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Abstnct 

The thesis describes the production of a large prototype proof system for Z. and a tactic Ian· 
guage in which the proof tactics used in a wide range of systems (ineluding the system described 
here) can be discussed. 

The dewls of the construction of the tool-using the W logic fOT Z. and implemented in 
20BJ-are presented, along with an account of some of the proof taclics which enable W to be 
applied to typical proofs in Z. A case study gives tltamples of such proofs. Special attention is 
paid to soundness concerns, sinee it is considerably easier to check that a program such as this 
one produces sound proofs. than to check that each of the impenetrable proofs whiclJ it creates 
is indeed sound. As the first such encoding of W. this helped to find bugs in the published 
pTUentalions of W. and to demonstrate thai W makes proof in Z tractable. 

The second part of the thesis presents a tactic language, with a fonnal semantics (independent 
of any particular tool) and a sel of rules for reasoning about tactics written in this language. A small 
set of these rules is shown to be complete for the finite (non~recursive) pan of the language. Some 
case studies Me included. as are some ideas on how this tactic language can give rise to lightweight 
implementations of theorem proving rools. The 1001 described in some detail is anothcrtbcorem
prover for Z. this time based on LirtleZ. 
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Note to the reader
 

O
RIGINALLY, this monograph was prepared as the author's D.Phil. thesis. With 
the benefil of hindsight (a year after the thesis was finalized). ptmaps !':ome 
more comments on the use of 20BI are waITllllted. When the wort described 

in the first part of thesis was begun, 20BI was under active development in Ox.ford, 
and showed some promise of becoming a useful logical framework. That project 
ended however. leaving the tool unsupported, and causing some frustration. The work 
described here is almost certainly the largest case study undertaken with 20BI; it was 
not entirely sufficient for the task-see Chapter 4. 

Since this work was completed, others have followed a similar path [KB9.5], en· 
coding the W logic using the Isabelle system. The paper cited contains acomparison 
of that work and this, remarking that Isabelle is much more f1eXoible and powerfullhan 
20BJ. The encoding described here is rather more faithful than that in Isabelle, but at 
the price of a considerable loss of efficiency. 
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Chapter 1 

Introduction 

MODERN SOFTWARE ENGINEERING relies to an increasingly largeeAtent upon 

so-called 'formal methods' of program design and development. To date, 
much of the work on formal methods has concentrated on lhe 1I§t of formal 

methods for design work (earning SOme methods the more aceurate dtscriplion of 
formal description techniques). Validation of that design, and subsequent development 
work are often accomplished by more traditional techniques of coding Wld testing. 

One of the reasons for this is that formal development and validation necessarily 
involves considerable etlan in proof In VDM (Jon90l. it is necessary 10 prove that 
operation specifications do nOI break. any global invariants that have been declared on 
the stale variables. Likewise. in the usual style of using Z {Spi92a, WD96] (which is 
used in this thesis), the specification should include a demonstration that its declared 
initial slate satisfies all state invarianr propenies (Chapter 3 presents an example of 
such a proof). 

Development calls for similar proofs, about operation andlor dala refinement, 
whether the development is constnutive (that is, the methodology used supplies a 
proof of correctness 'for free' as the development proceeds), or it calls for post hoc 
proof (producing a program, and then proving that it meets its specification).1 Such 
proof5, though pc)(entially very similar to those proposed by mathematician.. for cen
turies. are generally quite unwieldy. 

These proofs present problems for a number of reasons: 

•	 "The nature of formal descriptions tends to give rise lo very formal proof require
menl!. Proofs undert.aken are correspondingly of a very formal nat:ure---quite 
unlike imything usually produced in mathematics (except in elementary logic 
textbooks, where formal proof exercises serve merely to demonstrate that de
tailed formal proof is possible (but undesirable» . 

•	 The datatypes used in computing tend to be much 'larger' than lhose typically 
present in mathematics. This leads to proofs in which there are multiple cases to 

I The IarteT is, in amemt. much barder than !lIl: farlntf", aad knds to be avoiik:d. 
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be considered, and many small details and side-conditions to be checked; proofs 
in which none of Ihe steps is hard to follow, but the sheer number makes the 
reader uncertain thlU he would spot any but the most glaring omissions. 

•	 Any new, ground-breaking proof in mathematics will be published in the liler
ature, and subject to considerable pur-review; hence its correctness is likely 10 
be checked by numerous professional mathematicians. The proof m..u a given 
program meets its specification will, even wilh the best engineering quality as
surance schemes, be looked at by only a handful of colleagues, most of whom 
will not share detailed knowledge of the problem area.lDMLP79] 

These problems make the development activity of proof ripe for machine support. 
Computers lend to be good at keeping track of great levels of detail, recording large 
structures faithfully. and checking witham complainl the most tedious of calculations. 
Of cou~. involving computers also itself adds to the level of formality needed: with 
foday's technology, we are unable to give a compuler the intuition which a mathemati
cian might bring 10 a problem, and so proof search lends to be fairly naive (though 
many useful procedures and heuristics have been discovered-see below; this remains 
an active area of re§eatch in the logic community). This, in tum, makes the proofs 
even harder to understand. 

1.1 Theorem-Proving Tools 

Many machine proof tools have been proposed and implemented in the last forty 
years. Initially, much emphasis was placed on tools which would accomplish proofs 
of mathematical theorems (from group theory, for example). Such lools are generally 
auromatic. Either they implement complete algorithms ('unifonn proof procedures') 
guaranteed to find a proof if one exists within their logic; or heuristics ('non-unifonn 
proof procedures') which seek [0 Iimitlhe combinatorial explosion thus obtained, by 
restticting their search to 'likely' proofs. In either case, the proof is accomplished (or 
fails) without significanl user intervention. 

Gradually such methods began to be applied to problems more related to compuler 
science. Tools were implemented which allowed the user significant control over the 
activity of searching for proofs-via taclic programming. Some of the highlights are 
as follows: 

• TIle Boyer-Moore theorem prover (NQ11IM) [B579]	 was one of the first to 
apply theorem proving techniques to program verification tasks (and continues 
to be developed). It is an automatic I:heon=m-prover, working with a quantifier
free first-order logic, and was also one of the first such tools to have a general 
induction principle built-in. Guidance to the tool is achieved by having the user 
propose lemmas which are likely to be useful-the system proves them and then 
attemplS to use them in the construction of its main proof. 

•	 Edinburgh LCF is a British CQnttibution which also dateS from the '70s 
[GMW79]. It was LCF which introduced the notion of a tlKtic as a program for 
directing the theorem prover, and rac,ical as a higher-order function for com· 
bining tactics. LCF is less automatic than NQTHM; lifter presenting the system 
with a goal to prove, the user supplies a tactic which directs the system on how 10 
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find the proof. Edinburgh LCF was based on Scon's logic of compu~ble func
lions and was u~ful for reasoning about denotational semantics and functional 
programming. Cambridge lCF [Pau87] euends!he logic of Edinburgh LCF and 
is well-suited lO reasoning about domain theory. LCF also inrroduced lhe notion 
of guaranteeing soundness via a safe datarype. In lCF objects whidl represent 
proofs. belong 10 a datatype Proof, and !.he only way to construct proofs is via 
functions which construcl them u~ing primitive axioms and roles---thus ensuring 
lhat only sound proofs are created. 

•	 HOL is anolher tool which has grown out of the work on LCF [GJr88j. HOL 
uses the same implementation lechnology (based on Mlr-wmch was ini[ially 
designed as a metalanguage for LCF), bUI implements a different logic. It 
has found particular application in the proof of correctness for digital cir
cuits [BGH+92j. 

•	 A more recent system is PVS [ORSvH93], which is much more closely targeted 
upon specification and proof for computer systems. By having a closely-eoupled 
language, type-checker and proof checker (type-checking, for example, may 
entail some theorem proving), it aims lO offer a higher degree of automation 
than is present in LCF, but to give the user more control over Ihe proof lhan is 
possible in NQTHM. 

Other tools have been implemented 10 support p8l1icular software development lech
niques. 

•	 The B {Abr9IJ tool was initially a configurableand exl.endible proof system, but 
is now part of a B development melhod, based on absrract machiTte nOlation. 
The theorem-provinj ability oflhetool is mainly used in the 'auto-prover' which 
checks lhe soundness of refinement steps. 

•	 mural [JJLM91 1 is a (001 which supports the proof aclivity requiJtd by a VDM 
development. It has a user-interface which is tailored 10 YOM (displaying lhe 
YOM text as it wold appear in a lypese( document). Proof may be conducted 
interactively or via lactic programs-which are sbllcturcd by arranging rules and 
tactics into theories for dealing with panicular datatypes and particular classes 
of proof. 

The~ tools differ in their implementation technologies and lhe de,gree of auwma· 
tion which Ihey offer. Most are configurable and eXlendible. 10 enable them 10 adapt 
10 a user's problem domain, bul each suppljes a logic and methodolog) of its own (in 
mosl cases, the efficiency of the heuristics offered to the user is heavil)' dependent on 
the logic which is implemenled). 

A more recent developmenl in lhis field is the idea of a fogicalframeworX, This 
is a tool whose only huilt-in nmions are nutalogjcal ideas of what it is to make an 
inference, what comprises a proof, how proofs are constructed from primitive inference 
rules. what operalions on proofs are sound. and so on. These 1001> are generally 
supponed by an extensive formal (generic) prooflheory. Before attempting proofs, the 
rhe u~r must fint supply (or selecl) an object Jogic-an account of a logical system, 
its syntax and rules of inference. 

•	 The Edinburgh Logical Framework (LF) [HHP9IJ, for example, is based on a 
typed >.-ealculus. in which logics are represented via a 'judgements as types' 
principle, whereby each judgement is idenlified with lhe Iype ofils proofs. 
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•	 Isabelle [pau89. Pau90] arose: aul ofPaulson's work on LCF---as a more generic 
approach 10 lheorem proving. II is supplied with many pre-defined object log
ics. including classical firsl-<JCder logic. many-sorted first-order logic, :k:rmelo
Ftaenkel set theory, the logic of LCF. etc. 

•	 2081[05HH921 has been developed in Oxford (in ajoinl projet::t with RHBNC). 
and has nol penetrated very far beyond this, maybe due to implementation dif· 
ficuhics. 20BI uses a safe datacype, in the style of LCF, bul instead of miling 
proofs the safe objects, in 20BI the son (type) of tactics is the protected one
tactics can be builf only from primitive rules and pre-defined l&:ticals. 

1.2 Tools Applied to Fonnal Methods 

Some of the popular formal methods have had. from lhe outsel, well-defined underly
ing semantics which has given rise to a workable proof theory and proof tools. 

VDM is based on a three-valued logic, and has a domain-theoretic semantics. 
The slandard lext on YOM [10090] describes how [0 construct VDM proofs, and so 
provided the essential groundwork for the implemenlation of mural-see above. CSP 
has a number of semantic models (lhe choice of which being dictated by the power of 
the results which the user wishes to bring to bear on problems), and two oftbc:se (the 
rraces model and thefailuresldivergences model) are described in the standard text on 
CSP fHoa85). A model-chcck..ing tool (FOR [For92]) based on the latter has recenlly 
been implemented. 

The focus of the work in this Ihesis is on Z, which is in (relatively) widespread 
use for system specification, but for which deductive systems are still being explored. 
Spivey gave Z a detailed formal semantics [Spi887 after Z bad already been in use for 
some time. More recent work has providedZ with a simplified semantics [GLW91, 
BN+92] and lhis has given rise to a reasoning system for Z. named W in [WB92). 

Z is presented as a broad~spectnJm formal method. II is envisaged lhar it should 
be possible to specify the functional aspects of any computer system in Z, prove thaI 
the specification is self~onsistenl, and reline it (in formal fasbion) into executable 
code. As such, most of the proofs which a Z user is called upon to undertake will not 
involve deep properties of the specification; they will be unlikely to involve inductive 
arguments, and they should, therefore, be highly aUlomatable. Moreover, when a proof 
lask is not so straightforward, there remains a significant amounl of book-keeping [0 

be done (checking, for example, that partial functions are always applied within lheir 
domains); and in this a proofassiSlan1 can be very valuable. 

Machine support for (and automation at) such proofs is the subject of this the~ 

sis. We shall be interested in software engineering concerns (LaCtic programming. in 
particular--taetics permit proof re*use, and the re-creation of proofs following speci
mation cbanges), as well as means of guaranleeing the soundness of the proof tools 
produced. 

A large prototype proof system for Z has been pnxluced. The details of the con
slrUction of this tool--using the W logic, and implemented in 20BJ-are presented 
in this thesis. Special anention is paid to soundness concerns. since it is considerably 
easier to check that a program such as this one produces §Qund proofs, than to check 
that each of the impenetrable proofs which it creates is indeed sound. Ai the first 
such encoding of W, this helped to find bugs in lhe pn::sentation jn [WB92], and to 
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demonstrale lha1 W makes proof in Z tractable (though in this implementation. only 
just--see Chapter 4). 

Two proof tools for Z are commercially available-ProotPower and Zola---these 
will be discussed in Chapter 4, where each is compared to the approach Iaken in this 
thesis. Both permit a similar range of proofs to be CORStrucled to 1hose produced by the 
IDOl described here. ProofPower is constrUcled using a venian of HOL(see above); 
and as such. produces proofs which are inherently sound with respect to HOL's logic; 
ZoJa implemenl5 a logic which is closer 10 W. 

One of the problematic areas in the construction of the tool mentioned above was 
the construction of taetics---the programs which direct proofs. Any that: are more com
plex than simply instructions 10 the tool to apply a few proof rules in sequetlce, they be
come hard to comprehend. As a broad goal. the U~ seeks very generallactics---Qnes 
which will prove a large clBSS of theorems wilhout intervention, and without undue in
efficiency. A way to reason about such prognuns---their semantics, how 10 IJ'ansform 
them without changing their effect, how to spcc.ify and re-use them ele.-was needed, 
and so the second part of the thesis presents such a language, with a formal seman· 
tics (independent of any particular 1001) and a set of rules for reasoning about lac lies 
written in this language. It includes some case studies. and some ideas on how this 
tactic language can give rise to lightweight implementations of theorem proving tools. 
The 1001 deSl;:ribed in some detail is another theorem-prover for Z, this time based on 
UttieZ [BHW94). 

1.3 Using Proof Tools 

Several facton affect the usabilit}l and value of a proof tool, such as: 

•	 soundness: this has been a large concern in the work presented hl:fe. Its impor
tance is relative to the amount of confidence which will be placed in the tool's 
output, and the ex:tent to which that output will be cbecked byoUlm. 

•	 user interface: in particular, this includes 

-	 the interactive component, and 

-	 thc tactic language. 

The first of these will receive little attention here; the thesis attempts to show 
that the second can be trealed in much the same way as any other programming 
language. 

• efficiency of implementation: clearly, there is little value in producing an in
teractive 1001 if the user must wait for many minutes between mouse clicks. 
Conversely, even a highly~automated tool will not be very useful ifjtcan be run 
only as an overnight batch job. 

•	 the ex:tent of the tactic library: a user wishing to construct proofs about spec· 
ifications does nol wish to spend time repeating proofs of basic laws from the 
mathematical IOOlkil-nor proofs of laws that 'should' be in the toolkit but are 
noL Moreover, the user may reasonably ex:pcc.t to be provided with a set of 
well-undeflitood proofsearch procedures--and an adequate spcc.ification of their 
function. 
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•	 the level al which the basic laws sit (i.e. whether they deal with points. sets, 
predicates. functions, schema operations. etc.): this issue can largel)' be hidden 
by an clltensive tactic library (provided the: tool is fasl enough), but at some point 
most user; will need to come into contact wim the basic laws.---wbich must be 
comprehensible in the conle"l of a ,given specitkation. 

1bese issues are strongly inter-related, 1be grealer the sophistication of the basic 
laws. the more efficient the implementation-bul the harder it is to prove that those 
laws are sound (bolb because they are far removed from the semantic definitions and 
because as lhey become more specialized. more are required), The nature of lhe tactic 
language will affect lhe way in which the tactic library can be utilized in users' tactics. 
In the second pan of this thc::>is, a taetic langulJgc is described which aims to pennit 
reasoning about tactics via a collection ofalgebraic laws-thus promoting re-use and 
refinement. 

1.4 Outline 

As indicated above, the lhesis is presented in lWO parts. The first describes the pro
du~tion of a proof tool for Z by encoding W in 20B). The second describes a laClic 
language-a general language, nOI specific to any particular tool. 

Chapter 2 describes the encoding of W in 20m, and goes on 10 describe some 
w.es of20W's tactic programming facilities in enlarging the granularity of proof slcps 
which can be undertaken in W. Chapter 3 uses these rules and tactics to discharge the 
proof obligations arising in a 'rypical' Z specjfication. Chapter 4 discusses the benefits 
and difficulties involved in using 20BJ, and the extent to which W is appropriate for 
the business of proof in Z. It also compares the approach taken h~ wilh that taken in 
ProofPower and ZtJla. 

Chapter:5 presents the tactic language, mentioned above and gives its formal se
mantics. h then lists a comp1eJI! set of Jaws fOl manipulating finite (non-recursive) 
tactics, before going on to consider how recursion is to be modelled and incorporated 
in the rule syslem. The addition of sl11lC'ural comhinators to the language permits a 
more succincl expression of certain tactics than is generally possible. O1apter 6 uses 
lhis laCtic nomtion lind lhe laws of tactic transformation to describe some lactic case 
studies, and to demol1Strate someoflhe propertiesoftbe tactics presenled.ln Chapter 7 
this tactic semantics is used a basis for a new proof tool for Z, implemented directly in 
a lazy funclionallanguage. This implementation is \'ery much more efficienl than th..l 
presenled in Part L 



......
 



Chapter 2 

Encoding W in20BJ 

T HIS CHAPTER presents details of the construction of a prolOtype theorem-proving 
tool for Z. The 1001 (named JigsaW) is based on the deductive system (which 
has been called W [WB92J) contained in the draft Z standard [BN+92], and 

is irnplemenled using the 20BJ metalogical theorem prover [GSHH92]. Much of the 
material in this chapter has appeared in a paper al FME'93: lndusrrio.f Strength Formnl 

Metlwlli [Mar93a]. 
The following secrions give an outline of W lind of 20BJ. Section2.3 discusses 

how Z's syntax has been encoded in 0813. and Section 2.4 shows how the basic 
predicate calculus rules are expressed in 20Bl. Sections 2.5 and 2.6 consider two 
proof-structuring devices; ",Ie-lifting and tactics. In Section 2.7 the encoding of W's 
rules for reasoning about expressions is explained, and in Section 2.8 !he rules which 
enable Z's specification constructs 10 be used in proof are considered. The next four 
sections describe some larger tactics-for dealing automatically witll propositional 
calculus (Section 2.9), expression axioms (Section 2.10) and the mathematical toolkit 
(Section 2.11). These are broughllogether in a more general tactic in Section 2.12. 
The final section (2.13) describes the means by which Iactics are used 00 apply binding 
substitulion rules with care. 

2.1 W: A Logicfor Z 

As Z has grown in popularity. various logics have been proposed for reasoning within 
it. One such logic is W [WB92]. W has the great benefit of having (largely) been 
proven sound with respect to the semantics of standard Z [BN+92].1 The logic is a 
sequent calculus in the style ofGentzen; but since it is for reasoning in Z, it is a typed 
logle. Thus Ute sequents take the following form: 

Declarations I Predicates I- Predicates . 

I TIE laner documeJlt gi\leS a new prelleIllati<Jn or !he logic, bill thi5 lICCOllhl mnai~. b.u;cd llpon !he 
former. 

9 
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'The sequent is said to be valid iff. in an environment augmented by the DeclaraUons, 
by assuming all the Predicates on the left-hand side (the anlecedenlS) it is possible 
to prove one of those on the right (the conseqllents). AIly (or all) of lhese parts of the 
sequent may be empty." If there are no predicates or no declarations on lhe left. the 
bar is omitted. Rules in W are written 

premisses 
conclusion (nOlme) 

where the conclusion is a sequent, and the premisses consist of zero or more sequenlS. 
The rule may also have a side-condition (proviso). 

The presentation in [WB921 gives an explicit characterization of bound and free 
variables, and of substitution. which makes encoding it very straightforward. Also in
cluded are rules (axioms) for the basic expressions which occur in Z (rules concerning 
set membenlUp, cartesian tuple equality, etc.), and rules which pennit the definilion!i 
inlroduced in a specification (in schemas. generic definitions etc.) to be incorporated 
as antecedents. 

2.2 20BJ: A Metalogical Theorem Prover 

In order to support an encoding of W a suitably general theorem-proving assistant is 
needed. Chapter I has discussed the use of logical frameworks for Ihis purpose. The 
tool chosen here was 20BJ: whilst still being developed, it had me advantage of being 
produced locally and providing a moderately good user interface. 

208J should not be confused with 0813 (venion 2, IGW88J) upon which it is 
built. 0813 may be viewed as a term rewriting ~y~tem. Programs in 0813 consist of 
son (datatype) declarations and equation~ which are generally used as left-to-right 
rewrite rules. The system is able to 'reduce' termS, using all of the rewrite rules 
eAhaustively, or to apply individual rewrites to selected tcnns.3 

20BJ consists of a number ofOBJ3 modules (the 20B) System), together with an 
X-windows based user interface to 0813 (the 20B) Tool, X2obj). The tool provides 
windows for easy interaction with tbe underlying 0813 system; button presses being 
converted inlo OBB input commands. The output from OBJ3 is tedirected into a 
number of windows, so thal., for example, proofs under construction can be represented 
as trees in a manner which corresponds to a pencil-and-paper proof. 

208J imposes very few assumptions about the logic being encoded. The OBJ3 
modules constnlct an absl:ract dalatype of Proofs, together with operations for I:on
slJ\lcting such proofs from Goals and Rules. Such Rules may be combined 10 fonn 
Tactics. The user must supply 0813 modules which define a teno algebra for the 
object language (see below). These are then Linked to the 20BJ system by identifying 
one fonn oftenn (in OUt case, the sequent) with the 0813 sort Goal. The inference 
rules of tile system are then described as objects of sort Rule. The user describes the 
behaviour of these rules by giving equations for the built-in operator! 

~ Re.iers unfamiliar with this style will be swpri&ed 10 see 5e(juellt5 such as 01> 1--. 1lIi~ i.i VII1id if llIId 
only if the predicaICS in 01> are COlltradictory (heJx:e. 01> I- is cqui\'BlelillO 4> I-- fa1lle). 

320BJ Wenda these options, by pemUtti.ng Illlcs 10 be dI:-selccu:d from lhe redooion system, llIId by 
permitting seu of l:lafIJed Illlcs 10 be applied ~Iy. 

4Tbc b::yword op inlrOdUCC!i IlII opcnaor dml\il:iOll. In lflis iusluIre. this ill_ ~ c.ase of OBB's 
llI'bittaty mi.r:jU synrax. Tbc simple jlolX&ap05wOfi of _ Ruh! .wid • GOllll fonns an applicwioo of thi~_. 



2.3. SYNTAX [1 

op __ Rule GOIlI -> GoalList 

Thus rules are viewed as functions from Goals to lists of Goa Is. 
TIle encoding is comprised of a few modules containing such. equations. The user 

of JigsaW creates a module containing definitions from a Z specification (see, for 
example, those in Section 2.8 below), importing these mod.ules 100. AftertlLis mooule 
h.as been loaded into 20BI, the user may specify agoaJ teml (using the 20BJ tool), and 
the system uses the user-supplied rules, together with OOilt·in rules for manipulating 
proof trees, 10 construct a proof tree. This construction is entirely user-driven; to apply 
a role to a particular node in the tree, the user simply has to click on that nooe and 
specify the rule/tactic to be applied. 

The theory underlying 20BI is presented in [GSHH92]. It was intended that 
the implementation of 20BI should be shown to conform to its specilication in a 
formal categorical proof theory. This framework would make possible ~ proof that 
the encoding is faithful to W-and thus that proofs produced using JigsaW are indeed 
sound (that is, as sound as W). A methodology for undertaking this proofbas not been 
fonhcoming. 

2.3 Syntax 

The first Slep in producing an encoding ofa logic in 20BI, then, is to pro~ide an OBJ3 
module defining a term algebraS for the logic under consideration. Z has a rich con
crete synwr., described using a context-free grammar in the drafi Z standard [BN+92]. 
This can be translated into OBI3 in a fairly systematic manner, due to 0813's order
sorted algebra and arbitrary mixfix operator definitions. 

Each of the main non-tenninal symbols in the grammar becomes an OBB son. In 
principle every non-temlinal could be an OBI3 sort, but since many are not referred to 
outside the grammar, it suffices to collapse many of the productions in Ihe grammar, 
using operator precedences to ensure that the same language is described. An example 
of a part of this encoding is given below. (1be expression in square brackets describes 
the operator precedence; operators wilh lown numbers bind tighter.) 

Op 110.1 _ <. > _ ScheIn<lText Predicate -> Predicate [ ~rec '0 1 . 
op lEI _ "'.> _ ScheIn<lText Predicate -> Predicate [ prec '0 1 . 
op IEII _ < > _ SchernaText PredicaLe -> Predicate I prec 40 1 
op _ "',,> _ Predicate Predicate -> Predicate [ prec 35 J 
op _ ,,> _ Predicate Predicate -> Predicate r ~rec 32 1 
op _ 'II _ Predicate Predicate -> Predicate [ prec 30 j 

op _ Predicate Predicate -> Predicate [ prec 26 I 

Some of the non-tenninals are given by productions with potential repetitions; 
these are represented using extra sorts. For example. sequence displ~ys are defined 
as follows: 

ExpressionS:::: .. , I SeqlJence I ...
 
Seq"ence = '(' , ExpressionO, { ':, Exp,essionOj:)'
 

In OBI3, this is expressed (with all the Expression classes collapsed into one) by 
defining the comma as an associative operator which fonns lists of expressions from 

aThal is. to: oonslalllC lI'Id openllCil' ,ymbgb for the IlIIIguBge, 'OSemcr with l.....~ describing which 
£lrinp of symbols IllIIkI: valid tI::nns. 



12 CHAYlER 2. ENCODING W IN20BI 

shaner lists; single expressions being the simplest of those liSlS. Sequences are formed 
by surrounding such lists of expressions with angle brackets. 

sort Expressions 
subsort Expression < Expressions 
op _ • _: Expressions Expressions -> Expressions [ assoc J 

op < _ '" Expressions -> Expression l prec 15 l 

1be grammar is also careful to specify lhe role of parenlhescs in Z. 1b.is is slighlly 
unfortunate, in lhal parentheses in OBI3 have a built-in meaning-they are used to 
modify operator precedence. In most cases, Z uses them for lhe same purpose:, and 
10 avoid circularity in the grammar. By explicitly giving operntor precedence LO the 
symbols being defined. and collapsing together some of the non-terminals, eJlplicil 
mentioning of parentheses in the grammar can be avoided. The parentheses defining 
tuples. though, have genuine syntactic value. Because in 0813 they scrve only to 
group obj~lS, this definition 

op { _ } Expressions -> Expres8ion 

is meaningless. Instead. we write 

op Tuple! _ l Expressions -> EllpreSllion 

There are few instances of this type of problem, so the result of this activity is a 
concrete syntax which is tolerably readable. The precise choices for concrete syntaJI: 
were entirely arbitnuy; chosen for readability and as a reasonable approximation to 
typeset Z. Good concrete syntax makes lhe encoding of rules easy to read and so 
increases confidence in the accuracy of the code. 

Type-Checking 

As yet, no attempt has been made to include type-checking in the encoding. This is a 
significant problem as, dearly, the soundness of the logic is dependent on its input be· 
ing well-typed. W ensures that most of the inference rules preserve type-correctness. 
The only exception is cut, which introduces new predicates (cut is discussed at greater 
length in Section 2.6 below). 

el'Hp,~ elp,~f-~ (cu/(p)) 
el ~ f- ~ 

Therefore, the minimum requirement is lhat both initial goals. and sequents produced 
by CUI (in back.ward reasoning) be type-(;hecked. HaVing no mechanism available for 
type inference means that all generics must be fully insrantiated at input time (and 
hence at all points of interaction with the lool)-writing .0[X) instead of merely .0 and 
(S, T) E (_ t;; -){X] instead of S t;; T. for example. 

This is consistent with W's approach-the logic simply assumes that all the tenns 
it encounters are well-typed, and that all generics are fully instantiated. In 'pen-and
paper' reasoning, such details can often be overlooked; this option is not available since 
the tool must work. entirely formally. We could extend the logic to include another 
form of judgement; one indicating that a particular exp.-ession has a particular type. 
This would permillype-checking to be performed at the same time as proof (generally 
via automatic tactics. since Z's type system is decidable), allowing generic parameters 
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to be supplied when necessary. However, it would mean that: the logic being encoded 
was far removed from W. Section 4.2 considers this issue further. 

The 20BI documentation [SH92] suggests using son COlUtroints in encoding the 
grammar, so that terms will be synractically well-formed only if l.b.ey are type-correct. 
Support for this has not been implemented. and although this is appealing, even if it is 
possible to express the Z type system in this way, perfonnanceof the tool is likely to 
render it useless (pal'Sing is already very slow). 

Another possibility is to pre-process the user's OBB code using a tool similar to 
fUzz ISpi92bJ, both checling for Iype-com:ctness and providing generic parameleTS. 
The cut rule presenls a problem in this scheme (since its parameter need~ 10 be type
checked, but is nol (in general) available to be pre-processed). It would be possible 10 
have the rule write its resulting sequents out 10 a file which could later be type-checked 
(the soundness of the proof being dependent on !he success of Ihe type-checking). This 
is problematic because liFT (see Section 2.5) introduces nested scopes. When cut is 
used wilhin the lifted proof, the cut tenn may contain variables which are in scope in 
the context of the liFT, but not in global scope; Iheir types may not, therefore, be 
readily apparent unless each application of liFT also makes an entry in the file. 

W Meta-Functions and Syntax Extensions 

Since 20BI assumes very lillie about the logic being encoded, it is necessary to de
fine the sequent explicitlyli (identifying it with the sort Goal mentionerl above), and 
notions of free variables (,p), alphabet of declarations(o), and substitution. These are 
carefully defined in the presentation of W IWB921 and/or Ihe semantics [BN+92J, 
using sets of equations. 

Substitution. for example (accomplished using explicit bindings) is \~ified with 
expressions like 

b.(Vd Ip. q) _ Vb.d I (ad .. b).p. (ad .. b).q 

provided ad n ,p~(od -a b) =" 
b.("p) ..., b.p 

b.(p A q) = b.pAb.q 

b.(p V q) := b.p V b.q 

These equations b'aJ'oslate directly into OBJ3 (lhc keyword eq introduces an equation. 
ceq introduces a conditional equation); 

ceq (b !IAI dip <.> q) '" !IAI (b d) I 
((1l1pl'l.a(d) \dsub b) p)<.> ((alpha(d) \dsub hi Oil 

if ((alpha(dl inter pbie(1l1pha{dJ \dsub bl) == "'nil-l 
eq (b (- p)) = (b p) 

<i!q (b (p q)) (b p) (b qlA 

eq (b (p V q) ) (b p) V (b q) 

As immediate substitution is not always required (for example, the presentation of 
Leibniz's rule requires thaI there be a predicate presenl of the fonn G.I: .... I D.p) these 

vrHXC lJ'lal wnereu in W mis~ins df:,;;llll1ltiollli and pn:dican::s IW dcnourd by whilt ~pace, pattern
ITlaIchinS in the encodinS is gJe&ty aided by iftCllISioo of symbols for empty ~aIldempty lislII of 
predir.aJes. AJ; a n:sull, tb:: empty KlIjIJt'nl (I- ) i.i dellOled by' I '" 1- "'. 
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rules are prt!Sented using 20BI's ability to 'tum off' rewrites; they are used only when 
the rule subsr is selected. Some rewrite rules must not be applied exhaustively (as subs' 
does}-they are applied when necessary via II subst tactic (see Section 2.13). 

TIle equations fora and ¢ are presented in II similar manner. Since they are features 
common to most logics., 20BJ provides fast buill·in operators for implementing them. 
These operators do not appear to be sufficienllo describe Z's binding consttuclS, and 
so they are encoded directly. Section 4.6 considers lhis maner further, 

2.4 General Rules 

W is based on a classical sequent calculus. and thus includes II full set of well~known 

inference rules. For example. the classical rules for or-introduction on the right and 
the left could be wrinen in W as 

d I <Ii ~ <Ii,p,q (~V) dl<li,pf-<Ii dl<li,qf-~ 

dl<lif-~,pVq dl<li,pVqf-<Ii (Vf-) 

However, in the presentalion of W [WB92]. rules are presented in the following 
simplified fonn, togelher wilh II theorem on rul~-liftin8 (l.h.is lheorem is reproduced in 
Section 2.5 below): 

pI- qrf-p,q (f-V) 
p V q f- (Vf-)I- p V q 

It is convenient to present the encoding in a similar way. with simple rules logether 
with a meta-rule for rule-lifting (also discussed below), Thus two rules above are 
implemented by I-or and or 1- (these are defined as constant operators of sort 
Rule; recall that a rule juxtap:'lsed with a goal forms an instance of the rule application 
operator, so these equations are between GoalLists): 

op I-or -> Rule
 
eq!-or l\ I*/-pvq} 1- p • q}
" 
op orl- -> Rule 
eq orl- (\ I p V q 1- *J =0 (\ I P 1- *J • (\ 

The ossumptionrule is distinctive in that il has no premiss: 

-1-- (assumption)
d prp , 

and so the 2081 rule generates an empty list of subgoals: 

op a!l5lUlJlPtion -> Rule
 
eq IH'sumption (d 1 P 1- p ) " [1
 

I q 1- *) 

This implementation leads to a most uncluttered encoding. which is easily seen lo 
be correct, and can also easily be verified correct (that is, faithful to W). 

2.5 Lifting 

The theorem on rule-lifting serves both to simplify the presentation of W (by making 
it easier ro read) and to help structure the proof that W is sound with respect to Z's 
semantics. It factors-out elements which would otherwise be common lo each role. 



15 2.5. LIFTING 

Theorem 2.5.1 (Rule-Ilfting)
 
e'd'lw'l-o)'


II ,he ;nluf!nce rule' I is sound. 
e; d lJI' I- 0) 

I; e; d' Ip, W' I- q, ~' . 
then ,he rule ~ I .T. IS also sound,I; e;a p,'rl-q,~ 

providing that (ad U cui') n (tPP U 4>q) = 0 

The theorem could readily be generalized to cover rules (proofs) with more than one 
premiss. 

For similar reasons, it is usefullo provide a meta-rule in the encoding (justified by 
this lheorem) which takes a rule, R, and some collection of tenns from thecurrenl goal, 
and returns a new goal which is the result of applying R to the selected tenns. leaving 
the other tenns unchanged (read t (./..) as selecting (excluding) predicate~declarations 

indicated by position number, hence (P, q, r,s) t (1 3) == (P, r) and (P, q, r,s)./.. (13) == 
(q,s)). 

d'; d, i I 4;'; 4; ,J f- 'iI'; 'ii, k (UFF(' . k R)) 
d 1 ~ I- I' ,J, 1 

dJ I ~'I- 1" 

In some languages. this description would almost serve to define rule-lifting. This. 
however, is merely a specification of some rather ugly 0813 code. which is not re
produced here. Proving !.hat this specification of the rule is sound. and proving that 
the implementation of rule-lifting satisfies it, is one of the major outstandlng questions 
regarding the demonstration of soundness for JigsaW (see Section 4.7). 

The reason why this rule is needed may not be immediately clear. Systems such as 
LCF [PauS?] have no comparable conslruction. The problem lies in the facl that 20BI 
is a logicallramewori whereas LCF implements a particular logic. The rule-lifting 
takes place al a very low level in the laner; in the former it must be defined by the 
user (the author of lhe encoding). U the logic under consideration were more unusual 
(linear logic. for example) !.he forms of lifting which would produce faithful encodings 
would be much more restricted; !.his is why lifting cannot easily be built-in 10 20Bl. 

Possible Variations 

In Andrew Stevens' encoding of first order predicate calculus in 20BI(the example 
encoding in [SH92]), each of the primitive rules is expressed in ilS full fonn, wi!.h 
lifting 'built-in'. For example: 

op oce Nz;Int -> Rule 

<;eq ore (N) (H 1- Xl : 

( H ; hyp(N,111 1 1- X ). ( H I hyp(N,H) 2. 1- X) 
if matches! Z v 't. hyp(N. H) ) 

which simply makes this inference: 

H; Z I- X H; Y I- Z (
",erN))

HI-X wheneverHtN==ZV Y 
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This makes lhe rule hard to read-and verify-and tends to make t.actics hard to write. 
Moreover, lhe side condition present in lhe rule-Hfting theorem would need to be 
duplicated in all the rules which modify 1.he declaration part of the sequenl. 

By contrast, ifit were $ttn as desirable to have a rule such as the above in JigsaW, 
it could readily be defined (as a tactic) using UF7 (a '0' is used as an argument to 
LIFf to denote parts of lhe sequent from which nothing is to be lifted): 

op oRI- NzNat -> Tactic; 

eQ ORI- (n) S~q ~ LIFT(O,n,O,orl-j 

The use of lifting wilhin tactics leads to some interesting results; see SeeDon 2.6 below. 
This fOTffi of rule lifting is tied closely (0 counting the positions of predicales 

(and declarations) in lists. Another appro1U;h might be 10 make use of associa
liveJcommutabve matching, writing patterns which would match lists (sets) of pred
icales containing one 10 which the rule would apply. Aproblem here would be that in 
the case of multiple matches, one would need a means of indicating to which predicate 
the rule is to be applied. 

Again. if a rule of this sort-one which matches any applicable pan of the goal-is 
needed, it can be written using liFT, with an aux.iliary fUDction find which finds a 
match (using theZOBJ buih-inmatches) in a list of predicates and returns its position 
number; 

op I-OR -> Tactic
 
eq I-OR (d I PHI 1- PSI) Llf"I'10, 0, find{p V q,PSIJ, I-or)
 

Thus the high~level liFT meta-rule appears to be a very general fonnulation. both 
making derived rules and tactics very easy to write and making any proofs about the 
encoding easy to sl:TUcture, since it corresponds well with the original presentation. 
Similar notions of lifting are present in Isabelle [Pau89] (where lifting over assump
tions and over quantification (declaration pam) are treated separately) and in the Ed
inburgh LF [HHP9I. Chapter 4) presentation of first-order logic. Those presenmtions 
are in the contcx.t of natural deduction: this fonnulation with a sequent calculus would 
appear to be slightly novel. 

The greatesl problem with this approach is thai there is much potential for ineffi
ciency. Having the selection of predicates from goals as Ii high-level operation (on a 
par with tactic interpretation) rather than as a fast built-in. hidden from the user, leaves 
the user free to write very inefficient tactics which frequently pull sequents apart and 
then put them back together again. However, the judicious cornbination of UFT with 
tactics can lead 10 very efficienl tactics where each rule is directly applicable 10 the 
goal at hand, with no need for searching or selection (see below, example on page 19). 

Whilst lifting aids the construction oftaetics, il can be rather difficult to use inter
actively; counting predicates as they are printed on the screen is very error-prone. A 
good user interface would pennit clicking on the predicates to which a rule is to be 
applied. The rule could be wrapped in a UFT whenever the form of the selected goal 
demanded it 

2.6 Tactics 

Tactics are programs which perfonn proofs. A tactic captures the essence of a formal 
proof, in some sense, and thus storing the tactic enables lhe proof 10 be repeated at a 
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later date. maybe in differing circumstances. This is an important software engineer
ing considuation since a system specification may be expected CD change from time 
to time, and it sbould be possible 10 checI that theorems are still provable without un
necessary additional effort. The proof performed by a tactic may be very genecal, in 
which case the laCtic is available as a derived inference rule. 

