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ABSTRACT  

G-quadruplexes (G4s) are secondary structures abundant in DNA that may play regulatory roles in 

cells. Despite the ubiquity of the putative G-quadruplex sequences (PQS) in the human genome, only 

a small fraction forms secondary structures in cells. Folded G4, histone methylation and chromatin 

accessibility are all parts of the complex cis regulatory landscape. We propose an approach for G4 

formation prediction in cells that incorporates epigenetic and chromatin accessibility data. The novel 

approach termed epiG4NN efficiently predicts cell-specific G4 formation in live cells based on a local 

epigenomic snapshot. Our architecture confirms the close relationship between H3K4me3 histone 
methylation, chromatin accessibility and G4 structure formation. Trained on A549 cell data, epiG4NN 

was then able to predict G4x formation in HEK293T and K562 cell lines. We observe the dependency 

of model performance with different epigenetic features on the underlying experimental condition of 

G4 detection. We expect that this approach will contribute to the systematic understanding of 

correlations between structural and epigenomic feature landscape. 

INTRODUCTION 

DNA and RNA are capable of forming multiple conformations of secondary structures, including G-

quadruplexes (G4s). G4 structures may be implicated in important biological processes, including 

replication, transcription (1–3), telomere maintenance (2, 4, 5), RNA processing and translation (6–9). 

G4-forming sequences are found in the promoters of genes related to cancer, such as VEGF (10), 
bcl-2 (11), c-kit (12, 13), KRAS (14). G4 structures are attractive drug targets (15, 16) and it is 

important to predict their formation in live cells.  

The first G4 prediction approaches were based on biophysical knowledge that a DNA motif with 4 

runs of at least 3 guanines separated by loops of 1 to 7 nucleotides is likely to fold into a G4, and the 

first search of such patterns in the human genome resulted in more than 380,000 matches (17, 18). 
As topological diversity of confirmed G4s was expanded, for example, G4s with long loops (19), G4s 

with bulges (20) and G4s with missing guanines (21–23), algorithms for search and prediction of G4 
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evolved to accommodate the diversity of motifs as well. Novel whole-genome searches include inter-

molecular G4s formed between the two DNA strands (24), and slightly mismatched sequences (25). 

Further approaches incorporated contextually enhanced prediction, such as G-runs continuity coupled 

with loop size (26), and nucleotide content bias (27, 28). Recently, new experimental methods for G4 
detection have emerged. A polymerase stop assay Illumina sequencing method was developed that 

allowed to detect over 525,000 G4s in purified nuclear DNA in vitro, or more than 710,000 G4s with a 

G4-stabilising ligand (29). In cellulo G4 detection methods include G4 chromatin immunoprecipitation 

sequencing (ChIP-seq) methods that use structure-specific antibodies to detect G4 formed in cellular 

cultures (30–32) and tumor xenografts (33), and G4 detection with cleavage under targets and 

tagmentation (CUT&Tag) technique (34, 35). The numbers of reported G4s vary greatly between the 

experimental methods and cell types (Table 1).  

Table 1. Reported DNA and RNA G4 formed in vitro, in cells and in patient tissue samples. 

