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~ Failure Transparency in Remote Procedure Calls

K. RAVINDRAN, MEMBER, IEEE, AND SAMUEL T. CHANSON, MEMBER, IEEE

Abstract—Remote procedure call (RPC) is a communication
abstraction widely used in distributed programs. The general
premise entwined in existing approaches to handle machine and
communication failures during RPC is that the applications
which interface to the RPC layer cannot tolerate the failures. The
premise manifests as a top level constraint on the failure recovery
algorithms used in the RPC layer in these approaches. However,
our premise is that applications can tolerate certain types of
failures under cer(ain situations. This may, in turn, relax the top
level constraint on failure recovery algorithms and allow exploit-
ing the inherent tolerance of applications to failures in a
systematic way to simplify failure recovery. Motivated by the
premise, the paper presents a model of RPC. The model reflects
certain generic properties of the application layer that may be
exploited by the RPC tayer during failure recovery. Based on ihe
model, a new technique of adopting orphans caused by failures is
described. The technique minimizes the rollback which may be
required in orphan killing techniques. Algorithmic details of the
adoption technique are described followed by a quantitative
analysis. The model has been implemented as a prototype on a
local area network. The simplicity and generality of the failure
recovery renders the RPC model useful in distributed systems,
particularly those that are large and heterogeneous and hence
have complex failure modes.

Index Terms—Client-server model, orphans, partial failures,
roll back, state inconsistency.

I. INTRODUCTION

ISTRIBUTED systems are becoming larger and

heterogeneous, with computing resources distributed
extensively across hundreds of machines interconnected by
one or more local area networks (LAN’s) through gateways.
The processes that manage resources are called servers (also
referred to as services) and the processes that access the
resources are called clients. Examples of services are termi-
nals, printers, files, time information, name assignment, and
mathematical library computations. A client communicates a
request to a server to access a resource, and the server
communicates the outcome of the request to the client by a
response (request-response style of communication). A serv-
ice may be provided by a group of server processes executing
on different machines with functions replicated and distributed
among the processes for reasons of availability and perform-
ance. For example, a time service may consist of a group of
server processes with each one providing time information to
clients. Multiple requests for time may be handled concur-
rently by the various processes. If a process in the group fails,
the time service may continue to be provided by the other
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processes in the group. Thus, in a large scale distributed
system, a program implementing an application' often consists
of clients and servers residing on different machines and
communicating extensively across machine boundaries. Such
programs are referred to as distributed programs.

Remote procedure call (RPC) is widely accepted as a natural
and convenient abstraction that may be used in distributed
programs to map onto the client-server communications [6],
[3] because the RPC encapsulates the easily understocod
procedure call mechanism that allows a client to access remote
services in much the same way as local services. On the part of
the system, a semantics of RPC close 1o that of a local
procedure call should be provided. A key requirement is that
the machine and communication failures during an RPC [9],
[14] should be masked in the RPC intertace to the program so
that the program may function normally in the presence of the
failures (failure transparency).

Machines are assumed to exhibit a fail-stop behavior [16].
Typical cormmunication failures include: messages used for the
RPC being lost or misordered in the gateways due to
congestion, network partitioning due to gateway failures, and
persistent message loss at the gateways and network inter-
faces. Frequently, the failures result in server executions
continuing to exist even after termination of the RPC requests
from clients. Such server executions are known as orphans
[91.

Treating failures as a subset of RPC events, existing RPC
models deal with orphans by enforcing atomicity and ordering
constraints on the RPC events. In other words, an RPC event
(e.g., RPC request, network failure) seen by a client should
also be seen by the server and vice versa, and in the same
order with respect to other causally related events. Suppose
during an RPC on a server, the client terminates its request
because it sees a temporary network failure. As per existing
RPC models. the order of events al the server should be for the
server to receive the request, then see the failure and terminate
the requested operation. If the scrver does not see the failure
(violation of atomicity), or if the server sees the failure after it
has completed the requested operation (violation of ordering),
the models consider the operation incorrect. Furthermore,
since the orphan may interfere with normal executions
subsequently requested by the client (or other clients). it it
killed by using techniques such as rollback [6]. [5]. Such a
treatment of failures is independent of the applications.

! Applications are programs that are written by system programmers who
implement the resource-dependent compunent of the servers (e.g., terminal,
file) or system users wha implement theis own specific needs (e.g., numencal
program, database access program).
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In this paper, we view the implications of failures from an
application perspective as outlined below [1].

A. Inherent Failure Tolerance of Applications

Many applications have an inherent ability to tolerate
certain types of fatlures that may occur during RPC's. This 1s
partly due to the evolution of a wide range of idempotent
applications that do not change the state of the server such as
query to time gervers, remote computations on math library
servers, access to name servers. and so on in large scale
distributed systems. Typically in these applications. a server
may process the RPC requests from multiple clients in any
Order since the requests are usually unrelated to one another.
Also, the failure of a client need nat be seen by the server since
the tailure usually does not affect the server. Thus, the servers
in these applications need not enforce the atomicity and
ordering constraints on the RPC events. Thiy absolves the
servers from maintaining state information which may other-
wise be required if the constraints are 1o be enforced. This is in
contrast to applications such as operations on file and database
servers which usually enforce the atomicity and ordering
constraints on the RPC events. Even so, a server need not
enforce the constraints for a sequence of idempotent opera-
tions (e.g.. reading a file).

The following examples further illustrate how applications
exhibit some level of failure tolerance.

Examples: Consider an RPC by a client to scarch for a tile
or to get time information trom a group of server processes. [n
both cases. the RPC event need not be seen by every server in
the group. For the file search, it suffices if the client gets a
response from the particular server that manages the tile. For
the time request, response from any ot the servers will do.
Thus, a communication failure which results 1n nondelivery of
the RPC cvent to every server in the group does not alfect the
successtul completion of the RPC. As another example,
consider the multiple executions of a server caused by re-
transmissions of an RPC request message to the server {from a
client, say due to message loss. The orphaned server execu-
tions (8], (9) may not be harmtul when they are idempotent.
Cansider the carlier example of an RPC on a server where the
client terminates it request because it observes a temporary
network failure. If the server execution 18 idempotent, then it
does not matter whether the server observes the failure before
or aftter completing the exeeution, and in some cases if the
failure is vhserved at all by the server.

Since many such applications can tolerate certain types of
tailures, we suggest that the ordering and atomicity constraints
on the RPC events need not be subsumed in the RPC layer but
may be specified by the application layer above it. In other
words, the ordering constraints on a given sequence of RPC
events depend on the application. This premise allows
relaxation of the constraints in the RPC layer using apptication
layer information which may in wrn significantly simplify the
recovery algorithms.

Thus, failure transparency in RPC requires specifying the
Jailure semantics ot RPC (i.e.. the implications of failures
during RPC) and the treatment of orphans caused by failures.
Exisung RPC models typically do not make use of the
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application layer properties for failure recovery, and are either
formulated primarily for nonidempotent applications or do not
address failure transparency significantly. This paper presents
a different model of RPC from an application perspective. The
model makes new types of failure recovery techniques useful,
particularly in large distributed systems.

