concrete shapes through processes of growth. Growth is indeed a concomitant of Evolution; and if Evolution of one kind or other is universal, growth is universal-universal, that is, in the sense that all aggregates display it in some way at somo period.
The essential community of nature between organic growth and ingrganic growth, is, however, most cloanly
on obeerving that they both result in the same way. The eegregation of different kinds of detritus from each other, as well as from the water carrying thema, and their aggregation into distinct strata, is but an instance of a oniversal tendoncy towards the union of like units and the parting of unlike units (First Principles, § 123). The deposit of a crystal from a solution, is a differentiation of the previoully mixed atoms ; and an integration of one class of atoms into a eolid body, and the other clas into a liquid solvent. Is not the growth of an organism a subetantially similar process? Around a plant there exist certain clements that are like the elements which form its substance; and its increase of cize is effected by contionally integrating thene amorounding like elements with itelf. Nor doen the animal fundementally differ in this respect from the plant or the crystal. It food is a portion of the environing matter, that contains conne compound atoms like yome of the compound atoms constituting its tissues; and cither through simple imbibition or through digeotion, the animal eventually integrates with iteolf, units like those of which it is built up, and leares behind the unlike unita. To prevent misconception, it may bo wall to point out that growth, as here defined, must be diatinguiahed from certain apparent and real augmentations of bulk which simulate it. Thus, the long, white potatoahoots thrown out in the dark, are produced at the expense of the subetancce which the tuber contains: they illuatrate not the accumulation of organic matter, but simply its rearrangement. Certain animalembryos, again, during their carly stagen, increase considerably in sizo without assimilating any solids from the environment; and thoy do this by abeorbing the surrounding water. Even in the higheet organisma, as in children, there appears cometimes to ocour a rapid gain in dimencione, that does not truly measure the anded quantity of argenic matter; but is in part due to changes analogous to thoee just named. Alterations of him

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

aition, wo still find the limit of growth to have a great range. The smallest branched flowering plant is extremely insignificant by the side of a forest tree; and there is an enormons difference in bulk between the least and the greats est mammal. But on comparing members of the same apecies, we discover the limit of growth to be much lese variable. Among the Protosoa and Protophyta, ceoh kind has a tolerably constant adult size; and among the moot compleas organisms, the differences between thooe of tho eame kind that have reached maturity, ane usually not very ereent The compound plants do, indeed, eometimes preeent marked contraste between atunted ened rall-greem individuala; but the higher animale diverge but inconsiderably from the average standarde of their apeciea.

On surveying the facte with a view of empirically general ising the causes of theer difterencees, wo are coon made aware that by variously combining and conflicting with each other, those causes produce great irregularities of result. It bocomes manifest that no one of them can be traced to ite coneequences, unqualifiod by the reat. Hence the coveral oratoments contained in the following paragraphe, must bo taken as cubjoct to mutual modification.

Let us consider first, the connexion between dergee of growth and complexity of otructure. This connexion being involved with many offera, becomes apparent only on so averaging the comparioona, as to eliminato diffrerenocs among the rees. Nor doee it hold at all where the conditions are radically dimimilar; as between plante and animala. But bearing in mind these qualificationa, wo chall moo that orgunimation has a determining influenco on increase of mamer Of plants the lowest, cleseed am Thallogene, Erifiafy attain no considerable cisa. Lichean, Algre, and Fungi, count among their numbera but few bollky apeciea: the lorgeor, auch ae oertain Algoofound in antartio sees, not corviag greaty to nise the average. Though among Aerogens there are some, an the Treo-farne, which attain a
considerable height, the majority are but of humble growth. The Endogens, including at one extreme small grasses and at the other tall palms, show us an average and a maximum greater than that reached by the Acrogens. And the Endogens are exceeded by the Exogens; among which are found the monarchs of the vegetal kingdom. Passing to animals, we meet the fact that the size attained by Vertebrata is usually much greater than the size attained by Incertebrata. Of invertebrate animals the smallest, classed as Protozoa, are also the simplest; and the largest, belonging to the Annulosa and Mollusca, are among the most complex of their respective types. Of vertebrate animals we see that the greatest are Mammals; and that though, in past epochs, there were reptiles of vast bulk, their bulk did not equal that of the whale. Between reptiles and birds, and between land-vertebrates and aquatic vertebrates, the relation does not hold : the conditions of existence being in these cases widely different. But among fishes as a class, and among reptiles as a class, it is observable that, speaking generally, the larger species are framed on the higher types. The critical reader, who has mentally checked these statements in passing them, has doubtless already seen that this relation is not a dependence of organization on growth, but a dependence of growth on organization. The majority of Exogens are smaller than some Endogens; many Endogens are exceeded in size by certain Acrogens; and even among Thallogens, the least developed of plants, there are kinds of a size which many plants of the highest order do not reach. Similarly among animals: there are plenty of Crustaceans less than Actinis; numerous reptiles are smaller than some fish; the majority of mammals are inferior in bulk to the largest reptiles; and in the contrast between a mouse and a well-grown Medusa, we see a creature that is elevated in the scale of organization, exceeded in maks by one that is extremely degraded. Clearly then, it cannot be held that high organization is habitually
accompanied by sreat eize. The proposition here illuetrated is the converve one, that preat size is habitually scoompenied by high organisation. The conspicuons fuct that the largen species of both animals and regetals belong to the highest clames; and that throughout their various sub-clasees the higher usually contain the more bulky forms; shows this conuexion as clearly as we can expect it to be shown, amid so many modifying causes and conditions.

The relation between growth and supply of available nutriment, is too familiar a relation to noed proving. There are, however, come aspects of it that must be contemplated bofore its implications can be fully appreciatod. Among planta, which are all constantly in contact with the gaseous, liquid, and solid matters to be incorporated with their tiveues; and which, in the same locality, receive not very unlike amounts of light and heat; differences in the supplies of available nutriment, have bat a subordinate connexion with differences of growth. Though in a cluster of herbe apringing up from the soede lot fall by a parent, the greater size of come than of others in doubtlene due to better nutrition, consequent on accidental advantages; yet no such interpretation can be given of the contrast in size between thees harbe and an adjacent tree. Orher conditions here come into play: one of the moot important probably being, an aboence in tho one cane, and prowenco in the other, of an ability to socreto euch a quantity of ligneous fibre as will produce a stem capable of cupporting a large frowth. Among enimale, bowever, which (oxcepting some Entaroa) ditter from plante in this, that instead of bathing their surfices, the matters they subsist on are disporsed, and have to be obtainod; the relation botween availablo food and growth. is chown with more regularity. The Protozoa, living on miorococopic fragmente of organic matter contained in the carrounding wator, are nuable, during their brief lives, to acoumalate any considerable quantity of nutriment. Polypee and Mollmaonida, having for food these acarcely visible memp

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

the mimal kingdora, some case where classes othorwise allied, are contrasted in their locomotive activitios. Let us compare birds an the one hand, with reptiles and mammals m_{n} the other. It is an accepted doctrine that birds are organised on a type cloeely allied to the reptilian type, but suparior to it; and though in many respects the organization of birds is inferior to that of mammale, yet in other respoots, as in the greator heterogeneity and integration of the ekeleton, the more complex development of the reepiratory system, and the higher temperature of the blood, it may be held that birds stand above mammals. Hence were growth dopendent only on organization, we might infer that the limit of growth among birds should not be much ahort of that among mammals; and that the bird-type should admit of a lerger growth than the reptilo-type. Again, we 800 no manifeet disedvantages under which birds labour in obtaining food, but from which reptilex and mammale are free. On the contrary, birds aro ublo to got at food that is fixed boyond the reach of reptiles and mammals ; and can catch food that is too owif of movement to bo ordinarily caught by reptiloe and mammals. Nevertholeses, the limit of growth in biris, falls far below that reached by reptiloe and mammals. With what other contrast between theso clasece, is this contrust connected P May we not cuapect that it is consectod with the contrest botween their amounte of locomotive exertion? Wheroes mummale (excepting bates, which aro small), are during all their movemonts cupported by solid sarfacee or denso liquidn; and wherene reptiles (excopting the ancient plerciectyles, which were not very large), are cimilarly neatricted in thoir sphores of moroment ; the majority of binds move moro or low habitually through a rare medium, in which thoy cannot eupport themselvee without relatively great 2arte. The conclusion that there exista this inverso gntio botween growth and axpenditure of force, is enforced by the igigiticant fich, that thowe mombere of the clies 4 Nm , no the Dinormin and Epiorwio, which approached in siso to
the larger Mammatia and Reptilia, were creatures incapable of flight-creatures which did not expend this excess of furce in locomotion. Further evidence that there is an antagonism between the increase of bulk and thaquantity of motion evolved by an organism, is supplied br the peneral experience that human beings and domcstic animals, when overworked whie growing are prevented from attaining the ordinary dimensions.

One other general truth concerning degrees of growth, must be set down. It is a rule, haring exceptions of no great importance, that large organisms commence their ceparate existences as masses of organio matter more or less considerable in size, and commonly with organizations more or less advanced; and that throughout each organic sub-kingdom, there is a certain general, though irregular, relation between the initial and the final bulks.

Vegetals exhibit this relation mach less clearly and constantly than animala. Yet though, among the plants that begin life as minute spores, there are some which, under their special conditions, grow to considerable sizes, the immense majority of them remain small. While, convereely, the great Endogens and Exogens, when thrown off from their parenta, have already the formed organs of young planta, to which are attached large stores of highly nutritive matter. That is to say, where the young plant consists merely of a centre of development, the ultimate growth is commonly insignificant; but where the growth is to become great, there exista to start with, a well-developed embryo and a stock of assimilable matter.

Throughout the animal kingdom, this relation is tolorably regular. Seve among olasees that escape the ordinary requiremonts of animal life, emall germs or egge do not give rise to bulky creatures. Where groat bulk is to be reached, tho young proceeds from an egg of considerable bulk, or is born of considerable bulk ready-organized and partially active. In the clams fishes, for instance, a cortain avarage proportion obtains between the sizes of the ova and the sizes of the adult indi-
dividuals ; and among the highest fishes, as sharke, the egge are comparatively few and comparatively large Reptiles have oggs that are smaller in number, and relatively greator in maes, than those of fishes; and thronghout this clase, too, there is a general ratio between the bulk of the egg and the bulk of the adult creature. As a group, birds ahow us a further limitation in the number of their egga, and a further increase in their relative sizes; and from the minute eggs of the humming.bird up to the immense once of the Epiornis, holding several quarts, we that, speeking generally, the greater the eggs, the greater the birds. Finally, among mammals (omitting the marsupials) the young aro born, not only of comparatively large sizes, but with advanced organizations; and throughout this sub-divinion of the vertebrata, as throughout the others, there is a munifeat connexion between the sizes at birth and the sizees at maturity. As having a kindred meuning, there must finally be noted the fact, that tho young of theee highest animala, beaidee etarting in life with bodics of considerable sizes, almoat fully organizod, are, during subsoquent poriode of greater or lee length, supplied with nutri-mont-in birds by feeding, and in mammals by auckling and afterwarda by foeding. That is to sey, beyond the mase and organization direotly bequenthed, a bird or mammal obtaina a further large mase at but litule cost to iteelf.

Wore an exheustivo treatment of the topic intended, it would be needful to give a paragraph to each of the many incidental circumatancoe by which growth may be aided or reotrictod. Such factes as that atemornon in limited by the size of the croature, or oven tho organ, in whiah it thrives; that an epizoon, though getting abundant nutriment without approcioblo oxartion, is restricted to that emaall bulk at whioh it cocapes reedy detection by the apimal it infertes; that sometimes, as in the weesel, cmallinese in a condition to sucocenful pursuit of the enimals preyod apon; and that at other timan the edvantage of revombling cortain other oree-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

excoptions, are, by the conditions of their existence, required to take in nutriment through one specialized part of the body, it is olear that there must be a means whereby other parts of tho body, to be supported by this nutriment, must have it convoyod to them. It is clear that for an equally officiont maintenance of their nutrition, the parts of a large mass must havo a more elaborato propelling and conducting apparatus; and that in proportion as theee parts undergo groator wasto, a yot higher dovelopment of the vascular eyotom is neocositatod. Similarly with the pre-requisitee to thooe mochanical motions which animals are required to perform. The parts of a mass cannot be made to move, and have their movements so co-ordinated as to produco locomotivo and other actions, without certain structural arrangomonta; and, other things oqual, \mathfrak{n} given amount of such aotivity requires moro involved structural arrangements in a large mane than in a mmall one. There must at loaist be a co-ordinating apparatus precenting greater contrasts in its contral and peripheral parta.

The qualified depundence of growth on organization, is uqunlly implied when we atudy it in connoxion with that adjustment of inner to outer relations which conutitutee Life. In plante this is not conspicuous, becauso the adjustment of innor to outer relations is but small. Still, it is risible in the fact that the coodition an Erhich oply a plant can grory fo a preat siso, is, that it ahall be the dorelopment of an mamive truank, prowart inner rolations of forcocs fitted to connpeombalance thoce outor relatione of forcese, which tend emutinurlly und occasionally to overthrow it; and this formation of a core of regalarly-arrangod woody fibrea, in an edrance in orgitization. Throughoat the enimel kingdom, this connestion of phonomona is manifoet. To obtain malerinile for
 to monpe ibove eacmion which bring growth to a sudden eod; inmitics in the organiem, the meene of fitting ite movemente © moot numprone extornal co-exittoncen and cequencen-
amplies such various structural arrangemente as ahall make possible these variously-adapted actions. It cannot be questioned that, everything else remaining constant, a more complex animal, capable of adjusting its conduct to a greater number of surrounding contingences, will be the better alle to socure food and erade dapage, and so to increase bulk. And evidently, without any qualification, we may say that a lurge animal, living under such complex conditions of existence as everywhere obtain, is not possible without comparatively high organization.
While, then, this relation is traversed and obscured by sundry other relations, it cannot but exist. Deductively we see that it must be modified, as inductively we sam that it is modified, by the circumstancos amid which each kind of organism is placed; but that it is ulways a factor in determining the result.
\$45. That growth is, cateris paribus, dependent on the supply of assimiluble matter, is a proposition so continually illustrated by special experience, as well as so obvious from general experience, that it would scarcely need stating, were it not requisitz to notice the qualifications with which it must be taken.

The materials which each organism requires for building itwelf up, are not of one kind, but of several kinds. As a vehicle for transerring matter through their structures, all organisms require water as well as solid constituents ; and however abundant the solid constituents, there can be no growth in the abeence of water. Among the solids supplied, there must be a proportion ranging within certain limits. A plant round which carbonic acid, water, and ammonia exist in the right quantities, may yet be arrested in its growth by a deficiency of silica. The total abeence of lime from its food, may stop the formation of a mammal's akeleton: thus dwarfing, if not eventually deatroying, the mammal; and thin, no matter what quantitios of other needful colloids and ecyotalloide are furnished.

Again, the truth that, other things equal, growth varics according to the supply of nutriment, has to be qualified by the condition, that the supply shall not exceed the ability to appropriate it. In the vegetal kingdom, the asaimilating surfuce being external, and admitting of rapid expansion by the formation of new roots, shoots, and leaves, the effect of this limitation is not conspicuous : by artificially sapplring plants with thooe materials which they have nguilly tho mont dificulty in obtaining, we can greatly facilitate their prowth; and 80 can produce striking differences of sive in the same speciea. Even here, however, the effoct is confined within the limite of the ability to appropriate; rince in the abeence of that eolar light and heat, by the help of which the chief appropriation is carried on, the additional materiale of growth are unelese. In the animal kingdom this restriction is rigorous. The aboorbent surface being, in the great majority of canes, internal; having a compuratively small area, which cannot be greatly enlarged without roconatruction of the whole body; and being in conncxion with a vaccular aystem, which must aloo be ro-constructed before any considerablo increcee of nutriment can be mado availablo; it is cloar that beyond a certain point, rery soon Fenched, increase of nutriment will not cause increaso of growth. On the contrary, if the quantity of nntriment caken in, in greatly boyond tho aboorbent power, the excess, bocoming an obetacle to the regular working of the organism, mar rotard prowth rather than advance it.

While then it is cortain, a priori, that there cannot be growth in tho abernce of such cubetances as thone of which an organism cousiots; and wailo it is equally certain that the anounat of growth muat primarily be governed by tho supply othooe suberances; it is not lon cortmin that oxtra supply vill not produce oxtion growth, beyond a paint very woon reparal. Deduction abown to 60 nocosary, on induotion makeo familiar, the truthe that, the value of food for purpoces of growth dopende not on the quantity of the variom

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

of nutritive matter which the pre-axiating structure of an organism onable it to absorb; and it is a neceseary corollary from the paraistence of foroe, that the matter accumulated as growth, cannot exceed that surplus which remains undecomposed, after the production of the required amounts of sensible and insensible motion. This, which would be rigorously true under all conditions, if exactly the same substances were used in exactly the same proportions, for the production of force and for the formation of timme, requires; however, to be taken with the qualification, that some of the force-evolving substances are not constituents of tissue; and that thus, there may be a genesis of force which is not at the expense of potential growth. But since organisms (or at least animal organisma, with which we are here chiefy concarned,) have a certain power of seloctive abeorption, which, partially in an individual and more complotely in a race, adapte the proportions of the substances absorbed to the noeds of the syetem; thon if a certain habitual expenditure of forse, lewds to a cortain hubitual abeorption of forcoevolving mattere that are not available for growth ; and if, were there less need for such matters, the ability to absorb matters available for growth would be increased to an equivolent extent; it follows that the antagonism described, does, in thelong run, hold even without this qualifications Hence, growth is substantially equivalent to the absorbed nutriment, minns the nutriment used up in action.

This, bowever, is no anowor to tho quention-why has individual growth a limit P The antugoniam doecribed, does not manifently mecount for the fact, that in every domestio animal the increments of growth bear continually decreasing ratios to the muss, and finally come to an ond. Novertheless, it in demronatrable that the excens of absorbed over expended nutriment, must, other things equa, become tess as the size of the animal becomes greater. In oimilarly-shapedbodies, The masses vary as the cubes of the climensions: whereas the etrenghs Vary as the squares of the dimensions. See here
the eolution of the problem. Supposing a creature which a year ugo was one foot high, has now become two feet high, while it is unchanged in proportions and structure; what are the necossary concomitant changes that have taken place in it? It is eight times as heavy; that is to say, it has to resist eight times the strain which gravitation puts on its structure; and in producing, as well as in arresting, every one of its movements, it has to overcome eight times the inertia. Meanwhile, the muscles and bones have eoverally increased their contrectile and resisting porfers in psonportion to the areas of their transverse seotions; and hence ure severally but four times as stroug as they were. Thus, while the creature has doubled in height, and whilo its ability to overcome forces has quadrupled, the forces it has to overcome have grown eight times as great. Hence, to raise its body through a given space, its muscles have to be contracted with twice the intensity, at a double cost of matter expended. This necessity will be seen still more clearly if we leave out the inotor apparatus, and consider only the forces required and the means of supplying them. For since, in similar bodios, the areas vary as the equares of the dimensions, and the masees vary as the cubee; it follows that the abeorbing surface has beoome four timees as great, while the weight to be moved by the matter absorbed has become eight times as great. If then, a year ago, the aboorbing surface could take up twice as much nutriment as was needed for expenditure, thus learing one-half for growth, it is now able only just to zweet expenditare, and can provide nothing for growth. However great the excess of aceimilation over waste, may be during the early life of an active organism, we see that because a caries of numbers increasing as the cubes, overtakes a serics increciotig as the equares, even though atarting from a much amaller number, there must be reached, if the organism lives long enongt, e point at which the surplus assimilation is brought down to nothing - a point at which expenditure butreces nutrition-a state of moving equilibrium. This,
however, though the chief, is not the sole, varying relation between degrees of growth and amountsof expended force. There are two more; one of which conspires with the least, while the other conflicts with it. Consider in the first place, the cost at which nutriment is distributed through the body; and effete matters removed from it. Each increment of growth boing added at the periphery of the organism, the force expended in the transfer of matter must increase in a repid progression-a progression more rapid than that of the mass. But as the dynamic expense of distribution is amall compared with the dynamic value of the materials distributed, this item in the calculation is unimportant. Now consider, in tho eccond place, the changing proportion between production and loss of heat. In similar organisms, the quantities of heat genorated by similar actions going on throughout their substance, must increase as the masecs, or as the cubee of the dimensions. Meanwhile, the surfaces from which lose of heat by radiation takec placo, increase only as the equares of the dimensiona. Though the loes of heat does not therefore increase only as the equares of the dimensions, it cortainly increaces at a emallor rate than the cubes. And to the extent that augmentation of mases recults in a greater retention of beat, it effects an economization of force. This advantage is not, bowever, so important as at frot appoars. Organic heat in a concomitant of organic action, and is so abundantly producod during action, that the loes of it is then of no consequence: indeed the tom is ofton nut rapid eoough to koep the supply from rining to an incourenient excese. It is only in reppeot of that manintonanco of heat which is needful during quieeconce, that large organiams have an adrantago over cracll ones in this relatively diminished lose. Thus these two cubsidiary solations betwreen degrees of growth and amounts of expended farcen, being in antagoniern with each other, wo may conclude that their differential result docen not greatly modify the, result of the chiof ralation provionaly sot forth.
Any one who proceode to teot this deduction, will fond some

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

is said to grow as long as it livee; and there appears reacon to think that some predaceous fishes, such as the pike, do the came. That these animals of comparativels high orespoisation, have no dofinite limits of growth, is, howerer, en orcoptional rec due to the excaptionul non-fulfilmant of those conditions which entair limitation. What kind of lifo doee a arocodile lead? It is a cold-blooded, or almost coldblooded, creature ; that is, it expends very little for the maintenance of heat. It is habitually inert: not chasing prey, but lying in wait for it ; and undergoes considarable exertion only during ite ocoasional brief conteste with - prove Snich other exertion as is, at intorvals, noedful for moving froge phece to phece, is rendered small by the small differenco betwoen the animalis speoifio gravity and that of wator. Thue the crocodile expends in muscular action, an amount of force that is insignificant compared with the force commonly expended by land-animals. Hence its habitual aesimilation is diminiahed much leas than noual by habitual wasta; and beginning with an oxcessive diaproportion between the two it is quite pomible for the one never quite to lose its advanco over the other while life continues. On looking closer into such casces as this and that of the pike, which is similarly cold-blooded, cimilarly lies in wait, and is similarly able to obtain larger and larger kinds of proy as it increacen in sise; wo divcover a further reason for this absence of a definito limit. Tho mechanioal caumes neconitating a limit, are hero ouly partially in action. For a creature living in a medium of nearly the same doncity as itu body, hee not constandy to overcome that gravitative forco which is the chicef resiotanco to be mot by terrectrial enimala: it hae not to expeod for thio purpoec, a muscular power that is large at tho outcot, and increaces as the arbee of itr dimensions. The only force increaning as the cubse of ita dimensions, which it has thue to ororcomen, in the inertin of its parta. The axcoptional cantingance of growth obeorred in creaturce so circumotancod, is therefore porfectly axplicabla.
147. Obviously this antagonism between accumulation and expenditure, must be a leading cause of the contrasts in sizo between allied organisms that are in many reepects similarly conditioned. The life followed by each kind of animal, is one involving a certain average amount of exertion for the obtainment of a given amount of nutriment-an exertion, part of which goes to the gathering or catching of food, part to the tearing and mastication of it, and part to the afterprocesses requisite for separating the nutritive atoms-an exertion which thercfore varies according as the food is abundant or scarce, fixed or moving, according as it is mechanically easy or difficult to deal with when secured, and according as it is, or is not, readily soluble. Hence, while among animals of the same species having the same mode of life, there will be a tolerably constant ratio between accumulation and expenditure, and therefore a tolerably constant limit of growth ; there is every reason to expect that different species, following different modes of life, will have unlike ratios hotween accumulation and expenditure, and therefore unlike limits of growth.

Though the facts as inductively established, show a general harmony with this deduction, we cannot usually trace this harmony in any specific way; since the conflicting and conspiring causes which affect growth are so numerous. The only contrast which seems fairly to the point, is the beforenamed one between the vertebrates which fly, and the most nearly-allied vertebrates which do not fly: the differences in degrees of organization and relations to food, being not such as seriously to affect the comparison. If it be admitted that birds habitually expend more force than mammals and reptiles, then it will follow $\dot{\delta}$ priori, that, other things being tolerably equal, they should have a lower limit of growth than mammas and reptiles; and this wee know to be the fact posteriori.
§ 48. One of the chief causes, if not the chief cause, of
the differences between the sizes of organisms, has yot to be considered. We are introduced to it by pushing the alove inquiry a little further. Small animals have been shown to posecse an advantage over large onee, in the greater ratio which, other things equal, assimilation bears to expenditure: and we have seen that hence, small animals in becoming large ones, gradually lose that surplus of assimilative power which they had, and eventually cannot assimilate more than is required to balance waste. But how come these animuls while young and small, to have surplas assimitative powers? Have all animals equal surplus of assinilative powers ? And if not, how far do difierences between the surpluses dotermine differences between the limits of growth? We shall find in the answers to theee questions, the interpretation of many marked contrasts in growth that are not due to any of the causes above amigned. For example, an ox immencely excoeds a sheep in mass. Yet the two live from ganeration to generation in the same felde, eat the same grase and turnipe, obtain these aliments with the same small expenditure of force, and differ scarcely at all in their degrees of organisation. Whence arises, then, their atriking unlikeness of bulk?

Wo noted when studying the phenomena of growth inductively, that organisms of the larger and higher types, commonoe their separate oxistencee, as masees of organic mattor having tolerable magnitudca. Speaking generally, we saw that throbagrout dion orgmic sab-kingdom, the acquirsment of great bulk occurs only where tho incipient bulk and orgenisation are considerable; and that they are the more considerablo in proportion to tho complexity of the life which the organism is to lead.

The deductive interpretation of this induction may beat be commenced by an analogy. A stroet orango-rondor makes but a trifing profit on each transaction; and unlees more than ordinarily fortunate, be is unable to roalize during the day a largor amount than will mout his wanta: learing him to start on the mirrow in the same condition as

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

And clcarly, the ability of an organism to expend largely and avimilate largely, so as to make a large surplus, presupposes a largo physiological capital, in the shupe of organio natior more or less complote in its structural arrangermenta.

Throughout the vegetal kingdom, the illustrations of this truth are not conspicuous and regular : the obvious reason being, that since plants are accumulators and in so small a degree expenders, the premises of the above argument are but very partially fulfilled. The food of plants (axcopting Fungi and certain parasites) being in a great measure the sance for all, and bathing all so that it can be aboorbed without effort, thoir vital procesees result almost entirely in profit. Onco fuirly rooted in a fit pluce, a plant maje thun form the outcoot sed its ontire relurns to capitul; and may coon bo able to carry on its proceses on a large scale, though it does not at first do 80. When, howevor, plants aro expenders, namaly, during their germination and first eluges of growth, their dogrees of growth are determined by their amounte of vitul capital. It is beosuse the young tree commences life with a remdy-formed embryo and store of cood sufficient to last for come time, that it is enabled to otrike root and lin its head above the surrounding herbage. Throughout the animal kingdom, however, the neccesity of this relation is everywhere obvious. The small carnivore preying on amall herbivores, can incrowso in sizo only by anall incremonta : ito organization unfitting it to digeot largor ereatures, even if it can kill thema, it cannot profit by atnounts of natriment excooding a narrow limit; and its poesiblo incroments of growth boing amall to cot out with, and rapidly docroasing. must come to an end before any considerable sizs is attoined. Manifoetly the young lion, born of tolorable bulk, suekled until much biggor, and fod until half-grown, is enubled hy tho powor and organization which bo thus gets gratis, to catch and kill animalu of aizo cenongh to give bim the large supply of uutriment meoded to meot his large expenditure, and yot leave a large curplus for growth. Thus than in axplained
the above-named contrast between the ox and the sheep. A culf and a lamb commence their physiological transactions on widely different scales; their first increments of growth are similarly contrasted in their amounts; and the two diminish. ing series of such increments, end at similarly-contrasted limits.
§49. Such are the several conditions by which the phenomena of growth are governed. Conspiring and conflicting in endless different ways and degrees, they in every case qualify more or less differently each other's effects. Hence it happens that we are obliged to state each generalization as true on the averifge, or to make the proviso-other things. equal.

Understood, in this qualified form, our conclusions are these. Firsty that growth being an integration with the organism, of such environing matters as are of like nature with the matters composing the organism, its prowth is dependent on the available supply of such matters: this is alike a truth established by experience, and an inference from the truth given in our forms of thought (First Principles, § 67). Second, that the available supply of assimilable matter being the same, and other conditions not dissimilar, the degree of growth varies according to the surplus of nutrition over ex-penditure-a generalization which is illustrated in some of the broader contrasts between different divisions of organiems and is a direct corollary from the persistence of force. Third, that in the same organism, the surplus of nutrition over expenditure is a variable quantity; and that growth is unlimited or has a definite limit, according as the surplus does or does not progressively decrease: This proposition we found on the one hand exemplified by the unceasing growth of organisms that do not expend force; by the growth, slowly diminishing but never completely ceasing, of organisms that expend comparatively little Corce; and by the definitely limited growth of organisms that expend much force; and
on the other hand, we found it to follow from a cortain rela tive increase of expenditure that necessarily accompanies in crease of bulk, and to be therefore an indirect corollary from the persistence of force. Fourth, that among organisms which are large expenders of force the size ultimately atsained is, other things equal, determined br the initial nise: in prool of which conclusion we have abundant facta, as weil as the à priori necessity that the sum-totals of analogous diminishing series, must depend upon the amounts of their initial terms. Fifth, that where the likeness of other circumstances permits a comparison, the poesible extent of growth depends on the degree of organization : an inference tectified to by the larger forms among the various divisions. and sub-divisions of organisms; and inferable d prion fiuna tar conditions of axistences.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

minute structure. Let us glance at these propositions in the canorete. Leaving out those Rhisopode which are wholly structureless, every plant and animal in its earlieat otage, consists of a spherical sac, full of liquid containing organic matter, in which is suspended a nucleated coll, more or less distinct from the rest; and the first changes that occur in the germ thus constituted, are changes that take place round centres produced by division of the original centre. From this type of structure, the simplest organiams do not dopart ; or depart in no definite or conspicuous waye. Among plants, the Uredo and the reveral tribes of Protococci permanently maintain such a central distribution; while among animalo, it is permanently maintained by creaturee like the Grogarina, and in a different manner by the Ameba, Actinophrya, and their allice. In larger organisme, made up chiefly of units that are analogous in structuro to these simplest organisme, the formation of units ever continues to take place round points or nuclei; though the arrangement of these anits into groups and wholes may proceod after another method.

Contral dovelopmont may be distinguiahed into uniconernal and multicentral; acoording as the product of the original germ, develope symmotrically mund ono contre, or develope without subordination to one contre-develops, that is, in subordination to many coatres.

Unicentral dorelopment, as displayed not in the formation of single calls but in the formation of aggrogatea, is not common. The animal kingdom shows it only in the small groap named Thalaseicolle: inart, epherical mamee of jelly, with scarcoly any organization, which are found tloating in couthern sove. It is foebly roprowented in tho regotal kingdom by the Vot sax ybobator. On the other hend, multicentral devolopment, or dovolopmenes round insubordinate centrea, is varioualy exemplifiod in both divicions of the organio workl It is excmplified in two diatinct waym, scoording as the insoubordiuation among the contree of derulopmont is partial or totul

We may most conveniently consider it ander the heads henco arising.

Total insubordination among the centres of develcrinent, is shown where the units or cells, as fast as they are severally formed, part company and lead independent lives. This, in the vegetal kingdom, habitually occurs among the Proto. phyta; and in the animal kingdom, among the Protosoa. Partiul insubordination is seen in those somewhat advanced organisms, that consist of units which, though they have not separated, have so little mutual dependence that the aggregate they form is irregular. - Among plants, the Thallogens very generally exemplify this mode of development. Lichens, spreading with flat or corrugatel edges in this or that direction, as the conditions determine, have no manifest co-ordination of parts. In the Alga, the Nostocs similarly show us an unsymmetrical structure. Of Fungi, the sessile and creeping kinds display no further dependence of one part on another, than is implied by their cohesion. And even in such better-organized plants as the Marchantia, the general arrangement shows no referonce to a directive centre. Among animals, many of the Sponges may be cited as being thus devoid of that co-ordination implied by symmetry: the Amæba-like units composing them, though they have some subordination to local centres, have no subordination to a general centre. To distinguish that kind of development in which the whole product of a germ coheres in one mass, from that kind of development in which it does not, Professor Huxley has introduced the words "continuous" and "discontinuous;" and these seem the best fitted for the purpose. Multicentral development, then, is divisible into continuous and discontinuous.

From central development we pass insensibly to that higher kind of development for which axial seems the most appropriate name. A tendency towards this is vaguely manifested almost everywhere. The great majority even of Protophyta and Protozoa have different longitudinal and transverse di-
mensions-have an obecure if not a distinct axial structure The originally cellular units out of which higher organiona are mainly built up, usually pass into shapes that are subordinated to lines rather than to pointe. And in the higher organisms, considered as wholes, an arrangement of parts in relation to an axis is distinct and nearly universal. We sec it in the superior orders of Thallogens; and in all the Acrogens, Endogens, and Exogens. With few exceptions the Colento rata clearly exhibit it; it is traceable, though lees conspionously, throughout the Mollusecs; and the Ammalosa and Vertebrala uniforinly show it with perfect definitenese.

This kind of devalopment, like the first kind, is of two orders. The whole germ-product may arrange itself round a siagle axis, or it may arrange itself round many axes; the etructure may be uniavial or multiaxial. Each division of the organic kingdom furnishes examples of both thees orders. In such Furgi as exhibit axial development at all, we commonly see development round a single axis. Some of the Alga, as the common tungle, show us this arrangoment. And of the higher plants, many Endogens and cruall Exogens are uniaxial. Of animals, the advanced are without exception in this category. There is no known vertebrate in which the whole of the germ-product is not subordinated to a single axis. In the more fully-organized Aмлиlona, the like is almost universal ; as it is also in the superior orders of Mollusca. Multiaxial development occurs in moet of the plants we are familiar with-overy branch of a ahrub or treo being an independent axis. But while in the vegetal kingdom, multinxial devolopment prevaile among tho higheat typee; in the animal kingdom, it prevails only among the lowest types. It is extremely general, if not univeral. among the Colenferala; it is charactorintic of the Mollusecoide; arnong Molluscs tho compound Aecidiane axhibit it; and it is coen, though under another form, in the inferior Annulow.

Derolopment that is axial, like dovelopenent that is central.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

Any one adequately acquainted with the facte, may readily raise objections to this arrangement. He may name forms which do not obviously come under any of these heada. He may point to plants that are for a time multicentral, but afterwards develop axially. And from lower typee of animals, be may choose many in which tho continuous and dicoontimuone modes are both displayed. But, as already hinted, an arrangement free from such anomalies must be imposible, if the various orders of organisation have arisen by Evolution. The one above aketched out, is to be regarded as only a rough grouping of the fuctes, which helps us to a conception of them in their totality; and so regarded, it will be of servico when we come to treat of Individuality and Reproduction.
\$ 51 . From theee most general external acpects of organic development, let us now turn to its internul and more opecial aspecta. When treating of Evolution as a univeraal proceses of thinge, a rude outline of the coures of structural changee in crganisms was given (First Principloe, 鸮 43, 55, 56). Here, however, it will be proper to doecribe theee changes more fully.
The bud of any common plapt in its earlicst stage, consints of a emall hemisphericul or sub-conical projection. Whilo it increasee moot rapidly at the apex, this presently devolops on one cide of its beee, a smallor projoction of like general ahape with iteolf. Here is the rudiment of a leaf; which prosently epreade more or lese round the beve of the contral homipphere or main axis. At the samo time that the contral bemisphere rises higher, this lateral prominence, also increasing, gives risc to subordinate prominences or lobee. Theee are the rudimente of stipulen, where the leaves are etipulated. Meanwhile, towarde the other side of the main axa, and comewhat higher up, another lateral prominenco ariaing, marks the origin of a second leaf. By the time that the first leaf has produced another pair of lubos, and tho cocond leaf has produced ita primary pair, the contral hemiephere, atill increaving at ite apea, exhibite the rediment of a
third leaf. Similarly throughout. While the germ of each succeeding leaf thus arises, the germs of the previous leaves, in the order of their priority, are changing their rude nodulated shapes into flattened-out expansions; which slowly put on those sharp outlines they show when unfolded. Thns from that extremely indefinite figure, a rounded lump, givink off from time to time lateral lumps, which severally becoming symmetrically lobed, gradually assume specific and involved forms, we pass little by little to that comparatively comples thing-a leaf-bearing shoot. Internally, a bud undergoes analogous changes. The layer of substance which forms the surface of the hemisphere, and in which these metamorphoses commence, consists of a transparent, irregularly-aggregated mass of cells and centres of growth, not formed into a tissue. Especially is this the case at the apex, where the vital activity is the greatest. Here the primitive cellular mass passes without any line of demaycation into the tissues that are developing from it. While, by continued cell-multiplication this layer increases, and doing so most rapidly at the apex thrusts outwards its lateral portions, these begin to exhibit differentiations. "Gradually," says Schleiden, "soparate masses of cells, with a distinct and definite outline, appear in this chaos, and they cease to partake of the process of growth going on. At first the epidermis is separated, then the vascular bundles, later the parenchyma." Similarly with the lateral buds whence leaves arise. In the, at first, unorganized mass of cells constituting the rudimentary leaf, there are formed vascular bundles which eventually become the veins of the leaf; and gradually there appear also, though in ways that have not been specified, the parenchyma and the epithelium.

Nor do we fail to find an essentially parallel set of.changes, when we trace the histories of the individual cells. While the tissues they compose are separating, the cells are growing step by step more unlike. Some become flat, some polyhedral, some cylindrical, some prismatic, some spindle-shaped. These develop spiral fibres
in their interiors; and thowe, net-works of fibres. Here a number of cells unite together to form a tube; and there they become solid by the internal deposition of woody or other matter. Through such changee, too numerous and involved to be here detailed, the originally uniform cells go on diverging and re-diverging, until there are produced various forme that seem to have very little in common.

The arm of a man makes its first appearance in as simple a way as does the shoot of a plant. According to Bischoff, it huds-out from the side of the embryo, as a little tongue-shaped projoction, presenting no differences of parts; and it might eerve for the rudiment of some one of the various other organs that also arise as huds. Coutinuing to lengthen, it presently becomes somewhat enlarger at its end; and is then described as a podicle bearing a flattened, round-edged lump. This lump is the representative of the future hand; and the pediclo, of the futare arm. By and by, at the edgee of this flattened lump, there appear four clefte, dividing from each other the buds of the future fingers; and the hand as a whole grows a little more distinguiahable from the arm. Up to this time, the pedicle has remained one continuous pioce; but it now begins to show a bond at its contre, which indicatee the division into arm and forearm. The distinctions thus radoly indicaterd, gradically increese : the fingers elongete and become jointod ;and the proportions of all the parts, originally very anlike those of the complete limb, slowly approximate to them. During its bud-like stage, the rudimentary arm is nothing but a homugenevas maen of simple colle, with. out any arrangoment. By the diveree changee they gredually undergo, these colle are transformed into boncen, muscles, blood-vesele, and norres. The oxtreme softoces and delicacy of this primary collular tiesue, ronders it difficult to trate the initial etages of thece differeatistions. In consequence of the colours of their contents, the blood-voeelo are the firat parta to become rimible. ARorwardo the cartinginous parte, which are the becee of the futare bones, bocome markod out by the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Ology comes next in order. Von Baer found that in its earlicst stage, every organism has the greatost number of characters in common with all other orgunisms in their earliest etagee; that at a stage somewhat later, its structure is like the structures displayed at corresponding phasee by a loes cxtensive multitude of organisms; that at each subeequent atage, traits are nequired which succosesively distinguish the developing embryo from groaps of embryoe that it proviously reoembled-thus step by stop diminishing the group of embryos which it atill resembles; and that thus the clases of similar forms, is finally narrowed to the spocies of which it is a membor. This abetract proposition will porhape not be fully realized by the general reader. It will be best to ro-state it in a concrete chape. The garm out of which a human being is evolved, differs in no visible reapect from the germ out of which every animal and plant is evolved. The firat conspicuous structural change undergone by this bumun gorm, is ane obarncterixing the germs of animale only-differentiatee them from the germe of planta. The next dintinction establinhed, in a distinction exhibited by all Vertibrata; but nevor exhibited by Amnuloce, Mollmoca, or Catanterafa. Instoed of continaing to resemble, as it now doos, the rudiments of all firhee, reptilea, birdes, and mammala; this rudiment of a man, aesumess a structuro that is somn only in the rudiments of mammale. Later, the embryo undergoes ohange which exclude it from tho group of implecental mammals; and prove that it bolonge to the group of placental manmala. Later still, it growe unlike the emberyoe of thooe plucental mammale distinguishod as unguleto or boofed; and continues to resemble only the unguicalato or clawed. By and by, it couses to be like any frotuece bat thowe of the qundrumana; and oventually the fotues of only the higher quadrumana are simulatod. Inctly, at bisth, the infunt, belonging to whichever human race it may do, in alructurally very much liko tho infante of all other human racre; and coly aftorwande acquires thoee various nuinor poculiarities of
form that distinguish the variety of man to which it bolongs.

The generalization here expressed and illustrated, must not be confounded with an erroneous semblance of it that has obtained considerable currency. An impression has been given by those who have popularized the statements of embryologists, that during its development, each higher organism passes through stages in which it resembles the adult forms of lower organisms-that the embryo of a man is at one time like a fish, and at another time like a reptile. This is not the fact. The fact established is, that up to a certain point, the embryos of a man and a fish continue similar, and that then differences begin to appear and increaso-the one embryo approaching more and more towards the form of a fish; the other diverging from it more and more. And so with the resemblances to the more advanced types. Supposing the germs of all kinds of organisms to be simultaneously developing, we may say that all members of the vast multitude take their first steps in the same direction; that at the second step one-half of this vast multitude diverges from the other half, and thereafter follows a different course of development; that the immense assemblage contained in either of these divisions, very soon again shows a tendency to take two or more routes of development; that each of the two or more minor assemblages thus resulting, shows for a time but small divergences among its members, but presently again divides into groups which separate ever more widely as they progress; and so on, until each organism, when nearly complete, is accompanied in its further modifications only by organisms of the same species; and last of all, assumes the peculiarities which distinguish it as an individual-diverges to a slight extent to the organisms it is most like. reader must also be cautioned against accepting this generalization as exact. The likenesses thus successively displayed are not precise but approximate. Only leading characteristics are the same : not all the details. It is as though in
one of the diverging groups just deecribed, eack kind of organism, though having a general direction of developuent like that of the othere it is for a time travelling with, ahowe from the first a tendency to loare the general routo-a teadency which presently becomes strongly marked. Making all requisite qualifioatione, however, these resemblances romain conspicuous; and the fact that they follow eaul other in the way deecribed, is a fact of great significance.
§53. This comparison between the course of development in any creature, and the course of development in all other creatures-this arrival at the conclusion that the course of development in each, at first the same as in all others, becomes stage by atage differentiated from the courses of all others, brings us within view of an allied conclusion. If wo contemplate the succoesive stages passed through by any higher organism, and obeorve the relation between it and its onvironment at eech of these atageo; we shall see that chis relution is modified in a way analogous to that in whioh the solation between the organism and its environment is modiGed, as wo adrance from the loweat to the higheat gradea. Along with the progreasing differentiation of each organism from others, we find a progreesing differentiation of it from ita environment; liko that progreseing differentiation from the environment which we meet with in the ascending forms of life. Let us firat glance at the way in which the accending forms of life exhibit this progressing differentiation from the environment.

In the tirat placo, it in illustratod in atruature. Advance from the homogeneove to the boterogeneome, iteelf involves an increacing diatinction from the inorganic world. In the loweat Protocoa we havo a simplicity approwhing to that of air, water, or carth ; and the aecont to organisms of greeter and greator complexity of atructure, in an accont to organisms that aro in that reepect more strongly contratod with the arrocturelom envircampant.

In form, again,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

croatures, moperior apecifio gravity is a etandund of genoral ouperionty, yet we may finirly way that the eaperior orders of them, when divested of the applianoces by which their apecifio grevity is regulated, diffor more from water in their relative woight than do the loweet. In terrootrial organistae, the contrant becomes extremely marked. Trees and planta, in common with ineecte, reptilea, mammale, birde, are all of a opucifio gravity considerably leses than that of the earth and immonsoly groutor than that of tho air. Yet furchers, we see the lav similarly fulfilled in reapect of cemperature. Plants generate but extremely emall quantities of heat, which are to bo detectod only by very delicate experiments; and practically they may be considered as having the same temperature as their environment. The temporature of aquatio animals is very little above that of the aurrounding water: that of the invertebrata being mootly loes than a degree abore it and that of fishoe not axcooding it by more than two or three degrees; eave in the case of come large red-blooded Gishoer no the tunny, which oxceed it in temperature by nearly ton dogreen. Among ineoote, the range is from two to then degrees above that of the air: the oxoces varying according to their activity. The hent of roptiles is from four to fifteen degrees more than tho heat of their modium. While mammalo mad birdo maintrin a heat which continucs almost unaffocted by oxternal variationa, and is often greater than that of the air by coventy, aighty, ninety, and even a hundred dagrece. Once mores, in grantor alf-mobility a proerverve differontiation is trecesble. The eapeoind characterintio by which wo diantinguich doad matter in its inertnem: onsue form of independeat motion is our moot geseral thent of lifo. Paming over the indelanito border-land botween the animal and regual kingdomen, we may roughly dem plante margmaname which, whilo they oxhibit that apecice of motion implied in growth, ane not only devoid of locomotive power. but with sorne umimportant axceptions are devoid of the power of moviang their parts is redecion to eech other; and
thus are less differentiated from tho inorganic world than animals. Though in those microscopic Protophyta and Protozoa inhabiting the water-the spores of algæ, the gemmules of sponges, and the infusoria generally-we sce locomotion produced by ciliary action ; yet this locomotion, while rupid relatively to the size of the creatures, is absolutely slow. Of the Coslenterata, a great part are either permanently rooted or habitually stationary ; and so have scarcely any self-mobility but that implied in the relative movements of parts; while the rest, of which the common jelly-fish will serve as a sumple, have mostly but little ability to move themselves through the water. Among the nigher aquatic Invertebrata,-cuttlefishes and lobsters, for instance,-there is a very considerable power of locomotion; and the aquatic Vertebrata are, considered as a class, much more active in their movements than the other inhabitants of the water. But it is only when we come to air-breathing creatures, that we find the vital charac teristic of self-mobility manifested in the highest degree. Flying insects, mammals, birds, travel with a velocity far exceeding that attained by any of the lower classes of animals; and so are more strongly contrasted with their inert environment. Thus, on contemplating the various grades of organisms in their ascending order, we find them more and more distinguished from their inanimate media, in structure, in form, in chemical composition, in specific gravity, in temperature, in self-mobility. It is true that this generalization does not hold with complete regularity. Organisms which are in some respects the most etrongly contrasted with the environing inorganic world, are in other respects less so than inferior organisms. As a class, mammals are higher than birds ; and yet they are of lower temperature, and have smaller powers of locomotion. The stationary oyster is of higher organization than the free-swimming medusa; and the cold-blooded and less heterogenecus fish, is quicker in its morements than the warm-blooded and more heterogencous sloth. But the admission that the several aspects undes
which this increasing contrast shows itself, bear varimble ratios to each other, does not conflict with the general truth, that us we ascend in the hierarchy of organisme, we meet with not only an increasing differentiation of parta, but aloo an increasing differentiation from the surrounding medium in sundry other physical attributes. It would seem that this peculiarity has some necoesary connexion with superios vital manifestations. One of those lowly gelatinous forma so transparent and colourless as to be with difficulty distinguiabod from the water it floats in, is not more like its medium in chemical, mechanical, optical, thermal, and other propertics, than it is in the passivity with which it submits to all the influences and ections brought to bear upon it; while the mammal does not more widely differ from inanimnte things in these properties, than it does in the activity with which it meets surrounding changee by compenuating changes in itself. And between theee two extremes, we shall obeerve a constant ratio between these two kinds of contrast. Whence wo may eay, that in proportion as an organism is phywically like its environment, does it remain a pacaive partaker of the changee going on in its environment; while in proportion as it is endowed with powers of counteracting such changes, it exhibita greater unlikenees to its en-rironment.-

If now, from this same point of view, we consider the reletion borne to its enrironment by any superior organimen in its succossive atagea, we find an analogons series of contrents. Of courso in reepect of degrees of atruetwre, the parallolinm is comploto. The diffurenoc, at frat amall, botwoen the comparativoly atructuralew germ and the comparatively otructarelem inorganio world, becomen necosarily greater, step by atop, at the differentiations of the germ become more aumorous and definito. the like holde, is equally manifoet. The ephere, which is

[^9]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

from each other, and a differentiation of the consolidatal whole from the environment; and that in the last as in the first respeot, there is a general analogy between the progreesion of an individual organism, and the progreasion from the lowest orders of organisms to the highest orders. It may be remarked that some kinahip eeems to exist between these generalizations and the doctrine of Schelling, that Life is the tendency to individuation. For evidently, in becreming more distinct from each other, and from their environment, organiams ecquire more marked individualitiea. As far as I can gather from outlines of his philosophy, howcver, $\mathfrak{i t}$ appcars that Schelling entertained this concepiion in a gencral and transcendental sense, rather than in a apecial and ecieatifo ono.
854. The deductive interpretations of theee general faote of development, in eo far as they are at preeent possiblo, muot bo poatponed until we arrive at the fourth and fifth divisions of this work; which will be chiefly occopied with them. There are, however, one or two general aspects of thees inductions, which may bo here moat conveniently dealt with deductively.

The general law of development ns displayed in organiems, is readily shown to be nececeary, if the initial and terminal dages are such as wo know them to be. Grant that each organism is at tho outeot homogeneous, and that when comepleto it is relatively heterogencoun ; and of necoceaity it follows that development is a change from the homogeneoras to the belerogeneove-s change daring which there must bo gone through all the infinitesimal gradationa of hoterogencity that tie between these extremen. If, again, there is at firet indefinitanesa, and at leat definitemes, the transition cannot bare be from the ono to the other of theen, thmogh all intermediato degroee of definitenesa. Furthor, if tho parta, originally incoherent or uncombinod, erentuully becomo relatively $c \infty$. herent or combined; thore munt be a continuous increase of coberenco or combination. Henco the general trath that
dovelopment is a change from incoherent, indefinite homogeneity, to coherent, definite heterogeneity, becomes a selfevident one, when observation has shown us the state in which organisms begin, and the state in which they end.

Just in the same way that the growth of an entire organism, is carried on by abstracting from the environment substances like those composing the organism; so the production of each organ within the organism, is carried on by abstracting from the substances contained in the organism, those required by this particular organ. Each organ at the expense of the organism as a whole, integrates with itself certain special kinds and proportions of the matters circulating around it; in the same way that the organism as a whole, integrates with itself certain special kinds and proportions of matters at the expense of the environment as a whole. So that the organs are qualitatively differentiated from each other, in a way analogous to that by which the entire organism is qualitatively differentiated from things around it. Evidently this selective assimilation illustrates the general truth, demonstrable à priori, that like units tend to segregate. It illustrates, moreover, the further aspect of this general truth, that the pre-existence of a mass of certain units, produces, probably by polar attraction, a tendency for diffused units of the same kind to aggregate with this mass, rather than elsewhere. It has been shown of particular salts, A and B , co-existing in a solution not sufficiently concentrated to crystallize, that if a crystal of the salt A be put in 'o the solution, it will increase by uniting with itself the dissolved atoms of the salt A; and that similarly, though there otherwise takes place no deposition of the salt B, yet if a crystal of the salt B is placed in the solution, it will exercise a coercive force on the diffused atoms of this salt, and grow at their expense. No doubt much organic assimilation occurs in the same way. Particular parts of the organism are composed of special units, or have the function of secreting special units, which are ever present in them in large quan-
tities. The fluids circulating through the body contain apecial units of this same order. And these diffused units are continually being depositod along with the groupe of like anits that already exist. How purely physical are the causes of this selectivo aceimilation, is, indeed, conclusively shown by the fact, that abnormal constituents of the blood are evgregrated in the same way. Cancer-cells having begun to be deposited at a particular place, continue to be deposited at that pleco. Tubercular matter, making its appearance at particalar points, collects more and moro round those pointe. And similarly in numerous pustular disenses. Where the component units of an organ, or some of them, do not exist as such in the circulating llaids, but are formed out of elements or compounde that exist eeparately in the circulat ing fuids; it is clear that the process of differential assimil. ation is of a more complex kind. Still, however, it seems not imposesible that it is carried on in an analogous way. If there be an aggregate of compound atoma, each of which contains the constituente $\mathrm{A}, \mathrm{B}, \mathrm{C}$; and if round this aggregate the constituents A and B and C are diffused in uncombined stakes; it may bo suspected that the coercive polar force of theee aggregatod compound atoma A, B, C, may not only bring into union with themselvee adjacent compound atome A, B, C, but may cause the adjacent conatituents A and B and C to unite into auch compound atoms, and then aggregate with the maea. Should this be so, the procose of differential amimilation, which playe so important a part in organio development, will not be difficult to underatand. Al preeent, bowever, chemical inquiry appears to have furniebod no ovidence eitber for or againat seoh an hypothecia.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

sont no distinctions of parts, and nevertheless feed and grow and move about, Prof. Huxley has remarked that they oxhibit Life without Organization. The perpetual changee of form which alone distinguish one of theee creaturos from an inanimate fragment, are no doubt totally irregular and undirected. Still they do, through an average of accidenten, subsorve the creatures' nutrition; and they do imply an expenditure of force that in some way depends on the consumption of nutriment. They do, therefore, thoigh in the rudest way, display a vital adjustment of intornal to external relationa.
55. Funotion falle into divisions of several kiude, nocording to our point of view. Let us take these divisions in the order of their simplicity.