The fact !.hal the tactic is built from primitive rules means lhat !.he proof will 
succeed only if the side-condilions on those rules ace met. even though they ace nOI 
(usually) mentioned explicitly in the tactic. By virtue of being built solely from 
sound inference rules, tactics may make I~e inference steps without any need for 
additional proofs of soundness beyond those necessary for the primitive roles. In 
making reasoning steps, the user need nol be aware which are the result Clfrules, and 
which are implemented by tactics. Thus, for example. although the definitions from the 
Z mathematical toolkit are provided, the user will nOI generally need 10 be concerned 
with the details of the rules for applying generic definitions; instead a toolkit tactic 
will bring the relevanl definition into the antecedent, apply it to the selecttd lem, and 
remove any unwanted definitions. An example of such a tactic is given below. 

20BJ presents the user with a rich tactic laniluage, and much of tht remainder 
of this chapter (and the following one) will be spent considering the conslruction 
of suita.ble tactics for proof in Z. Such tactics-like most programs---<Jften become 
sufficiently large that !.heir effects are not clear. Pan II of this thesis is given over to 
finding succinct, fonnal descriptions of the actions of tactics. 

Tactic Language 

[n 20BJ the tactic language is an extension of the lil1Iguage of rules. All rules can 
be considered a<; lactics, and tactics can be combined using the followillg LCF-styJe 
tacricals (II and r2 are tactics, II is a list of tactics): 

It THEN r2 (sequential composition) applies tl to the goal then applies /2 to the re
sulting subgoal(s). 

II THENL rs (parallel composition) applies II to the goal, then applies lIIe tactics in Is 
zip-wise to the resulting goals. Thus, for example, if tl produces lIIree subgoals. 
IS must consist of three tactics; tI'!l] is applied to the first subgoaJ, ts{2] to the 
second, etc. 

11 ELSE 12 applies (I to the goal; if il succeeds, the tactic terminates, ()therwise 12 is 
applied to Ihe initial goal. 

As the tactics are written in OBB they may be arbitrarily comple~. Tactics rna)' 
c all other tactics. in a functional programming style. and recursion is available, making 
the language very powerful. Thus these tacticals may be used to construct various other 
familiar programming language features. The 20BJ documentation [SH92] suggests 
tactics for iteration (REPEAD and exhaustive application of rules (EXHAUST). Both 
are recursive, REPEAT applying the supplied tactic and then calling itself with an 
index which is !.he predecessor of the original index; il1Id EXHAUST using ELSE to 
continue execution until applicaJ.ion of !.he supplied tactic fails. 

op REPEAT Nac ProofTactic -;> Tactic 

eq REPEAT! N, PT ) Seq = if N == 0 then idtac 
else PT THEN REPEAT (p (N) • PTj fi 
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op EXHAUST : prODfTactic -> Tactic .
 
eq E:XJ-IAUS1'( PT ) SO!<;[ '" (PT 'niDi EXHAUST{Pr») ELSE idtac
 

idtac is an identity tactic; it always sllCceeds, leaving the goal to which it is applied 
unchanged. Seq is a place-holder dcnoting.any !iequcnt--see below for tactiC5 defined 
as applying to more specific goals. The presence of a goal term on the left-hand side 
permits tactics to behave differently DO different go<Us, and allows patterns matched 
as being in the present goallO be parameter.; to the right-hand side (see. for example, 
the definition of BINDINGMEM below). That the goal term does nOl. appear on the 
righl~hand side is one of the more peculiar features of 20B}'s tactic interpreter. 

Dilen-used forms 

Tactics are made more general by being parametrised. CUT takes a parameter which 
gives the predicate LO be cut iOlo the goal The 'raw' cut rule in W is applicable only 
to a goal consisting of an empty sequent, an unlitely goal: 

P f- f- P (cur(p))
 
f

Howe...er. writing 

op cur Predicat... -> Tacr.ic
 
eq COT (p) Seq" LIFT(O,O,O,cut.(d})
 

yields the more useful rule 

elcfll-p,-We!p,4lI-'1' 
(CUT(P))el ~f- W 

Often, cut is used to introduce a lemma (or theorem, or axiom) for which a proof 
(tactic) already exists. CUT can be used to construct a tactic which introduces the 
predjcate p to a goal's hypothesis list, proving I- p using the provided tactic, PT. 

op CUTLEM Fredicate ProofTact.ic -> Tactic
 
eq CUTLEM (p, PT) Seq" CLry(pl THENL(LIPT(O,O,l,PT), idtac)
 

Many axioms (see below) are expressed in the fonn I- p <=:} q, from which it is a 
simple matter to prove, for example, the validiry of the following inference rule 

f-q 

f-p 

The tnms{ormation from an equivalence 10 an inference rule is accomplished by the 
tactic I-EQULIFT::>. As the goal must match one side of Ole equivalence (the left
hand side, in this case), this tactic uses panem matching on the goal to ensure that 
it is only applied where appropriate. 20W's tactics are defined using an equation 
involving a goal (in the above, any goal Seq is satisfacLOty) so that the tactic's action 
can be conditional on the {onn of l.he goal. 

I -EQULIFT:::> uses cUTLEM (above) to introduce p <=:} q 10 the hypothesis list., 
and then splits it apart using <:>1- and ~I-. The laUer produces two subgoals: the first 
is Ihe required sequent (reduced 10 I- q by thin) and the second is of the formp, .. . I- p; 
which is discharged by assumption. 
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OlJ I-EQULIFT",. l?re<.1icate ProofTactic -> Tactic 
eq I-EQULIFT:" (p <:,. q. P'l') (\ I * 1- p) ~ 

(	 CUTLeM (p <=> Q. PT) THEN LIFT(O,l,C,equl-) 
THEN LIPT(O,2.0,iJllPI-J 
THEHL (TKINlO.1,2). LIFT(O,l,l.assumption) ) 

1be goal-tenn is nol necessary in this case; itsimply avoids the inefficiency of applying 
the tactic when il is cenain to fail. 11 also serves 10 ensure that !he position numbers 
supplied to LIFT are correct (i.e. that there are no spurious predicates present which 
might become involved in the proof); the tactic will, in general. need 10 be lift--ed 
before use. The tactic could be more concisely written, with the user merely supplying 
q. and the tactic forming the predicau= p # q to be supplied La CU7LEM. This is of 
little consequence, as j-EQULIFT=> will generally be used wilhin olherlactics. as 
ilIustraled below. 

Tactic Transformation 

With such a rich tactic language, there will be many tactic forms which will be func
tionallyequivalent. It has already been noted that lifting can be used wilh tactics to 
create efficient new lactics. CU71..EM, for example, can be more efficiemly expressed 
with the THENL within Ihe scope of the LIFT: 

eQCU'I'LOI (p, P'I') Seq'" LIFT(O.O.O, (cul(p) THENLIP'I'. idtac))) 

This uses only onc instance of LIFT instead of me twO above. A more concrete 
example is this derivation involving lhe axiom of extension (expressed here as an 
inference. See page 20 for a description of the rule and tactic.) 

dl4af-'rtx:texEU,lf" dl4af-Vx:uexEl,'I' (
f-o)

dl<l>f-Vx:texEuI\Vx:ueXEt,'I' ( 
~, (f-EXTENSION x))

d I 'l' r / - u, 'I'" 

which could be programmed as 

LIPT(O,o,l.l-EXTENSIONlx)) THEN LIFTlO,O,l, I-and) 

but is better wriUen as 

LIFT(O,o,l,l-EXTENSION(X} THEoN I-and) 

It seems that rule lifting frequently distributes through THEN. Similarly some 
tactics e.a:pressed using pattern matching to take different actions depending on the 
form of the goal could also be written using ELSE. Some ways of expressing tactics 
will be much more efficient than others. Chapters 5 and 6 explore tm::tic equivalences 
which could be used to Iransform tactics into their mosl efficient form. II may even be 
wOlthwhile to have 0813 undertake such a transformation before applying ttle tactic. 

2.7 Expressions 

In order to reason about Z specifications. W provides a number of axioms which 
describe how sets and functions and the predicate calcllJus are related. 1llere is also 
a theorem which permits :u.ioms to be expressed as premiss-free inference rules, so 



20 CHAPIER 2. ENCODING W IN 20Bl 

mat, for example. me axiom concerning binding membership becomes a premiss·free 
inference rule. 

I- b E S ¢> b.S becOmes I- b E 5 ¢? b.S (bindingMem) 

Such rules are readily implemented as rules which produce no new subgoals, bul 
to apply lhem in this form would be tedious in the extreme. Fonunak:ly. it is easy 10 

incorpornle them in a tactic which makes lhe rule very u!i8ble: 

f- b.S (f- BINDINGMEM) 
I-bES 

op I-BIMlmGI!EM : -> Tactic 
eq I~Buro:rnGKEM (iii I ~ 1- b \in S) " 

J -EQULIFT"''' (0 \in S <ec".b S, bindingMeml 

This scheme also allows parameters to be provided to the inference rules. For 
example, the axiom of extension quanlifies over a vanable, with certain freeness con
ditions: 

I- t = u ~ 'Vx: ' •.rE::: u 1\ "Ix: u. xE t provided x f/ (1J~u U¢l~t) . 

The tactic I -EXTENSION implements this ouiom as an inference rule. allowing the 
user to choose the bound variable (its freeness being assured by the rule extens ion). 

op extension -> Rule 
cq extension (iii I .. 1- (t '" u) <=> ((IAI (x: t) <.> {x \in u)) " 

lIAI (x u) <.> (x \in t)))) '" [J 
if (({xl inter (phie(u) union phie(t))) Tnil·} 

op I-EXTENSION word -> Tactic 
eq l-exTENSION(x) (iii I • 1- t = u) 

I-EQULIFT=>(t " u <=> I/'.I x t <.> x \in t ~ 

IAI x u <.> x \in t, extension) 

Section 2.7 illustrates the use of this laCtiC. Moreover, when I-EXTE:NSIONis applied 
it will invariably be followed by I-A and I- V, so it may be bundled into a tactic which 
does precisely this, and automatically chooses a fresh bound variable: 

op I-EXT-TAC -> Tactic. 
eq I-£XT-TAC (iii I T 1_ t "u) -~ 

I-EXTENSION{ne..-(x,x») THEN I-and THEN I-all 

So this tactic makes a (relatively) large reasoning slep: 

X1:tI-XEu .Il:ul-xEf 
f- (I-EXT-TAC)I_U 

Rules which are expressed using ellipses present the grealeSt difficulty. 1beir 
presentation in W is essentially infonnal. Before they can be encoded, they must 
be fonnalized. So 

I- (tl, ... ,t,,) = (Ul, ... ,U,,) ¢:> t1 =111 A ... At" = u" 

is more precisely expressed as 

I- ts = us ¢:> {(Is, us) 
where {(r, II) == (t = II) 

and {((I,"), (U,,,,)),, (I = u) A {(",u,) 

Once the axiom is expressed in this form., an ORH implementation becomes natural: 



------

21 2.8. DECLARATIONS 

op cartProdEqu -> Rule 
op mkeqconj ExpregSlOnS Expressions -> Predicate 
eq mkeqconj (t,u) " (t " ul 
eq IIlkeqconj ((t,ts),!u,US))" (t" ti) 'rnkeqconj!ts,us) 

cq cartProdEqu (% I * I~ l'J'uple!tg) Tuple(uSII <"" p) II 
if (p "" /UkeQconj !ts,usl) 

and. again, a Lactic makes it usable: 

op I-CAA'l'PRODEQ -> 'l'actl-c 
eq I-CARTPRODEQ ('II I • 1- 'J'uple!ts) " Tuple!us)) 

I-EQULIFT"" ((Tuple l ts) TUple(u:») ",," 
IIlkeqconj (ts,us) , cartProdEqul 

2.8 Declarations 

W includes rules for making use of the large strucfuringconSlnlClS in a Z specification: 
schemas. axiomatic/generic definitions, etc. These inference rules are implemented as 
2GBJ Rules with sehemas ete. as parameters. 

Schemas
 

The schema
 

u
permits this inference to be made: 

s~ [dip] f


f-


Which is expressed in 20BJ as 

op schdef Schema.Def -> Rule
 
eq schdef (SCH S IS d S'l' p END) (% I I-"J"
 

('II IS" I dip I 1- *)
 

Clearly the user does not want to type out the schema definition each time it is 
used, so we encode the definitions from a given Z specification in an 0813 module. 
By defining an auxiliary operator 

op ~ -def SchemaName .-> SchemaDef 

we enable the user to make definitions likt: 

eq S -def " SCH S IS ~ TSTx\inU8'lD 

and refer lO S -clef in invoking the rule. In facl this is made still easier by a tactie: 

op SCHDEF SchemaName~" Tactic
 
eq SCHDEF (Sl Seq" LIFT(O,O,O,schdeC(S -def})
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This encoding also makes alphabet calculations very sUaightforward: when me 
alpha function encounters a schema name S as part ofa declarnr.ion. it tries 10 Qpand 
S -def. 

The primiti...e infert:nce rules are nol particularly useful, in that the predicates 
introduced to the sequent will invariably be used with an application of Leibniz's rule. 
So, for schemas, for example, we ha'ie a tactic: 

op APPLY-SCHDEF SchO\llNan-..e ~> Ta.ctic 
eq APPLY-SCHDEF (5) (, I • 1- p) ~ 

SCHDEF (5) THEN 

I-LEIBNIZ THEN 
1'!iIN(O,l,OJ THEN 
subllt TIiEN 
EXHAOST\ I-and) } 

This brings the schema equality inlo the assumptions, uses il (0 rewrite the right-hand 
side, removes the definition again. appliessubst (as I-LEIBNIZ introduces a binding, 
rather than actually rewriting the righi-hand side) and then exhaustively applies 1--11 10 

split the goal into its constituem parts. For example, given 

S=~["Nlxs61 

we infer 

I-xEN I-x<6 
(APPLY-SCHDEF(SJ)

f-S 

1be tactic AUTO-SCHDEF uses APPLY-SCHDEF, choosing the schema name from 
the form of the goal. 

op AOTO-SCHDEF -:> Tactic 

eq Alrro-o5CHDEF (\ I • 1- 05) APP~Y-05CHDEF(o5) • 
eq AlJ1'O-o5CH1)EF (\ I • 1- b 5) ~ APF~Y~SCHDEF(S) 

Since schemas are often nested, application of EXHAUST (AUTO-SCHDEF) is a com· 
mon paradigm in tactics where scbema definilions need to be e.--panded, for ex.ample 
in the tactic for initial slate lheorem proofs. 

Generic Definitions 

In a similar way, whilst the generic definitions which comprise lhe Z malhematical 
toolkit are available to the user of JigsaW, they will generally be used ... ia tactics which 
hide the instances of GenDef (the equivalent for generic defirtitions of schdef for 
schemas). For example, dom has the following definition 

let (jomdef '" GEN{X,YJBAR 
(PF(X \CTQSS Y) --,. PP(X))) 

'T 
,
(IAI R FF(X \cross Yl < dom R '" 

{ I> X) , Iy ((~ 1-> y) \~n R) <,,. X })" I 
END ) 

and the tactic below makes. for example. the inferences shown in Figure 2.1. 
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op I-DOH-TACl I _ I, _) Expressions Expression -> Tactic 
eQ !-OOH-TAC(!X,YI, 5) (\ 1 • 1- p) 

( GENDEF(domdef, (X,'i)J THEN 
ClJ'r«! R > s I> 'in [R PP(X 'cross Y) 1) 
THENL 

I 
THlN(O,l 2,2) THEN I-BINDrNGKDl THEN subst TH~ 

I-POWERse:'\'(:.<) TH~ I-all ) 

LIFT(O,l 3,O,alll-) THEN THINlO,l i. 4,0) THEN subst THEN 
LIFT(O,l,l, I-LEIBNIZ) THEN THIN(O,l,OI ) 

The aim is to simplify a soal of the form I-- Z E dom[X, Y]S. Application of GenDe! 
introduces the signature and predicale from the definition of dom as antecedents. The 
cut rule introduces a binding which can be used to specialize the universal quantifier 
from the definiLion of dom (Le. it identifies R in the definition wilh S in thegoal). This 
produces two subgoals. The first asserts that the chosen binding belongs to the correct 
(schema) type. This is simplified. using biruJingMem elc., to an assertion that S is a 
subset of X x Y. The second subgoal is rewritten using V 1--. ,hin and subJI so that the 
antecedent contains a definition of dom[X, Y]S using a set comprehension. Leibniz's 
rule is UserllO instantia1e that definition, and then the rule of Ihin is used to remove the 
definition from the antecedent. 

Abbreviations 

One further class ofdefinitions found in Z is the abbreviation definitions: 

"IXI == {" X Ifal,,} 

W has, so far, given no rule for dealing wilh such definitions, but in order 10 accom
plish useful proofs, a way is needed of dealing with them (for example, the definition 
of 12I is essential in many ;,nitial stale theorem proofs). The abbreviation is intended 
as shorthand for the generic definition 

1X],;:~x~============ 
12I::::: {x: X Ifalse} 

bUI 10 make this translation, type inference is needed-which we do not have. The 
encoding used. for the time being, keeps to the spirit of the abbreviallon; it is imple
mented as a direct 0813 rewrite: 

[axiom ~tydefl eq '~t:y [ t I
 
«I X > t I> { X x I False }l
 

The binding is used 10 prevent any problems of variable capture: ir allows substitu
lion to remain in the W scheme, rather than confonning to OBB's ideas of rewriting. 
The labels 'axiom' and 'cmptydef' senre respectively to prl:Ventthe rule from be~ 

ing used as a general rewrite, and to identify the rule when the user wishes to apply 
it. 1be rule is applied using I-apply, which uses the 2081 operationnamedred to 
invoke a named rewrite rule in the consequent (An analogous applyl- aJso exists.) 
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I- { E {.t: Xoy: r Ix ..... )' E 5. x} 
I""")

donJ{X, Y]S 
{x: Xi y: Y ).t H YES • .l} 

" zE (1:1'; y: rl·H-+yES ....) uib 
dam[!', Y]S:.: ( ) 

{x:X; y: YI.H-+yES • .I'} 

"z E dom!X, Y]S 
-7~-'-;;';-';"---;;;--::C"'---- (SlIb$l) 

~	 R _ S D.I"'[X, rlR _ 
(.t:X;y:Y'xHYERex}) 

" ZE dvm[X, Y]S
--;-:--:c""'::-===--- (thin)OR"-OSp E [R:IP(XX Y)), 

'VR: 1'(1' x Y). dom[X, YjR = 
.t: SI-.tE Xx Y (I-It) {.t:X; y: YIXH yE Re't}, 

l-\Ix:S_x€XxY OR ....... S D.(dom[X, YjR = 
I- S E PCl' x Y) (po_rsel) (x: X; y: Y Ix H Y E R. xl), 

dom E 1'(1' x Y) ~ 1'(1')
I- ~ R ...... S ~.[R; 1"(1' x Y)J (slum) 

I- ~ R~S~ E (R:p(Xx YlJ (tIMtm) z"E OOm[X, Y}S
-"=,,,","-:"-'-="--"--- (fhUl)	 ("1r-)

dom E P(l' x Y) -t PIX), 4R ...... sDE[R:P(Xx Y)J, 
VR: !P(l' x y). dom[X, YjR =; dom E !P(l' x y) -+ P(X), 

{A" : X, 'I: r Ix ..... )' E R. x} 'fiR: 1"(1' x y). dam!X, Y]R = 
{x: X; y: Y J.t ...... Y E R. x]"~ R ....... S~ E [R: P(Xx Y)], I 

~ E <Iom(X, Y]S z E dom!X, YJS 
(elll)

dDm E 1"(1' x Y) -t P(X) 
VR: !P(l' x Y). dom[X, YjR::=: 

{x: X; y: Y 1.< ..... y E R. xl, 

z " E dom[X, r]s 
(Ge1ID~(dom)) 

r- ll.: dom[X, Yls 

Figure 2.1: Application of 1 -DOH -TAC 

A common use of this definilion is 10 discharge goals of the form x E 0[X] I- by 
reducing lhe lefl-hand side to/alu. This is accomplished by EMPTY-TAC 1-. 

op EMPT'f-'J'AC 1- -> Tactic
 
eq EMPT'f-'J'Acl- (\ I t \in \empty ( u ) 1- oJ ;.
 

(	 applY,I-('eJlIPtydef) THEN sub5t 
THEN SETCOMP 1- 'J'HEN 
existl- THEN 
LIFT(O,l,O,and!-} THE:N 
LIFTIO,l,O,fahel-J I 

This tactic exhibits a subtle problem: the definition of tZl mentions a variable, x. 
Following the application of (31-), x is present in the declaration part of lhe schema, 
so to salisfy the side condition on UFT. x must not appear free in the goal sequent. 
otherwise the tactic fails. Since lhe tactic does not produce any new subgoals, this 
problem could be avoided by beginning the tactic with a TkY(chHypVars~ X "-0 Xl ~). 

For a laCtic which returns a new goal. however, such a renaming might be disconcerting 
for the user. Wallows for a-conversion under the quantifier. but this has not been 
implemented. 
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2.9 Decision Procedures 

In using a logic like W, it quickly becomes apparent thai at many (indeed, m~l) points 
in the proof the choice of which rule to apply is entirely determined by the form of the 
goal. No creativity is required, and so a simple tactic can be constructed to enable this 
choice to be made automatically. 

An obvious target for lhis form of automated reasoning is the propositional calcu
lus; for any given proposition al most one rule is appropriate. This rule is selected by 
PROP-TAC: 

eq PROP-W"C (t I 1- p ~ Q) = I-a.nd 
eQ PROP-TAC (\ ! 1- p v QI '" I-or 
€Q PROP-TAC (\ I 1- ~ p) I-not 
eq PROP-TA,C (\ 1 • 1- P ",. Q) '" I-i.mp 

eq PROP-TAC (t I P - Q 1- OJ = andl

eQ PROP-TAC It I p v Q 1- OJ "orl
eQ PROP-TAC (, I p I~ *) " notl

eQ PROP-TAC (\ I P ",. Q 1- .) " illlpl

€q PROP-'l'AC DEFAULT Seq" failtac 

DEFAULT is a specialtaetic keyword which enables a tactic to be defined as havjng a 
particular belJaviour in the event thal none of the supplied patterns matches the current 
goal. 

In general, we will wish to apply PROP-TAC exhaustively across the sequent. 
The EXHAUST taCtic previously presented is not sufficient for this task, as it applies 
I.a..Ctics LO the sequent as a whole, whereas PROP-TAC,like many of the primitive rules, 
applies only to sequents containing single predicates. As a result, we define MPROP, 
which uses LIFT to apply PROP-TAC to each term in the sequent separately, and to 
do so recursively. 

op KPROP Tactic 

op KPROpl Proo!Tactic -,. Tactic 

€Q KPROP 1- (d I PSI 1- PHI) " 
LIFT (0, count-preds (PSI) ,0, TRY I PROP TAC T~ HPROP) ) 

op I-HPROP Proof"I'actic -,. Tactic 

eQ I-HPROP (d I PSI 1- PHI) " 
LIF'T (0,0, c:ount-preds (PHI) ,TRY (PROP-TAC THEN HPROP) ) 

€Q HPROP (d I PSI I~ PHI) "REPEAT(Count-pred~(PSIJ,MPROpl-)THI':N 

REPEAT (count-prlilds (PHI) , I-HPROP) 

j-HPROP works by applying PROP-TAC to the last predicale iD con~uent. If 
this succeeds, HPROP is applied ra:ursively to the resulting subgoals. If it fails, the 
TRY ensures lhal the taCtic behaves like idtac. Since this bappens in the scope of a 
LIFT, the resulting predicalcs (new, Or unchanged) an:: appended Iothefront oflhe list 
of predicates in the consequent MPROP applies this tactic (and the one which works on 
the antecedent) repeatedly (once for each predicate), and the cycling described above 
cnsures that cllCh predicate in the original goal is considered exactly once. 
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When writing a recursive lactic it is clearly desirable to ensure that the tactic will 
necessarily terminate. This is readily established in lhis case by lhe fact that each 
recursive call of "PROP is preceded by a call of PROP-TAC, and each successful 
call of PROP-TAC reduces by one the (finite) number of propositional connectives in 
the sequenl. This number is bounded below by uro, and so lhe recursion necessarily 
lerminates. 11J.a( the ta.etic is cOTn'ct-i,e. that it removes all possible propositional 
connectives is harder to demonstrate; such consideralions are part of the motivation for 
Part n of lhis thesis. 

Another tactic which can be used to good effect is one which attempts to discharge 
the current goal V:ill the assumption rule, trying each antccedent-eonsequenl pair in 
lum: 

ap I(ASSUM : -> Tactic 
ap MASSUKR Nat -~ Tactic 
ap KASSUML Nat -> Tactic 

eq KASSUM (d I PSI 1- PHI) ~ MASSUML(count-preds(PSI}) 
eq KASSUMLlN) (d I PSI 1- PHI) ~ 

if N == 0 then failtac 
else if N == 1 then l'L\SSUMR(Count-preds (PHI») 
else (KAS5VMR (count-preds (PHI) ) 

ELSE {LIFT!O,count~pred5(PSI),0,idtac) THEN MASSUMLlp(N)I}) 
fi fi 

eq MASS\JMR(NJ (d I PSI f- PHI) '" 

if Pol "'''' ° then failtac 
else if N "'= 1 then 

LIFT (0, count-preds (PSI), count-preds (PHI) ,assumption) 
else (LIFT(O,count-predsfPSI) ,c:ount-preds!PHI) ,assumption) 

ELSE (LIFT(O,O,c:ount-prerlB(PHI),idtac:) THEN MASSUMRlp(N) I}) 
fifi 

As with MPROP. this tactic relies on the cycling obtained by repealedly applying 
a lifted lactic to the lasl predicate in the antecedent/consequent. MASSUML calls 
MASSUMR once for each predicate in the antecedent. MASSUMR attempts to match 
that predicate with each of the predicates in the consequent. Execution of this tactic 
is bounded by the sizes of PSI and PHI in the original sequent. It either ~tums with 
a completed proof. or il returns failure. (In practice, the fa i 1 tac is replaced by 
a call to 20BI's exception-handling mechanism. so that the point of the failure can 
(optionally) be determined). 

A sufficient decision procedure for the propositional calculus is achieved by first 
removing all propositional connectives (via the rules called by PROP-TAC) and lhen 
looking for subgoals where the assumption rule applies. If this rule applies to all 
the subgoals, then the original sequent is a tautology. and a theorem of W. As a result, 
the following lactic is a decision procedure for the propositional fragment of W-it 
returns no subgoals whenever il is applied to a tautology: 

KPROP THEN !1A5SUM 

Since the action of MPROP is invariably useful, even if the resulting subgoals an: 
nol discharged by assumption. we would not wish the failure of MAS SUM to undo 
the work done by MPROP. As a result, a more useful tactic is 

KPROt> THEN TRY (JU,SSUM) 
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Clearly, these tactics can readily be generalized to apply any tactic in a 'truly' 
exhaustive fashiOll. MPROP immedialely generalises by allowing a laCtic argument, 
and s.imply replacing all instances of PROP-TAC with thai UletiC. 

op TOEACH ProotTactic ~> TaCtlC 

op TOEACH 1- , ProofTactic -> Tactic 
eq T08ACHj- (PT) (d I PSI 1- PHI) " 

LIPT(O, cOWlt-preds( PSI) ,0, TRY ( Pr THEN TO£,ACH (PT) ) ) 

op I-TO£,ACH ProofTactic -> Tactic 
eQ j-TO£,ACH (Pr) (d I PSI 1- PHI) " 

LIFT (0, 0, cOWlt-preds (PHI) ,TRY (PT THrn TOEACH (Pr)) I 

eqTOEACH IPT) (d I PSI 1- PHI) 
REPEAT (coWlt-pceds (PSI) ,TOEACH 1- (PT») THEN 
REPEAT(coWlt-pcedB (PHI) . I-TO£,ACH( PT) ) 

Likewise, MAS SUM can be paramettised 10 use any ruleltactic which applies LO a 
pair of predicates. 

op '-ANY-PAIR : ProofTactic -> Tactic 
op j ~PAIR-REPR Nat PcootTacr.:ic ~> Tactic 
op j-PAIR-REPL : Nat PcoofTactic -:> Tactic 

eQ I-ANY-PAIR (PT) Id 1 PSI 1- PHI)" I-PUR-REPLlcount-pcecis(PSI}.?'l') . 
eQ I-PAIR-REPL(N,PT} (d I PSI 1- PHI) " 

if N "" ° then' 'PaicRepLPail
 
else if N "''' I then I-PAIR-REPR(count-pceds (PHI) ,PT)
 
else (I-PAIR-REPR (coWlt-pceds (PHI) . PT)
 

ELSE (LIFT(O, CoWlt-PCed!> (PSI) . 0, idtac) 
THrn I-PAIR-REPL(P(N) ,PT»)) 

fi fi . 
eq !-PAIR-REPR(N,PT) (d 1 PSI 1- PHI) '" 

if N "'''' 0 then! 'pairRepRFail 
else if N "''' I then LIFT(O, count-pceds (PSI) ,count-precis (PHI) ,?'l') 
else (LIFT(O,count-preds(pSI),count-preds(PHI}.PT) 

ELSE (LIFT(O,O,count-pred!>!PHI),idtac) 
THEN I-PAIR-REPR(p(N),PT))) 

fi fi 

Commenls aboullermination are again relevant here. In the case of TOEACH, the 
argument lactic (PT) must, like PROP-TAC, have lhe property that il is applicable to 
every goal (and if necessary has a DEFAULT clause to catch this); and if must, after 
!lOme finite time, fail to apply to any goal (i.e. it must decrease some oound function). 

Another laCtic, having very similar properties to TOEACH, can be described. The 
design of this tactic owes more to thal of ANY-PAIR than to thai of TOEACH. The 
tactic searches for !Omewhere to apply its argument Uletic (PT), lenninating immedi
ately after doing!O. If no such place can be found, the lactic fails. As such, exhaustive 
behaviour is achieved by EXHAUST ( I-TRY-EACH). 

op 1-'t'RY 8ACH : PcoofTactic -> Tactic 
op I-REP Nat Pcoof'l'actic -> Tactic 

eQ ]-TRY-EACH (P'l') (d I PSI 1- PHI) '" !-REP(count-predB(PHI),P'1') 
eq !-REP(N,Pr) {d I PSI 1- PHI) = 

if N ,,= 0 then failtac 
else UN "'= 1 then LIFT(O,O,count-preds(PHI),Pr) 
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else (LIPT(ll,O,count-preds(f'liI) ,PT) 
ELSE (LIFT(O,O,count-preds(PMI),idt5C) THEN I-REPlplNl,P'I'») 

£i fi . 

op TRY-EACHI- Proof~actic -> T5Ctic
 
op REPI- Nat ProofTactic -> Tactic
 

eq TRY-EACHI- (PT) (d I PSI 1- PHIl ~ REPI~\count-preds(PSI),PT) 

eq REPI-lN,PT) Cd I PSI 1- PIi!) = 
if N ="" 0 then fa.il tac 
else if N "'= 1 then LIPT(O,count-preds(p5IJ,O,PTl 
else {LIFT (0. count-precis (PSII ,0, P'I') 

ELSE (LIPT{O,count-preds(PSI) ,0, idtac) THEN REPI-(p(NJ,PT)]) 
!ifi 

op TRY-EACH ProofTactic -> Tactic 
eq TRY-FACH(PT) Seq = I-TRY-EACIi(P'r) ELSE TRY-EACH/-(PT) 

These tactics an' sufficiently complex that lheir s!1Ucture (and correctness) may 
not be apparenL Chapter 6 revisits these definitions. in a clearer fonn. suggesting 
that TOEACH (PT) and EXHAUST (TRY -EACH (PT) ) are equivalent in their effect. 
with TOEACH performing a depth-Ji.m search. and TRY -EACH fOmUng the basis of a 
breadth-first search. 

2.10 Tactics for W's Expression Axioms 

Just as the rules dealing with propositions are usefully collected together inlo the tactic 
PROP-TAC, most of W's uioms dealing with expressions can similarly be viewed as 
a set of mutually exclusive tactics, with the fonn of the goal determining which tactic 
is to be applied.s The tactic EXP-TAC deals with such situauons--dealing principally 
with predicates of the form t E lol, or t .::: lol. 

For example. the code for dealing with binding membership of schemas looks like 
this: 

eq EX?~TAC(x) (\ I 1- b \in ScI I-BINDINGMDl THEN subst 
eQ EXP-TAC(x) (\ I b \in Sc 1- *) BINDINCMEHJ- 'rHEN sub.. t 

Set comprehensions may appear in two different fonns-with or wilhoul a tenn after 
the •. The rule setabbr converts from the short to the long fonn (providing the 
characteristic luple of the definition). EXP-TAC must be able to deal with both fonns: 

eq EXP-TAC(x) (, l-t\in{StJl i-apply (' setabbr) THEN 
I-SETCOMP THEN 
TR'J' ( I-ONE-Prj 

eq EXP-TlIC{x) (\ I * 1- t \in ( St <.> U J) '" I-SE'I'COMP THEN 
TRY ( l-ONEPI'1 

In the t E u case, the choice of tactic is dependent entirely on the fonn of u. The 
case of t == 101 is Talller less certain. The best case is when t and q are equal: then the 
rule of reflection applies; otherwise, an instance of the axiom of extension is needed. 

eQ EXP-TAC{x) (' I • 1- t '" U ) : reflection ELSE I-EXTENSION(X) 

8Compatt 8', T1wo~J. 
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Sometimes equality predicaJeS have been introduced to the antecedent in order to 
be used in rewriting other expressions; here Leibni~'s rule is used. 11le form given 
in )tV is rather contrived, so various tactics are needed in order to accomplish such 
rewriting in practice. 

For example, the rule of Leibni~ is expressed as 

s = t. ~ x..-.. I D·p ~ (Leibnil.)
 
s = t.~ X..-.. s D.p ~
 

so it is reasonable !O construct a lactic which perfonns a similar inference in the 
consequent 

s=t~Gx..-..tD·p (Leib) 
s=t~~x..-..s~.p 

op I-LEIB , -;> Tactic.
 
eQ I-LEIB (Ii; It: u 1- "I M u I;>. p)
 

( CUT«I M -;> t I> D)
 
THENL 
( THIN(O,O.2)
 

( Llf"l'(O,2 l,O,Leibni2:) THEN
 
ASSUMPTION (2, 1) )
 

A more devious mano:uvre must be employed if rewriting is needed. 001 the pred
icate to be rewritten has no binding attached: 

x =_~l,~~~X-,~--,-,:,~".p,---e (Leibnil.* ) 
x_ t,p~ 

OD LEIBNIZ* 1- -> Tactic
 
eet LEIBNIZ"'I- (t I x" t , P 1- "') =
 
I	 LIPT(O,2,O,TSBUSI-«1 x -> X I;> D)) THEN
 

LIPTIO,2 1,O,Leibni:l') THEN
 
LIFT(O,2,O,SUBSTj THEN
 
LIFT(O,21,O,idtac)
 

The crucial feature of this tactic is TSBUS, a laclic which behaves like SUEST in 
reverse (e.g. in this case, it takes the goal p ~ and replaces it with ~ x ....... x ~.p). 

op TSBUS 1- Predicate -;> Tactic
 
eQ TSBUsl- (et) (t I P 1- *)
 
( CUTlet)
 

THENL 
( GenASSUM{l,l),
 
THIN(O,2,O) I l
 

(GenASSUM simply applies the subslitution rules to the sequent-to nonnaliz.e the 
terms-before anempting the assumption rule.) 

A similar approach can be employed 10 construct REFL 1-, a tactic which reflects 
equalities (converting 1 = U ~ into u = t ~), so that the Leibniz tactics can be applied 
to goals in which the equali1Y is backwards. For example, 

LEIBNIZ*I- ELSE (REFLI- THEN LEIBNIZ"!-) 

will behave like the Leibnb described above, whether the goal presented is (x ::::. 
t,p ~) or (t = x,p I-). A number of tactics for applying Leibniz's rule in various 
antecedents and consequents are defined. The tactic KLEIS tries each of these in rum. 
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2.11 A Toolkit Thctic 

One of the features of Z which ma.kes it practical for use as a specification language 
is the large library of specification consb'UCts wbich are described in the language 
reference documents [Spi92a, BN+92l, and may be assumed in any specification-
usually referred to as the Mathematical Toolkit. !be encoding of JigsaW implements 
a small subset of these definitions; sufficient merely (0 support the case studies which 
have been undertaken. 

The encoding provide:!i a toolkit tactic, TX-TAC, whicb describes how to rewrite 
a given goal to remove any reference to a function named in the toolkit-for example 
TK-'I'AC for 'dam' is almost identical to the OOM-TAe previously described. lJke
wise. goals featuring empty stts can be handled with a part of TK-TAC which invokes 
EMPTY-TAC. Within the small set of such definitions encoded in JigsaW. various 
patterns emerge, suggco.sting that il would not be hard to extend TK-TAC 10 cover the 
whole toolkit. For example, OOM-TAC can be converted into a tactic for dealing with 
_ u _ with very few changes, the chief of which is to change the lenn which is the 
subject of the CUT La include a binding comaiRing two terms instead of one. Union is 
described in the same generic bo;Jt as intersection and ~t difference. A suitably general 
UletiC will use GENDEF to bring thai generic definition into the antecedent of the goal, 
and then use ANY-PAIR to find a consequenlrenn which can be rewritten using one 
of the definitions. 

Part of the presenwion of the toolkit in [Spi92aJ is an ad hoc collection ofgeneral
purpose laws which have been found to be useful in reasoning about Z specifications. 
Dur aim is that: TK-TAC, together with the tactics outlined above (collected together in 
the ne;Jtt section) should be able (0 prove such laws, as they arise in proofs. This is not 
the most effident approach to theorem-proving, hut provides a demonstrably sound 
method of applying these laws (even in the presence of modifications to the logic) and 
since 20BI has no lemma-storing capability Otis is the only way to consb'Uct such a 
library in this frame. Moceover, the set of laws in {Spi92al makes no pretence at being 
complete; a tactic able to prove a wide class of such rules may be a useful way of 
completing the sel. 

2.12 Combining Tactic Actions 

A natural extension of the propositional calculus decisiOn procedure is the tactic be
low, which attempts 10 apply exhaustively all of the propositional calculus rules, the 
expression·handling tactics, the toolkit definitions. and the 'easy' two predicate calcu
lus rules. 

o~ BIG-TAC -> Tactic
 
eq BIG-TAC Seq ~ FIRST(TX-TAC.EXP-TAC(x).P~ED-TAC2.PROP-TAC)
 

op NEW-TAC3 

eq !'lEW-TAC3 
EXHAtlST 

~> Tilctic 

Seq '" 
(TRY-EACH(BIG-TACI ELSE 
I-ANY~PAIR(8ssurnption) ELSE 
ANY-PAIR I ~ (OTHER-WIDER-PRED) , . 
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(NOk: that FIRST is a generalization of ELSE: il attempts to apply each of tile tactics 
in turn, relUming wilh the result of the firsl successful application (or failing if none is 
applicable). 

