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Abstract

Background As a nexus of routine antibiotic use and zoonotic pathogen presence, the live-
stock farming environment is a potential hotspot for the emergence of zoonotic diseases and
antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as
intermediary hosts for pathogens as they undergo evolution prior to a spillover event. In light of
this, we are interested in characterizing the microbiome and resistome of dairy workers, whose
exposure to the livestock farming environment places them at risk for facilitating community
transmission of antibiotic resistant genes and emerging zoonotic diseases.

Results Using shotgun sequencing, we investigated differences in the taxonomy, diversity and
gene presence of the human gut microbiome of 10 dairy farm workers and 6 community controls,
supplementing these samples with additional publicly available gut metagenomes. We observed
greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes
in dairy workers’ metagenomes, and lower average gene diversity. We also found evidence of
commensal organism association with plasmid-mediated tetracycline resistance genes in both
dairy workers and community controls (including Faecalibacterium prausnitzii, Ligilactobacillus
animalis, and Simiaoa sunii). However, we did not find significant differences in the prevalence
of resistance genes or virulence factors overall, nor differences in the taxonomic composition of
dairy worker and community control metagenomes.

Conclusions This study presents the first metagenomics analysis of United States dairy work-
ers, providing insights into potential risks of exposure to antibiotics and pathogens in animal
farming environments. Previous metagenomic studies of livestock workers in China and Eu-
rope have reported increased abundance and carriage of antibiotic resistance genes in livestock
workers. While our investigation found no strong evidence for differences in the abundance or
carriage of antibiotic resistance genes and virulence factors between dairy worker and community
control gut metagenomes, we did observe patterns in the abundance of tetracycline resistance
genes and the prevalence of cephamycin resistance genes that is consistent with previous work.

Background

Next-generation sequencing has facilitated the study of entire microbial communities of culturable
and unculturable microorganisms, revealing the profound impact that the human gut microbiome
has on immune homeostasis [4, 5, 36], disease development [17, 30, 60, 91], and even resistance to
pathogen invasion [1, 10, 39, 41]. The human gut microbiota is influenced by both host genetics
[66, 90] and environmental factors, including diet [18, 51], geography [92], and medications [8, 53].
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Recent research suggests that environmental factors outweigh host genetics in shaping the gut
microbiome [29, 69]. Consequently, environments that are rich in antibiotic resistant organisms,
antibiotic residues, antibiotic resistance genes (ARGs), and/or zoonotic pathogens, such as livestock
farms, may pose significant risks to public health, as these environments may serve as hotspots for
antibiotic resistance and zoonotic disease emergence and propagation. Studies of changes to the
human microbiome and resistome in response to occupational exposure to livestock on farms may
shed light on the potential risks of these environments for transmission and spread of zoonotic
diseases and antibiotic resistance.

Modern farming practices and agricultural intensification have been linked to the emergence and
amplification of zoonotic diseases and antimicrobial resistance (AMR), with livestock potentially
serving as intermediate hosts for pathogens [38, 54]. Transmission of both zoonotic pathogens and
antibiotic resistance genes can occur through direct or indirect contact at the human-animal inter-
face, placing livestock workers and those in contact with these workers at risk of transmission and
infection [31, 55]. Several shotgun metagenomic studies have looked at the effect of occupational
exposure to animal agriculture on ARG carriage, finding higher prevalence of ARGs as well as
evidence of transmission of ARGs from animal farming environments to workers [20, 75, 81]. While
these studies highlight some potential impacts of exposure to ARG-rich animal farming environ-
ments, they either focused primarily on understanding the presence of ARGs in total community
DNA without contextualizing ARGs to particular species of bacteria, or they used cultured isolates
of a single bacterial species (e.g., Escherichia coli) to understand species-level antibiotic resistance
transmission [20, 75, 81]. Furthermore, these studies did not examine virulence factor genes, which
encode for functions that can cause disease and assist an organism with persisting [61]. While
virulence factors have historically been associated with pathogens [61] they have also been identi-
fied on commensal or non-pathogenic genomes [32, 64], and their transmission can occur between
pathogens and commensals by mobile genetic elements transmission [43, 65].

To better understand the effect of the livestock farming environment on the human gut mi-
crobiome of workers — including virulence factors, taxonomic associations of ARGs, and the role
of commensal organisms in ARG transmission — we compared dairy worker and community con-
trol gut microbiomes using shotgun metagenomic sequencing. We studied differences with respect
to diversity, taxonomic composition, and the carriage of virulence factor and antibiotic resistant
genes. We additionally evaluated potential taxonomic affiliations of genes conferring resistance to
beta-lactams (cephamycin and cephalosporins) and tetracyclines through reconstruction of their
genomic context, and assessed differences in taxonomic context based on group association.

Materials and methods

Study participant selection

We performed metagenomic sequencing on a subset of stool samples from participants in the Healthy
Dairy Worker study. The Healthy Dairy Worker study is a prospective cohort study that focuses on
the effects of dairy farm exposure on the fecal and nasal microbiome, and immune and respiratory
function of dairy farm workers. The study began recruitment of subjects on a rolling basis in May
2017 and involves collection of fecal and nasal samples, as well as health history data on participants
at baseline enrollment, 3, 6, 12, and 24 months. Dairy workers were recruited from 3 conventional
large (> 5, 000 animals) farms in the Yakima Valley of Eastern Washington State and community
controls were recruited from surrounding communities. Recruitment of both community controls
and dairy workers was done through snowball sampling where research participants assisted in
identifying other potential participants. Eligibility to be a participant as a dairy worker required
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subjects to have been working on a dairy farm for at least 6 months. Eligibility as a community
control required participants to have no prior work experience on a dairy farm in the previous 5
years, to have not lived on a dairy farm, and to have no current household member who worked
on a dairy farm in the previous 5 years. Participants were consented by bilingual study staff and
received an incentive payment for enrollment and subsequent sampling. Participants were asked
to participate in self-reported surveys collecting information on health and work history. Sample
collection and study activities were approved by the University of Washington Institutional Review
Board under STUDY00000042. Study protocols have been previously described [13].

