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Claudia Barth 1,2✉, Sinead Kelly3, Stener Nerland1,2, Neda Jahanshad4, Clara Alloza5, Sonia Ambrogi 6, Ole A. Andreassen 2,7,
Dimitrios Andreou1,2,8, Celso Arango 5,9, Inmaculada Baeza10, Nerisa Banaj6, Carrie E. Bearden 11,12, Michael Berk13,
Hannes Bohman14,15, Josefina Castro-Fornieles 10, Yann Chye16, Benedicto Crespo-Facorro17, Elena de la Serna10,
Covadonga M. Díaz-Caneja 5,9, Tiril P. Gurholt 2,7, Catherine E. Hegarty12, Anthony James 18,19, Joost Janssen 5,
Cecilie Johannessen2, Erik G. Jönsson2,8, Katherine H. Karlsgodt11,12, Peter Kochunov20, Noemi G. Lois21, Mathias Lundberg14,15,
Anne M. Myhre22, Saül Pascual-Diaz23, Fabrizio Piras 6, Runar E. Smelror1,2, Gianfranco Spalletta 6,24, Therese S. Stokkan1,2,
Gisela Sugranyes 10, Chao Suo 16, Sophia I. Thomopoulos4, Diana Tordesillas-Gutiérrez 25,26, Daniela Vecchio 6,
Kirsten Wedervang-Resell7, Laura A. Wortinger 1,2, Paul M. Thompson4 and Ingrid Agartz1,2,8

© The Author(s) 2022

Emerging evidence suggests brain white matter alterations in adolescents with early-onset psychosis (EOP; age of onset <18 years).
However, as neuroimaging methods vary and sample sizes are modest, results remain inconclusive. Using harmonized data
processing protocols and a mega-analytic approach, we compared white matter microstructure in EOP and healthy controls using
diffusion tensor imaging (DTI). Our sample included 321 adolescents with EOP (median age= 16.6 years, interquartile range
(IQR)= 2.14, 46.4% females) and 265 adolescent healthy controls (median age= 16.2 years, IQR= 2.43, 57.7% females) pooled from
nine sites. All sites extracted mean fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD)
for 25 white matter regions of interest per participant. ComBat harmonization was performed for all DTI measures to adjust for
scanner differences. Multiple linear regression models were fitted to investigate case-control differences and associations with
clinical variables in regional DTI measures. We found widespread lower FA in EOP compared to healthy controls, with the largest
effect sizes in the superior longitudinal fasciculus (Cohen’s d= 0.37), posterior corona radiata (d= 0.32), and superior fronto‐
occipital fasciculus (d= 0.31). We also found widespread higher RD and more localized higher MD and AD. We detected significant
effects of diagnostic subgroup, sex, and duration of illness, but not medication status. Using the largest EOP DTI sample to date, our
findings suggest a profile of widespread white matter microstructure alterations in adolescents with EOP, most prominently in male
individuals with early-onset schizophrenia and individuals with a shorter duration of illness.
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INTRODUCTION
Brain white matter alterations are well-documented in adults with
psychotic disorders. A recent meta-analysis from the Enhancing
Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Con-
sortium (n= 4322) reported widespread lower fractional aniso-
tropy (FA) in adult individuals with schizophrenia relative to
healthy controls, with the largest effect sizes in the anterior corona
radiata (d= 0.40) and corpus callosum (d= 0.39) [1]. Emerging
evidence suggests similar alterations in adolescents with early-
onset psychosis (EOP). However, as neuroimaging methods vary
across studies and sample sizes are small to modest, results in EOP
remain inconclusive [2]. To address this issue, the ENIGMA EOP
Working Group initiated the largest collaborative mega-analysis of
white matter microstructure in EOP to date.
The term EOP covers rare and heterogeneous psychotic

disorders, affecting 0.05–0.5% of the world’s population [3, 4],
and encompasses both the schizophrenia and affective psychosis
spectra. Compared to adult-onset psychosis, individuals with EOP
show worse long-term prognosis [5–8], and EOP significantly
contributes to the lifetime disease burden for adolescents [9].
Psychotic symptoms in EOP emerge before 18 years of age, during
adolescence [10]—a sensitive period for brain development. To
date, there is insufficient knowledge on how brain maturation is
linked to the emergence of psychosis and neuroimaging studies
on these co-occurring processes are important. While a few
magnetic resonance imaging (MRI) studies in EOP report grey
matter brain abnormalities [11–15], less is known about putative
white matter alterations. This is a critical research gap, as
understanding how white matter microstructure is affected in
EOP may provide important insights into the pathophysiology of
psychotic disorders during adolescent brain development.
Microstructural properties of white matter are commonly