GEO ID Study Source Method Cell, tissue type / 
experimental 
conditions 

No G4 peaks 

GSE76688 (31) HaCaT BG4 ChIP-seq epidermal 19,021 

GSE76688 (31) NHEK BG4 ChIP-seq epidermal  3,131 

GSE99205 (36)  HaCaT BG4 ChIP-seq epidermal  11,539 

GSE107690 (37) K562 BG4 ChIP-seq blood 8,955 

GSE152216 (33) Patient breast cancer samples qG4 ChIP–seq breast 26,000+ 

GSE133379 (32) HEK293T G4P ChIP-Seq kidney 40,790 

GSE133379 (32) A549 G4P ChIP-Seq lung 123,274 

GSE133379 (32) H1975 G4P ChIP-Seq lung 152,072 

GSE133379 (32) HeLa G4P ChIP-Seq uterus 17,787 

GSE178668 (35) HEK293T G4-CUT&Tag kidney 17,888 

GSE178668 (35) HEK293T 
 

G4-ChIP-seq kidney 9,202 

GSE173103 (38) HaCaT G4-CUT&Tag epidermal 10,000+ 

GSE173103 (38) HEK293T 
 

G4-CUT&Tag kidney 10,000+ 

GSE181373 (34) K562 G4-CUT&Tag blood 21,312 

GSE181373 (34) U2OS G4-CUT&Tag bone 35,452 

GSE63874 (29) in vitro G4-seq in vitro, K+ 525,908 
GSE63874 (29) in vitro G4-seq in vitro, K+, PDS 716,311 
GSE77282 (39) in vitro rG4-seq (RNA) in vitro, K+ 3,383 
GSE77282 (39) in vitro rG4-seq (RNA) in vitro, K+, PDS 11,367 
- This report in silico Regular expression 

search 
GRCh37/hg19 2,105,837 

 

Methods for G4 detection in cells imply G4 detection ex vivo or in situ. The former means that the 

cells are fixed and chromatin is fragmented before it is enriched with a specific antibody, usually BG4 

(30, 31, 36). The latter means that BG4 antibody permeates the plasma and nucleus membranes and 

tethers Tn5 transposase for tagmentation (35, 38), or another small antibody, G4P, is expressed 

endogenously for a subsequent ChIP-seq experiment (32). Only a fraction of resulting G4s overlap in 

the same cell line using two different types methods – about 30-60% (35), or 45% (38). The divergent 

numbers of G4 formed in different types of cells and detected with different approaches suggest the 
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need for exploration of the biological causes. Predictive models for G4 formation based on these 

experimental data have been implemented: Quadron (40) and PENGUINN (41) trained on in vitro 

DNA G4 data, DeepG4 (42) with an additional feature of local chromatin accessibility for G4 prediction 

in cells, and G4RNA screener (43) trained on experimental RNA G4 data. To date, only DeepG4 
implemented actual cellular context for G4 formation prediction, however, only the G4s that are 

formed both in vitro and in cells were selected. A significant portion of weaker G4s not folded in vitro 

that might play important regulatory roles in cells were, therefore, excluded from the training data. 

Excluding weaker G4s might inherently lead to higher accuracies too, as lower experimental scores 

for these G4s are likely related to finer biological features. Additionally, chromatin accessibility profile 

was the only feature used. The roles of open chromatin, histone and DNA chemical modifications in 

G4 formation is being discovered recently (31, 35, 37, 38, 42).  Leveraging multiple epigenomic 

features to predict G4 formation in cells and determining the importance of these features may 
provide novel insights into G4 formation mechanisms and their regulatory roles.  

G4 existence in the epigenetic context. DNA G-quadruplexes are over-represented in gene 

promoters and are thought to be involved in gene regulation at the transcription level. More than 40% 

of gene promoters in the human genome contain G4 forming motifs (44), and their structural 

properties make them attractive drug targets for diseases involving dysregulation of gene transcription 
(15). Folded G4s were confirmed to be highly enriched in gene promoters in cells more than in any 

other region (31), with some studies showing that most folded G4s are, in fact, located in the promoter 

regions in cells (35). Both G4s formed in cells (31) and gene promoters are associated with open 

chromatin (45, 46), aiding the accessibility for transcription machinery. Open chromatin was indeed 

found to contain 85.8% of G4 in HaCaT cells and 97.2% in NHEK cells (31), whereas we found that 

for A549 cells G4 data (32), only 6.6% of G4s intersected with peaks from ATAC-seq experiment, 

likely driven by a higher number of G4 peaks reported in A549. It has been hypothesized that G4 

formation promotes transcription factor docking by keeping the DNA double helix open (47–49) and 
allows re-initiation of transcription. Therefore, G4s are likely to be located in accessible chromatin 

regions due to the local regulatory roles, but the ways G4s are related to accessible chromatin and 

epigenetic marks are highly complex (Fig. 1). Recently, evidence of high colocalization of other 

epigenetic marks, such as histone modifications, with G4 formation became available (35). H3K4me3 

was found to be the most correlated to G4 formation in HEK293T cells, as measured by G4 ChIP-seq, 