The paper is organized as follows; Section II describes a
model of RPC which systematically incorporates certain
application layer properties and allows them to be exploited
during failure recovery. Section [T discusses the failure
semantics of RPC. Based on the RPC model and semantics,
Section 1V introduces a new technique of adopting orphans
caused by failures. The technique minimizes rollbacks that
may be required for recovery and avoids wastage of useful
work already completed. Section V describes the essential
details of the technique. Section V] presents a quantitative
analysis of the recovery technique. Section VII provides
details of a prototype implementation of the model and
includes performance indications. Section VIII discusses the
model in relation to existing work.

II. MopEeL oF REMOTE PROCEDURE CALL

As described earlier, server processes implement resources
and respond to requests from client processes to access the
resources. A server exports an abstract view of the resource
(e.g.. files) it manages with a set of operations on it. A client
communicates an RPC request to the server for operations on
the resource. and the server comimunicates the outcome of the
operations to the client by an RPC response (or return). In
providing the resource for its clients, the server often needs to
communicate as a client with another server because the
resource may be implemented on top of another resource. For
example. files are impiemented on top of disk storage; so a file
server needs to communicate as a client with a disk server to
implement the files. Thus, the role of a process as client or
server is dynamic.

Additionally. a service may be provided by a group of
server processes organized into a process group [13], referred
1o as a server group, to manage the resource. The member
processes of a server group share one or more abstract
resources and contend among themselves to access the
resaurces. Exampies of the resources are the name binding
information maintained by a name server group. the leadership
within a server group. and distributed load information. The
contention style intraserver communication may take place
by one-to-many (group) communications among the members
of the server group. The intraserver group communication
initiated by a server is usually triggered by an RPC request on
the server from a client. Thus, a distributed program may be
structured as a sequence ol client-server communications
interspersed with intraserver group communications. The
latter may span across program boundaries because a shared
resource managed by a server group may be accessed from
more than one program.

A. RPC Types

RPC’s from a client on a server inay be of 1wo types—
connection-oriented and connection-iess [8)—as described
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‘E below:2

An RPC is connection-oriented if in a sequence of such
calls, the server should maintain a certain ordering relation-
ship among them. The call (or interaction) may cause changes
to the resource the server exports to the client. The server
maintains state for the interaction which consists of i)
information about the client, and ii) resource-dependent
information which is anchored onto i). (Item i) constitutes the
permanent variable for the connection.) The state is main-
tained in the server across calls throughout the duration of the
connection. Among other things, the state information is used
by the server to maintain the required ordering relationship
among the calls, and to protect the resource against inconsis-
tencies caused by client failures. An example of a connection-
oriented call is a client operating on a file maintained by a file
server; part of the state maintained by the server for the call is
the seek pointer.

An RPC is connection-less if in a sequence of such calls, the
server need not maintain any ordering relationship among
them. This implicitly assumes that the call should not cause
any changes to the resource the server exports to the client.
Thus, the failure of the client is of no concern to the server.
For the above reasons, the server need not maintain any state
information for a connection-less call. Examples of connec-
tionless calls are a client requesting time information from a
time server, and a numerical computation from a math library
server.

Because no ordering constraints are imposed, the connec-
tion-less calls are lightweight and the algorithms to implement
the calls may be simpler and more efficient as compared to
connection-oriented calls. The failure recovery component of
the algorithms may also be simpler (Section IV-D).

We now discuss how state transitions occur in servers to
formalize the application layer properties that may be used in
the RPC.

B. State Transitions in Servers

An RPC TR from a client on a server is denoted by

(Coets Suet) = (Car Sun) (1)
where Cy. and C,q are the states of the client before and after
the execution of 7R, and S, and S, are the corresponding
states maintained by the server for TR. The TR causes the
server in state Sy to emit a value p_val and change state to
Sant» and the client in state Cy¢ to accept p_val and change state
to C,;. The state transition from Sy to S, in the server may
take place by its interactions as a client with other servers and
by its local executions operating on its internal permanent
variables. Thus, C,; depends on (Cy, p_val) and S,; depends
on (Swer, TR). If TR is connection-less, it is simply denoted by

(Coer) > (Cur)

since the server does not maintain any state information for
TR.

2 The meanings of these terms differ somewhat from those used in
communication protocols.
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The p_val may be abstracted as a set of (attribute;- value)
pairs. An attribute, used by the client, specifies an operation
on the server which may return one of many possible values
for the attribute. As an example, suppose TR is a query to a
print server to get the status of a printer. The attribute
STATUS may be specified in TR. Let the possible return
values for the attribute be { ACTIVE, DOWN}. Then one
possible outcome of TR is p_val = {(STATUS, DOWN)}.
Such a characterization of p_val is in general useful to
transmit abstract values in messages [12]. In particular, it is
used to represent the return value in RPC (Section IV-B).

Based on state transitions in the server, we now describe the
idempotency property of client-server interactions. It is an
application layer property used in RPC for failure recovery.

C. Idempotency

Consider a client-server call 7R as given by the relation (1)
TR
(Cbcfo Sbef) - (Cafn Saﬂ)'

The idempotency property of TR [9] relates to the effect of TR
on the state maintained by the server for the calls from the
client, and it specifies the ordering relationship of TR with
respect to a sequence of calls. TR is an idempotent call if the
state of the server remains unchanged after the execution of
TR, i.e., S;n = Sier; however, C,q need not be the same as
Cys since the client may change state due to the p_val returned
from the server. Examples of idempotent calls are a read
(without seek) operation on a file and a status query operation
on a printer. If 7R is nonidempotent, then S, may be different
from S,.¢. Examples of nonidempotent calls are relative seeks
on a file and opening a file.

To expose additional properties of TR that may be useful in
the recovery algorithms, we introduce two concepts—reenact-
ment of TR and reexecution of TR.

1) Reenactment: In a reenactment of TR, the states of both
the client and the server are first restored to those when TR
was issued and a new call TR’ which has the same properties
as TR is made. If TR is given by the relation (1), then TR’ is
defined as

TR’
(Cbef) Saﬂ) " (Caf(/v Saftl)v

where C,, depends on (Ch;, p-val’) and S,s/ depends on
(Seer, TR'). The concept of call reenactment is useful in
backward recovery schemes in which the server rolls back the
effect of the call, and subsequently the client reissues the call
(Sections V-D and III-A). The idea is to be able to reproduce
the effect of the call (i.e., S;n = Sip and Copr = Cua). In
order to accomplish this, the server state transition and the call
TR should be deterministic, i.e., repeated call on the server at
a given state should cause the server to make the same state
transition and emit the same p_val. The former condition
ensures S;» = S,z while the latter ensures Cynr = Cyq.
Consider, as an example, a ‘‘read’’ operation provided by a
file server that returns the data value read from a file. It is
deterministic since a reenactment of the operation returns the
same value as the original operation. Suppose the ‘‘read’’
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Fig. 1.

operation also returns a time stamp, then it is nondeterministic
since every reenactment of the operation may return a different
time stamp.