To conduct the current cross-sectional metagenomics study, we selected shotgun sequencing
data of 16 fecal samples (the maximum possible with budget constraints) taken from the Healthy
Dairy Worker study cohort. These samples came from 10 dairy workers and 6 community controls,
all sampled at baseline enrollment. We selected the 10 dairy worker samples through simple random
sampling of study subjects that met our exclusion criteria (no antibiotic use within 3 months of
baseline enrollment). All dairy worker samples were selected from workers on a single farm, and
all identified as white Hispanic or Latino males (both the numbers of females working on the
participating dairy farms and recruitment of females into the study was low). Selection of the 6
community control samples was done using simple random sampling among community participants
who had no antibiotic use within 3 months of sample collection and baseline enrollment, and who
covariate-matched our dairy workers on sex and ethnicity. The unbalanced sampling of each group
was designed to over-sample dairy workers, as community control samples could be supplemented
with additional healthy subjects’ metagenomics data from publicly available data (i.e., The Human
Microbiome Project).

Study enrollment and baseline sample collection began in 2018 for these 16 participants. The
collection of study samples occurred at least one year after the Food and Drug Administration
completed implementation of the Guidance for Industry (GFI) no. 213 which restricted the use of
antibiotics in animal agriculture for growth promotion purposes and transitioned medically impor-
tant antibiotics used in drinking water and feed from over-the-counter status to Veterinary Feed
Directive (VFD) or prescription status [26, 27].

Sampling, shotgun metagenomic library preparation and sequencing

Stool samples were self-collected by participants using a stool specimen collection kit. Participants
were instructed to store stool samples in their refrigerators and to return their stool samples within
24 hours of collection to study staff. Samples were stored at −20◦C by field staff at a partner
study site for 1-6 months before before being packaged with dry ice and transported to the Univer-
sity of Washington for extraction and storage at −20◦C. DNA extraction was performed using the
MoBio DNeasy PowerLyzer PowerSoil Kit (Qiagen) following manufacturer’s protocols, and quan-
tification of the resulting DNA was conducted using the Quant-iT PicoGreen dsDNA Assay Kit
(ThermoFisher/Invitrogen). Extracted DNA samples were packaged on dry ice and transported to
the Fred Hutchinson Cancer Research Center for sequencing.

Sequencing libraries were prepared from 250pg gDNA with a quarter reaction workflow using the
Nextera XT Library Prep Kit (Illumina, San Diego, CA) and 12 cycles of indexing PCR. Indexed
libraries were pooled by volume and post-amplification cleanup was performed with 0.8X Agencourt
AMPure XP beads (Beckman Coulter, Indianapolis, IN). The library pool size distribution was
validated using the Agilent High Sensitivity D5000 ScreenTape run on an Agilent 4200 TapeStation
(Agilent Technologies, Inc., Santa Clara, CA). Additional library QC and cluster optimization
was performed using Life Technologies- Invitrogen Qubit® 2.0 Fluorometer (Life Technologies-
Invitrogen, Carlsbad, CA, USA). The resulting libraries were sequenced on the Illumina HiSeq
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2500 to generate paired-end 150nt sequences for each fragment. Image analysis and base calling
were performed with Illumina Real Time Analysis software v1.18.66.3, followed by demultiplexing of
dual-indexed reads, removal of adapters and primers, and generation of FASTQ files with bcl2fastq
Conversion Software v1.8.4 [35].

Profiling taxonomic composition

We performed profiling of the microbial composition of the metagenomic short reads with primers
and adapters removed using MetaPhlAn3 v3.0.14 [7]. MetaPhlAn3 estimates relative abundances
by mapping reads to a reference database of clade-specific marker genes from ChocoPhlAn v30
(published in January 2019) [7, 72]. MetaPhlAn3 performs this read mapping against marker genes
using bowtie2 v2.3.5.1 [46, 47]. Default parameters were used when running MetaPhlAn3 with an
additional flag -t rel ab w read stats for outputting relative abundances with estimated number
of reads mapping to each clade.

Metagenomic assembly and processing of contigs

We conducted de novo assembly and processing of contigs using anvi’o v6.2 [25]. anvi’o integrates
a suite of bioinformatics tools for the processing, analyzing, and visualization of metagenomics,
pangenomics, and phylogenomics studies. We used the anvi’o Snakemake [44] metagenomics
workflow obtained from “anvi-run-workflow” [73] with “–workflow metagenomics” to conduct our
metagenomic assembly and processing of contigs. Illumina-utils [24] was used to apply the
guidelines of [57] for quality filtering of reads. A median of 41.9 M (IQR: 37-47 M) reads per
sample passed quality filtering. MEGAHIT v1.2.9 [49] was used to perform individual assembly of
each metagenome. Further processing of the individual assemblies included generating a contigs
database using anvi’o v6.2 [25], identifying open read frames using Prodigal v2.6.3 [34], predicting
gene-level taxonomy using Centrifuge [42], functional annotation of genes using NCBI’s Clusters
of Orthologous Groups (COGs) [76] and Pfams [23], searching for sequences using DIAMOND v0.9.14
[9], identifying single copy core genes (SCGs) using HMMER v3.3 [22] and built-in anvi’o Hidden
Markov Model (HMM) profiles for bacteria and archaea, recruiting reads using bowtie2 v2.3.5.1
[46], and generating BAM files with samtools v1.10 [50]. Prediction of the approximate number
of genomes in a metagenomic assembly using SCGs was done using the anvi’o script “anvi-display-
contigs-stats”. Workflows using Snakemake with full parameter details can be found at the URL
https://github.com/statdivlab/hdw_mgx_supplementary/.

Metagenome annotation of virulence factors and antibiotic resistance genes

We used ABRicate v1.0.1 [71] to perform a mass screening of our de novo assembled gene calls for
antibiotic resistance genes and virulence factor genes. ABRicate uses the Basic Local Alignment
Search Tool (BLAST) [3] to annotate genes from a user-specified reference database. We used the
the Virulence Factor Database v6.0 [14] and the Comprehensive Antibiotic Resistance Database
(CARD) v4.0 [56] as reference databases in our search. Genes were considered present in a given
metagenome if they met conservative minimum thresholds of 90% identity and 100% coverage.