followed by H3K4me2, H3K4me1 and chromatin accessibility by ATAC-sequencing (35). Additionally, 

active G4s are present in CpG island (CGIs) regions depleted in cytosine methylation (37, 38) and 
inhibit methylation of DNA (37). CGI methylation patterns, in turn, mediate binding of specific families 

of transcription factors that have preference for either methylated or hypomethylated CGI (50), 

therefore leading to transcriptional regulation via epigenetic modifications. Another mechanism of G4 

involvement in cellular processes regulation through epigenetic marking is the G4 involvement in DNA 

replication. It was demonstrated that G4 formed during DNA replication leads to epigenetic instability 

due to failure of copying the chromatin repressive marks (51). Additionally, G4 are known to recruit 

histone modification agents (52, 53) and chromatin remodelling proteins (54). The interplay between 
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folded G4s and epigenetic marks is evident, however, it is still not sufficiently explored for G4 

formation prediction. 

 

Figure 1. G4 involvement in the epigenetic regulation. G4s are colocalized with gene promoters, open chromatin and 

certain epigenetic marks (such as H3K4me3), are able to recruit chromatin remodelling proteins and histone modification 

agents, and prevent CpG islands from cytosine methylation. Additionally, G4 may arrest the copying of the chromatin 

repressive marks, leading to epigenetic instability. 

While the correlations of accessible chromatin and some epigenetic marks hint the relative 
importance of these features for G4 formation, our goal is to use machine learning to develop a model 

that can predict G4 formation in cells and rate the importance of these features for G4 formation. Five 

histone modification marks (H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K36me3) and chromatin 

accessibility (ATAC-seq) were selected for training and evaluation. We aim to predict weaker G4s 

formed in cells along with stable G4s. We focus our predictions on a broad set of putative quadruplex 

sequences found in the human genome according to the latest motif definitions (see Materials and 

Methods) and infer the putative quadruplex sequence (PQS) formation probability in cells. The 

developed approach is designed to transfer the learned features to predict G4 in unseen types of cells 
based on the underlying sequence and local epigenetic snapshot. 

MATERIAL AND METHODS 

G4 input preparation for epiG4NN model. PQS sequences were found with a regular expression 

search using python re package in the hg19/GRCh37 human genome assembly, retrieved from the 

UCSC Genome Browser (http://genome.ucsc.edu/). We broadened the existing definitions of G4 and 

used the following regular expressions: [G3+L1-12]3+G3+ – canonical G4 pattern with extended loop 

length; [GN0-1GN0-1GL1-3]3+GN0-1GN0-1G   – bulged G4 pattern with possible G-run breaks; [G1-2N1-

2]7+G1-2 – irregular G4 pattern, where L is any of {A, T, C, G} and N is any of {A, T, C}. A total number 

of guanines greater or equal than 12 was required to avoid two-layered G4. The search was 
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performed on both strands. We filtered the redundant and nested G4s by only considering distinct 

sequences separated by at least one nucleotide. The overlapping sequences were not merged. The 

first encountered motif from the 5’ end of the overlapping group is considered. A total of 2,105,837 G4 

were found for the three types (Supplementary Figure 1). PQS sequences were then padded to 1000 
nt and one-hot-encoded for training as follows: A=[1, 0, 0, 0], T=[0, 1, 0, 0], C=[0, 0, 1, 0], G=[0, 0, 0, 

1], N=[0, 0, 0, 0]. For each PQS, the respective G4 score was found from the experimental dataset by 

overlapping the PQS motif with experimental peaks and taking an average of the 

continuous .bedgraph signal. If there is no signal corresponding to the PQS coordinate, the score was 

set as 0.0. G4 labels for training were obtained from the G4P ChIP-seq study with GEO accession 

number GSE133379 for A549 and HEK293T cell lines. The upper 5 percentiles of the normalized 

experimental scores were characterized as “positive” class, and the rest of PQS as “negative” 

(Supplementary Figure 2). As a result, more than 105,000 PQS were classified as positive for A549 – 
a slightly more conservative number of peaks as compared to the number of peaks determined in the 

downstream analyses in the original study (32). A549 cell data were selected for training, and 

HEK293T for independent evaluation. For HEK293T, upper 2 percentiles were used to match the 

originally reported number of called peaks (more than 40,000). For additional evaluation and analyses, 

pre-processed G4 peaks for HeLa (GSE133379), HaCaT (GSE76688) and K562 (GSE107690) were 

used. 