We observe that the change in the server state caused by TR
depends only on the server state prior to the execution of TR,
but not on the p_val returned by the server. On the other hand,
the change in the client state depends only on the client state
prior to the execution of TR and on the p_val returned by the
server, but not on the server state. Thus, the idempotency and
the determinism properties of TR do not interfere with one
another. Hence, any techniques to deal with the nondeter-
ministic behavior of program executions need not interfere
with those provided to tackle the idempotency issues. Thus,
for simplicity and without loss of generality, we confine our
discussion to deterministic programs.

D. Reexecution

In a reexecution of TR, only the client state is restored to
that when TR was first initiated. In that state, the client
generates a new call TR” such that TR” has the same
properties as TR. If TR is given by the relation (1), then TR”
is defined as

TR*
(Coets Sat) = (Cagewy Saten)-

The concept of call reexecution is useful in the forward
recovery scheme described in Section IV and also in dealing
with orphans caused by message duplicates (Section V-Bl1).

In order for a reexecution to be useful, TR should be
idempotent. It follows from the definition of idempotent calls
(Section II-C) that if TR (and therefore TR ") is idempotent,
then Sar» = Sar = Sber. In other words, the server state does
not change under reexecutions of an idempotent call. Also,
since TR is deterministic, Cq» = Cyg.

Based on the above concept of reexecution, the call TR may
further be classified as 1-idempotent if the server changes state
only for the first execution of TR but not under reexecutions of
TR. An example is an absolute seek operation on a file.

Havingcast the RPC model with application layer proper-
ties, we now discuss the failure semantics of RPC.

III. FAILURE SEMANTICS OF RPC

Refer to Fig. 1. The P;'s are the processes in the program.
Suppose P;_ calls P; which in turn calls P;, |, then P;_ is the
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Locus of the remote procedure call thread.

client (or caller) of P; and P; is the server (or callee) of P;_;.
Similarly, P; is the caller of P;,, and P, is the callee of P;.
The P’s (i = 1,2, -++ i, i + 1) contain portions of the call
thread with the tip of the thread currently residing in P, ;.
When a caller makes a call on a callee, the caller is suspended
and the tip of the call thread extends from the caller to the
callee which then begins to execute. When the callee returns,
the call thread retracts from the callee to the caller and the
latter resumes execution.

As the call thread executes P;, it may visit various servers
Py, Py, Py, --+ through a series of calls causing the
servers to change states (c.f. Section II-B). We refer to the
state of all such servers as the state of the environment as seen
from P;_,. The thread may resume execution in P;_; when it
returns from P; either normally after completion of TR by P;
(i.e., TR succeeds), or abnormally when P; fails or when there
are communication failures between P;,_, and P; (i.e., TR
fails).

Suppose X is the state of the environment when the call TR
is initiated, a desired failure semantics of TR is as follows. If
TR succeeds, P;_; should see the final state of the environ-
ment Y, otherwise, P;_, should see the initial state X. These
two outcomes are represented as CALL_SUCC(TR, X, Y)
and CALL_FAIL(TR, X, X), respectively, where (TR, X,
Y) indicates a state transition from X to Y for TR. The
semantics underscores the all-or-nothing effect of the call, a
requirement for the call to be atomic [5].

A. Rollback and CALL_FAIL

Suppose that during the execution of TR, P; initiates a call
on P;, and then fails. The portion of the thread at P;,, down
the call chain is an orphan. Let X’ be the state of the
environment when P; failed. The failure of P; can be masked
from its communicants P;_, and P;,, if the failure can be
recovered and P;_, sees the outcome CALL-SUCC. A
necessary condition for such a failure transparency is that there
exists another process, identical to P, in the service provided,
whose state is the same as that of P; when the latter failed and
which can continue the execution of TR (from the failure
point), causing the state of the environment to change from X’
to Y. If the failure cannot be masked, then the failure
semantics requires that P;_; sees the outcome CALL_FAIL.
The latter is provided by killing the orphan [5], [3], [9] which
manifests in rolling back the state of the environment trom X’

— i
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The semantics is also applicable if TR is connection-
but the rollback is not required because P; does not
any state.
Unrecoverable Calls

Rollbacks initiated in the RPC layer may affect the

on | particularly i/o s that t the

env ent. In some ap such print

tion, ack may not be meani In other a-

roll may not be possible. er, for e e,

ons in in in plants; un e

(on the o an on such as a

valve or motor is er 1 nor A
call that ts the ext en is un le

when a failure occurs. The outcome of the unrecoverable call
is referred to as CALL_INCONSISTENT(TR, X, X’)
indicating (to P;_) that the state of the environment may be
inconsistent.

Since the CALL_FAIL and CALL_INCONSISTENT out-
comes of TR occur due to unrecoverable failures in the RPC

) th com
n Is eal w
e ent
an
a is
dically calls P; to in ti ion update its
time. If TR fails the Le tion, P;_,
may deal with the exc n by the failure to
correct the time at the call. cts of com on

exceptions in the presence of concurrent calls is dealt with in

[1].

C. Failures of Server Group Members

g
e

a
released so that the resource is usable by the other members.
Thus, as part o kacqu on, the m should also
arrange for the ion of lock to a tent state in
case the member fails [1]. Hence, lock recovery becomes part
of a roilback activity that may be initiated by the member if its
client fails. The failure of a member that does not hold any
lock on the resource may not introduce any inconsistency in
the state of the resource.

In this section, we have described a model of distributed

prog s allows rela n € the
orde ints on the € ( res)
usin rmation such as ide tency,
dete -less calls. We now ribe a
new technique to deal with orphans based on the model.
IV. OrrHAN ADOPTION IN RPC
In this t ue, one of the icas o esa
client call the other repl are s the
ing replica fails, one of the r R conti the
execution from the point of and ad the

orphan caused by the failure (rather than killing it which
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causes rollback). The adoption may occur when R s
points. ver, the ecut y the v due
to such should ¢ no on the (c.f.

Sections II-C and IV-A). The roll forward of R minimizes
rollback (and the associated rollback propagation) which are

d
r sce described
in eex n of a call

initiated from P;_;, fails after initiating a call on P;,,.

call fails. To deliver the CALL_FAIL outcome, rollback

be
if
me
ered.
‘to Fig. 2. Roll fo is on 1) ¢
re ion of the calls if n ry, on their
tency properties, and 2) of call com from
an event log so that a r ng process istent

with other processes without actually reexecuting the calls.
These points are elaborated in the following sections.

A. Reexecution of Call Sequences

Let EV_SEQ = [TR', TR?, --- TR', -+ TR¥] be the
sequ e ts en
failu er on by
> - > - >

““TR! happens before TR2."" The call TR' is represented as

i

(e, 5i-) ™ (Ciy S) @)
where (C;_;, S;_) is the state of the client and the server,
before the execution of TR’ and (C;, S;) is the state after the

execution. Suppose a failure causes a reexecution of TR',

represented as TR'’, after the server has executed TR*. The

call sequences EV_SEQ and [EV_SEQ > TR''] are not

ordered with respect to one another. Thus, call reexecutions

by the server often require relaxation of ordering constraints

on calls without affecting the consistency of the server state.

The reexecutions of a call underscore the idempotency

property associated with the call (c.f. Section I-C) as

described below.

