

**Figure S1.** <sup>1</sup>H NMR was used to determine the successful synthesis of Cat-8PEG and determine the functionality ratio. Characteristic peaks at  $\delta$ = 6.59 ppm, 6.54 ppm and 6.40 ppm are representative of the DOPA catechol group functionalization. Cat8PEG was obtained as a solid (3.35 g) with 74 % functionalization. <sup>1</sup>H NMR (Cat8PEG, 300 MHz, DMSO-d<sub>6</sub> (\*))  $\delta$ : 8.73 (s, 8H, OH), 8.63 (s, 8H, OH), 7.20 (m, 8H, NH), 6.59 (m, 8H, C<sub>6</sub>H<sub>4</sub>), 6.53 (m, 8H, C<sub>6</sub>H<sub>4</sub>), 6.39 (m, 8H, C<sub>6</sub>H<sub>4</sub>), 4.10-4.02 (m, 32H, CH<sub>2</sub>CH<sub>2</sub>OCONH), 3.85-3.35 (m, PEG protons). 3.15-3.05 (m, 32H, NHCH<sub>2</sub>CH<sub>2</sub>). Cat-8PEG was stored under vacuum.



**Figure S2.** <sup>1</sup>H NMR was used to determine the successful synthesis of Ald-8PEG and determine the functionality ratio. Characteristic peaks at  $\delta$ = 10.11 ppm, 8.24 ppm and 7.95 ppm are representative of the benzaldehyde functionality. Ald-8PEG was obtained as a white solid with 97 % functionalization. <sup>1</sup>H NMR (Ald-8PEG, 300 MHz, CDCl<sub>3</sub>)  $\delta$ : 10.11 (s, 8H, CHO), 8.24 (m, 16H, C<sub>6</sub>H<sub>4</sub>), 7.95 (m, 16H, C<sub>6</sub>H<sub>4</sub>), 4.49 (m, 16H, CH<sub>2</sub>OCHO), 3.85-3.35 (m, CH<sub>2</sub>CH<sub>2</sub>OCHO and PEG protons). Ald-8PEG was stored under vacuum until use.



**Figure S3.** <sup>1</sup>H NMR was used to determine the successful synthesis of AO-8PEG and determine the functionality ratio. The characteristic peak at  $\delta$ = 3.86 ppm represents the aminooxy functionality. AO-8PEG was obtained as a white solid with 83 % functionalization. <sup>1</sup>H NMR (AO-8PEG, 300 MHz, D<sub>2</sub>O)  $\delta$ : 3.86 (m, 2H, CH2ONH2), 3.8-3.4 (m, PEG protons). AO-8PEG was stored under vacuum until use.



**Figure S4.** A standard curve was generated using known concentrations of 3,4-dihydroxy-Lphenylalanine for quantifying catechol functionalization in Cat-8PEG. Absorbance was recorded at 500 nm.



**Figure S5.** Representative G' and G" across a frequency sweep. This graph is representative of the viscoelastic behavior of both the Ald-AO and Ald-AO-Cat gels which crosslinked and gelled within seconds of combining the two solutions prior to rheometry.



**Figure S6.** Catechol is retained in the Ald-AO-Cat as indicated by the time-dependent DOPAnitration assay. (A) Release of Cat-8PEG was detected in gel supernatant at 10 min, 1 day, 2 days, 3 days, and 7 days post-gelation. An initial release of Cat-8PEG was observed at 10 min, corresponding to the release of Ald-8PEG and AO-8PEG observed in the ex vivo retention assay (Figure 2F). This is indicative of the release of unreacted or non-physically trapped materials. A burst release of Cat-8PEG was detected, similar to the release of Ald-8PEG and AO-8PEG, which was expected with maximum swelling of the oxime hydrogel in aqueous conditions. A timedependent, decrease in Cat-8PEG release was calculated up to day 7, with a significantly larger amount of Cat-8PEG physically trapped in the gel at 7 days post gelation. (B) The summation of Cat-8PEG released in the supernatant and retained in the gel at day 7, was compared to the total Cat-8PEG concentration in the original gel formulation, with 63 % of the total Cat-8PEG accounted for. The remaining Cat-8PEG can be explained by the incomplete digestion of the gels at day 7 resulting in incomplete release of Cat-8PEG for detection.



**Figure S7.** Parallel plate rheometry was used to measure the viscosity ( $\eta$ ) of the Ald-8PEG/Cat-8PEG (A) and AO-PEG (B) solutions.



**Figure S8.** Representative images from pilot pig study showing robust adhesions in the control group (A) that required sharp dissection, whereas Ald-AO-Cat treated pigs (B) had milder adhesions that required only manual/blunt dissection. B displays Ald-AO-Cat treated pig euthanized at 3 weeks after application.