Under Function in its widest sense, are included both the statical and the droamicaldeatritutions o - Crome refrich an organism oppoess to the forcus brought to bear on it. In a troe, the woody core of trunk and branches, and in an animal, the skeleton, internal or external, may be regarded as passively resisting the gravity and momentum which tend habitually or occasionally to derange the requisite relations between the organiam and ita environment; and since they rexist these forces simply by their cohesion, their functions may be chesed as etatical. Conversely, the loaves and sapveselo in a tree, and those organs which in an animal similarly carry on natrition and circulation, us well as thone which generate and direot muscular motion, must be concidorod as dynamical in their sctions.

From another point of niew, Function in divisible into the acenmalation of forre (latent in food) ; the erpenditure of force (latent in the lissucs and cortain matters abeorbed by them); and the emamper of force (latent in the propared nutriment or blood) from the parts which accumulato to the parte which expend. In plants wo 200 litulo boyond tho first of theso : expenditure boing inappreciablo, and tranofor roquired only to facilitate
accumuiation. In animals, the function of accumulation comprehends those processes by which the materials containing latent force are taken in, digested, and separated from other materials; the function of tranafor compreheuds those processes by which these materials, and such others as are needful to liberate the forces they contain, are conveyod throughout the organism; and the function of expenditure comprehends those processes by which the forces are liberated from these materials, and transformed into properly co-ordinated motions.

Each of these three most general divisions, includes several more special divisions. The accumulation of force may be separated into alimentation and aeration; of which the first is again separable into the varions acts gone through between prehension of food and the transformation of part of it into blood. By the transfer of force is to be understood what we call circulation; if the meaning of circulation be extended to embrace the duties of both the vascular system and the lymphatics. Under the head of expenditure of force, come nerrous actions and muscular actions: though not absolutely co-extensive with expenditure, these are almost so. Lastly, there are the subsidiary functions which do not properly fall within any of these general functions, but subserve them by removing the obstacles to their performance: those, namely, of $e x$ cretion and exhalation, whereby waste products are got rid of. Again, disregarding their purposes and considering them analytically, the general physiologist may consider functions in their widest sense as the correlatives of tissues-the actions of epidemic tissue, cartilaginous tissue, elastic tissue, connective tissue, osseous tissue, muscular tissue, nervous tissue, glandular tissue. Once more, physiology in its concrete interpretations, recognizes special functions as the ends of special organo-regards the teeth as having the office of mastication; the heart as an apparatus to propel blood; this gland as fitted to produce one requisite
cecretion and that to produce another; each muscle as tho agent of a particular motion; each nerve as the vehiale of a special sensation or a special motor impulse.

It is clear that dealing with Biology only in its larger especta, spocialities of function do not concern us; except in $s 0$ far as they serve to illustrate, or to qualify, its generalitios
857. The first induction to be here set down, is a familiar and obrious one: the induction, namely, that coraplexity of function, is the correlative of complexity of strucpure The leading aspectes of this truth must be briefly nourt.

Where there are no distinctions of structure, there are no distinctions of function. One of the Rhizopods above instanced as exhibiting life without organization, will sarve as an illustration. From the outaide of this creature, which has not even a limiting membrane, there are protruded numerous thread-like proceses. Originating from any point of the surface, each of these may contract again and dimappear ; or it may touch some fragment of nutriment, which it drawe with it, when contracting, into the general mane-thue merving as hand and mouth; or it may come in contact with uta fellow-procesees at a distanco from the body, and become confluont with them; or it may attech iteelf to an adjacent inxed objoct, and help by its contraction to draw the body into a new position. In bnef this structaroless spock of anmantod jellr, is at onco all stomach, all skin, all month, all finb, and doubtlean too, all lung. In orgabisuas having a fixed distribution of parta, thoro is a concomitant Axed distribation of actions. Among plants we see that when, instead of a unifortu tisure like that of the Aloces, overywhere devoted to the eame procees of masimilation, there arise, as in the Exugena, noot and stom and leavon, thore arieo correspondingly unlike procesees. Still more conapictoonsly anong animale, do there result varioties of fanction Whan the originally homoremeons mane is replaced by hoteng-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

derm, which aboorbs nutriment, and the ectoderm, which, is its own contractions and those of the tentecles it bears, produces motion. That the functions of acoumulation and expenditure are here very incompletely distinguished, may be admitted without affecting the position that this is the first specialization which begins to appear.

These two most general and most radically-oppoeed functions, become, in the Polyzon, much more clearly marked-off from each cther; at the same tiune that each of them becomea partially divided into subordinate functions The endoderm and ectoderm are no longer merely the inner and outer walls of the same simple eac into which the food is drawn; but tho endoderm forms a true alimentary canal, eeparated from the ectoderm by a peri-viscoral cavity, containing the nutritive matters abeorbed from the food. That is to say, the function of accumulating force is excruisod by a part distinctly dividexd from the part mainly occupied in expending force: tho space between them, full of abeorbed nutriment, effecting in a vague way that eranafer of force which, at a highor stage of evolution, becomes a third leading function. Meauwhile, the ondoderm no longer dischargee the accumulative function in the eame way throughout it whole extent ; but ite difforcut portions, mophagus, stomeok and inteetine, porform diffarent portions of this function. And instead of a contractility uniformly diffused through the ectoderm, there have arisen in it, come parts which have the office of contmoting (musclum), and conue parts which have the office of making them contract (aerves and ganglia). As we pase upwarde the tranafer of force, bitherto effected quite iscidentally, comos to havo a epocial organ. In the ascidion mollusca, circulution is produced bp a mescular tube, open at both oeds, which, bs a wave of contraction pasing along it, couds out as one end the autriont fluid drawn in at the other; and which, having thun propelled the fluid for a time in one direotion, rurerece its movernent and propols it in the opposite dircotion. By suok mouns duea this rudimontary
heart generate auternating currents in the crude and dilute nutriment occupying the peri-visceral cavity. How the function of transferring force, thus vaguely indicated in these in. ferior forms, comes afterwards to be the definitely-separated office of a complicated apparatus made up of many parts, each of which has a particular portion of the general duty, need not be described. It is sufficiently manifest that tinis general function becomes more clearly marked-off from the others, at the same time that it becomes itself parted into subordinate functions

In a developing emorvo, the functions or more strictly the structures whicn are to perform tnem, arise in the same zeneral order. A like primarv distinction very early ap. pears between the endoderm and the ectoderm-the part which has the office of accumulating force, and the part out of which grow those organs that are the great expenders of furce Between these two there presently becomes visible the rudiment of that vascular system, which has to fulfl the intermediate duty of transferring force. Of these three oreneral functions, that of accumulating force is carried on from the outset : the endoderm, even while yet incompletely differentiated from the ectoderm, absorbs nutritive matters from the subjacent yelk The transfer of force is also to some extent effected by the rudimentary vascular system, as soon as its central cavity and attached vessels are sketched out But the expenditure of force (in the higher animals at least) is not appreciably displayed by the ectodermic structures that are afterwards to be mainly devoted to it: there is no sphere for the actions of these parts. Similarly with the chief subdivisions of these fundamental functions. If we look at those discharged by the ectoderm, potentially if not actually, we see that the distinction first established separates the office of transforming other force into mechani cal motion, from the office of liberating the force to be so transformed-in the midst of the part out of which the muecular system is to be developed, there is marked-out the
rudiment of the nervous system. This indication of otruotures whioh are to share between them the general duty of expending force, is soon followed by changes that foreshadow further apecinlizations of this general duty. In the incipient nervous aystem, there begins to arise that contrest between the cerebral mass and the spinal cord, which, in the main, answers to the division of nervous actions into directive and executive; and at the same time, the appearance of vertebral laminge foreshadows the separation of the osseous systern, which has to resist the strains of muscular action, from the muscular system, which, in generating motion, entails these strains. Simultaneoualy there have been gcing on similar actual and potential specializations in the functions of accumulating force and transferring force. And throaghout all subeequent phases, the method is substantially the same.

This progress from general, indefinite, and simple kinds of action, to apecial, definite, and complex kinds of action, has boen aptly terned by Milne-Edwards, the "phyniological division of labour." Perhape no metaphor can more truly exprese the nature of this adrance from vital activity in its loweat forms to vital activity in its highest forms. And probably the goneral reader cannot in any other way obtain so clear a conception of functional development in organims, as he can by tracing out functional development in eocieties: noting how there firmt comes a distinction betwoen the governing class and the governed oloce; how while in the governing olase there alowly grow up euch differences of duty as the civil, military, and oceleciastical, there arise in the governod clane, fundamentally industrial differencee like thoes between agriculturists and artizans; and how there is a continual multiplicution of such specialized occupatione, and specialized aharee of each occupation.

8 69. Fully io understand this change from homogeneity to hotarogeneity of function, which accompanies the change

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

the higher molluece, in which thes simple tube is replaved Ly a aystem of branohod tubee, that deliver their contente through their open endo into the tissues at distant parts; and on coming to those adranced types of animuls which have closed arterial and venous aystems, ramifying minutoly in every corner of every organ; we find that the rascular apparatue, while it has become stracturally interwoven with the whole body, has become unable to fulfil ite offico without the belp of offices that are quite soparated from its own. The heart is now a complex pump, worked by powerful muscles that are excited by a local nervous aystom; and the general nervous system also, takee a share in regulating the contractions both of the heart and of all the arterice. On the due discharge of the reepiratory function, too, the function of circulation is directly dependent : if tho seration of the blood is impeded, the vascular activity is lowered ; and arreat of the one very ceoon canses atoppage of the other. Similarly with the dutiee of the nervomuxeulir sydtom. Animals of low organization, in which the differentiation and integration of the rital actions have not been carried far, will move about for a considerable time allor being eviscorated, or doprived of thoee applinnces by which forve is uccumulatod and transferred. But unimule of high organization are instantly killed by the removal of theee appliances, and evou hy the injury of minor parte of them : a dog's movemontes are cuddenly brought to an and, by catting one of the main canals along which the materiale that evolre movemente are convoyod. Thus whilo in wall-doveloped creatures the diatinction of functions is vers marked, the combination of functions is very cloce. From instant to instant, the aaration of blood impliee that cortain repiratory mueclos are being made to contruct by cortain nerves; and that the heart ia duly propelling the blood to be aerated. From instant to instant digeotion proceode only on condition that there is a cupply of corated blood, and a due cursent of nervous energy through the digentive
organs. That the heart may act, it must from instant to instunt be excited by discharges from certain ganglia; and the discharges from these ganglia are made possible, only by the conveyancs to them, from instant to instant, of the blood which ths heart propels.

It is not easy to find an adequate expression for this double re-distribution of functions. It is not easy to realize a transformation through which the functions thus become in one sense separatol and in another sense combined, or even interfused. Were, however, as before, an analogy drawn from social organization helps us. If we observe how the increasing division of labour in societies, is accompanied by a closer co-operation; and how the agencies of different social actions, while becoming in one respect more distinct, become in another respect more minutcly ramified through each other; we shall understand better the increasing physiological cooperation that accompanies increasing physiological division of labour. - Note, for example, that while local divisions and classes of the community have been growing unlike in their several occupations, th6 carrying on of their several occupations has been growing dependent on the due activity of that vast organization by which sustenance is collected and diffused. During the early stages of social development, every small group of people, and often every family, obtained scparately its own necessaries; but now, for cach necessary, and for each superfluity, there exists a combined body of wholesale and retail distributors, which brings its branched channels of supply within reach of all. While each citizen is pursuing a business that does not inmediatcly aim at the satisfaction of his personal wants, his personal wants are satisfied by a general agency that brings from all places commodities for him and his fellow-citizens -an agency which could not cease its special duties for a few days, without bringing to an end his own special duties and those of most others.

Consider, again, how each of these differentiated functions is everywhere pervaded by
certain other differenkiated functions. Merchanta, manes. facturers, wholesale distributore of their sereral apecies, togother with lawyers, bankers, dc., all employ clerks. In clerks we havo a speciulized clase dispersed through various other clasees; and having its function fused with the difforent functions of these varnous other claseses. Similarly commerial travellers, though having in one sence a coparate cocupation, have in anothar eense an occupntion forming part of each of the many occupations which it ails. As it is here with the mociologioal division of labour, 80 is it with the physiological division of leo bour above deecribed. Just as we see in an advanced comemunity, that while the magisterial, the clerical, the medical, the logal, the manufecturing, and the commercial activitiea, have grown distinct, they have yet their agencios mingled rogether in every locality; so in a developed organism, we wee that while the general functions of oirculation, mecretion, aboorplion, excrotion, contraction, excitation, \&e., have bocome differentiatod, yet through the ramifications of the syntems apportioned to them, they are coloely combined with anch othor in every organ.
f60. The physiological division of labour, is unally nos carried so far as wholly to deotroy the primary phyziological cogmpmaitr of labour. So in societies the edaptation of epecina clames to special duties, does not entirody dimble these clames from porformine esech ot thers dution on an emereenor: a in organismo, timuce nad structures that have becorne fittod to the partionlar officon they have ordinarily to dinghasge, oflen rocmanopartially able to disaharye other offices. It hae been pointod out by Dr Carpenter, that "in caces Whese the difter cat flunotions are highly apecialised. the general atructure sutaine, more or lees, the primitive community of functinn which originally charecterizod it." 4 fow instances will bring howe this gonorulization

The roons and learice of plants aso widely differeat.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

arms and legs do, whon needful, fulfil, to some axtent, each others' offices. Not only in childhood and old age are the arms used for parpoces of support, but on occasions of emergenoy, as wher mountaineering, they are so used by men in foll vigour. And that legs are to a considorable dogree capable of performing the duties of arms, is proved by the great amount of manipulatory skill reached by them when the arms are aboent. Among the perceptions, too, there are examples of partial substitution. The deaf Dr Kitto described himeolf as having become excessively sensitive to vibratione propagatod through the body; and as so having gained the power of percoiving, through his general ecnsations, thoeo ueighbouring concussions of which the cars ordinarily give notice. Blind people make hearing perform, in part, the office of rision. Instead of identifying the positions and sizee of neighbouring objects by the refleotion of light from thoir surficce, they do this in a rade way by the relection of sound from their surfaces.

We see, as wo might expeot to eeg, that this poryer of porsorming more fomeral fanctions, is great in proportion aco the parts have boen but liftile adapted to cheir arocial funotions. In the hydra, where complete transposition of functions is posesiblo, the histological differeatiation that has been eotabliahod, is extromely alight, or oron inapprociablo. Thoee parts of planta which ahow no considerable a power of diecharging anch otherse offices, ane not widels anlike in their minute erructurces. And the tisenes that in animale are to some extent mutually ricarions, are tisencen in which the original collalar composition is etill conerpiocoone. But we do not find evidence that the muecular, nerrous, or omsone timues aro able in any dogreo to perform those procomee which the loes differontiatod timence porform. Nor havo we any proof that nervo can partially fulfil the duty of muecle, or muecle that of norvo. Wo muat cay, therefore, thas the ubility to resunvo tho primondial community of fenction
varies inversely as the established specialization of function: and that it disappears when the specialization of function becomes great.
§61. Something approeching to a priori reasons may be given for the conclusions thus reached à posteriori. They must be accopted for as much as they seem worth.

It may be argued that on the hypothesis of Evolution, life necessarily comes before organizstion. On this hypothess, organic matter in a state of homopeneous agreegation, must precode organic matter in a state of hetcrogencous aggregation. But since the passing from a structureless state to a structured state, is itself a vital process, it follows that vital activity must have existod while there was yet no structure : structure could not else arise.

That function takes precedence of structure, soems also implied in the definition of Life. If Life consists of inner actions so adjusted as to balance outer actions- if the actions are the subelance of Life, while the adiustment of them constitutes its form ; then, may we not say that the actions to be formed must come before that which forms them-that the continuous change which is the basis of function, must come before the structure which brings function into shape? Or again, since throughout all phases of Life up to the highest, every advance - is cheaffectine of some better adjustment of inner to onter actions; and since the accompanying new complexity of structure is simply a means of making possible this better adjustment; it follows that function is from brginning to end the determining canse of atructure. Not only is this manifestly true where the modification of struoture arises by reaction from modification of function; tut it is also true where a modification of structure otherwise produced, apparently initiates a modification of function. For it is only when.such so-called spontaneous modification of structure subeerves ame advantageous action, that it is per
manently established: if it is a strnctural modification that happens to facilitate the vital activities, "nataral eelection" retains and increases it ; but if not, it disappears.

The connexion which we noted between heterogeneity of atructure and heterogeneity of function- connexion inade so familiar by experience as to appear scarcely wurth specifying-is clearly a necessary one. It follows from the general truth that in proportion to the heterogeneity of any aggregate, is the heterogeneity it will produce in any incident force (First Principles, \& 116). The force continually liberated in the organism by decomposition, is here the incident force; the functions are the variously modified forms produced in its divisions hy the organs they pase through; and the more multiform the organs the more multiform must be the differentiations of the force pasaing through them.
It follows obviously from this, that if structure progreeses from the homogeueous, indetinite, and incoherent, to the heterogencons, deinite, ead coherent, 80 two must fanction. Ir tho number of difierent parts in an aggregate must determine the number of difierontiations produced in the forces pasaing through it -if the distinctness of thees parts from emch other, mast involve distinctneas in their remctions, and there fore distinctness between the divisions of the differentistod firoe; there cannot bat be a complete parallelism between the development of atructure and the devalopinent of fnnotion. If stracture advances from the simple and general to the complax and ajecial, fanction must do the same.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

from prolonged abatinenco. Even fish, though much more aotive than most othor aquatic creatures, appear to undergo but littlo loes of substance when kept unfed during conviderable periods. Reptiles, too, maintaining no great temporature, and paseing their lives mootly in a state of corpor, suffor but little dinininution of mass by wasto. When, however, we turn to thoee higher orders of animals which aro active and hot-blooded, we see that waste is rapid: producing when unchecked, a notable decrease in bulk and weight, ending very shortly in death.

Beaidos finding that wacte is inconsiderable in croatures that produce but little insensible and sensible motion, and that it becomes conspicuous in crentures that produce mpch inemponble and euncible motion: re find statt in the sama mean curce there in moset weste when most motion is generatod. This is clearty proved by hybernating animats. ara: lentin found that the waking marmot excreted in the average is limes moro carbonic soid, and inhaled 41 times mure oxygen than the samo animal in the most complete state of hybornation. The atagee botwoen waking and moet profound hybornation yielded intormediate figurea A waking hodgebog yiolded about 20.5 times more carbonio acid, and consumed 18.4 timee more oxygen than one in the state of bybornation." If wo tuko theeo quantities of aboorbed oxygen and oxerotod carbonic acid, as indicating something like the selativo amounts of consamed organic subotance, we 200 that there is a utriking contratt between the wasto nocompanying the ondinary atate of activity, and the wasto ncomapranyiag completo quiesocnco and redicood tempsunture. This difference is atill more dofinitaly shown by the fact, that the mean daily low from atartation in rabbits and grinea-pigs, beurs to that from hybernation, tho proportion of $18 \cdot 3: 1$. Among men and domeetic animala, the relation between degree of wasto and amount of oxpended force, though ono reapecting whioh there is litito doubt, is lowe distinctly damonatrablo; sinco westo in not allowod to go on
uninterfered with. Wo have however in the lingering lives of invalids who are able to take scarcely any nutriment, but are kept warm and still, an illustration of the extent to which waste diminishes as the expenditure of force declines.
Besides the connexion between the waste of the organism as a whole, and the production of sensible and insensible motion by the organism as a whole; there is a traccable connexion between the waste of special parts and the activities of such special parts. Experiments have shown that "the starving pigeon daily consumes in the average 40 times more muscular substance than the marmot in the state of torpor, and only 11 times more fat, 33 times more of the tissue of the alimentary canal, 18.3 times more liver, 15 times more lung, 5 times more skin." That is to say, in the hybernating animal the parts least consumed are the almost totally quiescent motor-organs, and the part most consumed is the hydro-carbonaceous deposit serving as a store of force; whereas in the pigeon, similarly unsupplied with food but awake and active, the greatest loss takes place in the motor-organs. The relation between special activity and special waste, is illustrated too in the daily experiences of all: not indeed in the measurable decrease of the active parts in bulk or weight, for this we have no means of ascertaining; but in the diminishod ability of such parts to perform their functions. That legs exerted for many hours in walking, and arms long strained in rowing, lose their powers-that eyes become_enfeebled by reading or writing without intermission-that concentrated attention anbroken by rest, so prostrates the brain as to incapacitate it for thinking; are familiar truths. And though we have no direct cridence to this effect, there is little danger in concluding that muscles exercised until they ache or become stiff, and nerves of sense rendered weary or obtuse by work, are organs so much wasted by action as to be partially incompetent.

Repair is everywhere and always making up for waste Though the two processes vary in their relative rates, both
are constantly going on. Though during the aotiva, whing state of an animal, waste is in excess of repair, yot repair is in progress; and though during aleep, repair is in excess of wusta, yot some waste is necessitated by the carrying on of certain never-censing functions. The organs of these neverceasing functions furnish, indeed, the most conaluaive proofs of the simultaneity of repuir and wasto. Day and night the heart never stops beating, but only varies in the rapidity and vigour of its beats; and hence the loss of substance which its contractions from moment to moment entail, must from moment to moment be made gooch. Day and night the lungs dilate and collapse; and the museles which make them do this, must therefore be evor kept in a state of integ. rity by a repair which keepe paco with waste, or which alternately falls behind and gete in adrance of it to a very alight extent.

On a survey of the facts, wo ceee, as wo might oxpect to see, that repair is most rapid when activity is most reduced. Assuming that the organs which absorb and cireulate nutri. ment are in proper order, the restoration of the organism to a state of integrity, after the disintegration consequent on expenditure of force, is proportionate to the diminution in expenditure of force. Thus we all know that those who are in health, feel the greatest return of yigour after profound sleop-after complete cessation of motion. We know that a night during which the quiescence bodily and mental, has been less decided, is usually not followed by that spontancous everflor_ofenergy that indicates a high tate of efficieney throughout the organism. Wo know, again, that long-continued reeumbeney, even with wakefulness (providing the wakefulness is not the result of disorder). is followed by a certain renewal of strength; though a renewal leas than that which would have followed the greater inactivity of alumber. We know, too, that when exhausted by labour, sitting bringa a partial return of vigour. And we alas know that after the viulont exertion of running,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

After gazing at a bright light of a particular colour, we eno on turning the eyes to adjacent objects, an image of the complementary colour; showing that the retina has, for the moment, lost the power to feel small amounts of those rays which have strongly affected it. Such inabilitiee disappear in a fow secunds or a fow minutes, acconding to circumstuncoe. And here, indeod, we are introduced to a conclusive prool that special ropoir is ever neatrulizing special wasto. For the rapidity with which the eyen recover their sensitivences, varies with the reparative power of the individual. In youth, the visual apparatus is so quickly restored to its atato of integrity, that many of these photogenes, as they are callod, cannot be percoivod. When sitting on the far side of a room, and gasing out of the window againat a light sky, a person who is debilitatod by disease or advancing yeara, perceives, on transferring the gase to the adjacent wall, a momentary negative image of the window-the sach-bars appearing light und the equares dark; but a young and healthy person hos no such experience. With a rich blood and vigorons circuIntion, the repair of the risual nerves aftor impreesions of moderate intensity, is nearly instantaneons.

Function carriod to excoss, may prodace waste so great, that repair cannot make up for it during tho ordinary daily periode of reut; and there may resaltincapacition of tho overtaxed organs, Lecting for considereble periods. W8 know that eree etrained by long-continced minute work, 1 loes their power for months or ycars: perthape nulicering an injury which they never wholly recover. Braine, too, are othon so unduly workod that permenent relaxation fints to rostore Lhento rimone even of the motor organs the like holds. The moset frequent careo of what is called "yasting puley"" of etrophy of the muedee, is habitual excoes of exertion: the proof being, that the disomes occurs most frequently among thomo ongagod in laborious haneticratitr, añ usually attncke frut the menolee that havo been moet worked.

There thee yet to be noticed another kind of repair; thunt
namely, by which injured or lost parts are restored. Annong the $\boldsymbol{H}_{y d r o z o a}$ it is common for any portion of the body to reproduce the rest; even though the rest to be so reproduced is the greater part of the whole. In the more highly-organized Actinozoa, the half of an individual will grow into a complete individual. Some of the lower Annelids, as the Nais, may be cut into thirty or forty pieces, and each picce will eventually become a perfect animal. As we ascend to higher forms, we find this reparative power much diminished, though still considerable. The reproduction of a lost claw by a lobster or crab, is a familiar instance. Some of the inferior Vertebrata also, as lizards, can develop new limbs or new tails, in place of those that have been cut off; and can even do this several times over, though with decreasing completeness. The highest animals, however, thus repair themselves to but a very small extent. Mammals and birds do it only in the healing of wounds; and very often but imperfectly even in this. For in muscular and glandular organs, the tissues destroyed are not properly reproduced, but are replaced by tissue of an irregular kind, which serves to hold the parts together. So that the power of reproducing lost parts is greatest where the organization is lowest ; and almost disappears where the organization is highest. And though we cunnot say that between these extremes there is a constant inverse relation between reparative power and degree of organization; yet we may say that there is some approach to such a relation.
§ 63. There is a very obvious and complete harmony between the first of the above inductions, and the deduction that follows immediately from first principles. We have already seen (\$23) "that whatever amount of power an organism expends in any shape, is the corretate and equivalent of a power that was taken into it from without." Motion, sensible or insensible, generated by an organism, is insensible motion which was absorbed in producing certain
chemical compounds appropriated by the organism under the form of food. As much power as was required to raise the clements of these complex atoms to their state of unstable equilibrium, is given out in their falls to a state of etable equilibrium ; and having fallen to a stato of stable equilibrium, they can give out no further power, but have to be got rid of as inert and uselese. It is an inevitable corollary " from the persistence of force, that each portion of mochanical or other energy which an organiem exerts, innplies the tranaformation of as mach organic matter as contuined this energy in a latent state;" and that this organio matter in vielding up its latent energy, loces its value for the perposen of We, and becomee waste matter needing to be excreted. The loes of theee complex unstable subetances must hence be proportionato to the quantity of expended force. Here then is the rationale of certain general facts lately indicated. Plants do not waste to any considerable degree, for the obvious reason that the sensible and insensible motions they gencrate are inconsiderable. Betwoen the small waste, amall uctivity, and low temperature of the inferior animala, the relmtion is similarly one admitting of a priori cotablishment. Convervely, the rapid waste of energetic, hot-blooded animale might be forescen with equal certainty. And not lees manifestly necoesary is the variation in waste which, in the same organism, attonds the rariation in the heat and mechanical motion produced.
Between the activity of a special part and tho wasto of that part alike relation maybodeductivaly inforred; though it cunnot be inferrad that shis meletion in equally defjunte. Ware the activity of every organ quito independeut of the activities of other organes, wo might expect to traco uat this relation distinctly; bet since one part of the force which any organ expondes, is derived from materiale brought to it by the blood from moment to moment in quantifice varying with the domand, and since another part of the corce whice coonh organ expends comes to it in the shape of

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

and, if recovery ensue, the blood will seem to have returnol to its previous condition : yot it is not as it was before; for now the same poison may be added to it with impunity." - - "The change once effected, may be maintained through life. And herein seems to be a proof of the assimilative force in the blood ; for there secms no other mode of explaining these cases than by admitting that the alcored particles have the power of assimilating to themselves all thoee by which they are being replaced : in other words, all the blood that is formed after such a disease deviates from the natural composition, so far as to acquire the peculiarity engendered by the disease: it is formed according to the altered model." Now if the compound moleculee of the blood, or of an organism considered in the aggregate, have the power of moulding into their own type, the matters which they abeorb as nutriment; and if, as Mr Puget points out, thoy bave the power when their type has been changed by disease, of moulding all materials aferwards received into the modified type; may we not reasonably enspect that the more or loes apecialized molecules of eech orgun, have, in like manner, the power of moulding the materials which the blood bringe to them, into similarly upecialised molecules 8 The one conclusion seems to be a corollary from the other. Such a power cannot be claimed for the component units of the blood, without being concomided to the componant units of every tisesue. Indoed the amertion of this power is little more than an aseortion of the sact, that organs compooed of apecializod units are capuble of resuming their otructural integrity, aftor thoy have boen wated by function. For if thoy do thim, they must do it by forming from the matorinas brought to thom, cortuin apocialixed units like in kind to thow of which they are compoeod, and to suy that thoy do thin, is to aay that their component unite have tho power of moulding fit materials into othas unita of tho mame order.

The repair of a wected timae may therofore bo comaidersed
es duc to forces analogous to those by which a crystal reproduces its lost apex, when placed in a solution like that from which it was formed. In either case, a mass of units of a given kind, shows a power of integrating with itself diffused units of the same kind: the only difference being, that the organic mass of units arranges the diffused units into special compound forms, before integrating them with itself. In the case of the crystal, this reintegration is ascribed to polarity-a power of whose nature we know nothing. Whatever be its nature, however, it appears probable that the power by which organs repair themselves from the nutritive matters circulating through them, is of the same order.
§65. That other kind of repair which shows itself in the regeneration of lost members, is comprehensible only as an effect of actions like those just referred to. The ability of an organism to recomplete itself when one of its parts has been cut off, is of the same order as the ability of an injured crystal to recomplete itself. In either case, the newly-assimilated matter is so deposited as to restore the original outline. And if in the case of the crystal, we say that the whole aggregate exerts over its parts, a force which constrains the newly-integrated atoms to take a certain definite form; we must in the case of the organism, assume an analogous force. This is, in truth, not an hypothesis: it is nothing more than a generalized expression of the facts. If when the leg of a lizard has been amputated, there presently buds out the germ of a new one, which, passing through phases of development like those of the original leg, eventually assumes a like shape and structure; we assert nothing more than what we see, when we assert that the organism as a whole exercises such power over the newly-forming limb, as makes it a repetition of its predecessor. If a leg is reproduced where there was a leg, and a tail where there was a tail; wo have no alternative but to conclude that the aggregate forces of the body, control the formative processes going on in each part. And on
contemplating thees facts in connexion with various kindnel onee, there is suggeated the hypothesis, that the form of ouch apecies of organism is determined by a peculiarity in the conetitution of its units-that these have a special structure in which they tend to arrange themealves; just as have the simpler units of inorganic matter. Let us glance at the evidences which more especially thrust this conclusion apon us.
Δ fragment of a Begonia-leaf, imbedded in fit soil and kept at an appropriate temperature, will develop a young Begonia; and so small is the fragment which is thus capable of originating a complete plant, that something like a hundred plants might be produced from a single leaf. The friend to whom I owe this obeervation, tells me that various succulent plants have like powers of maltiplication. Illustrating a similar power among animate, we have the often-cited experiments of Trembley on the common polype. Eich of the four pieces into which one of these creaturee was cut, grew into a perfect individual. In each of theee again, bisoction and tri-eection effected a like resulth And 80 with their cogmonte, similarly producod, until us many as fifty polypos had resultod from the original one. Bodice when cut off regenerated hoeds; heads regeneratod bodices; and when a polype had been divided into as many piecos as was practica. ble, noarly every pioce survived and became a completo animal. What, now, is the implication P We canciot eany that in each portion of a Begonia-leaf, and in overy fragment of a Hydra's body, there exista a readyfurmod model of the entire organim. Even were there warrant for the now abandoned doctring, that the germ of every organism containe the perfect organimm in miniature, it atill oould not be contended that cach conviderable part of the perfoct organima resulting from sech a germ, contains another such miniature. Indoed the one hypothecis obvioualy negaLivce the other. We have therefore no alternative bat to may, that the living partioloe composing one of theee fragmente, hare an innato rosdoncy to arrange themsalros into

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

care, however, to restrict its meaning. If we simply subetitute the term polurity, for the circuitous expresion-the power which certain units have of arranging themealvee into a apeciul form, we may, without acsuming anything more than is proved, use the term organic polarity or polarity of the orgauic units, to signify the proximate caume of the ability which organisms display of reproducing loest parta.

8 66. As we shall have frequent occasion hereafter to refer to these units, which poseces the property of arranging themeelves into the apecial structures of the orgatisms to which they belong; it will be well here to aak what these units are, and by what name they may be moot fitly called.

On the one hand, it cannot be in thoee proximate chemical compounds composing organio bodice, that this spocific polarity dwelle. It cannot be that the atoms of albumen, or fibrine, or golatino, or the bypothetical protain-subotance, poseces this power of aggrogating into epeoific chapes; for in such onse, there would be nothing to account for the onlikenesecs of different orgauisms. Millions of species of plants and animale, more or less contrastod in thuir structures, aro all mainly built up of these complax atoms. But if tho polarities of these atoms determined the forms of the orgauisms they compooed, the occurrence of such endlomly variod forms would be inexplicable. Henco, what we may call the chemical unith, aro dourly not the pomemors of thin property.

On the other hand, thit property cannot reside in what may bo roughly diutinguiabod as the morphological units. Thu germ of every organiem is a microscopic call. It is by multiplication of celle that all the carly developmental changse aro offeoted. Tho vurious timues which succesaivaly arime in the unfolding organiem, are primarily collular; and in many of thom the formation of celle continues to be, thrmaght-
out life, the process by which repair is carried on. But though cells are so generally the ultimate visible components of organisms, that they may with some show of reason be called the morphological units; yet, as they are not universal, we cannot say that this tendency to aggregate into specified forms dwells in them. Finding that in many cases a fibrous tissue arises out of a structureless blastema, without cell-formation; and finding that there are creatures, such as Rhizopods, which are not cellular, but nevertheless exhibit vital activities, and perpetuate in their progeny certain specific distinctions; we are forbidden to ascribe to cells this peculiar power of arrangement. Nor, indeed, were cells universal, would such an hypothesis be acceptable; since the formation of a cell is, to some extent a manifestation of this same peculiar power.

If, then, this organic polarity can be possessed neither by the chemical units nor the morphological units, we must conceive it as possessed by certain intermediate units, which we may term physiological. There seems no alternative but to suppose, that the chemical units combine into units immenscly more complex than themselves, complex as they are; and that in each organism, the physiological units produced by this further compounding of highly compound atoms, have a more or less distinctive character. We must conclude that in each case, some slight difference of composition in these units, leading to some slight difference in their mutual play of forces, produces a difference in the form which the aggregate of them assumes.

The facts contained in this chapter, form but a small part of the evidence. which thrusts this assumption upon us. We shall hereafter find various reasons for inferring that such physiological units exist, and that to their specific properties, more or less unlike in each plant and animal, various organio phenomena are due.

OHAPTER 7.

ADAPTATION.

57. In planta, waste and repair being ecaroely approciable, there are not likely to arise appreciable changes in the proportions of alreedy-formed parts. The only divergencen from the average structure of a speciea, which we may expect particular conditions to produce, are thooe producible by the action of these conditions on parts in coures of formation; and such divergences we do find. We know that a tree which, atanding alone in an exposed position, has a short and thick stem, has a tull and alender stom when it grows in a wood; and that ita branchoe then take a difforent inclin. ation. Wo know that potato-sprouts which, on reaching tho light, dovelop into foliago, will, in the abeence of light, grow to a length of eeveral feet without folinge And overy in-door plant furnishes proof, that ahoots and louver, by hatituully turning themedres to the light, axhibit a cortain edaptation-an adaptation due, as wo muat euppoes, to the apocial effects of the special conditions on the atill growing parta.

In animele, howovor, beicidee unalogous otructural obanges wrought during the period of growth, by subjection to circumatanoce unitike the ordinary circumstascen; there are structural changes similarly wrought, aller maturity has boen reechec. Organs that havo arrived at their full ase, poevena certain modifubility;

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

hands, find that such an exercise as rowing, soon begins to produce a like thickening. This relation of cause and effect is still better shown by the marked indurations at the ends of a violiniat's fingers. Even in mucous membrane, which ortinarily is not subject to mechanical forces of any intensity. similar modifications are possible: witness the callosity of the gams which ariees in thoee who have loet their teeth, and have to masticate without toeth. The vaccular syatem furnishee good instances of the increased growth that follows increased function. When, becanse of some permanent obetruction to the circulation, the heart han to exert a greater contractile force on the mass of blood which it propole at cach palsation into the arteries, and when there nosults the labourod action known as pulpitation; there usually oncurs dilatation, or hypertsophy, or a maxture of the two: the dilatation, which is a yielding of the heart's structure under the increased atrain, implying a failure to meet the omergency; but tho hypertrophy, which consiats in a thickening of the heart's mucoular walle, being an adaptation of it to tho udditional offort required. Again, when an aneurism in some considerable artery has been obliterated, either artificially or by a matural inflammatory procese ; and whon this artory hae coneoquantly coesod to bo a channel for tho blood; como of the edjacent artarice which anautomose with it, bocome enlargod, 00 as to carry the noodful quantity of blood to the parts supplied. Though we have no direct proof of analogous modifications in nerrous exructures; yot indirect proof is given by the greator efficioncy that follow greator actinty. This is manitertod alito in tho cenme and the intelloct. The palate may be cultivaled in-
 orebrefru condeotor gaing by comatinmil practica, an upmadly genet ability to diecriminale differences of sound. And in the fingar-sending of the bliod, wo havo ovidence that the menso of touch mary be brought by exarcive to a far higher oupability than is ardinary. The increaso of powor which
habitual exertion gives to mental faculties, needs no illustration: every person of edacation has personal experience of it. Even from the osseous structures, evidence may be drawn. The bones of men accustomed to great muscular action, are more massive and have more atrongly marked processes for the attachment of muscles, than the bones of men who lead sedentary lives; and a like contrast holds between the bones of wild and tame animals of the same species. Adaptations of another order, in which there is a qualitative rather than a quantitative modification, arise after certain accidents to which the skeleton is liable. When the hip-joint has been dislocated, and long delay has made it imposesible to restore the parts to their proper places, the head of the thigh-bone, imbedded in the surrounding musclee, becomes fixed in ite new position by attachments of fibrous tissue, which afford support enough to permit a halting walk. But the most remarkable modification of this order occurs in ununited fractures. "False joints" are often formed joints which rudely simulato the hinge struoture or the ball-and-socket structure, according as the muscles tend to produce a motion of flexion and extension or a motion of rotaLion. In the one case. according to Rokitanaky, the two ende of the broken bone become amooth and covered with periostcum and fibrous tissue, and are attached by ligaments that allow a certain beckward and forward motion; and in the other case, the ends, similarly clothed with the appropriste membranes, bocome the one convex and the other concave, are inclosed in a capsule, and are even occasionally sapplied with synoviul fluid!

The general truth that extra function is followed by extra growth, must be supplemented by the equally general truth, that beyond a limit, usually soon reached, very intle, if any, further moditication can be produced. The experiences from Which we draw the one indaction thrust the other upon us. Aftar a time, no training makoe the pugilist or the athlete ain etrionger. The adult gymnast at last acquires the power
to perform certain difficult feats; but certain mone diffexits Soets, no additional praction enables him to perform. Tears of disoipline pive the cingor a paricular loodnoes and range of roico, beyond which further discipline does not give prentre loudness or wider range: on the contrany, increeced voceler. ercise, causing a wate in excees of repair, is often followed by decrease of power, In the percoptione we 000 emilar limita. The culture which exalts the susceptibility of the ear to the intervals and harmonics of notes, will not turn a bad ear into a good one. Lifo-long effort faile to make this artist a correot drafteman, or that a fine colonrim: ench does better than he did at first, bat each falls short of the power aftained by pome other artista. Nor in this truth leen clearly illustrated among the more complex meatal porwers. Each man has a mathematical faculty, a poetical faculty, or an oratorical facalty, which special education improves to a certain extent. But unloes he is unumandy endowed in one of these directions, no amount of education will mako him a irit-rato mathematician, a hirst-rato poot, or a frat-rate orator. Thas the general fact appeara to be, that while in each individual, certain changes in the proportions of parta, may be caused by variations of function, the congenital structure of each individual puts a limit to the modifiability of every part. Nor is this true of individuals only: it holds, in a sense, of species. Learing open the quaction whether, in indefinite time, indefinite modification muy not bo producod; experience provee that within eseigned timea, the changes wrought in racee of organieme by changoe of conditiona fall within narrow limita. Wo see, for instance, that though by diecipline, aided by eeloctivo ureeding, one variety of horeo hae had its locomotive power incroend considembly beyond the locomotive powers of other varictios ; yet that farther incroaso takes place, if at all, at an inappreciable rata. The differont kinde of doga, too, in whioh different formen and capecition have boon cotabliahod, do not show aptitudes for divurging in the samo direotions at

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

capecity produced, to a very considerable degree, even after a long period of desistance; but one who has persevered in auch habits for but a short time, has, at the end of a liko period, ecarcely any of the facility he had gained. Heres, 100, as before, succossions of organisms present un analogous fact. A speoies in which. domestication, continued through many generations, nas organized cortain peculiaritics; and which afterwards, eecaping domestio discipline, returus to comothing like its original habits ; soon loees, in greet mensure, such peculiarities. Though it is not true, an alloged, that it resumes completaly the atructure it had before domeetioation ; yet it approximates to that atructure. The Dingo, or wild dog of Australia, is one of the instances given of this ; and the wild horve of South America is another. Mankind, too, supplies us with instances. In the Australian buah, and in the beckwoods of America, the AngloSaxon race, in which civilization has doveloped the higher fealinge to a considerable degree, rapidly lapees into comparaLive barbarism: adopting the moral codo, and sometimes the babita, or mavagou.
f68. It is important to reach, if pomible, some rationale of thoeo genoral truthe-appecinlly of the last two. A right underatanding of thees lawe of organic modification, underlics a right anderstanding of the groat queetion of specice. While, as before hinted ($\$ 40$), the action of structure on function, in one of the factors in that procoen of differentiation by which uñlike forms of plante and animals aro produced, the ro-ection of function on etructure, is another factor. Hence, $1 t^{2}$ is well worth whito inquiring hiw far theso induotions are deductively interpretable.

The first of thom is the most difficult to deal with. Why an organ exerted somewhat beyond its wont, ahould proecntly grow, and thine moot increaso of domand by increase of supply, in not obriona Wo know, indoed, (Frat Principkes (9 96,133 ,) that of necoceity, the rhythemioul changes pros
duced by antagonist organic actions, cannot any of them the curried to an excess in one direction, without there bxing produced an equivalent excess in the opposite direction. It is a corollary from the persistence of force, that any deviation effected by a disturbing cause, acting on some member of a moving equilibrium, must (unless it altogether destroys the moving equilibrium) be eventually followed by a compensating deviation. Hence, that excess of repair should succeed excess of waste, is to be expected. But how happens the mean state of the organ to be changed P If daily extra waste naturally bringa about daily extra repair, only to an equivalent extent, the mean state of the organ should remain constant. How then comes the organ to augment in aize and power?
Such answer to this question as we may hope to find, must be looked for in the effects wrought on chencroanism ana whole, by increased function in one of its parts. For since the discharge of its function by any part, is possible only on condition that those various other functions on which its own is immediately dependent, are also discharged; it follows that excess in its function prosupposes some excese in their fanctions. Additional work given to a muscle, implies additional work given to the branch arteries which bring it blood and additional work, smaller in proporion to the arteries from which these branch arteries come. Similurly, the smaller and larger veins wifich take away the blood, as well as the absorbents which carry off effete products, must have more to do. And yet further, on the nervous contres which excite the muscle, a certain extra duty must fall. But excess of waste will entail excess of repair, in these parts as well as in the muscle. The acveral appliances by which tho nutrition and excitation of an organ are carried on, must ulso be influenced by this rhythm of action and re-action; and therefore, after losing more than usual by the destructive process, they must gain more than usaul by the constructive procese. But temporarily-inureased efficiency in theso ap-
pliancen by which blood and nerrous force are brought to an organ, will cause extra aacimilation in the organ, begond that required to balance its extra expenditure. Regarding the functions as constituting a moving equilibrium, we may eare that divercenpeo of any function in the direction of increase, canaen the functions with which it is bound um to diverge in the amo direotion; that thenagain mpmathe functions whiah they are bound ap with, oleo to diverre in the mme direction; and that theen divergences of the connected functions, allow the apecially-affected function to bo carried fupther in this direction than it coula otherwish be -further than the perturbing force conld carry it if it had a fixed besian

It.must be admitted that this is but a vague explanation. Among actions so involved as thees, we can scarcoly expoot to do more than dimly divcern a harmony with first principlos. That the facte are to be interpreted in some such way, may, however, be inferred from the circumstance that an extra supply of blood continuces for some tive to be sent to an organ that has been unumually exercised; and that when unusual exercise is long continued, a permanent increase of vaccularity results.
869. Answers to the quections-Why do theee adaptive modifiontions in an individual animal, soon reach a limit? and why, in the descendants of such animal, similarly conditioned, is this limit very slowly extonded ?-are to be found in the same direction as was the anaver to the last qucetion. And hore the connexion of caneo and consoquence is much more manifent.

Since the function of any orgen is dependent on the functions of the orgina which supply it with materinis and former: end annoe the funotione of these subsidiary organs are dnpendent on the functions of organs which suppls them wifh wapring end forces; it followe that beforo nay grout extra power of dikaharging ith lunotion, can bo gained by

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

esentially like re-action of functions on structures. From the lave of adaptive modification in societies; we may thersfore hope to get a clue to the laws of adaptive modification in organisms. Let us suppose, then, that a society has arrived at a state of equilibrium like that of a mature animal \rightarrow stato not like our own, in which growth and structural do velopment are rapidly going on; but a state of setuled balance among the functional powere of the various almecos and industrial bodies, and a consequent fixity in the relative sizes of such clasees and bodies. Further, let us suppose that in a society thus balanced, thore occurs something which throws an unusual demand on some one industry-may an unusual demand for ships (which we will assume to be built of iron) in consequence of a competing morcantile nation having been prootrated by famine or pestilence. The immodiate result of this additional demand for iron shipe, is the employment of more workmen, and the parchece of more iron, by the ship-builders; and when, presently, tho demand continuing, the builders find their premises and machinery insufficient, they enlarge them. If the extra requirement persiste, the high intereet and high wages bring such extra capital and labour into the businees, as are needod for new ship-building eotablishments. But such extra capital and labour do not come quickly; since, in a balanced community, not increasing in population and woalth, labour and capital bavo to bo drawn from other inductrice, where they aro already yielding the ordinary returns. Let us now go a ctep further. Suppose that this iron-ship-building indastry, having ealarged as much as the aruilable capital and labour pormit, is still unequal to the demund; what limita its immodiate farthor growth ? The lack of iron. By the hypothecia, the imn-producing industry, like all the other induntries throughout the community, rielde ouly an muoch iron as in habitually requirod for all the parposes to which iron in applied: ahip-building being only one If, thon, extre iron is required for ship-building, the firat effoct is to witheraw
and labour from other inveatments and cocupations. And until the permanent extra demand for coal, has become great enough to draw from other invertmente and occupatione, cuffieient capital and labour to sink new mines, the increasing production of iron must be restrictod by the scarcity of coal ; and the multiplication of ship-yards and ahip-buildara, must be checked by the want of iron. Thus, in a community which has reached a state of moving equilibriom, though any ono induatry directly affected by an additional demand, may rapidly undergo a small extra geowth; yet a growth bejond this, requiring, as it does, the boild-ing-up of cubeervient industries, leen directly and etrongly affected, ss wall es the partial unbuilding of other indructries. can tako place only with comparative alownese. And a sill farther growth, requiring estructural modificutions of industries still more distantly affected, mest take plece otill more slowly.

Returning from this analogy, we realive more clewrly the trath, that any considerable mamber of an animal organiem, cannot be greatly enlarged without some general ro-orgenisetion. Besides a building-up of the primary, secondary, and wertiary groupe of subearrient parta, there most bo an mmbrilding of eundry non-aubeervient parts;-or at any rate, there must be permanenty cotablishod, a lower nutrition os such non-mpbervient parta. For it must be remembered that in a mature animal, or one which has reeched a balance betweon accimilation and expenditure, there cannot be an increseo in the aytrition of some argane, withoot a dearease in the natrition of othere : and an organio establishment of the increena, implice an orgenic ecoablinhment of the decreseo-
 througbout the antise ayctaren And here, indeoch in diechoed ane rewcon why growing enimale underso adaptatioses 80 much more seedily than adult onee. For
 accimed parta to bo uperinly ealarged, without sepy pocitive

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

occupations, and the new yards would be devoted to othee nees. But if the increased need for shipe lated long enough, and bocame great enough, to cause a flow of capital and labour from other induatries into the iron-manufacture, a falling off in the demand for shipe, would much lees rapidly eutuil a dwindling of the ship-building industry. For iron being now produced in greater quantity, a diminishod consumption of it for ships, would cause a fall in ite price, and a consequent fall in the cost of shipe: thus exabling the ship-builders to meet the competition which we may suppooe led to a decrease in the orders thoy received. And since, whon new bluat-furnaces and rolling-mille, \&o., had been built with capital drawn from other industrics, its traneference buck into other industriee, would involve great loes; the ownera, rather than transfer it, would eccopt unusually low intercat; and an excoss of iron would continuo to be prodocod; renulting in an undue cheapneas of ahipe, and a maintonance of the obip-building industry at a size beyond the need. Eventually, however, if the number of shipe required etill diminished, the production of iron in excess would become very unremunerativo: some of the blast-furnaces would be blown out; and as much of the capital and labour as remained aruilable, would be re-distributed among other occupations. Without repoating the stope of the argument, it will be clear that wero the enlargement of the ahip-building indastry great onough, and did it lest long eacugh, to cause an incroseo in the number of coal-mines; the ahip-building induatry would be atill better ablo to maintain itrelf under adverse circumstancos; but that it would, though at a more distant period, end by sinking down to the needfal dimencions. Them our conclusions are:-Firmo that if the oatre activity and growth of a partioular indonery, hae lastod long enough only to romodal the prosimataly-affeoted indortrice; it will dwindlo away again after a modorete period, if the need for it dieappease second, that an enormous poriod muat be roquired before the re-motions produced by an enlarged indentrys,
can cause a re-construction of the whole society, and before the countless re-distributions of capital and labour, can again reach a state of equilibrium. And third, that only when such a new state of equilibrium is eventually reached, can the adaptive modification become a permanent one. How, in animal organisms, the like argument will hold, needs not be pointed out. The reader will readily follow the parallel.

That organic types should be comparatively stable, might be anticipated on the hypothesis of Evolution. If we assume, as we must according to this hypothesis, that the structure of any organism is a product of the almost infinite series of actions and re-actions to which all ancestral organisms have been exposed; we shall see that any unusual actions and reactions brought to bear on an individunl, can have but an infinitesimal effect in permanently changing the structure of the organism as a whole. The new set of forces, compounded with all the antecedent sets of forces, can but inappreciably modify that moving equilibrium of functions which all these antecedent sets of forces have established. Though there may result a considerable perturbation of certain func-tions-a aconsiderable divergence from their ordinary rhythms; yet the general centre of equilibrium cannot be sensibly changed. On the removal of the perturbing cause, the previous balance will be quickly restored : the effect of the new forces being almost obliterated by the enormous aggregate of forces which the previous balance expresses.
§ 71. As thus understood, the phenomena of adaptation fall into harmony with first principles. The inference that organic types are fixed, because the deviations from them which can be produced within assignable periods, are relatively small; and because, when a force producing deviation ceases, there is a return to something like the original state; proves to be an invalid inference. Without assuming fixity of species, we find good reasons for anticipating that kind and degree of stability which is observed. We find grounds for concluding,
a priori, that an adaptive change of atructure, will econ reech a point beyond which further adeptation will bo dow ; for conoluding that when the modifying cauce has beep bos a Short time in ection, the modification generated, will be evanescent; for concluding that a modifyine causo extins oven for many gencrations, will do but little towarde permanently abtoring the ercenic equitibriuta of ance: and for conclading that on the cesestions of axch cause, ite effects will beoome unapparent in the course of a few gecercruction

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

upecific peculiarities. Shall wo regard all the growing axes thus resulting from slips and grafts and buds, as parts of one individual, or as distinct individuals?. If a strawberty-plant sends out runners carrying buds at their ends, which strike root and grow into independent plants, that separate from the original one by decay of the runners, must we not say that they poseses eeparate individualities; and yet if wo do this, are we not at a loes to say when their separate individualities were established, anlees we admit that each brad was from the beginning an individual \bar{P}. Commenting on euch perplexities, Schleiden sayo-" Much has boen written and disputed concerning the conception of the individual, without, however, alucidating the subject, principally owing to the misconception that still exists as to tho origin of the conception. Now the individual is no conception, but the mere subjective comprehension of an actual objeot, presented to us under some given apecifio conception, and on this latter it alone depends whether the object is or is not an individual. Under the specific conception of the solar syatem, ours is an individual : in relation to the specific conception of a planctary body, it is an aggregate of many individuals." • - " "I think, however, that looking at the indubituble fucto alrendy mentioned, and the relations treated of in the course of theso conoiderations, it will appear most advantageous and most neeful, in a sciantific point of view, to consider the regetable call as the general type of the plant (cimple plant of the firat onder). Under this conception, Prolococous and other plants coaciocing of only one cell, and the apore and pollen-granule, will appear as individuals. Such individualo may, bowever, again, with a partial renuncintion of their individanl indepandence, combine under definito laws into deanite forms (comewhat an the individual animule do in tho globe of the Volvoz globator"). Theee again appear empirically as individual beinges, undor a concoplion of a apocies

[^10](simple plants of the second order) derived from the form of the normal connexion of the elementary individuals. But we cannot stop here, since nature herself combines theee individuals, under a definite form, into larger associations, whence we draw the third conception of the plant, from a connexion, as it were, of the second power (compound plants -plants of the third order). The simple plant proceeding from the combination of the elementary individuals is then termed a bud (gemma), in the composition of plants of the third order."

