
BOUNDED DEPTH ARITHMETIC CIRCUITS

BY SAMIR DATTA

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Eric Allender

and approved by

New Brunswick, New Jersey

July, 2004

ABSTRACT OF THE DISSERTATION

Bounded Depth Arithmetic Circuits

by Samir Datta

Dissertation Director: Eric Allender

Continuing a line of investigation that has studied the function classes #P [56], #SAC1

[60, 11], #L [12, 60, 8], and #NC1 [24], we study the class of functions #AC0. One way

to define #AC0 is as the class of functions computed by constant-depth polynomial-size

arithmetic circuits of unbounded fan-in addition and multiplication gates. In contrast

to the preceding function classes, for which we know no nontrivial lower bounds, lower

bounds for #AC0 follow easily from established circuit lower bounds.

One of our main results is a characterization of TC0 in terms of #AC0: A language

A is in TC0 if and only if there is a #AC0 function f and a number k such that

x ∈ A ⇐⇒ f(x) = 2|x|
k
. Using the naming conventions of [31, 24], this yields:

TC0 = PAC0 = C=AC0.

Another restatement of this characterization is that TC0 can be simulated by constant-

depth arithmetic circuits, with a single threshold gate. We hope that perhaps this

characterization of TC0 in terms of AC0 circuits might provide a new avenue of attack

for proving lower bounds.

Our characterization differs markedly from earlier characterizations of TC0 in terms

of arithmetic circuits over finite fields [48, 23]. Using our model of arithmetic circuits,

computation over finite fields yields ACC0.

ii

We also resolve several questions regarding the closure properties of #AC0 and

GapAC0 and characterize #AC0 in terms of counting paths in a specific family of

bounded-width graphs.

iii

Acknowledgements

Firstly, I would like to thank my advisor Eric Allender for his continued support and

unending patience in dealing with me. Without his efforts this thesis would not have

seen the light of the day. I do, however, regret not learning as much as I could have,

from him.

I would also like to thank Dave Barrington and Manindra Agrawal, collaborating

with whom was a learning experience. Andris Ambainis and Huong LêThanh were the

other two collaborators on work reported in this thesis and working with them was a

brief but gainful experience.

I am grateful to the Computer Science Department for giving me an opportunity

to study here. I had the fortune to come in contact with some of the great names in

Theoretical Computer Science, particularly Endre Szemeredi, Jozsef Beck and Leonid

Khachiyan. Looking back, I wish I had learnt more from them.

I would also like to express my gratitude to my “buddies” in the department. Stefan

Langerman and Sachin Lodha would be the two from whom I have learnt the most and

without whose quick humor, the long years as a graduate student would have been

insufferable. Thanks to Pradeep Sudame and Ramkrishna Chatterjee from whom I

learnt a lot about life. Thanks also to Samrat Ganguly, Navin Goyal and Sambuddha

Roy, my latter day friends in the department.

Lastly, I would like to thank my family - my parents, my brother Sudip and my

wife Somya - whose unyielding support is the bedrock on which all my achievements

are based.

i

Table of Contents

Abstract . ii

Acknowledgements . i

List of Tables . iv

List of Figures . v

1. Introduction . 1

1.1. Counting Classes . 1

1.2. Circuit Lower Bounds . 2

1.3. Contributions of the Thesis . 3

1.3.1. Closure Properties . 4

1.3.2. Counting Paths . 4

2. Definitions and Notation . 6

2.1. Complexity Classes . 6

2.1.1. Classical Language and Counting Classes 6

2.1.2. Arithmetic Classes . 7

2.1.2.1. Uniformity . 9

2.2. Operations on Functions . 10

3. Normal Forms . 11

3.1. Preliminaries . 11

3.2. Quasi-complementation . 12

4. C=AC0 = PAC0 = TC0 . 17

4.1. Non-uniform and P-uniform settings . 17

ii

4.2. Logspace-uniform Setting . 21

4.3. Recent Developments . 27

5. Arithmetic Circuits over Finite Fields 29

5.1. Connections with ACC0 . 29

5.2. AC0[2] and Circuits over GF(2) . 30

6. Closure and Non-Closure Properties . 32

6.1. Introduction . 32

6.2. Weak Sum and Weak Product . 33

6.3. Choose Operator . 33

6.4. MAX and MIN . 39

6.5. Monus . 39

6.6. Div . 42

6.7. Miscellaneous Functions . 48

7. Grid Graphs . 49

7.1. G-graphs . 49

7.2. A Special Family of G-graphs . 51

8. Conclusion and Future Work . 55

References . 58

Vita . 62

iii

List of Tables

iv

List of Figures

7.1. The G-graph GA. 50

7.2. The G-graphs Gi,j. 52

7.3. G-graph for (x1x2 + x3) (x2 + x1x4) . 52

v

1

Chapter 1

Introduction

1.1 Counting Classes

Certainly the best-known counting class is Valiant’s class #P [56], consisting of func-

tions that map x to the number of accepting computations of an NP-machine on input

x. #P characterizes the complexity of computing the permanent of a matrix [56]. The

class #P consists of very hard functions, so much so that using functions from it as

oracular advice, a polynomial time machine can capture the whole of the polynomial

hierarchy, which is the celebrated theorem of Toda [53].

Recently, the class #L (counting accepting computations of an NL-machine) has also

received considerable attention [12, 60, 55, 42]. This class characterizes the complexity

of computing the determinant [60, 55, 57, 42].

The two classes #P and #L can be thought of as counting analogs of the classes

NP and NL. It should be noted that #P and #L can also be characterized in terms of

uniform arithmetic circuits, as follows: NP and NL both have characterizations in terms

of uniform Boolean circuits. (NP sets are accepted by uniform exponential-size circuits

of “polynomial algebraic degree and polynomial depth,” and NL sets are accepted by

uniform polynomial-size “skew” circuits [59]. We will not need to define these concepts

further here.) The classes #P and #L result if we “arithmetize” these Boolean circuits,

replacing each OR gate by a + gate, and replacing each AND gate by a × gate, where

the input variables x1, . . . , xn now take as values the natural numbers {0, 1} (instead of

the Boolean values {0, 1}), and negated input literals xi now take on the value 1 − xi.

Alternatively, #P and #L arise by counting the number of “accepting subtrees” for

the corresponding classes of Boolean circuits. (See [59] for a formal definition of this

notion; for our purposes it is sufficient to know that the number of accepting subtrees

2

of a circuit C is (a) equal to the output of the “arithmetized” version of C, (which we

denote by #C) and (b) provides a natural notion of counting the number of proofs that

C accepts.) The arithmetic circuits corresponding to #L were studied further by Toda

[54].

The Boolean class SAC1(also known as LOGCFL) is the class of languages accepted

by a nondeterministic auxiliary pushdown automaton in logarithmic space and poly-

nomial time. [58] gives a neat characterization of SAC1 in terms of semi-unbounded

circuits of low depth. The counting class that results by arithmetizing SAC1(as for NP

and NL above) using its circuit definition was studied in [60], where it was shown that

#SAC1 corresponds to counting the accepting paths of an NAuxPDA. The class has

also been studied in [11].

The Boolean circuit class NC1, which is characterized by logarithmic depth circuits

of bounded indegree (see Chapter 2 for a formal definition) was arithmetized in [24] to

obtain #NC1. It was also shown there that #NC1 is closely-related to counting paths

in bounded-width branching programs.

In this thesis, we study #AC0, obtained by arithmetizing the Boolean circuit class

AC0, the class of languages characterized by bounded depth circuits of unbounded

degree (see Chapter 2 for a formal definition) and study its properties and that of

related classes.

#P gives rise to the class GapP consisting of the difference of two #P functions.

[31] highlighted the importance of this class and studies many of its properties. The

classes GapL, GapSAC1, and GapNC1 have also been defined and studied in literature.

We introduce the class GapAC0and study its properties. This thesis includes work

originally reported in [1, 10]. Other related papers are [13, 38, 43, 26].

1.2 Circuit Lower Bounds

Why study #AC0? Our motivation comes in large part from a desire to obtain more

lower bounds in circuit complexity. As we shall see, #AC0 straddles the boundary

marking the limits of current circuit lower bound technology. Before going any further

3

let us make a brief foray into the history of lower bounds.

The first non linear lower bound to be proven showed that PARITY could not

be computed by polynomial sized, constant depth circuits over AND, OR and NOT

gates [33, 2]. This separated AC0 from higher classes. Later, Razborov [46] proved

that MAJORITY could not be computed by polynomial sized, constant depth circuits

over AND, OR, NOT and PARITY. This proof was later simplified and extended by

Smolensky [52] who showed that the MODq function cannot be computed by a polyno-

mial sized, constant depth circuit over AND, OR, NOT and MODp (for primes p, q).

Noticing that a threshold circuit of polynomial size and constant depth and can simu-

late a MODq function, it follows easily that the Razborov-Smolensky result separated

AC0[p] from the higher class TC0. Here the class AC0[p] arises if we augment AC0 with

MODp gates, while the class TC0 arises if we augment AC0 with threshold gates (see

Chapter 2 for formal definitions).

Thus we have the following inclusion list of complexity classes:AC0 � AC0[p] �

TC0 ⊆ NC1 ⊆ NL ⊆ SAC1 ⊆ NP and this is the best known to date in the sense that

no other separations are known.

Threshold circuits of constant depth, referred to above, characterize a varied and

well known class of problems like majority, multiplication and sorting. They are also

the building blocks of neural nets. Thus it is important to try to understand them and

study their limitations. Proving lower bounds for TC0 is a challenging open problem.

1.3 Contributions of the Thesis

This is where #AC0 enters the picture. In Chapter 4 we define language classes C=AC0

and PAC0 in terms of functions in #AC0 (for definitions see Chapter 2) and prove

that, at least under P-uniformity these classes coincide with TC0. For other notions of

uniformity we prove somewhat weaker results.

Next, in Chapter 5, we show the close relationship between arithmetic circuits over

finite fields and ACC0, and, in particular, between GapAC0 and AC0[2]. As a con-

sequence we can prove that many simple functions are not in #AC0. This stands in

4

contrast to the related classes #NC1, #L, #SAC1, and #P which, for all we know,

may contain all of the functions in PNP.)

In Chapter 8 we show that #AC0
k, the class of functions defined by #AC0 circuits

of depth at most k (for a formal definition see Chapter 2), is properly contained in

#AC0
k+1 for every k. A better understanding of #AC0 should aid in advancing our

store of lower bound techniques.

1.3.1 Closure Properties

Amidst the activity centered around #P and GapP, is work which studies operations

under which these classes are closed (or not) [31, 44]. [31] proved the closure of #P and

related classes under properties like iterated sum and product, the choose operation

etc. There are other operations such as MAX, MIN, division by 2, and decrement

under which it is not known whether #P is closed or not. In [44] implications and

equivalences are established among these closure properties and certain other open

questions in complexity theory. The closure properties have been studied for other

counting classes as well.

In Chapter 6 we are able to settle most questions about these and other closure

properties for the classes #AC0 and GapAC0. For instance, they are not closed under

MAX or division by 3, but they are closed under decrement; #AC0 is not closed under

division by 2, although GapAC0 is. In some cases, the answers follow easily from earlier

results, but in other cases new analysis is required.

1.3.2 Counting Paths

Although arithmetic classes such as #L and #NC1 are defined in terms of arithmetic

circuits, it is often nice to use equivalent definitions where we count paths in certain

families of graphs. For instance, a complete problem for NL is the question of whether a

directed acyclic graph has a path from vertex 1 to vertex n, and a complete problem for

#L is to count the number of such paths. For any k ≥ 5, a complete problem for NC1

is to determine if a width-k directed acyclic graph has a path from vertex 1 to n, but it

remains open whether counting the number of such paths is complete for #NC1. (See

5

[4] for a discussion of this problem.) Nonetheless, it was shown in [24] that a complete

problem for the class GapNC1 (the class of all functions that are the difference of two

#NC1 functions) is to compute, in a width-k graph where k ≥ 6, the number of paths

from vertex 1 to n minus the number of paths from vertex 1 to n − 1.

The question is whether #AC0 or GapAC0 possess similar combinatorial character-

izations. Note that certain lemmas and normal forms concerning these classes are fairly

complicated to prove, whereas the analogous lemmas for larger classes such as #P, #L,

and #NC1 are much simpler because of those classes’ path-based characterizations. The

characterization of depth-k AC0 presented in [18] in terms of the reachability problem

for width-k grid graphs suggests the analogous conjecture that #AC0 could be charac-

terized by counting the number of paths connecting vertices 1 and n in bounded-width

grid graphs.

In Chapter 7 we disprove this conjecture, showing that – even for width two graphs

– this counting problem lies outside GapAC0 and is complete for NC1 (under ACC0

reductions). In contrast, we are able to present a particular family of constant-width

graphs such that counting paths in these graphs characterizes #AC0.

6

Chapter 2

Definitions and Notation

2.1 Complexity Classes

First we list the definitions of some standard Boolean classes.

2.1.1 Classical Language and Counting Classes

Definition 1 AC0 is the class of languages recognized by a bounded depth Boolean

circuit family of polynomial size over ∧,∨, and ¬ gates where there is no restriction on

the indegree of the ∧ and ∨ gates.

The classes TC0,AC0[m], and ACC0 are variants of this class. Thus we have the

following definitions:

Definition 2 TC0 is the class of languages recognized by a bounded depth Boolean

circuit family of polynomial size over ∧,∨, threshold, and ¬ gates where there is no

restriction on the indegree of the ∧,∨ and threshold gates. Here a threshold gate on a

certain number n of inputs returns 1 iff the number of 1’s among its inputs exceeds a

certain number k < n, where k is an arbitrary constant for the gate.