Chromatin accessibility and epigenetic marks data preparation. Epigenetic information is 

generally preserved across tissues in species, especially for cell cultures with common progenitor 

cells (55), therefore, using G4 data and epigenetic data from different studies of the same cell line is 

possible. We used histone 3 lysine residue 4 methylation and trimethylation, histone 3 lysine 9 and 

lysine 36 residues trimethylation, histone 3 lysine 27 residue acetylation, and nucleosome availability 

as epigenetic marks for our experiments. We retrieved H3K4me1, H3K4me3, H3K9me3, H3K27ac, 

H3K36me3 ChIP-seq datasets and ATAC-seq dataset for A549 cells, and H3K4me3, H3K27ac ChIP-
seq for HEK293T from the Encyclopedia of DNA elements (ENCODE) (56) Reference Epigenome 

project with accession codes ENCFF633KDT, ENCFF021UDY, ENCFF474QYY, ENCFF126BYV, 

ENCFF053BXF, ENCFF735UWS, and accession codes ENCFF315TAU, ENCFF186KMN, 

respectively. ATAC-seq signal for HEK293T was retrieved from GEO project with accession code 

GSM3905877. For K562 cells, we used ENCODE projects with accession codes ENCFF252GZO for 

ATAC-seq, ENCFF929TPH for H3K4me3, and ENCFF488FYZ for H3K27ac. If the data were 

originally mapped to hg38, they were lifted over to hg19 using UCSC liftOver tool with a chain 
downloaded from the UCSC genome browser 

(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/). We filtered out regions with no full 

coverage of any of the features to ensure continuous data availability for every PQS. All epigenetic 

data were normalized to a range of values [0, 1]. We then created input arrays of 1000-nt epigenetic 

profiles for each PQS with bedtools intersect command-line tool. Genomic tracks were visualized with 

pyGenomeTracks tool(57). 
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Model architecture. epiG4NN architecture is based on a ResNet (58) – neural network class with 

residual convolutional layers and dilation. We designed our architecture as sequential convolutional 

towers of 4 residual blocks each, where each residual block contains batch normalization (x2), 

rectified linear unit (ReLU) activation (x2), and convolutional layer with 32 kernels and variable kernel 
size (x2) (Supplementary Figure 3). We constructed a model with only sequence input (G4NN) as a 

baseline for epiG4NN. Model inputs are arrays of shape [1000, 4] for G4NN, sequence-based model, 

and arrays of shape [1000, 5] for epiG4NN. The first four rows of the input are the one-hot-encoded 

sequences, and the last row is the normalized epigenetic feature. Output of each residual unit is 

added to the penultimate layer through a 1D convolution with hidden state of size 32, therefore 

implementing skip, or residual, connections between units for better convergence and avoidance of 

vanishing/exploding gradients problem (58). Classification objective for this model is single-class, 

single label binarized probability of G4 formation. We performed a search for optimal hyperparameter 
set by training a grid of models with various hyperparameters. The optimal parameters were selected 

based on the performance of the model on the validation dataset during training: K = 3, W = [11, 11, 

15], D = [1, 4, 10], where K is the number of convolutional towers, Wi is the convolutional filter width in 

the ith residual block, Di is the dilation rate of the ith residual block. 