1) Interfering Calls: Refer to the example given above, Let
Sy be the state of the server after the completion of the last call
TR* in EV_SEQ. Assuming that the server does not maintain
an event log, the reexecution TR’ (i.e., TR* > TR'")
invoked by a recovering client may interfere with the calls in
EV_SEQ which the server had already completed. TR’ does
not interfere with TR* if

€. 802 (c, s,

i—1?
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RS -- Restart paint

Fig. 2.

Thus, the necessary condition for the server to execute TR
without causing state inconsistency is that TR’ should be
idempotent. However, a sufficient condition is given by the
requirements (see relation (2)] that

Ci,—l= i—1, and C,-’ =C,'.

Assuming the call is determunistic, the first requirement is
satisfied. Thus, TR may be given by

TR
(Ci—l, Sk) i (C,',) Sk)

Pattern matching this relation with (1), the second require-
ment, namely C/ = C; can be satisfied only if §;_, = §; =
Si. This is true if the condition

TRi+

TR! 1
(Ci-iy Sic)) = (G, Sic)) — (Civys Si-y)

TRk
0 (Cr-ny Sicy) = (G, Sicy)

is satisfied. This is possible only if TR/, TRi*!, - -+ TR* are
all idempotent calls. The condition specifies, in general, when
the server may reexecute a call without causing inconsisten-
cies. If TR’ is a l-idempotent call, then TR’ can be
reexecuted only for i = k.

The above analysis supports the following commutative
property of the calls seen by a server. Given that EV_SEQ and
[TR!") are idempotent sequences. i.e., contain only idempo-
tent calls, EV_SEQ > [TR'’] is an idempotent sequence (and
sois [TR'] > EV_SEQ). We also observe that EV_SEQ >
EV_SEQ’ > [TR'']is an idempotent sequence if EV_SEQ’
is an idempotent sequence. The analysis is useful in the server
for 1) reexecution of calls, 2) ordering of incoming calls (e.g.,
generation of serializable schedules for the calls), and 3)
interspersing of calls from multiple clients—even though a
client may issue a sequence of idempotent calls, if there is at
least one nonidempotent call from other clients interspersed in
the sequence, the client perceives the effect of a nonidempo-
tent call. We also note that connection-less calls can be
interspersed in any serializable schedule.
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Server re-executas
(Connaction-less call)

Server re-executes
(Connection-oriented call)

(Connection-oriented call)

Sarver replays from event log

Event log containing call
cofmpletion events

Recovery of a procedure.

B. Event Logs

An event log is used to record an event so that the event can
be replayed at a later time. We use the replay technique for
connection-oriented calls (without reexecuting the calls) dur-
ing forward recovery. When a server completes a call, it logs
the call completion event (described by a data structure
containing, among other things the p_val returned by the
server to its client). The event log allows the client to perceive
the effect of a call without the server actually (re)executing it.
Thus, if 7R/ is a call represented by {c.f. relation (2)]

Ci-1, Si) B (G, S)

and TR/ is the call last completed by the server, i.e., TR >
TR/, then a replay E' from the event log for TR’ may be
represented as

E‘
(Ci-1, §)) = (C, §))

where TR/ > E'. Thus, a recovering client may roll forward
to a consistent state with the server simply replaying the
logged call completion events.

[f a call from a recovering client cannot be completed either
from the event log or by reexecution, the call fails with the
CALL_INCONSISTENT outcome.

C. Locks on Shared Resources

If the orphan is holding a lock on a shared resource, the
suspension of the orphan during its adoption may prevent other
programs trom accessing the resource (e.g., a printer or name
binding information) until the adoption is completed. Depend-
ing on factors such as how critical the resource is and whether
the operations on the resource are recoverable, the orphan may
either suspend its execution or recover the lock on the resource
(c.f. Section III-C) and forces a CALL_FAIL or CALL_
INCONSISTENT exception, as the case may be, to the client
of the failed process.

D. Connection-less Calls

Since connection-less calls on a server do not require any
form of ordering among them, the calls are not logged by the
server. So these calls, when reissued by the recovering client,
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Data structures used in the RPC run-time system.

When P; completes a nonidempotent call, it checkpoints
(i.e., saves) its state consisting of permanent variables in a
buffer space provided by the run-time system at P;_;’s site.
The checkpoint is used in the recovery in the event P; fails.
Our choice of P;_, as thc checkpoint site is a design decision
based on two reasons. 1) Since P;_; is the recovery initiator
for P;, the availability of the checkpoint information with P;_,
makes failure recovery easier. 2) Since the system environ-
ment may consist of diskless machines [10], P; may not have a
local disk to use as stable storage for the checkpoint. The
above design decision is in contrast with that of ISIS in which a
server checkpoints its state at the other replicas of the server
(2].

Suppose P; fails, RI(P;) detects the failure [8] and selects a
secondary to reconfigure as the new primary and continue the
execution. In our scheme, there is no ordering relationship
among the secondaries. Instead, the secondary that responds
first to a message broadcast by RI(P;) is selected to be the new
primary. RI(P;) then initializes the new P; to the state last
checkpointed in its site, and rebinds the references to the failed
P; held by its communicants to the new P;. During this entire
initialization (INIT) activity, RI(P;) sends keep-alive mes-
sages to the communicants of the failed P; to indicate to them
that recovery is in progress. These messages prevent the



communicants from timing out. Subsequent recovery activities
depend on the state the failed P; was in at the time of failure. If
P; failed when it was IDLE, no activity other than INIT is
required. When the prefailure state of P; was EXECUTING or
SUSPENDED, a RESTART activity whereby RI(P;) restarts
the new P; is necessary. We describe the RESTART activity in
the next section followed by the data structures required for
the RESTART, and finally the recovery of P;.

A. RESTART Activity

RI(P;) restarts the new P; which then starts (re)issuing the
calls between the last checkpoint to the point where the
erstwhile P; failed (see Fig. 3). A server (such as P;,))
handles such calls sent to it by returning the results ( p_va{) of
the calls to P;. Since the server had already executed the calls
previously, p_val may be obtained from the local event log or,
if it is not available in the log, by reexecuting the call if this
will not cause state inconsistencies [c.f. Section IV-Al)]. If the
server has all the calls sent to it in its log, no reexecution of the
calls is necessary. Ideally, the size of the log should be large
enough to retain all the calls since the last checkpoint.
However, the finite size of the log in any implementation
means there is a possibility a nonidempotent call cannot be
logged by the server. We consider the following options in
handling this problem:

1) Option 1: Intermediate Checkpoints: The server (such
as P;, ) may ferce its client P; to take a checkpoint (at P;_,’s
site). The checkpoint may then occur even before the return of
the (nonidempotent) call P; is executing. Such an intermediate
checkpoint has the following implications. 1) The frequency of
checkpointing may be higher than the case where checkpoint-
ing is done only at call return. This is the case if there are
nonidempotent calls arriving after the log is full. 2) The state
checkpointed needs to include the instruction pointer, stack
pointer, and the execution stack. This may restrict the replicas
of a server to run only on machines of the same hardware
architecture. 3) Extra checkpoint messages are required, some
of which may be piggybacked on the call return messages if
the checkpointing is done during call return.