Notice that it is not strictly necessary to include ∧,∨ gates in the above definitions

as they can be obtained by setting k to n − 1 and 0 in definition of a threshold gate.

Definition 3 AC0[m], for a positive integer m, is the class of languages recognized by

a bounded depth Boolean circuit family of polynomial size over ∧,∨, Modm and ¬ gates

where there is no restriction on the indegree of the ∧,∨, and Modm gates. Here a Modm

gate refers to a gate that returns 0 iff the numbers of inputs which are 1, is divisible by

m and 1 otherwise.

7

ACC0 = ∪mAC0[m]. In other words if we allow Modm gates for arbitrary integers

m.

The class NC1 partly relaxes the depth requirement but has a bounded indegree

requirement for gates:

Definition 4 NC1 is the class of languages recognized by a Boolean circuit family of

polynomial size and logarithmically bounded depth over ∧,∨, and ¬ gates where the

indegree of the ∧ and ∨ gates is bounded by a constant.

Let us also define the function classes FAC0 and FTC0 which are the function

analogs of AC0 and TC0.

Definition 5 FAC0 is the class of functions of polynomial output length computed by

a bounded depth Boolean circuit family of polynomial size over ∧,∨, and ¬ gates where

there is no restriction on the indegree of the ∧ and ∨ gates. FTC0 is the corresponding

class when we also permit threshold gates.

For the sake of completeness let us define the complexity classes #P and #L:

Definition 6 #P is the class of functions which map a string to the number of accept-

ing paths on that string by a nondeterministic Turing machine running in polynomial

time. #L is the corresponding class when the Turing machines run in logarithmic space.

This brings us to the classes defined in this thesis.

2.1.2 Arithmetic Classes

Definition 7 For any k > 0, #AC0
k is the class of functions computed by depth k

circuits with +, ∗-gates (the usual arithmetic sum and product) having unbounded fan-

in where inputs to the circuits are from {0, 1, xi, 1 − xi} where each xi ∈ {0, 1}. Let

#AC0 =
⋃

k>0 #AC0
k.1

1Tomo Yamakami [62] has defined #AC0 somewhat differently, and his definition does not appear
comparable to ours.

8

Counting classes such as #P and #L are closely related to associated language

classes such as PP and PL. In order to develop this in a general setting, it is useful to

define the “Gap” classes.

The class GapP was defined in [31], and by analogy GapL was studied in [60, 8], and

GapNC1 was studied in [24]. In all of these cases, there are two equivalent definitions:

1. GapC is the class of functions that are the difference of two #C functions.

2. GapC is the class of functions computed by the class of arithmetic circuits that

characterize #C, when these circuits are augmented by having the constant −1.

(In fact, for the cases when C is one of NC1, L, and P, the cited papers give many other

equivalent definitions, as well.)

Now, for a given class C, GapC gives rise to two language classes:

PC = {A|∃f ∈ GapC, x ∈ A ⇐⇒ f(x) > 0},

C=C = {A|∃f ∈ GapC, x ∈ A ⇐⇒ f(x) = 0}.

PP and PL were first studied in [34] and have been considered in many papers; C=P

was studied in [61] and elsewhere, and C=L was studied in [6] (see also [50]). PNC1

and C=NC1 were defined and studied in [24] (see also [41]).

A main result of this thesis is that PAC0 and C=AC0 coincide with TC0. However,

there are two difficulties that must be overcome before we can even state this theorem.

We must deal with (a) uniformity, and (b) the fact that the two most natural ways to

define GapAC0 do not seem to be equivalent at first sight (although we show that both

ways give rise to the same class PAC0= C=AC0= TC0).

Definition 8 DiffAC0 is the class of functions expressible as the difference of two

#AC0 functions.

Definition 9 For any k > 0, GapAC0
k is the class of functions computed by depth k

circuits with +, ∗-gates (the usual arithmetic sum and product) having unbounded fan-in

where inputs to the circuits are from {0, 1,−1, xi, 1 − xi} where each xi ∈ {0, 1}. Let

GapAC0 =
⋃

k>0 GapAC0
k.

9

Recall that for all the classes C ∈ {NC1, L, SAC1, P}, GapC can be defined equiva-

lently either as #C − #C or in terms of arithmetic circuits with access to the constant

−1. However, in all of those cases, the proof of equivalence relies on the fact that the

PARITY language is in C; and of course this is not true for C= AC0.

The question, “Is DiffAC0 = GapAC0?”, was answered in the affirmative by a clever

proof in [13]. Since this was after the publication of some of the results reported in this

thesis, we continue defining classes without assuming knowledge of the above result.

The classes DiffAC0 and GapAC0 each provide reasonable ways to define PAC0 and

C=AC0. This leads to the following two definitions:

Definition 10 The class C=AC0 (C=AC0
circ) consists of those languages L for which

there exists a function f in DiffAC0 (GapAC0) such that for all bit strings x,

• If x ∈ L then f(x) = 0.

• If x �∈ L then f(x) �= 0.

Definition 11 The class PAC0 (PAC0
circ) consists of those languages L for which there

exists a function f in DiffAC0 (GapAC0) such that for all bit strings x,

• If x ∈ L then f(x) > 0

• If x �∈ L then f(x) ≤ 0

At this point, the reader may fear that we are introducing too many complexity

classes, with relatively little motivation. The good news is that all of these classes are

different names for TC0.

2.1.2.1 Uniformity

A (non-uniform) circuit family {Cn} consists of a circuit Cn for each input length n.

If there is an “efficient” algorithm for constructing Cn, given n, then the family is

said to be uniform, where different notions of “efficient” give rise to different notions

of uniformity. We will consider P-uniform, Logspace-uniform, and Dlogtime-uniform

circuit families. For P-uniform circuits [19, 3], the mapping n �→ Cn is computable

10

in polynomial time, for Logspace-uniform circuits [49], the mapping is computable

in Logspace. Dlogtime-uniformity requires a somewhat more careful definition; we

refer the reader to [16]. Although Dlogtime-uniformity is widely-regarded as being the

“right” notion of uniformity to use when discussing small circuit complexity classes

such as TC0 and AC0, only a few of our theorems mention Dlogtime-uniformity.

2.2 Operations on Functions

We define certain operations on functions which in a later chapter (Chapter 6) will be

seen to constitute closure or nonclosure properties of #AC0 and GapAC0.

Definition 12 The weak sum of a number of functions fi (for i = 1 . . .m) mapping

{0, 1}n to the integers, where m is a polynomial in n, is the function
∑m

i=1 fi. Weak

product is analogously defined as
∏m

i=1 fi.

Notice that the term “weak” refers to the assumption that m is polynomial in n.

Two simple operations MAX and MIN are defined next.

Definition 13 If f, g are two functions mapping {0, 1}n to the integers, then the func-

tion MAX(f, g) (MIN(f, g)) maps a string x ∈ {0, 1}n to the integer max(f(x), g(x))

(min(f(x), g(x))).

Finally, we define the operation “monus”, a variant of minus.

Definition 14 If f, g are two functions mapping {0, 1}n to the integers, then the monus

of the two functions, f
.
−g maps a string x ∈ {0, 1}n to the integer max(f(x)− g(x), 0).

11

Chapter 3

Normal Forms

In this chapter, we obtain a number of normal forms for #AC0 and GapAC0. These

help simplify some of the proofs in later chapters, and are of independent interest.

3.1 Preliminaries

Proposition 1 FAC0 ⊆ #AC0.

Proof: We will need the following easy observation. (We will use the notation Cr also

in later proofs.)

Proposition 2 For every positive integer r, there is a depth 2 circuit Cr of size O(r)

having exactly 2r accepting subtrees.

Proof: Let Cr be the circuit ∧r
i=1(1 ∨ 1) which has

∏r
i=1 (1 + 1) accepting subtrees.

First note that every language in AC0 has its characteristic function in #AC0. To

see this, notice that one can restructure any AC0 circuit into an equivalent one whose

arithmetized version produces output in {0, 1}. This is clearly true for any depth zero

circuit. Now assume that this is true for all depth k−1 circuits and consider a depth k

circuit. If the output gate is an AND then no further restructuring is necessary. If the

output gate is an OR of the form ∨m
i=1Gi, then replace it by the unambiguous circuit

m∨
i=1

(Gi ∧ (
i−1∧
j=1

¬Gj)),

and propagate the NOT gates to the leaves.

12

Now consider multiple-output AC0 circuits. Suppose the output bits bs . . . b0 repre-

sent the binary representation of the output f(x), then

s∨
i=0

[bi ∧ Ci]

is the required circuit showing that f(x) ∈ #AC0 because the number of accepting

subtrees is
∑

i bi2i.

3.2 Quasi-complementation

Our first normal-form theorem is an analog of a statement that is trivially true for the

classes #P and #L, as well as for other counting classes that can be modeled as the

number of accepting paths of some sort of nondeterministic machine, where without

loss of generality the machine makes one guess at each step. In the absence of such a

model for #AC0, a more complicated argument seems necessary.

Theorem 3 For every AC0-circuit M (on n inputs) and for all “sufficiently-large”

polynomials q(.), there is an AC0 circuit N (on n inputs) such that,

∀x |x| = n ⇒ #N (x) = 2q(n) − #M(x).

Proof: We proceed by induction on the height of M (i.e., the length of the longest

path from the root to a leaf).

When the height is 0, the circuit consists simply of a literal or a constant (= 0 or

1). Thus #M(x) = 0 or 1. Thus it is sufficient to consider the following circuit,

N =

⎡
⎣q(n)−1∨

i=0

Ci

⎤
⎦ ∨ M,

where M denotes the negation of the circuit M .

Now, consider a circuit M of height h. There are two subcases:

13

• M is a disjunction:

M =
k∨

i=1

Mi,

where k = k(n) = nO(1) is the number of gates feeding into the topmost ∨

gate. In this case, for each Mi, let Ni be the circuit, guaranteed by the inductive

hypothesis, such that #Ni(x) = 2q1(n) − #Mi(x). Let q(n) be any polynomial

such that q(n) ≥ q1(n) + k(n), and let

N =

[
k∨

i=1

Ni

]
∨

q(n)−q1(n)−k∨
i=1

Cq1(n).

Then,

#N (x) =
k∑

i=1

#Ni(x) + (q(n) − q1(n) − k) 2q1(n)

=
k∑

i=1

(
2q1(n) − #Mi(x)

)
+ (q(n) − q1(n) − k) 2q1(n)

= (q(n)− q1(n))2q1(n) −
k∑

i=1

#Mi(x)

= (q(n)− q1(n))2q1(n) − #M(x).

(In order to massage this into the precise form required, it suffices to appeal to

Lemma 5 below.)

• M is a conjunction:

M =
k∧

i=1

Mi,

where k = k(n) = nO(1) is the number of gates feeding into the topmost ∧ gate. In

this case, for each Mi, let Ni be the circuit such that, #Ni(x) = 2q1(n) −#Mi(x)

and let M0 = C0. Let

N =
k−1∨
i=0

⎡
⎣Ciq1(n) ∧ Nk−i ∧

⎛
⎝k−i−1∧

j=0

Mj

⎞
⎠
⎤
⎦ .

14

Thus, with an appeal to Lemma 4 below, we have,

#N (x) =
k−1∑
i=0

⎡
⎣2iq1(n)#Nk−i(x)

k−i−1∏
j=0

#Mj(x)

⎤
⎦

=
k−1∑
i=0

[
2iq1(n)

(
2q1(n) − #Mk−i(x)

)]⎡⎣k−i−1∏
j=0

#Mj(x)

⎤
⎦

= 2kq1(n) −
k∏

j=1

#Mj(x)

= 2kq1(n) − #M(x).

The proof is now complete except for the following lemmas. (As David Mix Bar-

rington has pointed out, this first lemma can be understood intuitively as computing

the volume of a k-dimensional cube of side a with a piece removed.)

Lemma 4 Let a, a1, . . . , ak be integers, where a0 = 1. For all k ≥ 1:

ak −
k∏

i=1

ai =
k−1∑
i=0

ai (a − ak−i)
k−i−1∏
j=0

aj .

Proof: We use induction on k.

a − a1 = a0 (a − a1)

=
∑0

i=0 ai (a − a1−i)
∏1−i−1

j=0 aj.

This proves the base case (k = 1). For the inductive step observe that,

15

ak+1 −
k+1∏
i=0

ai

= a

(
ak −

k∏
i=0

ai

)
+ (a − ak+1)

k∏
i=0

ai

= a
k−1∑
i=0

ai (a − ak−i)
k−i−1∏
j=0

aj + (a − ak+1)
k∏

i=0

ai

=
k−1∑
i=0

ai+1 (a − ak−i)
k−i−1∏
j=0

aj + (a − ak+1)
k∏

i=0

ai

=
k∑

i=1

ai
(
a − ak−(i−1)

) k−(i−1)−1∏
j=0

aj + (a − ak+1)
k∏

i=0

ai

=
k∑

i=1

ai
(
a − a(k+1)−i

) (k+1)−i−1∏
j=0

aj +
(
a − a(k+1)−0

) (k+1)−0−1∏
i=0

ai

=
k∑

i=0

ai
(
a − a(k+1)−i

) (k+1)−i−1∏
j=0

aj .

Lemma 5 If q(n) and q1(n) are polynomials, and a(n) ∈ FAC0, where q(n) ≥ q1(n) +

loga(n), and if the function a(n)2q1(n) − f(x) is in #AC0, then 2q(n) − f(x) ∈ #AC0.