modelled using diffusion tensor imaging (DTI), which maps the
Brownian movement of water molecules in the brain in vivo.
Common DTI measures include FA and mean, axial, and radial
diffusivity (MD, AD, RD). While FA is a summary measure that
reflects the degree of diffusion directionality, AD describes
diffusion along the primary axis, and RD characterizes diffusion
perpendicular to it [16]. MD is a measure of overall diffusion within
a voxel. Although FA is generally sensitive to microstructural
changes, it is not specific to the type of change (e.g., radial or axial)
[16]. Both AD and RD have been associated with different putative
biological underpinnings: lower AD has been linked to axonal
damage [16] and higher RD to disruptions in myelination [17].
These DTI measures change throughout the lifespan, with FA
increasing and RD and MD decreasing throughout adolescence
until early adulthood in healthy individuals [18, 19]. Sex
differences in this pattern also exist: females show changes in
white matter microstructure mainly during mid-adolescence,
while white matter changes in males appear to occur from
childhood through early adulthood [20]. The trajectories of AD are
less well known [18, 19].
Several studies have used DTI to compare white matter

microstructure in youth with EOP to healthy controls, predomi-
nantly focusing on early-onset schizophrenia (EOS [2]). Most
studies found widespread lower FA in individuals with EOP.
However, the white matter tracts implicated were highly variable
across studies [21–26]. Common DTI measures beyond FA have
rarely been explored. The low degree of spatial overlap between
the studies may stem from phenotypic heterogeneity, such as
differences in disease severity and duration, medication history,
and comorbidities. Small sample sizes and differences in MRI data
acquisition, processing, and analysis may further influence study
outcomes.
The ENIGMA-EOP Working Group aims to address some of the

methodological issues in prior MRI studies and increase statistical
power by pooling data for the largest coordinated analysis on
brain white matter in EOP to date [27]. The primary goal of the

present study was to identify white matter differences in EOP
relative to healthy controls using a mega-analytic approach [28].
We further included a complementary meta-analysis to illustrate
between-cohort heterogeneity and allow for a direct comparison
to FA findings in adult individuals with schizophrenia [1]. The
modulating effects of sex and clinical covariates such as
medication use, symptom severity, and illness duration on DTI
measures were also investigated. Based on previous findings [2],
we hypothesized that adolescents with EOP would show wide-
spread lower FA relative to healthy controls. As consistent
evidence for associations between DTI measures and clinical
covariates in EOP is lacking [2], follow-up analyses were
exploratory in nature.

MATERIALS & METHODS
Study sample
The ENIGMA-EOP Working Group obtained case-control data from
nine cohorts across seven countries (for information on each
cohort, please see Supplementary Table S1, S2, and S3), yielding
imaging and clinical data on a combined total of 321 adolescents
with early-onset psychosis (EOP) and 265 age-matched healthy
controls. Participants were aged 12 to 18 years at MRI image
acquisition. The EOP diagnostic subgroups consisted of individuals
with early-onset schizophrenia (EOS; n= 180), affective psychosis
(AFP; n= 95), and other psychosis (n= 46). Diagnoses were
determined using either the Diagnostic and Statistical Manual of
Mental Disorders (DSM)-IV or the International Classification of
Diseases (ICD)−10. To assess the presence and severity of
symptoms, five cohorts used the Positive and Negative Syndrome
Scale (PANSS [29]), and two cohorts used the Scale for the
Assessment of Negative/Positive Symptoms (SANS [30]/SAPS [31]).
Two cohorts did not acquire PANSS, SANS/SAPS or equivalent
scores. Site-wise inclusion and exclusion criteria are presented in
Supplementary Table S2. All study participants and/or their legal
guardians provided written informed consent with approval from
local institutional review boards and the respective ethics
committees. The study was conducted in accordance with the
Declaration of Helsinki.