This tactic could a1so include calls to AUTO-SCHDEF within its list of tactics 
to tty. This has been omitted here as it can lead to lhe 'explosion' of a proof. In 
particular, the indiscriminate expansion of schema definitions in the antecedent leads 
to very large sequents. wilh a consequential deterioration of efficiency. Instead. the 
tactics for dealing with particularly common go&ls (sec: below) can be crafted to include 
appropriate expansions of included scbemas. (f the ex.pansion of schema teons is 
avoided, this taclic can be reasonably efficient The time taken by OBI3 to try to 

apply the various rules/tactics listed in BIG-TAC is very small in comparison to the 
time taken 10 calculate the side-condition on rule~lifting. More discussion on lactic 
construction will be found in Section 4.5. 

2.13 Binding Substitution 

Most of the binding substilUtian rules given in [WBn. Tables 5--7) can be imple
mented direcLly as OBJ3 rewrites, as Section 2.3 suggests. Because delayed subslilu
rion is often useful (for example, in order to apply Leibniz's rule), these are introduced 
using the Jabel [axiom] which 20BJ takes to mean that they should nol be used in 
'nonnal' reductions. but only on request-when called by name, or when a built~in 

sucb as fil tdred is used. 
Certain rules cannol be applied in this way. For example,lhe 'leap-frog' rule;9 

b.(c.p) == c.(b.p) whenever ac n ¢~b =" 1\ a(b) n ¢~c :::: " 

must be applied sparingly if infinite loops are 10 be avoided. This is lhe maS( problem
atic of lhe substitution rules. Others must. thougb, be applied with caution. 

b.p .= p wbenever ab n ¢pp :::: " 

(pred-subst) is one sucb rule. Thls is becjluse lhe empty binding ~ is frequenlly 
used wilh substitution to explode certain definitions (schemas used B.!i predicales, for 
example). For this to work. the binding must be distributed lhrough tile schema (by a 
rule like b.{d Ip] =: b.ld] 1\ (b.p», and not simply removed by the rule above. 

These special cases are covered by having the subst rule look like this; 

let excluded-rules",	 ( 'leap-subst 
(. split-subs!; 
( 'pred-aubst 
'decor-subatl l ) 

eq subst-rule (d 1 PHI 1- PSI) ~ 

lfiltdred ('iii, excluded-rules ,top,ld I PHI 1- PSI) )] 

The other exceptional rules being spli t-subst: 

~'~I; BI-P'=~BI.(~'~/I.p) 04 Bln~, ~" 

9Tbis is omitIEd in LWtlYl], bull~ eumDal wtlm nesled sllbslitutioos ~ ~, lJl el{Wlding ~neric 
dd'uutiOllli. fur euunplc. 
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and decor-subst 

b.(S') ~ [b.SI' provided ab n a(S') ~ '" 

When rewriting involving these special rules is required. a lactic applies them in a 
controlled way. A generalized substitution tactic is 

0D GenSUBST- -> Tactic
 
eq GenSUBST- <% I • (- (b p)) =
 
I
 

subs!: THEN EXHAUST ( I-apply (' pl"ed-suhst)) THEN
 
sUhst THEN E.lU1AUST(I-apply('decol"-substl) THEN
 
subst THEN TRYll-appli'('lsllp-suhJStll THEN
 
suhst THEN UHAUST(I-apply('decor-suhSt}) THEN
 
subs t THEN EXHAUST ( I-apply ( , Bch-suhst:) I THEN
 
subst THZH EXHAUST ( I-appli' ('pred-sub'ltl) THEN
 
subst 

Discovering which combinations of IUles led [Q rewriting problems was vety much 
an ad hoc process. Ideally. the set of syntactic equivalences in the standard [BN+92l 
should be Church-Rosser and I.enllinating (i.e. if used as left-hrright rewrites they 
should produce the same end result, regardless of the order of a.pplication. and do so 
in a finite time). 

Schemas as Predicates 

W uses a trick wi!.h binding substitutions in order 10 e"pand sequents of !.he form 
I- [Sf]. making, for eumple. the inference 

I-xENAx<6 

e["Nlx';61 

The e"pansion comes by e"ploiting the syntactic equivalence b.[d I p] =- b.[d] /\ b.p. 
and then b,[x t] =- b.(x E f), ele. By choosing b 10 be lhe empty binding /J. 
a general-purpose transformation can be accomplished. !"'..KBIND-TA.C transforms a 
predicate into one prefi"ed by an empty binding (lhe step (.. ) is accomplished by !.he 
rule pred-subst. see above): 

HI.p pep 
(.) 

~ ~p 
ep 

op MJU'lIND~TAC -> TllCtl.C 
eq KKBIND-TAC (( CU1'«I> p)
 

THEm.
 
( THIN(O,O.2)
 

( LIFTIO,l.O.applyl-('pred-sub"tl) THEN assumption) 

I 
I . 

Then a tactic like GenSUBST*--but not beginning with pred-subst-<:an be 
employed 10 normalize lhe predicate. 



Chapter 3 

Case Study 

A
A DEMONSTRATION of the way the sys~m described in the p~vious chapter 

can ~ used. this chapter describes the process involved in discharging some 
of the usuaJ proof obligations arising in a 'realistic' Z specification. In lhe 

pages which follow, tactics for producing suitable proofs for a case study by Wood
cock IWoo92} (A Mlllti-lLvel Security System) are presented. 

3.1 Specification 

This specification comes from a problem domain in which Z has been lIsed extensively 
..........me design of !ieCure systems. We describe (at a high leVel) the essential components 
of the system: 

Users are individuals who may use the system, in order to access (read afldlor write) 
data. 

Subjects are active processes in the system. 

Objects are data items in the system (documents, files). 

Levels are the classifications which objects attract (and to which users are cleared}
restricled. classified•... top secret 

Profiles are records of wmch users may access data at which level of classification. 

Access modes may be read, write or execute. 

The given sets of the specification. lhen. will be as follows; 

[Level, User,Subjecr, Object] 

A common requirement for such multi-level security systems is one of non
interference. This is commonly characterized [BL74] as No read up; No write down: 

33 
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if.r readsy, then x must be cleared lOaeeess dalaclassified at leasl as highly as)'. Con
versely. if.r writesy then)' must be sufficiently highly cla.ssified as to cover anything.r 
migbt write. 

These ideas lead 10 the need for a security level dominance relation. We specify 
it here. without giving any ronnal properties for it, though we would ellpecl it to be 
reflexjve. antisymmetric and transitive. 

I - ~ - :Level t+ Level 

Profiles (as mentioned above) will be given by a (fixed) function from users to sets 
of clearance levels. 

I profile: User --t llJ Level 

Access modes are spedfied by a free da1aIYpe· 

Mode ::= read I wrile I e:ruu,e 

The stale of the system consists of functions giving levels to slIbjeclS and objects, 
recording which subjects are accessing which objects wilh which modes, and which 
users own which subjects. The invariant says that all accesses musl be made by 
subjects with classifications upon objects wilh classifications, and (hat each subject 
owned by a user must be classified-and each classified subject must belong to a user. 

5 _ 

sub: Subjea -+t wei 
obj : Object ..... wet 
acc: (Subjecr x Object) f-l. Mode 
prin. : Subject -+t User 

domacc ~ (domsub) x (domobj) 
dam prin =:: dam sub 

The security requiremenlS for the system are given by three additional !iChemas, 
each adding an extra predicale 10 the stale invariant. Firstly, each subject must be 
cleared to a level which is one of those pos5ible for ilS owner. 

51 _ 

[:, ,dom,.b. ,.b,. projil,(pn.,) 

Secondly, whenever a read is taking place, its subject must be at least as highly 
classified as the object being read. 

52 _ 

5 

'<Is: Subject; 0: Object. ((s,o) H read) E ace ==> subs 2: objo 

Finally. whenever a write is taking place. the object being written must be at least 
as highly classified as the subject doing !.he writing. 
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53 _ 

5 

'tI s : Subjea; 0: Object. (s,o) ...... write) E occ :} obj° ?: sllb J 

The s),stem is secure when these three conditions hold simultaneousl)'. 

SeeS 0::0:: (51 " S2) " S3 

Initially, nothing is classified, no access is takins place and no objects exisl. 

[secs/nit
 
SecS'
 

SIlIJ == 121 

ool == 121
 
aec' :::: 0'
 

pri,,' = 121
 

In the following section, we shall demonstrate that such a system ~ists---i.e. that 
Ihe initial state predicates salisfy the state and security invariants. 

r 3 SeeS/nil. true 

A typical operation on the stale is 10 open an object for reading. The operation 
must be supplied with an object and a subject on which to operate. 

OpenTolleaJO _ 

A5 
s? : Suoject 
o? : Object 

s7 E domsllb 
o? E domobj 
'tis: Subject. (s,o?) rt domaec 
sub s? ?: obj o? 
sub' == sub 
obj' == ooj 
ocr! == accU {(s?,o?) l-t readt 
pri,,' = prin 

We shall demonstrate lhat the precondition of this schema is 

_OpenToReadOPre' _ 

5 
s? : Subject 
o?: Object 

l? E domsub 
o? E domobj 
'tis: Subject. (s,o?) rt domoce 
sub s? ? obj o? 
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3.2 Initialization Tbeorem 

It is usual, when giving the Z specification of a syslem's State, to describe the initial 
state of the system. This generally serves two purposes: 

•	 it gives suitable initiaJizations for the state variables when the system is refined 
to code; and 

•	 the initial state usually gives e"plicit values to the slone variables, so demonstrat
ing lbaC il satisfies the global predicates on the state-i.e. demonSlrating thai the 
stale has a model. 

Therefore, it is necessary 10 show that the initial slate satisfies the state schema. The 
following lheorem is sufficient 10 demonsmue Ih.is: 

I- 3 SeeS/ni, • true 

Recalling the fann of the inference rule for 1-3, the tim step, clearly, is to cut in a 
binding, allowing the existential quantifier 10 be removed: 

b E [SeeS/nit] 
f

3 SeeSlnit • true, 
h.true 

(H)
b E lSeeS/ni/] 
f-

I- bE lSeeS/nit], 3SecSlnil - rrue 3 SeeS/nit. true 
(cu')

I- 3 SeeS/nir • rrue 

The right-hand branch is triviaJlo resolve. The left-hand branch must proceed with 
binding membership and SUbstitution, followed by an application of the definition of 
schema SeeS/nit. 

I- b.SeeS' I- b.(sub' = 0) I- b.(obl = 0) I- b.(occ' = 0) I- b.(pn·fll = 0") (APPLY-SCHDEF) 

I- b.SeeS/n;r 
;-;--.,.=~,..,.c-c;-;;-=-cc--,- (thin, bindingM~m, subst)
I- b E [SeeS/nit], 3SecSlnit. true 

A general tactic which makes these steps, supplied with a binding b and a schema 
name SN is 

CUT(b \in I SN )) 
THENL 
( ( THIN(O,O,'2) THOl 

I-BINDIN~ THEN 
l5ubst THEN 
APPLY-SCHDEF(SN) ) 

I-exist THEN
 
LlFTlO,O.2,subst THEN I-tnle) )
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Clearly the binding necessary b is the one which will alia.... most of these 5ubgoals 
to be discharged by rqtection: 

~ slAb' ...... 0'; Db! ...... 0; acc.J 
...... 0; prin' "-t " 0 

Following application of the lactic given above, h will be necessary (0 continue 
to expand schema definitions, and 10 simplify propositionalfprulic8te fonnulae, Thus 
a tactic like NEW-TAC3 is needed. We could, at the same time. apply rules from 
TK - TAC, but for reasons of efficiency-mentioned above. and explored further in Sec· 
tion 4.5---this laCtic is Dol indudtd. The tactic below combines the steps already taken 
with this general exbaustive behaviour, producing a general tactic for commencing 
initialization theorems. 

01' IN!T TAC 'fiordDec BindingExtn -> 'l'act;Lc
 
eq INrI' TAc(x,b) (\ I ~ 1- !lEI SN < ,. True})
 

(
 
CUTlh \in [ SN J)
 
THEm.
 
( 

THIN(O,O.21, 
I-exi~t 

) THEN
 

EXHAUST!
 
TflY-EACH (FIRST (PRED-TAC2. PROP-TAC, A[)'fO-SCHDEF, EXP-TAC (xl) ) 

ELSE !-EACHPAIR (aSSUlIIPt ion) 

Since the schema SeeS/nil consislS merely of equalily pmiicates, together giv~ 

ing explicit values 10 all the state variables, there is no need for the user to con~ 

strucl the binding b; a simple 0813 function can do it, permitting the definition of 
AUTO-INIT-TAC. This is worthwhile since writing Sl;;hemas like SecSJnir is a very 
common Z style.1 

op ax-part SchelflaDef' -> AxiomPart
 

eQ IIox-part (sca SN IS DP ST AP ENDl AP
 
eQ IIox-part (SN [ d \ P 1) -" p
"A", 

op nit.-bind.l.nq AxiornPlIort -> BindingE>ctn
 
eQ nit-bindinq (X" t) " <I x '> t I>
 
eQ nit-bindinq ((x'" tl \ \ AP) "
 

<I x -> t I> bindcat init-binding (AP) 

op AUTO-IHIT-TAC , WordDec -> TlIoct.ic .
 
eQ AUTQ-tNIT-TAC(x) (It I " 1- lEI SN' <.> True)
 

INIT-TACix, init-binding(ax-part (SN -def) I )
 

Subgoals 

Applying AUTO-INIT-TAC to our initial goal yields 24 subgoals. Many of these are 
duplicated. because SeeS is defined as the conjunction of three very similar schemas. 
each of which includes the state schema S. Hence, the state schema features in t:hree 

1Notice thai. by de6lling Ihc uWliary fiIDctims ll"elI here. nothing i!; added to the logic. If !hey cootain 
error.;" Ihc tactic will aimply fllillo apply (or will prodlK:C 1IIISOIvabk subgoals). 
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branches of the proof I:rce--and in each case leads to seven subgoals. Tbe a:maining 
three subgoals are respectively contributed by S1. 52 and S3. Omia.iDg duplicates, 
these subgoals are:2 

I- " E Subjecl -++ Level 

I- " E Objut -++ Level 

I- ~ E (Subject x Object) tt Mode 

I- " E Subject -+t User 

I- dam" ~ dom" x dom0 

y:dom0l-yEdom0 

s: darn 0 I- "s Epmfile(0 $) 

s: Subject; 0: Object! ((s, 0) f-t read) E " r ".f 2: " 0
 

$: Subject; 0: Objecll(s,O) ...... write) E 01-" 0 2:" $'
 

It is worth noting that Woodcock. arrives (by a different roule) al the same list of 
subgoals in [Woo92, page 11]. At this poinl he writes 'Each of Ihese follows from 
properties of the COrrect instantiations of 0'. Some effort is needed to verify this 
in W, but all Ibis wOrk can be accomplished by the general tactic des<:ribed above 
(NEW-TAC3); i.e. each of these goals is an instance of a rule which might be presented 
alongside the toolk..i! definitions. 

For example, first goal is solved by rewriting with thedefinitions of -+t and -"'. 1be 
definition of -+t is given by a set comprehension. Showing lhat 0[Subject x Leve~ is a 
member of lhis set entails showing 

I- 0 E Subject 4-t Level 

and 

I-"Ix: Subjecr; Yl,Y:ol !Level. (x f-t Yl E" !\Xf-t Y2 E.0)::} YI =)'2 . 

The first of these subgoals is simplified by using lhe definition of t+ 10 rewrite j[ 

as I- ° E JP(Subject x Level). This can be rewritten using the axiom fOr powerset 
membership (as a rule), and predicate calculus, giving 

.{ E 01- x E Subject x Level 

The definition of o, and more predicate calculus, eventually gives false I- ..., which 
completes lhe proof(via the ruleJafset-). 

The second of the subgoals can be simplified by predicate calculus, to give 

x: Subject; Yt,Y2: Levell x f-t Yl E 0,x f-t Y2 E fZJ I- Yl =)'2 , 

'NO(e !haI:'I dom eI r- Y E dom eI is not entirely trivial. 1be generic panIIIII:U75 of dam aIld 
la". wlticb are ornmro hm:. an: diff"renl in the anrecedent artd lhc consequenL l1Jc: subgOlll i' ill ~ 

:'I: dom[SIIbJW, UJI'r]0[S,.bjil'cl x Uur] t--}' E dom[SlIbjw, Uw~0[SIlbj«, x l..e»il'~ 
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3.3 Precondition Theorem 

Anolher proof which it is often instructive to produce is the proof lhat an operation has 
a particular precondition. This is conventionally produced in a constnlctive manner: 
the precondition is lIlat schema which is obtained by hiding (e:tiSlentially quantifying 
over) all the output and final-state variables; mis schema is then simplified. In W such 
an approach is not an option, and so inslead we must propose a precondition and then 
demonstrale that it is logically equivalent to the schema produced by hidi~g. That is. 
for schema P, having proposed precondition Ppre, we mus. show that 

preP ¢} Ppre 

However, this cannot simply be packaged into a W sequent as a consequent, since 
it has many free variables. One solution is 10 add a declaration pan which will 'close' 
me sequenl. This is hard to do neally, so inslead we prove two theorems: 

preP f- Ppre 

and 

Ppre f- preP. 

These are closed theorems provided the alphabel~ of preP and Ppre. are identical. 
1Ype~heckingis sufficient to guaranlee this. 

Therefore, for the OpenToReadO operation, we must show 

pre OpenToReadO I- OpenToReadOPre.
 

and
 

OprnToReadOPre. I- pre OpenToReadO .
 

First Goal 

\Vhen the specificalion is wrinen in a style which makes Ihe precondition e:tplicit in 
the operation schema-as in this case----the fi~t of these goals is quite rtraightforward. 
The declaration part must be brought into the antecedem, and the definition of 'pre' 
expanded. 

pre OpenToReadO I OprnToReadO \ (nib', ob/, ace' ,prin') I- OpenToReadOPre 
(predef) 

pre OpenToReadO i pre OpenToReadO I- OpenToRecuJOPre. d)
(Declpre 

pre OpenToReadO I- OpenToReadOPre 

ApplicatioJ1 of the rule for hiding requires the presence of a predicalf asserting that (in 
this case) for all instances of OpenTaReadO, some schema tellt is satisfied, with that 
sehema teXI having as its alphabet the variables being hidden: 

3St. S I
(hiding")jaSl={x" . . ,xolJ

'v'S. [St],S \ (Xh .. ,x") I

A suitable schema lexl is simply the restriction of the declaration par10f OpenToReadO 
to its post.stale and output variables. A tactic introduces this via CUi, and uses schema 
expansion to demonstrate that it is rrue (pas tdec 1 s elltracts the relevant pans of the 
declaration from the named schema): 
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op PRBCQND-FORALL-IN'l'RO SchmnaNa.me -> Tactic 
eq PRECONQ-FORALL-INTRO (SNI (d I PHI 1- p) '" 

I 
CUT (IAI SN 0<.;>- [ postdecls(SN) lJ 
THENL 
( ( THIN(O,a,l) THEN 

LIFT(O,O,l, I-all THEN DECLPRED) THEN 
LIFTIO,l,O.EXHAUST{TRY-EACH(A~-SCHDEF)l)THEN 
LIFT{O,O,l,F.XPLODE) Tm:N
 
LIFT(O, 0, 1,KPRO:t>} TIfDl
 

...SUM ) 

idtac 

) . 

Following application of this tactic. the hiding rule can be applied. and then the 
31- rule. After this, all that is necessary is to expand all of the schema definitions, 
and discharge all of the goals (or most of them, depending on the style of operation 
schema) via the assumption rule. 1be following tactic accomplishes alll.h.is. 

op PRECOND-A-TAC : -:> Tactic 
eQ PRel:OND-A-TAC «pre ScI I * 1- 1'1) 

I 
DECLl>REO THEN 
LIFT(O,l,O,applyl-('predd/ THEN subst) TREN 
PRECDNQ-FORALL-!NTRO(Sc) THEN 

LIFT(O,l 2,O,hiding!- THEN' e:xistl-) THEN 
LIF'T(O,l, 0, DtHAUST(TRY-EACH (AUTO-SCHOU) }} THEN 
LIF'T(O, 0, 1 ,AvrO-SCIitlEF THEN EXPLODE THEN MPROP) THEN 
TRY(MASSUM) TNEN 
LIF'T(O, 0, 1 ,AU'l'O-SCHDEF THEN EXPLODE '1'1lEN MPROP) THEN 

'I'RY(KASSUM) 

'The expansion or schemas in this tactic is a compromise between generality and effi· 
ciency. A more general tactic would exhaustively expand schemas and propositions, 
hying the assu.mption rule after each action. As such this laCtiC spedalized to lhe 
particular inslance or the precondition theorem under consideration here. 

Se<ond Goal 

The second goal requires more work. However, it begins in a similar manner. 
This time predef and hiding must be applied in the consequ.ent. The tactic 
PRECOND-FORALL- INTRO is used again, to provide a suitable predicate to satisfy 
the hiding rule. 

After this. in order to satisfy the resulting existential quantification in the con
sequent, it is necessary to use cut lo provide a binding. Since the operation is 
detenninistic-i.e. eoch of the post-state variables has its value described by an etjua
'ion of the fonn x' = 1(5). such a binding can be created in a similar manner to that 
used in the initialization theorem above. The tactic post -CUT-TAC does this. 

op PRECOND-B-TAC -> Tactic
 
eq PRECOND-B-TAC (Tl I • 1- (pre Sc)) "'

( DECLPRED THEN
 

LIFT(O,O,l,!-apply('predef) THEN subiitl THEN
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LIFT (0, 0.0, PRECONtl-FOiU\.LL-INTRO (Sc)) THEN
 
LIFT(O,l,l, l-hidin9) THeN
 
post-CUT-TAC THENt.
 
( (	 THDHO, 0, 2) THeN 

LIFT(O,O,l,EXP-TAC(y) THEN SUEST-) THeN 
LIFT(O, 1, 0, EXHAUST (TRY £ACH{AUTO-SCHDEFI ) I THeN 
LIFT(O,O,l,HPROP) THE:N 
TRY(MASSUM) ) 

, ( LIFT(O,l,l,l-ellist THEN TH!N(O,l,l)) THEN 

LIFT (0, 1, °,AUl'O-SCHDEF I THEN 
LIFT(O,O,l,AUTO-SCHDEF) THEN 
TRY(LIFT(O,O,l,:reflec:tionl) THE:N 
TRY (MASSUM) J 

The result of applying this fully-general laCtic to the goal Ppre I- preP is three 
subgoab 

OpenToReadOPre Is? E Subject, o? E Object,
 
acc E (Subject x Object) f--+ Mode
 

I- acc U {(s? ,o?) I--t nad} E (SfliJject x Object) f--+ Mode
 

OpenToReadOPre I s? E domsub,o? E domobj,
 
('Vs: Subject. (s,o?) ¢ domacc),
 
sub s? ? obj o?, S, s? E Subject,o? E Object
 

I- qsub' ........ sub; obI ........ obj;
 
ace' ........ accU {(s?,o?) I--t read}; prin' ........ prin ~.tiS
 

s : Subject; OpenToReadOPre I Vs : Subject. (s,o?) ¢ domaa
 
I- (s,o?) ¢ domacc
 

The third of these subgoals is lhe easiest 10 satisfy: it suffices to provide a binding 
(the identity) to specialize the universal quantification so that the assumption rule can 
be applied: 

CUT ( <I s -,.. s I> \in [s Subject I)
 
THEN!. ( (LIFT(O,O,I,EXP-TAC(xl THEN subst} THEN KASSUKJ
 

, (WIDER-PRED-TAC THEN MASStJ)l) }
 

~l'Io OOUIJt NEW-TAC3 mu1d be imprtM::d upon, bid the speed or the tool precludes npc:rinEnlalion 
with beuristics for findir\g proofs efficiently. 

4'This enl3lls a small o:hea. ~ is introdua:d by an axdcf. r.Khcr lhan I free ~ definition (the 
two lII'e cqllivUcnl------«e (WB92]). llE nde for the IaDec hu IJOII bttn impkmc:PtCd 
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LIFT(D,O,I,TK-TAC THEN EXP-TAC(yl THEN \-all THEN DECLPREDl 
THEN LIFTID,I,D,T~_TACl 

THENL ( (LIF'l'(D,D,I,EXP-TAC(z)) THEN 
MPRED THENL 
( (LIFTID,l,O, ...pplyl-('<->defll THEN GWBt THEN )lASSUMl, 

idtac) , 
(LIFTIO,I,D,EXP-TAC/z» THEN MASSUK) I THEN 

LIFT(D,O,I,EXP-TAC(zl THEN I-all THEN 
DECLPREO THEN LIF'l'(O,I,D,EXP-TAc(y))} THEN 

LIFT{O, I,O,TK-TAC THEN swat THEN TUPLEKUlI-
THEN andl- THEN LIFT(D.I.O,TtlPLfMEH!- THEN andj-l) THEN 

LIFT(O,D.l,EXP-TAC(xl THEN 1-an.c11 THENL 
( (LIFT(D,O,l,EXP-TAC(x) THEN I-and) 

THENL ( (LIFT(O,I,I,I-LEIB-TAC2(x)) TH.Eli KASSUK) , 
(LIFT(O, 2,1, I-LEIB-TAC2 (x)) TItEN KASSUK) 1) , 

(LIF'l'(O,3,1, I-LEIB-TAC2(xll THEN AXDEF(defmode) THEN MASSUM) 

Clearly this tactic has no generality whatsoever, It is, however, the sort of tactic which 
is wonhwhile retaining as a 'recipe' of how to prove ttUs goal-so that if me proof 
has to be repealed (when the specification changes) il can (with luck) be done so 
automatically. A more welJ·s[ructured tactic would, of course, be easrer to re-use. 

Finally, the second goal must be simplified using schema e~pansion: 

LIFT{D,O,I,AU'l'O-SCHOEP) THe'l
 
TRY (KASSUK) TlfEN
 
LIF'l'{O,S,O,AUTO-SCHDEFl THEN
 
LIFT{D,O,I,AUTO-SCHOEF) THEN
 
TRY (KASSUM)
 

This leads to two subgoals. The first of these is the first subgoal above. The second is 

OpenToReadOPre
 
I- dom(accU (.r?,o?)!-t read» ~ (dom.rub)( domobj)
 

An application ofTK-TAC to this yields unsurprisingly (wo new subgoaJs: 

OpenToReadOPre 
I- ~ S""-I dom(acc U {(.r? ,o?) !-t read}); T""-I domsub )( domobj 0E 

[S: P(Subject x Object); T: P(Subject x Object)] 

OpenToReadOPre; x: SubjecI x Object I
 
x E dom(acc U {(s?, o?) !-t read})
 

I- x E dom sub x dom obj
 

The first of lhese simplifies to 

OpenToReadOPre I- dom(acc U {(s?, o?) !-t n-ad}) E IP(Subject x Object) 

and 

OpenToReadOPre I- dom .rub )( domobj E P(Subject x Object) 

The proof continues in similar vein for a while. Each definition (of '!-t', dom. 
_ U ..... etc.) must be expanded (with. TK-TAC). and the function arguments shown 
to belong to the relevant domains. NEW-TAC3 is able to accomplish many of these 
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steps. but with the complexity of the terms growing (as definitions are expanded, 
their bound variables become variables iatroduccd in the sequent's declaration part, 
and the predicates involving them are multiplied), its perfonnance becomes appalling. 
Certain steps need applications of Leibniz's rule----to rewrite the consequent using 
equations from lhe anlCCedent-and these are besl guided by hand. (X20BJ also 
crashes when the goals exceed 1024 characters, which has made completing the proof 
rather difficult) 

3.4 Conclusions 

This case study demonstrates that proofof worthwhile theorems is possible in JigsaW. 
The simple general-purpose tactics outlined in Sections 2.10, 2.11, and 2.12 prove 
useful in structuring lhe proof and adding reusability, but the generailacticNEW-TAC3 
is limited in its usefulness due to efficiency problems. Its slrUclure could be improved 
by giving il a better heuristic (rathcr than simply applying each rule at each predicate, 
breadth~first). 

The proofs are protracted due to many argumenlS using points. We might hope that 
tactics could bring the level of reasoning up to the algebra of sets and functions. The 
need to demonstrate that functions are applied within lheir domains, howe~'er"ends to 
re-introduce such low·level del.a.il-see Section 4.2. 



Chapter 4 

Discussion 

T HE GOAL OF THIS PIECE OF WORk was to irnplemenl a proloi)'pe theorem· 
pTO'ving system in which the proof obligations arising in Z speci~cations could 
be discbarged. This goal has been achieved. 'The level of automation possible is 

heavily dependent on lhe style of specification under consideration: for the specifica
tions wrinen in the style ofChapler 3, automation is moderately advanced. 

An initial estimate of the effort involved ('it should take two weeks') proved 10 be 
grossly optimistic; many months of effort have been expended in bringing lile tool to a 
state where lile case study outlined above could be undertaken. This chapter discusses 
the chief difficulties and benel1u which this approach has given, and compares it wilh 
other proof tools baving a similar scope. 

'The system which has been produced has been of considerable benefit in exploring 
how to reason in W; indeed, it has revealed several infelicities in lhe original presen
tation of W. 20B) seems to be well-sui~ to producing this sort of system. The chief 
benefit has been the ability to construct with relative ease a (probably) faithful encod
ing which loofu ralher similar to the 'pencil-and-paper' presenl1ition ofthe logic. Such 
a presentation has the advantage of being easy to verify correct (informally, at least), 
and one retains some intuition about how proofs should proceed. 

Nevenheless, JigsaW as described in the previous chapters, can be no more than 
a prototype. It is somewhat incomplete (most of the rules of Ware included. but only 
small parts of the Z mathematical toollcit have been encoded), it requires a huge, fast 
machine in order to run, and it is nevertheless very slow. 

4.1 Soundness 

One important motivation in some of the design decisions which have been taken is 
that ofsoundness. There is little value in conducting proofs about formal specifications 
in Z using a system which is not demonstrably sound with respect to the formal 
semantics of Z, since it will give rr.o increased confidence about the correctness of 

45 
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me specificaLion/refinement (especially jf the proof is constructed by a machine, and 
is too complex to check by hand). 

There are broadly two areas in which unsoundness may arise in a proof assistant 
It is necessary to demonslraJ.e iliat the logic underlying me rool is sound,1 and to show 
that the encoding of thai logic in the proof framework. isfailhfwl.2 The approach laken 
here is to build a tool which is based on a deduct.ive system which has been widely 
circulated, and subjecl to peer review, and so is accepted as sound. The verification of 
faithfulness must entail some lack of fonnality (since the accepted presemarion of the 
logic is not within the meta·logic of the theorem-proving tool}----but, as will be seeD 
from Table 4.1, the critical code (i.e. the basie rules and the meta-syntactic definitions 
of 0:, ,p. etc.) is very compact and, as has been seen above. reads very much like the 
original presentation. 

4.2 Choice of Logic 

Since Z is a typed language. some of the intuition which one brings from classical 
untyped set theory and logic is unsound. For ellample, since a theorem of classical 
predicate calculus is 

(V x • P) :> Plxlu] , 

we might casually write down 

(V", X. P):> pf"lu] , 

bul this requires as a side-condition that X be non-empty. 
Moreover, the semantics of Z gives special care to the treatment of undefined 

e:Jl:pressions.3 A logic for reasoning about Z specifications must treal und~fined values 
in a manner which is consistem with this semantics. Also, Z's mathematical tooildl 
is pre-de!ermined. SOme systems of computational10gic will offer large libraries of 
computationally ef'ficienl definitions of datatypes (sets, relations, sequences, etc), and 
theorems about them. We cannot arbitrarily adopt such definitions without verifying 
thai each is sound (and ideally, complete) foe the Z toolkit. 

As a resull, the choice of r~ning system to use in conducting proofs about Z 
specifications is a critical one. The introduction to [WB92] surveys the competing 
options. Some authors have avoided confronting this issue, using fragmenls of logics 
which give sound inferences (or indeed. unsound ones, as above) within Z without 
addressing difficulties such as the ones above (see, for ellample, [lon91b] on (Dil9(1). 
Most of the impetus fot providing a complele logic for Z has come from Ihose seeking 
10 provide proof 10015 for Z. The chief amongst these are the embedding of Z in HOL 
and the Zola logic (see Section 4.4). 

The W logic, used bere. has also been constructed with machine suppon in mind, 
though it actually arose oot of work on producing a new semantics for Z /GLW91, 

IThe meta-logic abc;J IJCleds w be shcMrn w be 5OIIDd. TIlU is cWmed for 20Bl (it IIOIS .. exll:nsi¥e 
l.\IJdertying ~). blIl.. dcmonstnlion of tbc BmM1 OOfl'e'poodcnoe of !he tool WIIb tbc theory appears w 
be la;king. 

~ An elll;llding il.frJJllJjill for a logic if il allows only !he prodllCUOfI of proofs which are ~ in tbc 
logic. 1I is atUtflitl" if il pamil3 !he production of all of tbc proofs penmrlal io !he logic. 

~11Ese ar\5e bec.Iwsc fww:tiOlis defined III Z are ofll:1Il pan:i.aI, lIlId beocaWc orlte ~ (definile dr:scription) 
opel1llor, which is also paniaI. 
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BN+ 92]. Sil1Ce it is presented alongside the standard, it seems, of Ihe OpDOM presented 
here, the mosl sensible choice as the basi!i for a tool. 

It should be observed l.ha1 W is a very standard treatment of first order predicate 
calculus. The value of it is that it collects together in a coherent, unified manner rules 
appropriale for expressions fonned within Z's type system, a sound way of dealing 
with (or avoiding dealing wilh) undefined expressions, and axioms for sets, tuples, 
bindings etc. 

A symmeoic sequent calculus like W is appealing because for any given predi
cate it is almost always clear which rule should be applied. Few infereDCes requiTe 
creativity or insight; those common ones which do are (\tl--) and (f-3). where the user 
must provide expressions to specialize lhe V and to witness to the 3. 1lle general lack 
of such a need for creativity is the foundation of the major proof-srruclUring tactics 
described above. Rewriting with equality (i.e. applying Leibniz's rule) is harder. and 
needs more work (exhaustive application 10 e\lery predicate pair in the goal is possible, 
but leads 10 a combinatorial explosion. and so is to be avoided). The order in which 
these rules are (0 be applied (Le. which predicale in the goal 10 expand first) is less 
clear (see the Section on tactics (4.5) below). This affel:ts the efficiency oflhe tool. bUI 
not its ability 10 complele proofs. 

In pro\ling something in W, one ends up repeating many of lhe steps which a type~ 

checker might make, which is unfortunate. For example. in Chapler 1 the application 
of OOM-TAC 10 the lenTJ f- l E dom[X, Y]S generates not only the subgoal f- z E 
{ .r : X; y : Y I x 1---1 yES • .x }. but also the requirement to show lhat S is some 
subset of X x Y-which the type.-ehecker may have already determined, in order for 
the expression dom[X, YlS to have been well·fonTJed. Moreover,lhe lype-checker can 
generally deduce the types X and Y whereas he~ they must be supplied explicitly. 
(These requiremenl..S an: present to avoid difficullie!> wilh undefined values.) 

A logic in which type.-eoITectness was established within lhe same framework 
as the proof (\lia aUlOmatic tactics) might be more straightforward to use. It would 
reduce some duplication of effort. it would allow the arguments of cut to be type
checked aUlomatically, and would penTJil generic paramelers lO be calculated when 
necessary. Stephen Brien's thesis IBri95] presents type-inference rules for Z (in the 
style of [Spi88J and [SS9O]), with each type inference corresponding to a logical 
inference in W. Using the two systems togelher could form the basis ofa more unified 
looL 

This work. wilh W has a1!>O suffered from the fact lhat if has been undergoing 
change during the course of lhe work. It was nece!>s.aJy to fix on one account of the 
logic (WB92] (mainly c:onsistenl with an early \lersion of the Z standard lBri92D, 
and nor to bring Jig!>8.W up-to-date with [BN+92]. Again. keeping to one ~oherent 

account of the logic i!> important with regard to soundness; to mi~-and~match rules 
adds to the likelihood of producing an unsound system. However. lhere are some 
problems of internal consistency with this version of the logic (problems of soundness 
do not directly concern the encoding}--most chiefly in the auxiliary definitions (of ¢, 
a. elc.; See Section 4.6). Of COUTSe. locating such difficulties has been \laluable to the 
development of the description of W. (For example. crucial side-cooditions on various 
substitution rules were disco\lered by noticing that rewrites occurred when they should 
not ha\le done. Also, trying lo implement 'rule-invasion' [WB92, Theorem 2J pointed 
OUl a major un!>Oundness in lhe conference pre-prinl of that paper.) 

In the discussion section of [WB92], it is commented that this style of proof 
may not be the most convenient. One might hope that W could form the basis for 



48 CHAPTER 4. DISCUSSION 

a system of. say. equational reasoning (so lhaL another calculus could be proved sound 
by expressing it in W, rather than proving soundness directly from the semantics), 
Ideally the taCtics presented for JigsaW could form the basis of such an account In 
practice. they are a considerable distance from being able to do so. 

4.3 Choice of Implementation Technology 

For the reasons given in Chaplet 1. having chosen a logic which is nOI identicallD one 
of those classically studied by logicians, a logicalJlTJ11teKIorl: is the mosl obvious tool 
to use 10 produce a worlUng proof system4--otherwise one will be encumbered with 
the difficulty of expressing one logic in terms of another, with anendant problems of 
soundness and a Joss of clarity in me interface. 

The choice of which logical framework to use was fairly arbitrary. 208J was under 
development in Oxford. It seemed to be fairly stable; it had a readily comprehensible 
meta-language (equational logic, in the style ofOB13); OB13's arbitrary mUfix syntax 
permitted the adoption of a style of concrete syntax which closely mirrored thai. usu· 
ally used in Z; it had an attractive user-inlerface; and it had a comprehensive underly
ing theory---expressible in OB13---thus giving some confidence that proofs produced 
would be faithful to W. 

Whether this choice was appropriate is unclear. The interface to 20BJ is even 
bener than it was initially, now offering various graphical displays of proof trees and 
the ability to 'fold' unwanted internal nooes of proof trees. Pop-up windows, and the 
ability 10 exploit the 'network transparency' of X-Windows (so that the proof tool can 
be run remotely, on a fast machine) arc invaluable in making the tool usable. Defining 
Z syntax in OB13 proved quite suaighdorward (see Chapter 2), and this concrete 
syntax remains very readable. 

However, the OB13 parser has considerable trouble with some of the larger Z 
consttucts (generic definitions, for example). As will be seen from Table 4.1, parsing 
the source files for JigsaW lakes quite a long time (averaging 2-3 lines per second 
on the fastest available machine-most of the parsing time is taken up by parsing 
the toolkir and the sample specilkationl. For many months, the inability of 20BI to 
produce a saved binary state meant thal each invocation of the tool carried this heavy 
parsing overhead. During this time, insufficient computing power was available, so 
this overhead was a considerable handicap. Early versions of 20BI supponed batch 
processing, but as the interactive interface improved this ceased lo be an option. 

Moreover, the overloading of some syntactic classes (schemas may appear as 
schema texts, expressions and predicates, for example}-implemented via OB13's or
der wried algebra leads to many situations where differing parses are possible, and 
determining the correct one is nOl always Slraightforward (an example appt:.an in Sec
tion 4.6). Some of these problems arc subtIe-and the parser does not flag errors as 
often as one mjght expect-giving potential soundness problems. Also, jn dealing with 
the concrete syntax, there are various miscellaneous equivalences scattered through the 
standard. These must be implemented as rewrite rules (e.g. set comprehensions of the 
fonn { St } arc converted, by adding the _ and characteristic tuple, into the more gen
eral fonn { 51 _ II } ), the presence of which serves further to complicate the reasoning 
system. Furthermore, another problem of working directly with the concrete syntax 

4. A 'd~' lmp~men[alion, ill B fwIctiOll.ll or top: progrBIIlIII1lIg Lanpage IS also B pos5ibiliry. See 

"""'" 7 
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is the lack of any abiliry to elide detail from the interface; everything which is in the 
proof tree is displayed on the screen. This is most principally a problem with the 
generic parameters already discussed. 