Proof: Let c(n) be the value 2q(n)−q1(n)−a(n), and note that c(n) ∈ FAC0. Let B(n) =

{j | bit number j of the binary representation of c(n) is equal to 1}. The lemma now

follows by considering the following #AC0-computable function:

a(n)2q1(n) − f(x) +

⎛
⎝ ∑

j∈B(n)

Cj

⎞
⎠ 2q1(n)

= a(n)2q1(n) − f(x) + (2q(n)−q1(n) − a(n))2q1(n)

= 2q(n) − f(x).

(End of the proof of Theorem 3.)

Corollary 6 DiffAC0 = FAC0 − #AC0 = #AC0 − FAC0.

16

In fact, we have the stronger statement that if f and g are #AC0 functions, then

there exist polynomials q1, q2 and #AC0 functions h1, h2 such that f(x) − g(x) =

2q1(|x|) − h1(x) = h2(x) − 2q2(|x|). To see this, note that f(x) − g(x) = 2nk − ((2nk −

f(x)) + g(x)). For large enough constant k, the function ((2nk − f(x)) + g(x)) is in

#AC0, by Theorem 3.

17

Chapter 4

C=AC0 = PAC0 = TC0

4.1 Non-uniform and P-uniform settings

The most important step in proving this characterization involves showing how to

simulate threshold circuits.

Theorem 7 P-uniform TC0 ⊆ P-uniform C=AC0 and Dlogtime-uniform TC0 ⊆

Dlogtime-uniform C=AC0
circ.

Proof: We will need to use the following well-known fact (see e.g. [45]),

Fact 8 A problem is in TC0 if and only if it is accepted by a constant-depth family of

“exact-threshold” gates ETm
m/2 (an ETs

r gate has s inputs and outputs 1 iff exactly r of

them are 1).

We will present a polynomial time algorithm that proceeds by induction on the

depth of a TC0-circuit C (composed only of ETm
m/2 gates) and constructs a DiffAC0

(or Dlogtime-uniform GapAC0) circuit f , such that, if C(x) = 0 then f(x) = 0, and if

C(x) = 1 then f(x) is equal to a constant independent of x. The following paragraph

provides details for the base case of depth 1 circuits.

Let Km be
∏m

j=0,j �=m/2 (m/2− j). It is easy to see that the function

Δ(x1, x2, . . . , xm) =

∏
j �=m/2 ((

∑
i xi) − j)

Km

is 1 if
∑

i xi is m/2 and is 0 otherwise (the xi’s are Boolean variables). Thus,

Δ(x1, x2, . . . , xm) = ETm
m/2(x1, x2, . . . , xm). Consider the function P (X) =∏

j �=m/2 (X − j). The näive algorithm that multiplies the terms (X − j) together to

18

explicitly compute the coefficients of powers of X runs in polynomial time. (Note that

the binary representations of the coefficients are only polynomially long). Separating

the positive and negative terms we get P (X) = Q(X) − R(X), where Q(.) and R(.)

are polynomials with coefficients that can be computed by P-uniform #AC0 circuits,

thus we get a P-uniform DiffAC0 function that is equal to 0 if C(x) = 0, and is equal

to Km if C(x) = 1. Also,
∏

j �=m/2 ((
∑

i xi) − j) is already a Dlogtime-uniform GapAC0

function with this property.

For the inductive step, in order to prove P-uniform TC0 ⊆ P-uniform C=AC0, our

inductive hypothesis will be: for every P-uniform TC0 family {Cn}, for every d, there is

a function computable in time polynomial in n that, on input (n, Cn) outputs circuits

Dn, D
′
n of depth O(d) such that if C is a gate at level d of Cn then for all x of length

n, C(x) = 0 implies Dn(x)−D
′
n(x) = 0 and C(x) = 1 implies Dn(x)− D

′
n(x) = (Km)t

(where t = t(m, d) is some function depending only on d and m). Note that we have

established this claim for the case d = 1.

Consider a depth d+1 exact-threshold circuit with output gate G, where the inputs

to G are Gi (i = 1 . . .m). We show how to construct, in polynomial time, a DiffAC0

function that takes values (Km)t(m,d+1) = (Km)mt(m,d)+1 and 0 whenever G outputs 1

and 0 respectively.

Let the DiffAC0 function corresponding to Gi be Fi = fi − gi (fi, gi are #AC0

functions). From Theorem 3 we know that there exists an integer q and an #AC0

function hi such that Fi = fi − gi = hi − 2q. Now the output of G is

19

Δ
(

F1

Kt
m

, . . . ,
Fm

Kt
m

)
=
Q

j �=m/2

�P
i Fi

Kt
m

−j
�

Km

=
Q

j �=m/2 ((
P

i Fi)−jKt
m)

Kmt+1
m

=
Q

j �=m/2 ((
P

i hi)−m2q−jKt
m)

Kmt+1
m

=
Q

′(
P

i hi)−R
′(
P

i hi)
Kmt+1

m
.

Here Q
′
(.) and R

′
(.) are polynomials with coefficients in #AC0. They are obtained by

expanding the product
∏

j (X − (m2q + jKt
m)) (where X =

∑
i hi) and separating the

positive and negative terms. Just as in the base case their coefficients have polynomially

long binary representations and hence can be computed by #AC0 circuits constructed

by our algorithm.

To prove Dlogtime-TC0⊆ C=AC0
circ is even simpler. Inductively suppose the GapAC0

function corresponding to Gi is Fi. Then proceeding the same way as for DiffAC0 func-

tions we get

Δ
(

F1

Kt
m

, . . . ,
Fm

Kt
m

)
=
Q

j �=m/2 ((
P

i Fi)−jKt
m)

Kmt+1
m

.

Thus
∏

j �=m/2

(
(
∑

i Fi) − jKt
m

)
is the GapAC0 function corresponding to G, whose

value is either 0 or Kmt+1
m , according to whether gate G accepts.

This completes the proof of Theorem 7.

Proposition 9 C=AC0 ⊆ PAC0 (under all considered notions of uniformity).

Proof: Let A be in C=AC0, and let f and g be #AC0 functions such that x ∈ A

iff f(x) = g(x). Then consider (f(x) − g(x))2 = (f(x))2 + (g(x)))2 − 2f(x)g(x). Let

g1(x) = (f(x))2 + (g(x)))2 and f1(x) = 1 + 2f(x)g(x) where clearly both f1, g1 are

#AC0 functions. Clearly x ∈ A iff f(x) = g(x) iff f1(x) > g1(x), completing the proof.

20

Proposition 10 P-uniform (non-uniform) GapAC0 ⊆ P-uniform (non-uniform) FTC0.

(This is a simple consequence of the fact that unbounded fan-in addition and mul-

tiplication are in P-uniform TC0 [48].)

Corollary 11 In the P-Uniform and Non-Uniform Settings,

C=AC0 = PAC0 = TC0 = C=AC0
circ = PAC0

circ.

Note that one interpretation of the preceding corollary is that TC0 languages can

be computed with just constant-depth arithmetic and a single threshold gate. Also

note that, although we were not able to prove1 that DiffAC0 = GapAC0, we obtained a

characterization of TC0 using either function class. Finally, note that our normal form

theorems yield an even more restrictive characterization of TC0.

Corollary 12 For any set A in non-uniform or P-uniform TC0, there exist a constant

l, a function g in #AC0, and a (non-uniform or P-uniform, respectively) #AC0 function

h with the following property:

• If x ∈ A, then h(x) = 2|x|
l
.

• If x �∈ A, then h(x) = 2|x|
l
+ g(|x|).

Proof: From the proof of Theorem 7, we know that there is a DiffAC0 function f such

that if x �∈ A, then f(x) = 0, and if x is in A, then f(x) = (Km)tm+1 where m = 2|x|k

for some k, and Km =
∏m

j=1,j �=m/2 (m/2− j). Let g(|x|) = (Km)tm+1. By Corollary 6,

f(x) is of the form h(x)− 2|x|
l
for some #AC0 function h and some constant l.

(This corollary shows that TC0 is the AC0-analog of the class LWPP studied in [31].

We refer the reader to [31] for further details.)

Corollary 12 is probably nearly the strongest result in this direction that one can

prove. For instance, one might seek to strengthen Corollary 12 to obtain g(n) = 1.

(This corresponds to the AC0-analog of the class SPP studied in [31].) Note that if

1This was proved in [13]. Also see Section 4.3.

21

g(n) = 1, then the characteristic function of A is in GapAC0. However, it follows from

Proposition 25 that any such language A is in AC0[2]. Thus the lower bound of [46]

(showing that MAJORITY is not in AC0[2]) shows that we cannot improve Corollary

12 to obtain g(n) = 1. More generally, observe that the function g(n) has lots of

small divisors. This is no accident. Assume for the moment that one could strengthen

Corollary 12 so that g(n) is of the form 2nk
(for example). Then it would follow that

TC0 = ACC0. To see this, note that the GapAC0 function m(x) = h(x) − 2nl
would

have the property that m(x) is a multiple of 3 if and only if x ∈ A. As is clear from

Theorem 24, this property can be checked in AC0[6]. More generally, if Corollary 12

can be strengthened so that, for some prime p, there are infinitely many n such that

g(n) is not a multiple of p, then there is an ACC0 circuit family that, for infinitely

many n, computes the MAJORITY function on n variables.

It is of interest to us to try to improve the uniformity condition. This leads us to

the next section.

4.2 Logspace-uniform Setting

Theorem 13 Logspace-uniform PAC0
circ ⊆ Logspace-uniform TC0.

Before proving this theorem, we need to introduce some number theoretic machinery.

Definition 15 Zp is the group over {0, . . . , p − 1} with modulo p addition (p any

prime)and Z∗
p is the multiplicative group over {1, . . . , p− 1} modulo p. Further g is a

generator of Z∗
p if Z∗

p = {1, g, g2, . . . , gp−1} (all products are taken in Z∗
p). indg,p, powg,p :

Z∗
p → Z∗

p are functions satisfying gindg,p(x) = x and powg,p(x) = gx.

We will need the following variant of the Chinese Remainder Theorem:

Theorem 14 (see e.g. [36]) Given primes p1, p2, . . . , pk and an integer x, there are

unique integers x1, x2, . . . , xk (modulo p1, p2, . . . , pk respectively), satisfying

22

x ≡ x1 mod p1,

x ≡ x2 mod p2,

...

x ≡ xk mod pk.

And if any y satisfies the congruences above then x ≡ y mod Pk, where Pk =
∏k

i=1 pi.

More explicitly, x = Ak − qkPk where

Ak =
k∑

j=1

((xjck,j) mod pj)Pk/pj,

ck,j = (Pk/pj)
−1 mod pj,

qk = �Ak/Pk� .

And the following variant of the prime-number theorem:

Theorem 15 (see e.g. [36]) For sufficiently large values of n, the product of all primes

less than n exceeds 2n.

As a consequence of Theorems 14 and 15 we get the following corollary:

Corollary 16 If 0 ≤ x < 2n, then x can uniquely be represented as �x = (x1, x2, . . . , xs),

where x ≡ xi mod pi (for 1 ≤ i ≤ s) and p1, p2, . . . , ps are the primes smaller than n.

�x is called the Chinese Remainder Representation of x.

Lemma 17 There is a Logspace-uniform TC0 circuit that decides whether a number

less than Pk is actually less than Pk/2, given the residues modulo p1, p2, . . . , pk (here

p1, . . . , pk are the first k primes and Pk is their product).

Proof: We consistently use the notation (viz. pj, Pi, ci,j, qi, �x etc.) introduced in

Theorem 14 and Corollary 16. Let

Xi = Ai − qiPi

23

(in the remaining portion of the proof any unqualified i or j refers to an integer in

the range [1, k]). From the Chinese Remainder Theorem we know that the number in

question (i.e. the number with residues xi modulo pi) is

Xk = Ak − qkPk.

Thus we need to find out whether or not Xk > Pk/2, which is equivalent to

1
2

<
Xk

Pk

=
Ak − qkPk

Pk

=
Ak

Pk
−
⌊

Ak

Pk

⌋

So, essentially, we need to find out the first bit of the fractional representation of Ak/Pk.

[29] shows how to do this in Logspace. We show that their method is amenable to a

TC0 circuit implementation.

The essential idea is to compute the first 3�log2 i� bits of each of the fractions

ti,j(x) = ((xjci,j) mod pj)/pj (for 1 ≤ j ≤ i ≤ k) and find the sums q
′
i(x) =

∑i
j=1 ti,j(x)

approximating Ai/Pi. [29] show that if the fractional part of q′k(x) contains any zeros,

then the first bit of the fractional part of q′k(x) is equal to the first bit of the fractional

part of Ak/Pk (which is the bit that we need to compute). If, instead, the fractional

part of q′k is all ones, then consider the number x′ that results by flipping the bit x1

(recording the residue mod 2 of x). In the Chinese Remainder Representation, the

number x′ is equal to x+Pk/2 or x−Pk/2; note that x < Pk/2 if and only if x′ ≥ Pk/2,

thus if the fractional part of q′k(x
′) contains any zeros, we again know the value we

want. If the fractional parts of q′(x) and of q′(x′) are both all ones, then [29] show that

the computation can be repeated using q′k−1 approximating Ak−1/Pk−1 (which in this

case has the same bit as Ak/Pk). Thus our answer can be computed by finding the

value i∗, which is the largest i < k for which the first 2�log2 i� bits of the fractional

part of q
′
i(x) or of q′i(x

′) are not all 1.

So we just need to show that each of the q
′
i’s and i∗ can be computed using Logspace-

uniform TC0 circuits. But this follows from Lemma 19-7,8 below.