Image processing and analysis
MRI scanner and acquisition parameters for each site are detailed
in Supplementary Table S3. Preprocessing of diffusion-weighted
images, including eddy current correction, echo-planar imaging
induced distortion correction, initial quality control, and tensor
fitting were performed locally at each site using tools and
processes suitable for the acquired data. As head motion can be a
confound in DWI studies [32], we tested for case-control
differences in motion parameters by site and scanner, based on
the outputs of the eddy current correction. No significant
differences were found (Table S4). Protocols for image processing
and quality control procedures are available via the ENIGMA-DTI
website (http://enigma.ini.usc.edu/ongoing/dti-working-group/)
and on the ENIGMA GitHub page (https://github.com/ENIGMA-
git/). Fractional anisotropy (FA), mean diffusivity (MD), radial
diffusivity (RD), and axial diffusivity (AD) were obtained for 25
bilateral (or mid-sagittal) regions of interest (ROI) from the Johns
Hopkins University ICBM-DTI-81 white-matter labels atlas (JHU;[33]
see Table 1 for a list of white matter regions). While all nine sites
provided FA measures (n= 586), MD, RD, and AD data were
obtained from eight sites (n= 505, see Supplementary Note S1).
ComBat harmonization was performed for all DTI measures to

remove unwanted scanner- and sequence-related variation
[34, 35] whilst preserving biological associations in the data
(Supplementary Note S2). Empirical Bayes was used to leverage
information across each DTI measure, an approach that has been
shown to be more robust to outliers of small within-scanner
sample sizes [36]. Age, sex, and diagnostic group were included as
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variables of interest. The ComBat-harmonization output for all DTI
measures is visualized in Figs. S1 and S2.

Statistical analysis
Case-control findings. Case-control differences in FA, MD, AD, and
RD across all ROIs were examined using multiple linear regression
analysis, correcting for age, age [2], sex, and linear age-by-sex and
nonlinear age [2]-by-sex interactions. All analyses included
combined ROIs across both hemispheres as dependent variables.
Lateralized results are reported in Supplementary Table S9. We
included a complementary meta-analysis to illustrate between-
cohort heterogeneity [15] and allow for a direct comparison to FA
findings in adult individuals with schizophrenia (see Supplemen-
tary Note S3 and section “Comparison to adult individuals with
schizophrenia”).

Controlling for average, core, and periphery diffusivity measures.
To examine global vs. regional white matter effects between
diagnostic groups, the main DTI analyses were re-run either co-
varying for (i) average, (ii) core, and (iii) periphery DTI measures.
For instance, average FA constitutes FA averaged across the entire
white matter skeleton, excluding gray matter. However, average
FA is not only comprised of the JHU atlas regions, but also FA in
white matter outside of these regions. Therefore, we separately
calculated average FA for the “core”, which is defined as the
region within the skeleton labeled by the JHU white matter atlas,
and the “periphery”, outside of the JHU atlas regions. The average
FA in the standard ENIGMA-DTI template consists of 112,889
voxels, while the core consists of 31,742 voxels, less than a third of
the average FA. The remaining 81,147 voxels surrounding the core
comprise the periphery (non-JHU). Detailed formulas to calculate
core and periphery DTI measures have been published in Kelly
et al. 2018 [1]. A figure displaying the difference in average, core,
and periphery FA can be found in the supplemental materials
(Fig. S3).

Diagnostic subgroup analysis. For each DTI measure (FA, MD, RD,
AD) as dependent variable, separate multiple linear regression
models were fitted with diagnostic subgroup as fixed factor
(healthy controls, EOS, AFP, other psychosis) and age, age [2], sex,
and linear age-by-sex and nonlinear age [2]-by-sex interactions as
covariates.

Sex-by-diagnosis & age-by-diagnosis interactions. To explore white
matter microstructural differences between diagnostic groups
across age and sex, we performed follow-up sex-stratified as well
as sex-by-diagnosis and age-by-diagnosis interaction analyses.
Separate multiple linear regression models for each DTI measure
as dependent variable were fitted either including a sex-by-
diagnosis or age-by-diagnosis interaction terms. The same
covariates as above apply. The sex-stratified case-control models
(female only/ males only) were covaried for age and age [2].

Associations with medication and other clinical measures. In
adolescents with EOP, we tested for effects of duration of illness,
age at onset, PANSS scores (negative/positive subscores), current
medication use (user vs. non-user) and antipsychotic chlorproma-
zine equivalents (CPZ, see Woods 2005 http://
www.scottwilliamwoods.com/files/Equivtext.doc) on DTI mea-
sures. Current medication use included antipsychotics, lithium,
antidepressants, and antiepileptics. As age and age at onset are
highly correlated (r= 0.70), this linear model was only adjusted for
sex, whereas the other models were adjusted for age, age [2], sex,
and linear age-by-sex and nonlinear age [2]-by-sex interactions.