Gene abundances were calculated within a metagenome by taking the mean coverage of a target
ARG or VF gene divided by the sum of all mean coverages of all protein coding genes identified in
a given metagenome. ARG relative abundances were further aggregated by their antibiotic classes
by summing the relative abundances of genes within each antibiotic class for each metagenome. We
focused our analyses to antibiotic classes that were identified by the World Health Organization
(WHO) as Critically Important Antibiotics (CIA) [70].
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Comparison with the Human Microbiome Project

To supplement our community control data for comparison with our dairy worker samples, we also
considered data from the Human Microbiome Project (HMP). We analyzed only HMP samples
corresponding to healthy human fecal samples sampled using shotgun sequencing and samples for
which there was complete participant metadata available, resulting in a total of 85 samples that
were used from the HMP. These 85 samples were collected from 38 females and 47 males with an
average age of 26.5 years (sd 4.7) for males and 26.0 years (sd 5.3) for females. Information on
occupation was not available on participants in the HMP study, but we assume that none were dairy
workers. These 85 metagenomic samples were then imported into anvi’o, where Prodigal was
used to identify open reading frames. Annotation of open reading frames for virulence factors and
antibiotic resistance genes from the VFDB and CARD databases was conducted using ABRicate.
Taxonomic profiling of the HMP cohort was performed using MetaPhlAn3 v3.0.14 [7]. Sequencing
depths for our study metagenomes ranged from 37−67 million sequenced reads per sample whereas
sequencing depths for the HMP healthy cohort ranged from 21 − 239 million sequenced reads per
sample. The average sequencing depth for the HMP healthy cohort (mean = 106M, sd = 5.9M)
was higher than that of our study cohort (mean = 49M, sd = 8.7M).

Reconstruction of genomic context of ARGs

We used our results from ABRicate to extract ARG target sequences from each metagenomic
assembly. These sequences were extracted using samtools [50] and were used as “query” sequences
in our genomic context reconstruction analyses. ARG query sequences were used to produce query
neighborhoods that reassociated unassembled or unbinned reads that are graph-adjacent to the
query sequence. To prepare our metagenomic short reads for genomic context reconstruction, we
removed adapters and quality trimmed the reads using fastp [15] before removing human host reads
using bbduk [12] and the masked human k-mer data [11]. Using our quality trimmed and filtered
short reads and our query sequences of interest, we constructed the genomic context of each query
sequence using MetaCherchant [63]. MetaCherchant uses a de Bruijn graph assembly approach to
build genomic context of query sequences. We used the “environment-finder” tool in parallel and
set k-mer length to 31, minimum coverage to 5, and max radius to 1000. Taxonomic annotation of
sequences corresponding to graph nodes was done using kraken2 v2.1.2 [88]. Taxonomic affiliation
of genes was based on kraken2 annotations of surrounding graph nodes for a particular query
sequence. Identification of resistance genes located on plasmids or microbial chromosomes was
conducted using the Resistance Gene Identifier (RGI) v5 [2]. The RGI integrates with the CARD
database to predict AMR genes and their mutations in complete chromosome sequences, predicted
genomic islands, complete plasmid sequences, and whole genome shotgun assemblies taken from
National Center for Biotechnology Information (NCBI) databases. This is accomplished through
prediction of open reading frames using Prodigal [34], alignment to CARD reference sequences using
either BLAST [3] or DIAMOND [9], and the use of either protein homolog or protein variant models.
The results from RGI’s exhaustive search are maintained and updated for each gene catalog on the
CARD database.

Results

Study description

At the time of baseline enrollment, the dairy worker cohort had a mean of 10 years (sd 5.2) of
dairy industry work. The mean age of dairy workers was lower compared to community controls
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(38.40 years vs. 49.50 years, t-test p = 0.06). We observed similar proportions of community
controls who were current smokers compared to dairy workers (67% vs. 70%, Z-test p = 1). All
community controls reported occupations as field workers in non-animal agriculture at the time of
sample collection and study enrollment, which is unsurprising given the study catchment area.

Taxonomic profiling of dairy worker and community control metagenomes

The 16 metagenomic samples were composed of 9 distinct phyla: Firmicutes, Bacteroidetes, Acti-
nobacteria, Verrucomicrobia, Proteobacteria, Euryarchaeota, Spirochaetes, unclassified Eukaryota
and Synergistetes. Of these phyla, Firmicutes, Bacteroidetes, and Actinobacteria were the 3 most
abundant phyla found across all samples (Figure 1, left). The large representation of Firmicutes,
Bacteroidetes, and Actinobacteria reflected similar community compositions observed in healthy
subjects from the Human Microbiome Project [33]. We also note that while the majority of the
phyla identified are from the domain Bacteria, we observed organisms from the domains Archaea
(Euryarchaeota) and Eukaryota as well. We detected Euryarchaeota organisms in 5 dairy worker
and 6 community control samples and unclassified Eukaryota organisms in low abundances in 2
dairy worker samples from our study. To examine phylum-level relative abundance differences
between dairy workers and community controls, we performed a t-test of CLR-transformed read
counts with pseudocounts of 1 and found no significant differences at the 5% false discovery rate
level in phylum abundances.

At the species-level, we identified 272 different species across the 16 metagenomes. The most
prevalent bacteria species observed were Prevotella copri, Faecalibacterium prausnitzii, Eubacterium
rectale, Ruminococcus bromii, and Bacteroides vulgatus (Figure 1, right). These 5 species have
been previously shown to be highly abundant organisms found in healthy human gut microflora
[6, 45, 52, 78, 85]. Differential abundance testing revealed no statistically significant differences in
the abundances of these 5 organisms between groups at the false discovery level of 5%. However,
we did find a single organism (Clostridium sp. CAG 167) that was significantly less abundant in
dairy worker metagenomes at the 5% FDR level (Difference in CLR-means: ∆̂ = −6.93, q = 0.01).
Abundance patterns in species with the largest magnitude test statistics (Supplementary Figure S3)
showed higher abundances of Bifidobacterium catenulatum (Difference in CLR-means: ∆̂ = 5.11,
q = 0.21) and Blautia wexlerae (Difference in CLR-means: ∆̂ = 1.84, q = 0.21) observed in
dairy workers and higher abundances of Clostridium sp. CAG 167 (Difference in CLR-means:
∆̂ = −6.93, q = 0.01) and Ruminococcus callidus (Difference in CLR-means: ∆̂ = −6.03, q = 0.21)
in community controls. We additionally conducted differential abundance testing between dairy
workers and community controls with the inclusion of metagenomic data from 85 HMP healthy
human subjects. A comparison of our models with and without the HMP cohort showed similar
effect sizes for a given species’ CLR-transformed abundance between dairy workers and community
controls in both models, but greater significance of many hypothesis tests (Supplementary Figure
S2). These findings highlight the robustness of our effect sizes to the inclusion of a additional public
data. Further details regarding this comparison can be found in Supplementary Figure S2.