Model training and evaluation. Training data from A549 dataset were split into train and test 
subsets, where the test set contains all the PQS that belong to chromosomes 1, 3, 5, 7, 9, and train 

set – all PQS that belong to chromosomes 2, 4, 6, 8, 10-22, X, Y. The models were trained with batch 

size of 64 and a constant learning rate of 0.001 with Adam stochastic gradient descent optimizer 

method based on adaptive estimation of lower-order moments (59). Upon initialization, model weights 

are filled with random numbers. At each training iteration, binary cross entropy loss function is 

minimized over the target train labels. Output labels are determined via sigmoid function applied to 

the ultimate logit. Due to the large number of input data samples, chromosome data were input 

gradually and training on one chromosome from the train set constituted a full iteration. Training then 
continued with the next chromosome, to a total of 19 iteration steps in one epoch. Optimal 

hyperparameters were determined from the performance of the sequence-only model on the 

validation dataset, as determined by accuracy, and applied to all the other models. Most of PQS had 

zero scores, therefore, the classes are highly imbalanced and are contributing unequally to the 

metrics and loss, with low probability class (unfolded G4) skewing the metrics. This problem was 

addressed by implementing balanced class weights for the optimizer: weighti = 

Nsamples/(Nclasses·frequencyi), resulting in weights 0.35 and 35.69 for negative and positive classes. We 
evaluated the models on withheld test samples using accuracy and area under the receiver operating 

characteristic curve (AUROC) to determine class separability. AUROC x-axis depicts false positive 

rate (FPR), and y-axis depicts true positive rate (TPR), defined as FPR = FP/(FP+TN) and TPR = 

TP/(TP+FN). However, these metrics are not optimal for imbalanced classification problems, therefore 

we additionally evaluate areas under the precision-recall curve (AUPRC) to determine precision and 

recall of positive G4 samples. Precision (P) and recall (R) are defined as follows: P = TP/(TP+FP), R 

= TP/(TP+FN), where TP is true positives, FP is false positives, and FN is false negatives. Training 
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and evaluation were performed using TensorFlow (v2.4.0) using python keras API. Respective python 

scripts can be found at https://github.com/anyakors/epiG4NN. 

RESULTS 

Quadruplex-forming motif definition broadening. Early approaches to defining G4-forming 

motifs used regular expressions of type [G3+L1-7]3+G3+ (17, 18, 60) and yielded around 376,000 

putative G4s. Many G4s forming in vitro still did not adhere to this limited definition (29), including G4s 

with missing guanines (21–23), G4s with ultra-long loops (19), bulged G4s (20) and G4s with runs of 
irregular length (61), to name a few. Later search efforts considered variable numbers of guanines in 

the run (62), bulges and mismatches (“imperfections”) (25, 26), longer loops of up to 12 nucleotides 

(29), G-rich sequences considering cytosine bias (27), and duplex stem-containing loops (63). As the 

goal of this work is to define a set of G4 motifs for training that covers a significant part of the in vivo 

formed peaks, we limit ourselves to a few simple definitions. We broadened the existing definitions of 

G4 and used the following regular expressions: [G3+L1-12]3+G3+ – canonical G4 pattern with extended 

loop length, similarly to (29); [GN0-1GN0-1GL1-3]3+GN0-1GN0-1G   – G4 pattern with possible bulges, with 
restrictions as described in (20); [G1-2N1-2]7+G1-2 – irregular G4 pattern alike those studied in (61). 

These three definitions do not aim to exhaustively cover the G4 motif repertoire, and only selects a 

representative set of G4 motifs for training. A total of 2,105,837 G-quadruplex motifs were determined 

after filtering (see Materials and Methods), where 907,845 instances are bulged G4s, 652,908 are 

irregular G4s, and 545,084 are canonical G4s with extended loop length.  

G4 colocalizes with accessible chromatin and chromatin marks in cells. We interrogated the 
mean profiles of five epigenetic marks and chromatin accessibility genome-wide at active G4 loci in 

A549 cells (32) (Fig. 2). Mean normalized signals of H3K4me1, H3K4me3, H3K9me3, H3K27ac, 

H3K36me3 histone modifications, and ATAC-seq signal were centered and plotted at PQS motifs with 