Interpretation of the code is also very slow. A number of factors contribute to this. 
Clearly, a general-purpose tool will be inherently less efficient than a specialized one. 
1be code for JigsaW is quite a large OBJ3 program, and so the number of equalions lO 
be matched al each reduction is large. Many of the W rules have side-condilions which 
must be checked by calculating free variables and alphabets of declarations. When 
calculating the latter for schema tenns, considerable effort is needed. as all the nested 
schema inslances musl be expanded. 0813 provides facilities for 'memoiz.ation· which 
would be of value here. bul the 20BI mechanisms make these unusable. 

The 20BJ system actually interferes with much of the OBJ3 implementation. Jni
lially, 20BJ was to be implemented in OBB, and to take advantage of ils rype(sort)
safeness 10 guarantee that only sound proof trees eould be constructed. Now, however. 
much of 20BJ is implememed directly using the underlying Lisp system (for reasons 
ofefficiency), so one musl place considerable trust in the implementor's code (the type
safeness was badly compromised in one or two releases). This makes any attempt 10 

demonstrate formally that the encoding is faithfullo W rather futile. 
Oae lack in 20BJ (and hence JigsaW) is that it cannot support schematic proofs-

i.e. proofs containing meta-variables (variables denoting predicales, fot example). 
This is because rules' side conditions are all fully evaluated as the rule ~applied; and 
freeness conditions are generally satisfied (x does not occur free in the lileral 'p', even 
if p denotes a predicate); so unsound inferences may follow. However. if such a proof 
is reduced to a tactic (Ihis is the only way 10 re-use proofs in 20BJ) then whenever the 
tactic is applied (10 ground terms), the side·conditions will be properly checked. and 
only sound inferences can result. 

None of these problems has prevented a useful prototype from being produced. 
though they have added considerably to the frustration of the author. The implementors 
of 20BJ were always very willing to fix bugs. bul the frequency of new releases of the 
system became sometimes rather hard to handle. No further development work. on 
20BJ can be foreseen, so future enhancemenl of JigsaW is unlikely to be worthwhile. 

4.4 Comparison with Other Approaches 

Several olher proof tools for Z are available. They may be classified in a variely of 
ways; the principal distinction appears to be whether they implemenl directly a logic 
for Z, or se~k 10 embed Z in some other logical system. 

Encodings within other Logics 

One of the most successful theorem-proving assistants available is HOL [Oor88). 
1bere are at least two encodings ofZ in HOL [BG94, Jon92}. The firsl paper describes 
the difference between these two as a difference between 'shallow' or 'deep' encoding. 
The former is shallow in that it 'macro expands' some Z consll'UCts (in particular. 
schemas) into much simpler HOL constructs. This gives an encoding which is suilable 
for reasoning within specifications, but is nol able to prove results about the language 
(the commutativiry of schema conjunction. for example; such a result could be proved 
for arbitrary schemas in W, though not in the present encoding in 20BI). ProofPower 
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(from ICL (10092]), provides a doeper embedding, with all the Z operarors defined in 
HOL. As such, one level of potential error (in the incOfTeCl macro expansion. taking 
account of variable capture) is avoided. Ne\'enheless. neither is ProolPower 'deep' 
enough to be able to prove properties Iik.e the commul.a1ivity of schema conjunction. 

The benefit of this approach is that HOL is widely-used. trusted and well
supponed, and it is supplied with a ...ery large tactic library. so many complex proofs 
can be accomplished with relatively little effon. 1he chief disadvantage is thaI whilst 
the representation of Z in HOL claimed to be 'semantically faithful. in that the tenns 
chosen to represent any given conslruCI are not only adequale to represent the can· 
SITuC! syntactically, but also meOJl rhe same thing as the relevant Z construct' [lCL93}. 
this can be verified only if the semantic description of (draft) standard Z is expressed 
in HOL (and it is nOI). Gordon suggesls (BG94] that one could encode the entire se
mantic description from {BN+92] in HOL. and thus obtain a 1001 capable of deriving 
logical rules (such lL!> those in W}-though such a tool seems unlikely to be tractable 
for reasoning about specificalions [Gor941. 

Anotherencoding approach is toenc:ode something like W within Isabelle [Pau89]. 
This work is in progress in Zurich. 

Directly Conslructed Tools 

The 2'LJfa tool from 1ST is bued on a logic of its own (the 2'LJfa logic), which is very 
similar to W. 5 It is, however, not part of some other proof assistanl, bUI cons1:fUC;ted 
solely for use with Z-indeed, a large part of the Zola 1001 is the syntax-directed editor 
and type-checker, which provides, in some measure, II CASE tool for Z specification. 

Zola takes the same approach as that take here to the Z mathematical toolkit. It 
is provided u an on-line specification document, and it is possible to use a general· 
purpose tactic to solve many of the "toolkit Laws' which arise in proofs. Zola's tactics 
are compared with those used here {and the refinement of them, in Part II) in Sec

tion 6.5. 
CADiZ {JMT91] is a similar venture, though proof suppol1 there is slill in its early 

stages. The proof engine in this system is using rules based on those in W. 

4.5 Tactics 

The tactics presented above (Sections 2.9--2.12) are nai"ve but effective. 'They accom
plish a useful range of proofs, but are very slow. The general approach laken is 10 

decompose anlecedents and consequents into the simplest atomic predicates (member
ship of base type, equality) and then attempt to apply the arslllnplion rule (and, for 
consequents, the rule of ~flection). An earlier application of assumption would be 
more efficient.6 Replacement of the simple assumption rule with some sort of unifi
cation would improve the chances of finding a match; in particular, would make use 
of the tactics based on Leibniz's rule more aUlomatable. However, such a unification 
algorithm would need to be expressed in 20BJ's lactic language, and as such would 
probably not be fast enough in operation to be useful. 

~SlJm: work showing that ItR z.ollllogic i.!; n:1aliYely sound wim ~pecllO W lias berp 1lIldertaUP. 
~One could ally h iWf'mp: 1II .-swnpl.i0ll with the application ot tactics ilia tllCtic: lie TRY-EACH, 

so that after II giyen pmlk:ale is ~rormed. lUSumptiOll CIID be bicd witboW _m~ 10 malch ~ 

anrcoedenl with every ron&eqlll:lll., &'I ill KASSIDL 
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By reason of this tendency only to simplify terms. the automatic tactics do not 
create as much of a combinatorial explosion as one migb.t fear. The chief source 
of extra material in the goals is the inclusion of schemas and other definitions. The 
100ikil tactic thins out me latter quite effectively (see. for example. DOH-TAC in 
Figure 2.1). Predicatl:s arising from schema expansions. on the other hand, cannot 
readily be thinned, as mey may be needed later in the proof. A bigger problem might 
arise from the arbitrary/exhaustiveapplicarion ofMLEIB-which is why it is left under 
user control. With hindsight, il is clear that an improved version of CUT would be 
worthwhile. Some thinning could usefully be employed-i.e. in the inference on 
page 18, the predicales Ii could be thinned from the left-hand branch. I! is hard LO 
make such a change al this point. as so many tactics rely on tenn positioning and 
ordering. If infinite loops are 10 be avoided in breadth-first searche:>, il is necessary 
that each component tactic in, say. BIG-TAC should relurn goals which do not contain 
the same top-level connectives as those in their original goal. 

At each iteration, a tactic like NEW-TAC3 attempts 10 apply a large number of 
rules in a number of places within the current goal. The time taken 10 attempt all these 
matches is small in comparison 10 the time taken Lo check side-conditions where rules 
do apply to goals, so this seemS a most rea'iOnable approach. As the side conditions are 
such a performance problem. care must be taken to make each tactic which appears in 
the scope of a LIFT do as much work as possible-using one LIfT instead of several, 
whencver possible, as this reduces the number of times that the LIFT side-condition 
nceds 10 be checked. In a laler chapter, Section 6.3 discovers exact conditions for the 
combinalion of such LIFTs. 

Some of these tactics make very careful use both of success and failure in taclic 
application. Often it is important to allow a tactic 10 fail-it can then be used in the 
context of an EXHAUST or TRY, as appropriate. The differing design philosophies 
behind various tactics tend to force them into a number of 'families'. Tactics MPROP, 
EXPLODE, SUBST, etc. never fail, and so are used in s.equenrial composition (using 
THEN). Tactics like AUTO-SCHDEF and TK-TAC fail if they are not applicable to 
the cUlTent goal-so they can be combined more readily using ELSE. often within the 
scope of an EXHAUST. This is the striking contrast between TOEACHand TRY - EACH. 
The former never fails--making it hard to incorporafe with olher L;ictks in a large 
tactic with recursion-whereas the latter may fail, so it can be applied e~haustively (in 
conjunction with other tactics, as appropriale). The algebra of how such combinations 
work is a feature of the next part of this thesis. 

The proofs construcled thus far have given some insight into lbe sorts of tactics 
which will be needed in order to make proving mundane theorems an easy task. Con
sUUction and refinemenl of these tactics is the obvious next step. Jl was once suggested 
thai 20B1, in functioning as a melQ~logical theorel1l-prover, could assist in proving 
(meta-)theorems about proofs, as well as supporring reasoning wi/hin a given logic. 
This has nOI become possible. Jnstead, the next part of this thesisel;plores a means of 
rea'iOning about tactics-and hence aboul the proofs they produce. 

4.6 Auxiliary Definitions 

Undoubledly, me greatest pan of the effort involved in encoding W in 20BJ came in 
the definition of what Section 2.3 described as W's meta~functions-o:which deter
mines the alphabet of a declaration, ¢ which extracts me set of free variables in a tenn, 



52 CHAPTER 4. DISaJSSION 

and the syntactic equivalences (rewrire rules) for binding substilUtions. 
'The chiefprobJem with tbest: functions has been the interaction of two difficulties: 

(a) the account of these functions in [WB92] is incomplete (very incomplete in places), 
so the encoding incorporaleS many ad hoccases,1 and (b) the20BJ encoding's reliance 
on 0813'5 order-sorting for the syntacticcla.ues makes errors in lheseexpressions very 
difficult to debug (as well as being time-consurning), 

For example, the infix. operator '.' (wriuen (0) in [BN+92]) for attaching a binding 
LO a term (accomplishing a subsritution) is overloaded in that it may anach a binding 
LO a schema or a predicate. The rule 

b.ld,; d,] " b.ld,] A bid,] 

therefore has an ambiguous lem1 on the left (it might be a schema or a predicate), 
bUI the lem1 on the right must be a predicate (lhe possible ambiguity between schema 
conjunction and predicate conjunction is nOI at issue here). However, schemas fonn a 
sub-sort of the sort of predicates (a schema may be used as a predicate) and as a reslJft 
the parser assigns the sort schema 10 the left-hand side. In order to make the equation 
sort-correct, Ihe right-hand side therefore gains a OBn retract (which is by default 
invisible), r: Predicate>Schema. This .serves to coerce the right-hand side into 
being a schema, which then fails to matcb any predicate rules (e.g. r- II). Identifying 
this problem was rather difficult. The OBJ3 experts concluded that it Wa!> probably 
a bug, and suggested the work-around of defining the two instances of 0 in separate 
modules (which allows them to be distinguished).8 

These meta-functions also fonn the major efficiency bolIle~neck in the application 
of rules in JigsaW. Many rules have side conditions, or are invoked via LIFT, with 
irs side conditions, and these side conditions generally reqlJire the calculation of Q 

and ¢ for various tenns. For sequenrs inyolYing many tenns (or nested sequenlS) with 
binding substilUtions attached, slJch calculations can be lenglhy. 

20BJ provides a library of built-in functions which are intended 10 make such cal~ 

culalions straightforward (and fast, being implemented in USP). and to assist in lhe 
construction of fresh Yariables as necessary. Howeyer. Z's syntactic conventions ap
pear 10 be too rich to tit into the scheme for describing whkh Yariables are bound, 
and which free in expressions/predicates. In particular, one gives expressions along 
!.he lines ofeg variabletx) :: true. Since some of the Yariables in lhe en
coding are nOI simple variables. however, but compounds (e.g. x'), lht: system was 
defeated (il would calculate that x was a free variable of (x '». MOfWYef, attempts 
10 circumvent lhis became baroque, and remained unsuccessful: 

CQ phie (tl '" freevars (t) 
if {not(rnat.ches(ltllf' t2),t))) and (not(matches(>o< -q,t)) 

eq phi.. Itl If' t2) '" phie(tl) ;; phie[t2) ;; Op(i IF (iI) 

eq phie {>O< - Q) '" >0< QA 

The intention of lhe if-clause in the first equation is to prevent expressions such a!> r 
and sn T from being decomPJsed too far. r is a free variable in its own right. and the 
free Yariables of S n r include (_ n _) (which is nOI apparenl to !he built-in function 
freevars). 

TAD llppeIldix 10 dLis 0IIIpft:r lists some of these oJ 1Ioc LllCluoioru and Iricb. 
MTlE OBn gnuNnIIf 1IlI0'W5 terms 10 be diffen:nlialed by a.beuint: lhtm with tbcir module .lllW'oor WI1 

naI1lC. In flu5 case, no IlJTlDWII of swt labell.illg seemed lufficicD1 10 ~1lVinCe Ihc parser IbiII; d'lis w•• 
cqllMioo between pn:dicaIes., and not between Kl'lemat. 
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Inslead, then, a and ¢ are implemented directly using 20BJ's UNlVERSAL
FINSETS module. This provides a (relatively) efficieDl implementarion offinile sets 
(with operations for union, intenection. membership, etc.). ODe soun:e of difficulty in 
debugging this code (and also of unsoundness) was the fact that 0813 will DOt auto
matically flag incomplete reductions as errors. Hence, if, say. the rule for phie (tl 
IF t2) above were omiued, the tenn would slay un-reduced, and have an empty in
tersection with some list of variables----polentiaUy allowing a law to be applied which 
should DOl be applied. 

This problem might be solved by making a derived intersection/set equality tcst 
wh..ich returns false if lhe terms to be intersected are not simple sets of variables. 
Coding this test in OB13. however, would further compound perfonnanceproblems in 
an area which is already a bottleneck.. A more efficient solution is 10 ensure that for 
every term t. of (eoc.) can be fuUy reduced to a sel of variables (that is, show that Ute 
rules for 0 are C'hun:::b-Rosser and tenninating). 

4.7 Rule-lifting 

The authors of [WB92] found the theorem on rule-lifting to be useful in structuring 
the paper account of W. Making rule~lifting into a meta-rule tuJTJed oul to be a 
valuable way of structuring the encoding, al50. Extending this to cover tactic-lifting 
has provided a most useful proof(tactic)~struclUring technique. 

The implementation of rule-lifting (tactic-lifting) raises some soundness concerns. 
Its soundness with respect to the meta-logic is guaranteed by use of the built in operator 
TAC, which invokes the tactic interpreter; the resulting jnfe~nce gets converted into 
a rule, which is then applied to the current goal. The soundness of that (derived) rule 
is guaranteed by the sound construction of tactics from rules by the tactic interpreter. 
Its soundness with respect to W can be verified only by careful study of the (rather 
complex) code; confirming that it is consistent with Theorem 2.5.1. 

The chief outstanding difficulty with rule-lifting is in the way that tenns are se
Ia:ted by the index of their position in the list of predicates (or declarations). Chap
ter 6 presents an account of rule-lifting which is generic over .5';hemes for selecting 
predicates. 

4.8 Strengths and Weaknesses 

1be work described in this first part of this thesis has explored the possibilityofmaking 
a sound theorem·proverbased on Wand 20BJ, programmablelllld adaptable to a wide 
class of problems. In so doing, it has developed for W some tactics which address 
some of the more common concerns: the mo~ automatable ones. 

ntis set of tactics is effective in proving certain theorems (the' initialization the
orem work. for the case study above transferred with no alterations to the (simpler) 
problem of initialization for the standard BinhdayBook [Spi92a] example). However 
it is relatively narrow in ils applicability, llIld uses heuristics which are unnecessar
jly inefficient. 1be speed of exa:ution has prevented significant improvements in the 
design of lhese heuristics from being investigated. 

The execution speed of the (DOl appear.;. to be hit most significanUy by the effort 
involved in check.ing side...:onditions. This is. al least in pan, due to the elaborate 
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Code for Z syolaX 
Code for W rewrites., side conditions etc 
Code for account of logic proper 
Code for basic tactic library 
Code for toolkit (very incomplete) 
Code for demo8.obj (Security System) 

Total 

570 
68\ 
8\5 

1598 
675 
348 

4687 

lines 
lines 
lines 
lines 
lines 
lines 

lines 

Compiled image for JigsaW+ Tooldlt + Demo 8 15079928 byu:s 

On SparcStationJOwifh 32Mb: 
Tune 10 build compiled image 
Time to prove init-Ihm in case study: 
Time to prove pre~thm.a 

lime to prove pre-lhm·b 
On SparcStation2 with 32Mb: 

Tune lo prove init-lhm for BjrthdayBook 

30 mins 
» 20 hours 

I hour 
:::;> 1.5 hours 

40 .mns 

Table 4. I: Some Statistics 

notions of variable occurrence and scope in Z. Finding a logical framework with 
sufficienlly general notions ofvariable binding may be a difficuJt task. 

In order 10 give some idea of the scale of lhe work. described here. and to give 
some substance to the comments about the speed of the implementation. some rough 
statistics relating to JigsaW lUI! presented in Table 4.1. 
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4.A Rules and Tricks Added 

The Wwrewrites module uses a number of syntactic aju.i.valences which are missing 
from the published accounts of W [WB92] (and/or lhe Z draft standard [BN+92]). 

b.(x!",I,J) " (b..<)[b.l" b.I,] 

b.("I) " (b."b.l)
 
b.{I) " {b.l}
 

b.(tlGu) == b.tlGb.u provided lIbn (_lG_) = fZl 

4l-JR _) ~ I ~.(l, IRI,) "(1,,1,) E I
 
4l-JF -) ~ I HI, IF I,)" 1(1,,1,)
 

4X~I; B~.'''4BH4x~IP.') I1l04 BPn., = 

4SN~S~SN"S
 

[4 SN~ SI.sN] " S
 

b.(e.p) == e.(b.p) whenever ae n 1leb = fZl A lI(b) n rPee ::: fZl 

b.p == p whenever lib n 1lpP = fZl
 

[Slq := [S[-"]] where -" =: ~ Xl ...... -4 ... XII ...... 4 D, wilh liS = {XI, •.. ,x,,}
 

~ SN ~ S HSN[>'J) " SI>'I 

04 x~ I P" {x}
 
04 x~ I; B I " [x) U 04 B I
 
04 SN ~ 1 ~ " {SN}
 
etc. 

lI(b.d) := lI{d) provided rzb nad =: fZl 

TIle trick for calculating oSN has already been mentioned: 

aSN == lI(mkdecls(decl-pan(SN -def))) , 

lhe auxiliary functions (rnkdecls) fetching and expanding lhe schema definition as 
necessary. Decorated schemas present little additional challenge: we getlhe alphabet 
of the undecorated schema, and then deoorate each member of the set 

lI(~) == mapdecor(oS, q) 
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Finally, the alphabet of a schema under renaminglbinding substitution is calculated by 
fetching the declaration part of lhe schema and applying the renaming to it: 

a(SN[B)) '" a«apdecls(SN))(B)) 
a(b.SN) '" a(b.(expdecls(SN»)) 

For a«b.S)[Bj). ele., we need lo invok.e subst wilhin Ihe alpha somehow-and lhere
fore this must not arise in lhe scope of a side-.eondiuon (otherwise an infinite loop will 
result). 

The inference rule chHypVan certainly needs some side conditions-those at
tached lo a1pha-convenlion suffice. 
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Chapter 5 

A Tactic Language 

O
NE OF THE DIffiCULTIES which arose in the construction of the tactics in me 
previous chapkrs was thaI they quickly became rather complex. The tactics 
in Sections 2.9-2.12, in particular. are quik: hard to undersland and verify. 

This chapkr attempts to remedy this by Jm.senling Angel-a very general language 
for expressing tactic programs, ma.i..ing very few assumptions about !be form of the 
expressions (goals) in the target logic, and about the rules which act upon them. 
transfonning one expression jnto another. 

It is hoped thal by describing a tactie language in this way it will be possible to 
demonstrate functional correctness of tactics. by providing a semantics for tactics and 
using il to produce algebraic laws for tactic equivalence. One application of such 
laws is lO provide correclne5s-preserving transformations, enabling. fureJ.ample, tactic 
efficiency to be improved. Ahhough the language was originally inu:nded to support 
goal-directed (backward) proof in a natural way, it has been found lD be much more 
widely applicable as a language in which general expression transfunnalions can be 
described. 

It is important to distinguish between soundness and functionoJ rorT?clness in a 
theorem~proYing system. TIle fonner is guaranteed by ensuring that the proof rules are 
sound, that me encoding isfailhful. and thal rules (and the goals to whicb they apply) 
can be combined to make proofs only in a sound way. This soundness of combination 
is often accomplished via a safe dalalype----thm of proof in LCF; thai of tactic in 
this chapter. Such a tactic will be functionally correct if it accomplishes the proof ils 
aumor intended-that is, if it satisfies its specification. If the design of the tactic is 
amiss, then either an unexpected proof will be created (one which will still be sound), 
or (more likely) the proof will fail. 

A crucial feature of the language is its 'angelic' nondeterminism. When a tactic 
presenls a choice of possible next steps. the Slep(s) which will succeed (if any) will 
be chosen. This will generally be implemented using backtracking,l Our semantics 

'Notice tbaI ~ issues of suu:c:sslfailure IIIId lcn11iD.uioo Bre anhogm.aI. TIE lmguage i. augdic ith 
respect tv the lin>t I:ut (nSurBlIy) DOt 10 the second. 'The oonstNCtioo of lerminabng funcl:i.om i' II elJ

59 
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admits the following law, which is quite distioctive ('I' is often written QRELSE., and 
";' as THEN): 

(alb);c~(a;c)l(b;c) 

This means that if c fails after the a branch has been taken. the b bnmch will be 
atlempled (followed again by c). It is more customary for such choices to be made 
once only (i.e. to fail if c fails, despite there being an unlriedcboice further up the: uee). 
This might be described as a conlrnst between 'shallow' and 'deep' back1r'acking. 

Section 5.1 gives an overview of the conSlJ"Ucts in the tactic language. and is fol~ 

lowed by a ~tion giving some examples of the: application of these tactic constructs. 
Section 5.3 gives a fonnal lreannent of lhe fundamental constructs in the language, 
and some of the algebraic laws arising from these definitions are presented in Sec
Lion 5.4. together with a proof that these laws form a complete set with respecl to 
the semantics given in Section 5.3. The theory is extended to cover recursively de
fined tactics in Section 5.8. and Section 5.6 describes some extensions to the language 
which are particularly useful for reasoning about tactics. Various derived lacticals are 
described in Section 5.9, and an example shows how properties of those definitions can 
be proved, demonstrating that the lBcucals behave as expected. Section 5.10 further 
extends the tactic language to include 'slJUctural combinators', which allow lBcucs 10 
exploit structural properties of the expressions to which they are applied. Section 5.11 
d~ribes a methoo for adding pauem.marching 10 the language, and Section 5.12 uses 
the ideas from the previous two seclions to make the laJtguage appropriate for proofs 
that bifurcate; that is. where goals arise in parallel composition. 

Sections 5.1-5.10 form a paper which is expected to appear (subject to re-review) 
as join! paper with Paul Gardiner and lim Woodcock, in the jownal Formal AspecTS 
of Computing. I am grateful to Ute other named authors for the ideas presented in 
Sections 5.1-5.3, which have enabled me to develop the resl of the chapter. 

5.1 Tactic Language 

In lhis section we give an informal description of the tactic language. explaining the op~ 

eration of each language conslJUct. The precise meaning is presented in Sections 5.3. 
5.8 and 5.10. Occasionally, this will be referred-to as a meta-language. La distinguish 
it from the object language in which the basic rules (see below) are expressed. Ex~ 

pressions in the meta-language are d~ribed here. expressions in the objecllanguage 
will often be called 'goals'. TIley may be predicates, sequents, prognuns, or algebraic 
expressions (etc.), depending on the system under consideration. 

The set of basic rules may be considered to be a subset of the set of tactics. It is 
helpful to mm the use of these atomic tactics, and so their use in tactics is signaled 
by the use of the keyword rule: 

rule rulenamt' 

'There are two po~ible outcomes when applying an atomic tactic to a goal (expression); 
if !.he rule matches the expression (i.e. the expression is in the domain of the rule) then 
the rule is applied, producing a new expression; if the rule does not malCh then the 

undcn:mod p:'ObIem in bolh funak;Qal ~ inJpcnIlnoe prognmmiDg ~ -t we e:DYiqp: 5imi1l1f 
Il:dvIiqucl!I bring UIIed here. 
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application fails. A formal treatment of failure permits reasoning about tactics whose 
de6.niLions critically depend upon the failure of a rule 10 apply, as well as on successful 
application. 

Two special alDoUc tactics eMibit these two behaviours. The firsl always succeeds. 
leaving its apr-ession unchanged; the second always fails: 

sklp 

foil 

Functions which operate on lacties. reruming new laches as a result, &re conven
tionally called tacticals[GMW19]. FundamentaJly, laCtiCS. can be combined in lWO 

ways: in alternation or in sequence. The sequential composition of tWO tactics is writ
ten: 

'I ; 12 

The behaviouc of this lactic is first 10 apply 'I. thus producing a new expression (goal), 
and then 10 apply t~ to thai expression (goal). If eilhee 'lor 12 fails then so does the 
whole composition. 

The alternation of two lactics II and 12 is written: 

II 1/2 

When applied to an expression, the above lactic may succeed by applying 11 or by 
applying 12 (tl is tried tim). The lactic fails iff bolh '1 and '2 fail. As discussed in 
the incroduction (see below for a fonnal definition), this combinator gives rise to a 
fonn of angelic choice: it will choose whichever tactic allows success in fUlUre tactic 
applications (Le. those later in a sequenlial composition), preference going 10 lhe tactic 
on the left. 

Since this form of alternation may lead lo problems of inefficienl (wasteful) 
searches, and (in the recursive case) problems of non-termination, a cur operalor, in 
the style of logic programming, is provided: 

!t . 

This tactic behaves exactly like t, bul locally restricts the action of alternation. It 
returns the first successful lactic application; if a subsequent lactic a.pplication fails, 
then the whole lactic fails; alternatives within t are nOI re--explored. 

Rec~ive lactics are written 

(~X. "",(X)) • 

where X is a variable and rac(X) is a lactic in which the variabJe X may occur as 
though it were itself a laCtic. The laCtic (pX • tac(X)) behaves as Iac(X), but with 
each occurrence of X behaving as though it were (pX • tac(X)). 

Inclusion of recursion in the language introduces an extra possibility for the even
tual outcome of a lactic. As well as succeeding (producing a new expression) or failing 
10 apply, it may fail to terminate and run indefinitely. Whilst sucb a laCtic will not in 
general be useful when writing lactic programs, it is helpful 10 be able to reason about 
il. We follow DijkslJa [OS901 and calilhe non-tenninating program 

.bo"
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Depending on the fonn of the eIplCSsions to which the rules and tactics apply, it i! 
often appropriate to ineorporate slrwc'uroJ combiMlofiJ in the tactic language. Tbese 
permit the controlled application of Ial::Lics to particular sub-expressions. Whelhec such 
applications are appropriate is dependenl upon the form of the rewriting system being 
used-monotonicity is required (so thai rewriting a sub-expression produces a valid 
transformation of the whole expression). For example. in a term rewriting system, we 
might want to define lactics which operate on apres.sions of !.he form p 1\ q. P V q, 
etc.• applying one tactic to lhat pan of the goal corresponding to p, and another to that 

corresponding 10 q. The structural combinator:s oand 0 accomplish this; 

tl0t'1 

t1 0/'1 
So (11 0/2)(BI /\ 82) :::: (II 81 /\ /2 82). In general. we would require one such 

combinator (or each operator in the object language. 
Similarly, a valuable construct in goal·directed proof is a parnllel combinator, 

which applies IislS of tactics to lists ofgoals-in this case, a pair of tactics lO a pair of 
goals; applied to (sl, 82), the following lactic would apply I] to g I and '2 lo 82; 

'1 11'2 . 
71" permits the definition of lactics which are dependent upon lhe goal to which they 

are applied (see Section 5.] I for more motivation of the definition of this tactical). 

(11" VI, .•• > II" • g -----1- I) 

This tactic binds the (mela-)variables 111, ... ,II" within the scope of g and I. IT goal 8 
matches exactly the goal presented to the tactic (the variables Vt, .•• ,V" being angeli
cally chosen, if possible, to make this be the case), the whole tactic behaves like l.aI::tic 
I. If noL, the lactic fails 

]0 the remainder of this chapter, we will use a range of meta-syntax for describing 
tactics. A simple equality will be used to introduce a named lacLie--this may be 
read simply as a macro expansion (with parameter.;; in!itantiated where necessary, and 
circular (recursive) lactic references replaced by suilable IJ-.exprc:ssions. 

To avoid over·use of parentheses, we adopt the following order of precedence for 
operator binding: function application (including SI'CCS and fails-see below) binds 
closest of all; cut binds next closest; with the binary operators ned (sequential com
position binding mOSI strongly, followed by slnlctural combinators, and alternation 
binding the least strongly). IJ and 11" (and eon--see Section 5.11) bind their variables 
as far to the right as possible-i.e. they are the weakest of all. 

5.2 Examples 

Alpha-Conversion 

Problems relating to the capture of free variables often arise in mechanized theorem
proving. These are often dealt with by the use of procedures outside the tactidrule 

l MidlKI Goldsmilh has suggested the more ~lIe ~ of g.eogroplucal combin.IIon. 
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language. This section demonstrates an approacb which might be adopted in our laCtic 
language. 

Consider a system for rewriting predicate calculus expressions. 1be basic rewrite 
rules will be expressed as rncta-cqualities (w;ing =), rewriting going from left to right. 
A rule such as 3" is limito::t in its usefulDess by the side oondition attached 10 it:] 

3A == ((3xo P) A Q) '" (3« (P A Q))
 
where x is not free j n Q .
 

This will generally be approached by the application of a rule which performs an alpha
conversion on goals of the form (3x. P(x»): 

3(y) == (3xoP(x)) '" (3yoP(y))
 
where y is not ht:e in P
 

1be difficulty in applying 3(y) comes in the choice of the variable y Out approach 
is to define the following tactic which makes successive choices for possible values of 
y. chosen from some set of variable names b'l, ... ,Yn}:4 

t-3a == IYE{Yl,""Y'} rule 3(y) 

Now we can write a tactic wlUch generalizes the rule 31\: 

1-31\' == (.-3a0!dlip) ;rnle 3/\ 

This. then. is a tactic which, when presented with a goal of the form ((3x • P) A Q) 
will search for an alpha-conversion which will pennillhe expression 10 be rewritten as 
(3y. (P A Q)). As lhe tactic stands, if it were sequentially composed with a tactic 
which might fail (e.g. due to the chosen bound variable introducing a later conflict), it 
would backtrack, and produce further alpha-conversions as necessary. This behaviour 
may be undesirable (e.g. the applicability of the Ialer tactic might not be improved by 
further alpha-oonversions); in thi!l case we could use the tactic 

! (t-3A') , 

which would proceed with the first alpha-oonversion to pennil 3 A to be applied, and 
pennit no laler backtracking (but fail instead). 

Searching 

Structural combinators may be combined with recursion to produce powerful tactics 
whicb search for points of applicability. For example, if presented with an expression 
whicb was in the form (Pi A (p,. A (... A PII)" .)), the foUowingtactic will find the 
first PI which is a disjunction, and apply tactic t 10 its first disjunct. If none of the p, is 
a disjunction, the tactic fails. 

fin'-o'(t) == ~X. (r~.1dp)0skiplskiP0X) 

In fact.. the cut version of this tactic behaves as described above; without a CUi it wiD 
backtrack as necessary. and apply t to each left-hand disjunct in tum. 

,,~L, P,.-..:I Q an: rtICU-....nabb; !hey will be bound ~~y 10 lhf: appoprialc quanlified object 
'IlIriItlk aDd 10 !he ~c-. prescnl whaI dlI! ruk is applied 10 a goal. 

4NOIe thal!JEbl'" .... ,'(y) is.1bcJnbIDd fOlI(Yl)I ... 1r(y,.). See also, Seaioo 5.8. 
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CommulativelAssociative RewriliDI 

When applying tactics lo goals containing operators which are commutative and/or 
associative, it is belpful IV be able Lo try lo apply the tactic 10 various commuta
tive/associative instances under tactic control. If a rule fails (0 apply, we would like 10 
backtrack and apply a lI'ansformation 10 the goal-produdng a different commutative 
and/or associative instance--and then try (0 apply the rule again.s 

For example, in lhe account of W above. (a more general version at) the following 
rule appears 

I-- t.1 ::: III 1\ 1.2 :::: "'2 
tt (canProdMem)

I-- t - ("'1,112 ) 

In applying this rule (in the forward sense}. it would be mosl d~irable to be able to 
match (aulomalically) t.2 = 112 1\ 1.1 :::: "l- Using a suilable instance of comm (below, 

wilh 0 for~, a more general inference would be accomplished by the tactic 

rule canProdMem I rule comm ; ..,.. cartProdMem 

For a rule with more instances of A, a more general (recursive) version of comm is 
needed. 

For a binary operator 81, and a rewrite rule 

comm ~~ aEBbsb$a 

we may write a tactic which generates as alternatives all the commutative instances of 
its goal: 

comms "'" 1JX.	 (role comm Iskip);
 
(X Is1Up) ~'ldp):
 
('ldp ~ (X I ,ldp)) .
 

Likewise. if the rule assoc expresses the associativity of $ 

assoc =z a$(bEBc)={aEBb)$c 

(we shall wrile cossa for the application of lhe same rule as a rewrite from right to left) 
then assocs is a tactic which generales all possible alternative associations of $: 

norm == (e.thaust(roIecossa); (norm ~ norm)) I skip 
aSSOC5 = !nonn; e.thausl(nJea.rsclC) ; ((assac5 ~ assocs) Iskip) . 

(e.thau.s' is defined in Section 5,9--il applies its argument as many times as possible.) 
In this definition, norm is a tactic which 'normalizes' an expression-associating all 
of its (fls to the left. Ways of improving these tactics will be discussed in Section 6.1. 

One mighl have expected thai to produce a tactic which anempts all associa
tiveJcommutative instances in turn, it would suffice to compose assocs and conuns 
sequentially. This turns out 10 be too naive (such a composition would need 10 be iter
aled n times if there are n instances of ffi in the goal, and (hat ilerated tactic produces 
mi1ny doplicales); an efficient combined tactic is yel to be discovered. 

~TIE~ wflich follow (io not gtWIIDlee 10 produce I:lIdl ill8tanCe DIlly ~; rrleftly th&t aU pmsitHe 
in!itmces will be produced. See., Sectioo6.1. 
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5.3
 Senumtic Model 

In lhis section we give a deootaliooal semanlics for the fundamental constructs of the 
tactic language; that part of the language given by 

T ;;= ruleR
 

I skip
 
I foll
 
~ T; T 

TIT
 
!T
 

where R is some basic sel of rules which transform one expression jnto another. 
Our semantics makes no assumptionsaboul the fonn or structure oftheexpressions 

10 which oue tactics apply; we shall simply describe expressions as being members (g, 
Ki, etc) of a set G. 

The behaviour of alternation requires lht: model to allow that application of a 
tactic may produce several pm:sible outcomes, with the order in which the outcomes 
arise being of some importance. We will. lherefore, use Lisu; to desnibe the possible 
outcomes of a tactic application. 

A suitable account of the theory of tisl'l will be found in IBir88].tI An appendix 
gives some of the more important definitions. For a set A, seq A is the xl of all finil.e 
lists whose elements are drawn from A. '"" is the list concalcnation operator, and ""'/ 
represents distributed concatenation (sometimes called flanen or cont:aJ). head' is the 
function which lakes a list, and returns a tist consisting of the first clement of the 
argument List; or retwns the empty list, if the argument list was empty. For a total 
function / A ~ B, f. : seq A ~ seq B is the function that operates on lists by 
applying / to each of their elements. Conversely, C applies a list of functions to a 
single argument, producing a list as the result (so if, g, h)Cx = if x, g l,h x). 

Tactics, then, will he total functions from G to seq G. The list of expressions 
returned by a tactic is the list of all possible outcomes of the tactic application, arising 
from all possible paths through any alternation contained within the tactic. Failure will 
be denoted by the empty list; when a single new expression (subgoal)is returned (as in 
the case where a basic rule is applied), this will be denoted by a sinllleton~ and where 
there are several ahemative subgoals (see allemaOon, below), a list of allematives is 
returned. 

Basic rules are the simplest tactics. When applied wilhin their domains, they 
produce singleton results-with no allemilLives. When applied oUl:!lide their domains, 
they fail, and return no results at all. 'T 

g E domr => ruler g = (r g) 
g ¢ domr => ruler g = () 

The atomic tactics sklp and rail bave very simple definitions. 

skip g = (g)
 

faUg = ()
 
6Whitst lhe.ccrJUIII bere IIlIkeo IlSC orSinI'1 lIBIy or Iisls., lhe IIOtaWJn IIt'ill be more Z-Iilt. 
'Tin Ihe lenD r'WIII:r,tbI:' dmo4a anile _.w'- ill domraod,1/.' dcD:u:!Ia fIIDl%ion rroro goab 

uallOlb. SeIlYlltil: tnaca nJiibl: be IIII2d ualVOid llIIlbipiI;y. bIa tbey lIR: DOl gawnI.Iy ~. 
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The fundamental taeticals described above can also be given simple definitions in 
this list notation. Alternation concat.enBICS the alternatives presented by its component 
taetics;8 sequential composition applies the second tactic 10 all the possible DIJtcomes 
of the first. Cut counteracts the action of alternation by restricting the tactic application 
to the first successful outcome. 

rllr~ = ro../ O(tl,12}O
 

II ;r'J = '-"/012' 0 1]
 

!r = head/or
 

5.4 Simple Laws 

OUT aim is to produce a calculus for reasoning about tactics written in this language. 
As such. lhis section gives a small set of laws which are proven sound wilh respect to 
the semantics in Section 5.3, and shown to be complete. 

Laws 

skJp is a unit of sequential composition; faU is a unit of altemation and a zero of 
sequential composition. 

LawS.1 (a) skJp;t=1 (b) 1= r;skip 

L• ."S.2 (a) tl'.U=1 (b) I ~ roll I r 

Law S.J (a·) I; rail = raU (b) rail = raU; I 

Both sorts of composition are associative, and sequential composition distribules 
over alternation on Ihe rigkJ only. 

Law 5.4 It I (121'3)::: (II lIz) 113 

Law 5.5 'I ;(12 ;I~) = (II ;12) ;13 

Law 5.6 (11 lIz) ; 13 = (II ; 13) 1 (12; (3) 

The distributive law on lhe left succeeds only for sequenlial tactics, due LO lhe 
ordering of alternatives: in II ; (12 I '3), lhe alternatives for 12 and 13 (arising from 
different alternatives for 11) an interleaved; whereas in (II ; 1:;1) I (tl ; '3), all of the 
alternatives for'2 precede those for 13. 