2) Option 2: Rollback of the Unlogged Call: The
implications of the server being unable to log the nonidempo-
tent call it returns are as tollows. If the client (P; in our case)
fails and recovers, the calls which are reissued from the
recovering P; on the server and which are not in the server’s
log cannot be completed. To enable P; to roll forward by
completing such calls, the etfects of the unlogged nonidempo-
tent call should be rolled back before P; can reissue the calls. If
the RPC layer already maintains data structures to support
rollback and provide the CALL_FAIL outcome, the rollback
of the unlogged call does not require any additional data
structures. If the rollback cannot be carried out, then since P;
cannot roll forward, it may fail the call by delivering the
CALL_INCONSISTENT outcome to P;_,.

The RPC designer may choose one of the above options
after weighing their implications in light of the application
environment the system should support. We have chosen
option 2 in our implementation because the data structures to
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support rollback are already available to provide the CALL._
FAIL outcome.

As noted earlier in Section IV-D, the connection-less calls
on a server are not logged by the server, so these calls when
reissued by the new P; are invariably reexecuted by the server.
Also if a server fails during a connection-less call on it, the
client simply reissues the call on another replica of the server.

B. RPC Data Structures and Protocols

The RPC layer maintains a set of variables and data
structures for recovery purposes (see Fig. 3). Only those
essential to describe the adoption technique are given below:

CALL_REF(P;, P)): It is a name reference to a callee P;
(e.g.. Pi,.) held by P in the form of a (service_name;, srvr_
pid;) pair, where service_name; uniquely identifies the
service provided by P; and srvr_pid,; is the process id of P;.
When P; makes a call on P;, this reference information is
checkpointed at the caller of P, (e.g., P;_); when P, returns
the call, the checkpointed information is deieted. If P;
recovers after a failure, the process id in CALL_REF is
updated to refer to the recovering process.

(G-tilegss,i jo ni-tidyyi j): G-tid,g,.; is a global call id
which is assigned the next sequence number for every new call
by P; on P;. nl_tid,4, ; is a nonidempotent call id which is
assigned the next sequence number for every nonidempotent
or l-idempotent call on P;. The call id pair maintained by P;
(as a client) pertains to its last call on P;. The set of such pairs
is referred to as the thread state of P;.

(G_tidjasy i, nI_tid)g,;): It is the call id pair maintained by P;
(as a server) for the last call it has completed.

CALL_THRD(P;, Pj): It is the thread state of P;
checkpointed at its caller P;. If P; fails and recovers, it is
initialized by P; to this thread state during the INIT activity.

CALL_OWN(P;): It is a recursively structured list of
procedure names maintained by P; in the SUSPENDED or in
the EXECUTING state. The first element of the list is the
name of P, itself, and each element of the remaining list is the
CALL_OWN(P;) returned by a callee P; when the latter
completed a nonidempotent call from P;. Thus, CALL_-
OWN(P;) contains at least one element, the name of P;.

CALL_BCK(P;, P;): It is a checkpointed version of
CALL_OWN(P;) maintained by P; while in the SUS-
PENDED state for its on-going call on P;.

CALR_RL_FLAG(P;): It is a Boolean variable (flag) and
is meaningful only when P; is in the EXECUTING or the
SUSPENDED state. A true value of the flag indicates that if
the caller of P; fails, a rollback should be performed for
recovery; a false value indicates otherwise.

CALR_ENV_INTRCT(P;): 1t is a flag meaningful only
when P; is in the EXECUTING or the SUSPENDED state. A
true value of the flag indicates that if the caller of P; fails and
recovers, its reexecution up to the failure point will cause at
least one interaction with the environment.

HIST_OWN(P;): 1t is a list of the values of the permanent

3 PV, may be represented in a machine-independent form by using

techniques such as external data representation and abstract syatax notation
[12], (10}.

_ _/
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variable PV; maintained by P;? and its thread state; a value is
stored when P; completes a nonidempotent call. It constitutes
the history of P;.

HIST_BCK(P;, P;): It is a checkpointed version of the
history of P; maintained by its caller P; (the recovery initiator
for P;). Note that the last entry contains the value PV; to
which P; should be initialized (during the INIT activity) in
case P; fails and recovers.

It should be noted that for connection-less calls from P; on
P;, only the CALL_REF(P;, P;) is maintained; all the other
data structures are maintained only for connection-oriented
calls.

For details of the protocols to send and receive RPC
requests and returns, see [1]. We describe below only the call
validation phase of the protocols.

1) Call Validation: Suppose P; makes a call request,
identified by (G_tidysy,iis 1, NI-tidrgs,iiv1), On Piyy. If Pjisa
recovering procedure, then G_tid,qiiv1 < G_tidjsy, i and
nl_tid, g ;1 < nl_tidiag,;, for the reissued calls. Thus, the
following situations are possible when P;., validates the
request:

Case 1) G _tidrgst,ijiv1 = (G_tidjgst,is1 + 1): G-tidrgsiis
is a new call, so P;, carries out the requested call and sends
the completion message to P;.

Case 2) G—tidrqsl,i.i+l < (G—tidla.sl,i+l + l)' G—tidrqsr,i,i+l
is a reissued call (e.g., a duplicate call request message). If the
call completion event is available in the log, P;. replays the
event to the recovering P;. Otherwise, if the requested call is
idempotent or 1l-idempotent, and nl_tid, ;i1 = nl-
tids,iv1, then P;., may reexecute the requested call and
return the results to P;. If the call is nonidempotent or nl_
tid,qg,iiv1 < nl_tidig iy, then P;, | returns an error message
ALRDY_OVER to P;.

When P, rejects the call request with the ALRDY_OVER
error message, P; may request P;,, to rollback. If P;,, rolls
back, P; may reissue the call. Otherwise, the call fails with the
CALL_INCONSISTENT outcome.

When P;,, returns the call to P;, the latter uses CALL_
REF(P;, P;,,) and (G_tidqs,ii+1» NI_tidgeii+ 1) to validate
the return. In general, a client uses its CALL_REF to detect
returns from orphaned calls. For this purpose, the process id’s
used in CALL_REF should be nonreusable [14].

C. Rollback Algorithm

The structure of the list CALL_OWN(P;) [and CALL_
BCK(P;_,, P;)] reflects the sequence in which the execution
thread from P; visited the various callees. A rollback should
follow a last-called-first-rolled order, i.e., only after the
rollback for the last call (last entry in the CALL_OWN) is
completed should the rollback for the previous call be
initiated. Suppose P; is the rollback initiator (RBI). It
recursively traverses its CALL_OWN (or CALL_BCK as the
case may be) list in the last-in-first-out order. For each entry in
the list, P; sends a message RL_BCK to the procedure
identified in the entry. On receipt of this message, the
concerned procedure rolls its permanent variable back to the
last value contained in its HIST_.OWN, and returns a RL_
BCK_ACK message indicating successful completion of the
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rollback operation. If rollback is not possible, the procedure
returns a RL_BCK_FAIL message to indicate the situation. On
receipt of the RL_.BCK_ACK message from all procedures
listed in CALL_OWN, the RBI assumes the rollback is
successfully completed. If at least one RL_.BCK_FAIL mes-
sage is received, the RBI considers the roilback to have failed.