24

(We remark that, instead of relying on [29], it is also possible to make use of similar

results of [39, 27]. It seems to us that the construction of [29] results in a simpler

circuit.)

Lemma 18 The following are computable in O(logn) space where in the following x

is n bits long and p, pi, g, k, z are all O(logn) bits long.

1. A generator g of the multiplicative group Zp, given prime p.

2. The function z, p �→ powg,p(z) (see Definition 15) where g is as in item 1 above.

3. The function z, p �→ indg,p(z) (see Definition 15) where g is as in item 1 above.

4. The function modk : k, x �→ x mod k.

5. The function i, j �→ ci,j.

6. The function t : i, j, z �→ the first 3�log2 i� bits of zci,j/pj (where z < pj).

Proof:

• (of Lemma 18-1) For each h ∈ Zp try if h(p−1)/2 ≡ −1 mod p, if yes then it is a

generator else not. As h and p are only O(logn) bits long this can be done in

logspace.

• (of Lemma 18-2) Given a number z compute gz, reducing the result gi modulo p

at each step.

• (of Lemma 18-3) Given a number z first find its modulo p representation y then

for each element y ∈ Zp check whether gy mod p = z.

• (of Lemma 18-4) With numbers in this range, the standard long-division algorithm

runs in logspace.

• (of Lemma 18-5) By successively testing each integer for primality compute the

ith,jth prime pi, pj. Now successively (re)compute pk (for k ≤ i) and if k �= j,

then find the modulo-pj inverse of pk (by reducing pk modulo pj and checking for

each positive number l < pj whether l · pk ≡ 1(modpj)). Keep accumulating the

25

inverses in a product modulo-pj. The final value of the product is the modulo-pj

inverse of Pi/pj.

• (of Lemma 18-6) Compute pj, and then compute ci,j using Lemma 18-5 above.

Compute the product xci,j and then produce the first 3�log2 i� bits of xci,j/pj

using the standard long division algorithm.

Lemma 19 The following are computable using a Logspace-uniform TC0 circuit (the

length of the input is always O(n)):

1. f ◦ g where f : {0, 1}c logn → {0, 1}m is a Logspace computable function and

g : {0, 1}n → {0, 1}c log n is a function in Logspace-uniform TC0.

2. f ◦ �g (where this is defined as f(g(x1), g(x2), . . . , g(xn))), where f and g are in

Logspace-uniform TC0.

3. The sum of n integers each having O(n) bits (denote this function by sum).

4. The iterated sum modulo k (any O(logn) bit integer) of n integers each having

O(n) bits (denote by sumk).

5. The iterated product modulo p (any O(logn) bit prime) of n integers each having

O(n) bits (denote by prodp).

6. The function t : i, j, x �→ the first 3�log2 i� bits of xci,j/pj (where x < pj).

7. The function q
′
: i, �x �→

∑i
j=1 t(i, j, xj) (where �x = 〈x1, x2, . . . , xk〉).

8. The function �x �→ i∗, where i∗ is the maximum i such that the first 2�log2 i� bits

of the fractional part of q
′
(i, �x) are not all 1’s.

Proof:

• (of Lemma 19-1) Construct a circuit whose ith output bit (on input y) is given by

nc∨
j=1

(
c logn∧
k=1

(j[k] = y[k])
∧

f(j)[i]

)

26

(here a[i] denotes the ith bit of integer a). This circuit is clearly Logspace uniform

from the Logspace computability of f . Composing this circuit with the circuit for

g yields the required circuit.

• (of Lemma 19-2) Straightforward.

• (of Lemma 19-3) This is well known (e.g. see [25]).

• (of Lemma 19-4) First compute vi = 2i mod k for 1 ≤ i ≤ n. Next compute

the sum of xj[i]vi (for all i, j) using Lemma 19-3 above. Now applying 19-1, with

f = modk and g as the function just defined, we get this result.

• (of Lemma 19-5) Let g = indg ◦ modp. Then prodp = powg ◦ sump−1 ◦ �g. Result

follows from Lemmas 18-4, 18-2, 18-3,19-3, 19-2, and 19-1.

• (of Lemma 19-6) Follows from 18-6 and 19-1.

• (of Lemma 19-7) Follows from 19-6 and 19-3.

• (of Lemma 19-8) Given the values of q
′
i (1 ≤ i ≤ k), finding the maximum i

satisfying an AC0 property is equivalent to finding the rightmost 0 in an array of

length k, which is again in AC0.

Proof:(of Theorem 13) Let k be the constant such that for all large n, the value of

the given GapAC0 circuit has absolute value less than 2nk
. (Such a k exists, since

#AC0 ⊆ #P.) We use Lemmas 19-4 and Lemmas 19-5 to construct a TC0 circuit that

computes the answer modulo the primes less than n2k. This way any positive number

is mapped into [0, P/2) and any negative number into (P/2, P −1]. Thus it is sufficient

to test whether the final answer is greater than P/2, which can be done with the help

of Lemma 17.

Corollary 20 In the Logspace-Uniform Setting,

TC0 = C=AC0
circ = PAC0

circ.

27

4.3 Recent Developments

Notice that in the light of recent developments there is no need to distinguish between

C=AC0 and C=AC0
circ (and similarly PAC0and PAC0

circ), since from [13] we know that

Theorem 21 [13] DiffAC0 = GapAC0 under all considered notions of uniformity.

We provide a sketch of the proof for the sake of completeness.

Proof:(Sketch) The aim is to express a constant depth arithmetic circuit, with leaf

inputs from {0, 1,−1}, as the difference of two constant depth arithmetic circuits with

the inputs drawn from {0, 1}. The proof proceeds by induction on the depth of the tree.

The base case is trivial and so is the case when the gate is a +-gate. The latter because

the sum of a number of differences is the difference of two sums. The tricky case is when

the gate is a ×-gate. Thus it would be sufficient to express
∏m

i=1(ai−bi) as the difference

of two positive arithmetic circuits with inputs drawn from {0, 1} ∪
⋃

i{ai, bi}. The

ingenuity in the proof is to attempt to write the product above as a linear combination

of
∏m

i=1(ai + kbi) as k varies. In other words try to establish the identity:

m∏
i=1

(ai − bi) =
m+1∑
k=1

ck

m∏
i=1

(ai + kbi)

by discovering integral ck’s depending only on m and k. Classifying the ck’s as positive

and negative the product on the left can be written as the difference of two sums, each

of which consists of a product of linear expressions in a’s and b’s.

To find the ck’s, compare the coefficients of a typical monomial consisting of m− j

factors which are a’s and j factors which are b’s, for a j lying between 0 and m. This

yields, for 0 ≤ j ≤ m

(−1)j =
m+1∑
k=1

kjck.

But these are m+1 linear equations in the m+1 variables ck. Solving them by Cramer’s

rule, each ck is the ratio of two Vandermonde determinants - the denominator being

28

the determinant of a matrix with (a, b)th entry being ba−1 (1 ≤ a, b ≤ m + 1) and

the numerator being the determinant of the same matrix with the kth column being

replaced by powers of −1. The properties of Vandermonde determinants and some

algebra yield the following expression for ck:

ck = (−1)k−1k

⎛
⎝ m + 2

k + 1

⎞
⎠.

To see that the circuit obtained by the inductive method above is indeed uniform, it

suffices to show that

⎛
⎝ n

k

⎞
⎠, can be computed in uniform #AC0, given n and k in unary.

The paper [13] goes on to show that these are indeed in Logtime-uniform #AC0. The

proof hinges on finding the maximum power of p, which divides the binomial coefficient

above, for each prime p less than n. But it is well known that pj divides

⎛
⎝ n

k

⎞
⎠ iff

⌊
n

pj

⌋
>

⌊
n − k

pj

⌋
+
⌊

k

pj

⌋
.

But since n, k are in unary and pj ≤ n, this test is in Logtime-uniform #AC0.

Realizing that testing whether p is a prime (for small p) is in Logtime-uniform #AC0

completes the proof.

Further, notice that recent advances which place the computation of the iterated

product of integers in DLOGTIME-uniform TC0, lead to a simplification of the proofs

above. In fact, they yield the following theorem:

Theorem 22 [38] All functions in DLOGTIME-uniform #AC0 can be computed in

DLOGTIME-uniform TC0. Thus the equalities C=AC0 = PAC0 = PAC0
circ = C=AC0

circ

= TC0 all hold in the DLOGTIME-uniform setting.

29

Chapter 5

Arithmetic Circuits over Finite Fields

5.1 Connections with ACC0

There has been earlier work characterizing TC0 in terms of finite fields [23, 32, 48].

However, this earlier work provides no connection to AC0, and the characterizations

involve having a different finite field for each input length. Also, these earlier character-

izations dealt with arithmetic circuits with additional gates (such as conjugation gates,

or division gates) in addition to the + and × gates that we use.

It may be interesting to point out that, when one uses our notion of arithmetic

circuits over finite fields, one obtains a characterization of ACC0. (It has been pointed

out to us by David Mix Barrington that this is in some sense implicit in the work of

Smolensky [52].)

We need the following fact from number theory.

Theorem 23 (Dirichlet) (see e.g. [36]) For any two relatively prime numbers q and

r, there exist infinitely many primes in the sequence {qn + r}∞n=1.

Let F be a finite field, and let #AC0
F denote the class of functions computed by

#AC0 circuits, where now + and × are operations over the field F .

Theorem 24 A language is in ACC0 if and only if its characteristic function is in

#AC0
F for some finite field F .

Proof: Let A be a language in ACC0; thus A is in AC0[m] for some m. Without loss of

generality the only gates are ∧ and Modm (since ∨ can be simulated by ∧ and Modm).

Our first step is to find a prime p of the form am + 1 for some a, using Dirichlet’s

theorem (Theorem 23) above. Now make a copies of each gate, and replace all Modm

30

gates with Modp−1 gates (keeping in mind that m | x ⇔ am | ax). Thus at this stage

the only gates are ∧ and Modp−1. Now an ∧ gate can be replaced by a product gate

modulo p (since the value of each gate is Boolean). It remains only to simulate the

Modp−1 gates.

Let an arbitrary Modp−1 gate have inputs x1, . . . , xr. Consider

X =
∏

i

(1 + (g − 1)xi) mod p

(where g is a generator of the multiplicative group modulo p); this has value 1 iff the

number of xi’s that are 1 is divisible by (p − 1). Further, (X + p − 1)p−1 mod p is 0 if

X is 1 mod p and is 1 otherwise. This gives us the arithmetic circuit equivalent to the

Modp−1 gate.

The other direction is equally simple. We will build a circuit that computes, for each

gate g, a representation of the field element to which g evaluates. Let the finite field F

be GF(pk). We will use two representations. One representation rep+(x) will be as a

k-tuple of strings of the form 1ai0p−ai , where x corresponds to element (a1, a2, . . . , ak)

when F is viewed as a vector space over GF(p). Note that, when given n such k-

tuples, their sum can easily be computed by AC0[p] circuits. (When adding up the lth

components, test for each j ≤ p if Modp(rep+(x1,l) · · ·rep+(xn,l)1j) holds. If so, then

output 1p−j0j as the value of the lth component.)

The other representation rep×(x) will be of the form 1i0pk−i where gi = x, where g is

a generator of the multiplicative group of F . Since F is finite, each representation is only

O(1) bits, and conversion between representations can be computed in AC0. Now the

product
∏

i xi can be computed by computing
∑

li
mod(pk − 1) (where li is such that

gli = xi). But this is equivalent to computing, Modpk−1(rep×(x1) . . .rep×(xn)) mod

(pk − 1), which can clearly be computed in AC0[pk − 1]. This completes the proof.

5.2 AC0[2] and Circuits over GF(2)

Although in general there is no close connection between arithmetic circuits over GF(p)

and AC0[p] (since, for example, both PARITY and Mod3 are computable with arith-

metic circuits over GF(3)), there is one important case where an equivalence does hold.

31

(The proof of the following proposition is an easy modification of the foregoing.)

Proposition 25 The following are equivalent:

1. A ∈ AC0[2].

2. χA ∈ GapAC0.

3. χA ∈ DiffAC0.

4. χA can be represented as the low-order bit of some #AC0 function.

5. χA ∈ #AC0
GF (2).

Proof: Out of the implications 1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 5 =⇒ 1, the implication

2 =⇒ 3 follows from the equivalence of DiffAC0 and GapAC0 established in [13] (see

Chapter 4 for a proof sketch). For an explanation of 3 =⇒ 4, see the discussion after

Corollary 6. The other implications are immediate except for 1 =⇒ 2, for which we

give a proof below.

The implication is proved by induction on the depth of the AC0[2] circuit (composed

of only PARITY and AND gates). The main observation required in the inductive step

is that, in order to simulate a PARITY gate with inputs f(x, i) (for 1 ≤ i ≤ nk), it

suffices to use the following function:⎛
⎝ 1 +

∏
(1 − 2f(x, i))

2

⎞
⎠.

This is in GapAC0 by the closure properties established in Chapter 6.

V. Vinay (personal communication) has pointed out that the following direct con-

struction also computes the zero-one PARITY function:

∑
i

⎛
⎝∏

j<i

(1 − 2f(x, j))

⎞
⎠ f(x, i).

A similar argument shows that, for all prime p and for all k, #AC0
GF (pk)

corresponds

exactly to AC0[p(pk − 1)].

32

Chapter 6

Closure and Non-Closure Properties

6.1 Introduction

A study of the closure properties of #P was initiated by Ogiwara and Hemachandra

in [44]. It is not known whether #P is closed under such operations as MAX, MIN,

division by 2, and decrement. In [44] implications and equivalences are established

among these closure properties and certain other open questions in complexity theory.