Definition 5.4.1	 (Sequentlal1llctics) A taclic is sequential if it is skip, fail rule r for sotn/! basic rule 
r, or it!kls Ihe form II .. (2, where 'I is in one of these forms, and 12 is a uquential 
lacric. 

LawS.? 11 ;(12113) = (II ;12) I (11 ;(3) for 11 any sequenlial tactic 

8R.eaden lInramiliar .... lUl U11~P"II1(·".rt slJle may preltr 10 let \11 I (2)ll =" 'I g •• /2 g. ~c. 
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'l'1Ilforem 5.4..1 

SoundDess 

All ofrhese laws an sollNi wilh ru~cllC the umonlics given in Section 5.3. 

Prvof 'The proofs of these laws ikpend on simple properties of lists and funl;:tional 
composition. TheYaR all quite similar. Ouly a small selection is presented here, The 
lemmas and properties referred to below are diS(:ussed in [BirB8. Bir86]. 
Law S.I(a): let g be any expression, then 

(8Idp ; r)g 

= (...... /0.. 0skip)g Definition of ; 
~ ~/(,.(sIdpg)) Functional composition 

= ~/(t.{g)) Definition of sldp 

~ ~/(t g) Definition of • 

=18 Prop<ny of ~ / 

Law 5.5: 

(h ;12) ;13 

= / 013. 0 ('1;'2) Definition of ; 

= /0'3' 0('..... / 0'" 0td Definition of; 

== "'/013' 0""/01,'0'1 Propeny of 0 

= '"'jo ..... /o's •• 0'''1' 0lt Lemmaf. 0 AI ="/ Of.. 

= ,-../0,-../. O'J" 01,' 0'1 Lemma ""'/0"""/= "/0 ....../. 
= ...... /0("/013' 0 'J)' 0 '1 Property of 0 and • 

='-"/0(',; '3)* Q'l Definition of; 

= '1 ; (I, ; '3) Definition of; 

o 

Complete..... 

In this section we prove that the laws Iisled above are complete for the tactic language 
preseRl.ed in Section 5.3 witheJl! the CUI operator. In this context, the Stt of laws I;:Rn be 
said to be oomplete when tactics which are observationally equivalenl (i.e. they behave 
identkally on all goals) are provably so (using me Jaws). The valueofsuch a result is 
that alllrnDsfofTllatioDs oftaetics (which are sound for every set ofprimitive rules) may 
be underta1:e1l using the laws given above. without reference to the Stmantic model. 

The ideas are similar to those used in proving the rornpletencss of a proof system 
for a process algebra, e.g. [BroS3]. The completeness is rt:lative to !be rule system over 
which the tactks are applied. sinl;:e two rules maybe: equivalent without there being any 
tactil;: equivalence between them. As SUCh. we rt:gard taetks as being syntactk objects 
with the names of the rules they invokeasfree varinhk$. Demonsualing completeness 
involves defining a notion of tactic equivalence (11 == (2. see Definition 5.4.5) which is 
independent of the chosen instantiation of rule names for rules.' 

910 order 10 be ruDy riJOlOlZl. _ ~ disdaguisb be:tweeo three dilknft IOI1s r:Jf tactic equaUty: 
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'The melhodology of the proof is to define a normal form for tactics. LO show lhat 
every tactic can be b'ansformed inlD a unique DOnna] fann using the laws above. and 
then to show lhal if two tactics are equivalent then they have the same normal fann. 

In the following, we shall use the Dolation 

I r, 
r:/ 

lo denote the alternate composition til! ... 1r... wilh (for uniqueness of represenLaLion) 
the alternation combinators 8S!iOCiated to lhe right. The index sequence J will be finite; 
if it is a singleton, then the ahernation will be vacuous, and consist merely of one 
instance of the tactic 'i; if it is empry. the expression will denote raU. Similar comments 
apply 10 generalized sequential composition: 

; Ii 
d 

e7>cept that an empty sequential composition will denole skip. 

DefinitioD 5.4.3 (Cut·Cree Nonnal Fonn) Say thaI a tactic is in cut~free Donnal form ifi' is oftheform 

1(; ruI.,,)
"t 1:), 

where lhe rJ are names ofprimitive roles. 

Lem.ma 5.4.4	 Any tactic expressed using basic roles, alternation, sequential compositiofl, skip mid 
rail. can be transformed into a unique tactic jn cUI-free normal form using the Laws 
abo\le. 

Proof: Proof is by structural induction over the possible fORns of goals. The base 
cases are sldp, rall and rule r, all of which are immediately in normal form. 

The first inductive case is tl I t2. Using the inductive hypolhesis, we may assume 
lhal h and 12 are in nonnal fonn. If either is rall, it can be eliminated by Law S.2; 
otherwise the lactic is already in nonnal fom, or can be placed in nomal form by the 
allernation as!iOCiative law, S.4. 

The second inductive case is 11 : /2, Again, by induction, 'I and 12 may be assumed 
to be in normal fonn. If either is skip or rail, Laws S.l and S.3 can be used to put 
the tactic info normal fonn. Otherwise, Law S.6 can be used (0 distribute t2 onto 
lhe alternation components of tl' and !.hen (the components thus distributed being 
sequential) Law S,7 can be used to distribule the sequential componenlS of 12 onto 
lhose of 1\. Finally, the 3S!iOCiative laws SA and S.S can be used to put the resulting 
tactic iDlO cu/·free normal form, 0 

In order to demonstrate !.hat !.he rul~ used for putting tactics into normal fonn are 
complete, it is sufficient to show that for each tactic lhere is exactly one tactic in normal 
fonn to which it is semantically equivalent. As mentioned above, for this purpose, we 
may regard ladies as expressions with role names as free variables. A ground instance 
of a tactic will have all those rule names bound to actual functions. 

synlaCtic equality of taCtics. !he equality proved \ISing !he Ia....s 1lboYe, IIIId !he equMalence mentiooed 
aboYe-....hich ....ooldllCC~ly be defined as (V p • V g ••'Ilp g = 11~lp g) (wilh p de5aibing a 
mapping from rule IlIIJD:S (0 paniaI functions from goak 10 goak). We ~I tIq II50e of !he lirst by !he 
phrase 'life identical' or 'has !he form', !he second by '=', 1IIId!he lhied by '~'. 
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Debldon 5....5 (TKdc: ~) Say thoJ kUtics 'I aNi '2 are equivalenl 01 == '2) if for all 
mappings of rule rtllmeS to rules, for all goal.J g. 'I g ='2 g. 

LeDUDa 5.4.6 If two toctic.J in normal/orm an! equi\lak1ll. then they a~ idel1l~aL 

Proof' This is proved by demonsttBting that there can be no point at which me 
tactics differ. leT the rules 'A'hich comprise the tactics be '1, '2, ... , and choose an 
instantiation in whicb the the expres.s.ions (goals) are indexed by sequences of rule 
numbers, so thaI'1 8() = 801 and rj B. =8!""'/k 

In this way. the name ofa given expression records the bistory afruIes applied to 
it: (rule rio ; ruIe'1I ; rule ')2 I rule 'Js)S() == (g<.klhh) ,g0~)}' etc. A 80 can occur 
in the result only if an allemation branch in the tactic is skip; the result goalliSl will 
be empty only if the tactic is raU (in this rule instantiation, no applicationofprimitive 
rules to goal!! fails). 

Using this rule instantiation. a tactic applied to H() wiU produce an account of that 
tactic's normal form (being the ahernalion of the sequenlia.l composition of the rules 
in the respective goals in the result list). and so the resull is immediate. 0 

l'brorem 5.".7 "lWo tiJClics are equivalent lUlder all rule instantiations iff thry hove tlu JGffU! normal 
form. 

Corol18ry 5.4.8 The rilles given above are complele for the cul-/ree jiJtire (non-rr'C"univt) tiJcnc lan
guage. 

Of course. the value of a system without cut is questionable: tho: nonnal fonn 
proof demonstrates that all alternation can be distributed to the outenno~ level. where 
most applications of the language will make use only of the first ooteome in the 
sequence of results. Nevertheless. tactics which are not in nonnal fom may make use 
of the appallent angelic nondetenninism to present reasoning steps in a oomprehensible 
manner. Cut gives much more scope for stnlcturing tactics. however. and so the 
following sections give some laws for cut. and then go to some lengths to demonstrate 
that the luger set of laws is also complete. 

5.5 Laws involving Cut 

This section presents some laws showing how cut interacts with the other tactic com
binators. These laws are proven sound in a similar way to those above; only one proof 
is shown here. 

Atomic rules and tactics are unchanged by applications ofcut. 

La" 5.8 !oklp =oklp 

La" 5.9 !rail = rail 

Law 5.10 !(nde r) = nde r 

A cut tactic eoables sequential composition to distribute over alternation on the 
left. 

LawS.ll !II ; (t1 I '3) = (!ll ; t1) I (hI; '3) 
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Proof' Let g be any expression. and let head'(t} g) :::: (h) (if I, g :::: ( ), the proof is 
trivial), then: 

(!1, ; (I, 11,»)g 
= (AI 0(12 1(3)* 0 !tdg Definition of : 

~ ~/(I,I I,). (head' (I, g»)) Funcuoolll composition, and definition of J 

~ ~/«I, I I,). (h») Assumption 

= ~/(I, h ~I, h) Definition of., and I 

=/2 11 "'13 h Prope<ry of ~ / 

= (~/(I,. (h») ~ (~/(I,. (h») Property of"'"/ and * 
~ (~/(I,. (h'ad'(1, g)))) ~ (~/(I,. (head'(I, g»») Assumption 

=(...... /012* o11dg ""' (""/013* o!ldg Functional composition 

:::: (ttl; (2)g ..... (fll ; '3)8 Definition of ; 

= (!I, ; I,) I (!1, ; I,))g Definition of I 
o 

Law 5.7 is a special case of this law, thanks mLemma 5.6.2, below.
 
CUi partially distributes over sequential composition and over alternation.
 

Law 5.12 !/I ; !f~ :::: rOtI ;Jl]) 

LawS.13 !('1 ; (2) :::: !(ll ; !r2J 

LawS.14 (a) !(rl 1'2) :::: !(!tl 112) (b) l(t1 I '2) :::: !(tl I 112) 

Cut also produces two adsorption rules: 

Law 5.15 !(tt II! ; '2) = It, 

Law ~.16 !(tl 1 / 21 /1) =: !(II 112) 

Special cases of these are as follows; sldp becomes a left-zero for alternation, and 
ahernation becomes idempotent: 

law 5.17 !(,kip I t) =,kip 

law 5.18 !(li t) :::: i, 

5.6 Tactic Assertions 

In reasoning about tactics, it is heJpful10 have a formal way to describe the success 
or failure of a tactic. The tactic suus I fails whenever I fails, and behaves like sldp 
whenever t succeeds. Conversely, fails t behaves like skip if I fails, and fails if t 
succeeds. These uelicals are useful re3.'OOning fools, and they have shown themselves 
to be useful in writing real tactics, too (see. for example, Section 6.1). 

tg=()~ 

(fails t 8 ::: skip 8 1\ suus t 8 ::: (.U g) 

t g:::: (h l , . . hn ) =} 

(fails t 8:::: (aU 8 1\ suus t 8 ::: skip g) 
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• 

• 

These w:tia. playa similar role to that of assertions in other languages. However, as 
ttu:tics (rather than prrdicates) lhey are more readily usable in reasoning, and can be 
manipulated directly using the algebraic laws applicable to all tactics. 

Laws 

'The interaction ofjails and succs with each alber and with the other basic lactics gives 
rise to a large set of laws. There is a certain duali[)' between [ails and succs which 
means [hat by giving primitive laws for fails. corresponding laws for SUCCJ can be 
proven. Those which follow may be taken as primitive; a list of laws derived from 

these is presented in Section 5.13. 

LMw 5.19 

LMw 5.20 

LMwS.21 

LMw5.:Z:Z 

LMw 5.13 

LMw5.24 

LMwS.2S 

LMw5.Z6 

Law 5.27 

LawS.lS 

Law 5.29 

Law S.30 

Law 5.31 

Law 5.32 

suecs';l::::' 

fails t ; t :::: fall 

jails t == fails !t :::: !jails t 

jails(s"ccS t) :::: fails t 

fails 11 ;fails t"l == fails 12 ;fails '1 
!(It I (2) ::::!It I (fails'1 ; !l:l) 

!(Il ; (2) == !(tl ; suecs (2); 112 

sllecs(t I101):::: !(succs J Isilecs It) 

fails(/1 u) == fails r ;fails u 

suces s; succs(s; r) == succs(s; t) 

fails s == fails s ;fails(s; I) 

!s ;fails' == fails(!s; t) ; !s 

fails(fails s; I) == suces s lfails s ;fails t 

faiLs(s ;fails I) == fails s Isuccs(s; I) 

Derived Laws 

A number of valuable Jaws can be proved from those above. lbese include: 

Law 5.33 Ht ==!t 

Law S.34 • fails s; suces(s; ,) == ,aU 

Law 5.35 fails(t; d) =fajls(, ; SlUes d) 

Law 5.J6 !s; suces I == Sltccs(!.J; ,) ; !s 

Law 5.37 fails(fails t) == SIUCS t 



12 CHAPlElU A TACTIC LANGUAGE 

Law 5.38 • fails It ; succs 1'1 .:::: suces (2 ;faib I} 

Law 5.39 • suces 11 ; suces '2 == suces t~ , suces tl 

Law 5.40 succs(succs t) .:::: suces I 

Law 5.41 succs(fails r) :::: fails t 

Law 5.42 succs(t: d) .:::: succs(r; j'UCCS d) 

Law 5.43 suces t = SIIeTS !t = !succs , 

Law 5.44 suces skip ::::: skip 

Law 5.45 suces laU :::: fail 

Law 5.46 fails skip = rail 

La.. 5.47 fails laU == skip 

Law 5,48 fails t ;fails t.:::: fails t 

Law 5.4!J suees 1; suces t :::: suces t 

LawS.50 • suces t ;fails r :::: fails t ; suces t .:::: fail 

LawS.Sl • faits t Isuecs t == suce,)' r Ifails r.:::: skip 

LowS.52 suces (t Iu) .:::: suces t Ifails t ; suces u 

LawS.S3 suces (fails s; r) .:::: fails s; suces' 

Law 5.54 suces (suces s ; I) == SIo!CCS S ; sucej' t 

Law 5.55 suces (5 ;fails t) == suces s Jails(s; J) 

Law 5.56 suces (5 ; suces t) =suces s ; succs(s; I) 

Law 5.57 fails (suces s; t) = fails s IsLices s ~fails r 

Law 5.58 fails (s ; succs t) = fail!>' s I suees s Jails(s ; t) 

Sequential Tactics 

For this larger lallguage, we may extend the earlier definition of sequential tactics: 

Deftniooo 5.6.1 (Sequential Tactics) A laeric is sequential if j/ is skip. fail rule r for some basic rule 
r, 1t, fails t or suecs I,for some tactic f, Dr it lull/he form tl .. I" where tl is in one of 
these forms. and t1 is a sequentiililactic. 

Lemma 5.6.%	 Whenever a tactic I is sequential, we may show thalt = !,. using the lllws above. 

Proof' by structural induction, using Definition 5.6.1 above. 

Case: skip =!sldp by Law 5,8. 
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Case:	 faD = !ra.il by Law 5.9. 

Case: ruler == !(ruIer) by Law ~i.I0. 

Case:	 !l 

!I 

= '('1 laD) Law 5.2 

= !(!r I fail) Law 5.14 

=!(!t) Law 5.2 

Case: fails' = !fails t, by Law .5.21 

Case:	 suecs, = [suca t, by Law .5.43 

Case:	 'I ;lz 

'I ; 12 

=!tl ; !t2	 lnductive Hypothesis 

::: !(!t] ; [t2)	 Law 5.12 

= !(t] ;t2) Inductive Hypothesis 
o 

5.7	 Full Completeness 

Having defined SliceS aod/ails. it is nOW possible 10 prove a compleu:ness result for 
the whole finite (non-recursive) language, including the cut operator: 

T ::=	 ruleR
 
,!Up
 
rail
 
T;T 
TIT 
!T 
suecs T 
foUsT 

where R is some basic set of rules which transform one expression into another. 1be 
proof proceeds in much the same way as that in Section 5.4, bUl the convenion to 
normal form is now a two.stage process. 

Definition 5.7.1 (Pre-Nonnal Form) A tactic is in pre-normal fOrm if it has the form 

}J gj ; C;/J ruler;) 

where the gj are guards of lhe farm SUl:CS (;1: rl:) or fails (;. r.), or (possibly empty) 
sequential compositions ofsuch guards, and the r, are instances ojbasic rules. 

Lemma 5.7.2	 Any tactic written in 'he language above can be put into pre.normal form. using the 
laws given above. 
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Proof 1be proof proceeds like that for cut· free normal form. above. by structural 
induction. 1be base cases are, again, trivial; the case for'1 I t~ is as before (i.e. using 
Law 5.2 where necessary),l0 

In the sequential composition case, I} ; '2. we may assume (using the inductive 
hypothesis) that the sequentially composed tactics are in pre-nonnal form. If either 
is sldp or fail. Laws 5.1 and 5.3 can be used 10 PUl the composition into pre~nonnal 

form. Otherwise. Law 5.6 can be used to distribute /2 onlO the alternation components 
of 11' and then, since the components of 11 are sequential. !hey are equivalenllo their 
cut forms (Lemma 5.6.2), and 5{) Law 5.11 can be used to distribute the separate 
components of 12 onto those of tl' 

This procedure will place the tactic in the form 

1(8). ; '1,; 82, ; (2.) 
l:f 

Since the fl, are sequences of rules, we have that !'l, := II, (by applying Lemma 5.6.2), 
and ~o Laws 5.30 and 5.36 'an be used to assemble the guard components at the 
beginning of each alternation branch (and the cuts can be removed. by applying the 
same lemma again). The resulting lactic will be in pre·normal form. 

Additional inductive cases are needed: The t&:tic !, is normalised via use of 
Law 5.24. Since t is in pre-normal form (by the induclive hypothesis), repealed usc of 
this law will distribute the cuts onto the sequential components, from where they can 
be removed (Lemma 5.6.2). This distribution may result in the creation of nested in
stances of .fuca andfails. Laws 5.31. 5.32, and 5.53-5.58, can be used to remove those 
nested instances. Finally, any ahernations introduced by these laws may be moved 10 
lhe outermost level using the distributive laws (5.6 and 5.11, applying Lemma 5.6.2). 
The resulting tactic will be in pre-normal form. 

For the c35efails t, the tactic t may be assumed to be in pre-nonnal form, and so if 
it is an al!emalion, Law 5.27 can be used [0 distribute thefails through the alternaLion. 
Laws 5.31 and 5.32 (and laws derived from them, 5.53-5.58) ean be used to remo\'e 
nested instances of succs and fails. Doing so may introduce alternations. as above, and 
so distributive Jaws can be used to transfonn the resulting l.aeties into pre-normal form. 

Similill arguments apply to succs t; normalization begins with Law 5.52, and then 
proceeds like that for fails. 0 

Pre-nonnal form is insufficient for pro\'ing compleleness since it does not guaran
Lee uniqueness; the following tactics are all in pre-nonnal form (provided sand t are 
sequences of rules), and all equivalent: 

s; t 
succs s; s; I 
SULTS(S;t);S;1 
SUCCS.f ; succs (s ; t) ; S ; t 

etc, More crucially, where alternation andfails are involved, it becomes impossible 
simply to 'complete" the guard (as in the last of the examples above). SOme allemation 
branches would be mutually eXClusive and could therefore be reordered; olhers would 
not, and lheir order would be important. 

lOUse of \hie a-Q;OCi;Uive law~ (S,4 and 5.5) will be iL'\SII~, wbere neoe:lilW)'. tJtroughol1l the rollowing 
proof. 
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Instead, then, a tactic in normal form. will be one which is factored inlo a number 
of tactics VJ in cut-frre normal form, each one guarded (by a guard gl) in such a way 
th.a.t the success of the guard is sufficient to guarantee the success of every alternative 
branch of the tactic it guards, wilh the guards being mUlually exclusive. Ew;;h guard 
must be 'maximal' in Ibat it must contain a succs or fails for eoch sequence of rule 
applications that might arise in any of the VI' 

The definition of general normal form, and the lemmas which follow, will be 
relative to some set of rule sequenus. Rule sequences will be sequences of the fonn 
role rl ; ruler~ ; ruler3, eLC. A set of such sequences T will be prrifu closed if for any 
t in T. T al50 contains all initial subsequences of r (i.e. for a set containing the rule 
sequence above [0 be prefix closed, it would also need to contain rule rJ ; rule rJ and 
the atomic tactic rule rl). 

For a given tactic t. in order for the nonnal fonn to be well-defined, it mUSl be 
calculated relative [0 some suffirit:nliy large sel of rule sequences. 'Sufficiently large' 
means that it must at least contain the minimal sel of rule sequences determined by 
consideration of the lactic 1 in pre-normal fom (using notation from Definition 5.7.1): 
that set must contain all the instances of rule sequences (;N rule r,). and all the rule 
sequences occurring (preceded by suers or laits) in the gU~ds g;. and must be prenll.
closed. 

Definition 5.7.3	 (General Normal Form) A taclic is in general normal fom relative to a set 01 rule 
sequences T. il il has thelorm 

I gJ ;vJ 
j:} 

where the v] are tactics in cUI-lree normtlilorm (and are '101 fail), and Ihe gj are guarrl.f 
as above, with certain provisos: 

a.	 (consistency) lor each guam gj. illor some rule sequence t. 8] contains succs I, 
it must not containlails s,lor s any prefix 01 t (or t irself); 

b.	 (ma;cimolify) lor each j, lor all t in T, either surcs t orlails t must be present in 

8j>' 

c.	 (sufficiency) lor each j, Ihe success 018] must be sufficienl to 8Uflrantee that 01 
all the altemafe clauses in v _ i.e., ilv) '= It vJl' then lor all k, .fUC'CS Vj. mU.ft be1

present in gJ; 

d.	 (mutual uclusivif») the guards are mUlually uclusive; thai is, lor i and j, with 
i '" j, there must be some ruk sequence t lor which g, contain.r SUCc.f t and gj 
containslails t (or vice versa). 

(f the conditions in the definition above are mel, lhe foUowing properties may be 
proved using the laws given previously: 

8, '" faU
 
succs I ; 8j = 8] Of fails t ; 8j = 8)
 

SIlCCS 8j = suas R) ; succs vi>
 

g;: ge fall (i "j)
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Due to Laws 5.23, 5.39, and 5.38. we may observe thai I.he components of the 
guards in a tactic jn nonnal form can beatbitrarily re-ordered. Moreover, this property, 
rogel.her with the mutual exclusion property, means that the outermost alternation can 
be re-ordered, too: an arbitrary pair of adjacent altematioo branches of a tactic in 
general nonnal form can be considered, due to !.he foregoing remarks, to ha'.e the form 
(succs,; 51 Ifails 1; 52); 

succs t ; S1 Ifails t ; S2 

= (jails t Isuecs t) ; (suecs 1;.I1 Ifails t ; 52) Laws 5.51 and 5.1 

:::::	 foils 1; suecs t ; S1 Laws 5.6 and 5.ll, applying Lemma 5.6.2 
ifails I ;fails I ; 52 

Isuccs t ; suca t ; S1 

[suecs l ;fail:! t; 52 

:::: fails t; S2 Isuecs t; 5\	 Laws 5.50, 5.2, 5.48, and 5.49 

SinCe arbitrary branches may ha'.e their order swapped, the ordering of the tactic as a 
whole may be changed arbitrarily. This means thai the nonnal forms achieved below 
will be unique only modulo these two forms of reordering. 

Lemma 5.7.4	 Given a sufficiently targe prefix-closed set of rule Jequences. T, any lacric in pre
normal form can be put infO a unique normal form relLJti'lle to T (u/lfque mndulo 
reordering ofIhe guards), using laws drown from the .leI given above. 

Proof' Consider Ibe tactic fonned from all possible guards for rule sequences in T: 

; (succs I Ifails t)
 
'T
 

This is equivalent to skip. The distributive laws (5.6 and 5.11, applying Lemma 5.6.2) 
can be used to 'multiply oul' Ibis expression inlo the form 

Ig, 
d 

(this still being equal to skip). From I we may remove all lhose i for which g, is 
equivalent to rail, via Law 5.34 and Ibe commutative laws (5.23, 5.39, and 5.38), 
to give l'. These guards then have the mutual exclusion property mentioned in the 
definition of general nonnal fonn. They have the consistency property. since [hose 
which are equivalent to rail have been removed. They also have the maximality 
property, in Ibal for each t in T, for each i, either g; contains fails r or it contains 
succs r 

If we sequentially compose this taclic with the tactic in pre-normal form: 

((,g.); (I,hi ; C~,T')) 
and again use !.he distributive laws, we obtain 

,JI:~ g; ;h); C~J rt ) , 

Ibis tactic remaining equivalent to the original tactic in pre-normal fonn. 
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By the maximaliry property (and the sufficient size of n. for each hI' g, pair, we 
have eilher lhat each component of hj is present in 8i. and so by the commutativity 
laws (as above) and I....aws 5.48 and 5.49. g, : hi = gi, or that 8J has a succs I for which 
g, has a/ails t (or vice vena). and 50 by the commutativiry laws and Law 5.34, we 
have 8i ; hj = fail. 

Therefore, lhe tactic above may be rewrinen wilhoutlhe hjs, and with some if lhe 
js omitted (so J: replaces J): 

I I g,; ( ; ,.) 
d' ;:J! l:X) 

Now, by lhe comtnuwive laws for succs and fails (as above), and Laws 5.20 
and 5.2, lhose inner alternation branches who5e guards which contain an insLance of 
fails(;k rt) can also be omitted (so Ji becomes 11'). In lhe event lhat ll' becomes empty 
following these changes (lhus lhe a1temation over j simply denotes fail). Law 5.2 can 
be used to omit lhis i from 1'. 

Finally, the (left) distributive law can be used (0 transform the tactic into the 
required nonnal form: 

I (g,; I ( ; ,.)) 
U' J:J;' k:lCJ 

This is in normal form. since lhe gl remain maximal. consistent. and mutually 
exclusive. "Their sufficiency arises as a result of the maximalilY and lht omission (in 
[he lasl step. above) of clauses which must fail. 0 

Lemma 5.1.5	 Two tactics in general nomllli form (relative to some sufficiently large pujix-closed 
ut of rule sequences, T) are equivalent iff they are identical modulo reorduing of the 
guards. 

Proof" The proof proceeds like lhar of lhe corresponding lemma above (5.4.6). The 
'if' part is guaranteed by the soundness of the laws which make reordering possible; 
for the 'only if' pan. we produce a rule/goal model in which the semantic behaviour 
of a laCtiC can be used 1.0 reconstruci its nonnal form. 

Let the rules referred-to in the laCtics be r" . .. ,rn• and let lhe goals be decoraLed 
with pairs: a prefix-dosed set of rule sequences. and a single rule sequence. The 
former will be lho!iC !iCquences of rules (drawn from n which can succced when 
applied to lhe indicaltd goal; lhe laner a trace of rules which have already been 
successfully applied. 

That is. gJ,1 E dom ri ¢:> 3.IS : s I head xs == rio In this case. r, gJ.J == R.r' ,,'""'(,,). 
where I = { .IS I ri '""' .IS € s }; otherwise lhe rule application fails. l1 

By considering the behaviour of a laCtic applied to various goals, it is possible LO 
determine tbe guardlbody12 pairs of its normal form. The applicafun of a laCtic I 10 

a goalgJ ,(). will either result in lhe empty sequence as output, ora sequence of the 
fonn (gJlo'I"" ,8Jo ",)' "The former case will ar1!iC either because 1 fails to be prefix 
closed (corresponding to lacking the 'consistency' property of the normal fonn), Or 
becau!iC it corresponds to one oftho!iC guards which was omil1ed above because il was 

11Thil is why lhe definitim ofDOlTTlllJ foml ~ thal if tbt guard1 are s\llXlC'$lfully eMICulcd, lhe l'\Iles 
mUSI not filii.
 

11i.e. C\II.-fm:: fIOnIlllI fl'OQl
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guarding a lactic equivalent to fail. IT a Don-empty sequence is pmduced. the body pan 
of an alternation in the lactic can be teConsbUctedas the alternation of I} ... I". and the 
guard for that branch from JUCCS applied to each member of s andfails applied to each 
member of the compliment of sin T. 

By considering all such initial goals BJ,( ) (wilh s as any prefi~ ...dosed subset of 
n for wh.ich the outcome is nol the empty sequence (i.e. failure). it 1s possible 10 
reconsuuct the whole tactic in normal form. 

The maximalily is guaranteed by ensuring thai every member of T is presenl in 
each guard-with either su.ecs or jails-and the mutual exclusivity by the fact that 
the sets of sequences with su.ecs are different in each guard. The sufficiency and 
consistency of lhe guard is ensured by the fact that it gives rise to an outcome which is 
nol failure. 

In this way, a lactic in nannal form is completely characlerized (modulo reorder
ing) by the set of goals on which il succeeds and the outcomes when it does so, and 
the result follows immediately. 0 

Theorem 5.7.6	 Two tactics are equivalent under al/ rule instantiations iff they have the same general 
/loT7TJ{1.//om~ modulo reordering o/Ihe BlUJrd5. 

Coronary 5.7.7 The set 0/ laws is complete/or the language described above. 

5.8 Semantic Model incorporating Recursion 

In this section we extend the semantic model to cover recursjve tactics. To do this. we 
shall need a model which uses (potentially) infinite lists, in place of the finite lists used 
above. 

Infinite Lists 

The style of infiniw lists which we shall use is thaI found in many treatments of 
functional programming with lazy evaluation. A suitable model for such lislS will 
be found in [Mar93b]; the definitions remain consistent with those in Appendix A.I. 

The daratype of infinite IislS differs from that used above by the incorporation of 
parrial and infinjte lists. The set of lists over a set A, (denoted seqA, as above) is 
augmented by the addition of an extrd element, .lA.. A partial order is then defined 
oyer this set of lists. .lA. is the leasl--defined element in the set. It is a partial list, as 
is any list which ends with .lA.. One lis! is less than another (denoted by Sj 1;"00 .~'l) 

whenever mey are equal, or me first is a partial list which forms an initial subsequence 
of me second. Formally, an infinite list is a limit of a suitable (i.e. directed) set of 
partiallislS (the limit of the set of lists S is denoted UOO S). 

We shall retain the s.am.e notation for lis! concatenation as was used on finite lists, 
and so the tal:;tic definjtions previously given will still apply. However, note that 
whenever 51 is a panial or infinite list. then SI ,-.. .f2 ::::: SI (for any 52). Also,'-"/ is 
(necessarily) ill-behaved on certain infinite lists. A pathological (but important) case 
;, 

~/((),(),.) ~l, 

As tactics are defined as functions from goals to lists of Eoals, it is a standard 
construction to eXlend the ordering on lists of goals to be an ordering on tactics. This 
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LawS.59 

Law 5.60 

Law 5.61 

Theorem 5.8.1 

is accomplished in a pointwise manner. A suitable treatment can be found in [LS87). 
1be relevant definitions are as follows: 

t} ~T t2 ¢} (Vg: G.'1 g);;<Kl 12 g) 

(U, ')8 =U 
oo 

{ t" • t 8 } 

Semanllcs 

The atomic tactic abort is simply defined; it maps any goallo the undefined list: 

abortg =1.£1 

The recursion operator is defined as a least fixed point. Forf a function from tactics 
to tactics, we have that 

(~x .[(X)) =U,{ i' N .!,(abort») 

Again, this is a standard construction, covered, for example in fLS87]. II requires Ihat 
the tactlcals used to define! are continuous-and those defined above can be soown 
to have this property. It is worth noting that this least fixed point is .1 only in the case 
mat for all i, we have lhatl(abort) == abort, Le. exactly whenf(abort) = abort. 

Laws 

The laws given in Section 5.4 also hold in the presence of recursive tactics, with the 
exception of those marked with (-). abort is catastrophic; sequential and alternate 
composition are strict in their left-hand arguments. 

abort;t = abort 

abort It =abort 

! abort = abort 

The composition operators arc nol strict in their right-hand arguments (indeed. if t is 
not abort and does not always succeed, we have abort CT I; abort, etc.), since the 
lactic which precedesabon may mask its action (i.e. in the sequential case, t may fail, 
and fail ; abort := fail). 

Since the taeticals presented above (and below) are continuous with respect to the 
~T, we may use Park's Theorem [p1ll69] lo deduce properties of filled points. 

(Park) For any tactic Q, and conlinuowfunctionfrom tactics 10 lacncs, F: 

F(Q) !;, Q 

(~X. F(X)) !;, Q 

In order to demonstrate equality of recursively-defined tactics, it suffices to show 
refinemenl in eacb direction separately. This theorem allows that refinement to be 
demonstrated by showing that each tactic satisfies the other's recun;ive equation. 

For tactics which are known lo terminate, and satisfy the same recursive equation, 
however, a simpler proof of equality is possible. In this model, a tactic will be said lo 

terminate when applied to a given goal if it produces a finite (non-partial. non-infinite) 
list of subgoals. 
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1'heorrmS..8.2	 Let X tJltd Y be arbirrory tactics such rllaJ Y := (pZ • F(Z)) tJIfd X = F(X). (For 
some conti.nllows F). If Y i.J known w terrninaU on all inputs the" X = Y. 

Proof In order to show that X := Y, it is sufficient, by exteDsion. to show that, for 
an arbitrary goal g, X g := Y g. Park.'s theorem gives us that Y ~T X; therefore 
y g ~oo X g. Now, 

"8 
= UTI i , N _/,(.bort) )8	 Definition of JJ 

=U~ Ii' N _/,(.bort) g}	 Definition of UT 

Since we know that Y g tenrnnalc:s, we know that there is some j such that U"",{i : N • 
jitabort) g} := jJ(abort) g, and that tJUs is a finite (non-partial) list. Recalling that 
t;;;;oo is a strict inequality iff the expression on the left-hand side is partial. we deduce 
that Y g =X g. 0 

Infinite Alternation 

One further extension to the tactic language which has proved useful in establishing 
properties of recursive lactics (see Lemma 5.9.1 below) is a generalization of the 
alternation operator of Section 5.3. We define an infinite alternation. such thai 

Law 5.62	 I f(i)=f(n)!C I f{l)) 
'''''" '>0011+1 

holds, by using a vector of recursive tactics (that is, by taking a fixpoint in the funcrion 
space N ........ n. 

I f(i) ="X - F(Xo) 
.",,0 

where F(X,) = f(i) IF(X,+<) 

Laws 

Infinite alternation has many of dte same properties as ordinary (finite) alternation: 

Law 5.63 I (f(i) ;d) =(I J(i));d 
h:.O ,=0 

Law 5.64	 !(IJ(il) =!(I !f(i)) 
.=0 ,=0 

Law 5.65 
~ 

I r.u =.bort 
=0 

Law 5.66 l; i f(i)::: i I ;f(i) provided t ::: !t
 
=a ,=0
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Interaction with/ails and succs 

For laches whieh are not known to tenninate, suees andjails are of limited usefulness. 
For laches which certainly do not tenninate. 

1 g ::::.1G~ 

(jails t g = abort g 1\ suees, g :::: abort g) 

In other cases, typically we might be able to say 

abort!;r SliceS 1 ~r skip abort !;r suees t !;r fall0' 

and similarly forjails. 
In each case, the left·hand inequalities will be StriCI if the lactic t is known to 

producesotN! output (in which case, suces 1 will satisfy !he left-hand equation, and not 
the righl.hand one); if the tactic is known to tenninate, the right-hand inequality will 
be an equality. 

lbe combinators SliceS andjails are strict: 

LawS.67 jails abort = abort 

LawS.68 suees abort:::: abort 

The following refinement result is of interest; by symmetry, the refinemenL!il in the 
rule and the proviso may be replaced by equalities. 

Law 5.69 tl 112 ~r 12 1'1 provided suees t[ ~r jails 12 

5.9 Derived Tacticals 

In the many lre.tltments of tactics and lacticals (see Section 8.2), a few deriVed lac· 
ticals recur frequently. These ha'ie shown themselves to be particularly valuable for 
describing tactic programs: operators for iteration (repeal), robusl application (try) 
and exhaustive application (aJrousl). We define these here, and describe some of their 
properties. 

Definitions 

Most tactic languages include a definition of a repeat tactical (sometimes called 
iteTT1Je). repeal(n, I) will run tactic r the number of times specified by n. We denote 
this more succinctly with a notation suggestive of iteration. 

,0 = skip
 
1"+1 :::: 1;1"
 

'The limiting case (repeat 1 indefinitely) is nOI very useful: 

~ = t;~ 

= IAX.t;X 

This tactic is either abort or fail, depending on whether t always succeeds, or eventu. 
ally fails. Instead, a tactic which applies t as many times as po5:!iible. tenninating (with 



82 CHAPTER 5. A TACTIC LANGUAGE 

success) when t fails 10 apply, is defined. The tactical which does this is called ahausl 
(some authors call it repeat). 

exha.,,, ~ (" Y. (I; Y Iskip)) 

A property of f!xhausr is exhaust t = t; exluJusl , I skip, and this will generally be 
used as il.S definition. This lactic is able to backtrack, both in the number of iterations, 
and in the evalualion of t. Sometimes this gives more freedom than is useful. and so 
!(exhaJLSl f) will often be used-Law 5.82 gives a useful alternative formulation ofLhis 
tactic. 

Il is often useful to be able 10 Irj to apply a tactic. but to succeed whether or not 
the tactic applies. This is accomplished by the derived lacLical try. 

try t = !(r Iskip) 

Laws about Iteration 

I1eration has some obvious properties. These can be proved by induction using the 
laws given above. 

Law 5.10 

.....w5.71 

Laws.n 

LawS.73
 

Law 5.74
 

L8w 5.75 

Low 5.76 

Law 5.77 

Law 5.78 

Law 5.79 

LawS.SO 

LawS.81 

•
 

f';t"'=f'+'" 

succst" ;t"+1 = t"+1 

fails t" ; t"+1 rail:0:: 

fails t+ I ; t" =: t" ;fails t
 

fails t" = fails t" ;fails t"+1
 

succst" =SUCCSt"-l ;succst"
 

fails t" =: fails t"-1 I (slices t"-1 ;fails t")
 

fails t" = skip =? fails t"+1 = skip
 

!t=: t =? !t" = t"
 

Laws about try 

1bere are few obvious useful laws about m', 

!(Iry I) = fry r 

exhausl t ; try t = exhaust t 

Iry(r,.)' f) = try t 
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Laws about exhaust 

The following laws about exhaust help La characterize its behaviour. Those laws 
marked with (t) apply only when exhawt t must lenni nate, Le. when t is not abort 
8Ild does not always succeed-othcrwi5C they are refinements rather th3l1 equalities. 
The proofs make reference: to some derived laws which are listed in Section 5. 13: laws 
which ean be proved using the primitive laws given in Sections 5.4 and ~.6). 