A callee need not perform rollback if the calls involved in
the rollback have been logged. Thus, if the log size is large
enough that all calls can be logged, then rollback is not
required during recovery.

We now describe below the recovery of P; when it fails in
the EXECUTING or the SUSPENDED state.

D. Recovery of P;

If P; was EXECUTING when it failed, RI(P;) initiates the
rollback activity (see previous section) using CALL_
BCK(P;-,, P;), and then executes the INIT activity. If both
the activities complete successfully, P;_, restarts the execution
of P; [c.f. section II-C1)]. If the rollback completes success-
fully but the INIT is unsuccessful, P;_, fails the call on P; with
the CALL_FAIL error message. If the rollback fails (on
arrival of the RL_LBCK_FAIL error message from at least one
of the procedures to be rolled back), P;_ fails the call with the
CALL_INCONSISTENT error message.

If P, was SUSPENDED when it failed, the callee of P; (i.e.,
P;,,) is an orphan, so the recovery should handle the orphan
as described below:

1) Adoption of P;,,: The orphan adoption algorithm first
determines if an orphan is adoptable, i.e., if its continued
existence in the system does not interfere with the recovering
procedure. For this, the orphan P,., executes a brake
algorithm: if P;,, finds that the execution of the orphaned
thread will interfere with the recovering thread (c.g.. both the
threads may try to acquire a lock on a shared variable), a
BRAKE message is sent down the orphan chain (P;,,, Pi.:,
* - +) to suspend the tip of the orphaned thread: otherwise, the
orphan continues. On successful completion of the brake
algorithm. P, recovers and resorts to a thread stitching
algorithm whereby the orphaned thread and the recovering
threaql are ' “stitched’” together by sending an ADOPT message
down the (erstwhile) orphan chain and resuming the suspended
thread for normal execution. On the other hand, if the orphan
is not adoptable even by suspending its thread, then the state of
the environment is rolled back to provide the CALL_FAIL
outcome.*

We now present the details of the adoption algorithm. The
algorithm is recursively executed at the different P;’s.

E. Adoption Algorithm

P; maintains three Boolean variables. When true, the flags
have the following meanings:

brake_flag(P;): A brake is set at P; whereby P; is not
allowed to make a call on P, | or return to P;_; until brake_
Sflag is set to false.

4 Such a rollback is quite infrequent. And it is not necessary if the CALL _
FAIL outcome is not required.
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adoption_flag (Py): Adoption is still to be completed at P;.
So, P; is not allowed to return to P,_,.

cum_clr_rl_flag(P;): At least one of the callers P, (i < k
< j — 1) up along the orphaned call chain should perforn a
rollback as part of the recovery.

Thus, when P; is an orphan, brake_flag(P;) and/or
adoption_flag(P;) is true.

Let P(j = i + 1) be a callee in the orphaned call chain.
Forj = i + 1, i.e., the first procedure in the orphaned chain,
P;, , knows it is an orphan upon detecting the failure of P;; for
J > i + 1, P; knows it is an orphan upon receipt of the
BRAKE message from its immediate caller P,_,. In both
cases, P; sets brake..flag(P)) and adoption_flag{ P)) (o true.

Consider P;,,. If CALR_.ENV_INTRCT(P,,,) is false,
P;, continues (concurrently with the recovering P;) irrespec-
tive of whether the call is idempotent or not, because the calls
originating from the recovering P, between the start and the
failure points will be replayed by P, from its event log, and
hence P; does not interfere with P;, 's execution. In this case,
brake_flag is set to false. [f CALR_ENV_INTRCT(P,.,) is
true. Pj,, sets cum_clr_ri_flag(P;,,) = CALR_RL.
FLAG(P;,\). The rest of the algorithm applies to il the
procedures in the orphaned call chain (i.e., f = i + 1).

1) Braking Orphaned Thread: P; piggybacks a bit given
by

CUM_FLAG = cum_clr_ri_flag (P;)
V (last_ni_call(P;, *X)=(K;+1))

on the BRAKE message to its callee P;,,, where last_nl_
call(P;, * X') is a function that operates on CALL_OWN(P))
and returns the global call id of the last nonidempotent cail
from P, on *X; K is the size of the event log maintained by
*X. On receiving the message, P,,, sets cum_clr_ri_
ﬂag(P,u) = CUM_RL_FLAG.

Consider the orphaned call on P;. The call may be one of
the following:

a) ldempotent: Suppose cum..clr_rl_flag(P,) is truc. i.e..
a rollback is required by at least one P,(i < k < j — 1) when
the tailed P; recovers. If P; is in the EXECUTING state, a
BRAKE_ACK message is sent to P;_, indicating completion
of the brake operation at P, and those down the call chain. If P,
is in the SUSPENDED state, it sends a BRAKE message to the
callee P, | down the call chain. Suppose cum_clr_ri_flag(P;)
is false. P, may continue to execute (concurrently with Py)
since the call is idempotent and there is no pending rollback
that may interfere with the call. So. P, sets brake_flag o false
and sends a BRAKE_ACK message to P;_,.

b) Nonidempotent: 1If P, is EXECUTING. it sends a
BRAKE_ACK message to P;_,. If it is SUSPENDED, P,
sends a4 BRAKE message to P,.,.

Consider the arrival of the BRAKE_.ACK message from
P;, aL P,. If the call on P; is idempotent, P; simply passes the
message to P,_; up the call chain. If the call is nonidempotent
and if CALL_OWN(P,) contains at least one returned entry,
P, completes the rollback algorithm and sends the BRAKE-
ACK message to P,_,. At P, , sending the BRAKE_ACK to
P, completes the brake algorithm.
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Upon completion of the brake algorithm, RI(P;) (i.e., P;_ ;)
performs the rollback algorithm using CALL_BCK(P;_,, P)).
If the rollback activity of either P, or P;_, fails as indicated
by the arrival of the RL_BCK_FAIL message, P,_, fails the
call on P; by returming the CALL_-INCONSISTENT excep-
tion. If only the INIT activity fails, P,_, fails the call by
returning the CALL_FAIL exception. If the INIT activity and
both the rollback activities are successful, P;_ carries out the
RESTART activity on P,. When the (re)execution of P; talls
through to the cail that was orphaned, sending the call request
amounts to sending an ADOPT message down the orphaned
thread to *'stitch'’ the latter with the recovering thread, as
described below.

2) Thread Stitching: P(j = i + 1), upon receipt of the
ADOPT message, sets the brake_flag(P;) to false and
resumes the orphan cxecution from the point where the brake
was set earlier.

Consider j = i + 1. If CALR_ENV_INTRCT(P;, ) is
false, the AD_CON algorithm (given below) is executed to
adopt the concurrently executing P,. ;. Otherwise, the follow-
ing algorithm is executed. Since the algorithm applies to all
procedures down the orphaned call chain, it is described for
the general case, i.e., j = i + 1:

If P; is idempotent, the AD_CON algorithm is executed to
adopt the concurrently executing P,. Suppose P; is nonidem-
potent. If P, is EXECUTING., it sets adoption_flag(P;) to
false and sends an ADOPT_ACK message up the call chain
indicating completion of adoption at P;; if P, is SUS-
PENDED, then when the (re)execution thread reaches the
adoption point (i.e., where P; got suspended), an ADOPT
message is sent to P, (.