Comparison to adult individuals with schizophrenia. To assess
whether the effect sizes of the case-control differences in tract-
specific FA differed between adolescents with EOP and adults with
schizophrenia [1], we conducted z-tests using the following
formula [37]:

Diff ¼ MB �MA

SEDiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VMA þ VMB

p

ZDiff ¼ Diff
SEDiff

where MA and MB are the estimated Cohen’s d effect sizes of the
schizophrenia and EOP sample, respectively. VMA and VMB reflect
their variances as standard error (SE). The corresponding p-value
was calculated using (two-tailed test):

p ¼ 2½1� ðΦ ZDiffj jð ÞÞ�
where Φ(Z) is the standard normal cumulative distribution. Meta-
analytically derived Cohen’s d values for the adult schizophrenia
sample were retrieved by SK [1] and compared to meta- and mega-
analytically derived Cohen’s d values for EOP (adolescent sample,
n=586; adult sample, n= 4322). To allow for such a comparison, the
same covariates were used in both studies, namely age, age [2], sex,
and linear age-by-sex and nonlinear age [2]-by-sex interactions.
To further test whether brain alterations in EOP resemble the

pattern observed in adult schizophrenia, we correlated the meta- and
mega-analytically derived Cohen’s d effect sizes for tract-specific FA
from the current study with the meta-analytically derived Cohen’s d
values from the adult schizophrenia study [38].
All statistical tests were conducted in R, version 4.1.0 (https://

www.R-project.org/). All continuous variables were mean-centered
before entered into the analyses. We computed the Cohen’s d effect
sizes ± standard error across all 25 ROIs from the t-statistics for
categorical variables [39]. To control for multiple comparisons, effects
were considered significant if they survived the Bonferroni correction
threshold of 0.05/25= 0.002. All data and code produced in the
present study are available upon reasonable request to the authors.

RESULTS
Demographic and clinical variables
Demographics and clinical characteristics for the whole sample
and stratified by diagnostic subgroups are summarized in

Table 1. Twenty-five white matter regions of interest.

Brain white matter tract Abbreviation

Average DTI measure across entire
skeleton

Average FA/MD/RD/
AD

Corpus callosum (body/genu/splenium) CC/BCC/GCC/SCC

Cingulum (cingulate gyrus part) CGC

Perihippocampal cingulum tract CGH

Corona radiata (anterior/posterior/
superior)

CR/ACR/PCR/SCR

Cortico‐spinal tract CST

External capsule EC

Fornix/Stria terminalis FX/ FXST

Internal capsule (anterior/posterior/
retrolenticular limb)

IC/ALIC/PLIC/RLIC

Inferior fronto-occipital fasciculus IFO

Uncinate fasciculus UNC

Posterior thalamic radiation PTR

Superior fronto‐occipital fasciculus SFO

Superior longitudinal fasciculus SLF

Sagittal stratum SS

C. Barth et al.

3

Molecular Psychiatry

http://www.scottwilliamwoods.com/files/Equivtext.doc
http://www.scottwilliamwoods.com/files/Equivtext.doc
https://www.R-project.org/
https://www.R-project.org/


Table 2 and Table 3, respectively. Sample measures stratified by
cohort and sex are displayed in Table S5 and Table S6,
respectively.

Case-control differences
The mega‐analysis revealed widespread lower FA in adolescents
with EOP relative to healthy controls (see Fig. 1, Supplementary
Table S7), including the Average FA, CC, GCC, IC, PCR, PTR, RLIC,
SFO, and SLF (p ≤ 0.002). Follow-up analyses showed higher MD in
the FX and UNC; higher RD in Average RD, CGC, FX, PCR, SLF, and
UNC; and higher AD in the FX in adolescents with EOP relative to
healthy controls (p ≤ 0.002, see Fig. 1).
The complementary meta-analysis of case-control FA differ-

ences corroborated the significant effect for the SLF (Supple-
mentary Table S16). Forest plots illustrate the variability among
sites (Supplementary Fig. 8), suggesting a great degree of
heterogeneity. However, a post hoc leave-one-out analysis
revealed that no individual site had an influential impact on
the significant finding (see Supplementary Note S3, Fig. S9,
Table S17).

Controlling for average, core, and periphery diffusivity
measures
Adjusting for average FA or core FA, none of the FA case-control
differences remained significant. Covarying for periphery FA, there
was significantly lower FA in the SLF only (p ≤ 0.002, see
Supplementary Table S8 and Fig. S4–7). For MD, after covarying for
average, core, or periphery MD, the significance of case-control
differences in the FX remained. For RD, no case-control differences
remained significant after adjustment for average, core, or
periphery RD. Lower AD in the FX remained significant after all
additional adjustments.

