
Topological	Galois
Theory

(solvability and non solvability of 
equations in finite terms)



How to solve explicitly given algebraic or 
differential equation?



Cardano-Tartaglia formula



Niccolò Fontana Tartaglia (1499/1500 – 13 December 
1557, Italian mathematician) &
Gerolamo Cardano (24 September 1501 – 21 September 
1576) was an Italian polymath)



Intersection of two quadrics

One can find by radicals intersection points of 2 quadrics. 
It provides solution of any equation of degree four.
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Joseph-Louis Lagrange (25 January 1736 – 10 April 
1813, Italian mathematician)



Abel–Ruffini theorem

The Abel Ruffini theorem states that there is no 
solution in radicals to general polynomial equations 
of degree five or higher with arbitrary coefficients.
The theorem is named after Paolo Ruffini, who made 
an incomplete proof in 1799, and Niels Henrik Abel, 
who provided a complete proof in 1824.



Niels Henrik Abel (5 August 1802 – 6 April 1829, Norwegian 
mathematician) &
Paolo Ruffini (September 22, 1765 – May 10, 1822, Italian 
mathematician)



Évariste Galois (25 October 1811 – 31 May 1832, French 
mathematician)

Galois started a very elegant and power Galois theory. It explains 
completely which algebraic equations can be solved by radicals.



Camille Jordan (5 January 1838 – 22 January 1922, French 
mathematician)

Jordan found topological meaning of Galois groups for a wide 
class of algebraic equations.



Carl Friedrich Gauss (30 April 1777 – 23 February 
1855, German mathematician)

Gauss proved the constructibility of the regular 17-gon in 1796. Five years 
later, he formulated a condition for the constructibility of regular polygon.



Joseph Liouville (24 March 1809 – 8 September 1882, French 
mathematician)



First Liouville’s theorem (1833)
The theorem provides conditions for integrability of elementary 
functions in finite terms. For example it shows that one can not 
write elementary formulas for the following integrals:



Second Liouville’s theorem (1838)

The theorem provides conditions for solvability by quadratures of 
second order linear differential equations. For example it shows 
that one can not solve by quadratures the following equation:



Picard-Vessiot theory (1910)

Picard discovered a deep analogy between algebraic 
equations and linear differential equations.
Picard-Vessiot theory is a version of Galois theory for such 
equations.



Émile Picard (24 July 1856 – 11 December 1941, French 
mathematician) &
Ernest Vessiot (8 March 1865 – 17 October 1952, French 
mathematician)



Vladimir Igoverich Arnold (12 June 1937 – 3 June 2010, 
Soviet and Russian mathematician)

Vladimir Igorevich was my beloved teacher. He found a topological 
proof of Abel-Ruffini theorem.



My first paper on this subject was 
published half century ago





THANK YOU
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Lectures 1, September 10

INTRODUCTION

1. UNSOLVABILITY IN FINITE TERMS

A lot of beautiful results on unsolvabilily of equations in finite terms
were obtained by

Gauss, Abel, Galois, Liouville, Picard, Vessiot, Ritt, Kolchin, Rosen-
licht and by other mathematicians.

What does it mean that an equation can not be solved explicitly?

One can fix a class of functions and say that an equation is solved ex-
plicitly if its solution belongs to this class. Different classes of functions
correspond to different notions of solvability.



2

A class of functions can be introduced by specifying:

a list of basic functions and

a list of admissible operations.

Given the two lists, the class of functions is defined as

the set of all functions that can be obtained from the basic functions
by repeated application of admissible operations.
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2. CLASSICAL CLASSES OF FUNCTIONS

To define a classical class of functions we have to fix its list of basic
functions and its list of admissible operations.

A many of them use the list of basic elementary functions and
the list of classical operations.