Upon receipt of an ADOPT_ACK message, P; scts its
adoption_flag(P;) to false and passes the message onto P;_
up the call chain. At P;,,, sending the ADOPT_ACK to P,
completes the adoption algorithm.

3) AD_CON Algorithm: As we saw earlier, the recovering
caller P,(i < k¥ = j — 1) may, under certain situations,
execute concurrently with P,. In such cases, brake._flag{P,)
is false when the ADOPT message arrives and P; is allowed 1o
make calls on P;,, but not return to P;_,.

It £; compietes its execution first, it awaits adoption by Py
before returning the call. When P;_, subsequently calls P;, the
ADOPT message is sent to P;, upon which, P; sets adoption_
flag(P)) to false, and simply returns the already completed
call piggybucking the ADOPT_ACK.3 If P;_, sends the
ADOPT message before P; completes execution, the ADOPT
message is held until P; completes execution, upon which, the
ADOPT_ACK is piggybacked on the call return and adop-
tion_[lag set to false.

We now provide a quantitative analysis of our failure
recovery technique.

VI. ANALYSES OF THE RPC ALGORITHM

We introduce two indexes to characterize the recovery
activities carried out by the run-time system. The extent of

5 P;_, is, however, unaware that the call has returned immediately, and has
the illusion that the call went through a normal execution.
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rollback required to recover from a failure is the criterion
underscoring these indexes. The indexes guide a proper choice
of the run-time parameters to minimize and/or eliminate
rollback (and the associated rollback propagation).

A. Catch Up Distance

A catch up distance is defined for a caller-callee pair. It is
the maximum number of calls a caller may make to a callee
such that if the caller fails and recovers, the callee need not be
rolled back. The event log size K, at the callee and the
application characteristics—measured in terms of Pigm, the
probability that a call is idempotent—determine the size of the
catch up distance for the caller-callee pair.

Let TR!, TR?, - -+, TR' be a sequence of calls carried out
by a caller on a callee (TR’ is the last call in the sequence).
Suppose the caller fails and recovers. The callee should
rollback if the reexecution of TR' by the caller violates
idempotency requirements. If, on the other hand, 7R' can be
reexecuted without rollback, then the entire sequence can be
reexecuted without rollback.

Let pR; be the probability that the reexecution of TR by the
caller during recovery violates idempotency requirements.
Then pR, is given by

0 for | <i<K;
PR;i={ 1 —(Pigem)’ for i=K;+1
(Piaem)™" « (1 — Pisem) for i=K +2.

The mean size of the catch up distance thup, i.e., the mean
number of calls that the caller may execute beyond which a

failure will cause the callee to rollback, is given by

Nc(chup=(Ks+ 1) - (1- (Pidcm)K:+l)

+ E i (I)idem)i—l * (1 = Pigem)-
i=Ko+1

Neensp is a static characterization of the program under the
given run-time system. Fig. 4 shows the variation of Nc.chup
with respect to Py, for a given K. This parameter lends
insight into the choice of checkpoint intervals (the number of
calls between two successive checkpoints) to effect recovery
without rollback. Alternatively, it indicates the level of failure
tolerance provided by the run-time system without a rollback,
and hence may be used to determine the size of the event logs
required to meet a desired level of failure tolerance. From Fig.
4, it is clear that the level of failure tolerance is higher when a
server reexecutes calls (based on the idempotency properties)
than when it does not.

B. Rollback Distance

Rollback distance is the number of nonidempotent client
calls after the last checkpoint (call return in our case) whose
effects a callee should rollback when the client fails and
recovers. ® Assume S calls have been completed by the client,
and there is no on-going call. Suppose the client fails and then
recovers. The probability that the rollback distance is R(0 <
R = (S - K,)) is given by

Prlbck.S(R)= <S_KS> - _Pidem)R

R
: (Pidem)s-Ks_R

¢ A nested rollback is considered as one rollback at the top level.

for S=(K;+1).



1184

e
2
A = =
K. =3, 5=10
o
© a
N
R(s) -~ AN Hithout

. Q \\ eveat logs
w
o
-
o
'\; -4
o
e T T T T T Y : s 9

0.0 0.2 0.4 Q.6 0.8 1.0

Pidem ~*
Fig. 5. Variation of rollback distance with respect to Pigm.

Note that S is less than the checkpoint interval (in our case, the
number of calls between call receipt and return). If S < (K, +
1). the question of rollback does not arise. The mean rollback
distance 15 given by

S-K, _
(S RK’> (1= Pgen)® * (Paam) 57",

R(S)= E R

R=0
The graphs in Fig. S illustrate the variation of R(S) with
respect (0 P, for a given value of §. As can be seen, the
effect of the event logs is to reduce the number of calls that
have to be rolled back. A related index of interest is the
probability that the callee should rollback, and is given by

for S=(K;+ 1)

_ (l —(Pi em)S_Ks)
(1= Prper 5(0)) = { 0 ‘ for S<K;

When no logging is done, i.c., K, = 0, the probability is (1 —
(Piem)®). The graphs in Fig. 6 illustrate the variation of the
probability of rollback with respect to S for a given P, and
K;. The cffect of event logs in reducing the probability of
rollback is more pronounced when S is small. Thus, the
farther (in terms of the number of remote calls) the failure
point is from the last checkpoint, the less the advantages of
event logs.

The rollback distance and the rollback probability constitute
a dynamic characterization of the program since they depend
also on the tailure point given by S. These indexes lend insight
into the extent of rollback required fer given checkpoint
intervals.

We now give some details of our prototype implementation
along with indications about the performance of the orphan
adoption technique.

VII. PROTOTYPE IMPLEMENTATION

A prototype system based on the RPC model has been
implemented on top of the V Kernel running on a network of
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SUN workstations interconnected by an Ethermet. The basic
‘‘send-receive-reply’’ style of message passing supported by
the kernel is used as the message transport layer for the RPC
model [11]. The system performs as expected under intention-
ally created machine and communication failure conditions.
Two key aspects of the implementation are described here.

A. Information Flow Between Application and RPC
Layers

See Fig. 7. The exchange of application layer information
with the RPC layer takes place through an interface consisting
of a set of stub procedures. The stubs interface between a
language level invocation of RPC and the underlying RPC
layer [15]. A server makes static declarations about 1) the
idempotency properties of the various operations it supports,
and 2) the resource type (e.g., name binding information,
leadership in a group). These declarations are used by a
preprocessor for the language in which the server is imple-
mented to generate the appropriate stubs. The stubs form part
of the executable images of the client and the server.

At run-time, the RPC layer obtains the application layer
information from the stubs and structures its internal al-
gorithms and protocols described in the earlier sections.
Communication exceptions are delivered to the stubs which
then deal with the exceptions either by handlers built into the
stubs or by user-supplied handlers hooked to the stubs.

