Estructuras Algebraicas - FaMAF - 2017

Práctico 2: Grupos II

- 1. Para un homomorfismo de grupos $f: G \to H$ probar lo siguiente.
 - (a) $f(e_G) = e_H$ y $f(g^{-1}) = (f(g))^{-1}$ para todo $g \in G$. (f no merecería llamarse homomorfismo de grupos si no cumpliera al menos estas dos propiedades).
 - (b) Si A es un subgrupo de G y B es un subgrupo de H, entonces f(A) es un subgrupo de H y $f^{-1}(B)$ es un subgrupo de G. En particular, Im(f) = f(G) es un subgrupo de H y $Ker(f) = f^{-1}(\{1_H\})$ es un subgrupo de G.
 - (c) Si G que es abeliano (resp., finito), entonces f(G) es abeliano (resp., finito).
 - (d) Si G es cíclico generado por a, entonces f(G) es cíclico generado por f(a). En particular, $f(a^n) = f(a)^n$ para todo $n \in \mathbb{Z}$ y luego f está completamente determinada por su valor en a.
 - (e) Generalizando el punto anterior, si G está generado por un subconjunto S, entonces f(G) está generado por f(S). En particular, f queda completamente determinado por sus valores en S.
 - (f) Concluir que si $a \in G$ tiene orden n, entonces f(a) tiene orden $\leq n$ (veremos más adelante que en realidad el orden de f(a) divide a n).
- 2. Decir si las siguientes funciones son homomorfismos, y el tal caso, decir si son monomorfismos y/o epimorfismos. (Considerar \mathbb{Z} y \mathbb{Z}_n , n = 6, 5, 12, con las sumas usuales).
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$, f(a) = ma, $m \in \mathbb{Z}$.
 - (b) $f: \mathbb{Z}_6 \to \mathbb{Z}_{12}, f(a) = 2a$.
 - (c) $f: \mathbb{Z}_5 \to \mathbb{Z}_5, f(a) = 3a$.
- 3. Un subconjunto finito no vacío de un grupo G es un subgrupo si y sólo si es cerrado bajo el producto del grupo G.
- 4. Sea $f:G\to H$ homomorfismo de grupos, con f biyectiva. Probar que f^{-1} es homomorfismo de grupos.
- 5. Sea G un grupo.
 - (a) Sea $f: G \to G$ definida por $f(a) = a^{-1}$. Probar que f es isomorfismo si y sólo si G es abeliano.
 - (b) Sea $f: G \to G$ definida por $f(a) = a^2$. Si G es abeliano, entonces f es endomorfismo.
- 6. Sea G un grupo finito y $f: G \to G$ un isomorfismo sin puntos fijos no triviales tal que $f^2 = \text{id}$. Probar que G es abeliano. ¿Y si G no es finito?
- 7. Sean $G \vee H$ grupos.
 - (a) Probar que $G \times H$ con la operación (g,h)*(g',h') = (gg',hh') es un grupo. Si G y H son grupos abelianos con notación aditiva (+), entonces denotamos a $G \times H$ por $G \oplus H$. En tal caso, probar que $G \oplus H$ es abeliano.
 - (b) Probar que las proyecciones $\pi_G: G \times H \to G$ y $\pi_H: G \times H \to H$ (dadas por $(g,h) \mapsto g$ y $(g,h) \mapsto h$ respectivamente) son epimorfismos de grupos. Decir quién es $\operatorname{Ker}(\pi_G)$ y $\operatorname{Ker}(\pi_H)$.
 - (c) Probar que si G_1 es un subgrupo de G y H_1 es un subgrupo de H, entonces $G_1 \times H_1$ es un subgrupo de $G \times H$.
 - (d) En el caso G=H, probar que la diagonal $\{(g,g):g\in G\}$ es un subgrupo de $G\times G.$

- (e) Más en general, si $\{G_i: i \in I\}$ es una familia de grupos indexada por un conjunto I, entonces el producto cartesiano $G = \prod_{i \in I} G_i$ con la operación punto a punto es un grupo y las proyecciones $\pi_j: G \to G_j$ dadas por $(g_i)_{i \in I} \to g_j$ son epimorfismos de grupos.
- (f) (Propiedad universal del producto) Sean G_1 y G_2 dos grupos y $\pi_i: G_1 \times G_2 \to G_i$, con i = 1, 2, las proyecciones. Probar que para cualquier grupo H, se tiene una función biyectiva

$$\operatorname{Hom}(H, G_1 \times G_2) \to \operatorname{Hom}(H, G_1) \times \operatorname{Hom}(H, G_2)$$

que manda un homomorfismo $\varphi: H \to G_1 \times G_2$ en el par $(\pi_1 \varphi, \pi_2 \varphi)$.