Law 5.82 t !(<<hau,") = (uX. !(t; X Is1dp)) 

Proof 

1(exhaUSI t) 

= !(t; (exhaws,,) Is1dp) Property of uhawt 

=!(!(I; (exhawsu») I'up) Law 5.14 

= I(!(t; !(<<hou,u)) I.klp) Law S.U 

= !(I; !(exhawsu) I.up) Law 5.14 

Hence. by Theorem 5.8.2, !(exhawt I) = (pX • t(t ; X Iskip»). o 

Law 5.83 SUCCS(exhaUSl t) ~T !ildp 

Proof" 

succs(exhaust r) 
slIces(t ; exhaust t Isldp) Definition of uhaust 

1(suces(t ; exJwUSl r) I (SIICC.rsId.p)) LawS.26 

!(SlIceS('; exhaust t) ! skip) Law 5.44 

(suces(t; exJwUSII) Ifails(,; exhaust I)) Laws 5.24, 5.1, and 3.22 

~T skip Law 5.113 

o 
LikeLaw 5.1 13, this law can be strengthened to equality in the case that t;ahaust t 

is guaranteed to terminate. 
Similar arguments give thatl:o(r' ;jails 1) ~T skip; a fact which will be used 

below. 
Proofof the remaining laws (see below) is made possible by lhe following lemma. 

LeDllDa 5.9.1 For an)' sequential tactic t, 

'(exhaws,,) = 
,=0 
i (I ;fails t) 

PlOOf; Ie suffices to show refinement in each direction separately. 
(a) !(uhausll) ~T 1: (1 ;jails I)0 

Refinement in this direction is demonstrated by showing that the infinite choice 
satisfies the n:cun;ive equation for !(edJauSf I) (Law 5.82), i.e. thai !(t ;1:: (1 ;fails t) I0
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oIdp) i;;rI:,(r' ;faU"). 

!(I;I:,(; ;faU") IlIdp) 
!(fail>(' ,1:,(' ;faiLn)) ,Kip I" 1:'(; ;fail")) Law 5.121 

!(faU,(, ":,1' ;fail")) II;1:,(; ;fail> ,)) Law 5.1 

'(faib(' ":,(; ,/ail")) 11:,(;+' ;fail")) Law 5.66 

'(faU,(I;,"",( 1:,(' ;fail"))) 11:,(1' ;fmb')) Law5.J5 

~T !(tails t; skip 11::1 (1' ;jails t)) succs( 1::0 (1 ;jails r)) ~T skip 

!(tails' 11::1 (r' ;jails I)) Law 5.1 

ljaib t Ifails(fai/s I); !1::1(t' ;jails r) Law 5.24 

fails t Isilers t; q::l (t' ;/ails I) Laws 5.37, and 5.21 

fails' 11::1 (suers I; t' ;faiis t) Property of I, and Law 5.66 

jails til::, (t' ;fails t) Laws 5.19, and 5.70 

1:0 l' ;fails t	 Law 5.62 

(b) 1::0(;' ;/ails I) 1;, !(exhaust t) 

In order 10 prove rhis result, we make use of the recursive definition of infinite 
allernation. Writing H(k) = f ; l(e.dJaust f), we show that H(k) C;;T (F(k) IH(k + 1)), 
where F(k) = f ;fails 1; i.e. that H satisfies lhe equation for infinite alternation. Since 
!(exhaust t).::::: H(O), we have thatl::o(ri ;fai/,s t) !;r !(e.xhaUSII). 

H(k) 

f ; !(e.xhaILS11) Defin..ition of H 

f; !(t; exhausl t Isldp) Definition of exhaust 

f ; !(fails(t ; exhaUSf t) ; skip If; ahau.$t t) Law 5.121 

f ; !(fails(t ; exhaust t) II ; e.xhaJlst t) Law 5.1 

f ; !(raiLr(1 ; suca(exhausl tn It; exhausn) Law 5.35 

~T f; !(raiLJ(.; skJp) II; exhaust I) 

Law 5.83; exhaust I not guaranteed to terminate 

f ; !(jails tit; exhaust r) Law 5.1 

f; ('fails t Ifails(fails I) ; !(I; exhallSt t)) Law 5.24 

f ; (rails t Isuccs t ; !(t ; exhaust I») Law 5.21 

-::=	 f; (rails t Isuccs t; !(!t; !exhausl r)) Assumption, and Law 5.13 

f ; (tails I Isuccs 1 ; !r ; !e.xhausll) Law 5.12 

f ; (tails t Isuca r; t; 1(e.dJausI I)) Assumption 

f ; (tails t I r ; !(e.xhauSl t») Law 5.19 

!f; (tails r I r; ~(exhaust t)) Assumption, and Law 5.78 

!f ;jails t I!f ; t ; !(exhausr t) Law 5.11 

f ;fails t If; t ; !(exhausr I) Assumption. and Law 5.78 
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rt :fails II r"+1 ; !(ahawt t) Law 5.70 

F(k) IH(t + I) Definitions ofF and H 

o 
This is a valuable result since it reduces a recursive expression into somelhing 

resembling oututlier normal form for tactics together with an arsertion. The assertion 
is essential for the correctness of the latter tactie. This may lead to a completeness 
resull for the lactic language with recursion. See Section 8.3. 

Law 5.84 t !(erhawt t) ; I = fail 

(ThJs holds under the previously-stated assumptions; hence 1;:0" #- abort), and ~ 
Law 5.3 is applicable below; otherwise. the result becomes a refinement.) 
Proof 

!(exhaust t) ; r 

=(1::0" ;fails t) ; I Lemma 5.9.1 

= (1::0 t) ;fai/s t ; t Law 5.63 
~ 0;:, I) ;faU Law 5.20 

=faD Law 5.3 

o 
Law 5.85 !(exhaust t) ; !(ahaU511) == !(e.duulst.) 

Proof: 

!(exhaU5t t); !(ahaust t) 

=!(e.rhaJu1 t); t(t; uhawt t 1skip) Definition of exhawt t 

~ !(!(exha"'"); (I; ~It I,kip)) Law 5.13 

= !(!(uhaust t) ; t ; exhtJwt t 1!(exhawt t» Law 5.Il 

= !(faD; ~III !(exhaout I)) Law 5.84 

=!(!(exhaout I)) Law 5.2 

= !(exhaW'1 t) Law 5.33 

o 
Law 5.86 fails t ; exhaust t =fails I 

LawS.81 !(exha...,.t t) ;fails t = !(uhaUJ'1 t) 

LawS.88 .ry(uhaUJ'1I) =" t(uhallJ" t) 

5.10 Structural Combin8tors 

When the !Betic language is used in a panicular application, it will often be useful 
to define tactics which exploit the structure of the goals (expressions) to which they 
are applied. This is accomplished by the use of structural combinalors. An example 
of their use was seen in Section 5.2. Any definition of such a combina~or must be 
sound with respecl lo some meta-theorem for the expressions under consideration
i.e. mono~onicily is required, so thal application of tactics to sub-expression gives a 
valid rewriting of the whole expression. 
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L,qwS.89 

Semantics 

If an binary operator \B is present in the object (expression/goal) language, it may be 
lifted into the taCtic language as ~ by the following definhion: 

cross IS = nO(Yid")
 
break(pl $1'2) (Pl,P1)
 

combine(pl,pl,) (PI EB 1'2)
 

h~r2 combine. 0 (CroSS{tl' t2}) 0 break
 

The definition is the composition of three auxiliary functions. The central function 
cross does the work-it lakes a list of sub~e.pressions and zips them with a lis( of 
tactics (Y[. pronounced 'tip with!", is defined in Appendix A.I). This produces a list 
of ljsts of ahemalives. These alternatives must be combined via a cartesian product. 
f1 (so thai the first alternative from the first tactic may be matched with the first or the 
second alternative from the second lactic, and so on). The auxiliary definitions break 
and combine simply convert a goal with an infix ffi inlo a list of subgoals. and vice 
versa. 

Laws 

Certain laws have rather asymmetric provisos, as a result of the definition of n. 
An alternative ordering of the results of the cartesian product would give different 
laws. If a diagonal enumeration were used the structural combinalors would be bctter
behaved with respect to tactics producing infinitely many alternatives. but the abides 
and distributive laws would need stronger provisos. 

When defined in this way, ~abjdes with sequential composition: 

(I, [i[] I,); (I, [i[] I.) = (I, ",) [i[] (/, ",) 
provided 12 = '12. or It ::::: !rl and '3 ::::: 1/3 

Proof' 

(I) EB '2) ; (C3 EB I,d 

::: ""' / 0(13 ffi I,d. 0 (11 ff112) Definition; 

::: ""'/ o(combine. 0 croSS(13' 14) 0 break). 0 combine. a croSS(I] ,12} 0 break 

Definition of ffi 

= ""'/ ocombinen 0 (CroSS(13 , 14}).0 

(break 0 combine). 0 Cro.u(Cl' '2) 0 break Property of 0 and • 

::: ""' / ocombine•• 0 (cmss{13' 14.»).0 cmSS(II, l'l} 0 breaJc. 

Property of combine and break, and first lemma below 

= combine. 0 ""'/ 0 (cmSS(/3' 14»).0 cross(tt, '2) 0 breaJc. Lemmas, below 

=combine. 0 (croSS(""' / 013. I> II, ,..., /01".0 '2)). a break Key Lemma 

== combine. 0 (CroSS(11 ; 13,12 ; 1,,»).0 break Definition of; 

-= (II ; '3) EEl (12 ; 14) Definition of $ 

o 
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Lemmas (to be found in [Bir88J) 

/oid.=/
 
/.0"'/= ...... /0/..
 
/.oS. = (jog). 

Key Lemma (subject 10 proviso): 

...... / 0 (cro~S{I], 14)).0 croU(ll' (2) = cros~( ...... / ot]. 0 11, ""/ 014. 0 (2) 

Proof" Let 11 SI = (hLl , •.• , ht.. ) and 12 g2 = (h21,' .. ,h2,,). 

('" / 0 (croU(13' 14»). 0 croU{11 ,(2») (gl, g2) 

= (~I om o(Y;d(I" I,))). 0 IT O(Yid(/" I,}») (gr, g,) Definition of cro~s 

= (...... / o(n o(Yid(I], (4)})· 0 n) ('t gI,'2 82) Definition of Yid 

=(~/omo(Y;d(I"I,}))OOm((hn, .,h,.),(h", ... ,h,.}) 

Assumption 

= (~I om o(Y;d(/" I,}»)o) Propeny of IT 
«(hn, h,,}, ... , (hn ,h,.),. " (h,.,h,,),. ., (h,., h,.}) 

== ...... /{n (t3 hn,'4 h2I), ... , n (13 h ll , 14 h 2,,), . .. , 

n (13 hl",,'4 h21), ...• n ('3 ht ..,'4 h2"» Definition of., and Yid 

= IT (~/(/' hn,···, I, h,.), ~ 1(/, h", .. . ,I, h,.» j 

= (n o(Yid("" / 013. 0 I}, '" / 014. 0 '2»)) (g1, S2) 

Definition of Yid and •• and assumption 

=cros~{", / 01].0 Ii ....... / 014.0 (2) (g1,S2) Definition of cross
 

Step en is justified by Ibe initial proviso--both 12 = !12, and 11 = III with I] = !13 are 
sufficient conditions; their disjunction appears to be a necessary condition: 

12 = 1'2 implies that n = 1 (or n = O. which is a degenerate case). In lhls 
case, Ibe requirement becomes Ibat n ('3 hu , 14 h21 ) "" ......... n (/~ 11 1",,14 h21 ) = 
n('3 hll ........... 13 hl .. ,'4 h21). and this is a property of"" andU 

Similarly. 'I = !tt implies that m = 1, but no sueh law exists between"" and n 
in this case, and so a further constraint-thal t] hu ::= (k). for some t (again ignoring 
degenera~ cases}-is nceded. Then the equation becomes n«(k), /4 h21 ) '" ......... 
n ((k), 14 h2,,) = n «(k), 14 h 2t '" ... '" 14 112,,). which follows from the definition of 
IT. 0 

Also, [§] disb'ibutes through alternation, and cu' disb'ibutes lhrough ~ 

Law 5.90 I, ~(/, II,) ~ (I, ~I,) I (I, ~") 

Law 5.91 (I, II,) ~ I, ~ (I, ~ I,) I (I, ~ I,) provided 1] ::= !t3 

Law 5.92 t(ll ~ ' 2 ) == lIt ~ 112 

Notice thaI the proofs oflhese laws use (depend on) the propertybreak.ocombine = 
id . Notice 100 that the lactic 'I ~ 12 fails if either I] or 12 does, and fails if presented 
with a goal which is nol of the fonn gl ffi g2 (this is ac:complisbed by having break. 
return an emply list in lhls instance; see also the definitions of Y and n). 
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LawS.'3 sures('J ~ '1) ::: succs(skIp ~ skip) ; suces(,} ~ '2) 

Law 5.94 suees(l} [§J I,) = (suces 'I) ~ (suces (2) 

ElUImple 

Wilh lhis generic definition in place, the tactical 0 can now be defined. simply by 

giving appropriate instantiations for break. and combine; 

breakl'l{SI 1\ 82) = (g1,82)
 
combine,,(gl,82) ::: (gl/\ 82)
 

Lifted parallel composition (for goal-directed proof, where branching proof trees 
give rise to parallel compositions of goals) will be slightly harder to define. See 
Section 5.12 for details. 

5.11 Pattern-matching 

Il is desirable (0 have a tactic take different actions depending on the form of the goal to 
which it is applied. For example, in the Z frame in Chapter2,lhe toolkit lactic TK-TAC 
was used to rewrite predicates using relevant definitions from the toolkit. This could 
have been written using only alternation, but the inefficiency involved (rewriting with 
each definition until the correct one is found) would be great. 

Moreover, it is often usefullo be able lO parametrise tactics with tenns that arise 
within the goal. Recall, for example, the tactic for replacing a schema by its definition: 

auto-scMef(1- S) apply-seMe! S 
auto-sehdef(1- b.S) apply-seMef S 

ole. 

We have already assumed thai basic rules act in this way (see, for example, the 
rules used in Section 1.2). Since we have ruled out tactics being arbitrary functions 
on goals for reasons of soundness (only basic rules can directly manipUlate goals), 
ano!.her tactic construct is needed---one which allows access 10 the terms in the goal. 
btU is nevertheless forced to apply only basic rules. 13 

7l' permilS!.he definition of tactics which are dependent upon the goal to which they 
are applied. Unsoundness is avoided by having 7l' return a lactic rather than (say) a list 
of altemative subgoals: 

(il"VI1 ••• ,VII. g ----t t) 

This tactic binds !.he (meta-)variables VI, •.. ,VII within the scope of g and t. If goal 
g matches exactly the goal presented to !.he tactic (!.he variables in VI, ..• ,VII being 
angelically chosen, if possible, to make this be the case), the whole tactic behaves like 
tactic t. If nOl, !.he tactic fails. 

For example, 

(... (f- xE S) -+ I,(X)) I (... (ex ~ S) -+ skip) 

1320W IDkes an a111:1T\llbYe approactl, where aJ1 tattics are panmc::aised III IJ1U w.y A~. JCmIl. IIQSl 

20B1 Iadics simply di&CltJ'd their goal pllI'3lUeleI"; cr.:y lin: total and constaol 
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is a tactic which will behave like lactic II (parametrised by x) if presented with a goal 
of the form (I- x E $), will skip if presented with a goal of the form (I- x = S), and 
will fail otherwise. 

Semantics 

1he variables which 11" inlroduees are meta-variables: lhat is, they may range over 
members of any of the term clluses (e;Jlipressions, predicates, object variables) in the 
object language. The accounl which follows wiU assume that the members of those 
tenn classes are denumerable, and that the particular term classes to which the vari
ables belong will be apparent (so. in the example above. x must denote an object vari
able, say. and S must denote an expression). The scape of the meta-variable introduced 
in this way will be made explicit where necessary, by use of parentheses. 

This conslruction may be given a formal meaning by defining its two components 
separately. FirsL, a tactic which succeeds only if it is presented with a goal matching 
its argument (equaLr is a tactic parametrised by some goal g): 

equalr g g = skip g 
equalr g h = faU g where h t: g . 

This is a very tigbtly defined tactic-it calls for true equality of goaJs. In order 
to make it useful. free variables far binding names to terms will be needed. We 
may accomplish this by introducing another construct-logical conslants, in the style 
of [Mor90J: 

(eon\!. t) 

This tactic inlroduces vasa set of free variables chosen from an appropriate synla£::tic 
class (denoted TERM below) in t, angelically chosen so that as many choices as 
possible succeed: 

(conv.,(vl) = (L"'..... '(vl) 

Notice thai LETDLW is intended 10 indicate that the possible terms are enumerated 
in some orda. ]f malching over several variables simultaneously is required. they 
must all be inlroduced together--so ilial a 'diagonal' enumeration can be used. Note. 
100, thai can may bind any term/expression in the object language. For instance, 
(conp • equalr (I- p) ; s) is a tactic which will apply s to any sequent having just one 
predicate on the right-hand side--and p may be a parwneter to s. 

This, however, is a very weak. specification of con's behaviour.14 This definition 
will abort if there are no suitable instantiations of v, whereas il is usually possible to 
detennine this in a finite time (and have the tactic fail instead)--and nested instances 
of can will nOl, for the same reason, be handled well (they will lend to abort, since 
the value chosen by the ouler can will be fUed whilst all of those offered by the inner 
can are tried-if no match is possible for the fim..chDSen outer value, an infinite loop 
will ensue). 

14 11 is also 001.11 pllllW"bIe impk:~. Whilst it.: wriabk:s. cs.prc:uiOP$. pmlil3u:s. l:'Ic. of our object 
illnguage lUll)' be~)' den~ it would clearl)' be inappmpri~sil1\fly to IIIltmpl ClIdI"me in ..... 



90 CHAPlER 5. A TAcnC lANGUAGE 

Law S.Y5 

Law 5.96 

Law 5.97 

Law 5.98 

Law 5.99 

law 5.100 

Law 5.101
 

Law 5.102
 

A reasonable implemenwion of con will allow rwo notions of scope---thete is the 
area in which bad::uacking is possible (preferably 'smart' bat::ktr.K:king, whicb will 
cause failure if no matches ean be found) and an area in which the variables introduced 
by con are bound. Ideally, the extent of these two scopes will be determined by the 
tactic programmer-in practice, the first will be limited to a single instance of eqUiJls 
(see Section 7.2). The backtracking will generally need to be limlled. so that if the 
tactic body fails (for reasons unrelated to the pattem-matching) the whole tactic will 
fail. 

Now we may define 

(11" VI,.' _,v" eg ~ I) ~ (con V}, ••• ,v". equalsg ;t) 

Morgan observes thai con is not (cannot be) code in any imperative language. The 
situation is slightly better here--con inlroduces a simple pattem-matchingproblem,15 
which is solvable for a firsl-order language, and may be partially soluble for other 
languages. In the light-weight implementation introdueed in Chapler 7. this is achieved 
by appealing to the unificalion algorithm in the underlying functional language, thus 
giving one of the implementations proposed above. Implementation of a unification 
algorithm to give a tactic inlerpreter precisely the semantics described here is also 
possible. 

Laws on equals
 

Proof of laws about equals is elementary.
 

equals 81 ; equals 82 = rail if 81 ¢ 82 

equals 8 ; equals 8 :::: equal.s 8 

!equals 8 :::: equal.s 8 

Lawson COD 

COD distributes whenever no variable capture is caused. The side-conditions are 
phrased using ¢ (by analogy with the Z semantics (see Chapter 2) }-infended to ex.
tracl the set of free (mera-)variables of lhe lactic to which it is applied. The 'weak' 
semantics proposed above would, of course, allow the first two laws to be proved 
witholll the side-condilions, but if backtracking is 10 be restricted as discussed in the 
prose. these provisos are needed. 

(con \I. 'I; '2) = (can v. td: 1'J provided v ¢ 4J12 

(con v. 11; '2) :=:: 'I ; (can v. 12) provided v ¢ ¢II and II :::: !II 

(eonv.t)=1 provided v ¢ 4JI 

can may be expected LQ satisfy other common quantifier rules: 

(can v ./) = (conu ./[V\UJ) provided u. ¢ ¢I 

equals 8; (cong'. equals g'; I}:::: equals g; 1[8"\g) 

15 For c:w\IIin cl&!;c:s of probkm. a eon wl\itil signalled IllllfiClllion fRight be of benefit 
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5.12 

Law 5.103 

Laws OD 1f' 

The above law~ may be used to derive some properties of 11". but in general it will be as 
easy to deal with reasonin~ aroul cun and equals. S(l no derived laws will be presented 
here. 

Parallel Composition 

We shall handle proof trees thai bifurcate using structural combinators, as described 
in Section 5.10. There is, taowever, an added complication. in that the application of 
a tactic to a proof tree branch may lead to no .f&wgoaLr-the proof of that branch may 
be completed. That is to say. the type of proof nodes consists of empty nodes O. 
single nodes g, and compound nodes 81 II 81 <&1 and 82, being, in tum, empty, single 
or compound).16 These symbols will carry these meanings for the remainder of this 
section. 

Tactic parallel composition DO may be defined as a sttucrural combinator over this 

type by making the following: definitions for break and combine: 

b"'akll (Sl lis,) (s"S,)
 
break 9 ()
n

b"'akll 0 ()
 

combinell (81,82) 81 II 8'J
 

Of course, the application of basic rules must fail if they are applied to proof nodes 
other than single goals (i.e. 10 empty or compound node~). 

Clarity will generally be improved by removing the empty nodes from parallel 
compo~i(ion~as they arise. We add two basic law~: 

n.llidL ~~ (0 lis) :; S 
n.llidR == (sll 0) :; s , 

and then define a tactic parallel compositionJ 7 lO be the application ofthe appropriate 
~truClUrai combinalor. followed by an attempl 10 apply these identity law~: 

I} II '2 = (r, DO "l) ; !(rnlenuliidL I rnlenulfidR Iskip) 

Now, whil~t the abides property (Law 5.89) holds for ill tactic parallel composition 

( II )has this property only when the nullid rules are nOl invoked, i.e. only when neither 
'\ nor t2 completes a proof branch. 

[t, II t,): (t, II r,) = (11 ;1,) II (t, :1,) 
provided the t, sati~fy the conditions for Law 5.89 and those above 

-C,,".-.C',,,,::-..-,,",'-,---.--c-,-,-----,-----;C
'-111 OQ.lIIII ......1A1III abjod logic in ""hich ~ proof tn:es may divide illlO _l!Ian IWO lxanchcs (i.e. 

""lEn: IIpJIlicalillD of a rule 10 a JOI! may produce man:: lbarI two ~ubgoab), ItEtr may be some Y1IlIE 
in generalizing Ibis coosuuctioIl so IbM Cllmpound nodes may corllai.ll arbilnty lists of odier (p«eQtially 
compound) nodes. This Cll.mpouod SIIUl:tIII1: (1"IIlta" lbarI simply a lilll of liimple goak) mll.Sl: be retained, 
lIeYI:lIheless, if pamlIel cumposiOOn is 10 be in lilly way liimilar 10 the other suueuml oombil\llt(N'S, IIIId if 
tactics are 10 be able 10 ell.ploil the ~ present in the proof b'ee 

11A small mr.asun: of overIoiKIinl _rns ~ hen. 
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This definition pennits the definition of a parallel closure tactical---l(I) applies t to 
all the individual goals in a parallel composition: 

'OO---;ddP ) 
,tl) == 111"81,82. gl 1182 ---------t ,(i) 11,(1)

( Itrg.g·_....tt 

That definition is more accurately rendered: 

.. 0 ---; ,lOp ) 
t(~)==(JlX. !1r81,8zeSlllgz---------tXIIX)

( l1rgeg---------tt 

Parallel closure can be used to define me following usefullactical, which corre
sponds closely to THEN in 20BJ. It applies I} (0 its goal, and men applies 12 10 each of 
the resulting subgoals. The notation (a semicolon, wilh the dot replaced by an asterisk) 
is reminiscent of mal used for ma.~t2 being applied 10 each goal resulting from '1: 

II ; 12 == It ; t~a) 

Laws 
(r(II))W=t(ulLaw 5.104 

Proof 

(t(ul)(I) 

== (Jl X • equals 0
 
I(cong • equals g; ,.(1)
 

I(cong"g, 0 equn~ (g,1I g,); (X II X)) ) Definition of (i) and of 11" 

== (Jl X • equals 0 

equai, 0 )
con '.e wafs'"/

l(congeequalsg;(jlX. I( 8/ /9 g,) »)
l(cong!,g2·( 

equn~ (g; II 8'); (X II X)) 
I(congt ,g2 • equals (g1 II g2) ; (X II X») ) Definition of(~) and of 1r 

:= (JlX • equals 0 
equnld) 

I(cong. equals 8; I(coni • equals 8'; t)
( I(can g~. g~ • equals (g~ IIg;); (1(" 111(")) )) 

I{con g"g, 0 equaidg, II g,); (X II X)) ) Definition of Jl and (I) 

= (rX. equals 0 
equn" g ; eq",,~ 0 ) 

I(cong. lequals g; (cong'. equals g'; t) )
( 

lequals g; (congi,g; • equals (g~ Il g;); (t(l) Illn»)) 
l(con81,g2. equals (gIll 82); (X II X)) ) Law 5.11 and Law 5.97 

:= (rX. equals 0 
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~ ))I(coog. lequalsg;t( I(eong', ,g', 0 equals g ;equals (g~ II g',) ; (,ol II,Ol») 
I(eong"g, 0 equals (g, II g,) ; (X II X»)) Law, 5.95. 5.102 and 5.99 

= (pX 0 equals 0 
I(coog. (eqJUlls g; I) I laD) 

I(eong"g, 0 equals (g, II g,); (X II Xl) ) 
Laws 5.2, 5.95. 5.100, and 5.3 

= (pX 0 equals 0 
I(coog. eqJUlls g; t) 

I(eong"g, 0 equals (g, II g,); (X II Xl) ) Law 5.2 

=1(1) Definition of (I) 

o 

Law S.lOS ,\1) ;41) =: (tl ; f~n»)(I) provided thaltly
) satisfies the proviso 

for lhe II~abides law, and that 11 and ''l are terminating 

Proof: It suffices 10 show lha! ,~y) ; t~D} satisfies l.he recursive equation for (11 ;4A»)O): 

,~D} ;4") 
= equals 0; 41) 

1I(coogh g2 • equals (gl II g2) ; (,~I) 1I/\~))) ;4)
 

J(coog _ eqJUlls g ; (I) ; I~I) Definition of (I), and Law 5.6
 

= equols 0 ; t~l) 

l(congl,g2 - equols (gl II g:l); (/~l) II (1 1») ;41») 
l(coog_equolsg;rI ;41») Law 5.98 

= equals 0 
I(COOgl,g'l. equols (gl II g2); (U\l); 41») II (,\1); I~I»))) 

l(coDg-equohg;/l ;41») Lemmas 

The lemmas. used above are: 

1equols 0 ;4) = equals 0 
(I~l) 1I1~1»); r~l) =: «(IP); r~I}) II (t~l) ;t~·»)) 

The first one is a straightforward consequence of lhe laws prt:iented earlier. The 
second depends on the proviMl-allowing t~·) to be rewrinen as. t~llllt~I). and allowing 
the abides law to be used. 

(til) II r~I») ; t~l) 

=:: (til) Il till); (41) 1141») Definition of (I) 

=:: (t~l) ; t~I») II (till; 411 ) Abides Law 5.103 
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o 
These laws give rise 10 some derived laws aboUl the generalized sequential composi
tion (;): 

Law 5.106 tl ; (:2; 13) :::: (ll ~ (2); (3 provided the t, are terminating, and 
provided '2 satisfies the proviso for the II-abides law 

Proof" 

11 ; (t2 ; (3) 

:::: 11 : (12; t~'I))(») Definition of; 

:::: I, ; (t~U); t~liJ) Law 5.105 

::: (tl ; t~N)); t1 i ) Law 5.5 

::: (tl ; (2);'3 Definition of; 

o 

Law 5.107 skip; t :::: t(U) 

Law 5.108 t; skip:::: t 

Law 5.109 rail;t:::: rail:::: t; rail 

Law 5.110 (II 1(2); t3 ::= t1 ; t3 I t2; [3 

Proof" 

(Il 1(2) ; '3 

:::: (Ill (2) ;4") Definition of; 

::= II ; 11 11 ) I /2 ; t~lI) Law 5.6 

=tj;t3I t2;t3 Definition of; 

o 

5.13 Other Derived Laws 

This seclion is present for the sake of completeness; it lists various laws which were 
omitted from the earlier account, but seem useful nevertheless. 

Law 5.111 succs abort :::: abort 

These two laws may be strengthened 10 equalities if I is guaranleed to terminate 
(Laws 5.50 and 5.51): 

Law 5.112 succs t ;fails t == fails t ; succs t !;r rail 

Law 5.113 fails I Isuccs t == succs t Ifails t !;.r skip 
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Law 5.114 

Law 5.115 

Law 5.116 

Law 5.117 

Law 5.118 

Law 5.119 

Law 5.11.0 

Law 5.121 

!(succs, I t) == suces r 

!(t )suus.) == !I 

ttl/ails r == !(t Iskip) == fails t III 

I} I '2 == I'}. 111 provided suces II == fails'2 

Proof: 

succs I} == fails 1'1
 

::::). suces 11 I;r fails 12 A fails 12 ,!;r suces 11
 

=> SIKes'l I;r jails 12 A suces 12 ~r fails II
 

=> I} I 12 I;r '2 I I} A 12 111 I;r 11 I I'}.
 

=>111'2=1'11 11
 

1(1; d Ifails I) == !(t; d Iskip) provided suces d := s.kip 

fails(r; d) c;r fails t provided suces d !;;;r sldp 

Proof' 

fails(,; d)
 

== fails(J ; slices d)
 

I;r fails(, ; skip)
 

=/ails t
 

!(t ; d Isldp) I;r !(t ; d Ifails t) provided suces d I;r skip 

Proof: 

!(t; d Iskip)
 

=!(t; d Itail,(r; d))
 

I;r 1(1; d Ifails I)
 

!(II 1'2) == !(jails II ; '2 I,]) 

!(tl \ '2) 

= !(!(r, Ir,)
 
== !(!tl Ifails I} ; !12)
 

== !(II jfails I) ; /:z)
 

== !(failstt ; 12 Ill)
 

property of I;T 

Laws 5.37,5.22 

Law 5.69 

property of I;r 

o 

Law 5.35 

supposition 

LawS.1 

o 

Law 5.116 

Law 5.119 

o 

Law 5.33 

Law 5.24 

Laws 5.14 and 5.13 

Law 5.69 



Chapter 6 

Applications of Tactics 

A
WAS COMMENTED at the beginning ofChapter 5. the tactic language described 
above seems to be very wide in its applicability. This chapter looks at a number 
of these applications. and aims to demonstrale bow the language can be used 

to improve the readability and explore properties of some of the tactics previQusly 
presented, and how the algebraic laws previously given can be of value in validating 
and Iransfonning these lacticS. 

1bese tactics serve to demonstrate both the power of lhe language and its Iimj~ 

tations. Convincing proofs of tactic correctness can be consuucted--lhough for all 
but the simplest tactics, these are something of a (our de force. Such proofs serve to 
highlight the properties of the application area which are being exploited: the proofof 
tactic equivalence generally fails until some property of the basic rules is assumed. 

6.1 Associative/Commutative Matching 

norm Improved 

The tactic presented in Section 5.2 for normalizing (i.e. left-associating) associative 
expressions can be improved upon, and shown to be correct. The improvement became 
apparent to the author in the process of the correctness argument which follows 

An improved version of norm is 

norm:;:: (!exhausr(ruJecossa); (5kip~norm)) IskJp 

(The difference being that a recursive inSlallce of norm has been replaced by a skip. 
This leads to an efficiency improvement in execution of some 25%.) 

In order lo demonstrale that this tactic does indeed produce leons in 'nonnal fonn'. 
consider the following tactic, which check.s for nonnal form. It succeeds when its 
argument is in normal fonn. and fails otherwise: 

isnormal :;:: fails compound I (faiLr compound) ~ isnormal 
compound = skip ~ oIdp 

97 



98 CHA1'7ER 6. APPUCATIONS OF TACTICS 

(Note that imormaJ == !irlWrmal.) 
It is clear l.hat lIOmI always terminates: each recursive application of norm is wilhin 

lhe scope of a ["6ij Any term presented to lIQrm will contain only finitely many 
inslallces of ill, and so the number of iterations is bounded. l As a result. in order 
to show rhat norm always produces a goal which is in 'normal' form. il suffices (0 
prove that succs(!norm ; isnomUJl) =: succs(nonn). In order to do this. some lemmas 
are useful: 

Lemma 6.1.1 fails compound; isnomuJ1 =- fails compoul1d 

Proof" 

fails compowuJ; isnorm£ll 

== fails compound; 

(jails compound Ifails compound~ iSlIDnnal) Definition of isnormal 

::= fairs compound ;/aifs compound 

lfails compound; (jails compound [!J isnormal) Law 5.11 

= failS compound 

[tails compound; (jails compound 88 isnonnal) Law 5.48 

= fails compound Ifail Law 6.1 and definition of compowui 

= fails compound Law 5.2 

o 

Lemma 6.1.2 fails(!exhausl(ru1e cossa) ; (skip ~norm» = jails compound 

Proof" 

joils(!exhausr(rulecossa) ; (skip ~ norm»
 

;;;; jails(!exhaust(rulecossa); succs(sldp ~ norm» Law 5.35
 

;;;; jails(!e.xJwust(ruleeossa) ; succs(skip ~ skip)
 

Law 5.94, and suees norm ;;;; sldp 

::= jails(succs(skip fffil skip) ; !exhausr( rule cossa» Property of cossa 

::= jails(suees{skip ~ skip) ; succs(!exhaust(rulecossa») Law 5.35 

= jails(sllces(skip ~ skip) : sltip) Law 5.83 

;;;;jails(skiptac~ sldp) Laws 5.\ and 5.22 

:::: jails compound Definition of compound 

The pro~y of eossa used in this proof is thaI il does not effect the success Dr failure 
of skip ~ skip, and so 

!exhaust(rule eossa) ; succs(skip ~ sldp) 
= suecs(skip ~ skip) ; !exhauSI(nalecossa); 

o 
ITertnih:lI::ion alR> depends on the ~rminalion of ahalu/(nile cosso). nu.. is assllfed by a ~irnilar~

menl, then: only being fim~ly ll'IOUIy CflJsa-m:Il:~ in a fimte IUTt1, and fresh ~ nO! bciJIg introduced. 
by applit4tloD.i of cu.uu 
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LeDllD8 6.1.3 !e.tha-'lSl(ro.Iecossa); l(sldp ~ norm); isnonnal =
 
!ahalLtt(ndecossa); (skip ~ (!norm; isno/"IMl»
 

Proof" Noting the law 

Law 6.1 (I, [!] I,) ;faib(.1dp [!] skip) =fllll =!aib(.1dp [!] skip) ; (/, ~ I,) 

we observe fir!;t that 

!(sldp ~ norm) ; isnonnal 

=!(skip ~ norm) ; (jails compound I (faits compound) ~ isnof77llll) 

Definition of ;snormtJl 

= !(skip fffil norm) ;/ails compound'i 

J(sldp ~ norm); (fails compouna'~ isnormal) Law5.11 

= fall I !(sldp ~ norm); (fail.s compound~ isnormal) 

Laws 6.1 and 5.92 

= (skip ~ !norm) ; (fails compound ~ isnormal) Laws 5.2 and 5.92 

= fails compoJUld ~ !norm ; isnoT71lLl1 

Now, it is a property of the rule cossa that 

fails compound ~ sldp =fails(ruIe cossa) ; (sldp ~ slOp) 

And so 

!ahaW'l(rulecossa) ; !(skip ~ norm) ; jsno/"IMI 

= !ahaust(roJecossa) ;failscompound~!norm; imormal Above 

= !exhaust(ndecossa); (fails compound~ skip); 

(skip ~ !norm; isno/"IMJ) Laws 5.89 and 5.1 

== !exhaust(ndecossa) ;/ails(rulecossa); 

(sk.lp~sldp); (sldp~ !norm; isnorma/) Above 

== !e:chaMSt(rukcossa) ; (skip ~ !norm; isnormal) Laws 5.87 and 5.1 

o 
This proof demonstrat.r:s a va1uabl~ lechni~made possible by the abides law for 

structural combinalors--facoorizing a tactic (I ~ (2 as 

tl ~ skip ; skip ~ t2 

It also demonstrates the practical effect of lbe comment thai compleleness is relative 
to the rule system in use---this proof has used a property of !he rule CO$sa which 
(inherently) cannal be proved within the tactic language. 

Theorem 6.1.4 succs(!norm ; iSrJormaJ) =succ.r(norm) 
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Prool Firsl, observe Ihat 

succs(norm) 

=succs(le.xhaust{nde cassa) ; (skip 00 norm) Iskip) 

Definition of norm 

=!!(succs(!e.xhaust(rulecossa) ; (skip f@lnorm» I skip) 

Laws 5.26 and 5.33 

= !(succs(!exhaust(roJecossa); succs(sklp rffil norm» 

[fails(!e.maus/(rulecossa) ; (sldp ~ norm») Laws 5.24 and 5.42 

= !(succs(!exhausf(ndecossa) ; succs(skip ~ norm) 

[fails compound) Lemma 6.1.2 

= !(succs(!exhausc(roJecossa) ; (sldp ~ succs norm» 

[fails compound) Law 5.94 

Moreover, 

succs(!nonn ; isnormal) 

=succs(!(!exhausl(ndecossa) ; (sldp ~ norm) Iskip) ; imannat) 

Definition of norm 

= succs(!(!exhausr(ndecossa); (skip ~ lnonn) Iskip) ; iSMrmal) 

Laws 5.14. 5.13, 5.8 and 5.92 

:::: succs«!e.maust(ndecossa); (skip [!] !nonn); ;.mannal) 

[fails(!erhausr(ruIe casso) ; (sldp ~ !nonn» ; isnormal) 

Laws 5.24 and 5.6 

= succs«!exhaust(ndecossa); (sldp~ !norm); isno177Jll1) 

[fails compound; isnormal) Lemma 6.1.2 

::::: succs((!exhaust(rulecossa); (sldp~ !norm); isno177JllI) 

[fails compound) Lemma 6.1.1 

::::: !(succs(!exhaust(rolecossa); (skip ~ !norm); (monnat) 

[fails compound) Laws 5.26 and 5.41 

== !(succs(!e.maust(rulecossa); (sldp ~ (!norm; isnormal))) 

[fails compound) Lemma 6.1.3 

== !(succs(!e.dJaust(rulecosso) ; succs(skip ~ (!nonn ; isnormal))) 

[fails compound) Law 5.42 

== !(succs(!exhaust(ruk! cossa) ; (skip ~ succs(!norm; isnormal))) 

[fails compound) Law 5.94 

Therefore, since succs norm and succs(!norm ; isnormal) satisfy Ihe same recursive 
equation, we have, by Theorem 5.8.2, thallhey are equal. 0 
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Wider Improvements 

The whole associative-instance·genera.lingtactic can be improved by callinSl!Onn only 
once, and using calls ofe:dlawt(nlecossa) on recursive calls: 

assocs' = !nonn; assocrec 
assocrec = (!e.thaiUl(ndecossa); e:dlawl(assOC); 

(assocrec~assocrec») Iskip 

assocs' should be equal 10 the assocs presented in Section 5.2, bUI a proof is not 
attempted here. 

