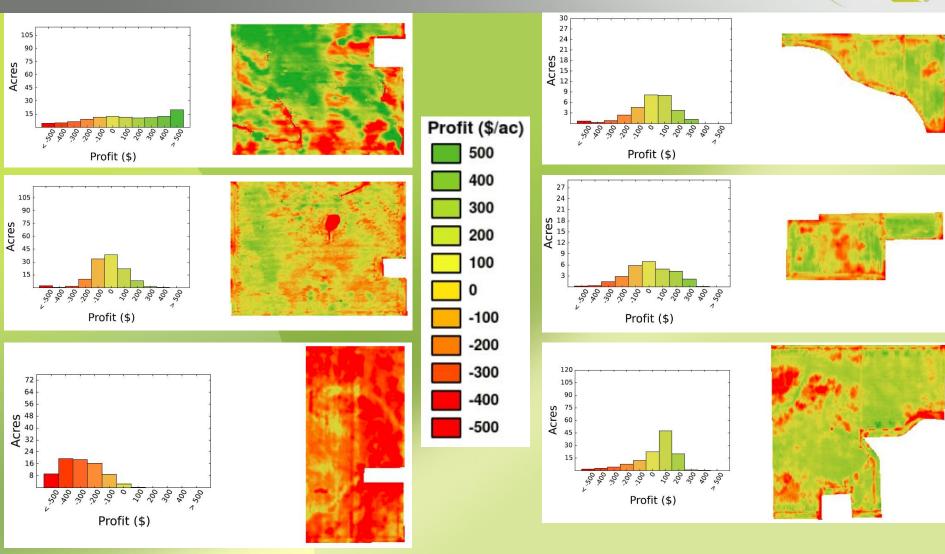

The Subfield Business Case for a Landscape Design Approach

July 11th 2017

David Muth Jr., PhD

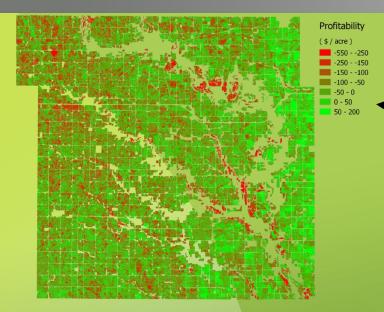

Subfield Variability

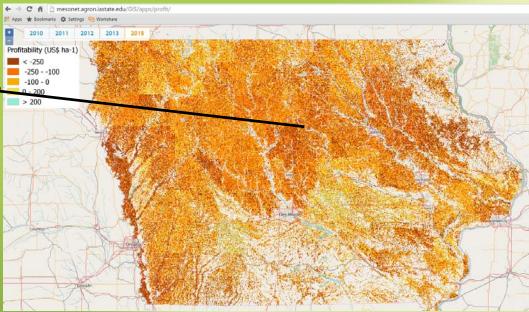
Understanding Subfield Profit and ROI

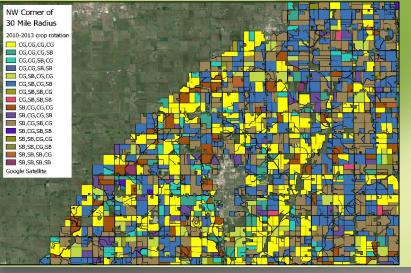
Key Message

Environmental Performance and Economic Performance are driven by the same goal:

Maximize the output per unit of input



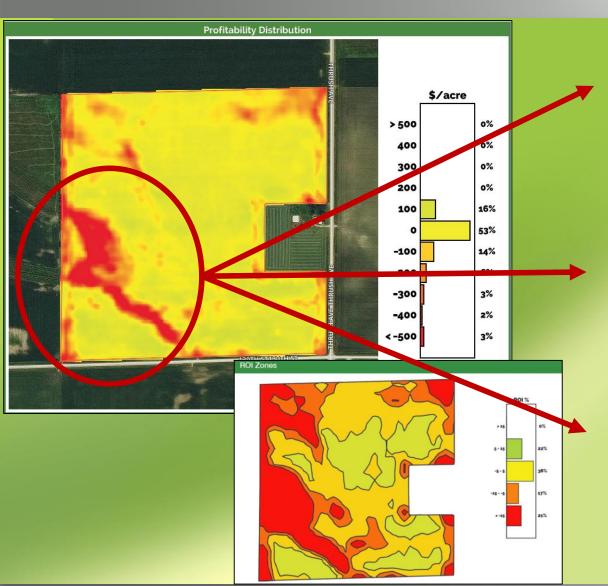




Identifying the Opportunities

- Between 2-3 million acres annually at an expected loss
- Over \$1B annually in misallocated working capital

Large Scale Project: What is the economic story?