We further investigated differences in the community structures of dairy worker and community
control metagenomes by examining differences in α− and β− diversities. A comparison of the
species-level α−diversity using Shannon diversity showed no significant difference in the α−diversity
of dairy worker metagenomes compared to community control metagenomes (α̂DW− α̂CC = −0.20,
p = 0.21). Similarly, a comparison of differences in the community composition (β−diversity)
of dairy worker and community control metagenomes using the Bray-Curtis dissimilarity metric
showed no evidence of differences in community composition between groups (Supplementary Figure
S1). We additionally analyzed differences in gene-level richness (the number of unique genes)
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Figure 1: Stacked barplots of relative abundances show the most abundant phyla (left) and species (right)
within each metagenome. At the phylum-level (left), Firmicutes, Bacteroidetes, and Actinobacteria are the
most abundant phyla across all samples. At the species-level (right), the 5 most abundant and prevalent
species across community control and dairy worker metagenomes were F. prausnitzii, E. rectale, P. copri,
and Eubacterium sp. CAG-180. Species with relative abundances less than 1% were grouped together.
There was insufficient evidence to suggest major differences in the taxonomic composition of dairy worker
metagenomes compared to community controls.

between dairy worker and community control metagenomes using geneshot [58, 59] and breakaway

[86] to estimate the gene-level richness of each sample, finding significantly lower gene-level richness
in dairy worker metagenomes compared to community control metagenomes (ĈDW− ĈCC ≈ −2.0×
105, p = 0.003, [87]). To contextualize this finding, we also estimated the species richness in each
metagenome using single-copy core genes [25], finding that on average there were 55 fewer species in
dairy worker metagenomes compared to community control metagenomes but that this difference
was not statistically significant at the 5% level (p = 0.31).

Identification of virulence factor genes

Through mass screening of contigs across our 16 metagenomes using the Virulence Factor Database
(VFDB) [14], we identified 37 different virulence factor genes across 4 samples (3 community control
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and 1 dairy worker; Supplementary Table 4, Additional File 1). We found that samples with the
highest number of identified Virulence Factor Database (VFDB) genes were also those with higher
sequencing depth (Figure 2, right). On average, community control samples had higher sequencing
depths (mean = 2.7× 107, sd 3.1× 106) compared to dairy worker samples (mean = 2.3× 107, sd
4.3×106) and a higher number of virulence factor genes identified than dairy workers (mean = 9.2,
sd 10.1 vs. mean = 0.3, sd 0.9). Using happi [80], which accounts for unequal sequencing effort,
we tested for differential enrichment of virulence factor genes between dairy worker and community
control metagenomes. No virulence factor genes were significantly enriched between dairy worker
and community control metagenomes at the 5% false discovery rate level (Supplementary Table
6, Additional File 1). We note that 3 community control metagenomes had higher numbers of
identified virulence factor genes compared to samples of similar sequencing depth. Therefore, to
contextualize our study participants among a larger set of individuals, we also considered the
number of virulence factor genes identified in the Human Microbiome Project (HMP) healthy
human subjects cohort. We found generally similar ranges of virulence factor genes identified
between both the HMP (0 − 38 virulence factor genes) and HDW study (0 − 19 virulence factor
genes) cohorts across varying sequencing depths (Figure 2, right). When we compared the male
subjects from the HMP cohort to our all-male dairy worker cohort, we found that the HMP males
had a range of 4-36 virulence factor genes, which was higher than the range of 0-3 virulence factor
genes found in the dairy worker metagenomes. Taken together, our results do not provide strong
evidence that dairy worker metagenomes contain a greater number of virulence factors than either
the community controls or the HMP cohort.

Figure 2: For each metagenome, we compare the sequencing depth with the number of identified CARD
genes and VFDB genes. Ages (years) of each subject have been labeled. Samples with deeper sequencing
had higher numbers of identified genes from the CARD and VFDB databases and higher numbers of
estimated genomes. Within the community control group, 3 samples had the highest number of identified
CARD genes out of all samples studied, whereas the remaining 3 community control samples within the
community control group appeared to be indistinguishable from dairy workers in the number of identified
CARD genes. The number of CARD and VFDB genes identified in our study cohort appeared to be
similar in range to the number of CARD and VFDB genes identified in the HMP healthy human subjects
cohort despite higher sequencing depths on average per sample in the HMP study cohort.
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Identification and taxonomic associations of antimicrobial resistance genes (ARGs)

Screening of the 16 metagenomes using the Comprehensive Antibiotic Resistance Database (CARD)
identified 85 distinct ARGs across the 16 metagenomes, conferring resistance to at least 17 different
antibiotic classes (Supplementary Figure S4; Supplementary Table 3, Additional File 1). On aver-
age, a higher number of ARGs were identified in community control metagenomes (mean = 26.5,
sd 20.5) compared to dairy worker metagenomes (mean = 8.5, sd 3.7) (Figure 2, left). However,
differences in the number of ARGs identified may be due, in part, to differences in sequencing
depth, as metagenome samples with the highest number of ARGs identified also had higher num-
bers of sequenced reads (Figure 2, left). We therefore used happi to test for differences in the
enrichment of ARGs between dairy worker and community control metagenomes, while accounting
for differences in sequencing depth. No ARGs were differentially enriched at the false discovery
level of 5%, but the following ARGs had the largest magnitude test statistics: sat4 (happi LRT
χ2 = 0.01, q = 0.87) a plasmid-mediated streptothricin acetyltransferase and streptothricin resis-
tant determinant, tet(W) (happi LRT χ2 = 0.03, q = 0.87) a tetracycline resistance gene associated
with both conjugative and non-conjugative DNA, and rmtF (happi LRT χ2 = 0.09, q = 0.87) an
aminoglycoside resistance gene that has been found on both plasmids and chromosomes (Supple-
mentary Table 5, Additional File 1). The 3 community metagenomes that we found to have higher
numbers of virulence factor genes identified in their metagenomes also had higher numbers of ARGs
identified compared to other metagenomes of similar sequencing depth. To contextualize our study
cohort, we compared the number of ARGs found in our study metagenomes with the number of
ARGs identified in the HMP healthy human subjects. Overall, the range of ARGs identified in our
study cohort (3-48 ARGs) was similar to the range of ARGs identified in the HMP cohort (4-55
ARGs) (Figure 2, left). When we compared the male subjects from the HMP cohort to our all-male
dairy worker cohort, we found that HMP males had a higher range of 4-36 ARGs compared to the
range of 3-14 ARGs identified across the dairy worker metagenomes. Similar to our virulence factor
genes results, these results do not provide strong evidence that dairy worker metagenomes contain
greater numbers of ARGs than either community controls or the HMP cohort.