Efficiency can be improved further by reduc:ing the number of duplicate instances 
which w:rocs' produces. One way in which to do this is 10 introduee a tactic which 
guards the ["CCl1J"Sive call of assoc ~ assoc--a..llowing il to happen only if it will 
produce any more associative instances; i.e. only if it will be applied to eL ffi (e2 EEl e3) 
OT (el ffi e2) ffi e3· 

guard = SIlCCS(guardaprl Iguardexpr2) 

guardexprl ('ldp~(sklp~sklp)) 
guardexpr2 ((sklP[j8sklp) ~wp) 

assocrec (!e:dlawr(rule cossa) ; e:dlallst(assoc); 

guard; (assocrec' ~ assocrec'») Iskip 

Without this guard, the nwnber of duplicate~wsvery quickly with the size of the 
expression-as each application ofassocrec ~ assocrec entails. al SOUle point, a skip 
which repeats the goal expression. Because assocrec differs in its lisl of outcomes 
from assocrec, the two are n.ot equivalent as tactics.2 

6.2 A Tactic Proof of Lemma 5.4.4 

Some of the proofs in Chapler 5 are very algorithmic in nalure. The obvious way 10 
represent these fonnally is lD convert them into tactics.:I This section presents some 
tactics which might be used 10 give a demonSlnltioR of the correctness of Lemma 5.4.4 
(for the cut-free hmguage. but using the basic rules involving ClI/l03ccompiish right
distribution for sequential tactics). 

1be Laws 5.1-5.18, will be the basic rules of the instance of !he lBCtie language 
used here. 1bey will be referred-to by (hopefully obvious) names, rad1er than numbers, 
for ease of reading. 

io..c t:al'l imqiDl: Ihar. a 'umque irIslDDocs' operlCJJ----IISCd like eN'. bul prodllClllg • list of a1lemllti...es 
whit"h W~ all dilJCl'I::Dl, mipl be a ~ful lIddition m me laCtic 1aInguqe. We might tbcD c:xpecl to be 
able to prOYe II1Ijq IUJOCr« =:: iWq wMlCIa!. The YllIIIC of such aD 0p:Jat0r would depend 0lI the: rea.iYe 
efficimck:s of suimbly fi.beriJlg!be li&l of0UlC0mClI. lIIId of applying d1I: s~!-=tics roore often IhiIn 
~UId CIIhcnr.1sc be~. 

3Edsgel" DiJQlra has ~ IlS1Ilg c:oropuwioBaI 1ICdIAiqurs for proving I IlIII.ge of ~mari£&I 
thco:Jrerns. See, for eumpIc (Dij94]. 
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Into Normal Form
 

The following tactic converts an arbitrary laCtic into (cut-free) normal form.
 

norm = j.jX.
 
11" • sldp ----t !ik.ip
 
11" • rail ----t skip
 
11" r • rule r --+ skip
 

rule/ai/ida )
IruJejaiJjdb11"[1,[2. '1112 ----t (xDJX); r 
1·lOp 
rule/ai/zeroa 
I ruJejaifzerob 
! rule siipida 

1Tfl,'2. tl ;/2 --+ (X[JX);! I role siipidb 
I role Idislr ; X 
IrdismQc ; X 
Isidp 

All of the components of this lactic are in the set of basic laws, e:tcept the lactic 
rdistrtac. which applies the left distributive law (5,11) if possible (thai is, if the term 
on the righi-hand side of the sequential composition can be replaced by the cut version 
of itself; i.e. if j( is sequential). 

rdislnac ==	 (makecuIDskip);
 
rule rdislr;
 
(u"makecul ITJ skip)
 

Tactics rMkecut and urvnllJun:ut add cuts 10 those tactics which may be cut withoul 
changing tlleir meaning--the sf'quenliLJl taeties. This corresponds 10 the proof in 
Lemma 5.6.2. . 

makecut =	 1r. skip ---40 rule cUlskip
 
111' • faU ---40 rule cut/ail
 
11T r. rule r ---40 rulecut~Je
 

l1Ttl,t2.tl;1:1---40 (makecul[)maJcecut);
 
(rulef'utseq') 

uflmaiecul = 11'. !skip -----1' rulecuLsiip 
11T • !fail -----1' rule cut/ail 
111' r • ! rule r -----1' rule cut~le 

1 'IT £1 .12 •.I( !/l ; !t2) -----1' rule CU£seql; 
(uflmo.kecutD unmakecut) 

After the main tactic has executed, il is necessary [0 move the brackets so that all 
of the ';'s and '/'s are asSQl;:ialed 10 the left. This is readily accomplished by the tactic 
norm of Section 5.2. Here we shall use instantiations of this tactic as leftassocseq (10 

associate sequential compositions 10 the left) and as lefta:rsocalt (to do the same for 
allemations). 

Since a laCtic in normal fonn will consisl of (pOtentially) many sequential compo
sitions separated by alternations, a recursive version of Jejtassocseq is needed: 

redeftassocseq = (recleftassocseq OJ lefto..rsocseq) lleftasrocreq 
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The over·all normalisation is therefore 

norm' = norm ; lefta.rsocall ; !recleftassocseq 

Checking Normal Form 

Another tactic can be defined to check that its goal is in normal form. It fails if the 
lactic is not in normal form, and behaves like sldp otherwise. 

First, some tactics which recognise the atomic terms: 

isskip = 11". skip ----t skip
 
isru/e == 1tr _ ruler ----t liIdp
 
isfail = 11". raU ----t skip
 

Then recall that a tactic is in sequential fmm if it is skip, or it is an atomic rule, or it is 
the sequential composition of a non-skip sequential tactic and an atomic rule: 

isseq = isskip I isrule I (issei{ CD isrule)
 

isseq == isrule I (isseq [J isrule)
 

Finally, a laCtic is in normal fonn whenever it is ran, or it is sequential, or it is the 
alternation of a tactic in normal fonn with a sequential tactic: 

isnormal = is/ail Iisseq I (isnormaf OJ isseq)
 

isnormaf == isseq I (isnonnaf IT] isseq) .
 

Proof 

The goal of this subsection is to prove that the sequential composition 

!norm' ; isnormal 

always succeeds, and hence that norm' always produces a tactic in normal form. 
The tennination of lhese tactics is the first thing to prove. norm must terminate, 

since each recursion is guarded by an operation which strictly decreases the number 
of Is in the scope of a ;. norm' tenninates because norm does, and because lass must 
terminate on finite terms (at each recunoion. it is applied to a smaller ponion of the 
initial goal). Similar commenlS apply to isnormal. 

The su.ccessful termination of the tactic above may be approached by defining 
another nonnality-<:hecking tactic; one which does not expect the operators to be left
associated: 

isseqish isskip IisruJe I (isseqish' [J isseqishJ
)
 

isseqish' isrule I (isseqish' [J isseqish')
 

isnormish is/ail Iisseqish I (isnormishJ [I] isnormish)
 

isnormish' isseqish I (isnormish' OJ isnormish') .
 

Having made these definitions, we are in a position to prove that su.ccs(nonn' 
isnormal) == skip. lbe proof will depend on two lemmas: 
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UIDIDII6.2.1 

Lemma 6.2.2 

CHAPTER 6. APPUCATIONS OF TACTICS 

succs(isnormirh) == succs(leftassocatt .. !recleftassocuq .. isnonnaJ) 

Proof" (oulUne). We have, by Law 5.26 and the definition of isnomrish, 

"m '>!ail )
succs(isnormi.sh) =! Isuecs isseqish
 

( !succs(isnormlSh' OJ isflormish')
 

and. by the definition of isflOmuJl, Law 5.26, and Law 5.11: 

suecs(leftassocalt; !recleftassocseq; iSflomuJl) :=: 

succs(feftaSSOcalt ; !reclejtas!.ocseq; isfail) ) 
! Isuces(/ejtassocalt; !recleftassacseq; isseq) 

( Isuces(leftassocalt; !recleftassoe!.eq; (isflomklll IT] isseq») 

It suffices to show that the corresponding branches of the above terms are equal. 
For the first branch we must show that: 

suces islail = suecs(leftassocal(; !recltiftassaeseq; isfail) 

This is clear: if the goal is faU then leftassoeall and recleftassocseq will both skip; if 
it is nOl, then no amounl of associating will make it so. 

The second branch requires: 

suees isseqish :=: succs(leftassoealr; !recltiftassoeseq; isseq) 

Expanding the definition of recleftassocseq, and using Law 5.24 to remove the cur 
around it, and the distributive laws, the right-hand side can be rewritten to 

suees( (Ieftassoealr ; (recltiftassoeseq fTjleftasSOCSeq) ; isseq) 

I(leftassocalt ;fails(recleftassocseq [Dleftassocseq) ; leftassoeseq ; isseq) 

The first of these branches is identically fail (if the stroclUral combinator succeeds, 
then isseq fails, and vice versa). Since recleftassoeseq and Ieftassocseq never fail, 

(recleftassoeseq [0 leftasmcseq) fails if and only if skJp OJ skip does. faiLr(skip OJ 
skip) is equivalent 10 isseqish, and leftassocalt never fails, so the problem reduces to 
demonstrating 

isseqish = suecs(isseqish; leftassoc!.eq; isseq) 

which may be shown by eJlpanding the definition of leftaswcseq. 
The third branch needs: 

suees(isflormish l [0 isnormish' ) = 

suces{Jeftassoealt ; 'recleftassocseq; (isflomuJI' IT] isseq») 

This proceeds along similar lines, but is more complex. o 

suecs(!f1orm .. iSflormish) = skip 



105 6.2. A TAC11C PROOF OF lEMMA 5.4.4 

Proof' (outline). Since norm always succeeds, it suffices to show that !nonn;imormish 
succeeds whenever f1Qrtrl does. Ob5BVe that !norm = norm. A proof by sauctural 
induction over the possible forms of goals is appropriate. 

We have, by the defillition of nonn, and Law 5.26 

succs(!norm; isnonniJh) 
== !(succs(7i. sldp ~ isnormiJh) 

succs{7i. raD --+ isnormiJh) 
succs(7i r _ roIt r ---+ iSnDrmiJh) 

succs(7\' tl, 12.11 112 ---+ 
ruiefaWda ) 

(norm [IJ norm) ; ! InUe[aUidb ; imormish) 
( l<kIp 

succ.r(tr,. ,12 • 11 ; I] ---+ 
ruIe[ailzeroa.
Inde[ailzerob
IruIe,kipida 

(norm[Dnorm); ! ; isnormish) 
Iruk ldutr ; norm 
lniislrt& ; norm 

1ruhskipidb 

I""p 

The first three branches (base cases) are immediately equivalent to 

SUCCS(7\' • skip ---+ skip) 

etc. 'The founh may be rewritten, using Law 5.24 and the distributive laws, as 

SUCCS(7I' r1,'1 • rl 112 --+ 

no~ mno~) ;rulefailida; i'no~i,h )
(I(norm I norm); roItfailidb; isnormiJh ) 

I(norm I norm) :/ails(ruh[oilida) ;fails{rulefaWdb); isnormish 

Now. we have, as a property of/aWda. thai 

succs(ro!e/ailida; isnormish) 

== succs((isnormish [IJ isnormish); ruJelai/idtJ) 

and similar properties for the other two branches. Therefore. by Law 5.42. the abides 
law (5.89) and induction, we have l.hal the fourth branch succeeds exactly when that in 
norm. does. 

'The fifth branch may be treated similarly. 'The instances of succs(norm ;isnormish) 
which arise in the distributive cases can be asserted as being equivalent to SIlCCS norm, 
again by induction. a 

Tbeorem 6.1.3 succs(normJ 
,. isnormal) = Ikip 
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Proof" 

SUCC.f(nonn; iSllOrmish) == skip Lemma 6.2.2 

~ succs(norm; succsisnormish) 0=: skip Law S.42 

~ succs(norm; succs(Jeftassocalt; !recleftossocseq; isnorrnal)) = skip 

Lemma6.2.! 

.::::} succs(norm; ll'jiiusocall ; lreclejtossocseq; isnormal) == skip Law 5.42 

.::::} succs(norm' ; isnOrTJW1) == skip Definition of norm 

o 

6.3 Lirting 

One of the most interesting features of the encoding of W in 20Bl in Chapter 2 was 
the meta-rule described as rule-lifting. Rule-lifting enables the simple inference rules 
to be presented without reference to the unchanging parts of a goal. thus simplifying 
the presentation, and collecting most of the provisos regarding free variables, into one 
place: the meta-rule lift. 

In the 20BJ frame this rule was implemented as a function from rules 10 rule~. and 
extended 10 tactics by the use of a 20Bl primitive which convened a proof (pnxJuced 
using a tactic) into a rule (which could then be applied within the 'real' proof tree). In 
the new scheme of things, however, tactics may backtrack (i.e. produce altemaLives), 
whereas rules may not. 

As a result, two different versions of tactic· lifting are presenred here. The first 
implements tactic-lifting as a special structural combinalOr. This will be taken as the 
working definition in the laws which follow. The second approach is to implement 
tactic-lifting combined with cut-so that the approach taken in 20BJ (above) can be 
used. 

An unsatisfactory feature of the 20B1 encoding is the means by which terms are 
selected for lifting. This was accomplished by presenting three sequences of numbers 
to the meta-rule. These denoted positions ofpredicales (declarations) in the respective 
predicate (declaration) lists to which the rule was to be applied. This tended to restnc( 
unnecessarily the way in which lifting was used, and prevented general algebraic laws 
aboullifting from being established. 

The presentation here is generic over selection schemes. The relevant tacticals 
will cake a seleclion component s. and apply it to a goal g such that g i s denOies 
the goal fonned by selecting certain components from g, and g .J,. s denotes me goal 
formed by ex.cluding those components from g. A function t is a partial inverse for 
lhese, so that (g i s) t (g.J,. s) has the same semantic value as g-though lhe tenns 
may appear in a different order. In some selection schemes. t will be a DUe inverse, 
permining lift to satisfy rather more laws than when it is nOI. On fact. the requirement 
is that (gl t 82) is = BL and (gl t g2).J,. s = 82. Even if t. is carefully defined, 
rrus holds only for very well-behaved taerics. and so, in general. we do not have that 
comb 0 brk := id.) 

Tactic-lifting is essentially similar to applying a structural combinator--!>Ome parts 
of the goal are selected. and have the lifted tactic applied to them; other parts are not. 



6.3. UFT1NG 107 

Law 6.2 

and have sldp applied to them.4 

liftSI == comb. 0 (Jilrer....cross(t,lIk1p») 0 (brts) 

brl<sg = (gts,g.l.s) 

Comb(Sl,82} == 81 t 82 
COmb(SI II 82, 83) == comb{8l,83) II COmb{82,83)
 

comb(g, ()) = 0
 
comb(O,g) = 0
 

In place of me usual cross in this definition, ajiJ.ered version is needed. as lifting 
is subject 10 a side-<:oodition. filter...£ross relUms only those goal alternatives which 
satisfy the side-<:oodition.5 

jiller...J:rOSS (1"'2) (81,82) = «(fill(6l ,X~) 0 CroSS)(Sl, 82) 

filt(81,g~) ..... /oOk(III,82}· 

ot(SI,/t3) (hI, h2) iI. ...... /(proviso. hd == hi 
.ben((b" b,» 

-0 
pruviso g iI.(Q(decls 81) U Q(decls g»n 

~(pn!ds g2) ~ '" 
lben(g) 

-0 
An alternative approach to lifting is to define it in the same way as was done in the 

20BJ version; as a function acting upon rules. 

liftrule s r 8 == (combineJequent(g..1. s,g t s») .. (r (8 t s») 

combineJequent (81 ,82)..r = iI.(Q(decls 82) U o(decls x»)
 
n fI>(preds 8d == "
 

lben(g, tz)
 
-0 

As previously, this definition can be used to define a version of lifting for tactics
using a function Iacrule. which takes a tactic and returns a rule which behaves like the 
cill version of me tactic. 

lifttactic s r = nlle{liftrule S (lacrule I)) 

(The precise dewls of the definition of ta£rule are an artifact of the implementation 
dewls of rules. tactics and goals. Converting a tactic into a rule may seem to be a 
dangerous activity from soundness point of view, bul since a tactic may only make 
sound inferences. there is no problem with regarding it as a rule.) 

Laws 

lift S (fl ll~) = lift S 11 [lift S 12 

40bser'\0e thai a more geocnI r(nJl orliftiDg could be defiocd---lnany IUIes coukI be applied in parallel, 
to differing parl!l of !be sequent. with !be proviso being ehcctcd only OQI;Z, lit the mil. 

~Jiltttr...£ross toUkl be defined udng lhe fIIPClionaI prognunming fijkr, tu !hi: dcfinitioo iJenl avoids 
trealing pn:dicaIes as function5--dlil definitim tomes from. UI idea in (BUM); it is more in eeping with a 
Z ark of doing Ihings. 
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Proof' Let if, g) be the function which, when presented with a 2~tuple applles[ 10 the 
first argument and g to the second (Le. formally, if, g) :::: 'il{J 0 11"1,8 0 "'2). where 11"} 

and lI"J are projection functions). 

lift.J (Il i '2) 

== combY 0 fi/ter..£roSS(tl 112, skip} 0 brk of Definition of lift 

== comb. 0 filt 0 cross(r} 112, skip} 0 brio: s Definition offdler....cross 

== comb. ofilr 0 avss( ..... / O(tl' (2)'" skip) 0 brk s Definition of I 
:::: comb.. 0 fill 0 "'/ o(CroSS{tI 1 skip), CroSS(12, skip»O 0 brk j' 

Lemma (below) 

:::: comb. 0 r../ 0 'rid (fill.filr) 0 (CfUJ.I"(lt, slUp) , avss(/2 , skip)" 0 brio: s 

Property of Y id' ".... and flit 

:::: comb. 0 ,..., I o(jill 0 CroSS{II, skip) Jilt 0 croSS(t'l, skip})o 0 brk s 

Property of Yid and" 

:::: comb. 0 ,-, I 0(ftller....rross(tl, skip),filter-..eross(t2, skip»" 0 brk s 

Detinition ofjilrerJ..'ross 

::::,...../ o(i:omb., comb.)o 

(jilrer..nvss(tl, skip),jiltn...cross{t2' skip»° 0 brk s 

Property of Yid' .--. and. 

== .--./ o(comb. 0 filler-.cross(II' skip}, 

comb. 0 filter-.cRus(12, skip})O 0 brk S Property of <> and Y id 

= .--./ o (comb. 0 fi1rer..£ross(lj, skip) 0 brio: s, 

comb. 0 filrer..£ross(12, skip) 0 brio: s)O Property of <> 

= liftsh I/iftst2 Definition of I 

The Lerruna referred-to above is the property 

'"/ 0 (cross(rl , skip), cro,B'(r2l skip))O = cross('" / o(t} , 12)° ,skip} , 

which follows from the dislributivity of fl over'" in the first argument. o 

Llw 6.3 lift s (rl ; 12) = lift j' 11 ; lift j' r2 

provided brk 0 comb s =id and for all g. decls(t, g) = ded~ g 

Proof' (outline) lift s r is a special insUlIlce of a structural combinator r $., skip. If this 
behaves like any typical structural combinator, the proof is immediate: 

(rl e, skip) ; (12 ffi, skip) 

= (II ; '2) S., (skip; skip) Law 5.89 

== (11 ; (2) EBs skip Law 5.1 

The proof of me abides property (Law 5.89) is contingent upon the property comb 0 

brio: = id and upon me 'key lemma". which, for ijl,sklp will be 

,...., / 0 (tilter..£roj'.~(121 skip)). 0 fi/rer-.cross(rl' skip) = 
filrer..£ross('" / O{2. 0 tl, skip) 
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6.4. PRorosmONAL CALCULUS, AGAIN 

1be former is covered by the first proviso in the statement of the law; the latter 
is proved in the same way as in Section 5.10, provided the instances of filt do not 
interfere--the second proviso is sufficient to guarantee thls. 

Law 6.4 lift S (lift S I) = lift s I provided (& t s) t S =: g t S and (& t s)!-s = 0-) 

Proof: 

lift s (lift S 1)& 

=(comb. 0 filleT...£IVss{lijr S I, skip) <:I bTi) & Definition of lift 

= (comb. 0 filleT...£TOss{lift S 1, skip)) {& t s, & t s) Definition of brlc s 

= (comb. Ofi/l 0 n) {lift s 1 (& t s), {g .l- s) Definition offilteuTVss. etc. 

= (comb" filt 0 ill 
«comb. ofil",-,,""'(/, sldp) )(g t ,) t" (g t ,) • '), (g.,) 

Definition or lift. etc. 

= (comb. 0 fill 0 IT) 
«comb. 0 fil",-"",,,(t, sldp»)(g t " (f-n, (g .') Proviso 

~ (comb. 0 filt 0 ill (/(g t '), (g .,) 

:::: (comb. 0filleT...£IVss(t,sldp)) (8 t s, 8 .l-s) 

:::: (comb. ofilleT-CTOss(t, skip) o brks)& 

::::liftsl& 

The lemma is 

comb. ofi/teT...£TOss(l,sldp)(h, (1-)) == t h , 

Lemma 

Definition offiller...£ross. etc. 

Definition or brlc s 

Definition of lift 

which is proved by simple properties of comb (noting thai skip(l-) == ((1-)), that the 
filter condition is necessarily true in this case, and that comb(h, (1-)) :::: h t (I-) = h). 

o 
Law 6.5 lift S(I} ; lift S (2) = lift s II ; lift S 12 

provided s satisfies the provisos ror Laws 6.3 and 6.4 

Proof' 

lift S(I) ; lift s '2) 

== lift s I] ; lift s (lift s ':.l) Law 6.3 

:::: lifts,! ;liftsl2 Law 6.4 

o 

6.4 Propositional Calculus, again 

We are now in a position 10 return to the decision proced~ for the propositional 
calculus in JigsaW, described in Section 2.9. This section shows how 10 define this 
tactic in Angel-a process which immediately revealed 10 the author an efficiency
improving separation or concerns, detailed below. 
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First Approach 

Recall !.hal lhe fundamental propositional calculus lactic is proptiJc, which applies 
whichever propositional tal;:tic is appropriate. It is defined using a distributed version 
of I, calledjirsl,ti after a similar t8l;:tic in LeE 

first () == faU 
first (1:.0) == .r.-lfirsI.u 

propUlC == fmt{ rule truth, 
rule contradiction, 
rule negationL, 
rulenegationR, 
ruleconjunctionL, 
roIeconjunctionR, 
roIedisjuncrionL, 
roIedisjunctionR, 
rule implicationL; (liftlJirsr (rule thin) II skip), 
MIle implicarionR, 
rule equivalenceL, 
rule equivafenceR ) 

The addition after implicarianL is due to me fact that in ... l.0 of the Z Base Stan· 
dard [BN+92], this rule leaves the implication in its first premiss. Using a lifting 
selection scheme like Lhat chosen in JigsaW, we define /iftLfirst :::: lift{ ( ), (0), ( ». 

Having made Lhis definilion. it simply remains 10 define a tactic which can apply 
something of this form to every predicale in a sequent. 

toeach 1 (tr d, 'Ii, ~. (d I 'Ii I- ~) --+ {toeruhL 1)#+; (loeachR 1)#4') 

toeachL t lifrUast(lry(l; loe.ach I») 
toeachR 1 lifrRlasl(try(l; loeach I») 

As before, Lhe specialliflS, (lifrLlast and lijtRlart) are derived from lift, using seleclOrs 
which return Lhe sequent containing only the rightmost predicate of Lhe antecedent 
(consequent) of Lhe originaJ sequent 

Having made Lhese definitions, mprop, which applies propositional tactics exhaus
tively, is simply toeach proptac. 

An altemative approach is to write a lactic which is no! itself recursive-that is, it 
is more like repeat (i.e. ('}---but is appliedexhaustively. 

tryeachR t 

srepR(O, I) 
srepR(l, t) 

srepR(n + 1,t) 

tryeachL t 

srepL(O, I) 
srepL(l, t) 

srepL(n + 1, I) 

mprop2 

"The flame i~ now il\afXllr.lle 6ince il will apply as many or !he a11t:mali"es as poL~ibk. 



III 6.4. PROPOSmONAL CALCULUS, AGAIN 

The relationship between mprop and mprop2 is straightforward-the fanner is a 
deplh-fir.;t search (e.:h application of proploc is followed by a recunive instance of 
toeach proploC) whereas the latter is a hreadth-first search (when an application of 
proptm:: succeeds, its resuh is returned to the main goal sequent, which is processed 
in a cyclic manner; SoO af1er all of the original predica1eS have been tried, those which 
were produced by applications of proptm:: become inputs to proptac again). 

As such, both IaCtics may be a;pccted to produce lhe same resuh (wilhall proposi· 
tionaJ connectives removed}--but with the alternative goals (less complelcreductions) 
in differing orders. Hence we postulate lhal 

tmprop = Jmprop2 

bUI lhe complexilY of the lenos precludes arguments even at the informal level of lhe 
previous section. 

G rea"'r Efficiency 

In cxamining Ihese definitions, it became clear thai the fuU generality of proptac is 
inappropriate. Whenever proproc is applied. il js already apparenl whether h is being 
applied on the left- or the righi-hand side of a sequent Hence. we may partition 
proptac into IWO tactics: 

proplocL = firs, ( rule conmJdicnon, 
rule negaJionL, 
rule conjuncrionL, 
rule diJjlUlCoonL, 
ruleimplicationL; (liftL/im (role thin) II skip), 
rule equivalenceL ) 

propliJcR = fim (rolelflllh, 
rulenegationR, 
ruleconjunclionR, 
rule disjuncrumR, 
rule implicationR, 
ruleequivolenceR ) 

We may then define a new version of toeach: 

roeach' (tL' lrt) (.d,~,".(dl~f-")---> 
(toeachL td#'t ; (roeachR lrt)#t) 

roeachL (tL, Irt) liftLJast(try(rL; loeach' (tL,lrt»)) 
roeachR (fL. 'rt) liftRlast(try(trt; toeach' (tL,rrt))) 

and write mprop = toeach'(proplacL,proplocR). In a similar vein. mprop2 = 
exhaust(IT)'eachL proptm::L I tryeachR proprocR). 

These new tactics are, on average, SoOme 25% faster than those previously pre
sented. 

masswn 

To complete the decision procedure which is made possible using '"Prop or mprop2, a 
laCticai which tries to apply the assumption rule is needed. This can again be defined 



112 CHAPTER 6. APPUCATIONS OF TACTICS 

using a more general tactic, which applies a tactic applicable to a pair of goals: 

topaint == (7fd,p,'I',4a. (d Ip,w I- cI»---+ 
lift « ), (0), all) (lOpaid r) I rhinR 0 ; ropaiTS t) 

lopairSl == (7fd,'I',q,4ae(dlwl-q,cI»---+ 
lift (( ), (0), (0)) , , ,MoL 0 ;/opalrs' ,) 

masswm = topairs(nJleassumption) 

Decision Procedures 

A sufficient decision procedure for proposilional calculus is 

mprop ~ nuusum 

The first outcome of Ihis 13l;:tic is success (with no goals) if the initial goal is a tautol
ogy; it fails otherwise. In general, a much more efficient tactic is 

!mprop ~ massum , 

since il is only the first outeomeofmprop which is interesting; only Ihe firsl alternative 
is a candidate for consideration by manum. Since the oUlcome of mprop is interesting 
whelher or not massum is applicable, it will frequenlly be useful 10 use lhe tactic 

!mprop; rry(nuzssum) 

1hese tactics are dependenl on properties of selection (in order to cycle through 
the predicales, etc.). As such they will work only wilh Ihe non-invertiblefonns of lift. 
This points to the desirability of defining Iwo sons of lifting (or ralber, seleclion}-this 
one, and a liftinpIace version-which obeys more laws, but is harder to use in tactics 
such as lhese. 

6.5 Towards a Library of Tacticals 

This chapkr, together with the preceding one, has described a collection of taetieals; 
some particularly suited to sequent calculi like W, some more general in their appli~ 

cation: 

'ry t attempts to apply t; if t fails LO apply, it succ~ds, leaving the goal unchanged. 

lift S I applies t to a selection of predicates from the goal sequent. 

t" repeals tactic t, n times, failing if any of those iterations fails. 

exhaust t repeats lactic r as many times as possible (which may be zero) and always 
succeeds (provided 1 fails eventually), 

exhausl" 1 was not defined above, bUI behaves like exhaust. but with an upper limit (of 
n) on lite number of limes I is applied: exhauslo 1 = skip and emausl"+l I = 
t ; exhaust" Iskip. 
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/O~at:h t applies tactic t e~vely to eacb predicate (in depth-first fashion) in the 
goal sequent; tennina1.ing with success when no further points of applicability 
can be found. 

tryeach t attempts lo apply laCtic t lo eac:b predicate in the goal in turn, tenninating 
with success when that application is successful-or failing if there is no pred
icate to which t may be applied. aMust(tryeach t) performs a breadtb·first 
exhaustive application of I. 

topairs t behaves like tryeach t, except that each attempt to apply t involves one 
antecedem and one consequenl. 

assocop,,.~ generates associative instances of terms in op. by use of rule. 

Many of these laCticals are also present in other theorem proving systems; exhalLSt, 
for example. is almosl uniVel58.l. The names differ, of course, and some systems use 
different means of accomplishing the same effect In ZoliJ (where a logic very mvch 
like W is used) some of the above are present, and the effect of othen is accomplished 
via tactic keywords [Bla94]. 1bese may be defined pet-laCtic, bul some common ones 
are addr and jump, which tatgel application on panicular parts of the goal-akin to 
rule-lifting and structural combinators (the account in [Bla94] also highlights difficul
ties regarding lhe ordering of changing/unchanging predjcates~similar to problems 
which arise in the discussion of inverses in t .../.. and t (Section 6.3). 



Chapter 7 

Implementation using Gofer 

S
[NeE THE TACTIC LANGUAGE described above is given a semantics using lazy 
Lists. it lends itself to a simple implementalion in a lazy funetional programming 
language. This ChapleT describes a lightweight approach to the creation of such 

an implementalion. and outlines briefly a new prototype theorem-prover for Z, written 
in the Gofer language [lon91a]-<I dialect of Haskell. Initial results have been encour
aging, with execution speed some two orders of magnitude better than that achieved in 
20BI. 

The first section of this tactic describes how Ihe tactic language of Chapler 5 is 
implemented in Gofer, The following sections show how the encoding in 20BI may 
be re-cast in this seheme, and present a small case studv. This time, the deduclive 
system used is not W, but thai of LinieZ [BHW94]. 

7.1 LittleZ 

LittieZ is a sub-language of Z which contains lhe familiar cons!nJclS of set theory 
together with a typing structurr: following the sryJe used in the ryped lambda calcu
lus. Stephen Brien's thesis IBri95) describes LinieZ in some detail. and proposes a 
reasoning system for the language. 11lat system is used here. 

In contrast to W, judgements in this logic are sequents with a SIngle predicate as 
the consequent, and a list ofLittleZ paragraphs (given sets ([X]). declarations (x : X). 
definitions (x:= e), and predicates) as the antecedent. These paragraphs are separated 
by t. so a typical sequent might have the fann 

[X)jx,y, X t "~f xt I- p(,) 

The material in the antecedent sbould be understood as a Z specification, with each 
new paragraph in the scope of the previous ones. 

LIS 



116	 CHAPTER 7. IMPLEMENTATION USING GOFER 

7.2 Basic Tactic Interpreter 

lbe core of the implementation is a Gofer program which implements directly the 
definitions of Section 5.3: 

type TACTIC'" GOAL -> [GOl\L] 

skiptac 9 [gJ
 
failtac 9 lJ
 

thentac tl t2 '" concat. (map t2). t1
 
else-tac tl t2 '" concat. (toevery [tl, t2])
 
cutt~c t '" head'.t
 

The implementation of rule is slightly more complicated, for two reasons. Fif'j(, 

a means is needed for checking the side-condition g E domr. This is accomplished 
by having the basic rules return members of a structured datatype--eilher Fails, 
for applicaLion outside of lhe rule's domain, or Succs xs where xs is a (possibly 
empty) list of subgoals: 

dat~ TAGGED", Succs [SeQUENT]
 
I f"~ils
 

type RIJLE '"	 SEQUENT -> TAGGED 

rule can then be defined: 

rule RULE -> TACTIC
 
rule r (Singl s) Irs /=- F~il.!i =- [goalify t]
 

I otherwise =- []
 
",he.e Succs t '" r s
 

Second, the relationship between SEQUENT and GOAL (suggested by the presence of 
Singl sand goalify t above) is that rules return lists of SEQUENTs, whereas 
tactics operate on GOALs.--a compound struClUre, like thar outlined in Section 5.12. 
The function goal ify converts the fonner to the latler. 1 

data GOl\L	 Singl seQUENT
 
Parcomp GOl\L GOAL
 
Nogoal
 

goal fy [~] '" Singl ~
 

goal [y (~;y;ys) =- Parcomp (Sin';ll~) (goalify (y:ys))
 
goal fy [J = Nogo~l
 

Since such structured goals are present, we implement a structural combinator for 
applying lactics in parallel to parallel compositions of goals. 

partac tl t2 (map combJ.ne....Par).(cross Itl,t2]l.(breakJlar) 

comb ne....P~r [No';loal,';I2) '" g2
 
comb neJlar [gl,No';loal] " gl
 
comb neJlar [gl,g2J '" P~rcomp ';11 g2
 

breakJlar (Parcomp ';11 g2) =- [g1,';I2)
 
cross ts =- cpo (zipwl-thapply ts)
 

ITo need II. con~l:l'5ion function l~ a. hnk unfCltuDat Of COlIne. thE 1....0 ~L:Ilions Illll 
i~omorpluc---but !be plt'.o;cnWlon of lbt Nln 1.< I'JlOI"t re.xlablc If !hey n::tum lists. N~Ies.<. concise
oe.'iS would be irnproved by doing .tlllay .... Ith the lists of 0lucnts. Cor....cl"Sely. if this were a de.<cripcion 
of II gl:"llC"ric lmmc (raahl:r !han II. lJghtweight. .lldapt;tblc implcmcntallan) goa 1 i fy .... ould serve to make 
specific the ernbedding of the object: logic (r.cqucnts) In !be scntric f'nmewm (GOAL!;). 
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Finally, there is the implementation of:ll" to consider. Whilst a fully-general unifica· 
tion procedure could be written, it often suffices to make do with the pattern-matching 
in the underlying language. We define 

pitac t '1 = (t g) '1 

and Iben implement t} = (:II" v. 8 ---+ t) as 

tl '" pitac s 
wheresg=t 

s '" fll.iltac 

(where g is some suilable pattern with the variables of vfree). This eonstruction does 
not support backtracking (angelic choice) over the bound variable assignments---i.e. 
it is akin to !(:II"v. g ---+ I), except thai backtracking within t is still permitted. In 
general, this is not a problem, as the most general solution is found by the interpreter.2 

In order to make the basic combinators readily usable, we define infix operators for 
them, giving precedences as outlined in Section 5. L Unfortunately, the symbols' ;', 
, I I' and ' I' are reserved in Gofer. 

(. , .) thentac
 
(. II.) partac
 

(. I· ) elset.ac
 

infixl 5
 
i!1fixl 4 .11.
 
infixl 3 . I.
 

This set of definitions may be used as a starting-point for various lactic-based 
systems. The particular care over the implementation of rule is determined by the 
calculus which follows; the rest is quite generic. 

7.3 Syntax 

In order to make use of the laCtiC definitions, as with encoding W in 20B), the fusl 
step is to describe the syntax of LittieZ as a number of Gofer datatypes. This time, 
however, we encode the abnroct syntax, and must give explicit conslrUctors for each 
production. This reduces readability (and introduces a need for a separate parser), bot 
does give greater assurance than was possible in the encoding in 20B) that the terms 
subsequently used do indeed correspond ro the expected productions in the gnunmar. 

Predicates, for example, inhabit the dalatype PRED: 

2For arbilJ'llry ~ of con, this solution \1IIOUld IlOl: be suitable. bur. ror,.. (.....bl:re Ibc action or con 
is dctenninc:d by an instaDcc or ~1IaU).1his is 5uffic:jePI. 
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Pred ::= EJ;pr E Expr data FRED =c In EXPR EXPR 

EJ;pr = Expr Equ EXPR EXPR 

ZTrue 
,~ 

false 
,p=! 

ZFalse 
Not PRED 
And PRED FRED 

Pred" Pred Or FRED PRED 

Pred V Pred Imp PRED FRED 

Pred:::> Pred Iff PRED PRED 

Pred ~ Pred 
VName : Expr • Pred 
3 Name : Expr • Pred 

Forall NAME EXPR PRED 
Exists NAME EXPR FRED 
Subs tp SUBST PRED 

GName := Exp, ~ Pred 

The meta·syntactic functions can then be defined over this dalatype in a very 
straightforward manner. phip relurns a set of values--and a datatype of selS is readily 
implemented in Gofer. Incompletenesses in this account will lead to exceptions being 
raised in execution. not to silent unexpected truth of side-conditions, as in 20BJ. 

phip (In e 5) ~ phie e 'union' phie s 
phip (Equ e v) : phie e 'union' phie v 
phip ZTrue ~ emptyset 
phip ZFalse ~ emptyset 
phip (Not p) = phip P 
phip (Or P Q) " phip P 'union' phip Q 

phip (And P Ql phip p 'union' phip q 
phip (Imp P Q) phip p 'union' phip q 
phip (Iff p Q) phip p 'union' phip q 
phip (For"ll )( e p) :0 phie e 'union' (phip p 'diff' (singleton x)) 

phip n.:xists x e p) "phie e 'union' (phip p 'diU' (singleton xl) 

7.4 Basic Rules 

The judgements of this logic are sequents which have a list of Z paragraphs on the 
left-hand side (antecedent). and a single Z predicate on the right (consequent), 

t~e SEQUENT = «(PAR] ,PREDI 

An inference rule is a partial function from one of these sequenls lo a list of subgoal 
sequents, It is implemented as a total function onto a disjoint union-if lhe (true) rule 
is applied within its domain, the result is placed in the pan of the union lagged with 
succs; if not, the result is Fai ls---see above. 

Most of the inference rules concern the consequent predicate; some are defined in 
terms of the los' antecedent paragraph, As very few rules refer to any of lhe other 
antecedents, and as Gofer offers pattem·matehing on cons-lists, the list of antecedents 
will be stored in reverse order. 