Parameter	Total
number of fields	3,796
total acres	207,937
total acre-years analyzed	641,998
average years of data per field	3.1
average acres per field	54.8
total profit	\$ 5,703,472
per field total profit (all years)	\$ 1,502
average per acre profit (all years)	\$ 27.43
average max annual per acre profit	\$ 128.23
average min annual per acre profit	\$ (147.78)
total revenue	\$ 405,192,182
total expenses	\$ 399,488,710
total annualized ROI	0.46%

National Scale Dataset – Economic and Resource Concerns

90.4% of fields in the project had multi-year zones with economic losses

51.8% of the acres analyzed are in a multi-year zone with negative ROI

53.2% of the negative return zones have potential resource concerns

National Scale Dataset – Economic and Resource Concerns

ROI Zone	Total Erosion (tons/ac/yr)	SOC Change (lbs/ac/yr)	SCI	NO ₃ Leaching (lbs N/ac/yr)	GHG Flux (tons CO₂e/ac/yr)
< -15%	9.6	-158.8	-0.69	46.1	0.50
-5% to -15%	8.2	-115.2	-0.57	42.1	0.44
5% to -5%	5.9	-109.6	-0.41	43.3	0.42
15% to 5%	4.2	-85.0	-0.39	40.2	0.42
> 15%	5.4	-35.8	-0.33	34.9	0.34

 Average for each of the environmental metrics across each category of ROI Zone

Precision Business Planning Workflow – Alternative Systems as a Business Decision

Scenario: Actual Production

Parameter	Value
Field Acreage	143.3 ac
Average Yield	170.2 bu/ac
Profit	\$49.63/acre
ROI	6.2 %
Production Efficiency	212.4 bu/\$1000
Acreage Opportunity Ratio	23 %
Norking Capital Opportunity	\$25,973.83
Total Field Expenses	\$114,800.50
Total Field Revenue	\$121,912.06
Total Field Profit	\$7,111.56

Scenario: Conservation-Final

Parameter	Value
Field Acreage	143.3 ac
Average Yield	179.2 bu/ac
Profit	\$93.85/acre
ROI	12.6 %
Production Efficiency	239.7 bu/\$1000
Acreage Opportunity Ratio	22 %
Working Capital Opportunity	\$19,494.23
Total Field Expenses	\$107,085.95
Total Field Revenue	\$120,534.99
Total Field Profit	\$13,449.04

Precision Business Planning Workflow – Alternative Systems as a Business Decision

Scenario:	Conserva	tion-Fina

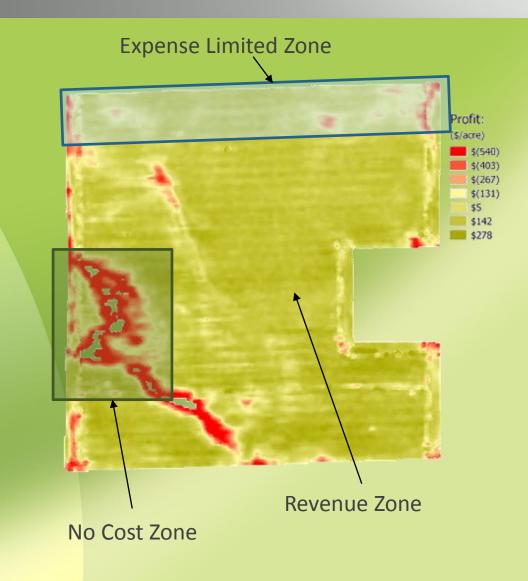
Parameter	Value
Field Acreage	143.3 ac
Average Yield	179.2 bu/ac
Profit	\$93.85/acre
ROI	12.6 %
Production Efficiency	239.7 bu/\$1000
Acreage Opportunity Ratio	22 %
Working Capital Opportunity	\$19,494.23
Total Field Expenses	\$107,085.95
Total Field Revenue	\$120,534.99
Total Field Profit	\$13,449.04

	Conventional Management	Advanced Management
Annual Soil Loss (tons of soil)	204	69
Annual Soil Carbon Change (lbs C)	8,137	44,341
Annual Nitrate Loss (lbs NO3)	7,779	3,442
Annual CO2 Loss (lbs CO2)	751,311	717,169

Soil Erosion

Conventional	Advanced

Soil Carbon


Conventional	Advanced
\$	0=0

CO₂ Gas Flux

ROI Focused Management Systems

LD Energy Crop Scenarios

Existing conservation acres

Turning headlands and buffer zones

Precision prairie strips

Non-profitable zones

Questions?