G4P ChIP-seq peaks. H3K4me3, H3K27ac and ATAC-seq profiles displayed positive association of 

epigenetic mark occupancy with the G4 peaks, while H3K4me1, H3K9me3 and H3K36me3 marks 

demonstrated the opposite trend. H3K4me1, H3K9me3 and H3K36me3 exhibit a dip at G4 sites 

compared to the genome-wide background level, while H3K4me3, H3K27ac and ATAC-seq 
demonstrate peaks at G4 sites compared to background level (Fig. 2b). Heatmap analysis (Fig. 2c) of 

the top 6,000 profiles of each mark revealed that H3K4me3, H3K27ac and open chromatin (ATAC-

seq) signals contribute the highest number of informative profiles as well. The profiles were sorted by 

average intensity and plotted from highest to lowest. H3K4me1, H3K9me3 and H3K36me3 have most 

of profiles with close-to-zero intensity, while H3K4me3, H3K27ac and ATAC-seq enrich more than six 

thousand profiles (Fig. 2d). 
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Figure 2. Genome-wide profiles of epigenetic mark occupancy at G4 sites. a) Unlike in vitro conditions, in cells G4s are 

formed in the chromatin context with possible epigenetic chemical modifications, such as histone 3 lysine residue 4 methylation 

and tri-methylation (H3K4me1, H3K4me3), and others. b) Mean distribution of normalized H3K4me1, H3K4me3, H3K9me3, 

H3K27ac, H3K36me3 and ATAC-signal (chromatin accessibility) in the 6000 nt vicinity of active G4 loci in A549 cells. The 

profiles are normalized to have a maximum of 1.0. Mean genome-wide background levels are shown with dashed line. c) 

Density heatmaps of the H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K36me3 and ATAC-signal in the 250 nt vicinity of 

active G4 loci in A549 cells. Top 6,000 profiles sorted by signal intensity are shown. d) Rate of decrease of epigenetic signal for 

the top 6,000 profiles at active G4 sites. 

Recently, similar results were reported for histone mark enrichment in mouse embryonic stem cells 

(38), where high confidence G4 CUT&Tag peaks overlapped with open chromatin, H3K4me3 and 

H3K27ac peaks, whereas H3K4me1 and H3K9me3 exhibited a local minimum. Active G4, H3K4me2 

and H3K4me3 peaks followed by H3K27ac and open chromatin densely occupy gene promoter 
regions in HEK293T cells in another study (35). It was confirmed earlier that folded G4s are enriched 

at gene promoter regions characterized by open chromatin (31). Therefore, H3K4me3, and H3K27ac 

histone modifications and open chromatin (ATAC-seq) signal are good candidates to inform the G4 

prediction in cells. We aim to extract the informative signal from both the epigenetic landscape and 

the PQS sequence with a neural network termed epiG4NN and compare it with the baseline G4NN 

that only uses the DNA sequence.  
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Figure 3. epiG4NN is a ResNet-based architecture directly incorporating raw DNA sequence and local epigenetic profiles 

for G4 prediction in cells. a) epiG4NN training objective is to predict putative G4 sequence (PQS) formation in cells, including 

those G4 not found in vitro. b) PQS sequence with immediate flanks to a total of 1000 nt is taken for input and stacked with the 

normalized array of the given epigenetic feature. The architecture is based on 12 residual convolutional blocks with dilation. 

epiG4NN outputs a normalized probability of G4 formation. 

epiG4NN is a new hybrid model leveraging different epigenetic marks. We developed 

epiG4NN, a hybrid sequence and epigenetic context-based model for prediction of G4 formation in 

cells. epiG4NN is a neural network model that consists of stacks of convolutional layers with skip 

connections for better training convergence (58). Convolutional networks (CNNs) are a class of deep 

learning methods that achieved significant breakthroughs in the genomic predictions (64–67). 

Convolutional kernels slide along the inputs and extract input features, passed on to the next layers. 
CNNs allow for hierarchical representation of features through learning the patterns in the input 

sequence without explicit feature engineering. For inputs, we used putative quadruplex-forming 

sequences (PQS) and different auxiliary arrays of processed epigenetic marks aligned to PQS: 

histone 3 lysine 4 residue mono-methylation (H3K4me1), histone 3 lysine 4, 9, and 36 residues tri-

methylation (H3K4me3, H3K9me3, H3K36me3), histone 3 lysine 27 residue acetylation (H3K27ac), 

and chromatin accessibility (ATAC ChIP-seq data). Each epigenetic feature was tested independently 

(Fig. 3). Comparisons were made with a sequence-based model G4NN with the same architecture 

and hyperparameters (number of residual stacks, convolutional kernel properties, learning rate, batch 
size). We trained our models on A549 G4 data from a RHAU-derived antibody G4P-ChIP-seq 

experiment (32) and subsequently evaluated on both A549 withheld test samples and unseen 

HEK293T and K562 cell data.  