Diagnostic subgroup findings
When stratifying EOP by diagnostic subgroup, only adolescents
with EOS showed significantly lower FA in 14 ROIs relative to
healthy controls, including: Average FA, ALIC, BCC, CC, CR, FXST,
GCC, IC, PCR, PTR, RLIC, SCC, SFO and SLF (p ≤ 0.002; see Fig. 2
and Supplementary Table S11). MD and AD were only
significantly higher in the FX of adolescents with EOS compared
to healthy controls. We found higher RD in the CC, CGC, FX, PCR,
PTR, RLIC, SLF, and SS in adolescents with EOS, and higher
Average RD in adolescents with AFP, relative to healthy controls
(p ≤ 0.002). We observed no significant white matter micro-
structural alterations in adolescents with other psychosis relative
to healthy controls.

Sex-by-diagnosis and age-by-diagnosis interactions
To examine sex differences in relation to diagnosis, sex-by-
diagnosis interactions were estimated. After Bonferroni correc-
tion, no significant interactions for FA, MD, and AD were found
(Supplementary Table S12). We did find a significant sex-by-
diagnosis interaction for RD in the SCC (p ≤ 0.002). Sex-stratified
analyses showed that only male adolescents with EOP showed
widespread lower FA relative to healthy male controls (EOP=
172, healthy controls= 112; p ≤ 0.002, 12 ROIs: Average FA, BCC,
CC, CGC, EC, FX, FXST, GCC, PCR, SCC, SFO, and SLF; Fig. 3,
Supplementary Table S10). Similarly, tract-specific RD and MD
were only higher in males with EOP relative to healthy male
controls (p ≤ 0.002, Males: EOP= 147, healthy controls= 98, RD:
Average RD, CC, CGC, CR, FX, FXST, PCR, PTR, SCC, SLF, SS, UNC;
MD: PCR). Tract-specific AD was not significantly different in EOP
vs. healthy controls. In females, FA, MD, RD and AD did not differ
significantly between EOP and healthy controls after correction
for multiple comparisons (FA: EOP= 149, healthy controls= 153;

Table 2. Sample demographics and clinical measures.

Variables CTR EOP p-value Test

N 265 321

Age (years)* 16.18 [14.88, 17.31] 16.57 [15.18, 17.32] 0.147 KW

Sex, female N (%) 153 (57.7) 149 (46.4) 0.008 χ2
Handedness, N (%) 0.331 χ2
Right 177 (90.8) 166 (88.8)

Left 18 (9.2) 19 (10.2)

Ambidextrous 0 (0.0) 2 (1.1)

Diagnostic subgroup, N (%)

EOS 180 (56.1)

AFP 95 (29.6)

OTP 46 (14.3)

PANSS, negative* 16.00 [12.00, 21.00]

PANSS, positive* 20.00 [16.00, 24.00]

Age of onset (years)* 15.43 [14.12, 16.71]

Duration of illness (years)* 0.60 [0.12, 1.10]

CPZ* 200.0 [133.3, 333.3]

AP user, N (%) 256 (89.8)

Lithium user, N (%) 27 (9.9)

AD user, N (%) 57 (25.0)

AE user, N (%) 14 (5.2)

Field strength, 3T, N (%) 95 (55.2) 153 (60.5) 0.329 χ2
*Non-normal continuous data in median [Interquartile range] and categorical data as number (%). Across diagnostic groups, we examined whether variables
were normally distributed using Shapiro-Wilk tests and histograms. CTR healthy controls, EOP early-onset psychosis, N number, EOS early-onset schizophrenia,
AFP affective psychosis, OTP other psychosis, PANSS positive and negative syndrome scale, CPZ chlorpromazine equivalent, AP antipsychotics, AD
antidepressants, AE antiepileptics, KW Kruskal-Wallis. Significant results are highlighted in bold.
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non-FA: EOP= 131, healthy controls= 133). A sex-stratified
diagnostic subgroup analysis showed that the male-specific
effects were again driven by the EOS group. No significant age-
by-diagnosis interactions were found for FA, MD, RD, and AD
(Supplementary Table S13).

Associations with clinical measures in adolescents with EOP
After correction for multiple comparisons, we found no significant
associations between current medication use, CPZ, and tract-
specific FA, MD, RD or AD in adolescents with EOP (whole sample:
antipsychotics user= 256, non-user= 29; Lithium user= 27, non-
user= 247; antidepressants user= 57, non-user= 171; antiepilep-
tics user= 14, non-user= 257, CPZ= 234; see Supplementary
Table S14). Similarly, no DTI measures were significantly associated
with symptom severity measures (n= 249, PANSS negative/
positive). However, longer duration of illness was associated with
significantly lower MD in the ALIC and IC (p ≤ 0.002, see
Supplementary Fig. 10). Lower average RD and AD of BCC and
CC were also associated with longer duration of illness (p ≤ 0.002).
Furthermore, higher AD of the ALIC was associated with later age
at illness onset (see Supplementary Fig. 11).