In the context of #AC0 and GapAC0, however, we are able to settle most questions

about these and other closure properties. (For instance, they are not closed under

MAX or division by 3, but they are closed under decrement; #AC0 is not closed under

division by 2, although GapAC0 is.) In some cases, the answers follow easily from

earlier results, but in other cases new analysis is required.

We summarize the closure and non-closure properties for the classes #AC0 and

GapAC0.

33

Property #AC0 GapAC0

weak sum
√ √

weak product
√ √

choose constant
√ √

choose polylogarithmic ? ?

choose super-polylogarithmic × ×

MAX, MIN × ×

monus polylogarithmic
√ √

monus super-polylogarithmic × ×

div with polylogarithmic numerator
√ √

div constant (non power of 2) × ×

div 2α ×
√

square-root, logarithm × ×

6.2 Weak Sum and Weak Product

Recall from Chapter 2 that weak sum (product) refers to a sum (product) of polyno-

mially many functions. The following proposition is easy to see

Proposition 26 #AC0 and GapAC0 are closed under weak sum and weak product.

6.3 Choose Operator

In contrast to the foregoing proposition, the following closure property seems to require

a much more complicated proof. Although closure under the choose operation is easy to

show for classes such as #L and #P, where a machine can simply guess and execute k

computation paths simultaneously, a different argument appears necessary for circuit-

based counting classes.

Theorem 27 #AC0and GapAC0 are closed under the choose operation (i.e. if f(x)

is a function in either of these classes, then so is
(
f(x)

k

)
for any positive constant k).

Proof:

34

We proceed by induction on the depth of the counting circuit computing the #AC0

function. If the circuit has depth 0, then the claim follows trivially as f(x) assumes

values 0 and 1 only. In order to prove the inductive step, we just need to prove that if

f1(x), . . ., fn(x) are #AC0 functions and for some constant k and all j ≤ k,(
f1(x)

j

)
, . . . ,

(
fn(x)

j

)

are #AC0 functions, then so are
(Pn

i=1 fi(x)
k

)
and

(Qn
i=1 fi(x)

k

)
. Consider the identity:

(1 + z)
Pn

i=1 fi(x) =
∏n

i=1 (1 + z)fi(x)

=
∏n

i=1

∑fi(x)
j=0

(
fi(x)

j

)
zj.

The coefficient of zk on the right hand side is
∑∏n

i=1

(
fi(x)

ji

)
, where the sum is taken over

all distinct tuples 〈j1, . . . , jn〉, satisfying
∑n

i=1 ji = k. Thus comparing the coefficients

of zk on both sides of the identity we get:(∑
fi(x)
k

)
=
∑
�j

n∏
i=1

(
fi(x)

ji

)
.

Here �j = 〈j1, . . . , jn〉 is a partition of k into n parts. (Note that this shows that two

multivariable polynomials agree on an infinite domain, namely, the naturals; hence

these polynomials agree also on the integers.)

Hence, in order to show that
(Pn

i=1 fi(x)
k

)
is in #AC0, we just need to show that

the above expression involving a sum of products has polynomially many terms. But a

simple inductive argument shows that it has less than nk terms: letting T (n, k) denote

the number of terms in the sum and giving jn values 0, . . . , k successively, we get the

following equation:

T (n, k) = T (1, 0)T (n− 1, k) + T (1, 1)T (n− 1, k − 1) + · · ·+ T (1, k)T (n− 1, 0).

Noting that T (1, i) is 1 for each i and using a simple induction on k we get the result.

In order to prove that
(Qn

i=1 fi(x)
k

)
is in #AC0, we first consider

(
ac
k

)
. Note that

(
ac
k

)
is exactly the number of ways of choosing k distinct cells out of an a × c matrix. For

any choice of k cells, let b1, . . . , bk denote the number of columns containing 1, . . . , k

of the chosen cells. Then an alternative way of choosing k cells out of this matrix is

35

to first choose the integers b1, . . . , bk, then choose the b1 columns containing exactly

one chosen cell and the chosen cell within each of these, then choose the b2 columns

containing exactly two chosen cells and the two chosen cells within them and so on.

Consider all distinct partitions of k of the form k = 1b1 +2b2 + · · ·+kbk. We denote

by �b = 〈b1, b2, . . . , bk〉 one such partition and by Sk, the set of all such partitions. Also

define πk as the cardinality of the set Sk. Then,

(
ac

k

)
=

∑
�b∈Sk

(
c

b1

)(
a

1

)b1(c− b1

b2

)(
a

2

)b2

· · ·
(

c− b1 − b2 − · · · − bk−1

bk

)(
a

k

)bk

=
∑
�b∈Sk

(b1 + b2 + · · ·+ bk)!
b1!b2! · · ·bk!

(
c

b1 + b2 + · · ·+ bk

)(
a

1

)b1

· · ·
(

a

k

)bk

.

Thus we have shown that
(
ac
k

)
can be represented by a sum of πk terms. (As above,

note that this equality holds also when a and c are integers.)

For �b ∈ Sk, let

F (n, k) =
(∏n

i=1 fi(x)
k

)
,

cn =
n−1∏
i=1

fi(x),

an = fn(x),

G(a,�b) =
(b1 + b2 + · · ·+ bk)!

b1!b2! · · ·bk!

(
a

1

)b1

· · ·
(

a

k

)bk

.

Then using the above identity involving
(
ac
k

)
, we have:

F (n, k) =
∑
�b

G(an,�b)F (n − 1,
k∑

i=1

bi).

Let R(n, k) denote the number of terms in this sum once the right hand side has

been completely expanded as a sum of products. Then,

Claim 28 R(n, k) ≤ π1π2 · · ·πkn
k−1.

36

Proof: The claim clearly holds for R(1, k). Now assume that the claim holds for all

n′ < n and all k′ < k, and consider the induction step.

Let S
′
k be Sk − {〈k, 0, , 0, . . . , 0〉}. Then,

R(n, k) =
∑
�b∈Sk

R
(
n − 1,

∑
bi

)

= R(n − 1, k) +
∑
�b∈S

′
k

R
(
n − 1,

∑
bi

)

≤ R(n − 1, k) +
∑
�b∈S

′
k

R(n − 1, k − 1)

≤ R(n − 1, k) + (πk − 1)R(n− 1, k − 1)

< R(n − 1, k) + πk

(
π1π2 · · ·πk−1(n − 1)k−2

)
,

where the last inequality holds inductively. Thus,

R(n, k) < π1π2 · · ·πk
∑n−1

i=0 ik−2

< π1π2 · · ·πk
∑n−1

i=0 nk−2

= π1π2 · · ·πkn
k−1.

This completes the proof of Theorem 27 for the #AC0 case. Closure of GapAC0

follows by an essentially identical proof. (The basis case needs to be augmented to deal

with the constant −1.)

A proof along these lines can also be used to show that #NC1 is closed under the

choose operation – but (as was pointed out to us by David Mix Barrington) a much

simpler proof suffices for #NC1, since one can show that #NC1 is closed under the

“monus” and “div m” operations for any constant m. (That is, if f is in #NC1, then so

are the functions max(f(x)−1, 0), and �f(x)/m�.) Although one can show that #AC0

is also closed under the monus operation, #AC0 and GapAC0 are not closed under div

m for any m �= 2α (see Theorem 36).

This is a good time to observe that #AC0 is not closed under some more general

choose operations. For instance, let f(x) =
∑

i xi; f is clearly in #AC0. For any

37

function g(n) �= logO(1) n, the function

⎛
⎝ f(x)

g(n)

⎞
⎠ is not in #AC0, since this function

is 0 iff f(x) < g(n), and thus the underlying Boolean AC0 circuit would be computing

the g(n)-threshold function, which is not in AC0 [30, 28]. (This shows merely that⎛
⎝ ∑

i xi

g(n)

⎞
⎠ is not in #AC0; for an improvement of this result to a lower bound for

GapAC0, see Theorem 29.) This argument leaves open the question of what happens

when g(n) �= O(1) but g(n) = logO(1) n. For g in this range, the g(n) threshold is

computable in AC0 [30, 28], but the currently-known proofs of this fact do not preserve

the number of accepting subtrees.

Open Question 1 Are the functions

⎛
⎝ ∑

i xi

logn

⎞
⎠ and

⎛
⎝ ∑

i xi

log∗ n

⎞
⎠ in #AC0?

It is perhaps worth noting that the proof above actually shows that for functions g

computable in AC0, both of the classes #qAC0 and GapqAC0 are closed under
(·
g

)
if g

is polylogarithmic1. This is related to the following open question in [40].

Open Question 2 Is the set of symmetric functions in qAC0[2] the same as the set

of symmetric functions in AC0[2]? Equivalently, does

⎛
⎝ ∑i xi

k

⎞
⎠ mod 2 belong to

AC0[2], for each polylogarithmic value of k?

The “only if” part corresponding to the “if” statement above follows from the

following theorem.

Theorem 29 For every integer k ≥ 2, there are infinitely many integers n with the

property that there is some j ≤ log3k2
n, such that there is no GapAC0

k-circuit of size

≤ nlogk−1 n computing the function ⎛
⎝ ∑n

i=1 xi

j

⎞
⎠

1The complexity classes qAC0,qAC0[2], GapqAC0, #qAC0 are counterparts of AC0, AC0[2],
GapAC0, #AC0 when circuits are allowed to have quasi-polynomial(2logc n) size instead of polynomial
size.

38

where the xi’s are Boolean variables. (In particular, for any superpolylogarithmic func-

tion g(n), it is not the case that a GapAC0 circuit can compute

⎛
⎝ ∑

i xi

j

⎞
⎠ for all

j ≤ g(n).)

Proof: Assume otherwise. Thus we have a k ≥ 2, such that for all large enough n and

for each j ≤ log3k2
n, there is a GapAC0

k-circuit of size at most nlogk−1 n computing⎛
⎝ ∑

i xi

j

⎞
⎠.

Using these GapAC0 circuits, we will show how to compute the exact threshold

predicate
m∑

i=1

xi = m/2

(for any large enough m of the form 2r), using depth k+1 AC0[2] circuits of size smaller

than the 2Ω(m1/2(k+1)) lower bound proved in [52].

We need the following fact (a proof of which can be found in [21, Fact 2.2]): a is

divisible by 2r iff

⎛
⎝ a

2j

⎞
⎠ is even for each 1 ≤ j ≤ r − 1.

Thus if a =
∑m

i=1 xi for some m = 2r, the predicate
m∑

i=1

xi = m/2

is equivalent to

(
∨
i

x̄i) ∧ (
∨
i

xi) ∧
∧

t<r−1

⎛
⎝ ∑

i xi

2t

⎞
⎠ is even.

Let n = �2m1/3k2

�. Thus m ≤ log3k2
n, so for all j ≤ m there is a GapAC0

k circuit of

size nlogk−1 n computing

⎛
⎝ ∑

i xi

j

⎞
⎠, and thus, by Proposition 25 and the discussion

following Corollary 6 the lower-order bit of this expression can be computed by AC0[2]

circuits of the same depth and size.

Thus the expression

(
∨
i

x̄i) ∧ (
∨
i

xi) ∧
∧

t<r−1

⎛
⎝ ∑

i xi

2t

⎞
⎠ is even

39

has depth k + 1 AC0[2] circuits of size (nlogk−1 n)O(1) = 2O(m1/3k2
m(k−1)/3k2

) = 2O(m1/3k)

which is asymptotically less than the lower bound of 2Ω(m1/2(k+1)) given by [52].

6.4 MAX and MIN

Following [44], let us consider a very simple closure property: MAX.

Theorem 30 Neither #AC0 nor GapAC0 is closed under MAX.

Proof: Let f(x) =
∑

i xi, and let g(x) = �|x|/2�. Let x′ denote the result of changing

the first 1 in x to a 0 (if such a bit exists). (It is easy to see that x′ can be computed from

x in Boolean AC0, and hence this function is also in #AC0.) Note that the number of 1’s

in x is less than or equal to �|x|/2� if and only if the low-order bits of MAX(f(x), g(x))

and MAX(f(x′), g(x′)) are equal. The low-order bits of any GapAC0 function are

computable in AC0[2], and hence if MAX(f, g) were computable in GapAC0, it would

follow that the majority function could be computed in AC0[2], in contradiction to [46].

By an essentially identical argument we get the following:

Corollary 31 Neither #AC0 nor GapAC0 is closed under MIN.

6.5 Monus

Again following [44], we next consider the decrement function. Given a function f , the

decrement operation applied to f is f
.
−1 (where the monus operation a

.
−b is equal to 0 if

b ≥ a, and is equal to a−b otherwise). Not only is #AC0 closed under decrement, but it

is closed under
.
− with any #AC0 function whose growth rate is at most polylogarithmic.

Theorem 32 If f and g are in #AC0, and there exists a k such that for all x, g(x) =

O(logk |x|), then f
.
−g is in #AC0.

40

Note: The polylogarithmic bound on g is necessary. To see this, let f(x) =
∑

xi,

and let g(x) be |x|/2 (or any other superpolylogarithmic threshold). Then, f(x)
.
−g(x)

is nonzero if and only if the number of ones in x exceeds the threshold g(x). If this

function were in #AC0, it would imply the existence of a Boolean AC0 circuit family

computing threshold-g, contradicting [30, 37]. An argument similar to Theorem 30

shows that f
.
−g is not even in GapAC0.

Proof: The proof is based on Lemma 34 below.