LIST OF BASIC ELEMENTARY FUNCTIONS

all constants, x (or x1, . . . , xn);
exp, ln, x→ xα;

sin, cos, tan;

arcsin, arccos, arctan.
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9. CLASSICAL OPERATIONS
LIST OF CLASSICAL OPERATIONS

1) composition: f, g ∈ L⇒ f ◦ g ∈ L;

2) arithmetic operations: f, g ∈ L⇒ f ± g, f × g, f/g ∈ L;

3) differentiation: f ∈ L⇒ f ′ ∈ L;

4) integration: f ∈ L and y′ = f , i.e. y = C +
x∫
f (t)dt ⇒ y ∈ L;

5) extension by exponent of integral: f ∈ L and y′ = fy, i.e. y =

C exp
x∫
f (t)dt⇒ y ∈ L;
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6) algebraic extension: f1, . . . , fn ∈ L and yn+ f1y
n−1 + · · ·+ fn =

0⇒ y ∈ L;

7) exponent: f ∈ L and y′ = f ′y, i.e. y = C exp f ⇒ y ∈ L;

8) logarithm: f ∈ L and dy = df/f , i.e. y = C + ln f ⇒ y ∈ L;

9) meromorphic operation: if F : Cn→ C is a meromorphic function,
f1 . . . , fn ∈ L, and y = F (f1, . . . , fn) ⇒ y ∈ L.

The operations 2) and 7) are meromorphic operations.
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10. RADICALS, QUADRATURES, etc.

I. Radicals.
Basic functions: rational functions.
Operations: arithmetic operations and extensions by radicals.

II. Elementary functions.
Basic functions: basic elementary functions.
Operations: composition, arithmetic operations, differentiation.

III. Generalized elementary functions.
The same as elementary functions + algebraic extensions.
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IV. Quadrature.
Basic functions: basic elementary functions.
Operations: composition, arithmetic operations, differentiation and

integration.

IV’. “Liouville’s quadratures”.
Basic functions: all complex constant.
Operations: the arithmetic operations, integration, extension by the

exponent of integral.

V. Generalized quadratures.
The same as quadratures + algebraic extensions.
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11. LIOUVILLE’S THEORY

SLOGAN OF LIOUVILLE’S THEORY.

“Sufficiently simple” equations have either “sufficiently simple” solu-
tions or no explicit solutions at all.

Theorem 1 (Liouville). Class of “Liouville’s quadratures” = class
of quadratures.

Theorem 8 shows that the class of quadratures can be constructed
wirhout highly non algebraic operation of taking composition of two
given functions. Thus Theorem 8 reduces the problem of solvability by
quadratures to differential algebra.

The similar result holds for all classical classes of functions.
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Theorem 2 (Liouville 1833).An integral y(x) of an algebraic func-
tion is a generalized elementary function if and only if

y(x) = A0(x) +

n∑
i=1

λi lnAi(x),

where λi ∈ C and Ai are algebraic functions.

Similarly Liouvilee answered on the following question:

Which generalized elementary functions have untyderivative repre-
sentable by generalized elementary functions?

In 1968 Rosenlicht found very constructive, pure algebraic proof of
Liouville’s result.

In 2018 I reprove again Liouville’s result. My proof is basically geo-
metric. It uses ideas of Galois Theory.
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12. SECOND LIOUVILLE’S THEOREM

Liouville proved the following fantastic theorem:

Theorem 3 (Liouville, 1841). An equation

y′′ + py′ + qy = 0

, where p, q are rational functions, is solvable by generalized quadra-
tures if and only if it has a solution

y1(x) = exp

x∫
a(t)dt,

where a(t) is an algebraic function.

In fact as Liouville proved Theorem can be modified for the case when
coefficients p, q are , say, representable by genera;ized quadratures , or
belong to agiven differential field.
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Theorem 4 (Picard-Vessio 1910, M. Rosenlicht 1973, Kh. 2018).
A linear order n differential equation is solvable by generalized
quadratures if and only if:

1) it has a solution y1 = exp
x∫
a(t)dt where a(t) is an algebraic

function, and

2) if the equation of order (n−1) obtained from the original equa-
tion by the reduction of order is solvable by generalized quadratures.

To prove Theorem 12 Picard and Vessio developed the differential
Galois theory. Rosenlicht used the valuation theory.

My proof is based on the original ideas due to Liouville. and Ritt. It is
very elementary. This Spring I found a wide generalization of Liouville
thechnoque which is very simple and very powerful (not published yet).
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13. PICARD–VESSIOT THEORY
Picard discovered a similarity between linear differential equations

and algebraic equations. He initiated the development of a differential
of analogue of Galois theory.

Theorem 5 (Picard–Vessiot, 1910).A linear differential equation is
solvable by quadratures if and only if its differential Galois group
is solvable. It is solvable by generalized quadratures if and only if
the connected component of the identity in its differential Galois
group is solvable.