We further focused our analyses to ARGs conferring resistance to antibiotic classes considered
critically important to human medicine by the World Health Organization (WHO) [70]. Across our
study metagenomes, we identified 37 different ARGs conferring resistance to 8 antibiotic classes
described in the WHO’s list of Critically Important Antimicrobials (CIA): aminoglycosides, flu-
oroquinolones, macrolides, tetracyclines, cephalosporins, cephamycins, glycopeptides, and sulfon-
amides (Figure 3). The most frequently occurring types of antibiotic resistance genes found across
the 16 metagenomes were genes that typically confer resistance to tetracyclines (n = 15), amino-
glycosides (n = 14), cephamycins (n = 13), and macrolides (n = 12) (Figure 3). Genes that
commonly confer tetracycline resistance appeared to dominate the resistomes of both dairy work-
ers and community controls with 11 distinct tetracycline resistance genes identified across 15 of our
study metagenomes. We compared relative abundances of genes aggregated by antibiotic class be-
tween both groups and found that dairy workers’ metagenomes had higher mean CLR-transformed
relative abundances of tetracycline (Difference in CLR-means: ∆̂ = 0.88, q = 0.86), cephamycin
(Difference in CLR-means: ∆̂ = 2.74, q = 0.86) and macrolide (Difference in CLR-means: ∆̂ = 0.50,
q = 0.92) resistance genes than community controls’ metagenomes (Figure 3; Supplementary Table
8, Additional File 1); however, these differences were not significant at the 5% false discovery level.
Similarly, the lower mean CLR-transformed relative abundance of aminoglycoside (Difference in
CLR-means: ∆̂ = −0.94, q = 0.86) resistance genes in dairy workers’ metagenomes compared to
community controls’ metagenomes was also not significant at the 5% false discovery level.

To understand whether there were differences in taxonomic affiliation of ARGs between groups,
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Figure 3: We identified ARGs from 8 antibiotic classes (rows) listed as critically important to human
medicine by the WHO. log10 transformed relative abundances of antibiotic resistance genes grouped by
these antibiotic classes are colored from lower (light blue) to higher (darker blue) relative abundances in
each metagenome. Antibiotic resistance classes (rows) have been ordered by ascending q-values. White
squares denote undetected antibiotic resistance genes. Visual inspection displays patterns of increased
abundance of tetracycline resistance genes and macrolide resistance genes in dairy worker metagenomes.
Additionally, cephamycin resistance genes had a higher occurrence in dairy workers as these genes were
identified in 90% of dairy worker samples compared to 67% of community control samples.

we assessed the taxonomic context of tetracycline and beta-lactam resistance genes. We identified
6 different genes (cblA-1, cfxA2, cfxA3, cfxA4, cfxA5, cfxA6) that encode for beta-lactamases and
confer resistance to beta-lactam antibiotics. Additional details on the presence of each beta-lactam
resistance gene in each of our study metagenomes are found in Supplementary Table 3. These
6 beta-lactam genes have typically been identified on the chromosomes of Bacteroides spp. [2].
Taxonomic annotation of the genomic context of these genes in dairy worker and community control
metagenomes confirmed their association with organisms from the phylum Bacteroidetes such as
Prevotella copri, Bacteroides fragilis, and Bacteroides uniformis. Additionally, we observed no
differences in taxonomic affiliation of these beta-lactam genes between dairy workers and community
controls (Supplementary Table 7, Additional File 1).

We identified 9 tet genes (efflux genes: tet(B), tet(G), tet(40); and ribosomal genes: tet(M),
tet(O), tet(Q), tet(W), tet(W/N/W), and tet(32)) that encode for efflux pumps or ribosomal pro-
tection proteins conferring resistance to tetracycline antibiotics. These genes have normally been
associated with plasmids [2], which are small, extra-chromosomal DNA molecules that facilitate
genetic sharing between and within species [68], but can also be found in chromosomes. Taxonomic
annotation of the assembly graphs for these tetracycline resistance genes demonstrated affiliation
of these genes with a variety of both commensal (e.g., Lawsonia intracellularis, Ligilactobacillus an-
imalis, Trueperella pyogenes, Schaalia turicensis, and Faecalibacterium prausnitzii) and pathogenic
(e.g., Campylobacter spp., Clostridium spp.) bacteria. Full annotations of these ARGs to affiliated
bacterial organisms can be found in Supplementary Table 7, Additional File 1. Finally, while these
tetracycline resistance genes were affiliated with a wide range of commensal and pathogenic bacte-
ria, we found no differences in the taxonomic context of tetracycline resistance genes identified in
community controls compared to dairy workers.