The basic propositional calculus rules, then, will be 

EI-PEI-Q andr (ps,p 'And' Q) SUCCS [ (ps,p) (ps,Ql 
!:I-Pi\Q andr Fails 

EI-Pi\Q 

ErP andEr Q (ps,p) Succs [ (ps,p 'And' Q) 

EI-Pi\Q 

ErQ 
andEl p (p5.q) Succs (ps,p 'And' Q} 
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ECP oclI' (ps,p 'Or' q) Suce,!; ( (ps,p) J 
El-pvQ orlr Fails 

ECP Dell (pS,p 'Or' ql Succs [ (pa, Q) 1 

EI- py Q orIl Pails 

EI-PVQ	 EtJ'I-R EtQI-R orE P Q (ps,r) Succs ( (pS,P 'Or' q), ({Predpar p) :ps, r), 

ECR (lPredpar II) :1'15, r) 

EtPI- Q impI (ps,p , IlI'lP , Q) SUCC9 [ ((Predpar p),ps,Ql 1 

EI-Po:::> Q Pails 

EI-P EI-Po:::>Q ""'" 
illlpE P Ips,'l) SUCCS (pS,p), (ps,p 'Imp' Q) J

nQ 
E I- !(Jue falseE (ps,p) SUCC5 (ps, ZFalsel I 

ECP 
Et~ P I- fabe notE (1'5,1') Succs «Predpar (Not p)) ,ps, ZFalse) J 

Eep 

Extending these to predicates is not hard: 

Ett:SI-P allI (ps, forall x s p) Succs [ ([Decl x 5) :ps,p) l 
EI- 'r/;{;S.P al11 '" Fails 

aUE S (ps,Substp(x,e) p) I x 'notin' phie e 
EI-':/z,S.P El-eES '" Suces ( (ps,Forsll x s pJ, (ps.e 'In' 5) ) 

EI-4.r: eDP al1E _ _ = fails 

The reader will notice immediately lhal there is a cenain loss of readability, as 
compared wilh the 20BI encoding (due to a larger number of consl:nJctor functions 
being present, and lhese being given wilh names, ralher than symbols) but lhal the 
encoding is more--or-Iess immediate, 

subst 

]n lhe 20B) encoding, substitution was :k:complished via a special rule; which invoked 
cenain OBD rewrite rules not nonna.lly applied in the rule-application rewriting. This 
implementation uses an inference rule which applies a me[a-funcLion subst to lhe 
current goals. The function subst is overloaded via Gofer's f}'p~ dllSS~S, and propa
gates subslitutions appropriately wilhin lhe goal. 

instance Subst PRED where 
subst(b 'Substp' (e 'In' sl) ~ 

(subst(b 'Subste' e)l'In'(sub8t(b 'Subste' 10)) 
subst(b 'Substp' (e 'Equ' ul) '" 

(subst(b 'Subste' e)) 'Equ' Isub8t(b 'Subste' ull 
8ub8t(b 'Substp' ZTrue} '" ZTrue 
15ubst(b 'Substp' ZFs18e} '" ZFalse 
15ubst(b 'Substp' (Not pI) '" Not (subst(b 'Substp' PI) 
15Ub8t(b 'Substp' (p 'And' GI)) " 

(subst(b	 'Subatp' p)I'And'(8ubat(b 'Substp' qll 

15ubst( (x,v) 'Substp' {Forall y s pI) 
I x 1= y ~~ y 'notin' phil'" v = 

Forall y (subst({x,v) 'Subste' a)) (8ubst(ix,v) 'Sublltp' pI) 
subst( (x,v) 'Sub8tp' (Exist8 y a pl) 
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I )< /; y &, Y 'notin' phie v ; 
~iats y (subst«x,v) 'Subste' al) (subst.«x,vl , SUbstp , PI) 

substib 'Substp' (Inop n el e2i) " 
Inop n (aubst(b 'Subste' ell) (aubat(b 'S.wste' e2l) 

aubSl p " p 

Notice the catch-all clause at the end-unrecognised expressions (those not of Ihe form 
~ x:= e Dp) are unchanged by subs!. 

Substitution is lhen invoked by a role: 

apply_subst (ps.ql succs [(map subst ps, subst <;I) J 

Making Ibe system behave like W 

Proofs in this new calculus seem 10 be ramer more contrived than those in W. h is 
usefullo construct tactics which accomphsh (approximately) the same inferences as 
the basic rules in W. 

Where W had one role for disjunclion in the consequent, this calculus has two 
(since lhe consequenf is a single predicatt}--one approach to taking account of this 
with a tactic is 10 put me twO in alternation; whichever one gives the correct result will 
(ultimately) be chosen. (Of course, this might be very inefficient in practice.) 

t_and " rule andI 
l:_or "rule orIl . I. rule orIr 
t_il:lp rule imp! 
t_not pitac t 

where t (Singl (D5,Not pJ) (rule notE) 
(cut_tac p) 
( (rule notE) 5wap_tac 

not_t assUl!Ltac 

·11· 
swaD_tac (thilU"_tac 1)) 

failtac 

The last tactic simulates the 'cross-over' rule for 1-...,. It is rather more complex:, 
entailing use of a logical cut: 

=-;;-;---;; assumption
1:1~ p f- ~ P 

Et..., pt..., ..., P I- false notJ 
""-'-";;;;:---;;c-''o-;- <wop
=1:",h"~"P1c.:...~-;;Pc'-f-,,fo::I,:.:.e EtP I- false . - notE swap, rkln

Et..., ..., P I- P I:t..., ..., Pf.P I- false 
Et..., ..., P I- false CUI..Jac{P) 

I:I-...,P nolE 

The tactic for I-V' is simply the alII rule. \1- is more complex:: 

tall = rule allI 

a11_t e = pit~c t 
where t (Singl «Predpar (Forall x .s p) l :Ds,q) I 

CUl:_"ac (SubstD(x,e) Dl .: 
(Irule (allE(s)) .:. laS5Uln_l:aC .11. skl.ptac)) 

II. 
skiDtac) 

" failtac 
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E!Vx:S.P EtVx:S.P
 
~Vx:S.p I-xES
 

E!Vx:S.P 
f- G<0: e DP E IV<0 S • PIG <0: e DP f- Q 

Et Vx:S.PI-Q 

7.5 A Case Study 

As a simple case study in the use of this new 1001. we present a proof of the first law 
in the Z mathematical toolkit (from ISpi92a. page 89]). 

In LittJc:Z, we might represent this law Il5 

[X]lx ,XIYX I Vx.X. (Vy, Xu¥y '" ~ (x~ y)) 
f-

X#}'~Y¥x 

The proofprtx:eeds by specializing the universal quantifiers in two different ways 
(to gain predicates containing (x ¥ y) and (y '# x)), then using the cross-over rules 
(tactics). Leibniz's rule, and the rule of reflection to complete the proof. 

Some infelicities in the 8Cl:ounl of o:-coDversion of quantified terms3 make the 
theorem above rather hard 10 prove, and so instead we demonstrate 

[XI tXt: xt}'j :Xt "Ix :X. (Vy: Xex,#y ¢>..., (x=y)) 
f-

Xl ¥ Yl .:::) }'l ¥ XI , 

by means of the following LaClic:~ 

tac " all_t_discharqe 2 (Ident "xl') 
all_t_discharqe 2 (Ident ·yl') 
iff_t '. thinr__ tac 1 t_illlP mp_tac 
cut_tac (Not{(Ident "yl")'Equ'(Ident 'xl')}} 
I 

t_not swap_tac not_t 
{t_tsbus ('yl',ldent 'yl'}) 
(rule (leibniz lldent 'xl"))) 
((subst_tac lz-ule z-efl)) 

·11· 
assum_tac) 

II. 
I lz-epeat_tac 5 dz-op_snd) 

swap_tac 
(all_t_diachaz-ge 2 IIdent 'yl') 
(all_t_diachaz-ge 4. rldent 'xl")} 
iff_t (z-epeat_tac 4. dz-op_snd) 
swap_tac mp_tac 4Sl>UlII...tac 

TIle laCtic al Lt.-discharge n used repeatedly above is d<:rived from al Lt. It 
makes use of the declaration in !.he nth position from the I- lO discharge the e E J" 

condilion which arises when al Lt is used: 

3lJl order to specialize d'lt Uftiooocnalty qIIIIIIli6cd .le:fTn far y. It is ~ tinll(I Q-Q;Jl1Yel'1 ltc Wuor 
qllllllllfi~. This ~ 10 be ilqlOUibk in ltc ~IIICCOWItof d'lt logic. 

t Which., in COIItrIIR 10 llX:llIlf-l"l* 2081 taeOc. eJeClItC5 in ItIs than om secoad 
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all_~_discharge n e all_t e 
((thinr_tac n '.assUllI_t....cl .11. subst_tac) 

7.6	 Discussion 

This chapter has described a simple implementation of a theorem-prover in Go/er. 
The same approach as the one deSl;:ribed here has been used LO implemem a number of 
tools-an implementation of part of W, a tool for resting the associativeJcommutalive 
tactics of Section 5.2. and a lactic·b~ uXlI for reasoning about laclics (permitting 
the animation of the normalizalion U)c-tic of Section 6.2). In each case. the soundness 
of the implementation is easy 10 verify. the execution is quick, and the user interface is 

poo'. 
The ease with which this implementation is constructed may be contrasted with 

the effon involved in the production of the encoding of Win 208J. Certainly, Gofer 
provides a much more stable platform for implementation than does 20BI. Likewise, 
the deductive sySlem used here has benefited from IWO more years' consideration
and from feedback regarding the usability of W. The encoding is also made easier by 
being the second such piece of work that the implementor has undenaken. 

Since one of the most significant performance problems with 20BI came in the 
checking of side-conditions, we must be concerned with whether the same problem 
is likely to arise here. Initial indications are Ihat it will nOI be so serious a difficuhy. 
This is both because the tool is much faster 10 begin with (but noCe that the com
plexity of the calculations rises exponenliaJly with the depth of schema nesting), and 
because this logic presents fewer instances where bound/free variable calculation for 
the whole sequent are required. If performance problems do become a scrious prob
lem, it may be necessary 10 use a more advanced functionaJ programming technique 
(monads [Wad93l, perhaps)--Io provide a means of ensuring that each schema has its 
free variables and alphabet calculated once only. 

User Interface 

The output from the tool is simple to improve-a simple pretty printer produces a 
readable ASCn rendering of the terms, or IMEX mark-up. Input to the tool IS, al 
presenl, only via the abstract syntax datatypes described above. AI, a resull, the goal 
in the previous section was enlered as 

Singl ( rPredpar neqdef. dec12, decl1] ,concl) 
where neqdef '" (Forall ·x" (Ioent "X") 

(Forall "y" (!dent "X") 
(((ldent ">{")'neq' (Ident "Y"))'Iff' 

Not«(ldent ">c") 'Equ'l1dent "Y"IIIII 
decll Do!cl "xl" (Ident "X") 
dec12 De!:"l ·yl- (Ident "X") 
conel (llden!;. "xl"I'neq'(Ident "yl"))'Imp' 

IIIdent "yl"!'neq'(Ident "xl")) 

Clearly, this is not practical. A parser wriuen in Gofer might be used here; a parser 
written with slalldard UNIX lools lex and yacc (providing translation into the form 
seen above) would be much more efficient, and provide a simple front-end for the tool. 
Inleractive use of a Gofer program is also possible; this would necessitate use of a 
parser for tactics, too. 
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A reasonable shon·tenn gDal. Ihen. is a theorem-pro'o'et with a 'command-line' 
interface. Specifications can be written in l:fl6X, or the Z standard interchange format. 
with goals inlerspened. each provided wilh a tactic. The tool wiD read a file of !!Ouch 
iDpUl., and OUtpUI a file wilh each goal replaced by the resull of applying its tactic to it. 

Relal4'd Work 

Of coune, lhere have been man.> previous implementations of thcorem-provers in 
functionallangui1ges. 1be approoch laken here is. al its core, similar lO many of them. 
The central idea is that theorems (or equivalently, proofs) are encoded as a datatype, 
and Ihat lhe slrong 'YpiDg ensures Ihat only sound theorems (proofs) can be produced. 

Probably the most successful of Ihese-and the originator of the DoliDD of a proof 
as i1 'safe dalatype' is LCF (as Edinburgh LCF [GMW79] and later Cambridge LCF 
[Pau87]). Thai system does nol have a primitive type of inference rules, but it uses 
a similarly small set of functions between theorems. The chief difference with the 
approach Iaken here is Ihat in LCF lacties are higher-order functions: as weB as 
returning lists of goals (corresponding 10 lhe parallel composition of goals above. not 
the allernaLion-LCF makes no allowance for allernative oUlComes) they also return 
proofs. wltich are functions deducing one Ihcorem from another: 

type proof" thu1 liGt -> thin;
 
type tactic" <;Ioal -> (<;Ioal list· proof);
 

The proof component is described as a validation. It must be a composition of in~ 

ference roles. Th.is gives JX'fentiaJly a more efficient implementation than the one 
described above. since rule application is deferred until the end of a proof. so Lime~ 

consuming cheeh can be talen oul of Ihe inleractive part of lhe proof activity. The 
user must therefore take care thai only valid lactics are used. otherwise the proof con~ 

strUction will have been in vain. Do-line checking of conditions---"rocessing power 
pennitting-may be less likely to lead to wasted effort. 

LCF is implemented in (and gave rise to) MI.. By contrast. choosing a lazy lan~ 

guage such as Gofer. makes slnlightforward implementation of backtraclring possible. 

In most projects. the first system bUlll is barely usable. 
Ie may be tao slow, too biB. awkward 10 use. or all three. 

There is no alternative bur ll) start again.. 

-Frederick P. Brooks. Jr. 
The Mythi'sl Man-Monch: Essays on Software Engineering 
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Conclusions 

T
HIS THESIS HAS DeSCRIBED the creation of one prototype theorem-prover for 
Z, and laid the groundwork for another. Both lools are demonstrably sound 
with respect to the published semantics of Z--and in this they are distinctive. 

Both have been used to demonstrate that the deductive systems which they encode are 
tractable for proof in Z. The development of such proofs-via tactics--has been given 

a ronnal software engineering treatment. 

8.1 Proof Tools 

Chaptet I presented some criteria by which a proof tool may be judged. The first of 
these was soundness: We requirement that any theorem which can be proved by the 
laoJ could also be demonsrratcd using the (published) semantics of (draft) Standard Z. 
By paying special anemion to this issue, a proof tool has been produced in which a 
user may place reasonable confidence, and the activity of producing and testing the 
1001 has shown up (minor) flaws in the presentation afthe deductive system on which 
it is based. 

The encoding of W in 20BJ also scores well on the user interface side, but falls 
down badly on efficiency---tbe situation is reversed for the tool described in Cbapter 7. 
Both have made an anempt aa providing a tactic library, and in bolh cases, that library 
remains incomplete and not the most efficient possible. No attempt is made adapt some 
of the well-known and powerful proof techniques from the more specialized world of 
automated theorem proving (resolution, forward chaining, unification, Knuth-Bendix 
completion, etc. ). Olapter 4 has discussed whether the rules of W are appropriate for 
the constnlction of a proof tool; the answer seems to be that they an: among the best 
available. 

Comparing Chapters 2 and 7, the relative merits of two different approaches to 
implementation can be seen. Whilst the second looks as though it will ultimately be 
more useful, the value of the first (the discipline involved in producing the encoding, 
and the ease of use of the resulting interface) should nOI be overlooked. 

125 
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The main rOle for such tools is in taking away some of the recbnical noise from 
a Z proof (i.e. the demonstralion of inlernal consistency, and. potentially, the proof 
of correctness of a data retinement), leaving the specifier to worry about !he deep 
issues involved (wht:ther the specification really captures the required behavioucof I.he 
system). Ideally, one's software engineering methodology should abstract away from 
thal noise, and leave the user dealing with the deep material. Clearly this is not the case 
with Z-in demonstrating (even) that a specification is self-consistent many mundane 
proof obligations arise. People use Z, and so they need a lOOl which leaves them able 
to devote time to the more important issues. Such an approach is akin, ideally, to other 
software engineering lOOls--the type checker, parrert etc-which find simple bugs, not 
profound ones. They help to spot well~fonned Ihroncs (those which obey the simple 
syntax and typing roles), not necessarily correct Ones. Ofcourse. the prooftool does do 
slightly better than this-if a fonnal proof of §orne deeper property of the specifll;:ation 
is required. it can be accomplished (with user guidance). 

8.2 Tactic Language 

The work-on the tactic language attempts to meet the software engineer's programming 
concerns. Having presented a general tactic language having a concise semantics and a 
complete transfonnational calculus, we may define tactics which can be used, re~used. 

and substituted with confidence. 
This may be contrasted with the tactic languages used by at least lwo popular 

commercial software engineering tools with proof components: B has a tactic1control 
language which is closely tied 10 the theory under consideration (changes in which may 
change the control structure); and Zola has a tactic language based on Lisp in which 
taclic behaviours may be modified by keywords in a variety ofnon-compositionaJ ways 
(see Section 6.5). 

'The fae! that the semantics is based on lists (rather than sets) gives rise 10 §orne 
unpleasant side-eonditions on laws---two tactics which produce the same allernatives, 
but with differing orders for those alternatives, are regarded as distinct Since any 
implementation of a tactic language will ultimately have a 5eCJ.uential character. il does 
not seem unreasonable to model this in the tactic semantics. Few would argue that in a 
tactic such as 1(t I skip), the applicalion of r is equally preferable with the application 
of skip. 

The angelic nondelerminism ('deep' backtracking) present in the tactic language 
permits the succinct eJl:pression of some tactics, especially those which requirest!fJrr:h" 
irrg, and those for which various alternatives need to be tried (e.g. the llSSOCS tactic). 
The structural combinators pennil tactics to be applied to sub-ell.pressions with ease. 
and in a more intuitive way than that used in Lisp (and hence Zola), or in OBJ3 (where 
sub-eJl:pressions are selected via a list of position numbers for ell.pressions within eJl:
pressions). The negative effect of using a semantics based on lists is seen most strongly 
in laws relating backtracking and structural combinators---transformations are possible 
only when most of the ractics are sequenl.ial (i.e. have the property t = !/). 

It may be commented that the tactic language presented here promotes reusability 
of a less-than-desirable kind. When a tactic is rewritten/improved, the old version 
can be left in place-in alternation after the new-so that if the new implementation 
should cause some subsequent tactic 10 fail, the system may backtrack and use !he 
old implementation instead. This would be poor style both because it may impair 
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efficiency and because jt might lead to code which would be: very hard to mainlain. 

Comparlsoo with Other Wort< 

The wan on the tactic language follows a long history ofwark in the theorem-proving 
and functional programming communities. 'The fuDdamentallaCticaJs introiuced here 
originate in the \lfO'l't on Edinburgh LCF [GMW79J. There, they appear as THEN 
and oRELSE----the I~r being a C"t version of our alternation operator. 11Ie LCF 
treatment of tactics differs from that presented here. in that LCFs inference rules are 
quite distinct from the set of tactics, and nO[ a subset, as we have presented them here. 
Rules are used for forwards proof; tactics are used in backwards. (goal-oriented) proof 
search, and rerum 'validation functions'. which are compositions of proof rules. As a 
result, the safe datatype is thai of proofs, not (as here) thai of tactics; tactics are valid if 
they are able to be: validated by compositions of primitive rules. Strongly valid tactics 
are related to our functionally conect ones.1 

Milner (Mil84] generalizes the ideas from LCF somewhat. observing how the 
notions present in tactic programming (goal, straa.egy, achievement, and failure) stand 
together in a Car more general setting than merely in the area of machine-assislrd proof. 

An independent semantics for LCF's laCtics is found in [Sch84]. Schmidt's goal 
is similar to ours--lhe discovery of a language which will facilitate 'formulation of 
high level algorithms that can be compared, analyzed, and even ported across theorem 
proving systems.' He does not present a formal treatment of failure, or of recursion. 

20B1 {GSHH92] builds on many of the ideas in LCF, but implements rules and 
tactics in the way which has been discussed above-with rules as a (clearly delineated) 
subsart of the son of laClics. The ELSE operator retains the semantics of LCF's 
ORELSE, though this may change in Later versions of the tool. 

Paulson describes a simple theorem-prover in {Pau9 L], in which the laCties are 
treated in a similar way to those in his Isabelle system. Here, as in the semantics 
presented in Chapter 5, the tacticals return sequences of alternatives. There are two al
ternation tactics: APPEND implements our alternation operator, whereas t 1 ORELSE 
t2 is equivalent to 11 I 'Jails 11 ; (2)' As a result, Isabelle's REPEAT t pemtits back
tracking within t, but not on the number ofrepeLitions of t (unlike t.thausl). Isabelle 
implements cut as DETERM. 'The semantics is given using the tacticals' ML defini
Lions; only one algebraic law is given--theone stating thai alLtac (i.e. skip) is an 
identity for THEN. 

Felty's t.ae;tic language [Fe193l is also very similar to that presented in this thesis, 
complete with the backtracking suggested by the a1temation tactical. Its semantics is 
given via its logic-programming implementation, and as such has a more relational 
style of approach than that seen here. Nevertheless, a cut version of orelse is 
presented, since such pruning of the proof-search is needed in inleractive use of the 
system she describes. No algebraic laws are given. 

The usefulness of lazy lists to implement backtracking has been known in func
tional programming circles for some time. Burge [Bur75) discusses such backtrack
ing in the context of top-down parsing, and Wadler [Wad85] presents a whole parser 
toolkit in this style. The parser combinaton are very similar to those given here. For 
eumple, li t x is a parser combinator which matches a string wbose first character 

l Sttongly valid tatiD; ~~ ....tuch CIIIntt Je.d 'up a blind alley'. If gi'ieo llD ~ (1Jl'O'GbIc) 

IID111. they MIInIId!.ioMIbk ,~. 
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is x. Parser combinalOB return a list of wples containing the matched portion of their 
argument Sttlllg in the first place. and the remaining siring in the second: 

lit. 'a' "apple' "({"a",'pple")] 
lit 'a' "han.u:La" = [] 

These combinators may be placed in alternate and sequential composition: 

alt (lit 'a') (lit 'b') "banana" = [l'b",'anana")] 

,sEq 1i5t2 {lit 'b'l (lit 'a') "banana' = [("ba","nana")] 

The exhaUSI tactical is coded as rep: 

rep (lit 'a') "aardllarlt" = 
[("aa'. "rdvarlt"). ("ill". "ardvarlt"). (", "aardvark' J J 

Thus we would expect the theory described in Cbapter 5 to be applicable to lhis work.
and to systems based on it. such as the parser described in [A..89]. Wadler notes that 
an added benefit afthis method of handling backtracking and failure: is the avoidance 
of any need to consider exception handling. 

Moreover this tactic language may be applied to another idea in the theorem
proving world: in LCFIHOL. rewriting is extensively used for simplification in 
theorem-proving. In (PauS3}, Paulson describes a means ofdirecting such conversions 
using combinators which closely mirror those present in the tactic language, A unified 
theory of such combinatonltaeticals may make implementation easier, and certainly 
makes for a more straightforward conceptual framework. 

8.3 Further Work 

The work with 20BJ can be considered as being at an end. Some serious bugs remain 
in 20BJ. and no further development work on that project is being undertaken. As a 
result, there seems to be litlle value in making the much-needed improvements in the 
implementation of W in 20BJ (even if it were clear how 10 improve the implemen
lalion). Nor is there much point in making improvements to the tactic library-but 
ideas from there may usefully be camed forward into the Gofer implementation-see 
below. 

The theory behind the tactic language could bear a linle tidying. Ideally, one would 
obtain a completeness result for the language including recursion (and. ideally, struc
tural combinators and panem,matching, too). Perhaps the most promising approach 10 

proving thaI recursive tactics Cilll be put into a nonnal fonn is the tactic-based approach 
of Section 6.2. A complete tactic-based theorem prover for reasoning about tactics 
would be an interesting curiosity, and may be useful for conducting meta-proofs about 
other tactic-based systems. 

A valuable contribution to the treatment of recursion would be to improve the 
rather vague trca.tmenl of tennination. A fonnal treabnent of sufficient conditions 
for tennination would be useful, or some other condition sufficient 10 guarantee that a 
recun;;ive equation describes a unique leasl fixed point (akin to the notion of guarded 
recursion in CSP (HoaSS, page 28). 

To proouce a usable proof tool for Z-al teasl insofar as providing a means of 
animating the logic presented in the slandard is concemed-it SClCms sensible to build 
on the implementation in Chapter 7, in the way outlined there-providing. alleast, a 
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Z proof tool with a command-line interface. Some of lhe work there is in construction 
of the parser, and the oucput routiDc:S. Most of the work, bowever, is in expanding the 
coverage from LittieZ to the whole language (Stephen Brien's thesis [Bri95] expliUns 
bow to do this), and provKling a Uletic library targceed upon proving Z specification 
propenies--complete with a formal description of how the tactics behave. 

The breadth of applicability of lhe tactic language could also be explored funher. 
The language might be used to express a range of algorithms used in theorem-proving 
and tmn-manipulation system&, and laws like those presented here used 10 lranSform 
and/or validate: them. Ideas for animating olher logics in Gofer, in the style used above, 
could lead 10 a toolkit for producing lightweight theorem proving tools-a lightweight 
logical framework. 

8.4 Finally 

This chapter ends wilh a quole from Edsger Dijkstta. He was asked for his opinion on 
the use of proof tools; he replied by asking why we should lel computer.-; take away 
our fun. I hope thai this lhesis has showed lila[ computers can take away the mundane 
bits of program verification-leaving us 10 have fun with the resl---and we can have 
fun directing the theorem provers too. 

A reusable Lbeorem is one which can be proved over and over again. 

1have no problem with people using automatf!d theorem provers.
 
PtnOnalIy 1 wvuJdn't like to do so:
 

why delegate fo a machine thal which is so much fun [D do for younelf?
 

-Edsgcr W Dijksll'a 
(paraphrasai, comments at MarktoberdorfSummer School, 1994) 



Bibliography
 

[Abr9J]	 J.-R. Abrial. A formal introduction to mathematical reasoning. Technical report. BP 
Research International, 1991. 

18041	 J. P. Bowen and M. J. C. Gordon. Z and HOL. In J. P. Bowen and J. A. Hall. 
editors, Z User Workshop, Cambridge 1994, Workshops in Computing, pages 141
161. Springer-Verlag, 1994. 

IBGH+92j	 R J. Boulton, A. D. Gordon, J. R. Harrison. J. M. J. Herben, and J. Van Tassel. E1i.
peneRee with embedding hardware description languages in HOL. In V. Stavridou, 
T. F. Melham. and R. T. Boute, editors. Theorem Provers i/1 Cicuir Design: Theory, 
Practice and Experien.ce: Proceedings of 1M IBJP TCll.VWG /0.2 Intef7U1tional Con
ference, lFlP Transactions A-IO, pages 129-156. North-Holland, J992 

[BHW94J	 S. M. Brien, W. T. Harwood. and J. C. P. Woodcock. logic and description in Z~like 

languages. April 1994. Submined to FACS. 

[Bir86]	 R. S. Bird. An introduction to the theory of lists. Technical Monograph PRG-56, 
Oxford University Computing Laboratory, Wolfson Building, Parks Road, OXford. 
OXI 3QO, UK, 1986. 

[Bir88]	 R. S. Bird. La::(ures on constructive functional programming. Technical Monograph 
PRG.69, Oxford Unive~ty Computing Laboratory, Wolfson Building, Parks Road, 
Oxford,OXI 3QO, UK, 1988. 

[BL74]	 0. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations 
and model. Technical report, MITRE Corporation, Bedford, MA, 1974. 

[Bla941	 K. Blackburn. Example material for a Balzac reference manual. Ref; ISSIHAT/ 
eSC/lll, February 1994.~ 

(BN+92]	 S. M. Brien, J. E. Nicholls, el al. Z base standard. ZIP Project Technical Repon 
ZlPIPRGJ921121, SRC Document: 132, Version 1.0, Oxford University Computing 
Laboratory, Wolfson Building, Parks Road. Oxford. OX I 3QO, UK, November 1992. 

[Bri92] Z Base Standard, March 1992. Version D.~. 

131 



132 BIBUOGRAPHY 

[Bri951	 S. M. Brien. A Model and logic for G~nericallyTyped Set Theory (Z). D.PhiI. thesis. 
University of Oxford. 1995. 

[Bro75]	 F. P. Brooks. Jr. TM Mythical Mart-Month: Essays on Software Engineering. Addison
Wesley. 1975. 

[BroS3]	 S. D. Brookes. A Model for Communicating Sequential Processu. D.Phil. thesis, 
University of Oxford, January 1983. 

[8579]	 R. S. Boyer and J. Suuther Moore. A Computational wg;c. Academic Press. Inc., 
1979. 

[Bur7S] W. H. Burge. Recursive Progmmming Techniques. Addison-Wesley, 1975. 

(Dij94]	 E. W. Dijkstra. The argument about the arithmetic mean and the geometric mean, 
heuristics inculded. In M. Broy, edHor, Deductive PtvglllmDesign, NATO ASI Series. 
Springer-Verlag. 1994. MarktoberdorfIntemational Summer School, 1994, Lo appear. 

[Dil90]	 A.Omer. Z: An lfllroductian to Formal Mer1u>ds. Wiley, Chichester, UK. 1990. 

(DMLP19]	 R. A. De Millo, R. J. Lipton, and A. J. Per/is. Social process and proofs of theorems 
and programs. Communications Of the ACM, 22:271-280, May 1979. 

/OS901	 E. W. Dijkstra and C. S. Schol~n. Predicate CalcII1JlS and Program Semantics. 
Springer-Verlag, 1990. 

[FeI93]	 A. Felty. Implementing tactics and tacticals in a higher-order logic programming 
language. Jou.mal ofAu.lOmaJed Reasoning, 11:43-81,1993. 

[R89)	 R. Frost and J. Launchbury. Constructing natural language interpreters in a lazy 
functionailanguage. The CampI/fer Joumal, 32(2):108-121,1989. 

[For92]	 Fonnal Systems (Europe), ltd. Faililres divergence rT!finement, User Manunl and 
Tutorial,I992. 

[GLW91]	 P. H. B. Gardiner, P. J. Lupton, and 1. C. P. Woodcock. A Simpler semantics for Z. In 
Nicholls [Nic91], pages 3-11. 

[GMW79]	 M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburglt LCF: A MecMnised 
LoRic ofComputation, 'iolume 78 of lNCS. Springer-Verlag, 1979. 

(Gar88l M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In 
G. Binwislle and P. A. Subrahmanyam, editors, VLSI SpecijicaJion, Verification and 
Synthesis. Kluwer Academic Publishers, 1988. 

[Gor94] M.1. C. Gordon. Pri'iate communication, 1994. 

[GSHH92] J. Goguen, A. Slevens, H. Hilberdink, and K. Hobley. 20Bl: A Metalogical 'Theorem 
Prover based on Equational Logic. Philosophical TrwuactiofLf of tlte Royal Sociery, 
Series A, 339:69-86, 1992. Also in C. A. R. Hoare and M. J. C. Gordon, edilOrs, 
MeCMniz.etJ Reasoning and Hardware Design, Prentice-Hall, 1992. 

{GW88] J. Goguen and T. Winkler. Introducing 0813. Technical Report SRl-CSl-88-9, SRI 
International, Computer Science Lab, August 1988. 



133 BmUOORAPH¥ 

[HHP91J	 R. Harper, F. Honsell, and G. PIo«bn. A framework for defining logics. ~pon series, 
LFCS, Departmem of Computer Science, University of Edinburgh. 1991. 

[H0085J	 C. A. R. Hoare. Communicating St!/jueflliJJl Processes. Prentice-Hall Inlenalional. 
1985. 

[HS85]	 C. A. R. Hoare and J. C. Shepherdson. editor'S. Mathematical Logic ami Prvgrwnmiflg 
I1mguages. Prentice Hall, 1985. 

[[CL931	 ICL Ltd. Turorial NOles 0/1 Proofin Z, 1993. Tutorial material at FME'93: buJusrria/
Strength Formal Methods. 

[JJLM91]	 C. B. Jones, K. D. Jones, P. A. lindsay, and R. Moore. mural: A Formal Development 
SUPporT System. Sprirlger Verlag, 1991. 

[IMT9I]	 D. Jordan, J. A. Mc:()ennid, and I. Toyn. CADiZ - computer aided design in Z. In 
Nicholls (Nic91). pages 93-104. 

[10090]	 C. B. Jones. SystemaJic Software D~elopmem Using VDM. Prenlice-HaJIIntcnational, 
second edition, 1990. 

[100918]	 M. P. Jones. A" lnlrodllctwn 10 Gofer, 1991. 

[Jon91b]	 R. B. Jones. Book review of (DiI90]. Science a/Compuler Programming, 16(3);286
288,1991. 

[Jon92] R. B. Jones. IQ.. ProofPower. DCS FACS FACTS, Series m, 1(1): \0-13, Winter 1992. 

[KB95]	 I. Kraan and P. BaJJmann. Implementing Z in Isabelle. In J. P. Bowen and M. G. 
Hinchey, editors, ZUM'95: The Z Formal SpecjficaJiDn Notation, volume 967 of 
!NCS, pages 355-373. Springer-Verlag, 1995. 

[LS87}	 1. L.oeckx and K. Sieber. The FaundiJ.tions 0/ Program VerificaJion. Wiley-Teubner 
Series in Computer Science, second edition, 1987. 

fMal~nal	 A. Martin. Encoding W: A Logic for Z in 20BJ. In Woodcock and Larsen (WL93], 
pages 462-481. 

{Mar93b] A. Manin. Infinite lists in Z. Draft paper, 1993. 

{Mi184J R. Milner. The use of machines 10 assist in rigorous proof. Philosophical Transactions 
oflhe Royal Sock,>', London. Series A, 312:411--422, 1984. Also in [HS85]. 

{Mor90]	 C. C. Morgan. Programming from Specifications. Series in Computer Science. 
Prentice-Halllntemational, 1990. 

[Nic91] J. E. Nicholls. editor. Z User 140rtrhop, Oxfom 1990, Workshops in Computing. 
Springer~Verlag, 1991. 

[ORSvH93] S. Owre, J. Rushby, N. Shankar, and F. von Henu. Fonnal verification for fault
tolerant architectw"cs: Some lessons learned. In Woodcock and Larsen [WL93], Pil8es 
482-500. 

(Par69] D. Park. Fixpoint induction and proofs of program properties. Machine In,elligence, 
5:59-78, 1969. 



134 BIBUOORAPHY 

(PauS3) L. Paulson. A higher-order implementation of rewriting. Science of Computer Pro
grrmuning, 3(2): 119-149.1983. 

[Pau87]	 L. C. Paulson. Logicand Compillation-fnterach'"e PTOOfwilh Cambridge LCF. CUP. 

1987. 

[Pau89]	 L. C. Paulson. The foundation of a generic theorem prover. JOllrnal of Automased 
Reasoning, 5:363--397. 1989. Also University of Cambridge Computer Laboratory 
Technical Report No. 130. 

[Pau90}	 L. C. Paulson. Isabelle: The nellt 700 theorem provers. In P. Odifreddi. editor. Logic 
and CompulerScience, page.<; 361-385. Academic Press, 1990. 

[Pau91] L. C. Paulson. MLlar the Working Programmer. CUP, 1991. 

[Sch84]	 D. A. Schmidl A programming notation for tactical reasoning. In R. E. Shoslak IV, 
editor, 71h lntef7liltional Conference onAlllOnJl1red Deduction. Springer-Verlag, LNCS 
Volume: 170. 1984. 

ISH92J	 A. Stevens and K. Hobley. Mechanized Theorem Proving with 2081: A Tutoriol 
Introdllction, 1992. 

[Spi88] J. M. Spivey. Under:rtanding Z: A Specification lAnguoge and its Formal Semantics, 
volume 3 of Cambridge Tracts in Theoretical Compllter Science. Cambridge Univer
sity Press, January 1988. 

(Spi92a] J. M. Spivey. The Z Notatinn: A Reference Manuol. Prentice-Hall, second edition, 
1992. 

rSpi92b) J. Spivey. The fUll Manuol. Computing Science Consultancy. 2 Willow Close. 
Garsington. Oxford OX9 9AN. UK. 2nd edition, 1992. 

!SS90j	 J. M. Spivey and B. A. Sufrin. Type inference in Z. In D. Bj~mer. C. A. R. Hoare. 
and H. Langmaack. edhors, VDM'90: VDM and Z-Formal MerJwtis in Software 
Development, volume 428 of Lecture Notes in Compllter Science, pages 426-451. 
Springer-Verlag. 1990. 

IWad85]	 P. Wadler. How (0 replace failure by a list of successes. In FunctioMI Programming 
and Compllter Architecture. volume 201 of LNCS. pages 113-128. Springer-Verlag, 
September 1985. 

[Wad93]	 P. Wadler. Monads for functional programming. In M. Broy. editor. Progrom Design 
Calcllli, NATO ASI Series F. pages 233-264. Springer-Verlag. 1993. Marktoberdorr 
International Summer School, 1992. 

[WB92]	 J. C. P. Woodcock and S. M. Brien. W: A Logic for Z. In Proceedings 6th Z User 
Meeting. Springer·Verlag, 1992. 

[WD96]	 J. C. P. Woodcock and J. Davies. Using Z. Prentice-HaU, 1996. 

[WL93]	 J. C. P. Woodcock and P. G. Larsen. editors. FME'93: IndusIrial·Slrenglh Formal 
MetJwtis. volume 670 of Lectllre Notes in Computer Science. Springer-Verlag, 1993. 

[Woo92] J. C. P. Woodcock. Case Study: A Multilevel Security System, 1992. 



Appendix A 

On Lists 

A.I Definitions 

1be treatment of lists in this thesis is broadly derived from that in [Bir88]. The 
definitions which follow are consistent with those in that monograph (though there, 
Bird uses .......·li515 ra1her than the cons-lists described here). This being a thesis based 
on Z, the nOlabOn used is more Z-Jike than Bini's; in particular, we use ( ) for list 
brackets. instead of []. Z's lists an: strictly finite, but the definitions which follow also 
suffice for infinite lists (see IMar93b]). 

A list over a set X is either the empty list, or of the fonn..t : xs, where x is a member 
of X, andn is a list. The list Xl : X:l : .•• : x" : () is generally wrinenas (XL, "'2, .. •x,,). 
The partial lists of Sr:ction 5.8 are modelled as lists of the form XL :.1"2 : ..• : XII :.Lx. 
Infinite lists are limits of partialllst5. 

TIle map operator" IS defined thus: 

f· () = ()
f. (.r:.rs)::: (jx):f.. xs. 

The dual notion is 0 ('all appli~ 10'): 

()Ox ~ ()
 
If 'Mox = If x) , If'o x)
 

List concatenation is similarly defined: 

()""'ys=ys
 
(.r:xs)""ys = r: (xs""ys) .
 

Distributed concatenation is a special case of a more general operator, usually called 
'reduce' , and \Witten '/': 

<B/(x) = x
 
<B/(x" (x, 'xx)) = x, <B (<B/(x, 'xx))
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136 APPENDIX A. ON USTS 

1be head' function used here is a totalized version of the more common head 
function: 

h"'d'() ~ ()
 
head'(x:..u) = (x)
 

Function composition is the common (mathematical) backward composition, and 
'V defines a pairwise composition. 

(f 0 g)(x) = /(g(x)
 

(f'"g)x = (f x, g x)
 

The operators needed in Section 5.10 are slightly more complicated, thouglJ SliI\ 

standard list processing functions from [Bir88J.1 Firstly zip with Efl: 

()Y$()=() 
(I: IS) Ym (8: 85) = iI#ts =#gs
 

then{t III 8) ,... (IS Y \II 85)
 
ebe()
 

Note that # calculates the length of a list. This operator is used in the definition of 
structural combinawrs as Yid" The operator used to zip with is 'id'. since the desired 
resull is thai functions jn the first list be applied 10 arguments in the second: 

ideg 

= (idr)g 

= '8 

The cartesian product n, is defined using a lisl cross product: 

.uX. () = () 
xsX$(Y:Ys):::: «Ifly) • ..u):(XSXI£l}'S) 

11 ~ X~! 0 (Ui)O" 

1be behaviour of these two operatol'5 is illustrated thus: 

(a, b) x" (c, d, ,) (a tIt r,b@c,a$d,bEfld,a(fle,b$e) 

I1((a, b), (c), (d, ,}) (a, c, d), (b, c,d). (a, c, ,), (b, c, ,}) 

I HOWC"t'ef. in onJer to mab the 5U\ICllIfa.I rombl.ll.8lon; fail correctly (wh::n inputs ~ mis-mmcht:d), WI: 

lvuJizl: ~ definition of Y--makmg Il. n:nun the ernpi)' Ii5t ...tEn Its inplllS an: rnis-~d dillOW 

to pill: X~ /0 "" ( ), for 5lmUaUUIOl'IS (COIM:lltionaJJy, !his is (( »). 




