cea

Sept 25-27 2013

From physical stresses to timing constraints violation

ZUSSA Loïc,
DUTERTRE Jean-Max, CLEDIERE Jessy,

Research subject

- Characterization and analysis of common fault injection mechanism

Today's subject

- Power glitches as a fault injection mechanism Analysis and practice

Introduction Chip-to-Cloud
 Security Forum

Agenda

- Timing constraints of synchronous digital IC
- Static stresses (global effect)
- Transient stresses
- Conclusion

Timing constraints

$$
\begin{aligned}
& \text { data arrival time }=D_{c l k \rightarrow Q}+D_{p M a x} \\
& \text { data required time }=T_{c l k}+T_{\text {skew }}-\delta_{s u} \\
& T_{c l k}>D_{c l k \rightarrow Q}+D_{p M a x}-T_{\text {skew }}+\delta_{s u}
\end{aligned}
$$

Timing constraints violation Chip-to-Cloud Security Forum

How to inject faults through timing constraints violation?

- Overclocking: (Frequency increase, i.e. period decrease)

$$
T_{c l k}<D_{c l k \rightarrow Q}+D_{p M a x}-T_{\text {skew }}+\delta_{s u}
$$

- Underpowering or overheating: (Propagation time increase)

$$
T_{c l k}<D_{c l k \rightarrow Q}+D_{p M a x}-T_{\text {skew }}+\delta_{\text {su }}
$$

Experimental setup

Target

- Platform: FPGA Spartan 3A
- Algorithm: AES 128 bit none-secure implementation
- Frequency: 100 MHz
- Power supply: 1.2 V

Static perturbations

Common fault injection means

- Clock stress (overclocking)
- Power stress (underpowering)
- Overheating

Experimental proof

- 10,000 input dataset
- Critical path faulted

A common mechanism!

\Rightarrow Timing constraints violations.

Transient perturbations Chip-to-Cloud

Transient perturbations

- Clock glitch
- Power supply glitch

Questions

- Injection mechanism? Timing violation?
- Achievable resolution?

Transient perturbations Chip-to-Cloud

Clock glitch

- 35 ps resolution
- Global effect

- Timing constraints violation (obvious)
- A tool for critical time measurement
- Used to build a template/reference library

To be compared.

Transient perturbations Chip-to-Cloud

Power glitch: Ideal

Transient perturbations Chip-to-Cloud

Power glitch: Ideal

Transient perturbations Chip-to-Cloud

Power glitch: capacitances

Transient perturbations

Power glitch: impedance adaptation

Transient perturbations Chip-to-Cloud

Power glitch: capacitances

Transient perturbations

Transient perturbations

Power glitch: impedance adaptation

Transient perturbations Chip-to-Cloud

Transient perturbations Chip-to-Cloud

Power glitch

- Target a specific round but also affect the neighboring rounds

Transient perturbations Chip-to-Cloud

Power glitch

- Target a specific round but also affect the neighboring rounds

- Global offset must be added.

Transient perturbations Chip-to-Cloud

Power glitch

- When a specific round is targeted.
- Monobit fault during the targeted round 90% of the time.

Transient perturbations Chip-to-Cloud

Power glitch

- When a specific round is targeted.
- Monobit fault during the targeted round 80% of the time.

Transient perturbations Chip-to-Cloud

Power glitch
BUT 20\% of the time the fault appear during a neighboring round.

Power glitch

- Analysis of injected faults:
70% identical to clock glitch injection
20\% neighboring rounds
10% the second most critical path of the round
- Conclusion: Clock and power glitch induced faults are due to timing constraints violation
- $>90 \%$ single-bit fault

Power glitch

- Analysis of injected faults:
70% identical to clock glitch injection
20\% neiahborina rounds
10% the second most critical path of the round
- Conclusion: Clock and power glitch induced faults are/due to timing constraints violation
- $>90 \%$ single-bit fault

A spatial effect component?
Linked to voltage transient propagation
through the power supply grid
Wwwemse.fr
INSPIRING INNOVATION I INNOVANTE PAR TRADITION

Countermeasure Chip-to-Cloud

Most Critical Path (MCP)

Nominal Stressed

1	0
0	1

Clock glitch

10ns	
clk + glitch \square $10 \mathrm{~ns}+\Delta \mathrm{T}$	\square 10ns - ΔT
clk_rtd + glitch	

CM Spatial Limitation

FPGA + AES + Countermeasure

CM Spatial Limitation

1 : detection zone
2 : faulted zone (bit 64 / round 2)