Discussion

Using shotgun metagenomics sequencing, we investigated differences in taxonomy, diversity, and the
presence of genes (especially ARGs and virulence factors) between dairy workers and community

10

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2023. ; https://doi.org/10.1101/2023.05.10.540270doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.10.540270
http://creativecommons.org/licenses/by-nd/4.0/


controls’ gut microbiomes. The use of shotgun metagenomics data allowed us to circumvent some of
the limitations of amplicon sequencing, and enabled us to investigate abundance and presence of a
variety of genes as well as their taxonomic context. To our knowledge, our study is the first shotgun
metagenomics interrogation of the microbiomes and resistomes of dairy workers in the United
States. While the results of our investigation revealed no statistically significant differences at the
5% level in the taxonomic composition, antibiotic resistance and virulence factor gene carriage,
and relative abundances of ARGs, we observed several patterns for further investigation including
greater abundance of tetracycline resistance genes and higher occurrence of cephamycin resistance
genes in dairy workers’ metagenomes; evidence of commensal organism association with plasmid-
mediated tetracycline resistance genes; and lower gene richness and genome diversity in dairy
workers’ metagenomes.

Previous metagenomic studies of livestock workers in China and Europe have found increased
abundance and carriage of antibiotic resistance genes in individuals occupationally exposed to
animal farming environments, raising concerns that these environments could be hotspots for an-
tibiotic resistance and zoonotic disease emergence [20, 75, 79, 81, 84]. Cross sectional studies of
pig farmers and slaughterhouse workers in the Netherlands (nworkers = 70, ncontrols = 46) [81] and
China (nworkers = 4, ncontrols = 5) [79] found that the resistomes of these animal workers were
dominated by tetracyclines, aminoglycosides, beta-lactam and macrolide resistance genes. Another
cross-sectional study of live poultry market workers in China found higher abundance of ARGs,
lower Shannon diversity, and greater enrichment of beta-lactam and lincosamide resistance genes
in these workers compared to controls (nworkers = 18, ncontrols = 18) [84], and a longitudinal study
of veterinary students with exposure to swine farms observed similar patterns of increased total
abundance of ARGs and increased abundances of beta-lactam, aminoglycoside, and tetracycline
resistance genes within 3 months n = 14 [75].

Contrary to these previous studies of livestock workers, we found no significant difference in the
abundance of ARGs between dairy workers and community controls, though we did observe pat-
terns of greater abundance of tetracycline resistant genes in dairy workers’ metagenomes that was
directionally consistent with findings in these previous farm studies [20, 75, 81, 84]. In addition, we
found more frequent occurrences of cephamycin (beta-lactam) resistant genes identified in the dairy
worker population compared to community controls. These patterns are interesting to highlight
since tetracyclines are commonly administered on dairy farms for treating gastrointestinal and res-
piratory diseases in dairy cows [37] and beta-lactam antibiotics such as ceftiofur are frequently used
to treat metritis, a common post-partum uterine inflammatory disease [77]. It is also worth noting
that the patterns observed in our study reflect the potential impacts of occupational exposure to
livestock farming without the use of antibiotics for growth promotion, as the samples used in this
metagenomics study were collected at least one year after the full implementation of the FDA’s
GFI no. 213 policy banning the use of antibiotics for growth promotion purposes.

Our study also highlighted the potential for commensal organisms to serve as ARG reservoirs for
pathogenic bacteria. By reconstructing the genomic context of each antibiotic resistance gene then
taxonomically annotating this context, we were able to confirm the association of chromosome-
mediated ARGs (e.g., cblA-1, cfxA2, cfxA3, cfxA4, cfxA5, cfxA6) with previously recognized
carriers of these genes (e.g., Bacteroides spp.) [2]. With the same approach applied to primarily
plasmid-mediated ARGs (e.g., tet(B), tet(G), tet(W/N/W), tet(32), tet(M), tet(O), tet(Q), and
tet(W)), we found that resistance genes were associated with both commensal and pathogenic
organisms. These observations suggest the potential for sharing of ARGs between commensal
organisms and pathogens through conjugation. Furthermore, our results corroborate findings from
a recent study that compared ARGs identified in 1,354 culture commensal strains and 45,403
pathogen strains from the human gut and found evidence of 64,188 shared ARGs that mapped to
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5,931 mobile genetic elements [28]. Some of the mobile genetic elements identified [28] had also
been previously identified in data from ruminant guts, soil, and other human body sites [28]. While
commensal organisms may serve as ARG reservoirs for pathogenic bacteria, they may also assist
in preventing pathogenic invasion through indirect (enhancement of host immune defenses) and
direct (competition of nutrients and niche) mechanisms [1, 10, 39, 41]. Further research is needed
to better understand the complex dynamic that commensal organisms balance in promoting both
pathogen resistance and antibiotic resistance emergence.

Our results also demonstrated evidence of lower average gene richness (and some evidence of
lower genome diversity) in dairy workers. Lower gene richness has been associated with increased
intestinal inflammation and metabolic disorders [16, 48, 58]. A common occupational hazard facing
dairy workers is inhalation of dusts and aerosols containing endotoxins or other proinflammatory
substances that can result in airway inflammation and decreased pulmonary function [19, 62, 74].
Several studies have proposed a gut-lung axis linking pulmonary inflammation to intestinal inflam-
mation based on epidemiological and clinical observations of the co-occurrence of these diseases
[40, 67, 83]. There is therefore the possibility that the lower gene richness observed in dairy work-
ers points towards increased intestinal inflammation linked to possible increased airway inflamma-
tion from exposure to aerosols and endotoxins. Further investigation to explore the possibility of
increased intestinal and airway inflammation of this cohort is warranted.

Our study had several limitations. The most significant limitation was its small sample size,
and therefore relatively low power to reject false null hypotheses. Corroborating our findings,
especially those regarding patterns of greater tetracycline and cephamycin resistance gene in our
dairy cohort, with a larger sample size is desirable. Another major limitation of our study was the
comparability of the community controls with the dairy workers. The community controls in our
metagenomic study occupationally identified as field workers in non-animal agriculture industries,
and agricultural and dairy workers both experience occupational exposure to animal manure (e.g., as
fertilizer) and antibiotics (e.g., streptomycin and oxytetracycline are commonly sprayed to control
fire blight disease in Eastern Washington [21, 82]). Similar occupational exposures in the dairy
workers and controls may reduce the effect sizes of group differences compared to comparisons
of dairy workers and non-agricultural workers (e.g., office workers). We additionally consider the
higher average age in our community controls compared to dairy workers, with 3 community controls
in particular having both higher ages and the highest number of identified ARGs and virulence
factors. Antibiotic resistance genes have been shown to have an age-related cumulative effect with
older age groups harboring higher abundances of ARGs [89]. We were unable to determine whether
the similarities between these 3 community control outliers were in part due to familial or household
relatedness as this information was not collected as part of the Healthy Dairy Worker study. We
did however consider the older average age as a potential driver for increased numbers of antibiotic
resistance genes and virulence factors identified in these 3 community controls. We therefore provide
a comparison of our dairy worker cohort to the Human Microbiome Project cohort to contextualize
the dairy workers with an alternative control group. Finally, while cross-sectional studies can be
advantageous for conducting cost-effective comparisons of populations, they can capture differences
at a single time point. Therefore, our study cannot provide information about long-term changes to
the microbiome that are induced by occupational exposure to livestock farming. We also note that
shotgun metagenomics-based approaches to studying antibiotic resistance limits study to genotypic
potential, and not phenotypic resistance which may not be directly correlated. Complementary
future work could therefore include pairing whole genome sequencing with phenotypic resistance
profiles (e.g., using culture-based approaches).
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Conclusions