Picard–Vessiot theory has many applications. For example, for an
equation whose coefficients are rational functions with integral coef-
ficients it allows to determine explicitly is the equation solvable by
generalized quadratures or not.
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14. TOPOLOGICAL GALOIS THEORY

Theorem 6 (C.Jordan).The Galois group of an algebraic equation
over the field of rational functions 9n several complex variables is
isomorphic to the monodromy group of the (multivalued) algebraic
function defined by the same equation.

Jordan’s theorem implies that the Galois group of an algebraic equa-
tion over the field of rational functions in several complex variables has
a pure topologycal meaning. One dimensional topological Galois theory
deals with functions in one variable There is also a multydimensional
version of topological Galois theory but we will not talk about it now.

Corollary 7 (On nonrepresentability of rational functions by radi-
cals). If the monodromy group of an algebraic function is unsolvable
then the function is not representable by radicals.
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CONSTRUCTING TOPOLOGICAL GALOIS THEORY

PROGRAM:

I. Find a wide class of functions which is closed under classical oper-
ations, such that for all functions from the class the monodromy group
is well defined.

II. Use the monodromy group within this class instead of the Galois
group.
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15. CLASS OF S-FUNCTIONS

A multivalued analitic function of one complex variable is called S-
function if the set of its singular points is at most countable.

Theorem 8. The class of S-functions is closed under
composition,
arithmetic operations,
differentiation,
integration, meromorthic operations,
solving algebraic equations,
solving linear differential equations.
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Corollary 9. A function representable by generalized quadratures
is S-function.

Thus a function having an uncountable number of singular points
can not be expressed by generalized quadratures.

Example. Consider a function

f = ln(

n∑
i=1

λi ln(x− ai)).

If n ≥ 3, λi are generic and ai 6= aj if i 6= j then:

1) the monodromygroup of f contains continuum elements,

2) the set of singular points of f is everywhere dense on the complex
line.
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16. SOLVABLE MONODROMY GROUP

Theorem 10. The class of S-functions whose monodromy group
is solvable is closed under:

integration,

differentiation

composition

and meromorphic operations
(in particular arithmetic operations).
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Corollary 11. If the monodromy group of a function f is unsolv-
able, then f can not be represented via meromorphic functions us-
ing integration, differentiation, composition and meromorphic op-
erations.

Theorem 12. If the monodromy group of an algebraic function
is unsolvable then one can not represent it by a formula which
involves meromorphic functions and elementary functions and uses
integration, composition and meromorphic operations.
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17. FUCHS-TYPE LINEARDIFFENTIAL EQUATIONS

Theorem 13. If the monodromy group of a Fuchs-type linear dif-
ferential equation or of a system of Fuchs-type linear differential
equations is solvable then

this equation or this system of equations is solvable by quadra-
tures.

But if it is unsolvable one can not represent their general solu-
tions by a formula which involves

integration, composition and meromorphic operations and uses
meromorphic and elementary functions.



20

Corollary 14. Consider a system

y′ =
∑ Ai

x− ai
y,

where y is n-vector and Ai are n×n matrices with constans entries.

Assume that the matrices Ai have sufficiently small entries. Then

by generalized quadratures if and only if all the matrices Ai are
triangular in some basis.

Moreover if such system is not triangular in some basic, one
can not write an finete formula for its generic solution which uses
arbitrary meromorphic functions.
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Figure 1: The first and the second cases of integrability

18. MAPPING FROM A BALL TO A CURVED POLY-
GON

Corollary 15. Let G be a polygon bounded by arcs of circles on
the complex line. Let fG : B1→ G be a Riemann map from a unit
ball onto G. One can classify all polygons G such that the function
fG is representable by quadratures.
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19. THIRD CASE OF INTEGRABILITY
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20. POLYNOMIALS INVERTIBLE IN RADICALS

Theorem 16 (Ritt 1922). A polynomial invertible in radicals if
and only if it is a composition of the power polynomials z → zn,
Chebyshev polynomials and polynomials of degree ≤ 4.

Theorem 17 (Yu.Burda, Kh. 2012). A polynomial invertible in
radicals and solutions of equations of degree at most k is a compo-
sition of power polynomials, Chebyshev polynomials, polynomials
of degree at most k and, if k ≤ 14, certain exceptional polynomials
polynomials (a description of these polynomials is given).

The proof is based on classification of finite simple groups and results
on primitive polynomials obtained by Muller and many other authors.
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