Definition 16 Let #t,n be the following integer function on n Boolean inputs:

#t,n(x1, . . . , xn) =

⎧⎨
⎩ |{xi : xi = 1}| if |{xi : xi = 1}| ≤t

t otherwise

The following lemma follows directly from [28, 30]:

Lemma 33 ([28, 30]) If t = O(logk n) for some fixed k then the function #t,n is in

AC0 (and hence in #AC0).

Lemma 34 If f is a #AC0 function and g is a function in #AC0 taking polyloga-

rithmically bounded values, then the predicates [f = g] and [f ≤ g] are computable in

AC0.

Proof: Let r be a polylogarithmic upper bound on g. We construct an AC0-circuit by

induction on the height of the #AC0-circuit computing f , using Lemma 33. Let v(C)

denote the value of a gate C. If C is a
∑

-gate with inputs C1, . . . , Cn then v(C) = g

iff

r∑
j=1

j · (#r,n ([v(C1) = j], . . . , [v(Cn) = j]))

is equal to g and each v(Ci) is at most r. We can inductively compute [v(Ci) = j] for

j ≤ r and [v(Ci) ≤ r]. Similarly, if C is a
∏

-gate then v(C) = g iff

r∏
j=2

∑
l≤logj r

j l
[
l = #logj r,n ([v(C1) = j], . . . , [v(Cn) = j])

]

41

is equal to g and each v(Ci) is at most r. Notice that if l ≤ logj r, then j l ≤ r and

thus the transformation (j, l) �→ j l can be done via a lookup table. This completes the

inductive proof.

Continuing with the proof of Theorem 32, we build the circuit for f
.
− g by induction

on the depth of the circuit computing f . The basis, for depth-zero circuits, is trivial.

For the inductive step, consider first the case where the output gate is a + gate. Note

that

(
n∑

i=1

fi)
.
−g =

n∑
i=1

⎡
⎣ i−1∑

j=1

fj ≤ g <
i∑

j=1

fj

⎤
⎦
⎛
⎝fi

.
−(g −

i−1∑
j=1

fj) +
n∑

j=i+1

fj

⎞
⎠ .

It follows from Lemma 34 that g −
∑i−1

j=1 fj can be computed in AC0 (by testing, for

small values of a, whether a +
∑i−1

j=1 fj ≤ g). Thus the claim follows by application of

Lemma 34 and by closure under sum and product.

Now consider the case where the output gate is ×. By Lemma 34, we first check

that
∏n

i=1 fi ≥ g (if not we output 0). Otherwise there are two cases. In one case,

some fi is greater than g (and the minimum such i can be identified using Lemma 34),

in which case
∏n

i=1 fi

.
−g is Ai = fi

(
(
∏

j �=i fj)− 1
)

+ fi − g. Otherwise, all fi’s are

less than g, in which case we can find the minimum i such that
∏i

j=1 fj ≥ g, and the

desired monus is

Bi =

⎛
⎝ i∏

j=1

fj

⎞
⎠
⎛
⎝
⎛
⎝ n∏

j=i+1

fj

⎞
⎠− 1

⎞
⎠+

⎛
⎝ i∏

j=1

fj − g

⎞
⎠ .

To see that Ai can be computed using #AC0-circuits, notice that fi−g can be computed

inductively and
∏

j �=i fj − 1 can be written as a telescoping series,
∑n

k=1,k �=i ((fk − 1)∏n
j=k+1 fj), where the fk − 1’s can be computed inductively. As for Bi, notice that∏n
j=i+1 fj − 1 can be computed as a telescoping series as for Ai. Now, fi ≤ g and from

the minimality of i,
∏i−1

j=1 fj ≤ g. Thus both
∏i

j=1 fj and g are polylogarithmic, so

their difference can be computed using a #AC0 circuit. This completes the proof of

Theorem 3.

42

6.6 Div

A similar argument allows us to show the following:

Lemma 35 If f is any #AC0 function and g is a function in #AC0 taking polyloga-

rithmically bounded values, then the function �g/f� is in #AC0.

Proof: Let r be an upper bound on g, then �g/f� =
∑r

k=1 k [(k − 1)g < f ≤ kg]. Since

the predicate [(k − 1)g < f ≤ kg] is computable in AC0, the entire computation can be

done in #AC0.

This leads to the question of whether �g/f� is in #AC0 when we do not have a

polylogarithmic upper bound on g. We give a negative answer by showing the following

lower bound.

Theorem 36 For any integer m that is not a power of 2, the function
⌊P

i xi

m

⌋
cannot

be computed in GapAC0.

Proof: It suffices to prove the following special case: For any odd prime p, the function⌊P
i xi

p

⌋
cannot be computed in GapAC0.

To see this, note that if m is not a power of 2, then there exists an odd prime p and

an integer m1 such that m = p · m1. The observation follows by considering⌊∑
xi

p

⌋
=
⌊

(
∑

xi) · m1

p · m1

⌋
.

Now suppose that we can compute
⌊P

xi

p

⌋
in GapAC0. Then the low-order bit of

(
∑

i

xi) − p ·
⌊∑

xi

p

⌋

is in GapAC0 too. But this value is the low-order bit of the remainder of dividing
∑

xi

by p, and thus this has period p, in contradiction to [40].

The situation for powers of 2 is more complicated. GapAC0 is closed under such

divisions, but #AC0 is not.

Theorem 37 For any integer constant α and any function F (x) ∈ GapAC0 the func-

tion �F (x)
2α � is computable in GapAC0.

43

Proof:

We first consider the case of α = 1. Since F ∈ DiffAC0, there exist two functions

f, h ∈ #AC0 such that F (x) = f(x)− h(x). Denote by Par(f(x)) the low-order bit of

the binary representation of f(x). It follows from Proposition 25 that Par(f(x)) can

be computed in GapAC0. The following formula can be easily verified:

⌊
f(x)− h(x)

2

⌋
=
⌊

f(x)
2

⌋
−
⌊

h(x)
2

⌋
− [1− Par(f(x))] · Par(h(x)). (6.1)

Therefore, it is enough to show that if f(x) ∈ #AC0, then we can build a GapAC0

circuit computing
⌊

f(x)
2

⌋
.

Suppose that f(x) is computed by a #AC0 circuit C of depth d. We will show this

construction by induction on d. Let g be the output gate of C, having fanin m, where

g1, · · · , gm are the input gates of g. Note that m is polynomial in n. Let C1, . . . , Cm be

subcircuits of C, whose output gates are g1, · · · , gm respectively. For each i call gi(x)

the function computed at the gate gi.

If d = 1 then gi(x) ∈ {x1, x̄1, . . . , xn, x̄n, 0, 1} . If g is a × gate then clearly⌊
g1(x)···gm(x)

2

⌋
= 0, which is computable in #AC0 and hence in GapAC0. If g is a

+ gate, then
⌊

g1(x)+···+gm(x)
2

⌋
is in GapAC0 using the identity:

⌊
x1 + · · ·+ xn

2

⌋
= Par(x1) · x2 + Par(x1, x2) · x3 + · · ·+ Par(x1, x2, . . . , xn−1) · xn

(where Par(x1, x2, . . . , xr) = Par(
∑r

i=1 xi)) and the fact that the function Par() is in

GapAC0 (see Proposition 25).

Now suppose that d > 1 and that for all subcircuits C1, . . . , Cm of depth ≤ d − 1

we have already constructed corresponding GapAC0 circuits computing
⌊

gi(x)
2

⌋
. If g is

a + gate, that is g(x) = g1(x) + · · ·+ gm(x), then

⌊
g(x)

2

⌋
=
⌊

g1(x)
2

⌋
+ · · ·+

⌊
gm(x)

2

⌋
+
⌊
Par(g1(x)) + · · ·+ Par(gm(x))

2

⌋
(6.2)

44

If g is a × gate, that is g(x) = g1(x) · · ·gm(x), then

⌊
g(x)

2

⌋
=
⌊

g1(x)
2

⌋
· g2(x) · · ·gm(x) + Par(g1(x)) ·

⌊
g2(x) · · ·gm(x)

2

⌋

=
⌊

g1(x)
2

⌋
· g2(x) · · ·gm(x) + Par(g1(x)) ·

⌊
g2(x)

2

⌋
g3(x) · · ·gm(x)

+Par(g1(x)) · Par(g2(x)) ·
⌊

g3(x) · · ·gm(x)
2

⌋
...
...

=
⌊

g1(x)
2

⌋
· g2(x) · · ·gm(x)

+Par(g1(x)) ·
⌊

g2(x)
2

⌋
g3(x) · · ·gm(x)

+Par(g1(x)) · Par(g2(x)) ·
⌊

g3(x)
2

⌋
g4(x) · · ·gm(x)

+ · · · · · · · · · · · ·

+Par(g1(x)) · Par(g2(x)) · · ·Par(gm−1(x)) ·
⌊

gm(x)
2

⌋
. (6.3)

Using the GapAC0 circuits for
⌊

g1(x)
2

⌋
,
⌊

g2(x)
2

⌋
, . . . ,

⌊
gm(x)

2

⌋
, the formulas (6.2) and

(6.3) show how to build a GapAC0 circuit for
⌊

g(x)
2

⌋
.

In order to construct a GapAC0 circuit for
⌊

F (x)
2α

⌋
, if α > 1, we first note that

the formula (6.1) is also true for any integer function f(x), g(x), hence it is true for

functions in #AC0 and in GapAC0 too. Thus we can repeat the above process α times.

Finally it is not hard to see that this construction gives a GapAC0 circuit computing⌊
F (x)
2α

⌋
which has depth O(d) and size polynomial in the size of C.

Theorem 38 The function ExactHalf(x) =
⌊

x1+···+xn
2

⌋
cannot be computed in #AC0.

Note: We remark that we can actually show that exponential-size circuits are required,

using a similar proof.

Proof: We need the following result:

45

Lemma 39 [14] If p(x1, . . . , xn) is a polynomial of degree k with the property that

p(x1, . . . , xn) = ⊕(x1, . . . , xn) for all except ε2n inputs for ε < 1/2, then

k ≥ n − O

(√
n log

(
1
ε

))
.

Note that

⊕(x1, . . . , xn) = (x1 + · · ·+ xn)− 2 ·
⌊

x1 + · · ·+ xn

2

⌋
.

Hence, if
⌊

x1+···+xn
2

⌋
could be computed by a polynomial of small degree, ⊕ could be

computed by a polynomial of small degree as well. Together with Lemma 39, this means

that any polynomial p such that p(x1, . . . , xn) =
⌊

x1+···+xn
2

⌋
for all except ε2n inputs

must have degree at least n − O
(√

n log
(

1
ε

))
.

This result initially seems to have only limited application for proving results about

#AC0, since many functions computed by these arithmetic circuits have linear degree.

One of our technical contributions is to show that the effects of large degree are not

very great, when the size of the final function is small:

Lemma 40 Let c > 0 be a constant. Let Cn be a depth-D, size-Sn #qAC0 circuit com-

puting the function f . Suppose that 0 ≤ f(x) ≤ 2logc n. Let zε =
(
log(1/ε) logSn log2 n

)D.

Then for each ε satisfying2 0 < ε ≤ 1/Sn there exists a polynomial of degree O
(
zε logcD n

)
of n variables with the property that P (x) = f(x) for at least 1−ε fraction of all inputs.

Proof: For each subcircuit Cg, let C′
g be the corresponding qAC0 circuit (i.e., the

Boolean circuit obtained from Cg by replacing each + gate by an OR gate and each

× gate by an AND gate). Let g′(x) be the Boolean function computed by C′
g. Then,

g′(x) = 0 if and only if there is no accepting subtree for the gate g′ in the circuit C′
n,

if and only if g(x) = 0. Thus, g(x) = g′(x) · g(x) for all input x.

By induction on the circuit depth we will show that for all ε > 0 sufficiently small,

for each gate g of depth ≤ d:

1. there exists a polynomial G of degree O
(
zε logcd n

)
such that

∣∣{x : 0 < g(x) ≤ 2logc n

and G(x) �= g(x)}| ≤ ε2n−1 (in this case we say, the error is at most ε/2).

2If ε > 1/Sn, one can use the polynomial for ε = 1/Sn, getting the same result with slightly worse
zε = (log2 Sn log2 n)D.

46

2. there exists a polynomial H of degree O
(
zε logcd n

)
such that

∣∣{x : 0 ≤ g(x) ≤ 2logc n

and H(x) �= g(x)}| ≤ ε2n (thus, the error is at most ε).

First we show the existence of the polynomial H by supposing that we have shown the

existence of the polynomial G satisfying the conditions mentionned above. Let s and

d be the size and depth of the Boolean circuit corresponding to g. Let 0 < ε1 = ε/2.

Beigel et al. ([20] Lemma 6) showed that for any Boolean circuit of depth d and size

s there exists a polynomial G′(x) of degree O
((

log(1/ε1) log s log2 n
)d) = O(zε) that

agrees with g′(x) on all except ε12n inputs3. Define H to be H(x) = G(x) · G′(x). If

g(x) = 0 then g′(x) = 0 and hence G(x) · G′(x) = 0 with error ε/2 < ε. If g(x) �= 0

then g′(x) = 1 and G′(x) = 1 with error ε/2. Because G(x) = g(x) with error ε/2, this

implies that H(x) = g(x) with error ε.

Now we show the existence of the polynomial G by induction on the circuit depth

d. For the base case of d = 0 just define G(x) = g(x).

Consider the case of d ≥ 1 and let g1, . . . , gm be the inputs of g, where each gi is of

depth ≤ d − 1. Consider first the case of a + gate, that is g(x) = g1(x) + · · ·+ gm(x).