In this study of occupational exposure to dairy farming, we observed no significant differences in
antibiotic resistant gene or virulence factor presence in dairy workers compared to controls, but
several patterns warranting further investigation, including greater abundance of tetracycline resis-
tance genes and higher occurrence of cephamycin resistance genes in dairy workers’ metagenomes;
evidence of commensal organism association with plasmid-mediated tetracycline resistance genes;
and lower average gene richness in dairy workers’ metagenomes. This work demonstrates the depth
and scope of utilizing shotgun metagenomics to investigate microbiomes and resistomes, and pro-
vides a foundation for further investigations into the impact of exposure to zoonotic pathogens,
antibiotic resistant organisms, and ARGs on the microbiomes and resistomes of livestock workers.
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[32] M. Holden, L. Crossman, A. Cerdeño-Tárraga, and J. Parkhill. Pathogenomics of non-
pathogens. Nature Reviews Microbiology, 2(2):91–91, 2004. doi: 10.1038/nrmicro825. URL
https://doi.org/10.1038/nrmicro825.

[33] C. Huttenhower, D. Gevers, R. Knight, S. Abubucker, J. H. Badger, A. T. Chinwalla, H. H.
Creasy, A. M. Earl, M. G. FitzGerald, R. S. Fulton, M. G. Giglio, K. Hallsworth-Pepin, E. A.
Lobos, R. Madupu, V. Magrini, J. C. Martin, M. Mitreva, D. M. Muzny, E. J. Sodergren,
J. Versalovic, A. M. Wollam, K. C. Worley, J. R. Wortman, S. K. Young, Q. Zeng, K. M. Aa-
gaard, O. O. Abolude, E. Allen-Vercoe, E. J. Alm, L. Alvarado, G. L. Andersen, S. Anderson,
E. Appelbaum, H. M. Arachchi, G. Armitage, C. A. Arze, T. Ayvaz, C. C. Baker, L. Begg,
T. Belachew, V. Bhonagiri, M. Bihan, M. J. Blaser, T. Bloom, V. Bonazzi, J. Paul Brooks,
G. A. Buck, C. J. Buhay, D. A. Busam, J. L. Campbell, S. R. Canon, B. L. Cantarel, P. S. G.
Chain, I.-M. A. Chen, L. Chen, S. Chhibba, K. Chu, D. M. Ciulla, J. C. Clemente, S. W.
Clifton, S. Conlan, J. Crabtree, M. A. Cutting, N. J. Davidovics, C. C. Davis, T. Z. DeSantis,
C. Deal, K. D. Delehaunty, F. E. Dewhirst, E. Deych, Y. Ding, D. J. Dooling, S. P. Dugan,
W. Michael Dunne, A. Scott Durkin, R. C. Edgar, R. L. Erlich, C. N. Farmer, R. M. Far-
rell, K. Faust, M. Feldgarden, V. M. Felix, S. Fisher, A. A. Fodor, L. J. Forney, L. Foster,
V. Di Francesco, J. Friedman, D. C. Friedrich, C. C. Fronick, L. L. Fulton, H. Gao, N. Garcia,
G. Giannoukos, C. Giblin, M. Y. Giovanni, J. M. Goldberg, J. Goll, A. Gonzalez, A. Griggs,
S. Gujja, S. Kinder Haake, B. J. Haas, H. A. Hamilton, E. L. Harris, T. A. Hepburn, B. Herter,
D. E. Hoffmann, M. E. Holder, C. Howarth, K. H. Huang, S. M. Huse, J. Izard, J. K. Jansson,
H. Jiang, C. Jordan, V. Joshi, J. A. Katancik, W. A. Keitel, S. T. Kelley, C. Kells, N. B.
King, D. Knights, H. H. Kong, O. Koren, S. Koren, K. C. Kota, C. L. Kovar, N. C. Kyrpi-
des, P. S. La Rosa, S. L. Lee, K. P. Lemon, N. Lennon, C. M. Lewis, L. Lewis, R. E. Ley,
K. Li, K. Liolios, B. Liu, Y. Liu, C.-C. Lo, C. A. Lozupone, R. Dwayne Lunsford, T. Mad-
den, A. A. Mahurkar, P. J. Mannon, E. R. Mardis, V. M. Markowitz, K. Mavromatis, J. M.