The animal kingdom presents still greater difficulties. When, from sundry pointe on the body of a common polype, there bud-out young polypes, which, after acquiring mouths and tentacles and closing up the communications between their stomachs and the stomach of the parent, finally separate from the parent; we may with propriety regard them as distinot individuale. But when, in the allied compound Hydro20a, we find that these young polypes continue permanently connected with the parent; and when, by this continuous budding-out, there is presently produced a tree-like aggrogation, having a common alimentary canal into which the digestive cavity of each polype opens; it is no longer so clear that these little sacs furnished with mouthe and tenta-. cles, are severally to be regarded as distinct individuals. We cannot deny a certain individuality to the polypedum. And on discovering that some of the buds, instead of unfolding in the same manner as the rest, are transformed into capsules in which aggs are developed-on discovering that certain of the incipient polypes thus become wholly dependent on the aggregate for thair nutrition, and discharge functions which have nothing to do with their own maintenance, we have still clearer proof that the individualities of the members aro partially merged in the individuality of the group. Other organisms belonging to the same order, display still more decidedly this transition from simple individualities to a complex individuality. In the Diphycs there is a special modifi-
cation of one or more members of the polypedom into a ewimming apparatus, which, by its rhythmicul contreatione, propels iteelf through the water, drawing the polypedom after it. And in the more differentiated Physalin, various organe result from the metamorphosis of parts that are the homologues of individual polypea. In this last instance, the individuality of the aggregate is so predominant, that the individualities of the mombers are practioally loet. Thin combination of individualities in such way an to produco a composite individual, meets us in other forms among the ascidian mollusce. While in some of thees, as in the Clavelina, the animale aecocinted are but little subordinated to the community they form ; in others, as in the Botrylida, they are so fuced into a rounded mases, as to precent the appearance of a single animal with aeveral mouthe and atomache

On the hypothesis of Erolution, perplexitioe of this nature are just suah as we might anticipate. If Life in general, comemenced with minute and simple forms, like those out of which all individual organimma, however complax, now originate; and if the transitiona from these primordial unita to organisans made up of groupe of such unite, and to highor organisms mado up of groupe of such groape, took place by degroes; it is clear that individualition of the first and simplest order, would mergo gradually in thoee of a larger and more complex order, and theer again in others of an order having atill greator bulk and organisation; and that benco it would be impomiblo to may where the lower individoalities ceseod, and the higher individualitios commenoed.
87. Tu meot these difficultion, it has becen propomed that the whole product of a single fertilised germ, eball be rogandud as a single individual : whethor such whoke product bo organised into ono mase, or whether it be organised into muny maeces, that are partinlly or completely erparato. It is arged that whether the development of the fortitised germ

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

organism; and yet, though an individual according to the definition, this organism has no power of reprodocing its kind. On the other hand, we have casee like that of the perfeot Aphidee, where the organism is but an infnitocimal part of the germ-product; and yet has that completanese required for sexual reproduction. Moreuver, if we adopt the proposed view, we find oarselves committed to the anomalous poation, that among many orders of animale, there are no concrete individuals at all. If the individual is constituted by the whelo germ-product, whether continuoualy or discontinuoualy developed, then, not only must individuality bo deniod to each of the imperfect Aphides, but also to each of the perfeot males and fermales; since no one of them is more than a minute frection of the total germproduct. And yet furthor, it might be arged with some show of reason, that if the conception of individunlity involves the conception of completeneen; then, an organism which posesesses an independent power of reproducing itealf, being more complete than an organiam in which this power is dependent on the aid of another organism, is more individual.
874. There is, indoed, as already implied, no dofinition of individuality that is unobjectionable. All we can do is to make the beat practicable compromive.

As applied either to an animate or an inanimato objeot, tho word individual ordinarily connotes union arnong the parts of the objeot, and eeparatences from other objecte. This fundumental olornent in the conception of individuality, wo cannot with propriety ignore in the biological application of the word. That which wu call an individaal plant or animal must, therefore, be some concrete whole, and not a discreto wholo. If, howover, wo say that each concrete living wholo is to be regardod as an individual, we ure still met by the quaction-What constitutee a concroto living whole P A young organism arising by internal or exteraal
gemmation from a parent organism, pasees gradually from a state in which it is an indistinguishable part of the parent organism, to a state in which it is a separate organism of like structure with the parent. At what stage does it become an individual? And if its individuality be conceded only when it completely separates from the parent, must we deny individuality to all organisms thus produced, which permanently retain their connexions with their parents? Or again, what must we say of the Hectocolylus, which is an arm of the Cuttle-fish that undergoes a special development, and then detaching itself, lives independently for a considerable period? And what must we say of that larval Echinur, which is left to move about awhile after being robbed of its viscera by tho young Echinus developed within it?

To answer such questions, we must revert to the definition of Life. The distinction between individual in its biological sense, and individual in its more cennerat sonse, must consist in the manifostation of Life, properly so callod. Life we have seen to be, "the definite combination of heterogeneous changees, both eimultaneous and sacceesive, in correepondence with externq $c 0$-axistances and sequences." Hence, a biological individual is any concrete whole having a structuro which enables it, when placed in appropriate conditions, to continuously adjust its internal relations to external relations, so as to maintain the equilibriam or tus furctoons. In pursuance of this conception, we must consider as individuals, all those wholly or partially independent organized masses; which arise by multicentral and multiaxial development that is either continuous or discontinuous (\$50). We must eccond the title to each separate aphis, each polype of a polypedom, each bud or shoot of a flowering plant, whether it detaches itself as a bulbil or remains attached as a branch.

By thas interpreting the facts, we do not, indeed, avoid all ansmalies. While, among flowering plants, the power of indrpendent growth and development, is usually posesssed only by shoots or axes ; yet, in some cases, as in that of the Begonia-

Leaf awhilo since mentioned, the appendage of an axis, or even a amall fragment of such appendage, is capable of initialing and carrying on the functions of life; and in other caces, as ahown by M. Naudin in the Drosera intormedia, Jomig planta aro occasionally developed from the eurfeces of learee, whilo atill connootod with the parent plant. Nor amoug forme like the compound Hydrosoa, does the definition onublo us to docide where the line is to be drawn between the individuality of the group and the individualitioe of the mombers-merging into each other, as these do, in differeat degrosen. liut, as bofore said, such difficultioe must necesearily procenat thamealres, if organio forms have arisen by inmanaible graducione. We must be content with a course which commits us to the smallost number of incongruitios; and thin courso ia, to considor as an individual, any centre or axis that is oapable of indopendently carrying on thut conunnoun adjustruont of inner to outar relations whioh conemitutes Lifo.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

the same form. Thees two distinct proceses of multiplication, may be aptly termed homogenesis and heterogenowi.• Under these heads let us consider them more closely.

The kind of genesis, once suppoeed to be universal, in which the successive generations are alike, is always sexuul geneais ; or, as it has been otherwise called -gamogeneris. In every species of organism which multiplies by homogenesia, each generation consists of males and femules; and from the fertilized germs they produce, the next generation of aimilar males and females arises. This method of propagation is further distinguished by the peouliarity, that each fertilized gorm gives rise to bat one individual-the product of development is alway organized round one axis, and not round several axee. Between the differeat kinds of homes genesis, the most marked contrast, and the only one which need here detain us, is that between the oviparous and the viviparous. The oviparous kind is thit in which the fertilisod germ is detached from tho parent, before it han undergone any considerable devalopment. The viviparoce kind is that in which development is considerably adranood, or almost complotod, before final detachment takee place. This distinction is, however, not a sharply-defined one: thene are transitions botwecn the oriparous and the viviparous proccesen. In ovo-viviparous genesia, there is an intarmal incubation; and though the young are in this anse finally detached from the parent in the chape of egge, they do not leave the parent's body until aftor thoy havo nesumod comething like the paroutal form. Looking around, we find that bomogencais in universal among the Vertebrata : there is no known vertebrate animal but what ariox: from a fortilised gorm, and unites into its cinglo indio viduality the whole producte of thio fertilized germ. In

[^11]the mammals or highest Vertebrata, this homogenesis is in overy case viviparous; in birds it is uniformly oviparous; and in reptiles and fishes, it is always essentially oviparous, though there are casee, of the kind above referred to, in which viviparity is simulated. Puscing to the Invertebrata, we find oviparous homogenesis universal among the Arachnide (except the Scorpions, which are ovo-viviparons); universal among the higher Crustacea, but not among the lower; extremely general, though not universal, among Insocts; and universal among the higher Mollusca, though not among the lower. Along with extreme inferiority among animals, we find homogenesis to be the exception rather than the rule; and in the vegetal kingdom, there appear to be no cases, save those of a few aberrant parasites like the Rafflesiacece, in which the centre or axis which arises from a fertilized germ, becomes the immediate producer of fertilized germs.

Where propagation is carried on by heterogenesis, or is cheracterized by unlikenees of the successive generations, there is always ascxual genesis with occasionally-recurring sexual genesis; in other words-agannogenesis interrupted more or less frequently by gamogenesis. If we set out with a generation of perfect males and females; then, from their ova or seeds, there arise individuale that are neither males nor females, but that produce the next generation from buds. By this method of multiplication, many individuals originate from a single fertilized germ: the product of development is organized round more than one centre or axia.

The simplest form of heterogenesis is that seen in uniaxial plants. If, as we find ourselves obliged to do, we regard each separate shoot, or axis of growth, as a distinct individual ; then, in uniaxial planta, the successive individuals are not represented by the series $\mathbf{A}, \mathbf{A}, \mathbf{A}, \mathbf{A}$, \&c., like thoee resulting from homogenesis; but they are represented by the series $\mathbf{A}, \mathbf{B}, \mathbf{A}, \mathbf{B}, \mathbf{A}, \mathbf{B}$, \&o. For in plants which were before claseed as uniaxial ($\$ 50$), and which may
be conveniently so distinguished from other plantes, the axie which shoote up from the eeed, and eubetantially constitutes the plant, does not iteelf flower and bear seed; but gives lateral origin to flowering, or ceed-bearing, axes. Though in uniaxial plants, the fructifying apparetue appears to be at the end of the primary, vertical axis; yot diesection shows that, morphologically considered, each fruotifying axis is usally an offtapring from the primary axis. There ariscs from the seed, a cexlees individual, from which apring by gemmation, individuals having reproductive organs; and from thees there result fertilized germs or soeds, that givo riso to soxkeos individuals. That is to aay, gamogenesia and agamogenesis alternate: the peouliarity being, that the sexual individualo arise from the sexlees one by continuous development. The salpos show us an allied form of heterogenesis in the animal kingdon. Individuals developed from fertilised ova, instead of themselvee producing fertilized ova, produce, by gemmation, strings of individuals; from which fertilised ova aguin originate. In multiaxial plantes, we have a succcseion of generatione represented by the acrices A, B, B, B, ta, A, B, B, B, So. Suppoting A to be a flowering axis, or sexuul individual; then, from any fertilized germ it caste off, there growe up a gexlees individund, B; from this there bud-out other coxlees individuale, B ; and ∞ on for generations more or lees numerous; until at length, from come of these sexloses individuale, there bud-out eeed-beering individuals of the original form \mathbf{A}. Branched herben, ahruba, and treen, exhibit this form of hotarogeneain: the succeseive generations of cexleem individuale thum prodroed, being in moot cueses continnously doveloped, or aggregated into a compound individual; but being in mome crases dim continuously developed. Among animals, a kind of hoterogenocie reprementod by the mume sucoesion of lotters, 000 us in ench componad polypes as the Sertularia; and in those of tho HIydrosea which aesume altarnatoly the polypoid farme, and the furm of tho $\boldsymbol{\nu}$ eduea: the chief difterencee

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

word; but rather, as they have aince been called by Prat. Huxley, peond-ova. Fon Siebold and other naturaliste, have hence applied the term parthenogenesis to a narrowor clame of cases. Perhape it would be best to distinguish this process. which is intermediate between metagenesin and parthenogenesis, by the term psoudo-parthenogenoeic. It is the process familiarly exemplifiod in the Aphidon. Hera, from the fertilised eggo laid by perfect femalea, there grow up inperfect female, in the peend-ovaria of which there are doveloped poend-ova; and theos, rapidly ansuming the organization of other imperfect femalee, are born viviparously. From this second generation of imperfoct femalen, thoro by and by arises, in the same manner, a third generation, of the aame kind; and so on for many generations: the eerics boing thus symbolized by the letters Λ, B, B, B, B, B, \&e., A. Reopocting this kind of hetarogeneris, it should be added, that in animals, as in plants, the numbor of gonerntions of coxloses individuals produced before the re-appearance of sexual onee, is indefinite; both in the sense that in the same apecies it may go on to a greator or lees extent eccoording to circumstances, and in the senso that among the generntions of individuale procceding from the same fertilised germ, a recurrence of soxual individuals takee plece carlier in some of the diverging lines of maltiplication than in others. In trees wo see that on some brenches, flower-bearing axces arise while other branches are atill producing only loaf-bearing axces; and in the successive generations of Aphiden, a parallad trath has been observed. Inotly hae to be wet down, that form of hetorogonexis in which, along with gamogenowis, thero occurs a form of agamogencsis exectly like it, save in the abeence of fecundation. This is called true parthenogencrisreproduction carriod on by virgin motherg, which are in all reopeote like other mothere. In the silk-worm-roothe thie parthenogenetio in exceptional, rather than ordinary: veually the oggs of theeo insoote are fertilised; but if they aro not, thoy are still haid, and somo of them produco larvan In certhin Inpidophera, howover, of the groape Prychida and

Tineida, parthenogenesis appears to be a normal processindeed, so far as is known, the only process; for of some species the males have never been found.

A general conception of the relations among the different modes of Genesis, thus briefly described, will be best given by the following tabular statement.

This, like all other classifications of such phenomena, presents anomalies. It may be justly objected, that the processes here grouped under the head agamogenesis, are the same as those before grouped under the head of discontinuous development ($\$ 50$) : thus making development and genesis partially coincident. Doubtless it seems awkward that what are from one point of view considered as structural changes, are from another point of view considered as modes of multiplication.*

[^12]Development $\left\{\begin{array}{l}\text { Continnous } \begin{array}{l}\text { Growth } \\ \text { Metamorphosis } \\ \text { Discontinuous }\end{array}\left\{\begin{array}{l}\text { Agamogenesis } \\ \text { Gamogenesis }\end{array}\right.\end{array} \begin{array}{l}\text { Metagenesis } \\ \text { Parthenogencia }\end{array}\right.$

Thero is, however, nothing for us but a choice of imperfeotions. We cannot by any logical dichotomiea, nocurntely exprese relations which, in Nature, graduate into each other inseusibly. Neither the above, nor any other scheme, can do more than give an approximate idea of the truth.
§ 76. Genesis under every form, is a proceses of negative or positive disintegration ; and is thus essentially opposed to that process of integration, whioh is one element of individual evolution. Negative disintegration occurs in those cween where, as among the compound Hydrosoa, there is a continuous developroent of new individaals by bodding from the bodies of older individuals; and where the older individuale are thus prevented from growing to a greater sixo, or reaching a higher degree of integration. Poaitive disintegration occurs in those cases of agamogenesis where the formation of now individuals is diccontinuous, and in all cases of gamogenesis. The degrees of disintogration aro various. At the one extreme, the parent organiam is complotoly brokon up, or diseolved into new individuals; and at the other extreme, tho new individual forme but a amall deduction from the paront organism. Prolosoa and Protophyta, abow us that form of dicintogration callod spontancons fiasion: two or four individuals boing produced by the splitting-up of the original one. The Volcar and the Hydrodictyon, are plants which, having devoloped broods of young plants within thermealves, give them exit by burating; and aunong animala, the ono latoly referred to, which arise from the Diffoma egg, entirely lowes ite individuality in the individunlitics of the numerous Distoma.larve with which it bo comce fillod. Speaking generally, the dogree of diaintegration becomes loses marked, as we approech the highoe organic forma. Plants of advancod types throw off fomm themsolves, whether by gumogrenosis or agamogenesia, parts that are relativoly amall; and among tho bigher animale, chere is no caso in which the parent individuality io habitullly

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

eoparated from the parent-plant under the shape of a contre; and tho embryo-ooll, though not aboolutely separuted trom the parent, is still no longer subordinate to the organizing forese of the parent. So that when, the embryo-cell having been fertilized by matter from the pollon-tube, the developmeat commences; it proceeds without parental control : the now individual, though remaining physically unitod with the old individual, becomes structurally and functionally eeparate while still only a centre of development; and takee on its axial form by processes of its own-the old individual doing no more than supply materialo.

Throughout the animal kingdom, the new individuals produced by gamogenesis, are obviously separatod in the shape of centres of devalopment wherever the reproduction is oviparous. the only couspicuous variation boing in the quantity of natritive mattor bequeathed by the parent to the new contro of devolopmont, at the time of its eeparation. And though, where tho reproduction is viviparous, the proceses appears to bo different, and in one sense is 80 ; yet, intrinaically, it is the sume. For in these cases, the new individual really detaches itrelf from the parent while still only a centre of developmont; but instend of being finally cast off in thin state, it is ro-attached, and supplied with nutriment until it assumes a more or less completo axial etructure.
§ 77. Under all ite various formes the cesential act in gamogenecia, is the union of two centres or cella, producod by different parent organisms: the sperm-coll being the malo product, and the gorm-coll the fermale. There are very many modes and modifications of modes in which these celle aro producod ; very many modes and modifications of moxies by which they aro brought into contaot; and very many modes and modifications of modes by which the resulting fortilisod germs have secured to them the fit conditions for thair development. But peasing over theme many divorgoot and ro-divergent kinds of coxaal multiplication, which
it would take too much space here to specify, the one universal peculiarity which it concerns us to remark, is, this coalescence of a detached portion of one organism, with a more or less detached portion of another.
Such protophytes as the Palmellas and the Desinidiere, which are sometimes distinguished as unicellular plants, show us a coalescence, not of detached portions of two organisms, but of two entire organisms: in the Palmelle, conjugation is a complete fusion of the individuals; and in the Desmidiea, the entire contents of the individuals unite to form the germmass. Where, as among the Conferove, we have aggregated cells whoes individualities are scarcely at all subordinate to that of the aggregate, the gamogenetic act is effected by tho union of the contained granules of two adjacent cells. In Spirogyra, it is not adjacent cells in the same thread which thus combine; but cells of one thread with those of another. As we ascend to plants of high organization, we find that the two reproductive elements become quite distinct in their characters; and further, that they arise in different organs set apart for their production: the arrangements being such, that the sperm-cells of one plant combine with the germ-cells of another.

There is reason to think that, among the lowest Protosoa, a fusion of two individualities, analogous to that which occurs in the conjugation of certain Alga, is the process from which results the germ of a new series of individuals. But in animals formed by the aggregation of units that are homologous with Protozoa, the sperm-cells and germ-cells are differentiated. And even in these humble forms, where there is no differentiation of sexes, we have good evidence that, as in all higher forms, the union is not between sperm-cells and germcells that have arisen in the same individual; but between those that have arisen in different individuals.
The marvellous phenomena initiated by the meeting of aperm-cell and germ-cell, naturally suggest the conception of come quite special and peculiar properties possessed by these
colls. It seems obvious that this mysterious power which thay display, of originating a new and complex organism, distinguishes them in the broadest way from portionsof orgenio substance in general. Nevertheless, the more we study the cvidence, the more is this assumption ohaken-the more aro we led towards the conclusion, that theee cells have not boen made by come unusual elaboration, fundemeatelly different from all other cells. The first fact which points to this modified conclusion, is the fact recontly dwalt upon (§68), that in many plants and inferior animaly, a amall fragment of tissue that is but little differentiated, is capable of developing into the form of the organism frem which it was taken. Conclusive proof obliged us to admit, that the component units of orgnniems, have inherent powere of arranging themelves into the forms of the organiems to which they belong. And if to thoee component unita, which we distinguished as phymiological, such powers must be con-ceded-if, under fit conditione, and when not much specialized, they manifoes such powers in a way marked an that in which the contents of aporm-celle and germ-celle matifort them ; then, it becomos dear that the properties of apermcalls and gorm-colls are not so peculiar as wo are apt to amume. Again, the organs for preparing spormcelle and germ-aells, have none of the opeciality of atruoture which might be looked for, did epermoells and germcells noed endowing with propertios ementinlly unliko those of all other organic agenta. On the contrury, theso reproductivo coutrou procood frome timues that are obareotorised by their low organisation. In planta, for oxamplo, it is not appendages that have acquired considorable atructuro, which produce the fruotifying particles: those arise at the extremities of the axes, where the degree of atructure is the leest. The embryo-oedls are formed in the undifferentiated part of the camblium-leyer; the pollen-graine aro formod at the little-differentisted extremitice of the atamena; and both are bomologoses with cimplo epitheliam-oella. Among mavy

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

upecialised, but rather that they are unspecialisod: nooh specializations as some of them exhibit in the shape of locomotive applianoes, \&c., being interpretable not as intrinsio, but as extrinsio, modifications, that have references to nothing beyond certain mechanioal requiremeats. Sundry fucts tend likewise to abow, that there does not exist the profound distinotion which we are apt to assame, betwoen the malo and female reproductive elements. In the common polype, aperm-oelh and germ-cells aredeveloped in the eame layer of indifforent tiesue; and in Tethya, one of the eponges, Prof. IIuxloy has obberved that they ocour mingled together in the general parenobyma. The pollom-grains and embryocolls of plants, ariso in edjocent parts of the cambium-layer; and from a deccription of a monstronity in the Pamion-lower, recontly given by Mr Salter to the Linnean Socioty, it appoare, both that ovaloe may, in thoir general otructurn, graduate into anthere, and that thoy may produce pollen in their interiors. All which ovidence is in perfeot harmony with the foregaing concluaion; since, if eperm-celle and gorm-celle bave naturee not ementially unlike those of unapecialized collo in grasal, their naturea cannot be asentially unliko each other.

Tho noxt geperal froot to be noted, is, that theee oells Whowe union constitutee the cemential act of garogenesis, are colle in which the derelopemental changes have come to a clow-oello which, however favoorably circumatanced in soupect of nutrition, are incapable of further orolution. Though thoy aro not, se many celle are, unfitted for growth and motamorphosia by being bighly apccialisod; yot they have loat the power of growth and metacoorphosia. They havo corarally reeched a atate of equilibrium. And whilo the internal balance of forcen proventes a continuance of conatructive changen, it is readily ovorthrown by extornal deatructive forcea. For it uniformly happene that epormo calls and germ-cello which are not brought in contact, dinappour. In a plaut, the embryo-oall, if not fartilisot, is
abeorbed or dissipated, while the ovule aborts; and the unimpregnated ovum eventually decomposes.

Such being the characters of these cells, and such being their fates if kept apart, we have now to obeerve what happens when they are united. For a long time, the immediate eequence of their contact was not ascertained. This is at length, however, decided. It has been shown that in plants, the extremity of the elongated pollen-cell applies itself to tho surface of the embryo-sac, but does not enter the embryosac. In animals, however, the process is different. Caroful observers agree, that the spermatozoon passes through the limiting membrane of the ovum. The result in both cuses is presumed to be a mixture of the contents of the two cells. The evidence goes to show that in plants, matter passes by osmose from the pollen-cell into the embryocoll; and that in animals, tho substance contained in the spermatozoon becomes mingled with the subatance contained in the ovum, either by simple diffusion or by cell-multiplication. But the important fact which it chiefly concerns us to notice, is, that on the union of these reproductive elements, there begins, either at once or on the return of favourable conditions, a new series of developmental changes. The state of equilibrium at which each of them had arrived, is destroyed by their mutual influence; and the constructive changes which had come to a cloee, recommence: a process of cell-multiplication is set up; and the resulting cells presently begin to aggregate into the rudiment of a new organism.

Thus, paseing over the variable concomitants of gamogenceis, and confining our attention to what is constant in it, we see:-that there is habitually, if not universally, a fusion of two portions of organic substance. which are either themcelves distinct individuals, or are thrown off by distinct individuals; that these portions of organic substance, which are severally distinguished by their low degree of specinlixation, hare arrived at states of structural quiescence or
equilibrium; that if they are not nnited, this equilibrium ende in dimolution; but that by the mixture of them, this equilibrium is destroyed, and a new evolution initiatod.
178. What are the conditions under whioh Genesis takee place? How does it happen that some organisms multiply hy homogenosis, and others by hetarogenesia? Why is it that where agamogenesis provaile, it is usually from timo to time intorruptad by gamogenesis? These are questions of extrems interest; but queetions to which decisive answers cannot yot be given. In the oxisting state of Biology, wo must be content if we can learn the direction in which annwers lia. A survey of the facts, discloses cortain correlations which, if not universal, are too general to be without significanoe.

Whero the maltiplication of individuals is carried on by betorogonesis, wo find, in numorous cases, that agamogencais continues as long as the forcos which result in growth, aro greatly in excess of the antagonistio forcoo. Whild conversely, we find that the recurrence of gamogenceis, takee place when the conditions are no longor so favourablo to growth. In like mmnner, where there is homogenctio multiplication, new individuals are usually not formed while the proeding individuals are atill rapidly growing-thut is, while tho forees producing growth exceed the opposing foncon to a greal extent; bat the formation of ncw individunls bagins when nutrition is nearly equalled by expenditure. To appeify all the facte that ecera to warrant tiveo indurtious, would take more epace than can be hare apared. A few of thern must cuffice.

The relation between froctification and innutrition, among planta, was lung ago amoertod by a Ocrman biologist-by Wolf, I arn told. When, some years ago, I mot with the emortion, I was not acquainted with the evidence on which is reated. Since that time, howover, I have, when occavion fivoured, asamined into the facte for mymelf. Tho msult has been a conviction, otrongthoned by every further inquiry,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

etructure of the sexual axis, affords corroborative evidence: giving very much the impression, as it does, of an aborted sexlees axis. Besides lacking those internodes which the leaf-bearing axis commonly posesees, the flowering axis differs by the absence of rudimentary lateral axes. In a leafbearing axis, the axil of every leaf usually contains a small bud, which may or may not develop into a lateral axis; but though the petals of a flower are homologous with leaves, they do not bear homologous buds at their bases. Ordinarily, too, the foliar appendages of sexual axes, are much smaller than those of sexless ones-the stamensand pistils especially, which are the last formed, being extremely dwarfed; and there is even reason for thinking that the absence of chlorophyll from the parta of fructification, is a fact of liko meaning. Moreover, the formation of the seed-veseal appears to be a direct consequence of arrested nutrition. If a glovod-finger be taken to represent a growing shoot, (the finger otanding for the core of the shoot, and the glove for the cambium-layer, in which the procese of growth takes place); and if it be supposed that there is a diminiahed supply of material for growth; then, it seems a fair inference, that growth will first cease at the apex of the cambium-layer, represented by the end of the glovefinger; and supposing growth to continue in those parts of the cambium-layer that are nearer to the supply of nutriment, their further longitudinal extension will lead to tho formation of a cavity at the extremity of the shoot, like that which results in a glove-finger when the finger is partially withdrawn and the glove sticks to its end. Whence it seems,

[^13]both that this introversion of the cambium-layer may be considered as due to failing nutrition, and that the orulem growing from its introverted surface (which would have been its ontor sarfice bat for the defective nutrition) are extremaly aborted homologuee of external appendageo-either leaven or lateral axes: the eseential organs of fructification thus arising where the defective nutrition has reeched its extrome.To all which lot us not forgot to add, that the sperm-celle and germ-cells are formed at the very ends of the organs of frootification.

Thoee kinds of animals which multiply by hetorogenesia, precent us with a parallel relation between the recurrence of gamogencsis and the recurrence of conditions unfarourable to growth-at least, this is ahown where exporimenta have thrown light on the connexion of cause and effect; namely, aroong the Δ phiden. Theee creatures, hatched from eggs in the spring, multiply by agamogenesis throughout the summer. When the weather becomes cold, and plante no longer afford abundant aap, perfect males and fermaleo aro produced; and from gamogenesie there reault fertilizod ova. But now obeerve that beyond this ovidence, wo have much more conclusire evidence. For it has been shown, both that the rapidity of the agamogenesis is proportionate to tho warmth and nutrition, and that if the ternperature and

- It appeare thea botminta do not agrou rugpoting ibe hoomogite of the orule: cooce tilutiag that thoy aro rodimanimery fultier orgene, end obbers thes

 which I have dearsbod aboven deowe that thoy may dovelop into flownrooth

 bugen

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

in each orarium, amounte, under favourable circumetancea, to as many as eight or nine; while of the graio egge, only one at a time is produced in esch ovarium, and occesionally one of the ovaris produces none: whence it follows, that as the gamic agg is not more than twice the bulk of the agamic agg, the quantity of matter containod in an agamio brood, is four timee, and occasionally even eight times, as great as that contained in a gamic brood. Thus the quantity of nutriment expendod in gamogonenis during a given period (making allowance for that which goes to the formation of the ephippium), is far loess than that expended in agamogeneais during a liko period. Seeing, then, thic constant preparation for cither gamio or agamio genexis, in a creature liablo to cuch irregular variations of nutrition; and seeing that the agamogenesis impliee by ite amoent, a large excese of nutrition, while the gamogenexis implies by its amount, a emall oxcese of nutrition; we can coarcely doubt that the one or the other mode of multiplication occurs, acoonding as the external conditions are or are not farourable to nutrition.

Puming now to animale which multiply by homogenesion animals in which the whole product of a fertilised germ aggrogatee round a single centre or axia, instead of round many contros or axes; wo mee, wefore, that wo long as the conditions allow rapid increass in the maes of this germ-product, the formation of new individuml by gemogeneris does not take placo. Speaking generally, we find that only when growth in declining in relativo rapidity, do perfect apermcells and gorm-colls bogin to appoar; and that the falleat activity of the reproductive function, arines as grow?h cosace -apoaking genorally, we manot eny, beowuse, though thin relation is tolerably definito in tho higheet ordere of animale which multiply by gumogenocis, it is leas definito in the lower orders. This admiasion doos not militate aguinst the bypothesia, as it soems to do; for the indefinitenese of the relation occurs where the limit of growth is comparativoly indefinita. Wo sum (s 46) that among ective, hot-blooded creaturen,
such as mammals and birds, the inevitable balancing of assimilation by expenditare, establishes, for each species, an almost uniform adult size $;$ and among creatures of these kindsf (birds eepecially, in which this restrictive effect of expenditure is most conspicuous), the connexion between esssation of growth and commencement of reproduction, is distinct. But we also aav ($\$ 46$) that where, as in the Croo codile and tho Pike, the conditions and habits of life are such, that expenditure does not overtake assimilation as the size increases, there is no precise limit of growth; and in creatures thus circumstanced, we may naturally look for a comparatively indeterminate relation between declining growth and commencing reproduction.*

There is, indeed, among fiskes, at least one case which appears very anomalous. The male parr, or young of the male salmon, a fish of four or five inches in length, is said to produce milt. Having, at this early stage of its growth, not one hundredth of the weight of a full.grown salmon, how does its production of milt consist with the alleged general law? The answer must be in a great measure hypothetical. If the salmon is (as it appears in its young stute) a species of fresh-water trout, that has contracted the habit of annually migrating to the sca, where it finds a food on which it thrives-if the original size of this species was not much greater than that of the parr (which is nearly as large as some varieties of lake-trout and river-trout)-and if the limit of growth in the trout tribe is very indefinite, as we know it to be; then we may reasonably infer, that the parr has nearly the adult form and size of this species of trout, before it acquired its migratory habit; and that this production of milt, is,

[^14]in such case, a concomitant of the incipient deoline of growth naturally arising in the species, when living under the conditions of ite remote ancestors. If this be admitted, the immense subeequent growth of the parr into the culmon, must be regarded as due to a suddenly-increased facility in obtaining food - a facility which removes to a great distance the limit at which assimilation is balanced by expenditure ; and which has the effect, analogous to that produced in plants, of arresting the incipient reproductive process, and cuusing a resumption of growth. A confirmation of this view may be drawn from the fact, that when the part, aftor ite first migration to the cea, returns to frosh water, having increased in a fow months from a couplo of ounces to fivo or six pounde, it no longor shows any fitness for propagation: the griles, or immature salmon, does not produce milt or spawn. Bat without citing further illuatrations, or attempting to meot further difficulties, it has, I think, beon made sufficiently clear, that some such connexion as that alloged, exists. Traversed, as is this relation between commencoment of soxual reproduction and declining rate of growth, by various other relations, it is quite as manifest as we can expoct it to bo.

The ganaral law to which both homogenesis and hotorogonexis conform, thus appeare to be, that the products of a fertilised germ go on accumulating by simple growth, solong as the forces whence growth resulte aro greatly in excess of the antagonist forcos; but that when diminution of tho one set of forces, or increweo of the othor, causec a considerablo decline in this excees, and an approech towards equilibriam, fortilizod grome are agein prodocod. Whother the germproduct be organized round one axis, or round the many axce that ariso by agamogonesio-whether the dovelopment be continuous or discontinuous; mattore not. Whether, as in cancreto organiems like the highor animate, this approach to equilibrium resolun from that diapmportionate increasc of expenditurs entailed by increase of aise; or whother, as in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

only in individuals that are approaching towards a etate of organic equilibrium; and eeeing, on the other hand, as we do, that the sperm-cells and germ-cells thrown off by such individuals, are oells in which developmental chnoges have ended in quicecence, but in which, after therr union, there arises a procese of active coll-formation; we may sumpect that the approach towarde a state of general equilibrium in such gamogenetic individuals, is accompanied by an approsch towards molecular equilibrium in them; and that the need for this union of sperm-cell and germ-cell, is the need for overthrowing this equilibrium, and re-etablishing active molecuiar change in the detached germ-a result which is probaily effected by mixing the alightly different physiological units of elightly different individuals. The soreral argoments that may be brought in support of this view, cannot be satisfactorily sot forth until after the topics of Heredity and Variation have been dealt with. Leaving it for the prosent, I propose hereafter to reconsider this quection, in connexion with cundry others that are rieed by the phenomena of Genesia.

Before ending the chapter, howover, it may be woll to note the relations between theee different morie of multiplication, and the conditions of exintenco under which they are reapoctively habitual. While the explanation of the teleologist is untros, it is often an obverse to the truth; for though, on the bypothesis of Evalution, it is cloar that things are not arranged thus or thus for the eecuring of opecial ende, it is aleo olear, that arrangemente which do necure these spocial ende, lend continually to cotablinh thormoolveo-are eatablinhad by their fulfilmont of thowo ende. Becidee ineuring a otructural fitnees between eech kind of organimm and ite cir comatances, the working of "natural colection" aleo insurce a fitnem betwoan the mode and rate of multipliontion of emolh kind of organiam and ite circoumetancea. Wo may, therefore, without any teloological implication, consider the fitnou of
homogencris and heterogenesis to the needs of the different dasses of organisms which exhibit them.
One of the facts to be observed, is, that heterogenesis provails among organisms of which the food, though abundant compared with their expenditure, is dispersed in such a way that it cannot be appropriated in a wholesale manner. Protophyta, subsisting on diffused gasee and decaying organio matter in a state of minute subdivision; and Protozoa, to which food comes in the shape of extremely small floating particles; are enabled by their rapid agamogenetic multiplication, to obtain materials for growth, better than they would do did they not thus continually divide and disperse in pursuit of it. The higher plants, having for nutriment the carbonic acid of the air and certain mineral components of the soil, show us modes of multiplication adapted to the fulleat utilization of these subetances. A herb, with but little power of forming the woody-fibre requisite to make a stem that can support wide-spreading branches, after producing a few sexlese axes, produces sexual ones; and maintains its race better by the consequent carly dispersion of seeds, than by a further production of sexless axes. But a tree, able to lift its successive generations of sexless axes high into the air, where each axis gets carbonic acid and light almost as freely as if it grew by itself, may with advantage go on budding-out sexlcss axes year after year; since it thereby increases its subsequent power of budding-out sexual axes. Meanwhile, it may adrantageously transform into seed-bearera, those axes which, in consequence of their loss direct access to materials aboorbed by the roots, are failing in their nutrition; for in doing this, it is throwing-off from a point at which sustenance is deficient, a migrating group of germs that may find sustenance elsewhere. The heterogenesis displayed by animals of the Coelenterate type, has evidently a like utility. A polype, feeding on minute annelidy and crustaceans, which, flitting through the water, come in contact with its tentaclea;
and limited to that quantity of prey which chance bringe within its grasp; buds out young polypes which, either as a colony or as diepersed individuala, apread their tentaolee through a larger apeos of wator than the parent alone can; and by producing them, the pareat better insures the continaance of its species, than it would do if it went on alowly growing until its nutrition was nearly balancod by its waste, and then multiplied by gamogenesis. Similarly with the Aphis. Living on sap sucked through ite proboecis from tender shoots and leaves, and able thus to take in but a very emall quantity in a given time, this creature's race is more likely to be preserved by a rapid asexual propagation of emall indiriduals, which disperse themselves orer a wide but nowhere rich area of nutrition, than it would be did the individual growth continue so as to produce large individuals multiplying sexually. While at the same time we see, that when autumnal cold and diminishing supply of sap, put a check to growth, the recurrence of gamogenecis, and production of fertilized ova that remain dormant through the winter, is znore favourablo to the proserration of the race, than would be a furthor continuance of agamogenesis. On the other hand, it is obvious that among the higher animak, living on food which, though dispersed, is more or leve aggregatod into large macoes, this alternation of gamic and agamic reprodaction ceases to be useful. The development of the germ-product into a single organism of considerable hulk, is in many casce a condition without which these large masees of nutriment could not be appropriated; and here the formation of many individuals instead of one, would be fatal. But we atill 800 the beneficial recults of the general law-the portponement of gamogenecis until the rate of growth begins to declina. For so long as the rate of growth continucs rapid, it is a proof that the organima geta food with greal facility-that expenditure is not auch as aerioualy to check cocounulation; and that the eriso reached is as yet not disend-vantageous-or rather, indeod, that it is advantagoous. But

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

OHAPTER VIII

HEREDITY.

180. Already, in the laet two chapters, the law of heredxtury transmission has becen tacitly aseomed; as, indeed, it unavoidnbly is in all sach discussions. Understood in its ontirety, the law is, that eech plant or animal produces othore of like kind with iteelf: the likeness of kind consisting, not 80 mach in the repetition of individual traite, as in the assumption of the same general structure. This truth has bean rendorod so familiar by daily illnostration, as almoot to heve lost its aignificance. That wheat produces wheat-that existing oxen have deccended from anceetral oxen-that every unfolding organism eventually takes the form of the clewe, ordor, genus, and species from which it sprang; is a feot Which, by force of ropetition, hae acquirod in our minds almost the eopoot of a neceesity. It is in thin, howeres, that Heredity is principally displayed : the phenomens commonly referred to it, being quite subordinato manifentationa. And, as thus underotood, Horedity is univermal. The various inatancos of hotorogonosia lately contemplated, ecom, indeed. to be at variance with thin aesertion. But they are not really $e 0$. Though the recurrence of like forme, is, in three instancou, not direot but oyclical, ctill, the like forms do recur; and when taken together, the group of firme producod daring onc of the oycloes is as much like the groupe produced in procoding cyclee, sas the singlo iodividual arising by homogenceio, is like anceetral individuala.

Whilo, however, the general truth that organisms of a given type uniformly descend from organisms of the same type, is so well established by infinite illustrations, as to have assamed the character of an axiom; it is not universally admitted that non-typical peculiarities are inherited. While the botanist would be so incredulous if told that a plant of one clasa bad produced a plant of another class, or that from soeds belonging to one order individuals belonging to another order had grown, that he would deem it needless to examine the evidence; and while the zoologist would treat with contempt the assertion, that from the egg of a fish a reptile had arisen, or that an implacental mammal had borne a placental nammal, or that an unguiculate quadruped had sprung from an ungulate quadruped, or even that from individuals of one speciee offspring of an allied species had proceeded; yet there are botanists and zoologists who do not consider it certain, that the minor specialities of organization are transmitted from one generation to another. Some naturaliste seem to entertain a vague belief, that the law of Heredity applies only to main characters of structure, and not to dotails; or, at any rate, that though it applies to such details as constitute differences of species, it does not apply to smaller details. The circumstance that the tendency to repetition, is in a alight degree qualified by the tendency to variation (which, as we shall hereafter see, is but an indirect result of the tendency to repetition), leads some to doubt whether Heredity is unlimited. A careful weighing of the evidence, however, and a due allowance for the influences by which the minuter manifestations of Heredity are obscured will remove the grounds for this scepticism.

First in order of importance, comes the fuct, that not ouly are there uniformly transmitted from an organism to its offspring, those traits of structure which distinguish the clase, order, genua, and species; but also those which distinguish the variety. We have numerous cases, among both plants and animals, where, by natural or artificial conditions, thare
have been produced divergent modifications of the same apecies; and abundant proof exists that the members of any one cub-species, habitaally tranemit their distinctive pectliarities to their deocendanta. Agricultariste and gardeners can furnich unqueetionable illustrations. Several varieties of wheat are known; of which each reproduces itheolf. Since its introduction into England, there have been formed from the potato, a number of cub-epeciea: come of them differing groutly in their forme, sizee, qualitioe, and poriode of riponing. Of poas, also, the like may be mid. And the case of the cabbage-tribo, is often cited as abowing the pormanent eatablishment of recoe that have diverged widoly from a common stock. Among fruite and flowers, the multiplication of kinds, and the continuance of each kind with cortainty by agamogenesis, and to come extont by gamogenexi, might be axemplified without end. From all sides evidence may be gathered abowing a liko parsintenco of variotics in each species of animal. Wo have our dintinct breeds of aheop, our distinct breedo of cattle, our distinct breeds of horves: oach breed maintaining its charectoriation. The ecroral sorts of doge, which, if we secept the phymiolo gicul teat, wo must consider as all of one apecice, show un in a marked manacr the hereditary trensmimion of anall difier-ences-ach sort, when kept pare, reproducing iteolf not unly in sive, form, colour, and quality of hair, but aleo in disposition and apecinlity of intelligenoa. Rebbita, too, have their pormanently -ertablinhed recee. And in the Iale of Man, wo have a tril-towe kind of ont Eren in the abeonce of other evidence, that which ethnology furniahos would auffice. Grapt them to bo derivad from ono ctock, and the varieties of man yield proof upon proof that mearepeelific Lruita of atructure are boypoached from generntion to generation. Or grant caly that thero is ovidacoo of their deriva. tion from several alocke, and we still bave, heewem racee docoended from a common stock, diminotions which prove the inbaritasco of minor poouliarition Becidon aning that

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

verified as to rank with axact science, there are no inductione so trustworthy as those which have undergone the mercantile test. When we have thousands of men whoee profit or lowe dopends on the truth of the inferences they draw from simple and perpetually-repeated obeervations; and when we find that the inference arrived at, and banded down from generation to generation of these deeply-interestod obeervers, has become an unshakable conviction; we may aocept it without hesitation. In broeders of animals we have such a class, led by such experiences, and entertaining such a conviction-the conviction that minor peouliaritics of organization are inherited as wall as major peculiaritioa. Hence the immenso prices given for sucocesful racers, bulls of superior forms, shoop that have certain desired peculiaritice. Henoo the careful record of pedigrees of high-bred horees and aporting dogs. Hence the care taken to avoid intermixture with inferior stocks. Citing the highest authorities reapecting tho effects of breeding from animals having certain superiorities, with the view of propagating those superiorities, Mr Darwin writes:-" Youatt, who was probably better acquaintod with the works of agriculturists than almost any other individual, and who was himeelf a very good judge of an animal, speaks of the principle of eelection as 'that which enables the agriculturist not only to modify the oharacter of his flock, but to chango it altogother. It is the magician's wand, by means of which ho may summon into life whatover form and mould ho pleases.' " Lord Somerville, speaking of what breoders have done for ahoop, sayn :-" It would semem that they had chalked upon a wall a form perfect in iteolf and then given it existence." That most akilful breeder, Sir John Sebright, uned to cay, with respoct to pigcons, that "he would produce any given feather in three years, but it would take him six yours to obtain hoad and boak." In all which otatements the tacit amertion in, that individual truits aro bequeathed from generation to generation; and that when they aro not b ought into conflict with oppoaito traits, they may be
$\omega 0$ perpetuated and increased as to become permanent diso tinctions.

Of special instances, there are many besides that of the oft en-cited Otter-breed of sheep, descended from a single short legged lamb, and that of the six-fingered Gratio Kelleia, who transmitted his peculiarity in different degrees, to several of his children and to some of his grandchildren. In a paper contributed to the Edinburgh New Philosophical Journal for July $1863, \mathrm{Dr}$ Struthers gives several cases of hereditary digital variations. Esther P -, who had six fingers on one hand, bequeathed this malformation, along some lines of her descendants, for two, three, and four generations. A-S-inherited an extra digit on each hand and each foot from his father; and C-G-, who also had six fingers and six toes, had an aunt and a grandmother similarly formed. A collection of evidence has been made by Mr Sedgwick, and published by him in the Medico-Chirurgical Review for April and for July 1863, in two articles on "The Influence of Sex in limiting Hereditary Transmission." From these articles are selected the following cases and authorities :-Augustin Duforet, a pastry-cook of Douai, who had but two instead of three phalanges to all his fingers and toes, inherited this malformation from his grandfather and father, and had it in common with an uncle and numerous cousins. An account has been given by Dr Lepine, of a man with only three fingers on each hand and four toes on each foot, and whose grandfather and son exhibited the like anomaly. Béchet describes Victoire Barré as a woman who, like her father and sister, had but one developed finger on each hand, and but two toes on each foot, and whose monstrosity re-appeared in two daughters. And there is a case where the absence of two distal phalanges on the hands was traced for two generations. The various recorded instances in which there has been transmission from one generation to another, of webbed-fingers, of webbed-toes, of hare-lip, of congenital luxation of the thigh, of absent patella, of club-foot, \&c., would occupy more space than can here be
spared.
Defects in the organs of sense are aleo not unfroquently inherited. Four sisters, their mother, and grandmother, are deacribed by Daval as cimilarly affected by cataract. Prospor Lucas detaile an oxample of hereditary amo aurosis affocting the fomulce of a fumily for three generatione. Duval, Graffe, Dufon, and othere teotify to like caves coming under their obeervation. Deafneee, too, is coceasionally tranemitted from parent to child. There are deaf-mutes whose imperfuctions have boen derived from ancestora; and malformations of the external ears have aloo been perpetuated in offirpring. Of tranemitted peculiarities of the akin and ite appendagea, many illnatrations have been noted. One is that of a family remarkable for enormous bleck eyebrowa: another that of a family in which every member had a lock of hair of a lightor colour than the reet on the top of the heed; and there are aleo instances of congenital baldnees being hereditary. Entire abbence of teeth, abeonce of particular reeth, and anomalous arrangements of toeth, are recorded as traits that have doecended to children. And wo have evidenco that soundnees and uneoundnees of tceth are tranemineibla.

The inheritance of such diceoces as gout, consumption, and inasnity, is univerally admitted. Δ mong the lem-commor discares of which the deccent from one generation to another has boen obeorved, aro, juhthyosis, leprooy, pityriagi, weweooons tumours, plice polonica, dipeomania, comnambulism, catalopoy, epilopey, acthma, apoplaxy, elophanticaia General nervousmess displayed by parents, almoet always re-appears in choir ohildren. Even a bias towarde ouicido appeare to be cometimes hereditary.
§82. To provo the tranemiesion of those atructural peonlinritiee that have resultod from functional peouliaritien, is,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

they cannot be claseed as "spontaneous variations." They are modifications of structure, consequent on modifications of function, that have been produced by modifications in the actions of external forces. And as these modifications re-appear in succeeding generations, we have, in them, examplee of functionally-eatabliched variations that aro hereditarily transmitted.

Further evidence is supplied by what are called "sports" in plants. These are of two kinds-the gamogenetio and the agamogenotic. The gamogenetic may be ascribed whally to "spontaneous variations;" or if they are partly due to the inheritance of otructural changee that are produced by functional changes, this cannot be proved. But where the individuale displaying the variations arise by agamogeneris, the reverse is the case: apontaneons variation is out of the quection; and the only poseible interpretation is deviation of structure caused by deviation of function. \mathbf{A} now axis which buds out from a parent-axis, aseumes an onlike character-gives off lobed leares in place of single leaven, or hae an otherwise different mode of growth. This chango of structure implice change in the developmental actions which produced the now bud-change, that io, in the actions going on in the parent ahoot - functional change And nince the modified structare thus impreeed on the new shoot by modified function, is tranamittod by it to all the ahoote it bears ; we are obliged to regard the caso as one of acquired modification that has becomo hereditary.

Evidence of analogous changes in animalo, is difficult to disentangta. Only among domenticatod animala, bave we any opportunity of tracing the effoote of alterod habita ; and heres, in nearly all ceeos, artificial eeloction has obecurvd the remalta. Still, there are eome facts which eeom to the point. Mr Darwin, while ascribing almoot wholly to "natural eolection" the production of those modifications which eventuate in differences of apocion, nevorthelese adraits the efficota of uso and dimece. He cayn-" I find in the domentio duck that the bonce of the wing weigh low and the bonce of the leg moro, in pro-
portion to the whole skeleton, than do the same bones in the wild duck; and I presume that this change may be safoly attributed to the domestic duck flying much lees, and walking more, than its wild parent. The great and inherited development of the udders in cows and goats in countries where they are habitually milked, in comparison with the state of these organs in other countries, is another instance of the effect of use. Not a single domestic animal can be named which has not in some country drooping ears; and the view suggosted by oume authors, that the drooping is due to the disuse of the muscles of the ear, from the animals not being much alarmed by danger, seems probable." Again -" The eyes of moles and of some burrowing rodents are rudimentary in size, and in some cases are quite covered up by skin and fur. This state of the eyes is probably due to gradual reduction from disuse, but aided perhaps by natural selection." - - " "It is well known that several animals, belonging to the most different clasees, which inhabit the caves of Styria and of Kentucky, are blind. In some of the crabs the footstalk of the eye remains, though the eje is gone; the stand for the telesoope is there, though the telescope with its glasses has been lost. As it is difficult to imagine that eyes, though useless, could be in any way injurious to animals living in darknees, I attribute their loses wholly to disuse." The direct inheritance of an aco quired peculiarity is sometimes observable. Mr Lewes gives a case. He " had a puppy taken from its mother at six weeks old, who, although never taught, ' to beg' (an accomplishment his mother had been taught), spontaneously took to begging for everything he wanted when about seven or eight months old : he would beg for food, beg to be let out of the room, and one day was found opposite a rabbit hutwh begging for rabbits." Instances are on record, too, of sporting doge which spontancously adopted in the field, certain modes of behaviour which their parents had learnt.
But the best examples of inherited modifications produced by modifications of function, occur in the human race. To no
wher cance can be accribed the rapid metamerphoese madongone by the British races when placed in new conditions. It is notorious thet, in tho United States, the deecendents of the immigrant Irish lose their Celtic aspect, and become Americanizod. This cuunot be ascribed to intermarriage with Amerioans; since the feeling with which Irish are regardod by Americans, prevente any considerable amount of intermarriago. Equally marked is the case of the immigrant Ourtmans, who, though they koep themselvee very much apart, rapidly assume the provailing type To say that "apontancous variation" increased by natural selection, can have produced this offeot, is going too firr. Races so numeroun, cunnot havo bon supplanted in the course of two or three gonerations by varietiee springing from them. Hence there is no meapo from tho conclusion, that physical and e0cial conditione have here wrought modifications of fanotion and atructure, whioh offipring have inherited and increased. Similarly with epecial caees. In the Cyclopadia of Practical Mecticino, Vol. IL p. 419, Dr Brown otates that he "has in ranny instancose obeorved in the caso of individuals whowe comploxion and goveral appoarnace hes boan modifiud by roaidonce in hot alimatee, that ohildren born to them subeoquently to euch residence, have reembled them ruther in their coquired than primary mien."

Bonso apocial modifications of organe camed by apocial changes in thoir functions, may aloo be notod. That largo hande are inherited by men and women whose anoestore lod haborione liven; and that men and womon whowe dewoent, for many geocrationa, han boen from thoee unueod to manual Labour, commonly have amall hands ; arceetablishod opiniona It coome rery unlikoly that in the abronce of any cuoch conpeacion, the cive of the hand ahould thue have come to be peocenlly regardod an cormo indox of extraction. That there existe a like relation between habitual wso of the foet and largenee of the foet, we have atrong evidenco in the cartome of the Ohinema. The corturing preotice of artificially arreating the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

combination of such cadences, more or less idealized, whioh constitutes melody, has all along had a meaning in the average mind, only because of the meaning which cadences had soquired in the average mind ; and that by the continual hearing and practice of melody, there has been gained and transmitted an increasing masical sensibility.

Confirmation of this view may be drawn from individual casee. Grant that among a people endowed with musical faculty to a certain degree, apontaneous variation will occasionally produce men posseesing it in a higher degree; it cannot be granted that spontanoous variation accounts for the frequent production, by suoh highlyendowed men, of men still more highly endowed. On the average, the offispring of marriage with others not similarly endowed, will bo lees distinguished rather than more diatinguished. The most that can be expected is, that this unusual amount of faculty shall re-appear in the next gencration undiminished. How then shall we explain caser like those of Buch, Mozart, and Beethoven, who wore all sons of men having unuaual musical powers, but who greatly excelled their futhers in their musical powers $?$ What shall wo isay to the facte, that Haydn was the son of the organist, that Hummul was born to a music mastor, and that Weber's father was a distinguimbed violinist f The occarrence of eo inany cases in one nation, within a ahort poriod of time, cannot rationally be anoribed to the coincidence of "apontancous variationa" It can be accribod to nothing but inherited developments of atruclure, cauned by augmentations of function.

But the cleareat proof that atruotural altarations cauned by alterations of function, aro inheritod, cocurs when the alvorationa are morbid. "Cortain modeu of living ongender gout;" and gout is transmisesblo. It is well known that in persons provioualy hoalehy, consumption may bo producod by unfa rourable conditions of lifo-by bad and ineneficient food; by foul, dump. unventilated habitations; and even by long-continued ansiety. It is atill moro notorious that the coseamptive diatheaie in conveyod from parcat to child. Unlem, theo, a dietinotion
be assumed between constitutional consumption and consumption induced by unwholesome conditions-unless it bo ceserted that consumption of unknown origin is transmiseible, while functionally-produced consumption is not; it must be admitted that those changee of structure from which the consumptive diathesis results, may be caused in parents by changes of function, and may be inherited by their children. Most striking of all, however, is the fact lately hrought to light, that functional disorders artificially eatablished, may be conveyed to offspring. Some few years since M. Brown-Sequard, in the couree of inquiries into the nature and causes of epilepsy, hit on a method by which epilepsy could be originated. Guinea-pigs were the creatures on which, chiefly, he experimented ; and eventually, he discovered the remarkable fact, that the young of these epileptic guinea-pigs were epileptic: the functionally-establiahed epilepsy in the parente, became constitutiunal epilepesy in the offspring. Here we have an instance which, standing even ulone, decides the question. We have a special form of nervous action, not caused by any natural variation of atructure that had arisen epontaneously in the organism; but one caused by a certain incidence of external forces. We have this special form of nervous action becoming confirmed by repetition : the fits are more and more easily induced-there is established the epileptio habit. That is to say, the connooted nervous actions constituting a fit, produce in the nervous system such changes of structure, that subsequent connected nervous aotions of like kind, follow one another with increased readiness. And that this epileptic habit is inherited, proves conclusively that these structural modificatione worked by functional modifications, are impreseed on the whole organism in such way as to affoct the reproductive centres, and cause them to unfold into organisms that exhibit like modificationa.