The inputs x satisfying 0 < g(x) ≤ 2logc n will also satisfy 0 ≤ gi(x) ≤ 2logc n for all

i = 1, . . . , m. By the induction hypothesis, for each ε1 = ε/m and for each gi there

exists a polynomial Hi of degree O
(
zε1 logc(d−1) n

)
such that if 0 ≤ gi(x) ≤ 2logc n then

Hi(x) = gi(x) with error ε1. Define G = H1 + · · ·+ Hm, than G(x) will compute g(x)

with error m · ε1 = ε. The degree of G is the maximum of the degrees of Hi which is

O
(
zε1 logc(d−1) n

)
and which can be shown to be O(zε logcd n) for small ε, for exemple

ε < 1/Sn.

Consider the case where g(x) = g1(x) · · ·gm(x). The inputs x satisfying 0 < g(x) ≤

2logc n will also satisfy 0 < gi(x) ≤ 2logc n for all i = 1, . . . , m. By the induction

hypothesis, for each ε1 = ε/m and for each gi there exists a polynomial Gi of degree

O
(
zε1 logc(d−1) n

)
such that if 0 < gi(x) ≤ 2logc n then Gi(x) = gi(x) with error ε1.

Note also that there are only at most logc n values among g1(x), . . . , gm(x) that are

3In fact, Beigel et al. showed the existence of a probabilistic polynomial that agrees with g′ with
probability 1−ε1. However, one can fix the probabilistic variables and obtain a polynomial in the usual
sense.

47

strictly greater than 1. Hence
∑

i1,... ,ik

∏k
j=1(gj(x)−1) = 0 for all k > logc n. Therefore

we have:

g(x) =
m∏

i=1

gi(x) =
m∏

i=1

[1 + (gi(x) − 1)]

=
m∑

k=0

∑
i1,... ,ik

k∏
j=1

(gij(x)− 1)

=
logc n∑
k=0

∑
i1,... ,ik

k∏
j=1

(gij(x) − 1).

The induction hypothesis implies that the polynomial G defined by

G(x) =
logc n∑
k=0

∑
i1,... ,ik

k∏
j=1

(Gij(x) − 1)

will compute g(x) with error mε1 = ε/2. The degree of G is at most logc n times the

maximum of the degrees of Gi which is logc n · O
(
zε1 logc(d−1) n

)
= O

(
zε logcd n

)
for

ε < 1/Sn.

To complete the proof of Theorem 38, Suppose that
⌊

x1+···+xn
2

⌋
could be computed

with a #AC0 circuit of depth D and of size S. We take c = 1. By Lemma 40, for each

ε > 0 there exists a polynomial P of degree

k = O
((

log(1/ε) logS log2 n
)D logD n

)
= polylog(n)

such that the number of inputs x where P (x) �=
⌊

x1+···+xn
2

⌋
< 2logn is at most ε2n.

Let P ′(x) = (x1 + . . . + xn) − 2P (x). Then, the number of inputs x where P ′(x) �=

⊕(x1, . . . , xn) is also at most ε2n. That leads to a contradiction with Corollary 39.

This completes the proof of Theorem 38.

In fact, we show that even if we relax the requirement that we round down accurately

when the number of 1’s in the input is odd, it is still difficult to compute half the sum

of the inputs. The following theorem makes it precise.

48

Theorem 41 For any function g, the function

ApprHalf(x) =

⎧⎨
⎩

Pn
i=1 xi

2 if
∑n

i=1 xi is even

g(x) otherwise

cannot be computed in #qAC0.

Proof: Suppose that there is a #qAC0 circuit C computing the function ApprHalf(x).

Then there exists a polynomial G of small degree such that if
∑n

i=1 xi is even then

G(x) = C(x) with small error (because C(x) =
Pn

i=1 xi

2 < 2logn; the existence of

the polynomial follows from Lemma 40. We can choose ε = 1
n there, for example).

Define the polynomial H(x) =(
∑n

i=1 xi − 2 · G(x))2 . Then H(x) = 0 with small error if∑n
i=1 xi is even and H(x) > 1 otherwise. The polynomial H ′(x) = 1−2H(x) clearly has

small degree and satisfies sgn(H ′(x)) �= sgn(⊕(x)) with small error and this contradicts

[14]

6.7 Miscellaneous Functions

A useful tool for showing non-membership in GapAC0 was presented by Lu [40]. He

defined the following notion of period : If f : {0, 1}n → N is a symmetric function,

consider f as a function from {0, 1, . . . , n} into N. The period of f is the least integer

k > 0 such that f(x) = f(x + k) for 0 ≤ x ≤ n− k. Notice that if the function f is not

periodic we can take k to be equal to n + 1.

Theorem 42 [40] A symmetric Boolean function f is in the class qAC0[2] if and only

if it has period 2t(n) = logO(1) n (with possible exceptions at f(i) and f(n − i) for

i = logO(1) n).

Theorem 42 easily yields non-closure results for #AC0 and GapAC0, of which the

following corollary is an example.

Corollary 43 The functions
⌊√∑

i xi

⌋
and �log (1 +

∑
i xi)� cannot be computed in

GapqAC0. Thus neither #AC0 nor GapAC0 are closed under taking of roots or loga-

rithms.

49

Chapter 7

Grid Graphs

7.1 G-graphs

The importance of grid graphs to the study of constant-depth circuits was first shown

in [18]. In this paper we use an equivalent notion, that makes it formally easier to

present our results.

Definition 17 A width-k G-graph is a graph that has a planar embedding in which

the vertices are grouped in a rectangular array of width k (the length is variable) with

edges between vertices of adjacent columns only. For any G-graph, let s and t refer

respectively to its lower left and upper right vertices. Also, if G1, G2 are width-k G-

graphs then G1G2 denotes the G-graph formed by merging the rightmost column of

G1 and the leftmost column of G2. This notation extends naturally to more than two

width-k G-graphs.

G-graphs are important to the study of circuit complexity, since the reachability

problem for width-k G-graphs is complete for depth-k AC0 [18]. Unfortunately, even

for width-2 G-graphs, counting the number of paths from s to t cannot be done in

GapAC0. To see this, consider the small G-graph GA illustrated in Figure 7.1 which

implements the reachability matrix A =

⎡
⎣ 2 1

1 1

⎤
⎦ . That is, there are two paths from

vertex 1 (bottom row) in the first column to vertex 1 in the third column, and for all

other (i, j) ∈ {1, 2}2 there is exactly one path from vertex i in the first column to vertex

j in the third column. Recall that all edges are directed from left to right. Note that

Ai =

⎡
⎣ f2i+1 f2i

f2i f2i−1

⎤
⎦ where fj denotes the j-th Fibonacci number.

50

Figure 7.1: The G-graph GA.

Now consider the homomorphism h mapping σ ∈ {0, 1} to Aσ. Thus h(x) represents

a string of matrices and by a slight abuse of notation can represent the product of this

string. Thus, given a string x, the low-order bit of h(x)1,1 will be 0 if and only if the

number of 1’s in x is equivalent to 1 (mod 3), using the easily verifiable fact that f2i+1

is even iff i is divisible by 3. Since the mod 3 function is not in AC0[2], it follows that

counting the number of paths from s to t is not in GapAC0.

A similar argument shows that this problem is hard for NC1 under the appropriate

reductions.

Theorem 44 Counting the number of s-t paths in width-two G-graphs is hard for NC1

under AC0[5] reductions.

Proof: The group of two-by-two matrices with determinant 1 over the integers mod 5

is non-solvable, and hence multiplication in it is hard for NC1 by [15]. But given any

multiplication in this group, we can construct path-counting problems in a G-graph

whose answers modulo 5 are the entries of the product matrix. This is because any

two-by-two matrix over N with determinant 1 can be represented as a product of those

two matrices coded for by the columns of Figure 7.1. (For a proof of this fact, see, e.g.,

[22, Theorem 3.1].).

Now we will show that the reduction is in AC0[5]. The transformation that converts

the input x to a sequence of matrices from Figure 7.1 is clearly AC0. Suppose we have

an oracle gate for counting the number of s, t paths in width-2 grid graphs which gives

the answer in binary. Let xi denote the ith bit of the answer and ci the value of 2i mod 5.

Notice that since i can take a polynomially bounded value ci can be computed in AC0.

We make ci copies of xi for each i and apply a Mod5 gate to its output. As input to

this oracle gate we use the above transformation mapping x to a sequence of matrices

from Figure 7.1. Thus, we get an AC0[5] circuit, with oracle gates for the computing

51

the number of s, t paths in width-2 grid graphs, which tells us whether x belongs to A.

7.2 A Special Family of G-graphs

Now consider the family of G-graphs defined by composing the ones shown in Fig-

ure 7.2. The next theorem shows that counting the number of s, t paths in this family

is equivalent to computing a #AC0 function.

Theorem 45 Define the σ-depth of a circuit to be the maximum number of
∑

gates on

any path in the circuit. Arithmetic circuits of σ-depth k can be simulated by counting

the number of s− t paths in a G-graph of width 2k +2, where the subgraph between any

pair of columns is drawn from the family illustrated in Figure 7.2. Conversely, given

such a G-graph G, the number of s− t paths in G can be computed by a uniform family

of #AC0 circuits.

Proof: For the forward direction, we construct a function f which associates a graph

f(C) with every gate C in a given #AC0 circuit, such that the number of s− t paths in

f(C) is equal to the output of the gate. We assume, without loss of generality, that the

circuit is leveled so that we can construct the function f by an induction on its depth.

The construction uses the graphs Gk,j illustrated in Figure 7.2.

C is the constant c: f(C) = Gk,c.

C is the literal l: f(C) = Gk,l.

C is a
∏

-gate at σ-depth d with inputs C1, . . . , Cr:

f(C) = f(C1)Gk,2d+2f(C2)Gk,2d+2 . . .Gk,2d+2f(Cr)

C is a
∑

-gate at σ-depth d with inputs C1, . . . , Cr:

f(C) = Gk,2d+1f(C1)Gk,2d+1f(C2) . . .Gk,2d+1f(Cr)Gk,2d+1

The G-graph for the formula (x1x2 + x3)(x2 + x1x4) is illustrated in Figure 7.2.

52

G
k,i

G
k-1,i

(0 ≤ i ≤ 2k)

G
0,0 G

0,1 0,2G

G
k,2k+2

G
k,,2k+1

Figure 7.2: The G-graphs Gi,j.

x
1 x

2 x1
x

4x2

_
x

3

_

Figure 7.3: G-graph for (x1x2 + x3) (x2 + x1x4)

53

For a G-graph G of width 2k, let si(G), ti(G) (1 ≤ i ≤ 2k) denote the i-th vertex from

the bottom on the left boundary and from the top on the right boundary, respectively.

Thus with this convention, s = s1(G) and t = t1(G). It is straightforward to show by

induction that for a gate C at σ-depth d in the circuit, the number of sk−d(f(C)) −

tk−d(f(C))-paths equals the value computed by C.

Conversely, we have a width 2k graph g′1 . . . g′n (where each g′i is one of the Gk−1,j’s

illustrated in Figure 7.2) and we want to compute the number of s− t paths. First, we

build the width 2k + 2 graph g0 . . . gn+1, where g0 = Gk,2k+1 = gn+1, and for 1 ≤ n,

if g′i is Gk−1,j, then gi = Gk,j. This does not change the number of s − t paths, and

makes the resulting algorithm easier to describe.

Inductively, we define a number of functions σd[i, j] and πd[i, j], where 0 ≤ d ≤ k

and 1 ≤ i < j ≤ n as follows 1 :

σ0[i, j] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑j−1
t=i+1 gt if gi, gj+1 ∈ {Gk,2, Gk,3}

and gt ∈ {Gk,0, Gk,1} for i < t < j

1 otherwise

π0[i, j] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏
i≤i′<j′≤j σ0[i

′
, j

′
] if gi, gj+1 ∈ {Gk,3}

and gt ∈ {Gk,0, Gk,1, Gk,2} for i < t < j

0 otherwise

σd[i, j] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i≤i′<j′≤j πd−1[i

′
, j

′
] if gi, gj+1 ∈ {Gk,2d+2, Gk,2d+3}

and gt ∈ {Gk,0, . . . , Gk,2d+1} for i < t < j

1 otherwise

πd[i, j] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏
i≤i′<j′≤j σd[i

′
, j

′
] if gi, gj+1 ∈ {Gk,2d+3}

and gt ∈ {Gk,0, . . . , Gk,2d+2} for i < t < j

0 otherwise

1Notice that we interpret the graphs Gk,0 and Gk,1 as the numerical constants 0 and 1.

54

It is straightforward to show that πk[1, n] is the correct number of s− t paths. and

that the functions defined above can indeed be computed by #AC0 circuits.

55

Chapter 8

Conclusion and Future Work

We know many lower bounds for #AC0. For instance, the Mod3 function is not in

#AC0, as a consequence of Proposition 25 and the circuit lower bounds in [46]. At

the end of Chapter 6 (Corollary 43) we saw that some functions related to the sym-

metric polynomials are not in #AC0. Other examples can easily be generated as easy

consequences of known circuit lower bounds. (In contrast, no function in #P or in

PNP is known not to be in #NC1.) We can also show that the #AC0
k and GapAC0

k

hierarchies are strict using the known lower bounds.

Theorem 46 For any k > 0, #AC0
k ⊂ #AC0

k+1, and GapAC0
k ⊂ GapAC0

k+1.

Proof: We prove the theorem for #AC0, the proof for GapAC0 is identical.