B. Performance Indications

Since the prototype implementation runs on top of another
operating system and has not been optimized, we feel absolute
timing of the various activities in RPC is not meaningful.
Instead, we give an analysis of the communication everhead in
terms of the number of process level messages, i.e., the
number of messages exchanged by the communicating proc-
esses. The message size is usually 32 bytes long. When
required to send information larger than 32 bytes in size. a
segment containing up to {024 bytes may be sent in one
message.

1) Sending Call Request and Call Return: Refer to Fig. 3.
Suppose P; makes a call on P;, ;. Sending the call request
requires three messages: 1) a message from P; to P,
containing the call request and the call arguments, 2) a
message from P;to P,_ to checkpoint CALL_REF(P,, P;. )
at P;_,’s site, and 3) an acknowledgment message from P,_,
to P;. Returning the call requires three messages: 1) a message
from P;, , to P, containing the resuits of the call and the thread
state of P, 2) a message from P; to P,_, to delete the
checkpointed CALL_REF(P;, Py, )}, and 3) an acknowledg-
ment message from P,_; to P;. In addition, the return of a
nenidempotent call requires transfer of two types of informa-
tion: CALL_OWN(P,, ;) and PV;,,. The message from P,,,
to P; includes both CALL_.OWN(P;, ;) and PV,,,. The
message from P; to P,., includes CALL_OWN(P,, ) (to
checkpoint the list). Depending on size. various information
may be transmitted in one or more segments.

For a connection-less call. one message is required for
sending a call request and another for receiving the call return.
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In addition, a group message followed by one or more replies
may be required to locate a server if the client’s cache does not
contain the name binding information for the server.

2) Overhead in Failure Recovery: Suppose P; fails. The
messages required for failure recovery depend on the state of
P; when it failed.

The messages required for the INIT activity are basically to
locate a new server and initialize the server. Locating the
server requires a group communication. The initialization
requires transferring the CALL_THRD(P;_,, P;) and HIST_
BCK(P;_,, P;) from P;_,. The transfer requires two messages
(in one or more segments). On completion of the recovery of
P;, two messages are required to nosify the completion (one

., distributed
load information)

Interface between application and communication layers.

message for notification and the other for acknowledgment) to
each of the procedures connected to P;. :

Suppose P; was IDLE when it failed, then the messages
required for the INIT activity constitute the only overhead.

Suppose P; was EXECUTING when it failed. Then, in
addition to the messages required for the INIT activity, the
recovery requires messages for the transfer of CALL-
BCK(P;_,, P;) from P;_, and for any required rollback. For
each element in CALL_OWN(P;), the rollback requires two
messages.

Suppose P; was SUSPENDED when it failed. The brake
algorithm requires two messages for each procedure in the
orphan chain in addition to the messages required for any
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rollback initiated by the procedure. The thread stitching
algorithm requires two messages for the procedure.

VII. RELATED WORKS

In this section, we compare our adoption technique to
techniques proposed elsewhere and used in some experimental
systems.

ISIS: In ISIS [2], one of the replicas of a server is
designated to be the coordinator that executes client calls while
the others act as cohorts. The coordinator periodically takes
checkpoints at the cohorts, and retains the results (the p_val’s)
of all calls returned to the client since the last checkpoint.
These results are used in forward failure recovery when the
coordinator fails and a cohort takes over as the new coordina-
tor and reissues the sequence of calls from the checkpoint. The
technique implicitly assumes that all client-server calls are
connection-oriented because only these calls may have the
required connection descriptors to retain results of the calls. In
other words, the descriptors (including retained results) should
be maintained for every call irrespective of the operation it
invokes. Our program model on the other hand is application-
driven, and so encapsulates connection-less calls also. The
recovery of such calls is simple in our technique—the calls are
simply reexecuted. Second, it is not clear if ISIS deals with an
on-going call thread that may be orphaned due to a failure. Our
technique uses explicit algorithms to adopt the orphaned
thread. Also, ISIS checkpoints the instruction pointer and the
execution stack in addition to the application layer state. Our
technique does not require these unless intermediate check-
points are taken.

DEMOS/MP: In DEMOS/MP [7], checkpoints are period-
ically taken for every process at a central site. Also, every
message received by a process since the last checkpoint is
logged and the sequence number of the last message sent by
the process to each of the other processes is recorded. If the
process fails and recovers (from the last checkpoint), the
logged messages are replayed to the process. Also, the kernel
discards all the messages the process tries to (re)send up to the
last message prior to failure. In effect, the process rolls
forward to a consistent state without affecting the environ-
ment. The logging of messages is done at a low level (the
central site monitors the broadcast network). The method
requires logging of a large number of messages per process
and regeneration of all low-level events when the process fails
and recovers. Second, it requires a reliable broadcast bus
because every message put on the bus (sent or received by a
process) has to be logged by the central site. It is not clear how
such a broadcast may efficiently be realized. Our technique, in
contrast, is driven by application layer requirements, and
works at a much higher level of abstraction.

ARGUS: ARGUS is a distributed programming language
supporting guardians and atomic actions whereby client
guardians can invoke atomic actions on server guardians [6].
The emphasis in ARGUS is to provide language level
constructs to deal with failures. The RPC run-time system uses
orphan killing based recovery to ensure call atomicity. Thus,
the scope of our work as well as the underlying recovery
technique are different from those of ARGUS.
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Lin’s model of RPC: Lin provides a model of RPC which
ensures call atomicity by orphan killing and rollback [5].
Though his notion of atomic and nonatomic calls is similar to
that of nonidempotent and idempotent calls, his program
model does not support connection-less calls. Thus, our
program model as well as the underlying recovery technique
are different from those of Lin.

IX. CoNCLUSIONS

We have described a new model of RPC which systemati-
cally incorporates certain application layer properties and
allows them to be exploited during failure recovery. The
motivation for the model arises from our premise that many
applications have an inherent ability to tolerate certain types of
failures. The application layer failure tolerance capability is
partly due to the evolution of many idempotent applications in
large scale distributed systems. These applications do not
require enforcement of ordering and atomicity constraints on
the RPC events. The paper presents a wide range of examples
to illustrate the effects of failures on various applications to
support the premise.

Existing RPC models enforce the atomicity and ordering
constraints on the events without regard to the application
layer failure tolerance capability. So the algorithms used in the
RPC layer to enforce the constraints are usually complex.
Instead, the inherent failure tolerance capability of the
application may be exploited to relax the constraints to
simplify the algorithms in the RPC layer. Our RPC model
provides a framework by which the application layer failure
tolerance capability may be systematically exploited in failure
recovery.

The model incorporates specific properties such as idempo-
tency and connection-less calls. The properties allow a new
type of failure recovery whereby orphans caused by failures
during RPC are adopted rather than killed. The adoption
technique minimizes the rollback which may be required in
orphan killing techniques. Essential details of the technique
are presented along with a quantitative analysis. A prototype
of the model has been implemented on a network of SUN
workstations interconnected by Ethernet.

The model is generic and simple, and is useful in distributed
systems, particularly those which have complex failure modes
(e.g., large and heterogeneous systems).
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