Evidence ncarly allied to this, and ecarcely less significant, is furnished by that transmission of general nervousness, notioed in the last rection. Nervousness is eapecially common
among chasess of people who tax their brains much. Amang these olasese, we duily see this constitutional modification producod by excess of function, in men whose progenitore were not nervous; and the children of such men babitually inherit more or lese of the modification.

8 83. Two modified manifestations of Heredity remain to be noticed. The one is the re-appearance in offipring, of traith not borne by the parenta, but borne by the grendparente or by remoter ancestors. The other is the limitation of Heredity by oos-the restriction of cortain transmittod peculiaritioe to offspring of the same sex as the parent posessaing thees poculiarities.

Atavism, which is the name given to the recurrence of ancestral traite, is proved by many and varied facte. In the picture-galleriee of old families, and on the monamental brasees in the adjacent churchee, are often seen types of feuture that are atill, from time to time, repented in membere of these families. It is mattor of common sernark that some constitutional disoases, such as gout and insunity, after missing a goneration, will ahow thomselves in the noxt. Dr Strutheres in his abovo-quoted paper on " Variation in the Number of Fingere and Toees, and of the Phalanger, in Man," gives caces of malformationa that were common to grandparent and grandohild, but of which the parent had no trace. M. Girou (as quoted by Mr Sedgwick) say--"One is olon surprieed to 000 limbe bleok, or apolsod with bleok, born of owes and rums with white wool, bat if one takee the trouble 10 go back to the origin of this phenomenon, it is found in the ancestors." Inctanoces atill more remarkable, in which the romotences of the ancestors copied is very great, are given by Mr Darwin. He pointe out that in cromee botween rariotion of the pigeon, there will comotimeen reappoar the plumage of the original rook-pigeon, troen which theee varictice docecndad; and he inetancee the faint sebra-like markinge cocasionally treceeble in torees, is having probably a like meaning.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

and for acoepting the opposite supposition, that they are colle diffaring from others rather in being unspecializod. And here the assumption to which we seem driven by the ensemble of the evidence, is, that eperm-cells and germ-celle are eeventielly nothing more than rehiclea, in which are contrined emall groups of the physiologioal units in a fit state for obeying their proclivity towards the structural arrangement of the specioe they belong to.

Thus the phenomena of Heredity are seen to ascimilate with other phenomena; and the assumption which theoe othor phenomena thrust on us, appears to be equally thrust on us by the phenomena of Heredity. We muat conalude that the likences of any organism to eithor parent, is conveyed by the apecial tendencies of the physiological anite derived from that parent. In the fertilized germ we have two groupe of phyaiological units, alightly different in their structures. These alightly-difforent unite, eeverally multiply at the expense of the nutriment supplied to the unfoldinggerm -ach kind moulding this nutriment into unite of ite own typo. Throughout the procese of evolution, the two kinds of unita, mainly agreeing in their polaritios and in the form which they tend to build themselven into, but having minor differences, work in unison to produce an organism of the apecies from which they were derived, bat work in antagorism to produce copios of thoir reapoctive parontorganisma. And hence utimately resulte, an organian in whioh traite of the one are mixed with traits of the other.

If the likeneen of offopring to parente is thun dotercnired, it beoomsos manifeot, à priori, that becidee the trunemiesion of generic and opocifo peculiarition, thoro will bo a tranemiosion of those individual poculiaritioe which, arieing without asagrable causes, are clewed as "apontancoun." For if the aeoumption of a apecial arrangement oi parta by an organiam, is due to the prodivity of its physiological anits wwards that arreagmaneat ; then the asumpuption of an arrungement of parts alightly diffarant from that of the apociea, inaplice
physiological units slightly unlike those of the epecies ; and thees alightly-unlike physiological unite, communicated through the medium of aperm-cell or germ-cell, will tend, in the offapring, to build themselvee into a structure similarly diverging from the average of the apecies.
It is not equallymanifeat, a priori, however, that on this hypothesis, alterations of structure caused by alterations of function, must be transmitted to offspring. It is not obvious that change in the form of a part, caused by changed action, involves such change in the pbysiological units throughout the organism, that these, when groups of them are thrown off in the shape of reproductive centres, will unfold into organisms that have this part similarly ohanged in form. Indeed, when treating of Adaptation (\$69), we saw that an organ modified by increase or decrease of function, can but slowly so re-ant on the system at large, as to bring about those correlative changes required to produce a new equilibrium; and yet only when such new equilibrium has been established, can we expect it to be fully expreseed in the modified physiological units of which the organism is built-only then can we count on a complete transfer of the modification to descendanta Nevertheless, that changes of atructure cansed by changee of action, must aleo be transmitted, however obscurely, from one generation to another, appears to be a deduction from firat principleb-or if not a specific deduction, still, a general implication. For if an organism A, has, by any peculiar habit or condition of life, been modified into the form Δ°, it follows inevitably, that all the functions of A^{\prime}, reproductive function included, must be in some degree different from the functions of \mathbf{A}. $\Delta \mathrm{n}$ organism being a combination of rhythmically-acting parts in moving equilibrium, it is imposaible to alter the action and structure of any one part, without causing alterations of action and structure in all the reat; just as no member of the Solar System could be modified in motion or mass, without producing re-arrangementa throughout the whole Solar System. And if the organism A
when changed to \boldsymbol{A}^{\prime}, must be ahanged in all its funotione: then the offtepring of A^{\prime} cannot be the same as they would have been had it retained the form \mathbf{A}. It involvee a denial of the persistence of force to say that \mathbf{A} may be changed into A^{\prime}, and may yet beget offspring axactly like thoeo it - would have begotten had it not been so changed. That the change in the offipring must, other thinge equal, be in the same direction as the change in the parent, we may dimly 000 is implied by the fact, that the change propagatod throughout the parental aystem is a change towards a new state of equiliitrium-a change tending to bring the actions of all organe, reproductive included, into harmony with these new actions. Or, bringing the question to its ullimats and simplent form, we may eay that as, on the one band, physiological units will, beonuse of their special polaritics, build themselves into an organism of a special structure; son, on the other hand, if the structure of this organiam is modifiod by modified function, it will impress some corrooponding modification on the structuree and polarities of its units. The units and the aggregate must act and ro-act on euch other. The forces exercised by each unit on the aggrogate and by the aggregate on eech unit, must ever tend towards a balance. If nothing prevente, the unite will moald the aggrogate into a form in equilibrium with their pro-existing polaritios. If. contrariwise, the aggregate is made by incident actions to take a new form, its forcee muat tend to re-mould the units into harmony with this new form. And to any that the physiological unita aro in eny dogreo 00 ro-mouldnd an to bring their polar forcos towarde equilibrium with the forces of the modified aggregste, is to say that when eoparated in the chape of seproductive centree, theso unite will tend to build themedree up into an aggrogete modified in the eame directica.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

have lost their horns. At one time, there existod in Sootland a race of pigs with solid foet instoed of clen feet. In pigeons, according to Mr Darwin, "the number of the caudal and sacaral vertebree vary; as does the number of the ribs, together with their relative breadth and the presence of procesea."

That variations both amall and large which arise without any specifionssignable cause, tend to become hereditary, was shown in the lact chapter. Indeed the evidence which provee Heredity in its amaller manifertations, is the same evidence which proves Variation ; siuce it is only when there occur variations, that the inheritance of anything beyond the structural peouliarities of the species, can be proved. It remains bere, however, to be obeerved, that the tranemission of variatione is iteelf variable; and that it varies both in the direction of dearesse and in the direction of increase. An individual trait of one parent, may be so counteracted by the influence of the other parent, that it may not appear in the offopring; or not being ao counteractod, the offapring may poescos it, perhape in an equal degree or perhape in a loes degree ; or the oftapring may oxhibit the trait in even a etill higher degree. Of the illustrations of this, one must suffice. I quoto it from the esaay by Dr Struthers, referrod to in the last chapter.
"The great-grcahgrandmother, Eather P - (who marriod $\Delta —$ L——), had a sixth little finger on one hand Of their aighteen childron (twelve daughters and six sons), only ono (Charlec) is known to have hed digital variety. We havo the history of the deccendante of three of the sons, Andrew, Charlics, and Jamea.
" (1.) Andrew L- had two cona, Thomas and Androw; and Thomns had two cons all without digital varioty. Here we have three succoseive generations without the varioty poesewed by the great-grandmother ahowing itealf.
"(2.) James L-, who was normal, had two cons and ocren daughtern, aleo normal. One of the daughters became $\mathrm{Mre} \mathrm{J}_{\text {I }}$ (one of the informants), and hed three daughtern
and five sons, all normal except one of the sons, James J—, now net. 17, who had six fingers on enoh hand. * * *
"In this branch of the descendants of Esther, we see it passing over two generations and reappearing in one member of the third generation, and now on both hande.
" (3.) Charles L-, the only child of Esther who had digital variety, had six fingers on each hand. He had three eons, James, Thomas, and John, all of whom were born with six fingers on each hand, while John has also a sixth toe on one foot. He had also five other sons and four daughters, all of whom were normal.
" (a.) Of the normal children of this, the third generation, the five sons had twelve sons and twelve daughters, and the four daughters have had four sons and four daughters, being the fourth generation, all of whom were normal. A fifth generation in this sub-group consists as yet of only two boys and two girls, who are also normal.
"In this sub-branch, we see the variety of the first generation present in the secoud, passing over the third and fourth, and also the fifth as far as it has yet gone.
" (b.) James had three sons and two daughters, who are normal.
" (c.) Thomas had four sons and five daughters, who are normal ; and has two grandeons, also normal.
"In this sub-branch of the descent, we see the variety of the first generation, showing itself in the second and third, and passing over the fourth, and (as far as it yet exists) the finh gencration.
" (d.) John L - (one of the informants) had six fingers, the additional finger being attached on the outer side, as in the case of his brothers James and Thomas. All of them had the additional digits removed. John has aloo a sixth toe on one foot, situated on the outer side. The fifth and sixth toes bave a common proximal phalanx, and a common integument invests the middle and distal phalangee, each baving a separate nail.
"John L - has a son who is normal, and a deughter Jane, who was born with six fingers on each hand and aix tome on each foot. The sixth fingers were removed. The sixth tove are not wrupped with the fifth as in her father's cace, but are distinct from them. The son has ason and daughter, who, like himeolf, are normal.
"In this, the most interesting sub-branch of the deecents, we see digital increase, which appeared in the first generation on one limb, appearing in the cocond on two limbe, the hands ; in the third on three limbes, the hande and one foot; in the fourth on all the four limbs. There is as yet no fifth generation in uninterrupted transmission of the varioty. The rariety does not yet occur in any namber of the fifth genaration of Eather's descundants, which conciote, as yots only of three boys and one girl, whose parente were normal, and of two boye and two girses, whoee grandparante wero normal. It is not known whether in the case of the great-great-grandmothor, Eathor P-, the variety was original or inherited."*
888. Where there is great uniformity among the members of a specice, tho divergences of offipring from the average type, are usually emall; but where, among the meminers of a speciea, considarable unlikeneeses havo once been establishod, unlikenesees among the offepring are fire quent and great. Wild plants growing in their natural habitates, are uniform over large arency, and maintain from generation to generation like structures; but when cultivetion has causod appreciable differemen among the mornbers of any species of plant, extensive and numerous deviations are apt to arise Similarly, between wild and domesticated

[^15]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

their feet, while in others, there was preeent on each hind-footh what is called the "dow-daw"-a rudimentary firth digit.

Thus, induction points to throe causes of rariation, all in action together. Wo bave heterogeneity among progenitores which, did it act uniformly and alone in generating, by componition of forces, new deriations, would impress such new devis. tions to the same exteut on all offlepring of the same parents : which it does not. Wo have funotional variation in the parente, which, ecting eitheralone or in combination with the procoding cause, would entail like variations on all young onee aimultaneounly produced; which it does not. And there is consequently some third cause of variation, yet to be fousd, which acte along with the structural and functional variationn of ancestors and parents.

88 Already, in the lart eection, there has been imptied eome relation between variation and the aotion of external conditions. The above-cited contrast, between the valiormity of wild species and the multiformity of the same specice when cultivated or domeeticated, thrusts this trath apon me. Reapecting the rariations of plants, Mr Darwin remarke that "' aports' are extremely rare under nature, but far froma rare undet cultivation." Others who have studied the matter aseert, that if a species of plant which, up to a certain timen has maintained great uniformity, onco has its constitution thoroughly disturbed, it will go° on varying indefinitely. Though, in consequence of the remotenoes of the periods at which they were domesticatod, there is a lack of positive proof that our axtremely variablo domestic animale havo bocome variable under the changod conditions implived hy domostication, having boon previously constant; yet competent judgee do not doubt that this has been the case.

Now the constitutional disturbance which preocdes varintion, can bo pothing olee thin ere oferthrowiug of the procemablisbed equilibrium of functions. Tranaferring a pland from forroot lands to a ploughed bied or a manurod garden, in
altering the balance of forces to whith it has been hitherto subject ; by supplying it with different proportions of the assimilable matters it requires, and taking away some of the positive impediments to its growth which competing wild plants before offered. An animal taken from woods or plains, where it lived on wild food of its own procuring, and placed under restraint, while artificially supplied with food not quite like what it had before, is an animal subject to new outer actions, to which its inner actions must be re-adjustec. From the general law of equilitration we found it to follow, that "the maintenance of such a moving equilibrium" as an organism displays, "requires the habitual genesis of internal furces corresponding in number, directions, and amounts, to the external incident forces - as many inner functions, single or combined, as there are single or combined outer ac. Lions to be met" (First Principles, § 133) ; and more rccently ($\$ \mathbf{2 7}$), we have seen that Life iteelf is "the definite combination of heterogeneous changee, both simultaneous and successive, in correspondence with external co-existences and sequeuces." Necessarily, therefore, an organism exposed to s permanent change in the arrancement of onter faccosa munt undergo a permanent ohange in the arrangement of inner lorces. The old equilibrium must be deatroyed; and a now equilibrium must be established. There must be fanctional perturbations, ending in a re-adjasted balance of functions.

If, then, ohange of conditions is the only known cause by which the original homogeneity of a species is dostroyed; and if change of conditions can affect an organism only by ultering its functions; it follows that alteration of functions is the ouly knorm internal cane to which the com. mencement of variation can be ascribed. That such minos functional changes es parents undergo from year to ycar, are iufluential on the offapring, we have seen to be proved by the greater unlikeness that exists between children born to the same parents at different times, than exists betwoen
twins. And here we seom forced to conclude, that the largee functional variatione produced by greater external changes are the initiators of those efructural variations which, whem onco commenced in a speciea, lead by their combinations and antagonisme to muliform resulte. Whether they are or aro not the direct initiators, thoy must atill be the indirect initiators.
888. That they are not in all cases, or even in most caceen, the direct initiators, is clear. Were thoy so, those unlikonesees which exist between plants that grow from soede out of the same seed-reesel, or between animals belonging to the same litter, would be inexplicable. Here, all the antecedonte, structural and functional, appear to be alike for cech of the new organiams. Any deviations caused by structural contrasts or functional disturbances in the parente, must be equally sharod in by all simultaneoualy-produced offippring. Hence, an explanation of the variations arising under ench conditions, has still to be eought.

Theee are the variations termed "spontaneons." Not that thoee who apply to them this word or some equivalent, mean to imply that they are uncaused. Mr Darwin exprealy guarde himeelf againat such an interpretation. He eays:"I have hitherto eometimes spoken as if the variations- 0 common and multiform in organic beinge under domeationtion, and in a leseor degree in those in a state of nature-had been duc to chancw. This, of course, is a wholly incorreot exprosesion, but it serves to acknowlodge plainly our ignoreace of the cause of ench particular variation. Not only, however, do I hold, in common with Mr Darwin, that there manet bo some cause for these apparently-spontaneous variations; but it cooms to me that adofnite cauco is avaiguable. I think it may bo ahown that unlikeno muat nosconaily ariee between the new individuale simulianooualy producod by the mame parentan Irutend of the 0000 reence of evolt

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

respeot to incident forces; and that being aubjeot to forces that are more or less unlike, they must become more or leas unlike. Hence, no two ova in an ovarum or orulee in a sood-veseal-no two spermatozos or pollen-cella, can be identical. Whether or not there arise other contructe, there are cortain to ariee quantitative contrasts; since the procese of nutrition cannot be abeolutely alike for all. The reproductive centree must begin to difforentinte from the very outset. Such boing the necessities of the cuse, what will happen on any successive or simultaneous fertilizations? 'Ihore will ineritably result more or lese unlikenoses between the combined parental influcnces in every instance. Qumntitutive differences among the sperm-cells and arnong the germ-cells, will insure this Grant that the number of physiological units contained in any one reproductive coll, can rarely if ever be exactly equal to the number contained in auy other, ripened at the same time or at a different time: and if follows that among the fertilized germe produced by the same parente, the phyaiological units derived from each pareut will bear a different numerical ratio to eech other in overy case. If now the parents are constitutionally alike, that in, alike in the polurities of thoir physiological unite, the variation in the ratio between the phyaiological unite they coverally bequeath to the fortilised germa, cannot caume unlikencses among the offspring. But if otherwise, no two of the offopring can be alike. In evary oaee, the amall initial difference in the proportions of the alightly-unlike unite, will lead, during evolution, to a continual multiplication of differences : the insensible divergence at the outect, will generate aensible divergeinces at the conclasion. Pomin bly some may hence infer, that though, in such case, the offipring munt ditfer somewhat from owh other and from both panentes; yot that in overy ono of them there muat seoult a hormogeneous mixture of the traite of the tro parenta. A little consideration ahowe that tho reverve is inforable. If, throughout the procese of derelequmuat, tho physiologieal
units derived from each parent, preserved the same ratio to each other in all parts of the growing organism, each organ would show as much as every other, the influence of either parent. But we know, à priori, that no such uniform diotribution is possible. It has been shown (First Prinoiples, \$ 123), that in any mixed aggregate of units, segregation must inevitably go on. Incident forces will tend ever to cause separation of the two orders of units from each otherwill integrate groups of the one order in one place, and groupe of the other order in another place. Hence there must arise, not a homogeneous mean between the two parents; but a mixture of organs, some of which mainly follow the ono parent and some the other. And this is the kind of mixture which obeerration shows us.

Still it may be fairly objected, that however the attributes of the two parents are variously mixed in their several -offispring, they must in all the offspring full between the extremes displayed in the parents. In no characteristio could one of the young excoed both parents, were there no cause of "spontaneous varistion" but the one alleged. Evidently, then, there is a cause yet unfound.
§89. Thus far we have contemplated the procoss undur its simplest aspect. While we have assumed tho two parente to be somewhat unlike, we have assumed that each parent has a homogeneous constitution-is built up of physiological units that are exactly alike. But in no case can such a homogeneity exist. Each parent had parents that were more or less contrasted-each parent inherited at least two orders of physiological units, not quite identicul. Here then we have a further cause of variation. The sperm-cells or germcells which any organism produces, will differ from each other not quantitatively only, but qualitatively. Of the slightly-unlike physiological units bequeathed to an organism, its reproductive cells cannot habitually contain the same proportions; and we may expect the proportions to vary not
alightly but greatly. Just as, during the evolution of an organism, the physiological units derived from the two pareate tend to eegregate, and produce likenees to the male parent in this feature and to the female parent in that; eo, during the formation of reproductive celle by such' organism, there will arise in one coll a predominance of the physiological units derived from one parent, and in another cell a predominanoe of the physiological units derived from the other pareat. The instability of the homogeneons forbids us to assume an even distribution of the two orders of units in all the reproductive cells. And inequalities once arising among them, must tend ovor to bocome more marked; since, wherever units of a given order have begun to eegregate, the proceses of differentiation and integration tends to segregete them more and more. Thus, then, every fertilised germ, besides containing difiereat amounts of the two parental influences, will contain different kinde of influences-this haring received a markod imprees. from one maternal or paternal ancestor, and that fromano other.

Here, then, we have a clue to the mulliplied rariations, and cometimes extreme variatione, that ariso in races whioh have onco bagun to vary. Amid countlees differont combinatione of units derived from parentes, and through them from ancescors, immediate and remoto-amid the various conflicts in their slightly-different polaritios, opposing and conepiring with oach other in all .waye and degrese; there will from time to time arise spocial proportions causing apecial doriations. From the general law of probabilities it is inferable, that while these involved influenoes, derived from many pros genitors, most, on the average of casea, obecure and partially neeutraliso one another; thero must occmaionally resalt ouch combinations of them an will produce considorablo divergonoes from average atruoteree; and at rare intervale, euch combinations me will produce vary marked divergencee. Thers is thus a correapondonoo botween the inferable resulter, and the reculte as habitually witnoceod.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

to affect thoir constitutions profoundly, and to modify somowhat the physiologionl unite thrown off in their reprodnotive celle, the divergences produced by theee in offipring, will be of diverse kinds. And the original homogeneity of constitution having bean thus destroyed, variation may go on with increasing facility. There will result a hotarogencons mirture of modifications of structure, caused by modifications of function; and of atill more numerous correlated modificetiona, indirectly so caused. By natural eelection of the mous divergent forme, the unlikenoeses of parents will grow more inarked, and the limits of variation wider. Until at leagth the divergences of constitutions and modes of life, become great enough to lead to segregation of the varicties.
j 91 . That variations must occur, and that they must ever tend, both directly and indirectly, towards adaptivo modifications, are conclusions doducible from first principlos; apart from any detailed interpretutions like the above. That the otato of homogeneity is an unstable atate, we have found to be a univeral truth. Each opecies must paes from tho aniform into the more or lees multiform, unleen the incidence of external forces is exactly the same for all its members; which it never can be. Through the procees of differantiation and integration, which of necsenity bringe logethar, or Eeopstogeether, like individuals, and eoparatee unlike ones from thom, there must nevertheleas be maintained a tolerably untorm specios; $s 0$ long as there continues a tolerably uniform oof of couditions in which it may exist. But if the conditiona change, either aboolutaly by some disturbance of the habitut, or rulutively by apread of tho apeciee into othor habitate, then the divergent individuale that reanlt, must be aegregated by the divergent sete of conditions into distinct variotios (First Primiplas, j 126). When, inatend of contemplating a appecics in the aggregato, we confine our attention to a single member and ite deccendmate, we 000 it to bo a corollary from the general law of equilibration, that tho moring equili-
briam constituted by the vital actions in each member of this family, must remain constant so long as the external actions to which they correspond remain constant; and that if the external actions are changed, the disturbed balance of internal changes, if not overthrown, cannot cease undergoing modification until the internal changes are again in equilibrium with the external actions: corresponding structural alterations having arisen.

Or passing from these derivative laws to the ultimate law, we see that Variation is necessitated by the persistence of force. The members of a apecies inhabiting any area, cannot be subject to like aggregates of forces over the whole of that area. And if, in different parts of the area, different kinds or amounts or combinations of forces act on them, they cannot but become different in themselves and in their progeny. To say otherwise, is to say that differences in the forces will not produce differences in the effects; which is to deny the persistence of force.

Whence it is also manifest, that there can be no variation of structure, but what is directly or indirectly consequent on variation of function. On the one hand, organisms in complete equilibrium with their conditions, cannot be changed except by change in their conditions; since, to assert otherwise, is to assert that there can be an effect without a cause; which is to deny the persistence of force. On the other hand, any change of conditions can affect an organism only by changing the actions going on in it-only by altering its functions. The alterations of functions being necessarily towards a re-establishment of the equilibrium, (for if not, the equilibrium must be destroyed and the life cease, either in the individual or in descendants,) it follows that the structural alterations directly caused, are adaptations; and that the correlated structural alterations indirectly caused, are the concomitants of adaptations. Hence, though, by the intercourse of organisms that have been functionally and structurally modified in different directions, there may result organisms that deriate in compound ways which appear unrelated to external condi-
tions, the deviations of such organisms must still be regarded as indirect results of functional adaptations. We must say that in all cases, adaptive change of function is the primary and ever-acting canse of that change of structure which constitutes variation; and that the variation which appears to be "spontaneous," is derivative and secondary.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

still left unanswered the queetion-rahy doee gamogencein recur? And to this the reply suggeoted was, that the approech towarde general equilibrium in organisms, "is accompaniod by an approach towards molocular equilibrium in them; and that the need for this union of sperm-cell and germ-ell, is the need for overthrowing this equilibrium, and re-atablishing active molecular change in the detached germ -a result which is probably effected by mixing the alightlydifferent physiological units of alightly-different individuale" This is the hypothesis which we have now to coaseider. Iot us first look at the evidences which certain inorgunic phenomena furnish.

The molecules of uny aggregate which have not a balanced arrangement, inevitably tend towarde a balanced arrangernent. As before mentioned (Firal Principles, \& 103) amorphous wrought iron, when subject to continuous jar, begins to arrange itself into cryatalo-its atome assume a condition of polas equilibrium. The particlee of unannealed glase, which are so unstably arranged that alight disturbing forces make them eeparate into emall groupe, take advantage of that greator freedom of movement given by a raieod tomperature, to adjust themselves into a state of relative reat. During any such ro-arrangement, the aggregate exercisee a coercive force over its unite. Junt as in a growing oryotal, the atoms succesaively asaimilated from the eolution, are made by the al-ready-cryatallised atoms to take a certain form, and oven to re-completo that form when it is broken; so in any mase of unstably-arranged atoms that pases into a etable arrangement, cach atom conforme to the forcosesercied on it by all the other atoms. This is a corollary from the general luw of oquilibration. Wo saw (F̣irst Primaipke, 130) that every chango is cowarde equilibrium; and that obange can never ocase until equilibrium is rouchod. Organiema, above all othor aggrogation, conepionoualy dieplay this progreasivo equilibration; bocause their unite are of such kindes, and ∞ conditioned, as to admit of enay re-arrangemeat. Thom
extremely active changes which go on during the early stages of evolution, imply an immense excess of the moloculur forces over those antagonist forces which the aggregate exerciscs on the molecules. While this excess continues, it is expended in growth, development, and function-expenditure for any of these purposes, being proof that part of the force embodied in molecalar tensions, remaius unbalanced. Eventually, however, this excess diminishes. Either, as in organisms which do not expend much force, decrease of assimilation leads to its decline ; or, as in organisms which expend much force, it is counterbalanoed by the rapidly-increasing re-actions of the aggregate ($\$ 46$). The cessation of growth, when followed, as in some organisma, by death, implies the arrival at an equilibrium between the molecular forcees, and those forces which the aggregate opposes to thera. When, as in other organisms, growth ends in the cestablishment of a moving equilibrinm, there is implied such a decreased proponderance of the molecular forces, as leares no surplus beyond that which is used up in functions. The doclining functional activity, characteristic of advancing life, expresees a further decline in this surplus. And when all vital movements come to an end, the implication is, that the actions of the units on the aggregate and the roactions of the aggregate on the unite, are completely balanced. Hence, while a state of rapid growth indicates such a play of forces among the units of an aggregate, as will produce active re-distribution; the diminution and arrest of growth, show that the units have fallen into such relative positions that re-distribation is no longer go facile. When, therefore, we see that gamogenesis recurs only when growth is decreasing, or has come to an end, we must say that it recurs only when the organic units are approxiunsring to equilibrium-only when their mutual restraints prevent them from readily changing their arrangements in obedience to iucident forces.

That unita of like forms can be built up into a more stable
aggregate than units of slightly unlike forme, is tolerably manifeat, d priori. And we have facte which prove that mixing allied but somewhat different units, does lead to comparative instability. Most metallic alloys exemplify this truth. Common solder, which is a mixture of lead and tin, melte at a much lower tampersture than either lead or tin. The componad of lead, tin, and bismuth, called "fusible metal," becomes fluid at the temperature of boiling water; while the temperaturee at which lead, tin, and bimmuth become fluid, are, reepeotively, $612^{\circ}, 442^{\circ}$, and 497°, F. Still more remarkable is the illustration furnished by potassium and sodium. These metals are very near ukin in all respecte-in their specific gravities, their atomic weighte, their chemical affinities, and the propertice of thoir compounde. That is to say, all the evidencee unite to show that their unita, though not identical, have a close resemblance. What now happens when they are mixed \& Potacaium alone melts at 136°, sodium alone melts at 190°, bat the alloy of potassium and codium, is liquid at the ordinary temperature of the air. Observe the meaning of thewe fecte, exprewod in genoral terms. The maintenance of a solid form by any group of units, implies aunong them an arrangement eo otable, that it cannot be overthrown by the incident forcos. Whereas the assumption of a liquid form, implies that the incident forcee suffice to destroy the arrangement of the unita. In the one case, the thermal undulations fail to dialocate the parts; while in the other case, the parts are so dialocated by the thermel undulations, that they fall into totul disordor-a disorder admitting of oesy ro-arrangement into any other ordor. For the liquid wate in a state in which the units become so far free from mutual restruinta, that incident forcee can change their relutive positions very reedily. Thus we have reanon to conclude, that an aggregato of unite which, though in the main siquilar to each other, have minor differencee, must bo more unstable than an aggregate of homogeneous units: the one will yinld to diaturbing forcee which the other succemfully reciate

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

brium. Hence, a group of physiological units cast off troma it, will not be wholly without a tendency to andergo the etructural re-arrangemente which we call development; bat will have this tendency unduly restrained by partially-balanoed polaritices. In the second place, undue reetraint of the phyciological anits, while it renders them as wholes lean-anily altered in their relative positions by incident forces, thoreby uleo renders them more liable to be individually deoomposed by incident forces : the same thermal undulations which, if the physiological units are comparatively free, will aid thair re-arrangement by giving them still greater freedom, will, if they are comparatively fixed, begin to ohange the arrangements of their componente-will decompose them. In the third place, their decomposition will be proventod as woll ae their re-distribution facilitated, by such disturbance of their polurities as we have seen must result from mixing with them the alightly-unlike units of another organism.

And now lot us teet this hypothocis, by seeing what power it gives us of interpreting established inductions.
§ 93. The majority of plants being hermaphrodites, it has, until quite recently, been suppoeed that the orulos of ouch llowor are fertilizod by pollen from the anthers of the same flowor. Mr Darwin, however, bea abown that the arrangements are generally such an to prevent this: either the ovales and the pollen are not ripe simultaneoualy, or obeteclee prevent accose of the ono to the othor. At the samo time, he has shown that thero exist arrangementes, often of a romarkable kind, which facilitate the transfer of pollon by ineects from the stamons of one flowor to the piatil of another.

Sinuilarly, it hae boen found that among the lowor animale, herram phrodiem does not usually involve the prodnction of fertile germs, by tho union of aperm-celle and germ-celle devaloped in the same individual; but that the reproductivo centree of one individual are united with those of another, to prudoce fartile germa. Either, as in the Pyrosoma, the Parophora, aul
m many higher mollusca, the ova and apermatozoa are matured at different times; or, as in annelids, they are prevented by their relative positions from coming in contact.
Remembering the fact that among the higher clasees of organisms, fertilization is always effected by combining the aperm-cell of one individual with the germ-cell of another: and joining with it the fact that among hermaphrodite organisms, the germ-cells developed in any individuul, are usually not fertilized by eperm-oelle developed in the same individual ; we see reason for thinking that the essential thing in fertilization, is the union of specially-fitted portions of different organisms. If fertilization depended on the peculiar properties of sperm-cell and germ-cell, as such ; then, in hermaphrodite organisms, it would be a matter of indifference whether the united sperm-cells and germ-cells were those of the same individual, or thoee of different individuals. But the circumstance that there exist in such organisms, elaborate applinnces for mutual fertilization, shows that unlikeness of derivation in the united reproductive centres, is the desideratum. Now this is just what the foregoing hypothesis impliea. If, as was concluded, fertilization has for its object the disturbance of that approximate equilibrium existing among the physiological units separated from an adult organism ; and if, as we saw reason to think, this object is effected by mixture with the alightly-different physiological units of another organism ; then, we at the same time see reason to think, that this objeet will not be effected by mixture with physiclogical units belonging to the same organism. Thus, the hypothesis leads us to expect such provisions as we find exist.
594. But here a difficulty presenta itself. These propositions seem to inrolve the conclusion, that self-fertilization is imposeible. It apparently follows from them, that a group of physiological units from one part of an organism, ought to have no power of altering the state of approaching balanco :D
a group from another part of it. Yet eelf-fertilization doee occur. Though the ovalee of one plant, are generally fertilized by pollen from another plant of the same kind; yet they may be, some of them, fertilized by the pollon of the same plant. And though, among hermaphrodite animale, colf-fertilization is usually negatived by structural or funotional arrangements; yet in certain Entosous, there appear to be special provisions by which the sperm-cells and germ-cells of the eame individual may be unitod, when not previously united with thoee of another individual. Cortainly, at first sight, theeo facts do not consist with the above supposition. Nevertheloes, there is a satinfactory solution of them.

In the last chapter, when considering the variatione that may reault in offopring from the combination of unlike parental constitutions, it was pointed out that in an unfolding organism, compoeed of slightly-different physiologioal units derived from slightly-different parente, there cannot be maintained an even distribution of the two orders of unite. We aum that the instability of the homogeneous, negatives the uniform blending of them; and that, by the process of differ entiation and integration, they must be more or less ceparated: on that in one part of the body the influence of one parent will predominate, and in another part of the body the influence of the other parent : an inference which harmonizee with dauly obeervation. And we also saw, that the sperm-cells or germcells produced by ewoh an organism, must, in rirtue of theso eame lawa, be more or lean unlike one nnother. It was shown that through eegregation, some oi the aperm-colls or gormcells will get an excess of the phyriological units derived from one side, and some of them an excess of those derived from the other side: a canse which acoounts for the unliteocemos among offapriug simultaneoualy produced. Now from this cogregation of the different orders of phywiological unita, inberited from different parents and lines of anceatry, thore arices the pomibility of self-fertilization in hermaphrodite organiems. If the physiological units contained in the aparm-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

besed wholly on obeerred faoter, in just the conclusion to rhiok the foregoing argument points. That nocoveary sotion and tise re-action between the parts of an organism and the organim as a whole-that power of the aggregato to re-mould cie units, which is the correlative of the power of the units to build up into such an aggregate ; implies that any differencee existing between the units inherited by an organiem, must gradually diminish. Being subject in common to the total furces of the organism, they will in common be modified towands congruity with these forces; and therefore towards likenees with each other. If, then, in a eelf-fertilising orgenimem and its self-fertilizing deeoendanta, such contracts as origionally exinted among the phyaiologioal anite, are progreasivoly obliterated - if, coneequently, there can no longer be a eegregation of different physiologioal unita in different apfermcells and germ-cells; self-fertilization will become impoeaiblo: step by step the fertility will diminish, and the seriee will Gnally die out.

And now obeerve, in confirmation of this view, that ealf fertilization is limited to organisma, in which an approximate equilibrium among the organio forces, is not long maintained. While growth is actively going on, and the physiological unite are subject to a continually-changing distribution of forcean no decided assimilation of the unite can be expeoted: like forcos acting on the unlike units, will tend to segragate them, co long as continuance of ovolution permita further cagregetion; and only when further eegregation cannot go on, will the like forces tend to aeximilate the units. Hence, where there is no prolonged maintenance of an approximate organio balance, celf-fertilization may be poseible for some geaenations; bat it will be imposesiblo in organisme distingriebed by a surtained moving equilibrium.
85. The interpretation which it affords of sundry phenomena familiar to breeders of animale, adde probability to tha hypothecia. Mr Darwis hee collocted a large "body of feotey,
chowing, in accordance with the almost universal belief of breeders, that with animals and plante a crose between different varieties, or between individuals of the same variety but of another strain, gives vigour and fertility to the offspring; and on the other hand, that close interbreeding diminishes vigoor and fertility,"- conclusion harmonising with the current belief respecting family-intermarriages in the human race. Have we not here a solution of these facts? Relations must, on the average of cases, be individuals whose physiological units are more nearly alike than usual. Animals of different varieties must be those whose physiological units are more unlike than usual. In the one case, the unlikeness of the units may frequently be insufficient to produce fertilization; or, if sufficient to produce fertilization, not sufficient to produce that active molecular change required for vigorous development. In the other case, both fertilization and vigorous development will be made probable.

Nor are we without a cause for theirregular manifestation of these general tendencies. The mixed physiological unite composing any organism, being, as we have seen, more or less segregated in the reproductive centres it throws off; there may arise various resulte, acoording to the degrees of difference among the unita, and the degrees in which the units are segregated. Of two cousins who have married, the common grandparents may have had either similar or diseimilar constitutions; and if their constitutions were dissimilar, the probability that their married grandchildren will have offspring will be greater than if their constitutions were similar. Or the brothers and sisters from whom these cousins descended, instead of severally inheriting the constitutions of their parents in tolerably equal degreea, may have severally inherited them in very different degrees: in which last case, intermarriagen among the grandchildren will be less likely to prove infertile. Or the brothers and sisters from whom these cousins decoconded, may severally have married persons very like, or very unlike, themselves; and from this cause there may
have resulted, either an undue likenem, or a due anliteonese, between the marriod cousins. Theee several caweet conspiring and conflicting in endlews waye and degrees, will work multiform efferts. Moreover, differencee of negrogetion will make the reproductive centres produced by tho zame nearly-related organisms, vary considernbly in their amounts of anlikeness; and therefore, supposing their amounts of unlikenese great enough to cause fertilization, thin fartilime tion will be effective in various degrees. Hence it may happea that among offipring of nearly-related parenta, there may be some in which the want of vigour is not marked, and others in which there is decided want of vigour. So that we are alibe ahown why in-and-in breeding tends to diminish both fortility and vigour; and why the effect cannot be a uniform effioot, buts ouly an average effect.
§ 96. While, if the foregoing arguments are ralid, gamogenesis has for ite main end, the initiation of a new dovelopment by tho overthrow of that approximate equilibrium arrived at among the molecules of the parent-organimas; a further end appears to be subeerved by it. Thoee inferior organimena which habitually multiply by agamogenceis, have conditione of life that are simple and uniform; while thoee organiame that have highly-complex and variable conditions of life, habitually maltiply by gamogenesia. Nuw if a specice hao complex and variable conditions of life, its members must be severally expoeed to sets of conditions that are alighty different: the aggregates of incident forces cannot be alike for all the scattored individuala. Henoe, no funotional deviation must ever be inducing atractural deviation, anch individual throughout the area occerpied, tende to become fitted for the particular habits which its particular conditione nocomitate; and in so far, unfittod for the arerage habite proper to the species. But theee undue specinlizations ase continually checked by gamogenecin. As Mr Darwin remarke -" interorocsing playe a very important part in nature in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

equal force-no force which can eet up a new evolution among the units of any other.

And so we reach the remarkable conclusion, that the lifo of a species, like the life of an individual, is maintained hy the unequal and ever-varying actions of incident-forces on ite different parta. An individual homogeneons throughous, and heving its subetance everywhere continuoualy subject to like actions, could undergo none of those changes which life consiats of; and similarly, an abeolutely-uniform epeciee, having all its members expoeed to identical influences, would be deprived of that initiator of change which maintains its exiateace as a spocies. Just es, in each organism, incident forces constantly produce divergences from the mean state in various directiona, which are constantly balanoed by opposite divergences indirectly producod by other incident forees; and juat as the combination of rhythmical functions thus maintained, conetitutea the life of the organism; so, in a species, there is, through gamogenesis, a porpetual neutralization of thove contrury doviations from the mean otate, which are canced in its different parts by different sets of incident forces; and it is similhrly by the rhythmical production and compensation of theeo contrasy deviations, that the species continnes to live. The moring equilibrium in a epeciee, like the moving equilibrium in an individual, would rapidly end in complete equilibration. or death, were not its continually-dissipated forces continually re-suppliod from without. Besides owing to the externel world, thowe energiee which, from moment to moment, keop up the lives of its individual members; every apecies owes to certain more indirect actions of the external world, thow energies whioh enablo it to perpotuate iteolf in succesive generations.
f 97. What evidonco atill semaine, may bo convenienty woven up aloag with a recapitulation of the argamont parsued throaght the lant throe ohaptern. Lot us contemplate the facte in thair gynthotic ordor.

That compounding and re-compounding through which we pase from the simplest inorganic substances to the most com. plex organic substances, has several concomitants. Eech successive stage of composition, preeents us with atoms that are severally larger or more integrated, that are severally more heterogeneous, that are severally more unstable, and that are more numerous in their kinds (Firot Principles, §111). And when we come to the substances of which living bodies are formed, we find ourselves among multiplied, divergent groups and sub-groups of compoundes, the units of which are large, heterogeneous, and unstable, in high degrees. There is no reason to assume that this process onds with the formation of those complex colloids which characterize organic matter. A more probable assumption is, that out of the complex colloidal atoms, there are evolved, by a still further integration, atoms that are still more heterogeneous, and of kinds that are still more multitudinous. What must be their properties P Already the colloidal atoms are extremely nnatablo-capable of being variously modifiod in their characters by very slight incident forces; and already the complexity of their polarities provents them from readily falling into those positions of polar equilibriam which result in crystallization. Now the organic atoms compoeed of these colloidal atoms, must be similarly characterised in far higher degrees. Far more numerous muat be the minute changes that can be wrought in them by minute external forces; far more froe must they remain for a long time to obey forces tending to re-distribute them; and far greater must be the number of their kinds.

Setting out with theee physiological units, the oxistence of which varions organic phenomena compel us to recognise, and the production of which the general law of Evolution thus leads us to anticipate; we get an insight into the pheuromen of Genesis, Heredity, and Variation. If each organism is built of certain of thees highly-plastic units peculiar to its species -unite which slowly work towards an equilibrium of their complex polarities, in prodacing an aggregate of the apecife
structure, and which are at the same time alowly modifiable by the re-actions of this aggregato-we see why the maltiplication of organiams proceeds in the several ways, and with the various resulte, which naturaliste have obeerved.

Heredity, as shown not only in the repetition of the apocise otructure, but in the repetition of ancestral deviations from it, becomes a mattor of course; and it falls into unicon with the fact that, in various simple organiame, loat parts can be roplacod, and that, in atill simpler organisms, a fragment oan devclop into a whole.

While an aggregate of physiological units continuen to grow, by the asesimilation of matter which it moulde into other anits of like type; and while it continues to undergo changes of structure ; no equilibrium can be arrived at between the whole and its parta. Under theee conditions, theos, an un-differentiated portion of the aggregato-a group of physiological units not bound up into a apecialised tieson-will be able to arrange itealf into the structare peculiar to the opecies ; and will so arrange itself, if freed from controlling forcos, and pleced in fit conditions of nutrition and tearaperature. Hence the continuance of agamogenecis in littlo-difiterentiated orgenisms, so long as asaimilation continues to be greatly in excees of expenditure.

But lot growth be aheoked and developmeat approach its complotion-lot the units of the aggregate be eeverally expoeed to an almoat constant distribution of forces; and they mout begin to equilibrate themsalvea. Arranged as they will gredually be, into cormparativoly atable attitudes in rolation to each otber, their mobility will diminish; and groups of thern, partially or wholly doteahed, will no longer readily roarrange themeelves into the apecific form. Agamogenecis will be no longer posaiblo ; or, if pomible, will be no longer ceny.

When we remember that the force which keepe the Rerela in its orbit, is the gravitation of eeoh particle in the Earth towarde every one of the group of particloe exiating $91,000,000$ of miles off; wo cannot reeconably doubt that eech unit in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

Bearing in mind that the alightly-different ordere of physiological units which an organism inherits from its parentes are cubject to the same set of forces; and that when the organism is fully developed, this set of forcea, beooming constant, tends slowly to re-mould the two orders of units into tho same form; we see how it happens that salf-fortilixation becomes imposesible in the higher organieme, while it remaine possible in the lower organisms. In long-lived creatures that have tolerably-definite limits of growth, this aesimilation of the somewhat-unlike physiological units, is liable to go on to an uppreciable extent; whereas in organisms which do not continuously subject their component units to constant forces, there will be much less of this aseimilation. And where the cesimilation is not considerable, the segregation of mixed onits, may cause the sperm-cells and germ-cells developed in the same individual, to be sufficiently different to produce, by their union, fertile germs ; and several generations of selffertilizing deecendants may succeed one another, before the two orders of units have had their unlikenesees so far diminished, that they will no longer do this. The eame prisoiplen explain for us the variable results of union between nearlyrulated organiems. According to the contrasta among the physiological units they inkerit from parents and ancostors: uccording to the unliko proportions of the contrasted unite which they severally inherit; and according to the degrees of eogrogation of ouch naits in different sperm-oolls and germ-oells ; it may happen that two kindred individuale will produce the ordinary number of offipring, or will produce nono; or will at one time be fertile and at another not ; or will at one time have offipring of tolerable atrength, and at another time fooble offitpring.
'lo the like caues are aleo aecribable the phenomens of Varistion. Thene are unobtrucive while the tolerably-uniform conditions of a apecice maintain wolerable uniformits among the phymiolngical units of its meabers; but thoy become oblrwaive whed differences of conditions, entailing
considerable functional differences, have entailed decided differences among the physiological units; and when the differeut physiological units, differently mingled in every individual, come to be variously segregated and variously combined.
Did space permit, it might be shown that this hypothesis is a key to many further facto-to the fact that mixed races are comparatively plaatic under new conditions; to the fact that pure races show predominant influences when crosed with mixed races; to the fact that while mixed breeds are often of larger growth, pure breeds are the more hardybave functions lese-easily thrown out of balance. But without further argument, it will, I think, be admitted, that the power of this hypothesis to explain so many phenomena, and to bring under a common bond phenomena that seem so little allied, is strong evidence of its truth. And such evidence gains greatly in strength on observing that this hypothesis brings the facts of Genesia, Heredity, and Variation into harmony with first principles. When we see that these plastic physiological units, which we find oureelves obliged to assume, are just such more integrated, more heterogeneons, more unstable, and more multiform atoms, as would result from continuance of the steps through which organic matter is reached when we see that the differentiations of them assumed to occur in differently-conditioned aggregates, and the equilibrations of them assumed to occur in aggregates which maintain constant conditions, are but corolluries from those universal principles.implied by the persistence of forco-when we see that the maintenance of life in the succesaive generations of a species, becomes a consequence of the continual incidence of new forces on the species, to replace the forces that are ever being rhythmically equilibrated in the propagation of the opecies-and when we thus see that theee apparently-exceptional phenomena displayed in the multiplication of organic beings, fall into their places as results of the general laws of Evolution; we have weighty reasons for entartaining the hypothesis which affords us this interpretation.

CHAPTER II

CLASBIFICATIOR.

898. That orderly arrangement of objects called Clemification, has two purpoese; which, though not abeolutaly dietinct, are distinct in great part. It may be employed to facilitate identification; or it may be employed to organise our knowledge. If a librarian places his books in the alphabetical succession of the anthor's names, he placee them in such way that any particular book may ceaily be found; but not in such way that books of a given nature stand together. When, convereely, he makes a distribution of booke acconding to their subjecta, he negleote various superficial similarities and distinetions, and groups them according to ocertais primary and eccondary and tertiary attributes, which coverally imply many other attributes-groups them co that eny one volume being inspected, the general characters of all the ncighbouring volumes may be inferred. He puts togother in one great division, all works on \cdot Hirtory; in inother all Biographical works; in another all works that treat of Scienco ; in another Voyages and Travels; and so on. Each of his great groupe he separates into sub-groupe; as when he puta different kinds of pure Literature, under the hoende of Piction, Pootry, and the Drama. In some canos he makce sub-aub-groups ; as when, having divided his Scientifo treatisee into abatract and concreta, putting in tho one Lagio and Mathematice, and in the other Phyaica, Antronomy, Oo-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

simplicity. The first clesesifications are eare, therefore, to to groupings of objects that resemble cach other in external or easily-perceived attributes, and attributes that are not of cormplex charactera. Those likenesees among things which are due to their posesesion in common of simple obvious properties, may or may not coexist with further likenesees among them. When geometrical figures are clased as curvilinear and rectilinear, or when the rectilinear are divided into trilateral, quadrilateral, \&a., the distinctions made, connote varions other distinctions, with which they are noccesarily bound up; but if liquids be claseed according to their visible cha-racters-if water, alcohol, sulphuret of carbon, \&c., be grouped as colourless and transparent, we have thinge pleced together which are unlike in their eseential natures. Them, where the objeots claseed have numerous attributes, the probabilities are, that the early classifications, based on simple and manifest attribates, unite under the same head many objecte that have no resemblances in the majority of their attributes. As the knowledge of objects increases, it becomee poasible to make groupe of which the members have more numerous properties in common; and to ascertain what property, or combination of properties, is most characteristio of each group. And the clasaification eventually arrived at, is one in which the eegregation has boen carried so finr, that the objecte integrated in each group have more attribrtee in common with one another, than they have in common with any excluded objects ; one in which the groups of such groupe are integratod on the same principle; and one in which the degrees of differantiation and integration are proportioned to the dogrees of intrinsic onlikeness and likeness. And the ultimate clamification, while it serves most complotely 10 identify the things, servee also to expreses the grvatest amount of knowledge concerning the thinge-nables ue to predicate the greatest number of faote concerning ench thing; and by so doing proves that it expreeses the moot precise correepondence between our concopptions and the realitice.
f 99. Biological classifications illustrate well theee phases, through which claseifications in general necesearily pase In early attempts to arrange organic beings in some systematic manner, we sce at first, a guidance by conspicuous and simple characters, and a tendency towards arrangement in linear order. In successively later attempts, we see more regard paid to combinations of characters which are essential but often inconspicuous; and a gradual abandonment of a linear arrangement for an arrangement in divergent groaps and re-divergent sub-groups.

In the popular mind, plants are still claseed under the heads of Trees, Shrubs, and Herbe ; and this serial classing according to the single attribute of magnitude, swayed the earliest obeervers. They would have thought it abourd to call a bambon, thirty feet high, a kind of grass; and would have been incredulous if told that the Hart's-tongue should be placed in the same great division with the Tree-ferns. The zoological classifications that were current before Na tural History became a science, had divisions similarly superficial and simple. Beasts, Birds, Fishes, and Creeping-things, are names of groupe marked off from one another by conspicuous differences of appearance and modes of life-creatures that walk and run, creatures that fly, creatures that live in the water, creatures that crawl. And these groups were thought of in the order of their importance.
The first arrangements made by naturalists were based either on single characters, or on very simple combinations of characters. Desoribing plant-classifications, Lindley says:-" Rivinus invented, in 1690, a system depending upon the formation of the corolla; Kamel, in 1693, upon the fruit alone; Magnol, in 1720, on the calyx and corolla; and finally, Linnous, in 1731, on variations in the stamens and pistil." In this last system, which has been for ov long current as a means of identification, simple external attributes are still depended on; and an arrangement, in great measure serial, is based on the degrees in which thewo
aitributes are posecoeod. In 1703, couse thirty yemes buspes the time of Linnsous, our countryman Ray hed cketainal tho outlines of a more ad ranced eystem. Ho said that-

> Plants are either

Flowerlese, or
Flowering; and these aro
Dicotyledonet, or
Monocotyledones.
Among the minor groups which he placed under theos general heads," were Fungi, Mosese, Ferns, Compcitions Cichoracees Umbellifers, Papilionaceous planta, Oonifers, Iabiates, \&c., under other names, but with limits not very different from those now assigned to them.". Being mmah in advance of his age, Ray's ideas remained dormant until the time of Jussiex; by whom they were devaloped into what has become known as the Natoral System. Passing through various modifications in the hands of succeenive boterimets the Natural System has now taken the following form ; which I copy (adding the alliances to the clacees) from Proc. Lindley's Vegelable Kingdom.*

[^16]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

same principle of co-ordination would be etill further manifested. On etudying the definitions of these primary, ${ }^{\text {so- }}$ condary, and tertiary alacoes, it will be found that tha largest are marked off from each other by come attribeto which connotes sundry other attribates; that each ol the umaller classes comprehended in one of thew larget clemes, is marked off in a similar way from the smillor clasece bound up with it; and that so, each succosaively emallore cless, has an increased number of co-axisting attributea.
\& 100. Zoological claseification has had a parallal history. The first attempt which we noed notice, to arrange animale in such a way as to display their affinities, is that of Linnæus. He grouped them thus:-
Cl. 1. Manoraln. Ord. Primater, Bruta, Pere, Glires, Pocorn, Bellians Cete.

Cin 2. Aves. Ord. Accipitros, Pice, Anseres, Grallse, Gallinm, Passercen
Cl. 3. Axprimil. Ord. Reptilen, Serpentes, Nantea.

Cu. 4. Pracss. Ond. Apodea, Jagulerea, Thoracici, Abdominaben.
Ci. 5. Inszcta. Ord. Colooptera, Hemiptera, Iepidoptern, Neureqterins Diplera, Aptera.

Cı 6. Vancres. Ord. Intestina, Molluscon, Teetsocen, Lithoplegta, Eeophyta

This arrangement of clacees, is obvioualy basod on apparent gradations of rank; and the plecing of the ordore similarly betrays an endeavour to make succeasione, beginning with the must superior forms and ending with tho most inferior forms. While the general and rague idea of perfection, determines the leading character of the olasaification, its detailed groupings are detormined by tho most conspicuous external ettribatee. Not oaly Lidnseus, but his opponents, who proposed other systemen, were "under the impression that animals were to be arranged logother into clamea, orders, genera, and specioe, nccording to their more or lees cloes external resemblanco." Thin conception survived till the time of Cavier. "Naturabista""

[^17]suys Agassiz," were bent upon eetablishing one continual uniform series to embrace all animals, between the links of which it was supposed there were no unequal intervals. The watchword of their school was: Natura non facit saltum. They called their system la chaine des etres."

The classification of Cuvier, based on internal organization instead of external appearance, was a great advance. He asserted that there are four principal forms, or four general plans, on which animals are constructed; and in pursuance of this assertion, he drew out the following scheme.

First Branch. Animalia Vrrtrbrata
Cl. 1. Mammaila.
Cl. 2. Birds.
Cl. 3. Reptilia.
Cl. 4. Fishes.