Comparison to adult individuals with schizophrenia
Differences in the magnitude of tract-specific effect sizes
between EOP and adult schizophrenia were observed, with
effects being generally less pronounced in EOP (Fig. 4a, b). We
observed larger effect sizes for FA in EOP relative to adult
schizophrenia only for the SLF and IC (including PLIC and RLIC),
but these differences were not statistically significant (see
Supplementary Table S18).
Mega-analytically derived Cohen’s d values for tract-specific FA

in EOP vs. healthy controls were significantly correlated with the
meta-analytically derived values in adult schizophrenia vs. healthy
controls (r= 0.45, p= 0.026). In contrast, the same effect sizes in
adult schizophrenia were not correlated with the meta-analytically
derived Cohen’s d values in EOP (r= 0.21, p= 0.324). Scatterplots
for the effect size correlation are displayed in Fig. 4c, d.

DISCUSSION
We found widespread lower FA in individuals with EOP compared
to healthy controls, with the largest effect sizes in the superior
longitudinal fasciculus (SLF, d = 0.37), posterior corona radiata

Fig. 1 Cohen’s d values for differences in diffusion measures between adolescents with early-onset psychosis and healthy controls.
Cohen’s d values and their standard errors are displayed, sorted by effect size. Stars and dashed lines indicate significant results (p ≤ 0.002). FA
fractional anisotropy, MD mean diffusivity, RD radial diffusivity, AD axial diffusivity. For white matter tract abbreviations, see Table 1.
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Fig. 2 Fractional anisotropy (FA) differences between adolescents with early-onset psychosis and healthy controls, stratified by
diagnostic subgroups. Cohen’s d values and their standard errors are displayed, sorted by effect size for EOS. Stars and dashed lines indicate
significant results (p ≤ 0.002). Abbreviations: EOS = early-onset schizophrenia (n= 180), AFP affective psychosis (n= 95), OTP other psychosis
(n= 46). For white matter tract abbreviations see Table 1.

Fig. 3 Fractional anisotropy (FA) differences between adolescents with early-onset psychosis and healthy controls, stratified by sex.
A Cohen’s d values and their standard errors are displayed, sorted by effect size for males. Stars and dashed lines indicate significant results
(p ≤ 0.002) for males only*. In females, FA did not differ significantly between individuals with EOP and healthy controls. For white matter tract
abbreviations see Table 1. B Marginal plots with distributions displaying average FA across the entire skeleton and age for females (upper
panel) and males (lower panel) by diagnostic group. Diagnostic group-specific regression lines are shown.
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(PCR, d= 0.32), and superior fronto‐occipital fasciculus (SFO,
d= 0.31). Regions of the corpus callosum (CC), internal capsule
(IC), and posterior thalamic radiation (PTR) also showed significant
effects with Cohen’s d > 0.25. Lower FA in EOP was accompanied
by widespread higher RD, and more localized higher MD of the
fornix (FX) and uncinate fasciculus (UNC). Higher AD for EOP
individuals was observed in the FX. Case-control differences in
brain white matter microstructure were driven by individuals
diagnosed with EOS, who represent the majority of the EOP
sample.
The largest effect for lower FA in EOP was observed for the SLF.

This finding is in contrast to effects previously reported in adult
samples [1], where the largest effects were observed for average FA,
anterior corona radiata, and corpus callosum, suggesting that
differences in the SLF may be more pronounced in early-onset
populations. The SLF is a major association tract connecting the
parietal and temporal lobes with the frontal cortex, and has been
implicated in working memory, attention, language, and emotion
processing [40]. Significant deficits in SLF white matter micro-
structure have previously been reported in youth with subsyndro-
mal psychotic-like symptoms [41], clinical high-risk groups [42], EOP
[22], and in recently diagnosed schizophrenia [43]. These findings

suggest that the SLF may play a role in the development of
psychosis. Similarly, lower FA in the PCR and corpus callosum (CC)
has also been reported in clinical high-risk populations [42, 44, 45].
In addition, differences in white matter of the SFO, PCR, and CC have
been associated with the transition to psychosis [46]. Similar to
other major white matter tracts, FA within the SLF increases
significantly during adolescence [47]. Interestingly, FA of the SLF
showed a positive association with working memory performance
in healthy individuals and individuals with EOP [43], and may
partially mediate increases in verbal fluency as a function of
increasing age [47]. Hence, FA deficits in the SLF may contribute to
cognitive disturbances commonly reported in psychotic disorders.
A complementary meta-analysis of FA differences corroborated