- 8. Dar todos los subgrupos de $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. ¿Es $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ isomorfo a \mathbb{Z}_4 ?
- 9. Calcular los subgrupos cerrados (topológicamente) de $(\mathbb{R}, +)$.
- 10. Calcular $\operatorname{End}(\mathbb{Z})$, $\operatorname{End}(\mathbb{Q})$, $\operatorname{Aut}(\mathbb{Z})$ y $\operatorname{Aut}(\mathbb{Q})$.
- 11. (a) Sea Q_8 el subgrupo de $GL(2,\mathbb{C})$ generado por $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. Probra que Q_8 es no abeliano de orden 8.
 - (b) Sea H el subgrupo de $GL(2,\mathbb{C})$ generado por $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Probra que H es no abeliano de orden 8 no isomorfo a Q_8 .
- 12. Sea G un grupo. Se define $C(G) := \{a \in G : ab = ba, \forall b \in G\}$. Probar que C(G) es un subgrupo abeliano de G (llamado el centro de G).
- 13. Para un grupo G probar lo siguiente.
 - (a) $|a| = |a^{-1}|$, $|bab^{-1}| = |a|$ y |ab| = |ba| para todos $a, b \in G$.
 - (b) Sea $a\in G$. Si $|a|<\infty$, entonces $|a^k|=|a|/(|a|,k)$. Si $|a|=\infty$, entonces $|a|=|a^k|$ para $k\neq 0$.
 - (c) Si $f: G \to H$ es un homomorfismo de grupos y $a \in G$ tiene orden finito, entonces |f(a)| divide a |a|.
 - (d) Sean $a, b \in G$ elementos de orden finito que conmutan. Si (|a|, |b|) = 1, entonces |ab| = |a||b|. Si (|a|, |b|) = d > 1, entonces $|ab| \le [|a|, |b|]$. Además, existen divisores m y n de |a| y |b| respectivamente, tales que (m, n) = 1 y mn = [|a|, |b|]. Luego, el elemento $a^{|a|/m}b^{|b|/n}$ tiene orden [|a|, |b|].
 - (e) Si G es abeliano, entonces el conjunto de todos los elementos de orden finito forman un subgrupo de G.
 - (f) El resultado anterior no es cierto si G no es abeliano como bien lo muestra el siguiente ejemplo. Sea $G = GL_n(\mathbb{Q})$ y consideremos

$$a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 2 \\ \frac{1}{2} & 0 \end{pmatrix}.$$

Luego $a^2 = b^2 = 1$; sin embargo

$$ab = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & 2 \end{pmatrix}$$

tiene orden infinito.

14. Sea G un grupo abeliano y $p, q \in \mathbb{N}$, primos distintos. Si |G| = pq y existen $a, b \in G$, con |a| = p, |b| = q, entonces G es cíclico.

- 15. Probar que todos los elementos de \mathbb{Q}/\mathbb{Z} tienen orden finito, pero sin embargo \mathbb{Q}/\mathbb{Z} es un grupo infinito.
- 16. Sea G un grupo. Para cada $k \in \mathbb{N}$, sea $r_k(G)$ el número de elementos de G de orden k.
 - (a) Probar que si G y H son isomorfos, entonces $r_k(G) = r_k(H)$ para todo $k \in \mathbb{N}$.
 - (b) Calcular $r_k(\mathbb{Z}_2 \oplus Z_2)$, $r_k(\mathbb{Z}_6)$ y $r_k(\mathbb{S}_3)$ para todo $k \in \mathbb{N}$.
 - (c) Probar que $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ no es isomorfo a \mathbb{Z}_4 . En cambio, $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ es isomorfo a \mathbb{Z}_6 .
 - (d) Probar que si (m,n) > 1, entonces $\mathbb{Z}_n \oplus \mathbb{Z}_m$ no es isomorfo a \mathbb{Z}_{mn} .
- 17. Si (m,n)=1, entonces $\mathbb{Z}_n\oplus\mathbb{Z}_m$ es isomorfo a \mathbb{Z}_{mn} . Más en general, si G es un grupo abeliano de orden mn que contiene un elemento de orden n y uno de orden m, entonces G es isomorfo a \mathbb{Z}_{mn} . Mostrar con un ejemplo que esto puede no ser cierto si G no es abeliano.
- 18. Para un grupo G y un entero k, sea $a_k(G)$ el número de subgrupos de G de orden k.
 - (a) Si G y H son grupos isomorfos, entonces $a_k(G) = a_k(H)$ para todo $k \in \mathbb{N}$.
 - (b) Probar que si G es un grupo finito cíclico, entoces $a_k(G) \leq 1$ para todo $k \in \mathbb{N}$.
- 19. Sea G un grupo y $Subg(G) := \{A : A < G\}$. Si Subg(G) es finito, entonces G es finito.
- 20. Si G y H son dos grupos isomorfos, entonces $\operatorname{Aut}(G) \cong \operatorname{Aut}(H)$.
- 21. (a) Sea H el subgrupo cíclico de \mathbb{S}_3 generado por $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. Entonces ninguna coclase a izquierda de H (excepto la misma H) es también una coclase a derecha de H.
 - (b) Sea K el subgrupo cíclico de \mathbb{S}_3 generado por $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Entonces toda coclase a izquierda de K es también una coclase a derecha de K.
- 22. Probar el Teorema de Fermat: si (a, p) = 1, entonces $a^{p-1} \equiv 1 \mod p$. Ayuda: pensar en el grupo $(\mathbb{Z}_p \{0\}, \cdot)$.
- 23. Sea G un grupo y H, K < G. Probar que HK < G si y sólo si HK = KH. En particular, si G es abeliano, entonces HK < G. $(HK := \{hk : h \in H, k \in K\})$.
- 24. Sean $k, m, p \in \mathbb{N}$, con (p, m) = 1 y p primo. Sea G un grupo, con $|G| = p^k m$, H, K < G tales que $|H| = p^k$, $|K| = p^d$, $0 < d \le k$ y $K \subsetneq H$. Mostrar que HK no es subgrupo de G.
- 25. Si H y K son subgrupos de índice finito de G tales que ([G:H],[G:K])=1, entonces G=HK.
- 26. (a) Si $H \vee K$ son subgrupos de un grupo G, entonces $[H \vee K : H] \geq [K : H \cap K]$.
 - (b) Si p > q son números primos y G es un grupo de orden pq, entonces G tiene a lo sumo un subgrupo de orden p