Second Branch. Animalia Molldega.
Cl. 1. Cephalapoda.
Cl. 2. Ptrropoda.
Cl. 3. Gastrropoda.
Cl. 4. Acephala.
Ci. 5. Brachiopoda.
Cl. 6. Cirrhopoda.

Third Branch. Animalia Articolatan.
Cl. 1. Annelides.
Cl. 2. Crustacea.
Cl. 3. Aracheidrs.
Cl. 4. Insects.

Fourth Branch. Animalia Radiata.
Cl. 1. Echinoderms.
Cl. 2. Intestinal Wormas
Cl. 3. Acalbphe.
Cl. 4. Polifis.
C. Ј. Inyusoria.

But though Ouvier emanoipated himsoll from the conception of a eerial progremson throughout the Animeltrixy dom; sundry of his conternporariee and cecoemore remainal fettered by the old error. Lees regardful of the difierently-co-ordinated sete of attribatee diaplayed by the difiercut nebs kingdoms; and swayed by the belief in a progreesive derclopment, which was erroneoualy muppoeed to imply the pomibility of arranging animale in a linear series; they pervisted in thrusting organio forms into a quite unnatural order. The following clasoification of Lamarck illostratee this

INVERTEBRATA.
I. Apathetic Andines.
Cl. 1. Infosoria.
Cl. 2. Por.rpi.
Cl. 3. Radhria.
Cl. 4. Tumicata.
Cl. 5. Veracra
II. Sensmite Andilis.
Cl. 6. Insects.
Cl. 7. Arucharida.
Cl. 8. Crostacba.
Cl. 9. Axnelids.
CI.. 10. Oirriprdi
Cl. 11. Conchifrra.
Cl. 12. Mollusks.
vertebrata.
Yool; sequire pesearvelo ither:
III. Intzllloznt Aniacis.) perform with them opemition by which they obtain others; are ind-
C.. 13. Fientas.
Cl. 14. Reptiles.

Cin 16. Biens
Cr. 16. Maxsuita lignat in dilfereat degriece. A ven cebral collumn ; a brian and a eplend marrovis diatinct seesece; the mue. olventisched to the interand stavowon: form aymmotrical the peto bring in poises

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

tions existing among the several great groupe of the animal kingdom, by placing theee groupe at the ende of four or 8 vo radii, diverging from a centre. The diagram I canoot obmin; but in the published reports of his lectures at the School of Mines the groupe were arranged thue:-

Verterrata
(Alramarieda)
Mammenia Aree Repailia
(Bremalisito) Amphisia Piscoes

Carlertiblata
Bydrosor 1 etinocom.
Prorozon

What remnant there may seem to be of linear ancoemion in some of these sub-groupe, is meraly an accident of typographioal oonvenience. Esech of thern is to be reganded simply as a cluster. Were Prof. Huxloy now to reviec this echeme, be would probably eoparate more completaly some of the great eab-groupe, in conformity with the riewe expremed in his Hunterina Lectures delivered at the College of Surgeone in 1863. And if be were furthor to develop the arrangement, by dispersing the sub-groaps and cab-mbe groups on the samo principle, there would recult an arrenge-
ment perhaps not very much onlike that shown in the annexed diagram.

In this diagram, the dots represent orders, the names of which it is impracticable to insert. If it be supposed that when magnified, each of these dots resolves itself into a cluster of clusters, representing genera and species, an approximate idea will be formed of the relations among the successively-subordinate groups constituting the animal king-
dom. Becides the sirbordination of groupe and their general distribution, some other factes are indicated. By the dietances of the great divisions from the general contre, are ruddy symbolized their respective degrees of divergence from the form of simple, undifferentiatod organic matter; which wo may regard as their common source. Within esoh group the remotenees from the local centre represente, in a rough way, the degree of departure from the general plan of the group. And the distribution of the sub-groupe within ceoh group, is in moot cases such, that those which comen nearect to neighbouring groupe, are those which ahow the nourw resemblances to them-in their analogies though not in their homologies. No diagram, however, can give a correct conception. Even supposing the above diagram axpremed the relations of animale to one another as troly as they can be expreced on a plane surfene, (which of course it doee not,) it would still be inadequate. Such relations cannot be reproeented in apece of two dimensions; butionly in apece of three dimensions

8 101. While the cleasifications of botaniats and roologinte have bocome more and more natural in their arrangementan there has grown ap a certain artificiality in thoir aberseat nomenclature. When aggregating the smallent groupe into larger groups, and these into groupe etill larger, naturalists adopted certain general terme expremive of the 8000 cossively more comprobensive divisions; and the habitad une of theoe terme, neodful for porposes of convenienct, hee led to the tacit asoumption that they answer to actanlition in Naturo. It has boen taken for granted that apecion, generm, ordars, and alacese, are aseemblagee of definito valuob-chea overy genns is the equivaleat of overy other genua, in reupect of its degree of dirtinotnoes ; and that orders are moparaled by lines of domarcation that are as broed.in one plece an another. Though this conviction is not a formulated ones yot the diaputes continually ariving among neturalite on than

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

attribates which are common to the members of eny furip of the first, second, thind, or fourth rank, we 200 tinat groupe of the widest generality are besed on charnoteristictrof the greateat importance, phyaiologically considered; and that the characteristics of the succosesively-subordinate groupa, aro characteristice of auccemaivaly-sabordinato importasco. The structural peouliarity in which all members of one subkingdom differ from all members of another sub-Kingdom, in a peouliarity that affects the vital actions more profoundly. than does the structural peculiarity which distinguiabes all mernbers of one clase from all members of another clam Let us look at a few cases.

We saw ($\$ 56$), that the broadeat division among the functions is the division into "the accumulation of foreo (latent in food); the expenditure of form (latent in tho tissues and certain matters aboorbed by them); and the transfer of force (latent in the prepared nutriment or blool) from the parts which accumulate to the parta which expend." Now the lowest animals, united under the goneral name Protozoa, are those in which there is either no eeparation of the parts performing thees functions or very indistinot moperation: in the Rhizopoda, all parts are alike accumaletore of force, expenders of furce, and transferrers of force; and though in the most differentiatod members of the groop, the Infusoria, there are something like spocialisations correoponding to these functiona, yet thore are no distince timoces appropriatod to them. The animals known as Corkenterove are oharacterized in common by the posecasion of a part which acoumulates force more or lees marked off from the part which does not accumulate force, but only expende it; and the IIydrosoe and Latinonoa, which are sub-divisions of the Colentercto, are contrasted in this, that in the mese theos parte aro very indefinitely diatinguished, but in the other definikly separated, as woll as moro compliontal. Becidos a corapleter differontiation of the organs reopectively dovoted to the cocomalation of force and the expenditure of forem
the animals classed as Molluscoida, possess rude appliances for the transfer of force: the peri-visceral sac, or closed cavity between the intestine and the walls of the body, serves as a reservoir of absorbed nutriment, from which the surrounding tissues take up the materials they need. The more highly-organized animals, belonging to whichever subkingdom, all of them possess definitely-constructed channels for the transfer of force; and in all of them, the function of expenditure is divided between a directive apparatus and an executive apparatus-a nervous system and a muscular cystem. But these higher sub-kingdoms are clearly separated from each other by differences in the relative positions of their component sets of organs. Prof. Huxley defincs the type of the Vertebrata, as one in which the ganglionic nervous system lies on the dorsal side of the alimentary canal, while the central vascular system lies on its ventral side; and one which is yet further characterized by the possession of a second, and more conspicuous, nervous system, placed on the dorsal side of the vertebral axis-an extra endowment which is perhaps the most essentially distinctive. The types of the Annulosa and Mollusca, are together marked off from the vertebrate type, by the singleness of the nervous system, and by its occupation of the ventral side of the body: the habitual attitudes of annulose and molluscous creatures, is such that the neural centres are below the alimentary canal and the hæmal centres above. And while by these traits the annulose and molluscous types are separated from the vertebrate, they are separated from each other by this, that in the one the body is "composed of successive segments, usually provided with limbs," but the other, the body is not segmented, "and no true articulated limbs are ever developed."
The sub-kingdoms being thus distinguished from one another, by the presence or absence of parts devoted to fundamental functions, or else by differonces in the distributions of such parts; we find, on descending to the classes, that these
are distinguished from cach other, either by molifanione in the structuree of fundamental parts, or by the presence or absence of subsidiary parts, or by both. Fishes and Amphibia aro unlike higher vertobrates in poneming braminios: either throughout life or early in life. And overy higher vertobrate, besides having lungs, is charactorisod by haring, during development, an amnion and an allantoia. Mammala, again, are marked off from Birds and Reptilea by the presence of mamme, as well as by the form of the occipital condyles. Among Mammala, the next division is basod ac the presence or absence of a placenta. And divisions of the Placentalia are mainly determined by the characters of the organs of external action.

Thus, without multiplying illustrations and without dosconding to genera and species, we see that, opeakiag gemerally, the successively smaller groups, are distinguinhed from one another by traits of successivoly leas importance, physiologically considered. The attribates posecened in commen by the largeot assemblagee of organisms, are fer in namber but all-eseential in kind-affect fundamentally the most rital actions. Each secondary assemblage, included in one of the primary assemblages, is characterized by further common attributes that influence the functions lees profoundly. And so on with each lower grade of asemblage.
8. 103. What interpretation is to be put on these trathe \mathcal{O} claseification? We find that organic forms admit of an arrangement everywhere expremive of the fwoh, that along with certain attributes, certain other attribatee, which are not directly connoctod with them, alwaye exist. How aro we to account for this fact? And how are we to socount for the fact that the attributes posessed in common by the largeot ascemblages of forme, are the moot vitally-importuot attributoe?

No one cun belicvo that combinations of this kind may have arimen fortuitoualy. Or if any one belioves thic, is in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

810 THE LDCCIOSS O EDOOET.

And then, when it turns out that this posecsion of seven cervical vertebrre is not an ahsolutely-miversal characteristio of mammals, shall we conclude that winte, in a host of caces, there is a needless adherence to a plan for the sake of consistency, there is ret, in some cases, an inconsistent abandonment of the plan? I think we may properly refuse to draw any such conclosion.

What then, is the meming of these peculiar relations of organic formsi The answer to this question most be postponed. Haring here coniemplated the problem as presented in these wide inductions which maturalits hare reached; and haring seen what propoied solutions of it are inadmissible; we shall see, in the next division of this wort, what is the only poseible solution.

OHAPTER XII.

DISTRIBUTION.

§ 104: Therr is a distribution of organisms in Space, and there is a distribution of organisms in Time. Looking first at their distribution in Space, we observe in it two different classes of facts. On the one hand, the plants and animals of each species, manifestly have their habitats limited by ex ternal conditions: they are necessarily restricted to spaces in which their vital actions can be performed. On the other hand, the existence of certain conditions does not determine the presence of organisms that are the fittest for them : there are many spaces perfectly adapted for life of a high order, in which only life of a much lower order is found. While, in this inevitable restriction of organisms to environments with which their natures correspond, we find a negative canse of distribution ; there remains to be found that positive cause of distribution, whence results the presence of organisms in some of the places appropriate to then, and their absence from other places that are equally appropriate and more appropriate. Let us consider the phenomena under these categories.
§ 105. Facts which illustrate the limiting influence of surrounding conditions, are abundant, and familiar to all readers. It will be needful, however, here to cite a few typical ones of each order.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

with the influences, direct or more or less reajule, of nearly all co-existing organisms.

One general truth, indicated by sundry of the alove illustrations, calls for special notice-the truth that organisms are ever intruding on each other's spheres of existence. Of the various modes in which this is shown, the commonest is the invasion of territory. That tendency which we see in the human races, to overrun and occupy each other's lands, as well as the lands inhabited by inferior creatures, is a tendency exhibited by all classes of organisms in all varieties of ways. Among them, as among mankind, there are permanent conquests, temporary occupations, and occasional raids. Annual migrations are instances of this process in its most familiar form. Every spring an inroad is made into the area which our own fly-catchers occupy, by the swallows of the South ; and every winter the fieldfares of the North, come to share the hips and haws of our hedges with native birds-a partial possession of their territory, which entails on our native birds, some mortality. Besides these regularlyrecurring raids, there are irregular ones: as of locusts into countries not usually visited by them; or of strange birds which in small flocks from time to time visit areas adjacent to their own. Every now and then, an incursion ends in permanent settlement-perhaps in conquest over indigenous species. Within these few years, an American water-weed has taken possession of our ponds and rivers, and to some extent supplanted native water-weeds. Of animals, may be named a small kind of red ant, having habits allied to those of tropical ants, which has of late overrun many houses in London. The case of the rat, which must have taken to infesting ships within these few centuries, is a good illustration of the readiness of animals to occupy new places that are available. And the way in which vessels visiting India, are cleared of the European cockroach by the kindred Blatta orientalis, shows us how these successful invasions last only until there come more powerful invaders.

Organ ,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

gruous with the hypothesie, that each species was originally placed in the regions most favoarable to it. But the abeenes of a species from regions that are farourable to it, cannot be thus accounted for. Were plants and animale localisod wholly with reference to the fitnees of their constitutions to surrounding conditions, we might expeet Florse to be cimilar and Fuunes to be cimilar, where the conditions are similar; and wo might expect dissimilarities among Floras and among Fuunas, proportionste to the dissimilarities of their conditiona. But we do not find such anticipations verified.

Mr Darwin says that "in the Southern hemiephere, if wa compare large tracta of land in Anutralia, South Africa, and western South America, botwoen latitudos 25° and 35°, wo chall find parts extremely similar in all their conditiona, yot is would not be possible to point out threo faunas and florac more utterly dissimilar. Or again we may compare the presductions of South Amarices south of lat. 35° with thove north of 25°, which consequently inhabit a considerably differsont dimate, and they will be found incomparably more closely related to oach other, than they are to the productione of Auetralin or Africa under nearly the same climato." Still more atriking are the contrasts which Mr Darwin points out, botween clowelyadjacent arese that are totally cot-off from eech othor. "No two marine faunas are more distinct, with hardly a fish, ebell. or crab in common, than those of the eastern and wentern ahores of South and Contral America; yet these great faunse are eoparated only by the narrow, but impensabla, inthmme of Panama." On opposite sidee of high mountain-chaine, also, there are marked difforences in the organic forms-differencos not 80 marked as where the barriers are absoletely im. pamable; but much moro marked than are necoesituted loy unlikencues of physical conditiona.

Not lews cuggeativo is the couverne fuct, that wide geogrophical areas which offer docided geologic and motoorologio contruote, are poopled by nearly-allied groupe of organimana if there are no barriest is migration. "Tho naturaliet in tra-
velling, for instance, from north to south never fails to be struck by the manner in which successive groups of beings, specifically distinct, yet clearly related, replace cach other. He hears from closely allied, yet distinct kinds of birds, notes nearly similar, and sees their nests similarly constructed, but not quite alike, with eggs coloured in nearly the same manner. The plains near the Straits of Magellan are inhabited by one species of Rhea (American Ostrich), and north-ward the plains of La Plata by another species of the same genus; and not by a true ostrich or emen, like those found in Africa and Australia under the same latitude. On these same plains of La Plata, we see the agouti and bizcacha, animals having nearly the same habits us our hares and rabbits and belonging to the same order of Rodents, but they plaiuly display an American type of structure. We ascend the lofty peaks of the Cordillera and we find an alpine species of bizcacha; we look to the waters, and we do not find the beaver or muskrat, but the coypu and capybara, rodents of the American type. Innumerable other instances could be given. If we look to the islands off the American shore, however much they may differ in geological structure, the inhabitants, though they may be all peculiar species, are essentially American."

What is the generalization that expresses these two groups of facts? On the one hand, we have similarly-conditioned, and sometimes nearly-adjacent, areas, occupied by quite different Faunas. On the other hand, we have areas remote from each other in latitude, and contrasted in soil as well as climate, which are occupied by closely-allied Faunas. Clearly then, as like organisms are not universally, or even generally, found in like hábitats; nor very unlike organisms, in very unlike habitats; there is no manifest pre-determined adaptation of the organisms to the habitats. The organisms do not occur in such and such places, solely because they are either specially fit for these places, or more fit for them than all other organisms.

The induction under which these facts come, and which
anitos them with varions other facter, is a totally-differeat oce When we see that the similer areas peopled by dimimilar forme, are thome between which there are impombla hercimen; while the dissimilar areas peopled by similar formes ano thame betweer which there are no such barriers; we are at onco rominded of the general truth exemplified in the lat ceetion :the truth that each apecies of organiem, tonds over to expund its spbere of existenco-to intrude on other areas, ollerer modes of life, other medis; and througt these perpotanllyrecurring attempts to thrust itealf into overy cocemiblo habimet, epreades until it resches limits that are for the time insurmountable.
8107. We pass now to tho diotribution of organic forme in Time. Geological inquiry has establinhod the truth, thab during a Past of immeasurable duration, plante and animale have existed on the Earth. In all conntrice their beried remains are found in greater or leses aboundence. From comparatively small areas, multitudinome differeat forme have been exhumed. Every exploration of new areas, and overy clower inspoction of areus alrendy explored, bringe more emok forme to light. And beyond queation, an exheustive exmmination of all exponed atrata, and of all etrata now covered by the 003 , would disclose forms immensely vat-numbering all thoce at procent know. Further, it is now bocoming manifen to geologinta, that even had wo before na orery kind of fomil which exinta, we ehould atill havo nothing like a complote index to the past inbabitants of our solobe. It has beca loags known that many codimontary doporita have beon 20 alternd by the heat of edjeceat molven matter, as greatly to obrouro the organio rumains contained in thom. The axtomiry formations once callod "truncition," and now ro-samed "metasorphic," are acknowledged to be formatione of cedinmentary origin, from whicholl tracoe of such fumil as ther probubly incolodod, have been oblitorated by igneone notion. And the cooctuaion forcing itwolf into acoeptenco, is, that igroous ruck-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

thus arise gradually or ${ }^{\circ}$ all at once, in formations that are continuous or discontinuovs, are of two timed. Fruman of difforent eres, are distinguinhed partly by the aboence from one of types that are precent in the other; and partly by the unlikenesecs botween the typee that are common to both. Such distinctions between Faunas as are doe to the appeniance or disappearance of types, are of eecondary significunco: they poesibly, or probably, do not imply anything more than migrations or extinctions. The most significant distinctione are those botween successive groups of organimems of the same type. And among such, as above said, the differences that ariee are, speaking generally, small and continuove where a earies of conformable strata gives proof of continued existence of the type in the locality; while thoy are comperatively large and abrupt, where there is evidence that botwech the depocit of the adjucent formations, a long period elapeod.

Another general fact, referred to by Mr Darwin as one which palmontology has made tolerably cortain, is that formes and groupe of forme which have once disappeared fromen the Earth, do not roappowr. Some few specios and a good many geners, havo continuod throughout the wholo period geologically recorded. But amitting these as exceptional, it may bo mid that each epocios after arining, apreading for an era, and continuing abundant for an era, eventually doclinee and bocomos extinot ; and that aimilarly, eeoh genue during a longer poriod increaces in the number of its eppecien, and during a longer period dwindlos and at last dies ouk. Having made ite oxit, noither apecies nor gonus ovor ro-enterre. And the like is trua, oven of thow larger groupe called onders. Four trpes of reptilee that were once abundant, have not beon forend in modera formationa, and do not at proent exir. Though nothing lom than an exhaustive examination of all utruta, can prove conolusively that a special or general form of orgenimation when onco loet is nover reproduced; yot mo many frota point to thim infersecos, that its truth can scerrody. be doublod.

To form a conception of the total amount and general direction of the change that has arisen in organic forms during the geologic time measured by our sedimentary series, is at present impossible-the data are insufficient. The immense contrast between the few and low forms of the earliest-known Fauna, and the many and high forms of our existing Fauna, has been commonly supposed to prove, not only great change but great progress. Nevertheless, this appearance of progress may be, and probably is, mainly illusive. Wider knowledge and increased power of interpretation, have made it manifest that remains of comparatively well-organized creatures, really existed in strata long supposed to be devoid of them ; and that where they are actually absent, the nature of the strata often supplies a sufficient explanation of their absence, without assuming that they did not exist when these strata were formed. It has now become a tenable hypothesis, that the succcssively-higher types fossilized in our successive-ly-later deposits, indicate nothing more than successive migrations from pre-existing continents, to continents that were step by step emerging from the ocean-migrations which necessarily began with the inferior orders of organisms, and included the successively-superior orders as the new lands became more accessible to them, and better fitted for them.*
While the evidence usually supposed to prove progression, is thus untrustworthy, there is trustworthy evidence that there has been, in many cases, little or no progression. Though the types which have existed from palmozoic and mesozoic times down to the present day, are almost universally changed ; yet a comparison of ancient and modern members of these types, shows that the total amount of change is not relatively great, and that it is not manifestly towards a higher organization. Though nearly all the living forms which have prototypes in early formations, differ from these prototypes specifically, and in most cases generically ; yet ordinal peculiaritiss are, in very numerous cases, maintained from the carli-

[^18]est times geologically recorded, down to our own time; and wo have no visible evidence of superiority in the existing gencra of these orders. In his lecture "On the Persistent Types of Animal Life," Prof. Huxley enumerates many cases On the authority of Dr. Hooker, he stated "that there are Carbooiferous plants which appear to be generically identical with some now living; that the cone of the Oolitic Arawoaria is hardily distinguishable from that of an exasting apecies; that a true Pinus appears in the Parbecks and a Juglans in the chalk." Among animals he named paleozoic and meeozuio corals which are very like certain extant corals ; genera of Silurian molluscs that answer to existing genera; insects and arechnids in the coal formations, that are not more than generically different from some of our own insects and arachnids. He instanced "the Devonian and Carbonifarous Plouncocanthen, which differs no more from existing sharks than theso do from one another;" early mesozoic reptiles "identical in the essential characters of their organization with thowe now living;" and Triassic mammals which did not differ "nearly 00 much from some of those which now live, as these differ from one another." Continaing the argument in his "Anniversary Addrees to the Geological Society" in 1862, Prof. Hurley gave many cases in which the changes that have taken place, are not changes towards a more specialized or higher argan-izution-asking "in what sense aro the Lianaic Chelonis inforior to those which now exist I How are the Cretaceous lchthyosauria, Plesiosauria, or Ptorosauria lees embryonic or moro differentiated apecies than those of the Lins!" While, however, contcuding that in most iustunces "positive ovidence fuils to demonatrate any eort of progreasive moditication towards a low cubbryonic or les genernlized tspe in a great many groupe of animals of long-coutinved geological existence; " Prof. Haxloy added, that there are other gmope "co-axisting with them, under the same sonditions, in which more or lam distinct indications of such a prooese seen to bo traceable" And in illustratiou of thie, bo amened that bettor

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

original type. That which Prof. Huxley's argument proven and that only which he considers it to prove, is that organiman have no innate tendencies to assume higher forme, and that " any admissible hypothesis of progresaive modificution, must be compatible with persistence without progreasion through indefinite periods."

One very significant fact must be added, conceraing the relation between distribution in Time and distribution in Space. I quote it from Mr Darwin :-"Mr Clin many yeare ago showed that the fossil matmmals from the Australiza caves were closely allied to the living marsupale of that continent. In South 1 merica, a similar relationship is manifent, even to an uneducated eye, in the gigantic piecee of armour like those of the armadillo, found in several parts of La Plate: and Professor Owen has shown in the most etriking manner that most of the foesil mammale, buried there in such numbers, are related to tho South American types. This relationship is even more clearly eeen in the wondorful collection ol fosesil bonce made by MM. Lund and Clausen in the cavee of Brazil. I was so much inpresed with those facts that I strongly insisted, in 1839 and 1845, on this 'law of the succossion of types,'-on 'this wonderful relationship in the same continent betwren the dead and the living.' Profowor Owen has subeequently extended the same generalization to the mammals of the Old World. We see the same law in this nuthor's restoratione of the extinct and gigantic birds of Now Zeculand. We aee it also in the birde of the enves of Brazil. Mr Woodwand has shown that the same law holde grod, with ecta-shclla, but frum the wide distribution of moot goners of mollunces, it is not rell displayod by thome. Other caecs could be added, as the relation between the oxtinot and living handehelle of Madeira ; and between the extinct and living breck-inab-wator ahelle of the Aralo-Caspinn Sea."'

The genoral results then, are these Our knowlodge of distribution in Time, boing derived wholly from the ovidence affordod by fomila, is limitod to that goologic time of which
come records remain: cannot extend to those pre-geologio times the records of which have been obliterated. From these remaining records, which probably form but a small fraction of the whole, the general facts deducible are:-That such organic types as have lived through successive epochs, have almost aniversally undergone modifications of specific and generic values-modifications which have commonly been great in proportion as the period has been long. That besides the types that have persisted from ancient eras down to our own era, other types have from time to time made their appearance in the uscending series of our strata-types of which some are lower and some higher than the types previously recorded; but whence these new types came, and whether any of them arose by divergence from the previously-recorded typer, the evidence does not yet enable us to say. That in the course of long geologic epochs, nearly all species, most gerera, and a few orders, become extinct ; and that a species, genus, or order, which has once disappeared from the Earth, never reappears. And, lastly, that the Fauna now occupying each separate area of the Earth's surface, is very nearly allied to the Fauna which existed on that area during recent geolo gic times.
\& 108. Omitting sundry minor generalizations, the exposition of which would involve too much detail, what is to be said of these major generalizations?

The distribution in Space cannot be said to imply that organisms have been designed for their particular habitats, and placed in them ; since, besides the habitat in which an organism is found there are commonly other habitats, as well or better for it, from which it is absent-habitats to which it is so much better fitted than organisms now occupying them, that it extrudes these organisms when allowed the opportunity. Neither can we suppose that one end has been to establish varieties of Floras and Faunas ; since, if so, why are the Floras and Faunas but little divergent in widely-sundered
areas between which migration is pomble, while thoy are markedly divergent in adjocent areas botweea which migror tion is imposilide?

Precing to dintribations in Times, there arise the quations -why during nearly the whole of that reat period geologically recorded, have there exinted nooe of thove higheat orgmie forms which have now overrun the Rarth ? -how is it that wo find no traces of a arcaturo endowed with large capecities for knowledge and happinew? The anower that the Earth was not, in remote times, a fit habitation for such a ereature, bocides being unwarranted by the evideoce, wuggents the equally awk ward queation - Why doring untold milliossof yearedid tho Earth remain fit only for inferior creaturee? Whath agoin, in the meaning of this extinction of types i To coscolode that the eaurian type was repleced by other typee at the beginning of the tertiary period, becanee this type was not adepted to the conditions which then arose, is to comolude that this type could not be modified into fitnees for the conditions; and this conclusion is quite at rariance with the hypotbecis that creative skill is shown in the multiform adaptationa of ove type to many endes
What interprotations may rationally be pot on theve and other general facts of distribution in Speco and Tirme, wo shall see in the next division of this work; to which let ne now pean

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

CBAPTEL 1.

PRELIMINARY.

8 109. Is the foregoing Part, we have contemplated the most important of the generalizations to which biologists have been led by observation of organisms. These Inductions of Biology have also been eeverally glanced at on their deductive sides; for the purpose of noting the harmony that exists between them, and those primordial truths set forth in First Principles. Having thus studied the leading phenomena of life separately, we are prepared for studying them in their ensemble, with the view of arriving at the most general interpretation of them.

There is an ensemble of vital phenomena presented by each organism in the course of its growth, development, and decay; and there is an ensemble of vital phenomena presented by the organic world as a whole. Neither of these can be properly dealt with apart from the other. But the last of them may be separately treated more conveniently than the first. What interpretation we put on the facts of structure and function in each living body, depends entirely on our conception of the mode in which living bodies in general have originated. To form some conclusion respecting this mode-a provisional if not a permanent conclusion-must therefore be our first step.

We have to choose between two hypotheses-the hypothesis of Special Creation and the hypothesis of Evolution.

Either the multitudinous kinds of organisms that now exist, and the still more multitudinous kinds that have existed during past geologic erus, have been from time to time separately made ; or they have arisen by insensible steps, through actions such as we see habitually going on. Both hypotheses imply a Cause. The last, certainly as much as the first, recognizes this Cause as inscrutable. The point at issue is, how this inscratable Cause has worked in the production of living forms. This point, if it is to be decided at all, is to be decided ouly by examination of evidence. Lot us inquire which of these antagonist hypotheses is most congruous with established facts.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

were at first wrong. In all these cases men set oat with beliofs which, if not aboolutely faleo, contained but manll amounts of truth disguised by immense amounts of orror.

Hence the hypothesis that living beinge resulted trom epecial creations, being a primitive hypothesis, is probably an untrue hypothesis. If the interpretations of Nature given by aboriginal men, were erroncous in other directiona, they were most likely erroneons in this direction. It would be etrange if, while these aboriginal men failed to roach the truth in so many cacee where it is comparatively conspicrover they yet reached the truth in a case where it is comparativaly hidden.
§ 111. Besides the improbability given to the belief in epecial creations, by its associntion with mistaken early beliefs in general; a further improbability is given to it by its aseociation with a apecial clase of mistaken boliofe. It belongs to a family of beliefs which have one after another been deatroyed by adrancing knowledge; and is, indeed, almost the only member of the family that survive among educated people.

We all know that the earage thinkes of each otriting phonomenon, or group of phenomena, as caused by some reparate personal agent; that out of this fotishistic conoeption there grows up a polythaistic conception, in which these minor parsonalities aro variously generalized into deaties preciding over different divisions of nature; and that theso are eventually further goneralizod. This progrowivo conmolidation of coumal ugencice, may be traced in the areede of all races; and is far from complete in the creede of the moot advanoed racoen The unlettored ruatica who till our fiolde, do not let the concciousmese of a supreme powor wholly abourb tho aboriginal conerptions of gnod and evil spiritm, and charms or necres potencins dwelling in particular objecta. The carlieat mode of lliinking changes, only as fart an the constant reclatione anong phenomona are cotabliahed.

Scarcely lem
familiar is the truth, that while accumulating knowledge makes these conceptions of personal causal agents gradually more vague, as it morges them into general causes, it also destroys the habit of thinking of them as working after the methods of personal agents. We do not now, like Kepler, assume guiding spirits to keep the planets in their orbits. It is no longer the universal belief that the sea was once for all mechanically parted from the dry land; or that the mountains were placed where we see them by a sudden creative act. All but a narrow class have ceased to suppose sunshine and storm to be sent in some arbitrary succession. The majority of educated people have given up thinking of epidemics as punishments inflicted by an angry deity. Nor do even the common people regard a madman as one possessed by a demon. That is to say, we everywhere see fading away the anthropomorphic conception of the Unknown Cause. In one case after another, is abandoned that interpretation which ascribes phenomena to a will analogous to the human will, working by methods analogous to human methods.

If, then, of this once-numerous family of beliefs, the immense majority have become extinct, we may not unreasonably expect that the few remaining members of the family will become extinct. One of these is the belief we are here considering-the belief that each species of organism was specially created. Many who in all else have abandoned the aboriginal theory of things, still hold this remnant of the aboriginal theory. Ask any tolerably-informed man whether he accepts the cosmogony of the Indians, or the Greeks, or the Hebrews, and he will regard the question as next to an insult. Yet one element common to these cosmogonies he very likely retains: not bearing in mind its origin. For whence did he get the doctrine of special creations? Catechiso him, and ho is forced to confess that it was put into his mind in childhood, as one portion of a story which, as a whole, he has long since rejected. Why this fragment is likely to be
right while all the reet is wrong, he is unable to may. May we not then expect, that the relinquishment of all other parts of this story, will bye and bye be followed by tbe relinquishment of this remaining part of it ρ
§ 112. The balief which we find thus queetionable, both as tring a primitive belief and as being a belief belonging to an almost-extinct family, is a belief that is nol countenenced by a single fact. No one ever eaw a special creation; no one ever found proof of an indirect kind, that a apecinl creation had taken place. It is significant, as Dr Hooker remarks, that naturalists who suppose new speciee to be miraculously originated, habitually suppose the origination to occur in acme region ramote from human obearvation. Wherever the order of organic nature is expoeed to the riow of zoologists and botaninte, it expels thia conception; and tho conception survives anly in connexion with imagined plecoes whore the order of organio phenomena is unknown.

Besides being abeolutely without evidence to give it external support, this hypothesis of apecial creations cannot support itself internally - cannot be framed into a coherent thought. It is one of thoee illegitimate eymbolic concerpLions, so continually mistaken for logitimate aymbolio concoptions (First Principks, \& 9), because thoy remain untestod. Immediutely an atternpt is mado to elmborato tho ideo into naything like a definite ehapo, it proves to be a pecod-iden: ndmitting of no aefinite ehape. Is it auppoesd that a now organism, when opecinally crouted, is created out of nothing? If son, there is a supposed creation of matter; and the creasion of matter is inconceivabl-implice the entablishment of a relation in thought betwoen nothing and something - a relation of which one torm is absent-an impomiblo relotion. Is it suppoeed that the matter of which the new orpaniem cooniotes, is not croated for the occuaion, but is taken out of ita pro-exiating forme and arranged into a now formi If mo, we are soot by the quection-how is the ro-niriangumeal

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

ing men and women, daring his few hours of life, and apoculating us to the mode in which they came into cxistenco: it is manifest that, reasoning in the usual way, he would suppose each man and woman to have beee ecparately created. No appreciable changee of atructure occurring in any of them during the few hours over which his obsorvotions extended, this being would probebly infer chat 30 changes of structure were taking place, or had taken plece: und that from the outset, each man and woman had poemeased all the characters then visible-hnd been orgimally formed with them. This would naturally be the first inpresesion. The application is obvious. A human lifo is ephemeral compared with the life of a species; and even the period over which the records of human experience extend, is ephemeral compared with the life of a specice. There is thus a parallel contrast between the immencely-leag serice of changee that have oceurred during the lifo of a epecies, and that emall portion of the scries open to our view. And there is no reason to suppose that the first conclusion drawn by mankind from this small part of the ceries visiblo to then, is any ncarer the truth, than would be the conclusion of the supposed ophemeral being respecting men and wimmen.

This analogy, saggeeting as it docs how the hypothesis of apecinal creationn in merely a formula for our ignorabce, raisoe the quection-what reason have we to ascume opecial crestions of species but not of individuals; unlee it be that in the case of individuals wo diroctly know the procese to be stherwise, but in the case of specien do not directly know it to be otherwise? Have wo any ground for concluding that apecies were opecially ercatod, excopt the ground that wo have no immodiate knowledge of their origin? And doces mur ignorance of the manner in which they arose, warrant un in nserting that they amen by apeciul cerention?

Another queetion is euggented big this analogy. Those who, in the ubeence of immediato evidence of the WET in
which species arose, assert that they arose not in any way analogous to that in which individuals arise, but in a totally distnet way, think that by this supposition they honour the Unknown Cause of things; and they oppose any antagonist doctrine as amounting to an exclusion of divine power from the world. But if divine power is demonstrated by the scparate creation of each species, would it not have been still better demonstrated by the separate creation of each individual? Why should there exist this process of natural genesis? Why should not omnipotence have been proved by the supernatural production of plants and animals everywhere throughout the world from hour to hour? Is it replied that the Creator was able to make individuals arise from one inother in a natural succession, but not to make species thus arise? This is to assign a limit to power instead of magnifying it. Is it replied that the occasional miraculous origination of a species was practicable, but that the perpetual miraculous origination of countless individuals was impracticable? This also is a derogation. Either it was possible or not possible to create species and individuals after the same gencral method. To say that it was not possible is suicidal in those who use this argument; and if it was possible, it is required to say what end is served by the special creation of species that would not have been better served by the special creation of individuals. Again, what is to be thought of the fact that the great majority of these supposed special creations took place before mankind existed P Those who think that divine power is demonstrated by special creations, have to answer the question-to whom demonstrated? Tacitly or avowedly, they regard the demonstrations as being for the benefit of mankind. But if so, to what purpose were the millions of these demonstrations which took place on the Earth when there were no intelligent beings to contemplate them? Did the Unknowable thus demonstrate his power to himself? Few will have the hardihood to say that any such demonstration was needful. There is no choice but to regard them,
eithor as superfluous exercises of power, which is a dergatory supposition, or as exarciece of power that wese neomery bocause specres could not be otherwise produced, which is also a derogatory supposition.
§ 114. Those who espouse the hypothesis of special croatione, entangle thomselvee in other theological difficultice This assumption that each kind of organiem wee eproindly designed, carries with it the implication that the doefgres intended evorything that reaults from the deaign. There in no escape from the admission, that if orgriames were coverally constructed with a view to their reepeotive ends; then the character of the constructor is indicatol both by the ends themselvee, and the perfeotion or imparfection wilh which the organisms are fitted to them. Obearve the coneequences.

Without dwelling on the queation put in a recent chapter, why during untold millions of years there existed on the Earth no beings endowed with capacities for wide thought and high feeling, we may content ourselvee with asking why, at present, the Earth is largaly pooplod by creatures which inflict on each other, and on themealroa, ∞ much suffering? Omitting the human race, whoco defecte and miseries the current theology professce to cocount for. and limiting ourselves to the lower creation, what must wo think of the countless different pain-inflicting appliancoe and instincts with which animale are endowed? Not oaly now, and not only ever aince men have lived, han the Earth been a scene of warfare among all centient creatures; but pulacontolugy dhows us that, from the earlicat cran geoingically recoried, there has beon going on this universal carnage. Fomil atructurees in common with the atructures of existing animale, ahow us aleborato weapons for dostroying other animule. Wo havo unmistaknble proof that throughtout all paet time, there has boen a perpetual proying of the superior ou the inferior-acomaleen devouring of tho weak

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

lower order. So long, too, as wo leave out all mortality but that which, by carrying off the least perfect members of coch species, leaves the mnst perfect members to continue the species; we see some compensating benefit reached through the suffering inflicted. But what shall we say on finding innumerable cases in which the suffering inflicted bringe so componsating benefit P What shall we say when we see the inferior deetroying the superior? What shall we say un discovering elaborate appliances for securing the proeperity of organisms incapable of feeling, at the expense of misery to organims capable of happinese ?

Of the animal lingdom as a whole, more than half the species are parasites "The number of theee parasites," says Prof. Owen, " may be conceived when it is statod that almost every known animal has its peculiar opeciea, and generally more than one, sometimes as many as, or oven more kinds than, infeet the human body." Puesing over the cvils thus inflicted on animals of inferior dignity, let us limit ourselves to the case of man. The Bothriocepha/us hatue and the Tenia solium, are two kinds of tape-worm, which flourish in the human intestines; producing great constilutional disturbances, mometimes ending in insanity; and from the germs of the I'enia, when carried into other parts of the body, arise certain partially-developed forms knowa as Cysticerci, Eihinococci, and Cenuri, which causo disorganization more or less extensive in the brain, the lungs, the liver, thu heart, the eye, \&c., often ending fatally after longcontinued suffering. Five other parusitos, belonging to a different clace, aro found in the rimcere of man-the Trichocephalus, the Oxyuris, tho Strongylua (two epocies), the Δ neyloatomum, and tho Accaris; which, beyond that defect of nutrition which they noceesarily cause, sometimen induce certain irritations that lead to complote demoralizetion. Of nnother clase of entosoa, belunging to the subdivision Trematoda, there are five kinds found in different orgnas of the human body-the liver and gall ducta, the
portal vein, the intestine, the bladder, the eye. Then we have the Trichina spiralis, which passes through one phase of its existence imbedded in the muscles and through another phase of its existence in the intestine; and which, by the induced disease Trichiniasis, has lately committed such ravages in Germany, as to cause a panic. And to these we must add the Guinea-worm, which in some part of Africa and India, makes men miseruble by burrowing in their legs. From this list of entozoa, which is by no means complete, let us pass to the epizoa. There are two kinds of Acuri, one of them inhabiting the follicles of the skin, and the other producing the itch. There are other creatures that bury themselves beneath the skin, and lay their eggs there; and there are three species of lice which infest the surface of the body. Nor is this all: besides animal parasites, there are sundry vegetal parasites, which grow and multiply at our cost. The Sarcina ventriculi inhabits the stomach, and produces gastric disturbance. The Leptothrix buccalis is extremely general in the mouth, and may have something to do with the decay of toeth. And besides these, there are microscopic fungi which produce ringworm, porrigo, pityriasis, thrush, \&c. Thus the human body is the habitat of parasites, internal and external, animal and vegetal, numbering, if all were set down, some two or three dozen species; sundry of which are peculiar to man, and many of which produce in man great suffering and not unfrequently death. What interpretation is to be put on these facts by those who espouse the hypothesis of special creations? According to this hypothesis, all these parasites were designed with a view to their respective modes of life. They were endowed with constitutions fitting them to live by absorbing the jxices of the human body; they were furnished with appliances, often of a formidable kind, enabling them to root themselves in and upon the human body; and they were made prolific in an almost incredible degree, that their germs might have a sufficient number of chances of
inding their way into the human body. In ahort, elaborate contrivancos wore combined to insure the continumpes of their reapective races; and to make it impoesible for the successive generations of man to avoid baing preyed upon by them. What shall we say to this arrungument $\$$ Shall wo say that man, "the hoed and crown of things," was provided as a hubitat for these parasites? Or shall wo that thowe degraded creatures, incapable of thought or enjoyment, were created that they might cause unhappinees to man? One or other of theee alternatives must be chosen by thow who contend that every kind of organism was separutely devisod by the Creator. Which do they prefor P With the conception of two antagonistio powers, which coverally most good and evil in the world, the facte are congruoue enough. Bat with the conception of a suprame beneficence, thin gratuitous infliction of misery on man, in common with all other terros trial creatures capable of fecling, is aboolutaly incompatible.
§ 115. See then the rosulte of our examination. Tho belief in specinal creations of organismes, is a belief that arowo among men during the era of profoundeat daskaces ; and is belongs to a family of bcliefe which have nearly all died out manlightenment has increseod. It is without a solitery eatabliahed fact on which to stand; and when the attempt is mude to put it into definite ehapo in the mind, it turne out to be only a peoud-idea. This seere verbal hypotherie, which mon idly scoept as a real or thinkablo hypothecie, is of the anuse naturo ns would be one, based on a day's obearvation of human lifa, that each man and woman wan appocially creatod -an hypothecis not ouggested by evidence, bat by lock of evirlonco-na hypothesis which formulates abeolute ignorumoe into a emblance of positivo knowlodgo. Further, we 200 that this hypothexis, wholly without aupport, comerntially inconcoivable, and thus fuiling to setinfy men's intollectaal nood of an interpretution, fails aleo to antisfy thoir moral sentiment It is quito incondintont with thow conceptions of the dirime

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

OHAPTAR III.

CHIERAL A8PECT8 OF THE EVOLOTION-HYPOSR:

§ 116. Jost as the supposition that races of organimann have been apecially created, is discredited by its origin; so, conversely, the supposition that racee of organiem have boen evolved, is areditod by its origin. Inetoad of being a conception suggooted and accepted when mankind were profoundly ignorant, it is a conception born in times of comparative enlightenmont. Moreover, the belief that all organic forms have arisen in conformity with uniform lave, inetemd of through breeches of uniform laws, is a belief that has come into existence in the most-instruoted claen, living in these better-instructed timee Not among those who havo paid no attention to the order of Nature, has this idea mado ite appearrance; but among thoeo whooe pursuite have fumiliarrised them with the order of Nuture. Thus tho derivation of this modorn hypothesis is an favourable ac that of the anciont hypothetia in unfavourablo
1117. A kindred antithosis exists between the two families of belick, to which the beliefs wo are comparing eoverally belnag. While the ano family bee been dying out, the othour family has boon multiplying. Juat as fast as men have ceased to rogerd differeat clacee of phenomena an cansed by upecial posmonal agenten onting irrogalarly; so fast have they come to nigand throo differnst clamee of phoo nonucna as caveod by a general agency acting uniformily-the
two changes being corralative. And as, on the one hand, the hypothesis that each species resulted from a supernatural act, having lost nearly all its kindred hypotheses, may be expected soon to become extinct ; 80, on the other hand, the l.jpothesis that each species resulted from the action of naLural causes, being one of an ever-increasing family of hypotheses, may be expected to eurvive and become cetablished.

Still greater will the probability, of its survival and estublishment appear, when we obecrve that it is one of a particular genus of hypotheses that has been rapifly extending. The interpretation of phenomena as resulting from Evolution, has been independently showing iteclf in various fields of inquiry, quite remote from one another. The supposition that the Solar System has been gradually evolved out of diffused matter, is a supposition wholly astronomical in its origin and application. Geologists, without being led thereto by astronomical considerations, have been step by step advancing towards the conviction, that the Earth has reached its present varied structure through a process of Evolution. The inquiries of biologists have proved the falsity of the once general belief, that the germ of each organism is a minuto repetition of the mature organiom, differing from it only in bulk; and they have shown, contrariwise, that every organism, arising out of apparently-uniform matter, advances to its ultimate multiformity through insensible changes. Among philosophical politicians, there has been spreading the percoption that the progress of ecciety is an evolution: the truth that "constitutions are not made bat grow," is a part of the more general truth that eocieties are not made but grow. It is now universally admitted by philologists, that languagee, instesul of being artificially or supernaturally formed, have been developed. And the historics of religion, of philosophy, of acience, of the fine arts, nnd of the industrial arts, show that theee have passed through stages as unobtrusive us thoec through which the mind of a child passes on its way to maturity. If, then, the recognition of evolus
tion as the law of many diverse orders of phenomena, hes been spreading; may we not say that there thence arieco the prubability that evolution will presently be recogrised as the law of the phenomens we are considering? Each further adrance of knowledge, confirms the belief in the unity of Nature; and the discovery that evolution hee gone on, or is going on, in so many departments of Nature, becomes a reeson for believing that thẹre is no department of Natare in which it does not go on.

8 118. The hypotheses of Spocial Oreation and Evolution, are no less contrasted in respect of their legitimeoy as hypotheses. While, as we have seen, the one belonge to that order of aymbolic conceptions which are proved to be illusive by the imposesibility of realizing them in thought; the other is one of those symbolic conceptions which are more or low completely realizable in thought. The production of all organic forms by the alow accumulation of modifications upon modifications, and by the alow divergencee resulting from the continual addition of differences to differences, is mentally representable in outline, if not in detail. Various orders of our experiences ensble us to conceive the procesen. Lot us look at one of the aimpleat.

There is no apparent similarity between a straight lino and a circle. The one is a curve; the other is defined at without ourvalure. The one encloees a apaco; the other will not enclose a space though produced for ever. The one in finito; the other may be infinite. Yot, opposite at the two are in all their propertion, they may be connected togothers by a merice of linee no one of which diffors from the adjecent once in any appreciable degree. Thus, if a cono bo cat by a plane at right angles to its axis, we get a circle. If, inatend of buing perfectly at right angles, the plane subtends with the axis an anglo of $89^{\circ} 69^{\circ}$, we have an ollipeo which no human oye, even when uided by un accurate pair of compasees, can diatinguish from a circle. Decreasing the anglo minute

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

that a cyclopardia is needed to describe its constituent parta The gerninal vesiclo is so simple that it may be defived in a line. Neverthelees, a few monthe suffioe to develope the one out of the other; and that, too, by a series of modificortions so emall, that were the embryo examined at aucceseive minutes, even a microsoope would with difficulty disoloes any sencible changes. Aided by such facts, the conooption of general evolution may be rendered as definite a concoption as any of our complex conceptions can be rendered. If instead of the successive minutee of a child's fortal lifo, wo take suocessive generations of creaturee-if we regard the ceoceesive generations as differing from each other no more thma the fortus did in successive minutes; our imaginations must indeed be feeble if we fail to realize in thought, the evoletion of the most complax organism out of the simplest If a single call, under appropriste conditiona, becomes a man in the space of a few years; there can surely be no difficulty in understanding how, undor appropriate conditions, a coll may, in the course of antold millions of years, give origin to the human race.
It is true that many minds are so unfurnishod with thowe exporiences of Nature out of which this conception is hrilt, that they find difficulty in forming it. Habitually looking at things rather in their statical than in their dynamical especte, they never realize the fact that, by emall inerements of modification, any amount of modification may in time be gonerated. That surprise which they feel on finding aes whom they leat anw as a boy, grown into a man, becomea incredulity when the dogree of ahange in groater. To swoh, the hypothecis that by any serice of changee a protomocn abould ever give origin to a mammal, seems groteeque-a grotoeque as did Guliloo's nesertion of the Earth's movement coom to the Aristotionana; or an grotosque as tho aseertion of the Earth's ophericity scems now to the Now Toalmonders. But thoes who ecoopt a litorally-unthinkablo propocitios as
quite satisfactory, may not unnaturally be expected to make a converse mistake.
§ 119. The hypothesis of evolution is contrasted with the hypothesis of special creations, in a further respect. It is not simply legitimate instead of illegitimate, because representable in thought instead of unrepresentable; but it has the support of some evidence, instead of being absolutely unsupported by evidence. Though the facts at present assignable in direct proof that by progressive modifications, races of organisms that are apparently distinct may result from antecedent races, are not sufficient; yet there are numerous facts of the order required. It has been shown beyond all question that unlikenesses of structure gradually arise among descendants from the same stock. We find that there is going on a modifying process of the kind alleged as the source of specific differences: a process which, though slow in its action, does, in time, if the circumstances demand it, produce conspicuous changes-a process which, to all appearance, would produce in the millions of years, and under the great varieties of conditions which geological records imply, any amount of change.

In the chapters on "Heredity" and " Variation," contained in the preceding Part, many such facts were given; and plenty more might be added. Although comparatively little attention has been paid to the matter until recent times, the evidence already collected shows that there take place in successive generations, alterations of structure quite as marked as those which, in successive short intervals, arise in a developing embryo-nay, often much more marked; since, besides differences due to changes in the relative sizes of parts, there sometimes arise differences due to additions and suppressions of parts. The structural modification proved to have taken place since organisms have been observed, is not less than the hypothesis demands-bears as great a ratio
to this brief period, as the total amount of atruoteral changs coen in the evolution of a complex organiem out of a cimple germ, bears to that vast period during which living forme have existed on the Earth.

We have, indoed, much the same kind and quantity of direct evidence that all organio beinge have gredually erieen through the actions of natural causes, which we have that all the structural complexities of the Earth's crust have arisen through the actions of natural causee. It may, I think, be fuirly said, that betweon the known modifications undergoneby organiame, and the totality of modifications displayed in their structures, there is no greater disproportion than between the geological changes which have been witnesed, and the totality of grological changes supposed to be aimilarly cassed. Here and there are pointed out eedimentary doposits now slowly taking place. At this plece, it is proved that a shore hns been encroached on by the sea to a considerablo cxteut within recorded times; and at another pleoc, an ceanary is known to have become shallower within the spece of some generations. In one region a general upheaval is going on at the rate of a few feet in a centory; while in another region occasional earthquakes are shown to cause alight variations of level. Appreciable amounts of denudation by water are risible in some localities; and in other localition gleciers are detected in the act of grinding down the rocky surfaces over which they glide. But the changes thus instanced, aro infinitasimal compared with the aggragate of chnagee te which the Earth's cruat tentifies, even 'in its etill extant ayptemas of strata. If, then, from the amall changes now being wrought on the. Earth's crust by natural agenciee, we may legitimately conclude that by such nataral agenciee acting through vast opoche, all the otructural complexitiee of the Eurth's crust have been produced; may wo not from the mall known modifications prodeced in racce of orguniens by natural ageocioes aimilarly infor that from natural agoa.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

rucorda. But to the hypothesis of evolution, this abseence is no such obstacla. Suppose evolution, and this queetion is necesearily exaluded. Suppose opecial creationa, and thio question, unavoidubly raised, can have no eatisfactory answor.

Still more marked is this contrast betwean the two hypotheses, in preeence of that reat armount of suffering entailed on all orders of sentient beings, by their imperfect adaptations to their conditions of life; and the further vast amount of sufforing entailed on them by enemiee and by parasites. We saw that if organisms waro soverally designed for their respeotive placee in Nature, the inoritablo conclusion is, that theee thousands of kinde of inforior organ. inms which priy upon superior organimma, were intended to inflict all the puin and mortality which rosulta. But the hypothesis of evolution involves us in no such dilemma. Slowly. but surely, evolution brings about an increasing amount of happinces: all evile being but incidental. By its cmential nature, the procese must everywhere produce grestor fitness to the conditions of existence; be they what thoy may. Applying alike to the loweet and the higheat forme of organization, there is in all cases a progresive adaptation; and a curvival of the moot adapted. If, in the uniform working out of the process, there are evolved organisms of low typees, Which proy on thooe of higher typee, the ovile inflicted form but a deduction from the average benefita. The universal and neccesary tendency towurds supromacy and multiplicen tion of the best, applying to the organio creation as a whole an wall as to esch epocios, is ever diminishing tho demage dono-lunds ever to maintain those most cuperior orgunimem which, in one way or other, eecape the invasions of the inforior, and so tonds to produce a type loes linble to the inver sions of the inferior. Thus the evils accompanying evoletion are ever being self-oliminatod. Though thero may arim the queation - Why could they not have been avoided? there does not arise the quection-Why were they dolibes
ately inflicted? Whatever may be thought of them, it is clear that they do not imply gratuitous malevolence.
§ 121. In all respects, then, the hypothesis of evolation contrists favourably with the hypothesis of special creation. It has arisen in comparatively-instructed times, and in the most cultivated class. It is one of those boliefs in the uniform concurrence of phenomena, which are gradually supplanting beliefs in their irregular and arbitrary concurrence; and it belongs to a genus of these beliefs which has of late boen rapidly spreading. It is a definitely-conceivable hypothesis : being simply an extension to the organic world at large, of a conception built from our experiences of individual organisms ; just as the hypothesis of universal gravitation, was an extension of the conception which our axperiences of terrestrial gravitation had produced. This definitely-conceivable hypothesis, besides the support of numerous analogies, has the support of direct evidence: we have positive proof that there is going on a process of the kind alleged; and though the results of this proceses, as actually witnessed, are minute in comparison with the totality of results ascribed to it, yet they bear to such totality, a ratio as great as that by which an annlogous hypothesis is justified. Lastly, that sentiment which the doctrine of special creations is thought neceseary to satisfy, is much better satisfied by the doctrine of erolution ; since this doctrine raises no contradictory implications respecting the Unknown Cause, such as are raised by the antagonist doctrine.