the significant effect of lower FA in the SLF. Yet, similar to Gurholt
et al. [15], the meta-analysis suggests a great degree of
heterogeneity across the included samples, likely reflecting
differences in inclusion procedures (Table S2), imaging sequences
(Table S3), and the inherent clinical diversity of EOP. Furthermore,
not all samples from the mega-analysis could be included in the
meta-analysis due to sample size limitations (n < 10), resulting in a
higher variance between tracts and diagnostic groups in the
meta- relative to the mega-analysis (see Fig. 4).

Fig. 4 Cohen’s d effect sizes in early-onset psychosis (EOP) and adult schizophrenia (SCZ) relative to healthy controls from a prior
publication1. AMeta-analytically derived effect sizes for tract-specific fractional anisotropy (FA) in EOP relative to healthy controls and in adult
schizophrenia relative to healthy controls. B Mega-analytically derived effect sizes for tract-specific FA in EOP relative to healthy controls and
meta-analytically derived effect sizes in adult schizophrenia relative to healthy controls. C Correlation in meta-analytically derived effect sizes
of tract-specific FA between EOP and adult schizophrenia. D Correlation in mega- and meta-analytically derived effect sizes of tract-specific FA
between EOP and adult schizophrenia, respectively. In both EOP and SCZ, meta-analytic results were adjusted for age, sex, and linear and
nonlinear age and sex interactions (age-by-sex interaction, age [2], and age [2]-by-sex interaction). Cohen’s d values and their standard errors
are displayed. SK provided values for SCZ.
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In the present study, no regional FA differences remained
significant after covarying for global effects. However, lower FA in
the SLF was still significant after adjusting for periphery FA,
suggesting that the effects observed in the SLF are being driven
by differences in core white matter, as opposed to periphery white
matter. Overall, the findings suggest that lower FA across the
entire white matter skeleton is driving the difference in FA across
almost all ROIs. Similar effects were observed for MD, RD, and AD.
These findings reflect a pattern of globally lower DTI measures,
commonly observed in adults with schizophrenia [1]. While the
signature of widespread FA deficits in EOP appears similar to that
of adult schizophrenia, notable differences in the magnitude of
tract-specific effect sizes between EOP and adult schizophrenia
were observed, with effects being generally less pronounced and
more variable in EOP (see Fig. 4). In adult schizophrenia, lower FA
was most prominent in the anterior corona radiata (d= 0.4) and
CC (d= 0.39) [1]. In EOP, effect sizes were largest for the SLF
(d= 0.37), PCR (d= 0.32), and SFO (d= 0.31). Furthermore, FA
differences in the SLF remained significant after controlling for
periphery FA, unlike the effects observed in adult samples that
were found to be driven by peripheral regions [1]. Larger effect
sizes for FA in EOP relative to adult schizophrenia were found for
the SLF and internal capsule (posterior/retrolenticular limb). Yet,
using z tests, these differences in effect sizes between adolescent
EOP and adult schizophrenia were not statistically significant.
Furthermore, our cross-diagnostic correlation analysis indicated
significant convergence with white matter tracts predominantly
affected in adolescent EOP relative to adult schizophrenia.
However, mega-analytically, not meta-analytically, derived effect
sizes in EOP were significantly correlated with the meta-
analytically derived values in adult schizophrenia. The discrepancy
in the results is likely driven by the lower number of sites included
in the meta-analysis. Four sites with less than 10 participants per
diagnostic group were excluded (see Supplementary Note S3).
The diagnostic subgroup analysis showed that widespread

lower FA was limited to EOS. No case-control differences in FA
were found for AFP and other psychosis. This finding is not in line
with previous studies in adolescents [48, 49] and adult affective
psychosis [50], reporting lower FA in different white matter tracts.
Inconsistencies with previous results may be explained by the
unbalanced sizes of the subgroups and differences in subgroup
characteristics such as age of onset, disease duration, and
psychotic features (Table 3). Larger samples are needed to stratify
for clinical subgroups in relation to white matter structure.
No significant age-by-diagnosis interactions were observed.