17

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2023. ; https://doi.org/10.1101/2023.05.10.540270doi: bioRxiv preprint 

https://doi.org/10.1038/s41467-022-29096-9
https://doi.org/10.1038/s41586-022-04567-7
https://doi.org/10.1038/s41586-022-04567-7
https://www.sciencedirect.com/science/article/pii/S075333222200066X
https://www.sciencedirect.com/science/article/pii/S075333222200066X
https://doi.org/10.1038/nrmicro825
https://doi.org/10.1101/2023.05.10.540270
http://creativecommons.org/licenses/by-nd/4.0/


McCorrison, D. McDonald, J. McEwen, A. L. McGuire, P. McInnes, T. Mehta, K. A. Mihin-
dukulasuriya, J. R. Miller, P. J. Minx, I. Newsham, C. Nusbaum, M. O’Laughlin, J. Orvis,
I. Pagani, K. Palaniappan, S. M. Patel, M. Pearson, J. Peterson, M. Podar, C. Pohl, K. S.
Pollard, M. Pop, M. E. Priest, L. M. Proctor, X. Qin, J. Raes, J. Ravel, J. G. Reid, M. Rho,
R. Rhodes, K. P. Riehle, M. C. Rivera, B. Rodriguez-Mueller, Y.-H. Rogers, M. C. Ross,
C. Russ, R. K. Sanka, P. Sankar, J. Fah Sathirapongsasuti, J. A. Schloss, P. D. Schloss, T. M.
Schmidt, M. Scholz, L. Schriml, A. M. Schubert, N. Segata, J. A. Segre, W. D. Shannon, R. R.
Sharp, T. J. Sharpton, N. Shenoy, N. U. Sheth, G. A. Simone, I. Singh, C. S. Smillie, J. D.
Sobel, D. D. Sommer, P. Spicer, G. G. Sutton, S. M. Sykes, D. G. Tabbaa, M. Thiagarajan,
C. M. Tomlinson, M. Torralba, T. J. Treangen, R. M. Truty, T. A. Vishnivetskaya, J. Walker,
L. Wang, Z. Wang, D. V. Ward, W. Warren, M. A. Watson, C. Wellington, K. A. Wetterstrand,
J. R. White, K. Wilczek-Boney, Y. Wu, K. M. Wylie, T. Wylie, C. Yandava, L. Ye, Y. Ye,
S. Yooseph, B. P. Youmans, L. Zhang, Y. Zhou, Y. Zhu, L. Zoloth, J. D. Zucker, B. W. Birren,
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J. M. Piñeiro, and H. M. Scott. Effects of two-dose ceftiofur treatment for metritis on the
temporal dynamics of antimicrobial resistance among fecal escherichia coli in holstein-friesian
dairy cows. PloS one, 14(7):e0220068–e0220068, 07 2019. doi: 10.1371/journal.pone.0220068.
URL https://pubmed.ncbi.nlm.nih.gov/31329639.

[78] A. Tett, K. D. Huang, F. Asnicar, H. Fehlner-Peach, E. Pasolli, N. Karcher, F. Armanini,
P. Manghi, K. Bonham, M. Zolfo, F. De Filippis, C. Magnabosco, R. Bonneau, J. Lusingu,
J. Amuasi, K. Reinhard, T. Rattei, F. Boulund, L. Engstrand, A. Zink, M. C. Collado, D. R.
Littman, D. Eibach, D. Ercolini, O. Rota-Stabelli, C. Huttenhower, F. Maixner, and N. Segata.
The prevotella copri complex comprises four distinct clades underrepresented in western-
ized populations. Cell Host & Microbe, 26(5):666–679.e7, 2019. doi: https://doi.org/10.
1016/j.chom.2019.08.018. URL https://www.sciencedirect.com/science/article/pii/

S1931312819304275.

22

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2023. ; https://doi.org/10.1101/2023.05.10.540270doi: bioRxiv preprint 

https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/nyas.14058
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/nyas.14058
https://github.com/tseemann/abricate
https://pubmed.ncbi.nlm.nih.gov/31592062
https://doi.org/10.1038/s41467-020-15222-y
https://doi.org/10.1186/1471-2105-4-41
https://pubmed.ncbi.nlm.nih.gov/31329639
https://www.sciencedirect.com/science/article/pii/S1931312819304275
https://www.sciencedirect.com/science/article/pii/S1931312819304275
https://doi.org/10.1101/2023.05.10.540270
http://creativecommons.org/licenses/by-nd/4.0/


[79] C. Tong, D. Xiao, L. Xie, J. Yang, R. Zhao, J. Hao, Z. Huo, Z. Zeng, and W. Xiong. Swine
manure facilitates the spread of antibiotic resistome including tigecycline-resistant tet(x) vari-
ants to farm workers and receiving environment. Science of The Total Environment, 808:
152157, 2022. ISSN 0048-9697. doi: https://doi.org/10.1016/j.scitotenv.2021.152157. URL
https://www.sciencedirect.com/science/article/pii/S0048969721072338.

[80] P. Trinh, D. S. Clausen, and A. D. Willis. happi: a hierarchical approach to pangenomics
inference. bioRxiv e-prints, Apr. 2022. doi: https://doi.org/10.1101/2022.04.26.489591. URL
https://github.com/statdivlab/happi.

[81] L. Van Gompel, R. E. Luiken, R. B. Hansen, P. Munk, M. Bouwknegt, L. Heres, G. D.
Greve, P. Scherpenisse, B. G. Jongerius-Gortemaker, M. H. Tersteeg-Zijderveld, S. Garćıa-
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Supplementary Figures

Figure S1: Principal coordinates analysis using Bray-Curtis distances shows similarity in microbial
compositions between dairy worker and community control metagenomes.
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Figure S2: We compare parameter estimates of the difference in mean CLR-transformed abundance of
species when comparing dairy workers and community controls. We contrast parameter estimates across
two datasets: (1) only our study cohort, and (2) our study cohort combined with the HMP cohort. We find
that coefficient estimates are robust to the inclusion of the HMP cohort (left). We also compared p-values
for the null hypothesis of no difference in mean CLR abundance (right), observing that including the HMP
cohort leads to more significant differences for most organisms (e.g., M. stadtmanae, S. parvirubra, and T.
succinifaciens) but not all organisms (e.g., B. wexlerae, B. obeum, and E. hallii). The robustness of effect
size estimates but greater significance of small p-values demonstrates that our strategy of leveraging
publicly available data in conjunction with a smaller cross-sectional study can support results
interpretation.
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Figure S3: To test for differential abundance of species between dairy workers and community controls,
we conducted independent t-tests of CLR-transformed relative abundances with false discovery rate
correction. The heatmap displays CLR-transformed relative abundances from lower abundances (blue) to
higher (red) abundances. The 50 species shown are those with the highest magnitude test statistics.
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Figure S4: log10 transformed relative abundances of all antibiotic resistance genes grouped by all
antibiotic classes (rows) identified across the 16 metagenomes (columns). Relative abundances are colored
by magnitude, from smaller (light blue) to larger (dark blue). White cells represent that no genes were
identified in the metagenome.
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