And now, having obeerved how, under its most general espects, the hypotheais of evolution commends itself to us, by its derivation, by its coherence, by its anslogies, by its direct evidence, by its implications; let us go on to consider the several orders of facts which yield indirect support to it. We will begin by noting the harmonies that exist between it, and sundry of the inductions set forth in Part II.

UHAPTER IV.

\$ 12\%. In § 103, we saw that the reletions which exict among the species, genera, ordera, and alnoees of organimane sre not interpretable as resulte of any such causes as have been usually assigned. We will here consider whother they are intorprotable as the results of evolution. Let us firat contemplate some familiar fucta.

The Norwogians, Swedea, Danes, Germans, Dutch, and Anglo-Saxons, firm together a group of Scandinavim reoes that are but slightly divergent in their characters. Wolsh, Iriah, and IIighlanders, though they have differencee, have not difforences such as to hide a docided community of nature: they are clamed together as Calta. Betwoon the Scandinarian race as a whole and the Caltic rece as a whole, there is a recognised distinction greator than that between the sub-divisions which make up one or the other. And tho several proplee inhabiting Southern Europe are more ucurly allied to one another, than the aggregato they form is allied to the aggrogatos of Northern peoples. If, agnin, we comparo these European varieties of man taken as a group. with that group of Eantern rarieties which had a common origin with it, we soe a etronger contract than betwere the Europoan varicties themelves. And once more, ethnotoginta find differences of still higher importannce, botwoea the Aryan stock ns a whole and the Mongolian stock as a whole

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

well as Latin and Groek and cortain extinct and apninem languages of the Rast, are shown to have traite in common, which, notwithstanding the wide gape betweom them, unite them together as one great class of Aryan languages; radically distinguished from the alacese of lavguagos spoken by the other great divisions of the human sace.
§ 123. Now this kind of subordination of groupe, which we se0 arises in the course of continuous descent, multiplice tion, and divergence, is just the kind of subordination of groups which plants and animals exhibit: it is just this kind of subordination which has thrust itedf on the attention of naturalists, in spite of pre-concoptions.

The original idee was that of arrangement in lincar order. Wo saw that even after a considerable soquaintunce with the structurcs of organisms had been acquired, naturalisten comotinued their efforts to reconcile the facte with the notion of a uni-serial succession. The accumulation of evidenoe neccemis tated the broaking up of the imagined chain into group and suh-groupa. Gradually thore aroes the conviction that thoee groups do not admit of being placed in a lina And the conception finally arrived at, is, that of certain great subkingdonns, very widely divergent, each mando up of chaves much lew widely divergont, soverally containing orders still lowe divergent; and so on with genera and apeciea. Tho diagram on page 303, ahowe the general relatione of theee divinions in their degrecs of subordination.

Hence this "grand fact in natural history of tho subordinetion of group under group, which from ita familiarity dowe not alwaye sufficiontly etrike un," is perfectly in harrnony with the hypothecin of evolutiun. The extreane sifnificanco of this kind of relation among organic forma, is dwale on hy Mr Das win; who ahows how an ordinary gencalogieal tree sopresenta, on a amall coale, a syatem of grouping analogone to that which axiste emong orgeniems in geocoral, and which in
osplained on the supposition of a genealogical tree by which all organisms are affilisted. If, wherever we can truce direct descent, multiplication, and divergence, this formation of groupe within groupe takes place; there results a strong presumption that the groupe within groupe which constitute the animal and vegetal kingdome, have ansen by direct deecent, multiplication, and divergence-that is, by evolution.
§ 124. Strong confirmation of this inference is furnishod by the fact, that the more marked differences which divide groupe, are, in both cases, distinguished from the less marked differences which divide sub-groups, by this, that they are not simply greater in degree, but they are more radical in kind. Objects, as the stars, may present themselves in small clusters, which are again more or less aggregated into elusters of clusters, in such manner thut the individuals of each simple clustor, are much cloeer together than are the simple clusters composing a compound cluster: in which case, the kinship that unites groups of groupe differs fram the kinship that anites groupe, not in natures but only in amount. But this is not the case either with the groups and sub-groups which we know have resulted from evolution, or with thoee which we here infer have resulted from evolution. Among these, we find the highest or most gencral classes, are separated from one anothor by fundamental differenues that have no common measure with the differences that separate small clesses. Obwerve the parullelism.

We saw that each sub-kingdom of animals is marked of from the other sub-kingdoms, by a totul unlikenoes in its plan of orgunizatiou : that is, the members of any sub-kingdom are bound together, not by some supericial attribute which they all have, but by eome attribute determining the general anture of their orgnnizutions. While, coantrariwiss, the tnembers of the anallest groups ure united together, and 00 paratod from the members of othar amall groups, bv moli.

Geations which do not affect the eseontial relations of parter That this is just the kind of arrangement which resulte frome evolation, the case of languages will show.

If we compare the dialects spoken in different parte of England, we find scarcely any differences but those of prop nunciation: the structures of the eentancet are almant uniform. Between English and the allied modarn langaagea there are decided divorgences of structure: there are neve unlikenesses of idiom; some unlikenesecs in the wayn il modifying the meanings of verbs; and considerable unlikenesses in the uscs of genders. But theee unlikenceoce are not eufficient to hide a general community of organization. A greater contrast of structure exists between theee modern limb guagee of Weatern Europe, and the clacsic languages. That differentiatipn into abstract and conoreto elementa, which in chown by the subatitution of auxiliary words for infleotiones hae produced a highor epecialization distinguishing thees languages as a group from the oldar languages. Novertholees, both the anciont and modorn languagee of Europe, to gether with some Eastern languages derived from the armo original, have, under all their difierencea of orgenimation, a fundamontal community of organization; inasenuch us all of thom exhibit the formation of words by such a coalesocece and intagration of roots an dectroys the independent meanings of the roots. These Aryan languagee, and others which have the analgnmats charector, are unitod by it into a clacs distinguished from the aptotic and apglutinate languagen ; in which tho roote are oither not united at all, or 80 incompletely unitod that one of them still retaine its independent meaning. And philologists find that theee fundamental differencee which coverally dotormine the grmmatical forme, or moded of come bining idea, are seally oharecterintio of the primary divisions among languagea.

That is to eay, among languagea, where we inow that evolution hae been going on, the greatoct groupe are martend off from ono anotbor by the etmageat etructural contrate: and as tho like holde among groupe of organimes those re-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

less distinct from German than Swedish is; while betwan the Danish and Swodish there is so close a kinship, that thery might almost be regarded wa widely-divergent dialocts. Sirnilarly on comparing the largor divisions, wo mee that the various languages of the Aryan stock, havo devieted from the original to very unlike distances. The general conclusion is manifest. While the kinds of human epecoh fall into groupa, and sub-groupe, and sub-sub-groape; yet the groups are not equal to one another in value, nor have the sub-groups equal values, nor the sub-sub-groupa.

If, then, the classification of organiems results in serenal orders of assemblages, such that aseomblagee of the same order are but indufinitely equivalent; and if, where evolution is known to have taken place, there have ariean assamblages between which tho equivalence is similarly indefinite; there is additional reason for inferring thas organisms are products of evolution.

8 126. A fact of much significance remains. If groupe of organic forms have arisen by divergence and re-dirargence; and if, while the groupe have been developing from simplo groups into compound groups, each group and sub-group has been giving origin to more complex forma of its own typo; then it is inferable that there once axistud grouter structural likonosses betwoen the members of allied groupa, than exist now. Henco, if wo tako the simplost membore of any group to be thooe which have undergone the least change; wo may expect to find a greater likences between them and the simpleot membore of an alliod group, than wo find botween the more complex membere of the two groupa. This, speaking gencrally, provee to bo mo.

Between the sub-kingloms, tha gapu aro extremely wide: but such distant kinshipe as may bo dimerned, bour out anticipntion. Spoaking of that extremely-degraded vertebrato animal the Amphiarma, which hae meveral mollancona traita
mits organization, Dr Carpenter remarks, that it "furnishee an apt illustration of another important fact, that it is by the loucest rather than hy the highest forms of two natural groupa, that they are brought into closest relation." What are the faint traces of community between the Annulosa and the Mollusca? They are the thread-cells which some of their inferior groupe have in common with the Coelenterata. More decided approximations exist betwoen the lower members of classes. In tracing down the Cruatucea and the Arachnida from their more complex to their simpler forms, zoologists meet with difficulties: respecting some of these simpler forms, it becomes a question which class they belong to. The Lepidosiren, about which there have been disputos whether it is a fish or an amphibian, is inferior in tho organization of its skeleton, to the great majority of both fishes and amphibia. Widely as they diffor from them, the lower mammals have some characters in common with birds, which the higher mammals do not poseses.

Now since this kind of relationship of groups is not accountad for by any other hypothesis, while the hypothesis of evolution gives us a clue to it; we must include it among the evidences of this hypothesis, which the facts of classification furnish.
§127. What shall we say of these several leeding truthe when taken together? That naturalists have been gradually rompelled to urrauge organisms in groups within groups; and that this is the arrangement which we see arises by descent, alike in individual families and among races of men, is a atriking circumstance. That while the smalleet groupe ure the most nearly related, there exist bewecu the great sub-kingdoms, structural contrasts of the profoundest kind; cannot but impress us us remarkable, when we see that where it is known to take place, evolution actually produces these feebly-distinguished small groups, and theso strongly-distinguished great groups. Tho impression made by these two
parallolims, which add meaning to each other, in deoponed by the third paralleliam, which enforces the meming of both -the parallolism, namely, that as, between the epecies, genora, orders, claseos, \&c., which naturalinte have formed, there are tranaitional gradationa; so between the grooppas sub-groups, and sab-sub-groups, which we know to have boen evolved, groups of intermediate values axist. Aud these three corrospondences between the known recalte of evolution, and the results here ascribed to evalution, have further weight given to them by the circumstance, that the kinship of groups through their lowest membersh is just the kinship which the hypothesis of evolution impliee

Even in the abeence of theee specific agreesnonte, the broed fact of unity amid multiformity, which organiams 00 atrik. ingly display, is strongly suggeetive of evolution. Preaing ourselves from pro-conceptions, we ahall gee good rewen to think with Mr Darwin, "that propinquity of deccont- the only known cause of the similarity of organio being- is the bond, hidden as it is by various dogrees of moditication, which is partly revealed to us by our clamificationa." When wo consider that this only known cause of aimilarity, joined with the only known cause of divergence, which we have in the influence of conditions, gives us a key to thoso likemenose obscured by unlikeuesses, to which no consintent interproter tion can otherwise be given, even if parely hypothotioal causes be admitted; wo shall sce that ware there nose of those very remarkable harmonics above pointed out, the truthe of clamification would atill yiald atrong support to our conolucion.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

branches; we shall see that there must result an aggregate analogous, in its arrangement of parta, to a tree. If this reet genealogical tree be contemplated as a whole, made up of trunk, great branches, secondary branchee, and eo on, as far as the terminal twigs; it will be porocived that all the various kinds of organisms represented by theos turminimel twigs, forming the periphery of the tree, will atand related to each other in emall groups, which are united into groups of groups, and so on. The embryological tree, expreeaing tho developmental relations of organisms, will be similar to tho tree which symbolizes their clasaificatory relations. Thens subordiuation of classee, orders, genera, and specica, to which naturalists have been gradually led, is just that subordination which rosults from the divergence and re-divergence of embryos, as they all unfold. On the hypothecis of evolution. this parallelism has a meaning-indioates that primordial kinship of all organisms, and that progreesive differcatiation of them, which the hypothesis alleges. But on any other hypothesis the parallelism is meaninglese: or rathor, it raises a difficulty; since it implies either an effect withour a cause, or a dosign without a purpose.
8. 129. It was said above, that this great embryological law is to be taken with cortain qualifioationa. The reemublances which hold togethor grout groupe of cmbryos in their early stages, and which hold rogether sunaller and amaller groups in their later and later stagea, are not apecinal or exact, but general or approximato; and in some casea, the confurmity to this general law is very imperfect. Theen irregularities, hovever, instead of being at variance with the hypothesia of evolution, afford further support to it.

Ubserve, first, that the only two other pueible suppositions reopocting developmontal changea, aro negatived, the ooe by this general law and the other by tho minor nonconlormitien to it. If it be said that the conditionn of the case neccomes unted the derivative of all organioms from simplo germes, and
therefore necessitated a morphological unity in their primitive states; there arisee the obvious answer, that the morphological unity thus implied, is not the only morphological unity to be accounted for. Were this the only unity, the various kinds of organisms, setting out from a common primordial form, should all begin from the first to diverge individually, as so many radii from a centre; which they do not. If, otherwise, it be said that organisms were framed upon certain types, and that thoee of the same type continue developing together in the same direotion, until it is time for them to begin putting on their specialities of structaro; then, the answer is, that when they do finally diverge, they oughe soverally to develop in direct lines towards their final forms. No reason can be assigned why, having once parted company, some should progress towardn their final forms by irregular or circuitous routes. On the hypothesis of design, such doviations are inexplicable.

The hypothesis of evolution, however, while it pro-supposea those general relations among embryos which are found to exist, also affords explanations of these minor nonconformities. If, as any rational theory of evolution pro-supposes, the progressive differentiations of organic forms from one another during past times, have resulted, as they are resulting still, from the direot and indirect effects of extornal conditionsif organisms have become different, either by immediate muluptations to unlike habits of life, or by the mediate adaptotions resulting from preservation of the individuals most fitted for such habits of life, or by both; and if the embryonio changes are related to the changes that were undergone by ancestral races; then these irregularities must be axpectod. For the successive changes in modes of life pursued by succoesive ancestral races, can have had no regularity of sequence. In some cases they must have been more numerous than in others; in some cases they must have been greater in degree than in others; in some cases they must have boon to lower modes, in some cases to higher modes, and in some
cases to modes neither higher nor lower. Of two connato recee which diverged in the remote past, the one may have hed deecendants that have remained tolerubly conetant in thais habits, whilo the other may have had deecendantes that have passed through widely-aberrant modes of lifa; and yot aome of theee last may have eventually takon to modes of life like those of the divergent races derived from the same stock. And if the metarnorphoses of embryos, indicate, in a general Way, the changee of structure undergone by uncoutors; thea, the later embryologic changes of such two allied rwom, will be somewhat different, though they may end in very cimilar forms An illustration will make this alear. Mr Darwim suys :-" Petrels aro tho most nërial and ocoanic of birds, but in the quiet eounds of Tierra del Fuego, the Puffineric Uerardi, in its general habite, in its astoniahing powor of diving, its mannor of awimming, and of flying when unwillingly it takes flight, would be mintaken by any one for an auk or grebe; noverthelom, it is essentially a potrol, bat with many parts of ite organization profonndly modised." Now if we suppose these grebe-liko hubite to be consinued through a long epooh, the petrel-form to be etill more obecured, and the approximation to the grobo-form atill clover: it is manifeet that while the chicke of the grebe and the Puffinuria will, during their early stagoes of devalopasents display that likenees involved by their commun derivation from some carly type of bind, the chick of tho Puffineacis will eventually bogin to show deviatione, roproceatative of the anceatral petrol-otructure, and will aforwards begin to lowe thcese distinctions, and assume the grebe-atructura

Henco, mrucmbering tho perpetual intrusione of organiemen on one another's modoes of life, ofton widely different; and remembering that thew intronions have boan going ou from the beginning; wo shall be propared to find that the geaconal law of ombryologic purallalism, is qualifiod by irrogularitice that are mostly samull, in many areow considemalie, and

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

the second system of external blood-veseala is, to the implacental embryo, of no greater arail than the first: and since the communication between the ambryo and the placenta among placental mammals, might as well or better have bsen made directly, instead of by metannorpbowis of the allantois; these subatitutions appeur unecocumatable to results of design. But they are quite congruous with the supposition, that the mammalian type arose out of lowne vertebrate types. For in such case, the mammalian canbrya passing through states representing, more or lese distincoty. thoee which its ranote ancestors had in common with the lower Vertabrata, develope theoe subaidiary orgens in liko ways with the lower Vortcbrata.

Even more striking than the subetitutions of arguos ase the suppreseions of organa. Mr Darwin namee sonne cawer as "extremely curious; for instance, the presenco of teoth in fortal whales, which when grown up have not a tooth in their heads; - - It has even been stated on good authority that rudiments of tooth can be dotocted in the benks of cortain embryonio birds." Not even temporary functions can be asaigned for these organs that are first built up and then pulled down again. They are aboolutely useles-their formation is aboolutely superfuous. Irreconcilable with any teleological theory, they do not even harmonize with the theory of fixed typee which are maintained by the development of all the typical parte, even where not wanted; seeing that the disappearanco of theso incipient organs during footal life, spoils the typical rocemblence But while to all other hypotheces these faots aff atumbling blocke. they yield strong support to the hypotheais of ovolvLion.

Allied to theoe cases, are the cases of what has been callod retmgraule development. Many parasitic creaturen and creatures which, anter loading active lives for a time, oventerally bocome fixed, looe, in their adult atatee, the limbs and consow which they hed when young. It may be allogod
however, that these creatures could not secure the habiata ucedful for them, without possessing during their larval stnges, cyes and swimming appendages which eventually become uselose ; that though, by losing these, their organization retrogresses in one direction, it prugresees in another direction; and that, therefore, they do not exhibit the needlees development of a higher type on the way to a lower type. Nevertheless there are instances of a descent in organization, following an apparently-superfluous ascest. Mr Darwin says that in some generu of cirripedes, "the lurve become developed either into hermaphrodites having the ondinary atructure, or into what I have called complemental males, and in the latter, the development has assuredly been retrograde ; for the male is a mere sack, which lives for a short time, and is destitute of mouth, stomach, or other organ of importance, excepting for reproduction."
8. 131. Comparative embryology shows us that besides substitutions of organs, there are what may be called substituted modes of development. The same kind of structure is not always produced in the same way; and some allied groups of organisms have modes of evolution which appear to be radically contrasted. The two modes are broadly diatinguishable as the direct and the indirect. They may severully characterize the general course of evolution us: wholo, and the course of evolution in particular organs.

Thus in the immense majority of articulate animale, metamorphoses, more or less marked and more or less numerous, are paseed through on the way to maturity. The fumiliar transformations of insects show us how circuitous is the route by which the embryo-Form arrives at the adult form, among some divisions of the Articulata. But there are other divisions, as the lower Aruchnida, in which the unfolding of the egg into tho adult takes place in tho simpleat manner: the substance gmws towands its appointed shape
by the shortest route. The Mollusca furninh contrasta which though lees marked, are essentially of the same neture. Amoog come Gasteropods, according to Vogt, the gorm-meses, attor undergoing its earliest changes in tho aame way ne germo masees in general, begins to transform itealf bodily into the finished structure: in one part, the component calle conlmon to form the heart, in another part to form the liver, and so on. But in other clneese of mollusce, as the Cophalopodes the evabryo is moulded out of the blastoderne, or curperficial layer of the germ-mass ; and the various organa, moutly arioing nut of this blastoderm by a procese of budding, reech their ultimste shapes through succeesive modificationa, white they grow at the expense of the nutriment abeorbed from the rest of the germ-mass. And this indirect dovalopanent is universal among the Vertcorata

Now on contemplating in their exsemble, the frota thm briefly indicated, we may trace among these irrogalarition something like a general rule. The indirect dovelopenent characterizes the most-highly-arganized forma. In the sub-kingdom Vertebrala, which, considerod as a wholo, athende fur above the reet in comploxity, the developenent is uniformly indirect. It is indirect in the great mases of the Artirulata. It is indirect in the higheet Molluca. Conversoly, it is direot in a large proportion of the lower typea. Tho egge of Protosoa, of Callenterata, of inferior 4 nnuloida, originats the reopective structures proper to them, by tranoformations that are almost immediate; each of the cycle of forme paesod through, is aceumed, when the propor time comees, in the mimplest way; and where they multiply by bodding, the subotance of the bud pesees by as ahort a procem as may bo, into the finished form. Where among the aimples typee of animala, the ovolution is indirect, its indirectreee gemerally appears to be related to come transitional mode of life, which the larra pesees through on its way to maturity; and whore we find direct evolution among the more complex typer, it in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

when thero grow up in one place, as a Manchester or a Birmingham, many establishments of like kind, this proceen is curried still further. There arise factors and agenta, who are the channels through which are transmitted the produce of many mills; and we believe that primarily, thame fuctors were manufacturers who undertook to dispose of the produce of smaller houses as well as their own, and ultimately bocame salesmen only. Now this, which is the original mode in which social agencies of all kinds are ovolved, docs not continue to be the mode. There is a tendency overywhere manifested to substitute a diroct procous for thin indirevt process. Manufacturing establishments are 20 lungor commonly developed through the series of modificetions above deacribed; but mostly arise by the immediate transformation of a number of persons into master, alerke, foremen, workers, \&o. Instead of businew-partnarshipe being formed, as they originally were, by some alow unobtrusive union betwcen traders and their sone or assistants; we now have joint-stock-companies resulting by eoddea mstamorphoees of groups of citizens. The like in tru0 with larger and more complex eocial agencies. Λ new lown in the United States arises not at all after the old method of gradual accumulations mond a nucleus, and succosive amall modifications of structure accompanying increase of sise: but it grows up over a large arca, according to a pro-dotormined plan; and there are doveloped at the outeot, those various civil, occleciastical, and industrial centres, which the incipient city will require. Even in the formation of colonice we may similarly seo, that the whole type of social organization proper to the race from which the colony comen, begins at onco to show itsolf. There is not a gredual pasions through all thomo developmental phases paseod through by the mother-eociety: but thore is a comparatively direet tranaformation of the asmemblago of colonista, into a eocial organista allied in structure to the cocial organism of which it was an offiset.

Let us now return to the development of individual organisms; carrying back this idea with us. On the hypothesis of evolution. all organs must have been originally formed after the indirect method, by the accumulation of modifications upon modifications; and if the development of the embryo repeats the development of ancestral races, organs must be thus formed in the embryo. To a considerable extent they are thus formed. There is a striking parallelism between the mode in which, as above described, manufacturing agencies are originally evolved, and the mode in which secreting organs are evolved. Out of the group of bile-cells forming the germ of the liver, some centrally-placed ones, lying next to the intestine, are transfurmed into ducts through which the secretion of the peripheral bile-cells is poured into the intestine; and as the peripheral bile-cells multiply, there similarly arise secondary ducts emptying themselves into the main ones; tertiary ones into these ; and so on. But while in this and in other organs, the development remains in a great degree indincot; there are organs, as the heart, in which it is comparatively direct. The heart of the vertebrate embryo does not arise from a bud; but it is first traceable as an aggregated mass of cells, bocoming distinct from the cells amid which it is imbedded: its transformation into a contractile chamber, is effected by the consolidation of its outer cells while its inner cells liquify. And the comparatively direct development thus displayed in some organs of the higher enibryos, is, an we have seen, characteristic of the entire development in many lower embryos.
On the hypothesis of evolution, the direct mode of devolopment in animals, must have been substituted for the indirect mode; as we see that it is subatituted in societies. How comee it to have been subetituted? By atudying the cause of tho subetitution in the social orgnnism, we may porhape get some insight into its cause in the individual orgauism.

The direct mode of forming social agenciee
replaces the indirect mode, when these social agencies have either been so long eatablished, or have become so provalont, ar both, as to modify the people's habits and ideas. Groupe of citizens unite into corporato bodies which quickly orgenise, because the habit of forming such combinatione hae ∞ far modified the thoughts and feelings of citisens, that it becomes natural to them thus to arrange themsolver 80 too, is it with the men who form a colony. The rapid assumption by them of a social structure, as similar as circume stances permit to the structure of the mother-cociety, is manifestly due to the fact, that the organization of tho mother-society has moulded the emotions and boliafs of ite members into conformity with itself; so that when come of its members are transferred to a colony, they arsemge themselve directly into a structure of like type with chal of the mothor-society: they do not repeat all the ntagee through which the mother-eociety paseed, becauco thoir natures have been 100 far modified to allow of their doing this. That action and reaction between a socinal organism and its units, which we here ece accounte for changea in modes of social development, must bo paralloled by the action and reaction between an individual organimem and its unita. Various classes of phenomena compolled us to conclude, that cach kind of organism is compoeed of physiological unite, having certain peculiarites which forco them to arrnage theraselves into the form of the spocien to which thoy are peculiar. And in the chapters on Genocia, Heredity, and Variatinn, we sam reason to beliova, that while the polaritice of the paysiological unite dotermine the structure of the orgenimem as a wholo; the organisa as a whole, if its structure is changed by incident forcose, reacte on the physiological unite, and modifice them towards conformity with its now structure. Now this action and reeotion botweca an organic aggregato and its unite, tonding ever to bring the two into abeolute harmony, muat be continnally making the derelopmeutal procesen more dinate

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

great indirectnees, are the organs of external relation; which, in the progrees of organio formes, undergo rariones metamorphoses. Some light, too, is thus thrown on certain irregularities in the order of development of organa If we contemplate those continuove actions and reactione which tend ever to cetabliah a balance between an organic aggregate and its units; we shall see that the effoct which the unita composing any organ, produce on the organiam as a whole, will depend, partly on the permanence of such orgm, and partly on its proportional mase. The influence of any force, is a product of its amount multiplied into the time during which it has actod. Hence, a larger part of the aggregnto acting for a shortor time, will impress itself on tho phyaiological unite, as much as a smallor part acting for a longer time; and may thus begin to show its influence in the developmental changes, as soon as, or even earlier than, a part that has existed for a greater period. Thus it becomee comprehensible why, in certain Entozoa which have im-mensely-developed gonerative systems, the rudiments of the generative eystems are the first to become vicible. And thus are also explicable, anomalies such as those pointed out by Prof. Agrasis-the appearance, in some cance, of traits charactarising the epeciee, at an earlier period of dovelopment than traits charnctarixing the genus.
§ 132. So that whilo the embryologio law enunciated by Von Baer, is in harmony with the hypotheais of evolution, and is, indeed, a law which this hyporkoek implies; the minor nonconformities to the law, are also interprotable hy this hypotheeis. Parallelism botween the coureee of dovelopment in species that had a common anceetry, is linblo to be variounly modified in correspondence with the later maceetril forms paesed through atter divergence of euch apecioe. The subetitution of a diroct for an indirect procese of formation, which wo have reacon to believe will show iteelf, both in the unfolding of the entire organiem and in the unfolding of par
ticular organs, must obscare the embryologic history. And the parts influencing the whole in degrees varying with their masses, there results a further influence which, from the outeet, must begin to modify the metamorphoses of each kind of embryo ; and cause it to show incipient divergences from ombryos which had ancestral histories the same as its own. Thus we find three different canses conspiring in endless ways and degrees, to produce deviations from the general law -causes which are manifestly capable of producing, undor special conditions, changes in apparent contradiction to thin lew.

OHAPTER VL.

THE ARGUMEATTS FROM MORPROTOCT.

5133. Lenviva out of consideration the paralletiem of development which characterives organisms belonging to each group, that community of plan which axiste amoag thena when they are mature, is extremely remarkable and extremely suggeetive. As before ahown (\$ 103), neither the euppoaition that these combinations of attributes which unite almsees ais fortuitous, nor the supposition that no other combinations were practicable, nor the supposition of adherence to prodetermined typical plane, suffices to explain the facta. An instance will boet prepare the reader for secing the true meaning of thees fundamental likencever.

Under the immensely-varied forms of ineocta, greatly dowgated like the dragon-fly, or contrected in alape like the ledy-bird, winged like the buttorfly, or winglem like the flea, wo find this charactor in common-there are primarily twenty segmenta. Theee eogments may be distinotly markod, or they may be so fuood as to make it difficult to find the divisions between them. This is not all. It has boon ahown that the same number of cogmente is poseceed by all the Oruntacear. The highly-consolidated crab, and the equill with its long, loosely-jointed divisions, are compooed of the same number of somites. Though, in the higher crustreceang come of thees auccemive indurated rings, forming the exeo ateleton, are never more than partially marked off Arum anid

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

as the superposer modifications of atruoture, have or have not been great or long maintained. Hence, though the occurrence of articulate animals, such as spiders and mitee, having fewer than twenty segmente, is fatal to the cuppposition thet twenty segments was decided on for the three groupe of superior Articulata; it is not incongruous with the supposition, that some primitive race of articulate animale, bequenthed to these three groups this common typical charsetern- oberneter which has nevertheless, in many caces, become greatly obecured, and in some of the most aberrant ordore of theoe clasees, quite lost.

8 134. Besides these wido-embracing and often deeplyhidden homologies, which hold together different animale, there are the ecarcaly-less significant homologies between different organs of the samie animal. These bomologiea like the others, are obetaclee to the supernaturnal interprota tions, and supports of the natural interpretation.

One of the most familiar and instructive instances is furnished by the vertebral column. Snakea, which move sinuoualy through and over plants and etonee, obrioualy noed a eogmentation of the bony axis from end to end; and inasmuch as foxibility is required throughoat the whole length of the body, there is advantage in the comparative uniformity of this segmontation: the creaturo's movemmata would bo impoded if, instead of a chain of vertebre varying but little in their lengths, there oxisted in the middle of tho scries some long bony mase that would not bond. Bat in most of the higher Vertebrata, the mechanical actions and rouctions demand that whilo some parts of the vertebral axis ahall bo floxible, other parts shall be inflexiblo. Inflexibility in ospocially requisito in that part of the vertobral column called the sacrum; which, in mammale and birde, forma a fulerum expooed to the greatest strains which the akcleton has to bear. Now in both mammales and birde, this rigid portion of the vertobral column is not mado of one tong
cogment or vertebra, but of several segments fused together. In man there are fire of these confluent sacral vertebre; and in the ostrich tribe they number from seventeen to twenty. Why is this? Why, if the skeleton of each species was separately contrived, was this bony mass made by soldering together a number of vortebre like those furming the rest of the column, instead of being made out of one aimple pieco? And why, if typical uniformity was to be maintained, does the number of sacral vertebre vary within the same order of birds? Why, too, should the development of the sacrum be by the roundeabout process of first forming its separate constituent vertebros, and then dostroying their separateness? In the embryo of a mammal or bird, the substance of the vertebral column is, at the outsect, continuous. The segments that are to become vertebre, arise gradually in the midst of this originally-homogeneous axis. Equally in those parts of the spine which are to remain flexible, and in thoee parts which are to grow rigid, these segments are formed; and that part of the spine which is to compose the sacrum, having passed out of its original unity into disunity, by separating itself into segmente, prsees again into unity by the coalescence of these segments. To what end is this construction and re-construction ? If, originally, the spine in vertebrate animals consisted from head ω tail of separate movoablo segments, as it doces still in fishes and some reptiln-if, in the evolution of the higher lertelirata, certain of these moveable eagments were rendored less moveable with respect to each other, by the mechnnical conditions to which they are expoeed, and at longth became relatively immoveable; it is comprehensible why the sacrum formod out of thurn, should continue ever after to show more or less olearly its originally-segmented structure. But on any other hypothosia, this segmented structure is inexplicable. "We the same law in comparing the wonderfully complex jawe and legs in crustacoans," says Mr Darwin : referring to the well-known fact
that those numerous lateral appondages which, in the lowes crustaceans most of them serve as lege, and have like ehapeas are, in the higher crustaceane, some of them represented by enormoualy-developed claws, and others by variously-modified foot-jaws. "It is familiar to almost every ane," bo continues, "that in a flower the relative position of the sepals, petale, stamens, and pistils, as well as their intimato atructure, are intelligible on the view that they conciat of metamorphosed leaves arranged in a epire. In moneterese plants we often get direct evidence of the posesibility of 000 organ being tranaformed into another; and we can actunlly eoe in embryonic crustaccans and in many other animale, aed in flowers, that organs, which when mature become ertrumely different, are at an carly atage of growth axactly alike." - - "Why ahould one crustacenn, which han an extremely complex mouth formed of many parta, conmoguentily ulways have fewer legs ; or conversely, thooe with many loge have simpler mouths? Why should the eopales, petale, stamens, and pistils in any individual flower, though eated for such widely-different purpoese, be all constructed on the same pattern?"

To theee and countloes similar questionas the theory of evolution furnishes the only rational answer. In the coarso of that change from hamogenaity to heterogeneity of etruoture, displayed in evolution under every form, it will necessarily happen that from organisms made up of numeroes like parta, there will arise organisms mado up of parte more and more unlike: which unlike parts will nevertheloee comtinue to bear traces of their primitive likenoen.
\$135. One moro otriking morphological frot, near akin to some of the facte dredt ou in the last chapter, mast bo here sot down-tho froquont occurrence, in adult animente and planta, of rudimentary and wealoen orgmen, which aro homologovs with organs that aro doveloped and umoful in allied animale and pleata. In the lact chaptor wo saw that

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

bearing fibres, each of which again bears a fringu of down. But in some birds, as in the ostrich, various stages of arreeted development of the feathers may be traced; beginning with the unusually-elaborated foathers of the tail, and ending with those about the beak, which are reduced to mimple hirira. Nor is this the extreme case. In the Δ pterye we ece the whole of the feathers reduced t a hair-liko form. Again, the hair which commonly covers the body in mammente, is comparatively rudimentary over the greater part of the human body. and is in some parts reduced to mere down-down which nevertheless proves itself to be homologone with the hair α mummals in general, by occasionally developing tuto the original form. Numerous caces of aborted organe are give by Mr Darwin, of which a few may be here added. "Nothing can be plainer," he remarks, "than that wings are formed for flight, yet in how many insects do we see wings so reduced in size as to be utterly incapuble of alight, and not rarely lying under wing-cases, firmly soldered together?" - - "In plants with separated seases, the male flowers aftea have a rudiment of a pistil ; and Kölroutor found that by aroming such male plants with an hermaphrodite spocies, the rudiment of the pistil in the hybrid offipring was much increesed in sive; and this shows that the rudiment and the perfoct piestil are ossentially alike in nature." And then, to complete the proof that these undeveloped parts aro marks of deccume froen rucos in which they were developed, there are not a fow direot experiences of this relation. "We have plenty of cacce of rudimentary organs in our domestic productions-an the stump of a tail in tuilloss breedo-the vestige of an car in carleer breeds-the re-appearance of minute dangling horns in hornloes broode of cattlc."

Here, as beforo, the coleological dootrino faile atterly; for thoso rudimentary organs are ucolow, and occasionally oven detrimental. The doctrine of typical plans is equally out of court; for while, in some memiers of a group, radimentary organs completing the gencrul trpe are traceabily
in other members of the same group, such organs are unrepresented. There remains only the doctrine of evolution; and to this, these rudimentary organs offer no difficulties. On the contrary, they are among its mast striking evidences.
§ 136. The gencral truths of morphology thus coincide in their implications. Unity of type, maintained under extreme dissimilarities of form and mode of life, is explicable as resulting from descent with modification; but is otherwise inexplicable. The likenesses disguised by unlikenesses, which the comparative anatomist discovers between various organs in the same organism, are worse than meaningless if it be supposed that organisms were severally framed as we now see them ; but they fit in quite harmoniously with the belief, that each kind of organism is a product of accumulated modifications upon modifications. And the presence in all kinds of animals and plants, of functionally-useless parts corresponding to parts that are functionally-useful in allied animals and plants, while it is totally incongruous with the belief in a construction of each organism by miraculous interpusition, is just what we are led to expect by the beicicf thet organisms have arisen by progression.

OHAPTER VII.

TEE ARGUMENTS FROM DISTRIBUTION.

8137. Is $\mathbb{8} 105$ and 106, we contemplated the pheromeseat of distribution in Spuce. The general conalorions remolen, in great part based on the evidence brought together by Mr Darwin, were that, " on the one hand, we have similarty-coa ditioned, and sometimes nearly-adjecent, arceas, occurpied by quite different Faunas. On the othor hand, wo have areee remote from each other in latitude, and contrasted in soil ao woll us climnte, which are ocoupied by cloealy-allied Faunas." Whence it was inferred that "as like organisms aro not universally, or even generally, found in liko habitats; nor vory unlike organiems, in very anliko habitats; there is no manifore pro-determined adaptation of the organisms to the habitata." In othor words, the faots of distribution in Spece, do not conform to the hypothesis of deaign. At the eame time we saw that "the similar areas peoplod by disumilar formes, are thoee between which there are impamablo barricers; while the dissimilar areas peopled by similar forme, are thome between which there are no such barriers;" and theoe generalizatious appoarod to be in harrongy with the abuand-antly-illustrated truth, "that each apecies of organimen tande orer to axpand its ephere of existenco-io intrude on other arcas, other modes of lifo, other modia."

By way of showing etill more clearly the effecte of this computition among races of organisms, let me here add come recontly-publiched instancos of the maurpations of arean, and

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

actions before experienced. Now if ohangen of expmio atructure are caused, directly or indirectly, by changee in the incidence of forces; there most result unlikencmes of structure between the divisions of a suce whioh colcmimen new habitats. Hence, in the absence of obetaclos to migration, we may anticipate manifest kinshipe batween tho animals and plants of one area, and thoee of areas edjoining it This inference corresponds with an induction before sot down (§ 106). In addition to the illustrations of it alrendy quoted from Mr Darwin, his pagee furnish othern. Oro in that species which inhabit islands are habitually alliod to spocies which inhabit neighbouring main leada; and ano other is that the faunas of clustered ialands show marked similaritios. "Thus the several islands of the Galapagos Archipelago are tenanted," saya Mr Darwin, "in a quite suarvellous manner, by very closely related opecies; so that the inhabitants of each separate island, though moully distinct, are related in an incomparably alower degree to anch other than to the inhabitants of any other part of the world." Mr Walloce has trucerl " variation as specielly influenoed by locality" among the Papilionida inhabiting the East Indian Archipelago: showing how "the species and varietice of Celebes poseses a striking charactar in. the form of the antarior wings, differeat from that of the allied epecios and varieties of all the surrounding ialands;" and how "tuiled apecies in Indis and the westorn iolands lose their thils as they spread eastward through the archipelago." During his travels on the Upper Amazons, Mr Batee found ans "the greater part of the apeciee of Ithomia changed from one locality to another, not farther removed than 100 to 200 milce:" that "many of these local apecies have the appearance of being geographicul variotios;" and that in some opecies " noost of the local rarieties are connected with their pareat form by individuals exhibiting all the shades of variation."

Further general rulationshipe aro to be infirred If
races of organisms, ever being thrust by pressure of population into new habitats, undergo modifications of structure as they diverge more and more widely in space, it follows that, speaking generally, the widest divergences in Space will indicate the longest periods during which the descendants from a common stock have been subject to modifying conditions; and hence that, among organisms of the same group, the smaller constrasts of structure will be limited to the smaller areas. This we find: "varieties being," as Dr Hooker says in his Flora of Tasmania, "more restricted in locality than species, and these again than genera." Again, if races of organisms spread, and as they spread are altered by changing incident forces; it follows that where the incident forces vary greatly within given areas, the alterations will be more numerous than in equal areas which are less-variously conditioned. This, too, proves to be the fact. Dr Hooker points out that the most uniform regions have the fewest species; while in the most multiform regions the species are the most numerous.
§ 139 . Let us consider next, how the hypothesis of evolution corresponds with the facts of distribution, not over different areas, but through different media. If all forms of organisms have descended from some priniordial simplest form, it follows that, since this primordial simplest form must have inhabited some one medium out of the several media which organisms now inhabit, the peopling of other media by its descendants, implies migration from one medium to others-implies adaptations to media quite unlike the original medium. To speak specifically-water being the medium in which the lowest living forms exist, it is implied that the earth and the air have been colonized from the water. Great difficulties appear to stand in the way of this assumption. Ridiculing those who contend for the uniserial development of organic forms, who have, indeed, laid themselves open to ridicule by their many untenable pro-
positions, Von Bear writeon"A fich, owimalers
the shore, deeires to take a walk, but finds his fins noolem They diminish in breadth for want of une, and itt the anme time elongate. This goee on with childsen and gromeral dren for a fow millions of years, and at last who can be aco tonished that the fins become feet P It is still mave sutuien that the fish in the meadow, finding no water, should gapo after air, thereby, in a like period of time develayns lungs; tho only difficalty being that in the moanwhile a fow generations must manage without breathing at all." Though, as thus presentod, the belief in a transition looke laughable; and though such derivation of terrestrial vertebrates by direct modification of the çimia typo, is untenuble; yot wo must not thercore conclude chat no migrations of the kind alleged can have taken plese The adage that "truth is otranger than fiotion," applices quito as much to Nature in general as to human lifo. Besides the fact that thore are cortain fish which actumlly do "take a walk" without any very obvious reason; and bocidee the fwot that sundry fish ramble about on land when impelted to do so by the drying-ap of the waters inhabited by them; there is the still more astounding fuct, that one kind of fish climbe trees. Few things seam more obviouly imponitims than that a water-breathing creature without officient limber chould ascend eight or tan foet up the trunk of a palum ; and yot the dnabas ecandens does as much. To previoos tentinonies on this point, Capt. Mitchell han reoentls added others. Such remarkable casee of temporary changee of media, will prepare us for conosiving how, undor opectal conditions, permanent changoe of mudia may have taken placo; and for concidoring how the dootrine of evolution is oloci duted by them.

Both marine organisms and freeh-water organiman, me many of thom lef from time to time partially or compleady without water ; and the creatures which show the power to change their media temporarily or parmencontly, are in very

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

orastaceans have their species which live occacionally, of almost entiraly, out of the watar: there is a kind of lobeter in the Mauritius which climbe treen; and there is the lambcrub of the Weat Indies, whick deserts the wea when it reeokee maturity, and ro-visits it only to epawn. Easing lhang bow there are many kinds of marine createres whee Inkent habitually expoese them to changes of media; how evten of the higher kinds eo circumstanced, ebow a considerable adaph ation to both media; and how thee amphibious kinds aro allied to kinds that are mainly or wholly terrectrial ; wo shall see that the migrations from one medium to another, which evolution pro-supposes, are by no means impraotionher With such evidence before us, the asmuxption that the dio tribution of the Vertebrata through media 00 divennt en mis and wator, may have boen gradually effected in some analogone manner, would not be altogether unwarrated, even Ind mo no clue to the procese. Wo ahall find, howorer, a tolerably distinct clue. Though rivers, and lulom, and peoin have no sonsible tidal variations, thoy have thenir simen fulls, regular and irregular, moderato and extrena Rinpulits in tropical olimatee, we see them annually full for a cortain number of months, and then dwindling away and dyent En $_{6}$ This drying up may reach various dagreen, and last for rarioee periods: it may g° to the extont only of producing a liquid mud, or it may reduce the mud to a hardened, framed colid: it may last for a day or two or for moncha. That is to say. aquatio forms which ure in one place ansiually sabjeot to a alight wunt of wator for a short time, are eloowhere mabjeot to greator wants for longer times: we havo gradatione of trancition, anabogon to thow which the tidee furniah. Nion it is well known that croatures inhabiting such watorn, heve in rarious degrees, powars of meoting thee continguaces The contained finh eithor bary thomoalres in the mud when the dry sonson comet, or ramble in mearch of other walars. This is proved by ovidonoo from India, Guinna, Bime, Coylon; and somo of thow fiah, as tho Arabae scarading aso
to the water now and then. Finally, if we ask under what conditions this metamorphosis of a watanbermimer indo air-breather completes iteolf, the anewer ionit cempiction it self at the time when tho shallow pools inhebited by the larver, are being dried up by the surmmer's sun. ${ }^{\circ}$

See, then, how significant are the frote whea thom boverim together. There are particular habitate in whiok eatrenis mo subject to changes of media. In such habitats exiat enimank having, in various degrees, the power to live in both medin, consequent on various phases of transitional orgmization. Near akin to thesc animale, there ase woreve thats, alur parlets their early lives in the water, acquiro moro completaly the structures fitting thom to live on land, to which they them migrate. Lastly, wo have clocely-allied creaturee like the Surinam toad and the terrestrial salumander, which, though thoy belong by their structures to the clase Amphibian, aro not amphibious in their habito-creaturee the larve of which do not paes their early liven in the water, and yet go throunh these same metamorphoses! Must we then eharke that ete distribution of kindred organisms through differeat melich presents an insurmountable difficulty? On the contrary. with facts like these before us, the evolution-hypotbeio supplies poesible intorpretations of many phenomena that are else unaccountable. Realixing the way in which suoh changeo of media are in some cases gradually impoeed by physicel conditions, and in other canes voluntarily cosmmenoed mal slowly increased in the manch attor food; wo shall bogia to underatand how, in the courno of ovolution, thore have arisca

 other rariotion in whioh ibey are all lloating; and octher rardetion is whict incy

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

weight than any other evidence. As it is, all we can do in it see whether such fragmentary evidence as remaing, is $000-$ gruous with the hypothesis.

Palzontology has shown that there is a "gemernl reletion between lapee of time and divergence of orgenio cherme" ($\$ 107$); and that " this divergence is comparatively alow and continuous, where there is continuity in the geological formations, but is sudden and comparatively wide, wherever there occurs a great break in the succession of stiata." Now thio is obviously what we should expect. The hypothecis implice structural changes that are not sudden but gredoal. Fimean where conformable strate indicate a continnowe recond, wo may expeot to find successions of forms only alightly difereat from one another; while we may rationally look for coationable contrasts between the groups of forms fosesilised in adjecent struta, where there is evidence of a great blank in the recoed.

The pernnanent disappearances of speciee, of genern, and of ondera, which wo saw to be a fuct tolerably-well eotablished, in aloo a fact for which the beliaf in evolution prepares on If later organic forms have in all cases deecended from earlier organio formas, and have diverged during their dowceat, both from their prototypee and from ono another; then is obviously follows, that such of them as beocme extinct at any epoch, will never ro-appear at a subeoquent opook ; sinco there can nover again arise a concurrence and succesaion of conditions, such as thoso under which oech particular type was evolved.
Though comparioons of ancient and modern orgmio surear prove that many types have percisted through enormoue periods of time, without undergoing great changes; it weo ahown that such comparieons do not disprove the oocurrence in organic forma, of changee great eaough to produce what are called differont typen. The resalt of inductive ioquiry wo saw to bo, that while a few modern higher typeo yield aigns of having been developed froun ancient lowe types; and while there aro many modern typee which man.
have been thas developed, though we are without evidence that they have heen so; yet that "any admissible hypothesis of progressive modification must be compatible with persisfience without progression through indefinite periods." Now theee results are quite congruous with the hypothesis of evolution. As rationally interpreted, evolution must in all cases be understood to result, directly or indirectly, from the incidence of forces. If there are no changes of conditions, entailing organic changes, organio changes are not to be expected. Only in organisms which fall under conditions, in conformity to which there arise additional modifications answering to additional needs, will there be that increased heterogeneity which characterizes higher forms. Hence, though the facts ui palmontology cannot be held to prove evolution. yet they are in harmony with it ; and some few of them yield it support.
§ 141. One general truth respecting distribution in Time, is, however, profoundly significant. If, insteed of contemplating the relutions among past forms of life taken by themselves, we contemplate the relations between them and the forms now existing; we find a connexion which is in perfect harmony with the belief in evolution, but quite irreconcilable with any other belief.

Note, first, how full of meaning is the close kinship that existe between the aggregate of organisms now living, and the aggregate of organisms which lived in the moot recent geologic times. In the lest-formed strata, nearly all the imbedded remains are thoee of species which still flourish. Strata a little older, contain a few foscils of species now extinct ; though, usually, species greatly resembling extant onee. Of the remains found in strata of still earlier date, the extinct apecies form a larger per centage ; and the differences between them and the allied species now living, are more markod. That is to say, the gradual change of organic types in Time, which we before naw is indicated by the geological record. is
equally indicated by the relation betwean axiating arganio types and organic types of the epook proceding ouer arie. The evidence completaly accords with the belive in a doment of present life from past life.

Doubrleen ach kinship is not incongruous with the doctrine of speocial um tions. It may be argued that the introduction, from time to time, of new species better fitted to the somewhat changed conditions of the Earth's sarface, would result in an appareas alliance between our living Flora and Fausin, and the Furm and Faunas that lataly lived. No one can deny it But me passing from the most general aspeot of the allinnce, to ite more special aspecta, we shall find thin interpretation ceme pletely negatived.

For beesides a close kinship between the aggrognto of sarviving forms and the aggregate of forms that have died oat in recent geologic times; there is a prouliar connexion \& like nature between present and past forms in ench fien geographical region. The instructive fnct bofore citad ex Mr Darwin, is the "wonderful relationship in the samo $000-$ tinent between the doed and the living." This rolationchip is not explained by the supposition that now eqpecins havo been at intervale supernaturally placod in eech henbitat, e the habitat became modified; since, as we saw, upecica are by no means uniformly found in the habitate to which they are beat adapted. It cannot be said that the marsupiels imbodded in recent Australian etrata, having become oxtinct because of unfitnese to some new external condition, the exieting maraupials were then specially created to fit the modified ea vironment; since sundry animals found elcowheres, os much more completely in harmony with thee new Australian conditions, that, when taken to Anotrolia, they rapidly extrude tho marsupiale. While, therefore, the aimilarity botweon tho existing Australian Fauna and tho Pauma which immediately preceded it over tho same area, in jut that which tho bolief in evolution leads us to expeet; is is a similarity which cannot be otherwise accounted ber.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

how is organtic evolution caused ?

f 143. Alrmady it has been nocessary to appak of the causes of organic evolution in general terms; and now we are propared for considering them specifically. The tank bafore us is to deduce the leading fuots of organic ovolution, from those same first principles which evolution at lergo conforms to.

Before attempting this, however, it will be instrective to glance at the causes of organic evolution that have beede from timo to time alloged.
§ 144. The theory that plants and animals of all kinds were gradually evolved, weemin to have been at first 200000 panied only by the ragucest conception of causo-or sutber, by no conception of cause properly 20 called, but only by the blank form of a conception. One of the eurlieat who in modorn tiracs (1735) contended that organiann are indefnituly modifiable, and that throagh their modificaticas thay have become adaptod to various modee of existescon wee Do Maillet But though Do Maillot suppoesd all living beings to havo arimen by a natural, continuous procema, be doce not appour to have had any definite iden of that wifict determines this proceras In 1794, in his Zoomamian Dr Darwin gave reamons (mandry of them ralid osen) fore bolioving that orgenised beinge of every tion, have do
coended from one, or a few, primordial germs; and along with some observable causes of modification, which he points out as aiding the developmental process, he apparently ascribes it, in part, to a tendency given to such germ or germs when created. He suggests the possibility "that $2 l l$ warm-blooded animals have arisen from one living filamert, which Thb Great First Causr endued with animality, with the power of acquiring new parts, attended with now propeusities, directed by irritations, sensations, volitions, and associations; and thus possessing the faculty of continuing to improve by its own inherent activity." In this passage we see the idea to be, that evolution is pre-determined by some intrinsic proclivity. "It is carious," says Mr Charles Darwin, "how largely my grandfather, Dr Erasmus Darwin, anticipated the orroneous grounds of opinion, and the views of Lamarck." One of the anticipations was this ascription of development to some inherent. tendency. To the "plan général de la nature, et sa marche uniforme dans ses opérations," Lamanck attributes "la progression évidente qui existe dans la composition de l'organisation des animaux;" and "la gradation régulière qu'ils derroient offrir dans la composition de leur organisution," he thinks is rendered irregular by secondary саияеs. Essentially the same in kind, though somewhat different in form, was the conception put forth in the Vestiges of Oreation; the author of which contends "that the several series of animated beings, from the simpleat and oldest up to the highest and most recent, are, under the providence of God, the results, first, of an impulse which has been imparted to the forms of life, advancing them, in definite times, by generation, through gradee of organization terminating in the highest dicotyledons and vertebrata; " and that the progreesion resulting from thooe impuloos, is modified by certain other causee. The broed general contrasts between lower and higher forms of life, are regarded by him as due to an innate aptitude to give birth to forma
of more perfect structures The lect to re-earier cinte this doctrine has been Prof. Owon; who aseerts "ite axiom of the continuous operation of creativo power, or al the ordained becoming of living thingra ${ }^{4}$ Thengh them highly-general expreasions do not suggeat any rery definis idea, yet they imply the belief that organio progreme in a rosult of some in-dwelling tendency to dovelop, expernatur ally impreseed on living mattor at the outeot-some evar auting constructive force, whioh, independently of other forces, moulds organisms into higher and highere formen

In whatever way it is formulatod, or by whatever language it is obecured, this asoription of organic evolution to mome aptitude naturally posessed by organisme, or miraculoumb imposed on them, is unphilosophioal. It is one of those explanations which explaine nothing \rightarrow shaping of ignorneto into the semblance of knowledge. The cause anigned in not a true causo-not a cause ascimilable to known carsco-not a cause that can be anywhere shown to proctece amelogne efficets. It is a cause unropresentable in thought: one of those illegitimate aymbolic conceptions which cannot by any mental process be elaborated into a real concoption. In brief, this assumption of a persistent formative power, inherent in organiams, and making them unfold into higher forms, is an assumption no more tenable than the ancerc tion of epocial croations: of which, indeed, it is but a modification; differing only by the fusion of separste unknown procesma into a continuous unknown procous.
f 145. Along with this intrinsic tendeacy to progrem cuppoeed to be primordially impreesed on them, Dr Durwia held that animals have a capecity for being modified by pro ceses which their own derime initiato. Ho apenter of powern an "excitod into action by the noceesitice of tbe croctures which ponces them, and on which thoir existonce depencle:" and moro epecrifically bo sage that "from their firct rudiment or primordiumen, to the ternination of that

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

widor knowlodge of the facte, it is eceentially the sasee a that of Dr Darwin; and along with the truth it containa, contains also the eame error more distinctly pronounced Merely noting that desires or wantes, acting directly oaly on the nervo-muscular system, can have no immediate influence on very many organs, as the viscora, or such external appendages as hair and feathers; and obsearving, further, that even some parts which belong to the apparatom of external action, such as the bones of the akull, cannot be made to grow by increase of function called forth by deciro; it will suffice to point out that the difficulty is not solved, bet simply slurred-over, when needs or wante are introdeced independent causes of evolution. True though it is, $2 e \mathrm{Dr}$ Darwin and Lamarck contend, that desiroe, by leadine to increased actions of motor organs, may induce further do velopments of such organs; and true as it probably in, thas the modifications hence arising, are transmissiblo to offipring: yet there remains the unanswered question- Whence do these desires originate? The transferrence of the cacciting pown from the exterior to the interior, as deecribed by Iamarch, begs the quartion. How comes there a wish to perform an action not before performed? Until some beneficial revalt inm boon felt from going through certain movementer, whet cea suggeet the execution of such movements? Every decise consists primarily of a mental representation of that which is deaired, and seoondarily excitee a mental representation of the actions by which it is attained; and any such meatal representations of the end and the meane, imply antocodeat exparience of tho end and antecedent use of the meane To assume that in the course of evolution these from time to time arose new kinds of actions dictated by now desirec, in simply to remoro the difficulty a stop back.
1146. Changes of external conditions are named by Dr Darwin, as causes of modifications in organimme. Amigning as oridence of original kinahip, that marked similarity of
type which exists among animals, he regards their devistions from one another, as cansed by differences in their modes of life: such deviations being directly mdaptive. Enumerating various appliances for procuring food, he says they all "seem to have been gradually produced during many generations by the perpetual endeavour of the creatures to supply the want of food, and to have been delivered to their posterity with constant improvement of them for the purposes required." And the creatures possessing these various appliances, are considered as having been rendered unlike, by seeking for food in unlike ways. As illustrating the alterations wrought by changed circumstancee, he names the acquired characters of domestic animala Lamarck has elaborated the same view in detail: using for the purpose, with great ingenuity, his axtensive knowlodge of the animal kingdom. From a passage in the Avertiscemont, it would at first sight seem, that he looks apon direct adaptation to new conditions, as the chief cause of evolution. He says-"Je regardai comme certain que le mouvement den fluides dans l'interieur des animaux, mouvement qui c'eat progreseivement accéléré avec la composition plus grande de l'organisation; et que l'influence des circonstances nouvelles, a mesure que les animaux s'y exposèrent en se répandant dans tous les lieux habitablea, furent lee deux causes generales qui ont amené les différens animaux à l'état où nous les voyons actuellement." But elsewhere, the view he expresses appears decidodly different from this. He asserts that "dans sa marche, la nnture a commencé, et recommence encore tous les jours, par former les corps organisés les plus simples;" and that "les promièresébauchoe de l'animal et du végétul étant formées dans les lieux et les circonstances convensbles, les facultés d'une vie commençante et d'un mouvement organique établi, ont nécessairement développé pea à peu les organes, et qu'avec le temps alles les ont diversifice ainsi que. les parties." And then, further on, he puts in italics thin propositicn:-" La progression dane la composition do l'or-

 tation, et par cells des habiluilee confredika." phras and sundry other paseages joined with his geocral echomeo of olemification, make it clear that I amarek concoivad edaptive modification to be, not the cause of pmgremion, but the cause of irregularities in progremion. The inherent temadency which organiams have, to devolop into more perfect forms, would, sccarding to him, recult in a uniform eariou of forms; bat varieties in their conditions work divergencen of structure, which break up the series into groups: groupe which he neverthelem places in uni-aerial order, and raymile us otill substantially composing an moending necomien.
147. These speculations, crude no thoy mary be considered, show much sagacity in their respective authorn, and havo done good eervice. Without embodying the truth in a dofinite shape, they contain adumbrations of it. Not direotly. but by succowive approximatione, do mankind reach correct concluaions ; and thoso who first think in the right directica, loose as may be their reasonings, and wide of the mark m their inforences may be, giold indinpensable aid by fruming provisional conceptions, and giving a bent to inquiny.