Assume that #AC0
k = #AC0

k+1 for some k > 0. It follows then that #AC0 =

#AC0
k. Let A be a language in AC0 but not in depth k AC0[2]. (See, for instance

Proposition 11 in [7]. We can choose A to be the mod 3 of the first loga n bits, for

some a.) The characteristic function of A is in #AC0, and therefore, in #AC0
k by

our assumption. But this gives a depth k AC0[2] circuit for A, in contradiction to our

choice of A.

Pierre McKenzie has pointed out that Sipser’s functions[51], used to show that the

depth hierarchy for AC0 is strict, can also be used to prove the first part of the above

theorem. For if f is the characteristic function of a language in AC0
k+1 but not in

AC0
k, then consider the arithmetic function g obtained by arithmetizing the AC0

k+1

circuit for f . This is clearly in #AC0
k+1. Suppose, g ∈ #AC0

k as witnessed by circuit

C. Then the function f
′
formed by “de-arithmetizing” C (i.e. converting product gates

to conjunctions and sum gates to disjunctions) is the same as f . This is because, f
′
is

56

0 iff g is 0 iff f is 0. Thus showing f ∈ AC0
k, which contradicts the definition of f .

On the other hand, we know essentially no lower bounds for threshold circuits,

which amounts to studying the limits of what can be expressed as the high-order bit of

a #AC0 function.

Note that [47] argues that, if certain popular cryptographic assumptions are true,

then there are no “natural proofs” of lower bounds for TC0 circuits. The model of

arithmetic circuits considered here has not been studied in sufficient detail for it to be

clear whether this should be considered a significant obstacle to proving lower bounds

for TC0 via arithmetic circuits. At the time the work was first done, we hoped that this

would be a new approach towards proving lower bounds for threshold circuits. This is

still possible but the intervening years have not seen the creation of these lower bound

techniques.

Since many lower bounds for #AC0 can be proved using natural proofs, it would

also be interesting to know what types of questions about #AC0 can be addressed via

natural proofs, and which cannot.

The issue of uniformity is especially interesting, and it again leads us to the frontier

of current lower bound technology. At the time the work was published we knew that

TC0 ⊆ C=AC0 ⊆ PAC0 in the Dlogtime-uniform setting, but equality was not known

to hold. Thus, even though we knew that Dlogtime-uniform TC0 is not equal to PP,

we did not know whether PAC0 and PP are distinct. We did, however, observe that if

the inclusion PAC0 ⊆ TC0 holds also in the Dlogtime-uniform setting, then a negative

answer would follow from the lower bound of [9] showing that the permanent requires

large threshold circuits. The argument is completed by noticing that the higher order

bit of the permanent in in PP but from the previous sentence not in TC0. That the

inclusion holds has been proved by [38].

It is worthwhile to note that [5] enables us to show that the determinant and

the permanent are not in Non-uniform GapAC0. That paper shows that the deter-

minant/permanent of extended lower triangular (elt) matrices is Logspace many-one

complete for #L. The reduction can actually be seen to be an AC0-reduction. Thus it

57

follows that the Mod3 function is AC0-reducible to the determinant/permanent of elt-

matrices. Thus if the determinant/permanent of arbitrary matrices is in Non-uniform

GapAC0, then so is the Mod3 function. But we know this to be false.

Another direction worth investigating concerns branching programs. It is shown in

[24] that #NC1 is closely related to the problem of counting paths in bounded-width

branching programs, and it is also known that AC0 is the class of languages accepted

by programs over aperiodic monoids [17]. Is there some characterization of #AC0 or

DiffAC0 in terms of branching programs? This question has been answered to a great

extent by Theorem 45. Is there a related algebraic characterization?

Recently, Hansen [35] has given a characterization of ACC0 in terms of planar

circuits of polynomial size and constant width. Perhaps, a combination of that insight

with the characterization of ACC0 by constant depth arithmetic circuits over finite fields

and the equivalence of constant depth arithmetic circuits with the G-graph family of

Chapter 7 may lead to interesting results.

Apart from these there are a couple of open questions in Chapter 6 related to closure

of #AC0 and GapAC0 under the polylogarithmic choose operation which are interesting

in their own right.

58

References

[1] Manindra Agrawal, Eric Allender, and Samir Datta. On TC0, AC0, and Arithmetic
circuits. Journal of Computer and System Sciences, 60(2):395–421, 2000.

[2] M. Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic,

24:1–48, 1983.

[3] E. Allender. P-uniform circuit complexity. Journal of the Association for Com-
puting Machinery, 36:912–928, 1989.

[4] E. Allender. Making computation count: arithmetic circuits in the nineties.
SIGACT News, 28(4):2–15, 1998.

[5] E. Allender, V. Arvind, and M. Mahajan. Arithmetic complexity, Kleene closure,
and formal power series. Theory of Computing Systems, 36(4):303–328, 2003.

[6] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible
systems of linear equations. Computational Complexity, 8:99–126, 1999.

[7] E. Allender and U. Hertrampf. Depth reductions for circuits of unbounded fan-in.
Information and Computation, 112:217–238, 1994.

[8] E. Allender and M. Ogihara. Relationships among PL, #L, and the determinant.
RAIRO Theoretical Information and Applications, 30:1–21, 1996.

[9] Eric Allender. The permanent requires large uniform threshold circuits. Chicago
Journal of Theoretical Computer Science, 1999(7), August 1999.

[10] Eric Allender, Andris Ambainis, David A. Mix Barrington, Samir Datta, and
Huong LêThanh. Bounded depth arithmetic circuits: Counting and closure. Lec-
ture Notes in Computer Science, 1644:149–158, 1999.

[11] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-commutative arith-
metic circuits: depth reduction and size lower bounds. Theoretical Computer Sci-
ence, 209(1–2):47–86, 1998.

[12] C. Àlvarez and B. Jenner. A very hard log space counting class. Theoretical
Computer Science, 107:3–30, 1993.

[13] A. Ambainis, D.A.M. Barrington, and H. LeThanh. On counting AC0 circuits with
negative constants. In Proc. of the 23rd International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 409–417, 1998.

[14] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of voting
polynomials. Combinatorica, 14(2):135–148, 1994.

59

[15] D. A. Mix Barrington. Bounded-width polynomial size branching programs recog-
nize exactly those languages in NC1. Journal of Computer and System Sciences,
38:150–164, 1989.

[16] D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within
NC1. Journal of Computer and System Sciences, 41:274–306, 1990.

[17] D. A. Mix Barrington and D. Thérien. Finite monoids and the fine structure of
NC1. Journal of the ACM, 35:941–952, 1988.

[18] David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum.
Searching constant width mazes captures the AC0 hierarchy. In Symposium on
Theoretical Aspects of Computer Science, pages 73–83, 1998.

[19] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and
related problems. SIAM Journal on Computing, 15:994–1003, 1986.

[20] R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back. In Proceed-
ings 6th Structure in Complexity Theory, pages 286–291. IEEE Computer Society
Press, 1991.

[21] R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350–367, 1994.

[22] Andreas Blass and Yuri Gurevich. Matrix transformation is complete for the av-
erage case. SIAM Journal on Computing, 24(1):3–29, 1995.

[23] J. Boyar, G. Frandsen, and C. Sturtivant. An arithmetic model of computation
equivalent to threshold circuits. Theoretical Computer Science, 93:303–319, 1992.

[24] Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer. Nonde-
terministic NC1 computation. Journal of Computer and System Sciences, 57:200–
212, 1998.

[25] A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM
Journal on Computing, 13:423–439, 1984.

[26] H. Chen. Arithmetic constant-depth circuit complexity classes. In Proc. of the
28th International Symposium on Mathematical Foundations of Computer Science
(MFCS), 2003.

[27] George I. Davida and Bruce Litow. Fast parallel arithmetic via modular represen-
tation. Siam Journal of Computing, 20:756–765, 1991.

[28] L. Denenberg, Y. Gurevich, and S. Shelah. Definability by constant-depth poly-
nomial size circuits. Information and Control, 70:216–240, 1986.

[29] Paul F. Dietz, Ioan I. Macarie, and Joel I. Seiferas. Bits and relative order from
residues, space efficiently. Information Processing Letters, 50(3):123–127, 1994.

[30] R. Fagin, M. M. Klawe, N. J. Pippenger, and L. Stockmeyer. Bounded-depth,
polynomial-size circuits for symmetric functions. Theoretical Computer Science,
36(2-3):239–250, April 1985.

60

[31] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of
Computer and System Sciences, 48:116–148, 1994.

[32] Gudmund S. Frandsen, Mark Valence, and David A. Mix Barrington. Some re-
sults on uniform arithmetic circuit complexity. Mathematical Systems Theory,
27(2):105–124, 1994.

[33] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hier-
archy. Mathematical Systems Theory, 17:13–27, 1984.

[34] J. Gill. Computational complexity of probabilistic complexity classes. SIAM Jour-
nal on Computing, 6:675–695, 1977.

[35] K. A. Hansen. Constant width planar computation characterizes ACC0. Technical
Report TR03-025, Electronic Colloquium on Computational Complexity, 2003.

[36] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, fifth edition, 1979.

[37] J. Hastad. Almost optimal lower bounds for small depth circuits. In S. Micali,
editor, Randomness and Computation, pages 143–170, Greenwich, Connecticut,
1989. Advances in Computing Research, vol. 5, JAI Press.

[38] W. Hesse, E. Allender, and D.A.M. Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. Journal of Computer and System
Sciences, 65:695–716, 2002.

[39] Bruce Litow. On iterated integer product. Information Processing Letters,
42(5):269–272, 1992.

[40] Chi-Jen Lu. An exact characterization of symmetric functions in qAC0[2]. Theo-
retical Computer Science, 261(2):297–303, 2001.

[41] I. Macarie. Space-efficient deterministic simulation of probabilistic automata.
SIAM Journal on Computing, 27:448–465, 1998.

[42] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and
complexity. Chicago Journal of Theoretical Computer Science, 1997(5), December
1997.

[43] Fabrice Noilhan and Miklos Santha. Semantical counting circuits. Lecture Notes
in Computer Science, 1767:87–??, 2000.

[44] M. Ogiwara and L. Hemachandra. A complexity theory of feasible closure proper-
ties. Journal of Computer and System Sciences, 46:295–325, 1993.

[45] I. Parberry and G. Schnitger. Parallel computation with threshold functions. Jour-
nal of Computer and System Sciences, 36:278–302, 1988.

[46] A. A. Razborov. Lower bounds on the size of bounded depth networks over a
complete basis with logical addition. Mathematicheskie Zametki, 41:598–607, 1987.
English translation in Mathematical Notes of the Academy of Sciences of the USSR
41:333-338, 1987.

61

[47] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer
and System Sciences, 55:24–35, 1997.

[48] John H. Reif and Stephen R. Tate. On threshold circuits and polynomial compu-
tation. SIAM J. Comput., 21(5):896–908, 1992.

[49] W. Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 21:365–383, 1981.

[50] Santha and Tan. Verifying the determinant in parallel. Computational Complexity,
7(2):128–151, 1998.

[51] M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th Symposium
on Theory of Computing, pages 61–69. ACM Press, 1983.

[52] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings, 19th ACM Symposium on Theory of Computing, pages
77–82, 1987.

[53] S. Toda. Counting problems computationally equivalent to computing the de-
terminant. Technical Report CSIM 91-07, University of Electro-communications,
Chofugaoka, May 1991.

[54] S. Toda. Classes of arithmetic circuits capturing the complexity of computing the
determinant. IEICE Transactions on Information and Systems, E75-D:116–124,
1992.

[55] Seinosuke Toda. On the computational power of PP and ⊕P. In Proc. 30th IEEE
Symposium on Foundations of Computer Science, pages 514–519, 1989.

[56] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8:189–201, 1979.

[57] L. G. Valiant. Why is Boolean complexity theory difficult? In M. S. Paterson,
editor, Boolean Function Complexity. Cambridge University Press, 1992. London
Mathematical Society Lecture Notes Series 169.

[58] H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer
and System Sciences, 43:380–404, 1991.

[59] H. Venkateswaran. Circuit definitions of nondeterministic complexity classes.
SIAM Journal on Computing, 21:655–670, 1992.

[60] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits. In Proceedings of the 6th Structure in Complexity Theory Conference,
volume 223 of Lecture Notes in Computer Science, pages 270–284, Berlin, 1991.
Springer.

[61] K. W. Wagner. The complexity of combinatorial problems with succinct input
representation. Acta Informatica, 23:325–356, 1986.

[62] T. Yamakami. Uniform AC0 counting circuits. Manuscript, 1996.

62

Vita

Samir Datta

1991 Graduated from Colvin Taluqdars’ College, Lucknow, India.

1991-95 Attended Indian Institute of Technology, Kanpur, India. Majored in Com-
puter Science and Engineering.

1995 B.Tech., Indian Institute of Technology, Kanpur.

1995-04 Graduate work in Computer Science, Rutgers, The State University of New
Jersey, New Brunswick, New Jersey.

1995-96 Excellence Fellowship, Rutgers, The State University of New Jersey.

1996-00 Graduate/Teaching Assistant, Department of Computer Science.

1997 M.S. in Computer Science, Rutgers, The State University of New Jersey.

1999 Allender, E., A. Ambainis, D.A.M. Barrington, S. Datta and H. LeThanh.
Bounded Depth Arithmetic Circuits: Counting and Closure. ı(ICALP-1999,
LNCS), 1644:149-158.

2000 Agrawal, M., E. Allender and S. Datta. On TC0, AC0, and Arithmetic
Circuits. ı(JCSS), 60(2000):395-421.

2000-03 Network Architect, Tellium Inc., Oceanport, New Jersey.

2004 Ph.D. in Computer Science.