However, MD in the ALIC and IC were negatively associated with
duration of illness. Similarly, average RD and AD in the BCC and CC
were negatively associated with the duration of illness. Further-
more, AD in the ALIC was positively associated with age of onset.
These findings suggest that the white matter differences in these
regions may be linked to disease progression, as opposed to
developmental factors. However, as EOS is associated with a
longer duration of illness, these findings may also reflect an effect
of the diagnostic subgroup.
We found no significant sex-by-diagnosis interaction for DTI

measures, except for RD in the SCC. However, a sex-disaggregated
analysis showed that male adolescents with EOP had widespread
lower FA relative to healthy male controls, whereas females with
EOP did not significantly differ from healthy female controls.
Plotting average FA by sex and diagnostic group against age
further highlighted consistently lower FA values in male indivi-
duals with EOP compared to healthy male controls across the
studied age range (Fig. 3B). Average FA in female individuals with
EOP did not differ from female healthy controls between the ages
of 12 to 18 years. This finding suggests more pronounced white
matter alterations in male individuals with EOP relative to same-
sex healthy controls and female individuals with EOP. Sex
differences in the developmental trajectory of white matter have

been reported, with males typically showing protracted white
matter maturation compared to females [20, 51, 52]. As these
differences may correspond to the impact of sex hormones on
white matter during pubertal maturation [53], our findings may
reflect the potential protective effect of estrogen for females
against development and severity of psychosis [54]. However,
longitudinal studies are needed to establish whether white matter
maturation differs between the sexes in EOP relative to healthy
same-sex controls.
There were no significant differences between medication users

and non-users and impact of CPZ on white matter microstructure,
which is similar to findings observed in adult schizophrenia [1]. In
addition, no significant associations between white matter and
symptom severity were found, also in agreement with previous
findings in EOP [2] and adult samples [1].
This study is subject to some limitations. Firstly, the cross-

sectional design of this study does not allow for a more thorough
investigation of the effects of sex, duration of illness, and
medication exposure. Secondly, FA is a summary measure of
white matter microstructure that does not map perfectly onto the
microstructural properties of the underlying tissue. The observed
differences in FA may be influenced by a number of neurobio-
logical processes, including changes in fiber organization such as
packing density and axon branching, as well as alterations in
myelination [16, 55, 56]. In this study, we found that lower FA
largely overlapped with higher RD, indicative of either demyelina-
tion or dysmyelination [16], with minimal changes to AD.
However, inflammatory processes associated with psychosis onset
can also impact DTI measures [57–59]. Advanced imaging
techniques, such as free-water imaging, separates the contribution
of extracellular water from water diffusing along the axon to allow
for improved specificity to detect microstructural differences
[60, 61]. When considering our findings, it is also important to
account for the potential impact of ongoing white matter
maturation in adolescent EOP, e.g., FA increases are typically
reported throughout childhood and early adulthood. However,
studies of white matter maturation in EOP have reported
inconsistent findings, suggesting diverging, converging, or parallel
developmental trajectories to healthy individuals [2].
Finally, tract-based spatial statistics (TBSS) is commonly used to

perform voxel-based analysis of white matter [62]. However, the
method is not without limitations. For example, spatial normal-
ization can result in misalignment, with smaller tracts being
particularly susceptible [63]. In addition, smaller atlas ROIs such as
the FX and CST are more vulnerable to partial volume effects and
motion artifacts. Nevertheless, the ENIGMA-DTI Working Group
has rigorously tested the reproducibility of measures using this
TBSS approach for ROI analyses [64]. Further, we combined
neuroimaging datasets from nine sites, introducing heterogeneity
due to different scanners, vendors, and sequences. In line with
recommendations from the ENIGMA consortium, we addressed
this issue by using the batch adjustment method, ComBat, which
has been shown to reduce site-related heterogeneity and to
increase statistical power [35]. However, residual scanner effects
may still be present. Similarly, motion is a confound in diffusion
weighted imaging studies [32]. Although we found no case-
control differences in average motion relative to the first volume
and motion correction was performed during preprocessing,
unaccounted motion effects may influence the results.
In the largest analysis of white matter differences in EOP to

date, we found widespread lower FA and higher RD with more
localized differences in MD and AD for EOP relative to healthy
controls. In contrast to what has previously been reported in adult
samples, the largest effects for EOP were observed in the SLF and
PCR, followed by interhemispheric and thalamo-cortical regions.
Differences were most pronounced in male individuals with EOS
relative to same-sex healthy controls. The global pattern of
widespread microstructural alterations observed in EOP solidifies
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the hypothesis that schizophrenia may be a disorder of global
brain structural connectivity. Future analyses of longitudinal data
will allow for a more in-depth investigation of brain maturation in
EOP and for further explorations of the effects of sex, duration of
illness, and medication exposure.
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