Oontrastod with tho dogmes of his age, the idee of De_{0} Maillet was a great advanco. Beforo it can bo ascertained how organised beinga have been gradually evolved, these must be reeched the conviction that they have been gradoally ovolrod; and this conviction bo reached. His wild notions an to the way in which natural agenciee noted in the production of plante and animala, must not make ua forget the merit of his intuition that animals and plaste nowe produood by natural canceea.

In Dr Jarwin's briof expanition, the boliof in a progremivo gearsis of orgenimat, is joinod with an interprotation having considorablo definitonemen and coherence. In tho spaco of tmp pagee be not ariy iodicalos sorroul of the leading clewos of fecte which napid

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

the process of evolution of organisms, is affilisted on the process of evolution in general, can it be truly said to be explained. The thing required is to show that its various results are corollaries from first principles. We have to reconcile the facts with the universal laws of the re-distribution of mattar and motion.

CHAPTER LK.

EXTERNAL FACTORS.

§ 148. When illustrating the rhythm of motion (First Principles, § 94) it was pointed out that besides the daily and annual alternations in the quantities of light and heat which any portion of the Earth's surface receives from the Sun, there are alternations which require immensely-greater periods to complete. Reference was made to the fact, that "every planet, during a certain long period, presents more of its northern than of its southern hemisphere to the Sun at the time of its nearest approach to him; and then again, during a like period, presents more of its southern hemisphere than of its northern-a recurring co-incidence which, though causing in some planets no sensible alterations of climate, involves in the case of the Earth an epoch of 21,000 years, during which cach hemisphere goes through a cycle of temperate seasons, and seasons that are extreme in their heat and cold." Further, it was pointed out that there is a variation of this variation. The slow rhythm of temperate and intemperate climates, \lrcorner which takes 21,000 years to complete, itself undergoes exaggeration and mitigation, during epochs that are far longer. The Earth's orbit alowly alters in form : now approximating to a circle; and now becoming more eccentric. During the period at which the Earth's orbit has least eccentricity, the temperate and intemperate climates which repeat their cycle in 21.000 years, are
severally leses temperate and lees intecuperates tima wime
 reached its extreme of eccentricity.

Thas, besides those duily variations in the quantitios of light and heat received by organisms, and respondod to by variations in their functions; and besides the annaal variatione in the quantities of light and heat which organisme reocive, and similarly respond to by variations in their functivas; there are variations that severally complete themetres in 21,000 years and in some millions of youre-variationa to which there inust also be a response in the cbanged functione of organisms. The whole vegetal and animal kingtomes, are subject to a quadruply-compounded rhethm in the incidence of the forces on which life primarily depeede-a rhythm so involved in its slow working round, thet at no time during one of these vast epocha, can the incidence of these forces be exactly the same as at any other time.

To the direct effiecta so producod on orgemisms, have to be added much more important indiroct effecta Changes of distribution must result. Certain sedistribatione are occasioned even by the annual variations in tho quantitios of the solar raye reeeived by each part of the Earth's curficea The migrations of birds thus caused, are familiar. So too are the migrations of certain fisheo: in eome caces from cose part of the sea to enother; and in some cases from salt water to fresh water. Now just as the yearly changes in the amounts of light and heat falling on each locality, yearly usteod and reatrict the habitate of many organiams that are able to move about with somo rapidity ; so must theoe alternationa of temperate and intemperate climates produce extariome and restrictions of habitats. These extensions and semeis tions, though alow, will bo universal-will affoct tho habienti of etationary orgenimms as woll as those of locomotive oncer For if during an astronumic eren there is going on at any limit to a plant's babitat, a diminution of tho. winter's oold or summer's heat, which had before etopped ite sprend al

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Earth, to sets of incident forces which differ from previous sets, both by changes in the proportions of the factors, and, occasionally, by the addition of new factors.
§ 150. Variations in the astronomical conditions joined with variations in the geological conditions, bring about variations in the meteorological conditions. Those extremely slow alternations of elevation and subsidence, which there is rcason to believe take place over immense areas, here producing a continent where once there was a fathomless ocean, and there causing wide seas to spread where in a long past epoch there stood snow-capped mountains, gradually work great atmospheric changes. While yet the highest parts of an emerging surface of the Earth's crust, exist as a cluster of islands, the plants and animals which in course of time migrate to them, have climates that are peculiar to small tracts of land surrounded by large tracts of water. As, by successive upheavals, greater areas are exposed, there begin to arise sensible contrasts between the states of their peripheral parts and their central parts: the sea and land breezes, which daily moderate the extremes of temperature near the shores, cease to affect the interiors; and the interiors, less qualified too in their heat and cold by such ocean-currents as bathe the shores, acquire more decidedly the characters due to their latitudes. Along with the further elevations which unite the members of the archipelago into a continent, there come new meteorologic changes, as well as exacerbations of the old. The winds, which were comparatively uniform in their directions and periods when only islands existed, grow involved in their distribution, and widely-different in different parts of the continent. The quantities of rain which they discharge and of moisture which they absorb, vary everywhere according to the proximity to the sea and to surfaces of land having special characters.
Other complications result from variations of height above the sea: elevation producing a decrease of heat and conse-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

on the average, the organic environments of organisms have boen increaring in heterogeneity. As the number of speciee with which each species is direotly or indireetly impliceted, multiplies, each species is oftener subject to changes in the organic actions which influence it. Theeo more frequent changes severally grow more involved. And tho corrosponding reactions affect larger Floras and Faoman, in waye iucreasingly complex and variod.
§ 152. When the astronomic, geologio, moteorologic, and organic agencies that are at work on each speciee of orgenism, are contemplated as becoming soverally more complicated in themselves, and at the same time as co-operating in ways that are always more or leas new; it will be eocn that throughout all time, there has been an exposure of orgenimas to endless successions of modifying causes which gradmilly acquire an intricacy that is scarcely conocivabla Every kind of plant and animal may be regarded as for ever paoeing into a new environment-as perpetually having ita relutions to external circumstancos altered, either by their ohanges with reopect to it when it remains stationary, or by ita changes with respect to them when it migrates, or by both.

Yet a further cause of progrescive alteration and complication in the incident forcee, exista. All other thinge continuing the eame, orory additional fuculty by whioh an organiom is brought into relation with external objeoten, an well as every improvement in such faculty, becomes a meens of subjecting the organiem to a greater numbor and variedy of external stimuli, and to new combinations of external atimnli. So that eech advanco in complexity of organization, itself beoomes an addod eource of complexity in tho incidence of extarnal forces.

Once more, every increane in the locomotive powers of animale, incresees both the multiplicity and the multiformity of the actions of things upon thom, and of their reactions
upon things. Doubling a creature's activity, quadruples the area that comes within the range of its excursions: thus augmenting in number and heterogeneity, the external agencies which act on it during any given interval.

By compounding the actions of these several orders of factors, there is produced a geometric progression of changes, increasing with immense rapidity. And there goes on on equally rapid increase in the frequency with which the combinations of the actions are altered, snd the intricacies of their co-operations enhanced.

CHAPTER Σ

DNTERNAL FACTORS

8 153. We saw at the outeot ($8810-16$), that organie matter is built np of inolecules so extromoly unotable, that the slightest variation in their conditions destroye their equiliivium; and causes them either to aseumo altered structures or to decompose. But a subetanco which in bein all others changeable by the actions and reections of the forces likerated from instant to instant within ite own meea, must be a substance that is boyond all others changeable by the forces acting on it from withoot. If their composition fits organic aggregates for undergoing with spociul facility and rapidity those re-distributions of maner and motion whence result individual organization and bites then their composition must make them similarly apt to undergo those permanent re-distributione of matter and neotion which are expremed by ahangee of otructure, in correepondence with permanent re-distributions of mather and motion in their environmenta.

Already in First Principlea, when considering the phonomena of Evolution in general, the loading charucturs and canses of those changes which constitute organio ovoluticers werv briefly treced. Under each of the derivative lawe of forco to which the pasagge from an incotieranh retine tho bounogenety to a coherent delinito helerogencity, confot wero given illustrations drawn from the noutamorphoom of

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

tinue through ancceadive individuala. Clivea a maies of on ganisms, each of which is developed from a portion of a preceding organism, and the quection in, whether, atior exposure of the series for a million years to changed incident forces, one of its membera will be the same as though the incident forces had only just changed. To ay that it will, is implicitly to deny the persistence of force. In roletion to any cause of divergence, the whole series of exch organiems may be considered as fused together into a contimuemelyexisting organism; and when so considered, it bocomee manifest that a continuously-acting cause will go on working a continuously-increasing effect, until some countersoting cance prevents any further effect.

But now if any primordial organic aggregste, muat in inn? and through its descendants, gravitate from amiornity 50 . multirormity, in obedience to tho more or lom mantione forces acting on it; what must happen if thees manither forces are themselves ever undergoing sow variations complications? Clearly the process, ever-adrancing townent a Temporary Tunit but ever having ite limit remored, mant go on unceasingly. On those structural changes wrought in the once homogeneous aggregato by an original set of incident furces, will be superpoeed further changee wroeghts by a modified eet of incident forces; and so on throughoat all time. Omitting for the present thoee circumetroces which check and qualify its consequences, the instability of the homogeneous must be recoknized an oversecting canse of organic evolation, as of all other evolution.
While it followe that every organism, considered as an iodividual and as one of a serries, tende thas to pase into a more heterogeneoue ntate; it aloo follows that overy species, considered as an aggregate of individuals, tends to do the like Throughout the arce it inhabits, the conditions can never be aboolutoly uniform: ite membere must, in different parte of ite arces, be axposed to different sets of incident forcen. Still more docided must this difference of expoenro be whea
its members spread into othcr habitate. Those expansive and repressive energies which set to each species a limit that perpetually oecillates from side to side of a certain mean, are, as we lately saw, frequently changed by now combinations of the external factore-astronomic, geologie, meteorologic, and organic. Hence there from time to time arise lines of diminished resistance, along which the species flows into new localities. Such portions of the species as thus migrate, are subject to circumstances markedly contrasted with its average circumstancos. And from multiformity of the circumstances, must come multiformity of the species.

Thus the law of the instability of the homogeneous, has here a three-fold corollary. As interpreted in connexion with the ever-progreesing, ever-complicating changes in external factors, it brings us to the conclusion that there must be a prevailing tendency towards greater heterogeneity in all kinds of organisms, considered both individually and in succeseave generations; as well as in each assemblage of organisms constituting a species; and, by consequence, in each genus, order, and class
§ 155. When considering the causes of evolution in general, we further saw (First Principles, \& 116), that the multiplication of effects aids continually to increase that heterogeneity into which homogeneity inevitably lapses. It was pointed out that since " the eeveral parts of an aggregate are differently modified by any incident force;" and that since " by the reactions of the differently modified parts the incident force itself must be divided into differently modified parts ; " it follows that "each differentiated division of the aggregate thus becomes a centre from which a differentiated division of the original force is again diffuecd. And since unlike forces must produce unlike results, each of these differentiated forces must produce, throughout the aggregate, a further series of differcntiotions." And to this it was added, that in proportion
the heterogeneity increases, the complimatione minder turas this multiplication of effects grow move martalig.ino the more strongly contracted the parts of sa exprexto become, the more different must bo thair sumicen ypa incident forces, and the more unlite mpunt be the ecocuiners sots of effecte which theoe modified incident tormenitims and since every increase in the number of arilita pate increases the numbor of such differcentintod incident farces, and such secondary sets of effoots.
How this multiplication of effeots conrepires with the 近 stability of the homogeneous, to work an increasing malti-
 and the foregoing pagee contain further incidratel illuime.
 that a change in one function muet act and rear ever-complicating perturbations on the reat; asd liak eurnoally, all parts of the organism must be modirn 3 cict etates. Suppose that the head of a memmal beopmen reas much more weighty-what must bo the indirect rament The muscles of the neck are put to greater exentionais. its vertubro hnve to bear additional tonsione and premens caused both by the increased weight of the hoad, and the atronger contractions of the muscles that support and meopeth hoad. These muscles also afficet thicir own attachmoentas avinh of the doreal apinee have augroented otrains pat an ames: and the vertebre to which they are fixed, are moere movily taxed. Further, this heuvior heed and the moce smaing neck it necoasitatos, requiro a atronger fuleruma : the whate thoracio arch, and the fore limbe which support it, ane alb ject to greator continuous strces and more riolent cocminmal ahockn. And the required atrengthening of the fase-quarture cunnot take place, without the contre of gravity buies changed, and the hind limbe baing differently reactud upem during locomotion. Any one who comparce the outitan of the bison with that of ite congoner, the ox, will elvery see bow profoundly a boavior houd affecta the eatios anmant.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

cause of increasing multiformity. The lapee of a specien iato divergent varieties, initiates fresh comblinetions of freve tending to work further divergences. The now vainelin compete with the parent species in new ways; and so add new elements to its circumstances. They modify momewhat the conditions of other species existing in their habitat, or into whose habitat they have spread; and the modificationa wrought in such other species, become additional sources of influence. The Flora and Fauna of every region are united by their entangled relations into a whole, of which no part can be affected without affecting the reat. Femoc, cene rife ferentiation in a local assemblage of opeciea, becomes teso cause of further differentiations in such accemblage.
§ 150. One of the universal principles to which we an that the redistribution of matter and motion conformas, in that in any aggregate made up of mixed unita, incident forces produce segregation - oeparato unlike unite and anio like units; and it was shown that the inareacing integration and definiteness which characterizes eech part of en evolvias organic aggregate, as of every other aggrogato, resalte frem this (Firat Principlos, \& 126). It remains here to bo pointed out, that whilo the actions and reactions going oo between organiems and their ever-changing enviroameath, add to the beterogeneity of organic atructurea, they aloo give to the heterogencity this growing distinotnese Ab Girst sight the reverse might be inferred. It might be argeed that any new set of effecte wrought in an organimo by 0000 new set of external forcee, must tend more or lom to obliterato the effects provioualy wrought-muat produce conforion or indefiniteness. A little concideration, however, will dimapate this imprecion.

Doubtloss the condition under which alone inereming do finitences of etructuro can be acquired by any part oden en ganimm, either in an individuat or in sucreaty pencuit for theit such part shall be expoed to some sot of rolesubly
stant forces; and doubtless, continual change of circumstances interferes with this. But the interference can never be conBiderable. For the pre-existing structure of an organism prorents it from living under any nert conditions except euch as are congruous with the fundomental characters of its organiza-tion-such as subject its essential organs to actions substantially the same as before. Great changes must kill it. Hence, it can continuously expose itself and its descendants, only to those moderate changes which do not destroy the general harmony between the aggregate of incident forces and the aggregate of its functions. That is, it must remain under influences calculated to make greater the definitenees of the chief differentiations already produced. If, for example, we set out with an animal in which a rudimentary vertebral column with its attached muscular system has been extablished; it is clear that the mechanical arrangoments have become thereby so far determined, that subsequent modifications are extremely likely, if not certain, to be consistent with the production of movement by the action of muscles on a flexible central axis. Hence, there will continue a general similarity in the play of forces to which the flexible central axis is subject; and so, notwithstanding the metamorphoses which the vertebrate type undergoes, there will be a maintenance of conditions favourable to increasing definiteness and integration of the vertebral column. Moreover, this maintenanoe of such conditions becomes secure in proportion as organization advances. Each further comnplexity of structure, implying some further complexity in the relations between an organism and its environment, must tend to specialize the actions and reactions between it and its environment-must tend to increase the stringency with which it is restrained within such environments as admit of those special actions and reactions for which its structure fits it ; that is, must furlher guarantee the continuance of those actions and reactions to which its essential organs reepond, and therefore the continuance of the segregating priocem.

How in each speciea, considened as an agzregate of individualo, there must arise stronger and stroges cemente between those divergent varieties which result from the instability of the homogeneous and the multiplication α effects, needs only de brielly indicated. It has alreedy been shown (First Prinriples, § 126), that in cooformity to the universal law that mixed units are engregetad by tho incident forces, there are produced increasingly-defmite distinctions among varieties, wherever there occur defmitelydistinguished sets of conditions to whioh the vacimine are 20 apeotively subject.
> § 157. Probably in the minds of some, the rending of this chapter has been accompanied by a ruaning commentary, to the effect that the argument proves too moch. The appereat implication is, that the passage from an indefinita facolorent homogeneity to a definite, coherent heterogmecity in organic aggregatee, must have beea going on anivermlly; whereas we find that in many cases there has been pernintence without progression. Thie apparent implication, how ever, is not a real one.

For though every environment on the Earth's marfoce andergoes changos; and though usually the orgeaimen which each environment containg, caunot emape certain resulting new influonces; yot occasionally such new influences are cecaped, by the eurvival of apecice in the unahanged parts of their habitata, or by their apread into neighbouring habitates which the chango hae rendered like their original habitata, or by both. Any alteration in the tamperature of a climate or ite degree of humidity, in unlikely to affect aimultaneously the whole area occupied by e opecies; and farther, it can ccarcely finil to happen that the eddition or subtraction of heat or mointure, will give to a part of some adjacent arce, a climate like to that to which the apecies has boen habituated. If, agrin, tho circumatracen of a spocies aro modified by the intrucion of come forcige

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

distinct complexity. Unless we deny the persistecce f force, we must admit that the gravitation of an organian'e structure from an indefinitoly homogencous to a defimitaly heterogeneous state, must be cumpintivain recen: .an ar tions, if the forces causing it continue to act. And faer the like reasons, the increasing assombligo of individumis, ciefing from a common stook, is also liable to lose its origional uniformity; and, in successive generationa, to grow moro pronounced in its multiformity.

These changea which rould pon on to hat e cer merativis small extent were organisms expoed to conetant cecterinal conditions, are kept up by tho continual changel in eqteomel conditions, produced by astronomio, geologra, meteordop and organio agencies: the average result being, that ca previous complications of structure wrought by peovione incident fonces, new complications are continully ermeren by now incident forces. And hence simultancoudy erime increasing heterogeneity in the struoturee of individuala, in the structures of species, and in the structures of the Eiarth's Flora and Fauna.

But while, in very many or in moot cesea, the overchanging incidence of forces is ever adding to the complacity of organisma, and to the complexity of the orgenic world un a whole; it does this only where its action cannot be cluded. And since, by migration, it is possible for species to keop themselvee under conditions that are tolembly constuat; there must be a proportion of cases in which greater hoterogencity of atrueture is not producod.

Uniting three throe propositiond, wo are brought to a onn clusion which, eo far an it goes, appears to bo in harroony with the facts. We find prompension to result, not frem a upecial, inherent tendoncy of living bodies, but from a scouenel average effect of their relations to surrounding arocen Whilo we are not called on to suppose that there exines organitums any primordial impulso which maken tbe.iner linualy unfold into more hotorogencous forma i we en

INTERNAL FACTORS.

431
that a liability to be unfolded arises from the actions and reactions between organisms and their Huctuating environments. And we see that the orictoncodevelopment, presupposes the non-occurrence of development where this fluctuation of actions and reactions does not come into play.

To show, however, that there must arise a certain genergal tendency to the production of more heterogeneous aggregates, is not sufficient. It is quite conceivable that aggregates should be rendered more heterogeneous by changing incident forces, without having given to them that peculiar form of heterogeneity required for carrying on the functions of life. Hence it remains now to inquire, how the production and maintenance of this peculiar form of heterogeneity is insured.

CRAPTER 1 II.

DIRECT EQUINTBRATIOA.

8 159. Every chanfo is of necessity towards a balance of fouver; and of necessity can never cease untila a balanco of forces is reached. When treating of equilibration under its general aspects (First Principles, Part II., Chap. xvi.), wo eaw that in every aggregate having compound movemsenty there tends continually to be established a moring equitibriam: since any unequilibrated force to which such an aggregato is subject, if not of a kind to overthrow the aggrogate altogother, must continue modifying its state until an equilibrium is brought about. And wo saw that the atructure simultaneously reached must be "one presenting an arrangoment of forces that counterbalance all the forces to which the aggregate is subject;" since, "so long as there nemaide a rexidual force in any direction-bo it axcees of a forco exercised by the aggregate on its environment, or of a forco exercised by its environment on the aggrogate, equilibrium does not exist; and therefore the ro-distribution of matter must continue."

It in cesential that this truth ahould here bo fully underatood; and to the end of insuring a clear comprabension of it, some ro-illustration is desirable. The caso of the Solar Systern will beat serve our purpose. An anoemblage of bodicea each of which has ite simple and compound motiona, that coverally alternate betwean two extremee, and the whole of

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

fimm withoot, a supply of force to replace the fercem which it expends; but this continual giviag to ita parta a new momentom, to make up for the momentum contirmally loet, does not interfere with the carrying on of actions and reactions like thooe just deacribed. Heos, on befonit wo heve a definitely-arranged aggrogate of parta, which we all organs, having their dofinitoly-ectablished satione mad zeractions, which we call funotions. Theoe rhythmicel senime or functions, and the various compound ther from their combinations, are in such ediutenant en to baimen the actions to which the organiem is enpiect: exase he erostant or periodic genesia of forgen whioh, in their Fith umounte, and directions, suffice to antagmina sha sump which the organism has constantly or periodically to hered If then there exists this state of moning equibitition itiz a definite sot of internal actions, exposed to a definito eot of erternal actions; what must result if any of the external actions are changed ? Of course there is no longer an equilibriume. Some force which the organim habitually genereteen is too great or too amall to balance some incidont forco; and there arises a residuary force exertod by the envinommal on the organiem, or by tho organism on the envirooment. This reviduary forco-this unbalancod forco, of nocemity expeenth iteolf in producing mome change of state in tho organime. Acting directly on some organ and modifying ita function, it indiroctly modifios dependent funotions, and remothy influences all the functions, As we have alreedy seen (${ }^{(6)} 68,69$), if this now force is permenent, its effecte muat be gradually diffused throughout the entire system; until it Las come to be equilibrated in working thoeo structaral soo arrangenonts which produce an oxsotly counterbalancions force.

Tho bearing of this ganoral truth on the quoction we are now dealing wilh, is obvions. Those modifications upon modificalions, which the unceasing matations of thoir cosviroumunta have bona all along gemarating in organimes,
have been in each case modifications involved by the establishment of a new balance with the new combination of conditions. In every species throughout all grologic time, there has been perpetually going on a rectification of the equilibrium, that has been perpetually disturbed by the alteration of surrounding circumstances; and every further Leterogeneity has been the addition of a structural change entailed by a new equilibration, to the structural changes entailed by previous equilibrations. There can be no other ultimate interpretation of the matter, since change can hare no other goal. Any fresh force brought to bear on an aggregate in a state of moving equilibrium, must do one of two things: it must either overthrow the moving equilibrium altogether, or it must alter without overthrowing it; and the alteration must end in the establishment of a new moving equilibrium. Hence in organisms, death or restormfion of the physiological balanoe, are the only alternativea

This equilibration between the functions of an organism and the actions in its environment, may be either direct or indirect. The new incident force may either immediately call forth some counteracting force, and its concomitant structural change ; or it may be eventually balancod by some otherwise-produced change of function and struoture. These two proceeses of equilibration are quite distinct, and must be separately dealt with. We will devote this chapter to the first of them.
§ 160. Direct equilibration is that procoes corrently known as adaptation. Wo have already seen (Part II., Chap. V.), thet indinidual organiams become modified when placed in new conditions of life-mo modified as to re-adjuet the powers to the requirements; and though there is great difficanty in disentangling the evidence, we found reason for thinking (8 82) that structural changes thus caused by functional changes are inherited. In the last chaptar, it was argued that if, instead of the suocession of individunin
constituting a species, there were a condinucmivnaciming individual, any such functioual and structural divergemce as we soe produced by a new incident force, would neomerily go on increasing until the new incident force was counterpoised; and that the replacing of a continuoualy-eriating individual by a succession of individuals, each formed out of the modifiod substanco of its prodecosesor, will not preveat the like effect from being produced-the perrietmee of theo negativing any other inforence. Here we further find, ant this limit towards which any such organic chango adraseen, in the species as in the individual, is a new moring equis libriam adjusted to the new arrangement of axtornal forcee.
But now, what are the conditions under whiah elomen tivent equilibration cun occur? Are all the modificatione that eerve to ro-fit organims to their environmento, directly adaptive modifications? And if otherwise, which are tho direetly adaptive and which are not f How are we to diatinguich between them 9

Manifestly, for any moring equilibrium to be gradually altered, it is noedful, fret, that some force shall operale upoo it ; and, second, that the force ahall not be such as to overthrow it. If in the environment there existe somes agreoy that would act adrantageovealy on an organism were the organisen a little modified, but which does not hot on it in the aboence of the required modification; it is olcar that this apency cannot itaelf tend to produce the modification. On the other hand, if the external agency be of such kind, that individuals of the species whenever affectod by ith are cither killed or so injured that the production of vigorous offipring is mach interfered with, there cannot bo directly wrought in tho epecico, any ouch alteration as will fit it to cope with this axternal agenoy. The ouly new incideat forcee which can work the changee of function and etructure requised to bring any animal or plant into equilibrium with themen, ano moh incidont forcou an operate on this animal or plants cither continuoualy or frequently. Thoy zunat bo coppebte

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

between the actions in the organism and the actions in ite onvironment; sooing that all othor thinge smanninat the same, if these defences were aboent, the dostruction by herbivorous animals would be so increased, that the nomber of young plants annually produced would not suffice, as it now does, to balance the mortality, and the species would therofore disappear. But these dafensive applimmoes, thongh they sid in maintaining the balance botweon iznere and ontre actions, cannot have been directly called forth by the ounere actions which they serve to neutralize; for thee outer actions do not continuously affect the functions of the plane even in a general way, still lees in the apecial way required Suppose a spocics of nottle bare of poison-haires to be habitually caten by some manmal intruding on ita hebitat; the agency of this mammal would have no direct tandency to develop poison-hairs in the plant; since the individuale devoured could not bequcath changoe of structures, evea were the actions of a kind to produce them; and ainoe the individuals that perpetuated themselves, would be those on which the new incident force had not fallen. Asother class of orguns similarly circumstancod, aro those of reproduction. Like the organs of dafence, theme art moft during the life of the individual plant, variably exercised by variable external actions; and therefore do not fulfll thowo conditions under which otructural changee may be directly caused by changee in the environment. The generative apparatus containod in every flower, acte only once during its existenoe; and even then, the parts subeerve their ende in a passive rather than an active way. Functionally-produced modifications are therofore out of the quection. If a plant's anthers are so placed, that the innoot which moos commonly frequente ite flowers, is sure to corno in contact with the pollon, and to fertilize with it othor flowere of the mame aptcios; and if this insect, dwindling away or disappoaring from the locality, leaves behind no insects that bave such olappos and habits as causo them to do the came
thing efficiently, but only some which do it inefficiently; it is clear that the change of its conditions, has no immediate tendency to work in the plant any such structural change as shall bring about a new balance with its conditions. For the anthers, which, even when they discharge their functions, do it simply by standing in the way of the insect, are, under the supposed circumstances, left untouched by the insect; and this remaining untouched, cannot have the effect of so modifying the stamens as to bring the anthers into a position to be touched by some other insect. Only those individuals whoseparts of fructification so far differed from the average form of the species, that some other insect could serve them as pollen-carrier, would be sufficiently prolific to have good chances of perpetuating themselves. And on their progeny, inheriting the deviation, there would act no external force directly calculated to make the deviation greater, and the adaptation more complete; since the new circumstances to which re-adaptation is required, are such as do not in the least alter the equilibrium of functions constituting the life of the individual plant.
§ 162. Among animals, adaptation by direct equilibration is similarly traceable, wherever, during the life of the individual, an external change generates some constant or repeated change of function. This is conspicuously the case with such parts of an animal as are immediately exposed to diffused influences, like those of climate, and with such parts of an animal as are occupied in its mechanical actions on the environment. Of the one class of cases, the darkening or lightening of the skin, that follows exposure to greater or less heat, may be taken as an instance; and with the othos class of cases, we are made familiar by the increase and decreuse which use and disuse cause in the organs of motion and manipulation. It is needless here to exemplify these: they wers treated of in the Second Part of this work.
But in animals, as in plants, there are many indispensable
offices fulfillea by parts, between which and chereatermatucin: ditions they respond to, there is no such action and rivetion) as can directly produce an equilibrium. This is respocrally manifest with dermal appendages. Some grognid, purhapar exists for the conclusion that the greater or lese developmecit of hairs, is in part immediately due to increase or decrcase of demand on their passive function, as non-conductors of ficats but be this as it may, it is imposible that thare can oxict any such cause for those immense dovelopments of hairs whici we see in the quills of the porcupine, or thowe coruplex dovelopments of them known as feathers. Such an cuaticlica asmour as is worn by the Lepidosteven, is inexplicable as a direot result of any functionally-worked ehange. For purposes of defence, such an armour is as needful, or more:needitul fors hosts of other fishes; and did it result from any diroctures section of the organism against any offensive notione it wan subject to, there seems no reason why other fishes should not have developed similar protective coveringe, $\triangle \cdot \boldsymbol{O R}$ sundry reproductive appliances, the like may be stid. That sucretion of an egg-shell round the substance of ain egge in the oviduct of a bird, is quite inexplicable as a consequenco of some functionally-wrought modification of strueture, in mediately caused by same modification of external neons ditiona. The cod fulfilled by the egg-shell, is that of protecting the contained mass against certain slight pressurios. and collisiong, to which it is liable during incubation. How. by any process of direct equilibration, could it come to lavio the required thickness f or, indood, how could it come to oxist at all? Sappose this proteotive envelope to be too week, so that some of the egge a bird laye ave broken or areckod. In the first pleco, the breakaget or crackinge are actinne of a kind which cannot react on the maternal orgenism, in anch way an to causo the necretion of thicker whollo for the future: to suppose that they ean, is to suppose thit the bird understands the cause of the evil, and that this seoretion of thickor or thingre sholle can be controlled by ite

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

§ 163. The conclusion at which we arrive in then, then there go on in all organisme, cortain ahunger of fanotion and structure that aro directly consequent on changes in the incident forces-inner changes by which the outer changee are balanoed, and the equilibriam restored. Soch se-equilibrations, whiah are often conspicuoualy exhibited in individuals, we have reason to believe continue in anccemive generations; until they are completed by the arrivel at stractures fitted to the modified conditione But, at the same time, we soe that the modilied conditions to which aps ganisms may be adapted by dirvet equilibration, are coorditions of cortain clasess only. That a now external setion may be met by a new internal ection, it is noodfal that is shall either continuously or frequently be borne by the irdividuals of the epecies, without killing or seriously injaring them; and shall act in such way as to affoet thoir functiona And we find on examination, that many of the caritroning ahangees to which organisms havo to be adjuteod, are not of these kinds : being ohanges which oither do not inmoediataly affect the functions at all, or elwaffeot them in ways that prove fatal.

Hence there must be at work some other procem, whilh equilibratee the actions of organiame with the sotions they are expoeed to. Plants and animals that continue to exia, are neocssarily plants and animals whow powere balenen the powers that act on them; and as their enviroameats changa, the changee which plants and animale underge, munt neccesemrily be ohanges towarde a ro-establiskmeat of the balance. Besidos direct equilibration, there munt therefore be an indireot equilibration. How thin goee on wo beve now u inguina.

CHAPTER XII.

INDIRECT EQULIBRATION.

8. 164. Bestides those perturbations produced in the moving equilibrium of any organism by special disturbing forces, there are ever going on many other perturbations-some which are the still-reverberating effects of disturbing forces previously experienced by the individual, and others which are the still-reverberating effects of disturbing forces experienced by ancestral individuals; and the multiplied deviations of function so caused, imply multiplied deviations of structure. In § 155 there was re-illustrated the truth, set forth at length when treating of Adaptation (§ 69), that an organism in a state of moving equilibrium, cannot have extra function thrown on any organ, and extra growth produced in such organ, without there being entailed correlative changes throughout all other functions, and eventually throughout all other organs. And when treating of Variation ($\$ 90$), we saw that individuals which have been made, by their different circumstances, to deviate functionally and structurally from the average type in different directions, will bequeath to their joint offspring, compound perturbations of function and compound deviations of structure, endlessly raried in their kinds and amounts. That is to say, besides the primary perturbations and deviations directly caused in organisms by altered actions in their environments, there are ever being indirectly caused, secondary and tertiary per-
turbations and deviations, which, when compoanded with one another from generation to genoration, work fimenmento slight modifications in the moving equilibria and corroletive structures throughout the speciea.
Now if the individuals of a species are thus necomarily made unlike, in countloss waye and dogreos-if the comptinated sets of rhythms which we call their funotiones ebough cimilar in their general charaotors, are dissimilar in their details-if in one individual the amount of action in a par ticular direction is greater than in any other individual, or if here a peculiar combination gives a resulting forco which is not found elsewhere; then, among all the individuals, weve will be less liable than others to have their equitibria overthrown by a particular incident force, provioualy ruarupas enced. Unlese the change in the environment is of 80 riolent a kind as to be universally futal to the spocioos, it meat affect more or less differently the slightly different movinh equilibria which the members of the species prevent. It cannot bat happen that some will be more stable than othens, when exposed to this new or altered factor. That is to cuy, it cannot but happen that those individuals whoes then are most out of equilibrium with the modified efres mas extornal forces, will be those to die; and that thoee will timo vive whoes functions happen to be most nendrin en mil?:-m with the modified asgregate of external fonseen.

But this survival of the fitteat impliea molitiplimenter the filtest. Out of the fittest thus multiplied, there with before, be an overthrowing of the moving equilibrium wheruvor it presents the leses opposing force to the now incident force. And by the continunl dostruction of the individanle that are the least capable of maintaining their equilibria in prosence of this now incident force, there mnst eventrally be arrived at an altered type complotely in equilibrium with the altered conditions.

8 165. This survival of the fitteot, which I have dere

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

win has been tho first to perceiva. To him wo owe the discovery that natural solection is appable of proincinct thene between organisms and their circomptescon; mint tom 5 the morit of appreciating the immeneoly-impertaat coper quences that follow from this. He has worked up an enormona mass of evidence into an elaborate demonstration, that thio "preservation of favoured recos in the strugrie for ith," in an ever-acting cause of divergence among organio trema. He has traced out the involved results of the process with marvellous subtlety. He has shown how hoots of otherwine inexplicable fucts, are fully accounted for by it. In brief, be hes proved that the cause he alloges is a true cause; that it is a cause which we see habitually in action; and thut the results to be inforred from it, are in harmony with the phenomera which the Organic Creation precente, both as a whole and in its details. Let us glance at a few of the more ins portant interpretations which the hypothesis furnisher.

A soil poseseaing somue ingrediont in unumal quantity. may supply to a plant an excess of the matter required for a certain class of its tissues; and may cause all the parts formed of such tiasucs to be abnormally developed. Suppose that among these aro the hairs clothing its surfecees imoluditus thoee which grow on its evods. Thus furnisbod with eame what longer fibres, its eeode, when abod, are carried a little further by the wind before they fall to the ground. The young plants growing up from them, being rather moro widely dispersed than thoee produced by othor inciividemater the same species, will be lew liable to emothor one anotbar: and a greater number may therefore reach maturity and fructify. Supposing the next goneration subjoct to tho sume peoculiarity of nutrition, nome of the evods borne by ita members will not simply inherit this increased devolopaceat at haire, but will curry it further; and those, still more madvantaged in the eame way as before, will, on the average, have otill moro nurnerous chances of continuing the rece. Thuas by the survival, generation after generation, of thoee pomem
ing these longer hairs, and the inheritance of successive incromenta of growth in the hairs, there may result a soed deviating greatly from the original. Other individuals of the same spocies, subject to the different physical conditions of other localities, may devalop somewhat thicker or harder coatings to their seeds: so rendering their seeds lees digeetible by the birds that devour them. Such thicker-coated eeeds, by escaping undigested more frequently than thinnercoated ones, will have additional chances of growing up and leaving offspring; and this process, acting in a cumulative manner through successive years, will produce a seed diverging in another direction from the anceetral type. Again, elsewhere, some modification in the physiologic actions of the plant, may lead to an unusual secretion of an cessential oil in the seeds; which rendering them unpalatable to creatures that would otherwise feed on them, may diminish the destruction of the seeds, so giving an advantage to the varicty in its rate of multiplication; and this incidental peculiarity proving a preservative, will, as before, be gradually increased by natural selection, until it constitutee another divergence. Now in these and countless analogous cases, we see that planta may bocome better adapted, or re-adapted, to the aggregate of surrounding agencies, not through any direct action of such agencies upon them, but through their indirect actionthrough the destruction by them of the individoats which ane least congruous with them, and the survival of those which are most congruous with them. All these aight variations of function and structure, arising among the members of a specice, serve as so many experiments; the great majority of which fail, but a few of which succeed. Just as we see that each plant bears a multitude of seeds, out of which some two or three happen to fulfil all the conditions required for reaching maturty, and continuing the race; so we see that cach apecien is perpetnally producing numorous alightly-modified forme, deviating in all directions from the average, out of which moost fit the surrounding zonditions no better thun thair pa-
rents, or not so well, but some few of which fit the conctition better; and doing e0, ase enabled the better to prowerve therr selves, and to produce offipring immilerly apphle of yumer ing themselves.

Among animale the like procem sosults in the like development of various structurce which cannot have been affected by the performance of fumetionetheir functions being purely peeaiva. The thick aboll of es molluak, is inexplicable as a result of dircest remetione of then organism against the external actions to which it is expond; bat it is quite explicable as a result of the survival, geparer tion after generation, of individuale whoes thiokser ouncing protected them againat conemies. Similurly with ach a dermal structure as that of the tortoise. Though wo havo evidence that the skin where it is continually expoeed to prov sure and friction may thicken, and so re-establish the equiLibrium, by opposing a greater inner force to a greater outar force; yot we have no evidence that a cont of arroour libe that of the tortoise can be so produced. Nor, indeod, are the conditions under which only its production in sech a manner could be accounted for, fulfilled; since the marfice of tho tortoise is not exposed to greater preserse and friotico chan the ourfaces of other creatures. This maseive carrepeea, and the otrangely-adapted osseous framo-work which eupports it, are uneccountable as results of evolution, unlen through the procese of natural selection. Thus, too, is it with the production of colours in birds and in insectes ; the formation at odoriferous glande in mammala; the growth of asech axcesercencess as thoee of the camel. Thus, in ahort, is it with all thoee orguas of animale, which do not play active parte in the compound rbythrms of their functious.

Becidee giving us explanations of atructural charsotes that are othorwise unaccountabla, Mr Darwin showe how natural selection explaine peculiar rolationa betwesa inno viduals in certain epecios. Such fretes as the dimorphime of the primeses and other flowers, he proves to be quite in harmony with his hypothesis, though atumbling-blocke tes

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

of natural selection, we know that there exintio a bolanee among the powers of organs which habitually aet togothersuch proportions among them, that no one has any cousilesable excess of efficiency. We see, for examples, that througiout the vascular system, there is maintained an equilibrium between the powers, that is, the developments, of the component parts : in some cases, under excessive excrtion, the heart gives way, and we have enlargement ; in otheg eases the large arteries give way, and we have aneurisms; in other cases the minute blood-vessels give way-now bursting now becoming chronically congested. That is to say, in the average constitution, no superfluous strength is poesessed by any of the appliances for ciroulating the blood. Take, again, a set of motor organs. Great strain here causes the fibres of a muscle to tear. There the musele does net yjich but the tendon snaps. Elsewhere neither muscle nor tesidin is damaged, but the bone breaks. Joining with these instances the general fact, that under the same adverse couditiones, different individuals show their slight differences of cosumitution by going wrong some in one way and some in another; and that even in the same individual, similar adverwe conditions will now affeet one viscus and now another; it becomes manifest that though there cannot be maintainud an accurate or absolute balance among the powers of the organs composing an organism, yet the excesses and doficiencies of power are extremely slight. That they mugt be extremely slight, is, as before suid, a deduction from the hypothesis of natural selection. Mr Darwin himself arguen "that natural selection is continually trying to econnenizo in every part of the organization. If underchanged conditiona of life a structure before useful hecames less necful. any diminution, however slight, in its development, will be seized on by natural selection, for it will profit the indivilual not to have its nutriment wasted in building up an usoless struature." In other words, if any muscle has more fibres thin can be utilized, or if a bone be stronger than needful, no ont.
vantage resulta, but rather a disadmantage-a dimadrantage which will decrease the chances of survival. Hence -it becomes a corollary, that among any organs which habitually act in concert, an incresse of one can be of no sercice unless there is a concomitant increase of the rest. Theco. operative parts must vary together; otherwise varistion will be detrimental. A stronger muscle must have a stronger bone to resist its contractions; must have etronger correlated muscles and ligaments to secure the neighbouring articuthations; must have larger blood-veesels to bring it supplies; must have a more massive nerve to bring it stimulus, and some extra development of a nervous centre to supply this extra stimulus. The question arises, then, -does spontaneons variation occur simultaneously in all these co-operative parts? Have we any reason to think that they epontaneously increase or decrease togetherf The essumption that they do, seems to me untenabla; and itanntenability will Cotink, become conspicuous if we take a case, and observo how axtremely numerous and involved are the variations which müst be suppoend to ccaur together. In illustration of nnother point, we have already considered the modification required to accompany increased weight of the head. Instead of the bison, however, the moose deer, or the extinct Irish elk, will here best serve our purpoes. In this species the male has enormously-developed horns, which are used for purposes of offence and defence. These horns, weighing apwards of a hundred-weight, are carried at great mechanical disadvantage-supported as they are along with the moseive akull which bears them, at the extremity of the outstretched nock. Furthor, that theoe heavy horns may be of use in fighting, the supporting bones and muecles must be strong enough, not simply to carry them, but to put them in motion with the rapidity required for giving blows. Let ues then, ask how, by natural selection, this complex apparatua of bonee and manclea can have been developed, pari pasew with the horns? If we auppose the horns to have origimally
been of like size with thoee borne by other kinde of deer; and if we suppose that in ourtain indiviturles, theng troume larger by spontaneous variation; what would be the concomitant changee required to reoder their greater mimamenil? Other thinge equal, the blow givea by eftriger homer woll be a blow given by a heavier mass moving at a maller velocity: the momentum would be the same an beforo; and the area of contact with the body struck being romentas increased, while the velocity was decresech, the injury deme would be less. That the horns may become better mingemes, the whole apparatus which moves thom must be no arragabened as to impress more force on them, and to boar the more violent reactions of the blows given. The bones of the akull on which the horns are seated muot be thickeopds ofbarwiee they will break. To render the thickening of these bowen advantageous, the vertebree of the neck muat be furtber do veloped; and without the ligementa that hold togotber theme vertebre, and the muscles which move them, arealoo enlmagh, nothing will be gained. Such modifications of the neck will be useleas, or rather will be detrimental, if its fulcrom be mal made capable of resisting inteneer strains: the uppor dormal vertebro and their spince must be etrengthened, thet they may withetand the more violent contractions of the neckmusales ; and like changes must be made on the ccapalar arch. Still more muat thern be required a simultaneone dovalopment of the bones and muacles of the foro-lage; ainoe each of these extra growths in the horne, in the ckull, in the neck, in the ahoulders, adde to the burden which the foreloge have to bear; unloes this doer with ite heerier bormen heed, noak, and abouldess, had strongor foro-logen it woukd not only cuffor from loes of apeed but would even fuil in Gight Henco, to muke largor horns of use, additional sizes muat be moquured by numerous bones, muecles, and ligumerita, m wnin as by the blood-roeole and nerves on which thoir actions dopend. On calling to mind how the spraining of a cinglo coall mucole in the foot, incapacitatos for walking, or how a

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

but demands many powers; in the same proportion do.thme arise obstacles to the increase of any particular pones. hy the preservation of favoured ruces in the eftrugele for life," As fast as the faculties are multiplied, so fast does it become possible for the several members of a species to have various kinds of superiorities over one another. While poe saves its life by higher speed, another does the like by clearur vision, another by keener scent, another by quicker hearing another by greater strength, another by unusunl power of enduring cold or hunger, another by special sagacity, another by special timidity, another by special courage; and othersty other bodily and mental attributes. Now it is unquestionably true that, other things equal, each of these attributes, giving its possessor an extra chance of life, is likely to be transmitida to posterity. But there seems no reason to suppose that it will be increased in subsequent generations by natural selection. That it may be thus increased, the individuals not poescer ing more than average endowments of it, must be more for quently killed off than individuals highly endowed with it; and this can happen only when the attribute is ono of greaters importance, for the time being, than most of the other attributee. If those members of the speries which have bot ordinary shares of it, nevertheless survive by virtue of olher euperiorities which they severally posees; then it is not enoy to see how this particular attributo can be developed by natural eelection in subeequent generations. The probability cocms rather to be, that by gamogencsia, this extra endowment will, on the average, be diminimhed in poeterity-juan orrving in the long run to compensate the deficient orndowments of other individuals, whoee apecial powers lie in other directions; and so to koop up the normal struetare of the apeciea. The working out of the proceses is here eomewhat difficult to follow; but it appears to me that as frat as the uumber of bodily and mental faculties increases, and as fast nis the maintenance of life comes to dopend less on the amotint of any one, and more on the combined actiom of all $:$ se

Cant does the production of specinlities of character by natural selection alone, become difficult, Particularly does this seem to be 80 with a species so multitudinous in ite powers as mankind; and above all doos it soem to be so with such of the human powers as have bat minor shares in aiding the struggle for lif-the eesthefic hacntien for example.

It by no means follows, howevor, that in cases of this kind, and cases of the preceding kind, natural selection plays no part. Wherever it is not the chief agent in working organic changes, it is still, very generally, a secondary agent. The survival of the fittest must nearly always further the production of modifications which produce fitness; whether they be modifications that have arisen incidentally, or modifications that have been caused by direct adaptation. Evidently, thowe individuals whose constitutions or circumstances have facilitated the production in them of any structural change consequent on any functional change demanded by some new external condition, will be the individuals moot Hkey to live and to lcave deecendants. There must be a natural election of functionally-acquired peculiarities, as well as of incidental peculiarities; and bence such structural ehanges in a species as result from changes of habit necessitated by changed circumstances, natural selection will reader more rapia than they would otherwise be.
There are, however, some modifications in the sizes and forms of parta, which cannot have been aided by natural eelection; but which must have resulted wholly from the inheritance of functionally-produced alteretions. The dwindling away of organs of which the undue aizes entail nn appreciable evils, furnishes the beat evidence of this. Take, for an example, that diminution of the jawe and toeth whioh characterizes the civilized races, as contrasted with the savage races. How can the civilised races have been beece-

[^19]Gted in the struggle for life, by the slight docruen in these comparatively-mall bones? IVo frnaticoen mparixity possessed by a amall jaw over a large jaw, in civilized lifa, can be named as having cauced the more froquent earvival of small-jawed individuale. The only adrumet wind cmallnese of jaw might be supposed to give, is the adramano of economized nutrition; and this could not be great esongh to further the preservation of men posesesing it. The do crease of weight in the jaw and co-operative purte, that hee arisen in the course of many thousande of yeurs, doeen not amount to more than a few ounces. This decreace has to be divided among. the many generations that have lived and died in the interval. Let us edmit that the weight of them parts diminished to the extent of an ounce in a cingle geant ation (which is a largo admiseion); it still cannot ba captended that the having to carry an ounce lom in weight, or the having to keep in repair an ounce lea of tinowe, cooll sensibly affect any man's fute. And if it never did thin-
 dividuals where large-jawed individuals diad; metract mos tion could neither causo nor aid diminption ocren -

 aumber of the under jaws in cech noce. Simplo toprection, howner, dind-n

 solatively but aboolulaly. Ono Australian jaw oaly, did 1 otarra deat wae atma
 a woome) beloagiag is it did to a moch mallue aknll, boee a mach grentur gets w the whole body of which is formed part, than did an Elaginh jaw of tho eno

 of thow laferior mora, they were rery much more menatve. Int mo mh thet its Aectolian and Nenro jowe aro theo etrougly evatraced, sot with all Brituah jemen

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

mical variations in these two sets of forces, there is mairtained an oscillating limit to its habitat, and an oscillatisg limit to its numbers. On another occasion (\$9G) it was shown that the aggregate of individuals constituting a species, has a kind of general liie, which, "like tho life of 1 a individual, is maintained by the unequal and ever-varying aetions of incident forces on its different parts." We sam that "just as, in each organism, incident force constantly produce divergences from the mean state in various dinctions, which are constantly balanoed by opposite divergences indireetly produced by other incident forces; and just as the combination of rhythmical functions thas maintrined, constitutes the life of the organism; so, in a species, there is through gamogenesis a perpetual neutralization of those contrary deviations from the mean state, which are cansed in ita different parts by different sets of incident forces; and it is sinnilarly by the rhythmical production and compensation of these contrary deviations, that the species continues to live." Hence, to understand the way in which a species is affected by causes which destroy some oi its units and favour the mulkiplication of others, we must consider it as a whole whose uni. 3 are held together by complex forces that are ever balanciin themselves and ever being disturbex-a whole whose moving equilibrium is continually being modified, and thirough which waves of perturbation are continually being pros pagated.

Thus much premised, let us noxt eall to mind in what way moving equilibria in general are changed. In the first place, the necessary effect wrought by a new in cident force falling on any part of an aggregate with bulanced motions, is to produce a new motion in the direction of leait resistance. In the second place, the new incident foree is gradually used up in overcoming the opposing forow, and when it is all expended the opposing forees produce a ncriil -a reverse deviation that counter-balances the original deviation. Consequently, to consider whether the moving cqui. blrium of a species is modified in the same way as nonving
equilibria in general, is to consider whether, when exposed to a new force, a species yields in the direction of lenst resistance; and whether, by its thus yielding, there is generated in the apecies a compensating change in the opposite direclion. We shall find that it does both these things.

For what, expresed in mechanical terms, is the effect wrought on a species by some previously-unknown enemy, that kills such of its members as fail in defending themwelves? The disappearance of thoee individuals which meet the destroying forces by the amalleat defensive forces, is tantamount to the yielding of the species as a whole at the places where the resistances are the least. Or if by some general influence, such as alteration of climate, the members of a species are subject to any increase of certain external actions that are ever tending to overthrow their equilibria, and which they are ever counter-balancing by the absorption of nutriment, which are the first to diep Those that are least able to generate the internal actions which antagonize these external actions. If the change be an increase of the winter's cold, then fuch members of the apecies as have unusual powers of getting food or of digesting food, or such as are by their constitutional aptitude for making fat, furniahed with reserve stores of force, available in times of ecarcity, or such as have the thickest coats and so luse least heat by radiation, survive; and their survival impliee that in each of them the moving equitibrium of functions presents such an adjustment of internal forces, as prevents its over: throw by the modified aggregate of external forces, Oinversely, the members that die, are, other things equal, those deficient in the power of meeting the new action by an equivalont counter-action. Thus in all cases, a species considerod as an aggregate in a state of moving equilibrium, has its state changed by the yielding of its fluctuating mass wherever this mass is weakeat in the relation to the epecial forces acting on it. The conclusion is, indeed, a truism. But now, what must fallow from the do-
struction of the least-resisting individyalis surviral of the most-resisting individuals? On the moving equilibriun of the species as a whole, existing from generation to geacration, the effect of this deviation from the mean state is ω produce a compensating deviation. For if all such as arv dcficient of power in a certain direction are destroyed, What must be the influence on posterity? Hed those which aru destroyed lived and left offispring, the nest generation would have had the same average balance of powers as precoling generations : there would have been a like proportion of individuals less endowed with this power, and individuals ware endowed with this power. But the more-endowed indiriduals being alone left to continue the mace, there must nesult a new generation characterized by a larger average endownucar of this power. That is to say, on themoving equililrium constituted by a species, an action producing change in a grvea direction, is followed, in the pext geaeration, by a reactama producing an opposite change. Observe, 60, that then effects correspond in their degrees of violence. If the altorntion of some external factor is so great that it leares alive only a fow individuals, characterized by extreme endowmean of the power required to antagonize it; then, in succeeding generations, there is a rapid multiplication of individums similarly characterized by extreme endowments of this power -the force impressed calls out an equivaleat conflicting force. Morcover, the change is temporary where-the cune is temporary, and permanent where the cause is permanent All that are deficient in the needful attribute having beed killed off; and the survivors baving the needfll attribute in a comparatively high degree; there will descend from them not only some possessing equal amounts of this attribute wip themselves, but also some possessing less amounts of it If the ageney which proves fatal to them has not centinnedi in action, such less-endowed individuals will multiply; and the species, after sundry oscillations, will roturn to its previsie mean state. But if this agency be a persistent one, such loee

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

among all its members, one is better adapted thinis the reat to take advantage of some before-unused agency in the envivament, is to say that its moving equilibrium is, in 50 fur, mare stably adjusted with respeet to the aggregate of surrounding influences. And if, as a consequence, this individual maiatains its moring equilibrium when others fail to do so, and produces offspring which do the like-that in, if individush thus characterized multiply and supplant the rest ; there is evidently, as before, a process by which an equilibration botween the organism and its enviroument is effected, not immediately but mediately, through the continuous interoours between the species as a whole and the curironment.

8 168. Thus we see that indirect equilibration doee whatever direot equilibration cannot do. It is scarcely prowible too much to emphasize the conclusion, that all these proens by which organisms are re-fitted to their ever-changing environments, must be equilibrations of one kind or other. As authority for this conclusion, we have not simply the universal truth that change of every order is towaris equilibrium ; but we have also the truth which holds throaghout, the organie world, that life itself is the maintenanceof a moving equilibrium between inner and outer actions-the continnops a屯dustment of internal relations to external relations; or the maintenance of a correspondence between the forces to which an organism is subjeet and the forees which it evolves. Fer if the preservation of life is the preservation of such a moving equilibrium, it becomes a corollary that thoso changes whitel enable a species to live under altered conditions, are change Towards equilibrium with the attered conditions
Hence, all such changes being equilibrations, their differences can bo nothing but differences in the waye through which they result. If they aro not effected immediately. thoy must be effected mediately. A priori, therefors, wis may be certain that all procenes of modification which do

not come within the class of direct equilibrations, must come within the class of indirect equilibrations.

Examination of the facts confirms this conclusion. The external factors to which a species is exposed, are of two kinds. They are such as act continuously or frequently on the individuals; or they are such as do not act continuously or frequently on the individuals. To a factor which continuously or frequently acts on the individuals, the functions of the individuals re-adjust themselves-there is direct equilibration. While a factor which does not act contiuuously or frequently on the individuals, acts continuously on the species as a whole-either destroying such of the members as are least capable of resisting it, or fostering such of the members as are most capable of taking advantage of it. And by the abstraction, generation after generation, of those least in equilibrium with the new factor; or by the extra multiplication, generation after generation, of those most in equilibrium with the new factor; the species as a whole is eventually brought into complete equilibrium with the new factor -there is indirect equilibration.

OHAPTER XIII.

THE CO-OPERATION OF THE FACIORS.

$\$ 169$. Tuvs the phenomena of organic evolution, mat then interpreted in the same way as the phenomenn of all other evolution. Those universal laws of the re-distribution of matter and motion, to which things in general conform, ase conformed to by all living things; whether considered in their individual histories, in their histories as spereics, or in their aggregate history. However otherwist they may orrlinarily be expressed, the truths of development as exhibitud in the animal and regetal kingdoms, prove to be expresitle an manifestations of those abstract truths set forth in First Prineiples. Fully to see this, it will be needful for us to contemplate in their ensemble, the several procesees scparatedy deecribed in the four preceding chaptere.

If the forees acting on any aggregate remain the same, the changes produced by them in the aggregate will presently reach a limit, at which the constant outer forces are balancil by the constant inner forees; and thereafter no further metamorphosis will take phace. Hence, that there moy be Continuous changes of structure in organisma, there emust be continuous olanges in the incident forves. This conditusento the evolution of animal and vegetal forms, we find to The filly satistied. The astronomic, geologie, and moteorologien changes that have been slowly but incessantly going on, and have been increasing in the nomplexity of their combinations,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

balance of functions has not been omenthrown. Inepitilisy therefore, eurvival through succosive obsmges of cuedithens implies successive adjustments of the balance to the now coeditions. This deduction we find to be inductively veribed. What is ordinarily called adaptation, is, whem tranalated into mechanical terms, direct equilibration. And that procen which, under the name of natural selcotion, Mr Darwin han shown to be an ever-acting means of fitting the ditructarno of organisms to their circumstances, we find, on anmlyria, to to expressible in mechanical terms as indirect equilibration.

The actions that are here specified in succossion, are in reality simultaneous; and they must be so concoived befere organic evolution can be righlly underatood. Some aid towards so conceiving them, will be given by tho ansered table, representing the $\mathbf{c o}$-operation of the factorm
§ 170. Respecting this co-operation of theoe factors, it romains only to point out their respoctive ahares in prodecing the total result; and the way in which the proportione of their respective shares vary as evolution progreeme.

At first, changes in the amounts and combinatione of external inorganic forces, astronomic, grologio, and meteoro logic, were the only causee of the succumive modificatione undergone by organisms ; and these changee have continved and must still continue, to be causee of ouch modifontimes As, however, through the diffusion of orguniams, and the consequent differential actions of inorganic forces on themes there arose unlikenesess among organisme, producing varietion opecies, genora, ordere, clamoce, dc. ; the ections of organime on one unother beonme new nourves of organic modifortion. And as fast as types have multiplied, and become more come. plex ; so fast have the mutual actions of organions come to be more influential factors in their respective evolutiven. Until. eventually, as we seo oxemplified in the hansan snoce they have come to be the chiof factom.

Preing from the extarnal causee of change to the intrornal

procesess of change entailod by them, we see that thena, tom have varied in their proportions-that which was originally the most important and almost the sole procous, becomilt gradually less important, if not at last the least importint Always there must have been, and always there must eentinue to bo, a survival of the fittest : natural selection max have been in operation at the outsot, and can never cenen so operate. While yet organisms had comparatively fintly powers of co-ordinating their actions, and adiusting thenin to environing actions, natural selection worked almost alone 1 n moulding and re-monlding organisms into fitness for the ehanging environments; and natural seloction hae so matined almost the sole agency by which plants and in. ferior orders of animals have been modified and doveloped The equilibration of organisms that are comparatively pastiv, is necessarily effected indirectly, by the action of incidens Sorces on the species as a whole. But along with the gradel evolution of organisms having somo activity, thero grows up a kind of equilibration that is relatively direct. In propor tion as the activity increasea, direot equilibration playe a more important part. Until, when the nervo-museoler apparatus becomes greatly dereloped, and tho power of rarying the actione to fit the varying requiroments becomen cosesiderable, the sharo talen by direct equilibration rises into co-ordinate importance. Wo have seen reacon to think thes as fact as eceential faculties multiply, and as fart as the nump. ber of organs that co-oparato in any given function incromen, indiroot equilibration through natural meleotion, becomes here and lom capable of producing specific adaptationa ; and somains fully capable only of maintaining the general titane of constitution to conditions. Simultaneoualy, the prodnotion of adaptations by direct equilizration, takios the firat placoisdirect equilibration serving to facilitate il. Until at leageth, among the civilised human races, the equilibration beeneme maninly diruct : the action of natural seleotion being rentricted to the destreotion of thoee who are constitutionally too fooble

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

CHAPTER IIV.

TEE CONTERGENCE OF TAT EVIDRMS

8171. Of the three clasees of evidences that have bean asigned, the a priori, which we took first, were partly megrtive, partly positive.

On considering the "General Aspects of the Specinl-erv-tion-hypothesis," we discovered it to be worthleen Diecredited by its origin, and wholly without any bacis of obeerved feach we found that it was not even a thinkable hypothesia; sed while thus intellectually illusive, it turned out on examinotion to have moral implications quite at variasce with the profesed beliefs of thoee who hold it.

Contrariwise, the "General Aspects of tho Bvolution-hy pothesis," begot the stronper faith in it the more ncarly ther were considered. By its lineage and its kindred, it mes found to be as cloeely allied with the proved truthe of modern science, as is the antagonist hypothesis with the proved errors of ancient ignorance. Instcad of being a more peondidea, we saw that it admitted of elaboration into a definito conception-so ehowing its legitimacy as an hypothecian. Ibstend of positing a purely fictitioua proceme, the procems whinh it allogee, we saw to be one that is actually going on aroumd us. To which ald, that morally considerod, this hypeltmels precente no irreconcilable incongruitien.

Thuy, even were wo without furiher mouns of judging
there could be no rational heaitation which of the two viewis ahould be entertained.
§ 172. Further means of judging, however, we found to be afforded by bringing the two hypotheees face to face with the gencral truths established by naturalists. These inductive evidences were dealt with in four chapters.
"The Arguments from Clussification" were itese. Organisms fall into groups within groups; and this is the arrangoment which we see results from evolution, where it is known to take place. Of these groups within groupe, the great or primary ones are the most unlike, the sub-groups are less unlike, the sub-sub-groupe still leas unlike, and so on; and this, too, is a characteristic of groups demonstrably produced by evolution. Moreover, indefiniteness of equivalence among the groups, is common to thoee which we know have been evolved, and those here supposed to have been evolved. And then there is the further eignificant fact, that divergent groupe are allied through their lowest rather than their highest members-a truth which the hypothesis of evolution implies.

Of "the Arguments from Embryology." the first and most striking is, that when the developments of embryos are traced from their common starting point, and their divergenoes and re-divergences symbolized by a genealogical tree, there is manifeat a general parallelizm between the arrangement of its primary, secondary, and tertiary branchoe, and the arrangement of the divisions and sub-divisione of our olami-ficationo-a general parallalizen to be anticipated as a result of evolution. Nor do those minor deviations from this general parallelism, which at first sight look like diffioultien, fail, on clower obeervation, to become additional supposta; since thoee traite of a common ancestry which embryology reveals, are, if modifications have resulted from changed conditions, liable to be distorted or diagriced in quite different waye and degrees in lifferent lines of tescendenta

We next considered "the Argumentiofrum Mrorithoh Leaving out those kinships among organisme tiselo their developmental metamorphoses, the kinships whith adult forms show are profoundly significant. The remun unities of type which are found under such different d nals, are inexplicable except as results of community rel svent with non-community of modification. Agning. organism analyzed apart, showsus, in the likenceses obh by unlikenesses of its component parts, a peculiarity of ture that can be ascribed only to the formation of el heterogeneous organism out of a more homoganeonty And once more, the habitual existence of rudimentary or homologous with organs that are developed in allied añ or plants, while it admits of no other rational interpueta has a satisfactory interpretation given to it by the \mathbf{l} thesis of evolution.

Last of the inductive evidences, came "the Argument" Distribution." While the phenomesas of distribation Space, prove to be unaccountable as results of designed ad ation of organisms to their habitats, they prove tit accountable as results of the competition of species, and spread of the superior into the habitats of the inferiper lowed by the ehanges which now conditionsinduce. Thi the phenomena of distribution in Time, are eo fragmen that no positive conclusion can be drawn from them: ye of them are reconcileable with the hypothosic of orolution, some of them yield it strong support-espacially the 1 rolationship that existe between the living and ead types of enck great geographicul arem.
In each of thene four groups, we thus found averel al mente which point to the same conclusion; and the 1 clusion pointed to by the arguments of any one group, is: pointed to by the argumente of all the othor groupa : coincidence of coincidences, would give to the inductin very high degree of probability, even were it not enfer by deduction.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

librium of inncr actions corresponding with outer actions, which constitutes the life of an organism, must either be overthrown by a change in the outer actions, or must underiv perturbations that cannot end until there is a readjusied balance of functions and correlative adaptation of structura Wherever the external changes are such as to be continuous': or frequently operative on individuals, this direct equilitretion must go on.

But where the external changes are either such as are fatal when experienced by the individuals, or such as act in the individuals in ways that do not affect the equilibritm oi their functions; then the re-adjustment results through the effects produced on the species as a whole-there is intirn: equilibration. Sy natural selection or survizal of the $: 1 \cdot \cdots$ -by the preservation in successive generations of i. . whose moving equilibria happen to be least at variance w. $\dot{\mathrm{t}}$ the requirements, there is eventually produce a c.las. - id equilibrium completely in harmony with the requireniet.i-

And thus it results that those universal laws of the ac-: :tribution of matter and motion, which are conformed \cdot, : evolution in general, are ecnformed to by organic evolu: : :.
§174. Even were this the whole of the evidence a-M:-nable for the belief that organisins of all orders hase l...d gradually coolved, this beliet would have a warrant m:a highaer than that of very many beliefs that are regrarile.i ..s entaliahed. When we see that thereare strong a proneripen babilitios in ita farour, and wholly adverse to the antan : : : hyputhon-when an examination of the facts which atatara-
 which unite in supproting it-and when the charactaide
 on, prose to be denlucible fann thene universal action $h:=$ w: to work aolution of all wher kinds: we have a combinati.a of proofs which minht suffere were there no more to 1 .. s.ai.i.

But the evidence is far from exhansted. It the outsel 0
the argument, it was remarked that the encemble of vital phenomena presented by the organic world as a whole, cannot be properly dealt with apart from the enoemble of vital phenomena presented by each organism, in the course of its growth, development, and decay. The interpretation of either implies interpretation of the other; since the two are in reality parts of one process. Hence, the validity of any bypothesis respecting the one class of phenomena, may be tested by its congruity with phenomens of the other cluss. We are now about to pass to the more special phenomena of development, as displayed in the structures and functions of individual organisms. If the hypothesis that plants and animals have been progreesively evolved, be true, it must furnish us with keys to these phenomena. We shall find that it does this; and by doing it, givee numberless additional vouchers for its trath.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

1
[The following letter, originally written for publication in the North American Review, but declined by the Editor in pursuance of a general rule, and ecentually otherwise published in the United States, I have thought well to append to this first voluine of the Principles of Biology. I do this because the questions which it discusses are dealt will in this volume; and because the further explanations it furnishes seem needful to prevent misapprehensions.]

ON ALLEGED " SPONTANEOUS GENERATION," AND ON THE HYPOTHESIS OF PHYSIOLOGICAL UNITS.

The Editor of the North American Review.

Sir,
It is in most cases unwise to notice adverse criticisms. Either they do not admit of answers or the answers may be left to the penetration of readers. When, however, a critic's allegations tonch the fundamental propositions of a book, and especially when they appear in a periodical having the position of the North American Reviero, the case is altered. For these reasons the article on "Philosophical Biology," published in your last number, demauds from me an attention which ordinary criticisms do not.

It is the more needful for me to notice i is, because its two leading objections have the one an actual fairness and the other an apparant fairness: and in the absence of explanations from me, they will be considered as substantiated even by many, or perhaps most, of those who have read the work itself-mach more by those who have not read it. That to prevent the spread of misapprehensions I ought to say something, is further shown by the fact that the same two objections have already been made in England-the one by Dr. Child, of Oxford, in his Exsiys on Phiysioloyical Subjects, and the other by a writer in the IVestminster Rectiew for Jaly, 1865.

In the note to which your reviewer refers, I have, as he says, tacitly rcpudiated the belief in "spontaneous generation;" and that I have done this in such a way as to leave open the door for the interpretation given by him is truc. Indeed the fact that Dr. Child, whose criticism is a sympathetic one, puts the same construction on this nute, proves that your reviewer has but drawn what seems to be a necessury inference. Nevertheless, the inferenco is one which I did not intend to be drawn.

In explanation, let me at the outset remark that I am placed at a disadvantage in having had to omit that part- of the System of l'hilosophy which deals with Inorganic Evolation. In the orginal programme will be found a pareuthetic reference to this omitted part, which siould, as there stated, precede the Principles of Biology.

Two volumes are misesing. The clofors chypur of t it writen, woald deal ofth the cooltite of orgnt step preceding the evolation of living forman Hab with me in thought the conoteotes of this montucn C in sume cases, expressed myseif as thought the read him; and have thus rendered some of my state misconstractions. Apart from this, bowere, the ex] appareat inconsistency in very simple, is act mily obviplace, I do not believe in the "spontaneoces gencrat alleged, aud relerred to in the nute; and $\infty 0$ litile h: in thought this alleged "spontaneous generation" believe, with the generation by evolution which I do I repudiation of the one never occurred to me as liable to padiation of the other. That croatures having quire epeci evolved in the course of a fer boars, willout antecoc to determine their specific forms, is to ene incredide. established truths of Biology, but the extublishod to in general, negative the supposition that orgunismas turis detiuite enough to identiry them as belonging w and species; can be produced in the absence of goru anlecodent organioms of the same genora and apucita suddenly bo imposod on simplo protoplasm the oryd constitutcs it a Paramacium, I sec no reason why anii complexity, or indood of any conplexity, may not after the sume manner. In briof, I do not eccept the as exemplifying Evolution, becauso they imply somed beyond thut which Evolution, as I anderstand ith ca the second place, my disbolief exteads not ouly to th of "spontaneous geveration," but to overy case akin very conception of spontaneity is wholly incongruous ception of Evolution. For this reason 1 regard as of Darwin's ptrase "spontancous variation " (ea indeed br and I have songht to show that there are al ways asmig vartation. No form of Evolution, inorgumic or or upoutaneons; bat in overy instance the antocedens । adequato in their quantiticen, kinde, and distributiom obscrved effectis. Neither the alleged casea of "spos ration," nor any (maginable cuses in the loest allied Luis requirement.

1f, sceepling these alleged treses of "espontancoos had ansumed, us your reviower seenss to do, that e organic life conmenced in an analogous way : Uhen, tin buve left myealf open to a lutal criticiocs. This sal zeneous geverotion" hualithally uccars in meastra: either orgonic matter, or muther originally dertiod in and such urgenic matter, proceodiag to wil known tran iams of a bigher kiuch luplies the pre-osistecce o

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

488

moother. And the ragaeness, the incomplacose tren ciable structure, displayed by the stmplent of tiving il now see them, are charactere (or sboeaces of characte the hyporhesis of Evolution, must have been netin ui when, esat first, no "forms," no "types," no "epecific a been moulded. That "absolute commencement of or the globe," which the reviower says I "camact oveda ill of," I distinctly deny. The affirmation of univeral es itself the negation of an "absolato commenesumen" Construed in cerms of evolation, every kind of belast \&is a product of modifications wrought by insemethle gras pre-existing kind of being; and this bolds as fully of 11 "commencement of organic life" as of all anberganal d of organic life. It is no mora needful to mappese an commencement of organic lifo" or a "frat organlam, neediul to suppose an absolate commencement of suci: first social organism. The assumption of mach a nece last case, made by carly specalators with their theorics contracts" and the like, is disprored by the laetes ani so far as they are ascortained, disprove the assumplio necessity in the first case. That organic matter wes n all at once, but was reached through steps, we are trol in belioving by the experiences of cbemista Organk produced lo the laboratory by what we may Blerally c coolution. Chemists find themselves matble to form the combinations directly from their elements; but they saces ing them indirectly, by successive modifications of simph Liour. In some binary compound, one element of whic in several equivalents, a change is mado by subatitution these equivalents an equivalent of nome other element ; a a lernary compound. Then anothar of the equivalanta and so on. For instance, beginaing with ammonia, N E form is obtained by replacing one of the atoms of by an atom of methyl, so producing mothyl-waines $\$$ and then, under the further actina of methyt or further substitution, thore is reached the still more cons atance dinethyl-mominc, N(CH.) (CH.) H. And in highly counplex substances are oventually bailt ap characteristic of their method is no lors significuat plex compoands are emposed to generate, by their a one another, compound of etill grcator complexit. beterogedeous molecules of one atoge, become parents cule a stage highoe in heterogeneity. Thos, baving lisai acid out of its elements, and having by the procese of sabs scribed abore, changed the acetic acid into propioale acid caic into butyric, of which the formalak $\left\{\begin{array}{l}\mathrm{C}\left(\mathrm{C} \mathrm{H}_{2}\right)(\mathrm{O} \\ \mathrm{O} \\ \mathrm{O}(\mathrm{H} \\ \mathrm{O}\end{array}\right)$
this complex compound, by operating on anotner complex compound, snch as the dimethyl-amine named above, generates one of still greater complexity, batyrate of dimethyl-amine $\left\{\begin{array}{l}\mathrm{C}(\mathrm{C} \mathrm{II})\left(\mathrm{CH}_{3}\right) \mathrm{H} \\ \mathrm{CO}(\mathrm{HO})\end{array}\right\} \mathrm{N}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right) \mathrm{H}$. See, then, the remarkable parallelism. The progress towards higher types of organic molecules is effected by modifications upon modifications; as throughout Evolution in general. Each of these modifications is a change of the molecule into equilibrium with its enviroument-an adaptation, as it were, to new surrounding conditions to which it is sabjected; as throughout Evolation in general. Larger, or more integrated, aggregates (for compound molecules are such) are successively generated; as throughout Evolution in general. More complex or heterogeneous argregates are so made to arise, one out of another ; as throughont Evolution in general. A geometricallyincreasing multitude of these larger and more complex aggregates so produced, at the same time results; as throughout Evolution in general. And it is by the action of the successively higher forms on one another, joined with the action of environing conditions, that the highest forms are reached; as throughout Evolution in general.

When we thus see the identity of method at the two extremes -when we sce that the general laws of evolution, as they are exemplified in kuown organisms, have been unconsciously conformed to by chemists in the artificial evolution of organic matter; we can scarcely doubt that these laws were conformed to in the natural evolution of organic matter, and afterwards in the evolution of the simplest organic forms. In the early world, as in the modern laboratory, inferior types of organic sabstances, by their mutual actions under fit conditions, evolved the superior types of organic substances, ending in organizable protoplasm. And it can hardly be doubted that the shaping of organizable protoplasm, which is a substance modifiable in multitudiuous ways with extreme facility, went on after the same manner. As I learn from one of our first chemists, Prof. Frankland, protein is capable of existing under probably at least a thousand isomeric forms; and, as we shall presently see, it is capable of forming, with itself and other elements, sabstances yet more iutricate in composition, that are practically infinite in their varieties of kind. Exposed to those innumerable modifications of conditions which the Earth's surface afforded, here in amount of light, there in amount of heat, and elsewhere in the mineral quality of its aqueous medium, this extremely changeable sabstance mast have undergone now one, now another, of its countless metamorphoses. And to the mutual influences of its metamorphic forms under favouring conditions, we may ascribe the production of the still more composite, still more sensitive, still more variously-changeable portious of organic matter, which, in masses more minate and simpler than
existing Protuzoa, displayed actions verging little by litto into those called vital-actions which protein itself exhibits in a certain degree, and which the lowest known living things exhibis ouly in a greater degree. Thus, setting oat with inductions from the experiences of organic chemists at the one extrene, anl with inductions from the observations of biologists at the otber extreme, we are enabled deductively to bridge the intermalare enabled to conceive how organic compounds were evolred, and how, by a continuance of the process, the nascent life displayed in these became gradually more pronounced. And this it is whith has to be explained, and which the allered cases of "- spontaneurus generation" would not, were they substautiated, help os in the least to explain.

It is thus manifest, I think, that I have not fallen into the aliesed inconsistency. Nevertheless, I admit that your reviewer was justitied in inferring this inconsistency; and I take blame to mys-li for not having seen that the statement, as I have left it, is orem :0 misconstruction.

I pass now to the scrond allegation-that in ascribing to ceas ain specilic molecules, which I have called "physiological onir .. ded aptitude to build themselves into the structure of the orrarmieta tos which they are peculiar, I have abandoned my own principic, sad have assuned something beyond the re-distribution of Mat.er add Motion. As put by the reviewer, his case appears to be weil mele out; and that he is not altorether unwarramted in so put ins it. may be admitte:l. Nevertheless, there does not in reality exist the supposed incongruity.
before attemping to make clear the adequacy of the conception which I ann said to have tacitly abandoned as inculficient, bet be remove that exars of improbabilaty the reviewer gives to it, we the extremely-tentriced meanine with which he ues the word mechams. cal. In discusing a propesition of mine he says:-

> merel:auc.al (..1u-ッ.)"
> Were it not for the didimeation with which this last statement is
that mand: :', : :
is mo himi oi rearrans b:ant am:an molernter (erystallization
beiag out) which we moderd physienst dues not think of

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

representuble in terms of the mechanical hypothosis. Every physicist will endorse the proposition that in each aggregate thero tends to establish itself an equilibrium between the forces exercised by all the onits upon each and by each opon all. Even in masses of substance so rigid as iron and glass, there goes on a molecalar re-arrangement, slow or rapid according as circomstances facilitate, which ends only when there is a complete balance between the actions of the parts on the whole and the actions of the whole on the parts: the implication being that every change in the form or size of the whole. neceasitatos some redistribution of the parts. And thongh in cases like thea, there occurs only a polar re-arrangement of the moleculea, without chunges in the molecules themselves; yet whera as ofton happens, there is a passage from the colloid to the crystalloid state, a change of constitution occurs in the molecules themselves These truths are not limited to inorganic matter: they unquestiomably hold of organic mattcr. As certainly as molecules of alum have a form of equilibrium, the octabedron, into which they fall when the temperature of their solvent allows them to aggregate, so certainly mast organic molecules of oach kind, no matter how complex, havo a form of equilibrium in which, when they aggregate, their complex forces arc balanced -a form far less rigid and definite, for the reason that they have lar less definite polarities, are far more unstabla, and have their tendencies more easily modified by environing conditions. Eqnally certain is it that the special molecales having a special organic structure as their form of equilibrian, must be reacted opon by the total forces of this organic structare; and that, if environing actious lead to any change in this orgnnic structure, these special molecules, or physiological anits, subjeet to a changed distribution of the total forces acting apon thean will andergo modification-moditication which their extreme plasticity will reader casy. By this action and reaction I concelve the physiolugical uaits pecaliar to esch kiud of organism, to have beea moulder along with the orguaism itself. Setting out with the stage in which protein in minnto aggregates, took on those cimplest differentiations which fitted it for differentlyconditioned parts of its medium, there mast have unceasingly gone on perpetaul re-adjustments of balance between aggregutes and thoir anits-actions and roactions of the two, in which tho units tended orer to ostablish tho typical form prorlaced by actions and reactions in all antocedent generations, while the aggregate, if changed in form by clange of surrounding conditions, tended over to iunpress on the units a correspouding change of polarity, ceusing them in the next generation to reproduce the changed form-their new for:a of equilibriam.

This is the conception which I have sought to conviry, though it aeems unsuccessfully, in the Principles of Biohany; and which I have there used to interpret the many iavolved und mysterions

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

arg it Das been pointed out. Me knows that I have repeatedy and emphatically asserted that our conceptions of Mattor and Motion are but symbols of an Unknowable Reality ; that this Reality camot be that which we symbolize it to be; and that as manifested boyond conscioasness under the forms of Matter and Motion, it is the same as that which, in consciousness, is manifested as Feeling and Thought. Fet he continues to describe me as redacing everything to denal mechanism. If his statement on pp. 383-4 has any meaniug at all, it means that there exists some "force operating ab extra," sumo "external power" distiugaished by him as "mechanical," which is not incladed in that immanent force of which the oniverse is a manifestation; though whence it comes he does not tell as. This conception he spaaks of as though it were mine; making it scem that I ascribe the mondling of organisms to the action of this " neechanical" "cxternal power," which is distinct from the Inscrutable Cause of things. Yet he efther knows, or has ample menns of knowing, that I deny every such second cause: indeed he has himself classed mo as an opponent of dualism. I recognize no forces within the organism, or without the orgonism, but the rarionsly-conditioned modes of the oniversal immanent force; and the whole process of organic evolntion is everywhere attributed by me to the co-operation of its rari-onsly-conditioned moder, internal and extornal. I'hat chis has been all along my general view, is cluarly sbown in the clocing paragraph of First Pyinciplea, where I have said-

[^20]
198

things. Their implications are no more maternaliatio than they aro spiritualistio; and no more spiritualistio than thoy are materialiatic. Any argument which is apparently furnished to either hypothesis, is neutralized by as good an argument furnished to the other. The Materialist, sueing it to be a necessary deduction from the law of correlation, that what exists in consciousness under the form of feeling, is transformable into an equivalent of mechanical motion, and hy consequence into equivalents of all the other forces which matier exhibits; may consider it therefore demonstrated that the phenomans of consciousness are material phenomena. But the Epiritualist, setting ous with the same data, may argue with equal cogency, that if the forct displayed by matter are cognizable only uuder the shape of those equivalent amounts of consciousness which they produce, it is to to inferred that these forces, when existing out of consciousness, are of thsame intrinsic nature as when existing in consciousness ; and that so is justified the spiritualistic conception of the external world, as consisting uf something essentially identical with what we call mind. Manifexsly; the establishment of correlation and equivalence between the forces of the outer and the inner worldx, may be used to assimilate either to the other; 80 cording as we set out with one or other term. But he who rightly interprets the dootrine contained in this work, will seo that neither of thי"se terms can be taken as ultimate. He will see that though the relation of sulject and object renders necessary to us these antithetical concrpions of Spirit and Matter; the one is no less than the other to be regarded as bus a sign of the Uuknown Reality which underlies both."

This is the conception which your reviewer continnes to speat of as "mechanical" and "mechanist;" without giving his realers any suspicion of the qualified sense in which only these words con be applied. If he thinks that by doing this he has represented the conception with fairness, or with any approach to fairness, I candus agree with him.

> I am, Sir, Yours, \&c., HERBERT SPENCER.

London, December 5, 1868.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Part VL-Laws of Multiplication.

1. The Factors.
2. A priori Principle.
3. Obverse a zriori Principle.
4. Difficulties of Inductive Verification.
5. Antagonism between Growth and Aserual Genesis.
6. Antagonism between Growth and Serual Genesis.
7. Antagonism between Development and Genesis, Asexual and Sexual.
8. Antagonism between Expenditure and Genesis.
9. Coincidence between High Nu. trition and Genesis.
10. Specialties of these Relan tions.
11. Interpretation and Qualification.
12. Multiplication of the Human Race.
13. Human Erolution in the Fu. ture.

APPERDIX.

A Criticism on Professor Owen's The- On Circulation and the Formation ory of the Vertebrate Skeleton. of Wood in Plants.

THE PRINCIPLES OF PSYCHOLOGY.

2 vols. \$4.00.
CONTENTS OF VOL. I.
Part I.-The Data of Psychology.

1. The Nervous System.
2. The Structure of the Nervous System.
3. The Functions of the Nervous System.
4. The Conditions essential to Nervous Action.
b. Nervous Stimulation and Nervous Discharge.
5. Estho-Physiology.

Part II.-Tbe Indcctions of Psychology.

1. The Substance of Mind. 6. The Revivability of Relations
2. The Composition of Mind. between Feelings.
3. The Relativity of Feelings.
4. The Associability of Feelings.
5. The Relativity of Relations between Feclings.
6. The Associability of Relations between Feelings.
7. The Revivability of Feelings.
8. Pleasures and Pains.

Part III.-General Synthiesis.

1. Life and Mind as Correspondence.
2. The Correspondence as Direct and Homogeneous.
3. The Correspondence as Direct but Heterogencous.
4. The Correspondence as extending in Space.
5. The Correspondence as extend. ing in Time.
6. The Correspondence as increasing in Specialty.
7. The Correspondence as increasing in Generality.
8. The Correspondence as increasing in Complexity.
9. The Coördination of Correspon. dences.
10. The Integration of Correspoddonces.
11. The Correspondences in their Totality.

Plat IV.-Splcinl Statrimatr

1. The Nature of Intelligence.
2. Instinct.
3. The Law of Intelligence.
4. Memory.
5. The Growth of Intelligence.
6. Rcason.
7. Beflex Action.
8. The Jeclingen
9. The Will.

Pabt V.-Paybical Simthestas

1. A Further Interpretation ncedcd.
2. The Genesis of Nerves.
3. The Genesis of Simple Nervous Systems.
4. The Genesis of Compound Ner. vous Systems.
5. The Genesis of Doubly Compound Nervous Systems.
6. Functions as related to shete
Structures.
7. Physical Lawn an thus inter. preted.
8. Evidence from Normal Varis. tions.
9. Eridence from Abnormal Te. riations.
10. Resulte.

Appenili.

On the Action of Anosthetics and Narcotica
CONTENTS OP VOL. II.

Part VI.-Special Analybis.

1. Limitation of the Subject.
2. Compound Quantitative Reasoning.
3. Compound Quantitative Reasoning (continued).
4. Imperfect and Simple Quantita. tive Reasoning.
b. Quantitative Reasoning in general.
5. Perfect Qualitative Reaconing.
6. Imperfect Qualitative Reasoning.
7. Reavoning in general.
8. Clavification, Na:ning, and Reco:nition
9. The Perciption of Special IIbjects.
10. The Parception of Bolly as preNenting Dy namicil, Station). Drnamical, add Statical Attributer.
11. The Perecption of liony :a pris Re-uting Statico-Dy baniaceal and statical Attributes.
12. The Perception of Bouly an presenting Statical Astrit butcs.
13. The Perception of Space.
14. The Perception of Time.
15. The Perception of Motion.
16. The Perception of Resirs. ance.
17. Perception in gencral.
18. The Relations of Niwilarity and Lissimilarity.
19. The Relationy of Cointernsicn and Non-Cuintension.
20. Thie Kelations of C'nextensivo and Non-l'oersension.
21. The R lations of Cocisisede and Son-('oexistencr.
22. Thr IRelations of Connature and Non. ${ }^{\text {Connature }}$
23. Thir Relatiuns of Likeness and Inlikentes.
2: The Ir.lation of Neyuence.
2ri. Consciuusaces in gencral.
24. Results.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

Vol II.
Pabt VI.-Ecclesiastic Instrtutions. \$1.26.
CONTENTS.

1. The Religious Idea
2. Medicine-Men and Priests.
3. Priestly Duties of Descendants.
4. Eldest Male Descendants as Quasi-Pricsts.
b. The Ruler as Priest.
5. The Rise of a Priesthood.
6. Polytheistic and Monotheistic Prietthoods.
7. Ecclesiastical Hierarchics.
8. An Ecclesiastical System as a
9. The Military Functions of Priests.
10. The Civil Functions of Priests.
11. Church and State.
12. Nonconformity.
13. The Moral Influences of Priest hoods.
14. Evelesiastical Retrospect and Prospect.
15. Religious Retrospect and Prospect.
$\left.\begin{array}{l}\text { Pabt VII.-Profrssional Inetitutions. } \\ \text { Pabt VIII.-Industral Ingtitutions. }\end{array}\right\}$ In preparaliom.
Vol. III.-In preparation.

THE PRINCIPLES OF MORALITY.

Vol. I.
Part I.-The Data of Ehics. \$1.26.
CONTENTS.

1. Conduct in general.
2. The Evolution of Conduct.
3. Good and Bad Conduct.
4. Ways of judging Conduct.
b. The Physical View.
5. The Biological View.
6. The Paychological View.
7. The Sociological View.
8. Criticisms and Explanations.
9. The Relativity of Pains and
Pleasures.
10. Kgoism versus Altruism.
11. Altruism versus Egoism.
12. Trial and Compromise.
13. Conciliation.
14. Absolute Ethics and Relative Ethics.
15. The Scope of Ethics.

Part II.-In preparation.
Vol. II.-In preparation.
"Mr. Spencer is one of the most rigorons as well as boldest thinkers that English speculation has yet produced."-Jorm Stuart Milu.

New York: D. APPLiETON \& CO., 1, 3, \& 5 Bond Street,

THES MISCRLTANEOUS WORNES

08

HERBERT SPENCER.

EDUCATION:
 ETKGLECTUAL, MORAL, AND PHYBICAL
 1 vol, 81.26. Cheap edition, paper, 50 centa CONTENTS.

\author{

1. What Knowledge is of most 2. Intellectual Education. Worth ?
 8. Moral Education.
 4. Physical Education.
}

SOCIAI STATICS;
OR,
the conditions essential to hoyan mappiness spech. FIED, AND THE FIRST OF TIEM DEVELOPED.

1 vol $\$ 2.00$.
CONTENTS.
Introdectios.
The Doctrine of Expediency. Lemma I. The Doctrine of the Moral Sense. La-mma II.

Part 1.

1. Definition of Morality.
2. The Evanescence of Eril.
3. The Divine Idea, and the Conditious of ita Realization.

Pati II.
4. Derivation of a Finst Principle. 10. The Right of Property.
6. Sexmadary Derivation of a First Principle.
6. First Principle.
[ciple.
7. Application of this First Prin-
8. The Riehts of Life and Personal Liberty.
9. The light to the lise of the Earth.
11. The Right of Property in Idras.
12. The light of Property in Character.
13. The Right of Fixchange.
11. The Rizht of Free Speech
15. Furthrer Rights.
16. The Rights of Wom:n.
17. The Lights of Children.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

RECENT DISCUSSIONS

In Sciency, Palosopay, and Mornis. 1 vol 8200

CONTENTS.

1. Morals and Moral Sentiments.
2. Origin of Animal-Worship.
3. Of Laws in general and the 0
4. The Classification of the Sciences. der of their Discorery.
5. The Genesis of Science.
6. Postscript: Replying to Criticisms.
7. Specialized Administrations
8. What is Electricitr?
9. The Constitution of the Sme
10. Reasons for dissenting from the
11. The Collective Wisdom. Philosophy of Comte.
12. Political Fetichism.
13. Mr. Martineau on Evolution.

THE MAN verous THE STATE.

Reprantid fmox "Ter Popthar Science Monthly," with a Postsceit
Small 8ro. Paper, 80 cents. CONTENTS.

1. The New Toryism.
2. The Sins of Legislatorn
3. The Coming Silavery.
4. The Great Political Superscition

These articles, in the course of their publication, aroused a profous interest, and the present cheap edition is in obedience to a demand 11 the papera in a form for a wide, popular circulation.

PHILOSOPHY OF STYLE.

12mo. Cloth, 50 cents.

New York: D. APPLETON \& CO., 1, 3, \& 5 Bond Streeh

D. APPLETON \& CO.'S PUBLICATIONS.

CHARLES DARWIN'S WORKS.
ORIGIN OF SPECIES BY MEANS OF NATURAE selection, Or the preservation of pa. VORED RACES IN THE ATRUGGLE FOR LIPE. From sixth and last London cdition. 2 vols., 12 mo . Cloth, $\$ 4.00$
DESCENT OF MAN, AND SELECTION IN RELATION TO sEX. With many Hllustrations. A new edition 12 mo . Cloth, 83.00 .
JOURNAL OF RESEARCHES INTO THE NATURAL HISTORY AND GEOLOGY OF COUNTRIES VISITED DURING THE VOYAGE OF H. M. S. BEAGLE ROUND THE WORLD. New edition. 12mo. Cloth, $\$ 2.00$.

EMOTIONAL EXPRESSIONS OF MAN AND THE LOWER ANIMALS. 12mo. Cloth, 83.50 .

THE VARIATIONS OF ANIMALS AND PLANTS UNDER domestication. With a Preface, by Profesbor Asa Gray. 2 vols. Illustrated. Cloth, 85.00 .

INSECTIVOROUS PLANTS. 12 mo . Cloth, 82.00 .
MOVEMENTS AND HABITS OF CLMMBLNG PLANTA. With Illustrations. 12mo. Cloth, \$1.26.

THE VARIOUS CONTRIVANCES BY WHICH ORCEIDS ARE FERTILIZED BY INSECTS. Revised edition, with Illustrations. 12mo. Cloth, \$1.76.
THE EFFECTS OF CROSS AND SELF•PERTILIZATION IN THE VEGETABLE KINGDOM. 12mo. Cloth, 82.00 .

DIFFERENT FORMS OF FLOWERS ON PLANTS OF THE SAME SPECIES. With Illustrations. 12mo. Cloth, \$1.50.

THE POWER OF MOVEMENT IN PLANTS. By Cbirlia Darwin, LL. D., F. R.S., assisted by Francis Darwig. With llugtrations. 12mo. Cloth, 82.00 .
THE FORMATION OF VEGETABLE MOULD THROUGE THE ACTION OF WORMS. With Observations on their Habita. With Hlustrations. 12mo. Cloth, 81.50 .

Now York: D. \triangle PPLETON \& CO., 1, 8, \& 5 Bond Street.

D. APPLETON \& CO.'S PUBLICATIONS

JOHN TYNDALL'S WORKS.

ESSAYS ON THE FLOATING MATTER OF THE A] in Ielation to Putrefaction and Infection. 12mo. Cloth, 81.3 (

ON FORMS OF WATER, in Cloud, Rivers, Ice, and Glecj With 35 Illustrations. 12mo. Cloth, $\mathbf{8 1 . 5 0}$.

HEAT AS A MODE OF MOTION. New edition. 12 Cloth, 82.50.

ON SOUND: A Course of Eight Lectures delivered at the \mathbf{R}_{1} Institution of Great Britain Illustrated. 12mo. New edit Cloth, 82.00 .

FRAGMENTS OF SCIENCE FOR UNSCIENTIFIC PE PLE. 12 mo . New revised and enlarged edition. Cloth, \&2.31

LIGIIT AND EL,ECTRICITY. 12mo. Cloth, 81.25.
LESSONS IN ELECTRICITY, 1875-'70. 12mo. Cloth, $\$ 1$
HOURS OF EXERCISE IN THE ALPS. With Illustratin 12mio. Cloth, 82.00.

FARADAY AS A DISCOVERER. A Memoir. 12mo. Ch 81.00.

CONTRIBUTIONS TO MOLECULAR PHYSICS in the rmain of Radiant Heat. \&5.00.
sIX LECTURES ON LIGHT. Delivered in America in 18^{\prime} 'i3. With an Appendix and numernus Illustrations. Cloth, 81.

LDDRESS delisered before the British Association, assembled at \mathbf{F} fa-t. Rerised with Additious. 12mo. Paper, 50 cents.

Gengarches on diamagnetisa and magn CRYSTALLIC ACTION, including the Question of Diam netic Polarty. With Ten Plates 12mo, cloth. Price, 81.80.

New York: D. APPLETON \& CO., 1, 3, \& 8 Bond Streok.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

D. APPLETON \& 00.18 PUBLICATIOW\&

SIR JOHN LUBBOCK'S (Barl) WORKS.

TRE ORIGIN OF CIVIMIZATION AND TRE RELY TIVE CONDITION OF MAN, MENTAL AND 8001 CONDITION OF 8AVAGES Fourth edition, with mamerce ditions. With Illustrationa 8ro. Oich, fren

REYAINS AND THE LANNERS AND COEIOMS OT MODE! SAFAGES. Illustrated. 8va Cloth, eb.ca

ANTE, BEES, AND WABPE. 1 Recond of Obennmiane on Habits of the Social Hymanopters. With Colord Platan 18 Cloch, 18.00.
 Deoe, add wheps duriag the hat ten yeart, wha fiow to trat dielir werlas a dition and powere of censa. The asthor hee carethity rascided end mazkres: parment of ortyinal rescarch"

ON THE SENSEg, INETINCTY, AND INTELLICENC OF ANIMARE, WITL SPECLAL REFERENCE TO IMBICI
 tionm 18ma Oloth, 81.78.

 tbose of man hlumerif.


```
        2s centa
```



```
garmere Evercaston
```

Now Tark : D. APPLETOX \& CO., 1, 8, \& B Bood 8eon

Professor JOSEPH LE CONTE'S WORKS.

EVOLUTION AND ITS RELATION TO RELIGIOUE

THOUGHT. By Josepy Le Contr, LL. D., Professor of Geology and Natural History in the Unirersity of California. With numer. ous Illustrations. 12mo. Cloth, 81.50.
"Mach, very much has been written, especially on the natnre and the evidences of evolution, bat the ilterature is so voluminous, mach of it so fragmentary, and most of it so technical, that even very inselligent persons have still very vague idcas on the subject. I have attempled to give (1) a very concise account of what we mean by evolution, (2) an outhine of the evidences of ite truth drawn from many different eources, and (8) its relation to fondamental religious beliefs." - Erelrad from Preface.

ELEMENTS OF GEOLOGY. A Text-book for Colleges and for

 the General Reader. By Josepi Lx Conts, LL. D. With upward of 900 Illustrations. New and enlarged edition. 8vo. Cloth, 84.00."Besides preparing a comprehensive text-book, ruited to present demands, Profersor Le Conte has given us a volume of great value as an exposition of the sabject, thoroaghly ap to date. The exam ples and npplications of the work are almost entirely derived from this country, so that it may be properly considered an American geology. We can commend this work withont qualification to all who derire an inteligent acquaintance wlih geological science, as fresh, lacid, fall. anthentic, the resalt of devoted atudy and of long experience in teaching." - Popular science Monthly.

RELIGION AND SCIENCE. A Series of Sunday Lectures on the Relation of Natural and Revealed Religion, or the Truths revealed in Nature and Scripture. By Josepr Le Contr, LL. D. 12 mo . Cloth, \$1.50.
"We commend the book cordially to the regard of all who are interested in Whatever pertalns to the discussion of these grave questiona, and especially to those who desire to examine closely the strong foundations on which the Cirif-. than ealth is reared."-Boston Journah

SIGHT: An Exposition of the Principles of Monocular and Binocular

 Vision. By Josepr Lif Conts, LL. D. With Illustrations. 12mo. Cloth, 81.50."Professor Lo Conte has long been known as an original investigator in this department: all that he gives us is treated with a maeter-hand. It is pleasant to Ind an American book that can rank with the very beat of foreiga booke on this anbject."-The Nation.

COMPEND OF GEOLOGY. By Josepp Le Contr, LL. D. $12 m a$ Cloth, 81.40.

New York: D. $\triangle P P L E T O N \& C 0 ., ~ 1, ~ 8, ~ \& ~ 5 ~ B o n d ~ S t r e e t . ~$

D. APPLETON \& CO.'S PUBLICATICNS.

DR. HENRY MAUDSLEY'S WORKS.
 Metayhysicul, I'hysiulogical, and l'atholuñical Aepreis. 1. Cluth, is2.s.11.
 BODY AND MIND: In Inquiry into their Comncetion a: : y. Influence, siceciaily in reference to Meutal Lisuiders. 1 in, $1:$ Cluth, :8.5in.
 PIIY:IOLOGY AND PATIOLOGY OF MND:
 Cloth, 8:.0io. Cusinst: : Chapter I. On the Mothon! of t:ee >: of the Mind.-II. The Mind and the Nerrous Es-tem-ill. : Nyinal Cord, or Tertiary Nurvous Centres; or, Nerrin:: 1 i : : : of lieflex Action.-lV. Secrndary Nervous Centria; c: : :- Cells of the Ceribial Hemi-pheres; Heationtal lers.e:- 1 a..: Primay X rvous Centres: Intellectorima Communo.-VI. : Im, in: inatia:a.

[^0]: - This immense loss of molecular mobility which oxygen and hydrogen undergo on uniting to form water-a lose far greater than that seen in other binary compounds of analogous composition-suggests the conclusion that the atom of water is a moltiple atom. Thinking that if this conclusion be true, some evidence of the fact must be afforded by the heat-absorbing power of aqueous vapour, I lately 'pat the question to Prof. Tyndall, whether it resulted from his experiments that the vapour of water absorbs more heat than the supposed simplicity of its atom would lead him to expect. I learned from him that it has an excessive absorbent power-an absorbent power more like that of the complexatomed vapours than like that of the simple-atomed vapours-an absorbent power that therefore harmonizes with the supposition that its atom is a multiple ono. Besides this anomalous lose of molecular mobility and this anomalous heatebsorbing power, there are other facts which countenance the supposition. The unparalleled evolution of heat during the combination of orygen and hydrogen is ene. Another is that exceptional property which water possesses, of beginning to expand when ita temperature is lowered below 40°; since this exceptional property is explicable only on the asumption of some change of mol scular arrangement-a change which is comprehensible if the molecules are multiple ones. And yet a further confirmatory fact is the ability of water to assume a colloid condition; for as this implies a capacity in its atoms for aggregating into high multiples, it enggeata, by analogy with knowe case, that they have a capacity for aggregating ion lower multiplea.

[^1]: - It will perhape seem etrange to class oxygen as a crystalloid. But inasmuch es the crystalloids are distinguished from the colloids by their atomic simplicity, and inarmuch as cundry gascs are reduciblo to a crystalline stata, we are justified en classing it

[^2]:

[^3]:

 In the other. It woald te out of gime have to ext down the aundry the which

[^4]: - This chapter and the following two chapters originally appeared in Part III. of the Principles of Psychology : forming a preliminary which, though indispensable to the argument there developed, was somewhat parenthetical. Haring now to deal with the general science of Biology before the more special one of Prychology, it becomes possible to transfer these chapters to their proper place Thes la:e been carefully revised.

[^5]: Inicene

[^6]:

 Olypotinen 8hould oppertiadty over prisith thin chapite on Mochod will be
 to Itral Mingina

[^7]:
 r'teat pital, mais aumi cello, non moiss iendiapenmble, d'as certain anoemble

 derematale do la orb." Commentiag on do Blainvillo's defrition of lifo, which be

 cmatisuuve mistonases of coch inser cetioes me vill cocuterbaleace outer antiong

 onve remarkable for the cleor instaition. late by coring thin I dhould tropea a einosocoption latu walde mane hove Allem, let mo take tbe opporturity of otatimno shut thongt I believe mase of M. Comito's minur generalisaliogen to bo trear cod therate I omengelse the profiality of many incidootal obwrotioses be matica. I by se mam mope thio grem. Theoe ceend doetrines in which 1 egroe with
 thres pemold deetrices which are dindinctive of hio phillmophy, I dimapo-with

[^8]:

[^9]: ad Pugatulogy, publb sed is 1667

[^10]:

[^11]:

 thas sumes macil nave appeofinita.

[^12]: - Prof. Husley avoide this difficulty by making every kind of Genesis a mode of development. His classification, which suggested the one given above, is as follows:-

[^13]: rith breots but mreah emallor than the other: corolle large bat deat aloag the top: cis atamens with anthors pistil, and ceod-romel. Srd lower, large; sis-clan culfs, clon corolla, with cis atamens, pistih, and seed-roceel, with a eccand pietil hall unfolded at ite aper. sth flower, large; divided along the hop, sis stameme Sth Dower, large: coralla divided iato three parta, cis etameme bet towor, large; corolle cleth calys six- eleth, the seet of the flowermormal. 7th, and ali amo madiag dowers, normal.

[^14]: - I owe to Mr Lubbock an important condrmation of this view. Arer statlag his belief, that berween Orosteceses and Insecte, thero exints a phyeiological relation aadognas to that which exists between wator-vertebrata and land-vertobeata; be pointed out in me, that while among Inweta, thero is a deffito limit of growth, and an accompanying doanite commencoment of reproduction, aroong Ornatacesing where growth has no deffite lisaih there is no definito relation between then commencement of roprodurtion and the docreace or arrest of growih

[^15]: Ow mou beck, that the becreace of a pecalladty by coimoldence of "epcataceme

[^16]: - Froen thin teble I bave omitted the dem Rkimama, which other botanmen
 tug which there has arseen this difference of opinion, are cortrin Rlowinnas planta, which grow persitically on the roots x trese. The remoses mignel is Undlicher aod Liodioy, for arecting them inco a coparate groap of Phameguan

 thoy aro withous allorophyil. Mr Grimith and Dr Hooter, bowown, have given

 Hooker and Mr Grietth. It very commonty happee that animal-parmine an cobertant formen of the typeo to which they beloas: and, by aselogy, wo may ext

 clemen ative lowe of the limbe eed agree of maen by tho almplisconion of the

[^17]: * them) from Itrof. Aurire "Ther an Claciscation"

[^18]: - For explanations, see "Illogical Geology." Eesays : Second Sorics.

[^19]: - I am iadebted to Mr Fluwes for fhe opportmity of examining the collaction of stells in the Musoum of tho Callege of Surgeons for merification of tive De.

[^20]: "A Powor of which the naturo remains for ever inconcoivabla, and to which no limita in Time or Bpace cas be trandied, worta in us cestain cifncts. These cffectu have certain likenemes of kind, the most genaral of which we clase together under the names of Matter, Motion, and D'or0e: and between these effects thero are likenesecs of connection, the most constant of which wo clans as laws of tho highest certainty. Analyata reduces these soveral kinds of cffect to one kind of effect ; and these revernl kinds of uniformity to one kind of uniformity. And the highoes achinvement of Scienco is the juterpretation of all orders of phenorneas, as differently-couditioned manifertations of this uno kind of effoch, undus differently-conditioned modes of thin ono kind of uniformity. But whra Scienco has doue this, it has done nothing more than syatamntize our expericnoc ; aud hae in no degree extennded the limite of our experfenoes Wo can say no more than before, whether tho uniformitices ane 30 absolutely nocessary, as they have become to our thought rolatively accessary. Tho utinost possibility for ua, la an interpretation of the proces of things as it provents itself to our limited consclousaese ; but Low this process is relntod to the eotual proceen, we are unable to conceive, much less to kuow. Bimilariy, it must bo rememberod thint while the connection between the phenomomal order and the ontological order is for ever inmoratable; so is tho connection betweon the conditioned forms of briag and the anconditioned form of betos fore ever inserutable. Tha interpretation of all phenomena in tertas of Mathar, Motion, and Yorce, is nothing more than tho reduchon of our comapiax syminols of thought to the simplest aymbole; and when the eafuation has Leeca lrought to its lowast torma the aymbola remain symberes atill. Howoe the reasoniage contained in the loregoing pages, aflond no suppart to eithor of the antagoaict hypothesce reapocting tho ullimate nature of