Accurate G4 formation prediction in cells based on epigenetic features with epiG4NN. Upon 

optimization of hyperparameters, the best epiG4NN architecture was determined. We trained six 
epiG4NN models (epiG4NN-H3K4me1, epiG4NN-H3K4me3, epiG4NN-H3K9me3, epiG4NN-H3K27ac, 

epiG4NN-H3K36me3, epiG4NN-ATAC) on A549 cell data (32) along with the baseline sequence-only 

G4NN. Different epigenetic marks and ATAC-seq signal were used for training by independently 
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stacking each normalized epigenetic feature array with the one-hot-encoded sequence, hence 

expanding the transverse dimension of the encoded sequence from 4 to 5 (Fig. 3). Both area under 

the receiver operating characteristic (AUROC) and area under the precision-recall curve (AUPRC) 

were used as quality measures of the model. AUROC measures the separability of the positive and 
negative classes, where a score of 1 means perfect ability of the model to distinguish between 

classes. However, AUROC may be skewed by an imbalance of number of samples in classes. 

AUPRC measures the trade-off between precision and recall, and AUPRC of 1 means high precision 

and high recall. The class imbalance problem exists in G4 training data. We found about 2,100,000 of 

potential G4 motifs, while only about 105,000 of them are formed in A549 cells. Accuracy and 

AUROC metrics are, therefore, not sensitive enough for training and evaluation in this problem. 

Instead, AUPRC can be used as characteristic for the G4 prediction objective. Previously, the 

maximum AUROC of 0.988 and AUPRC of 0.309 were reported for the problem of G4 prediction in 
cells (42). Here, we achieve an AUROC of 0.996 and an AUPRC of 0.907 (Fig. 4) for the epiG4NN-

H3K4me3 model on the A549 unseen chromosome set. In accordance with the widely accepted fact 

that G4 generally colocalize with accessible chromatin regions (31), our models performance rating 

support the importance of open chromatin (epiG4NN-ATAC, AUROC = 0.993, AUPRC = 0.837), and 

the epigenetic mark of active enhancers, H3K27ac (epiG4NN-H3K27ac, AUROC = 0.991, AUPRC = 

0.838) for G4 formation. epiG4NN-H3K4me1 gave an intermediate improvement in the prediction 

(AUROC = 0.984, AUPRC = 0.693), whereas epiG4NN-H3K9me3 and epiG4NN-H3K36me3 gave 

only moderate improvements (AUROC = 0.984, AUPRC = 0.686 and AUROC = 0.982, AUPRC = 
0.673, respectively) compared to sequence-based G4NN (AUROC = 0.983, AUPRC=0.668). 

Combining two best predictive features only resulted in a marginal performance improvement (see 

Supplementary Note 1). 

 

Figure 4. epiG4NN improves G4 formation prediction in cells on held-out A549 test samples by using epigenetic features 

for training, as measured by receiver operating characteristic and precision-recall curves. Receiver operating characteristic (left) 

and precision-recall (right) curves of the baseline G4NN model (dashed gray) and epiG4NN-H3K4me1, epiG4NN-H3K4me3, 

epiG4NN-H3K9me3, epiG4NN-H3K27ac, epiG4NN-H3K36me3, epiG4NN-ATAC models. Areas under the receiver operating 

characteristic curve (AUROC) and under the precision-recall curve (AUPRC) are shown in the legend.  

epiG4NN predicts G4 formation in unseen cell lines. Populations of G4s in cellular context are 

shared between cell lines or formed uniquely in some cells. We compared the pre-processed G4 

peaks obtained from HEK293T, HaCaT, HeLa cells using G4P ChIP-seq (32), K562 cells using BG4 

ChIP-seq (37), and K562 cells using CUT&Tag (34) with G4 peaks detected in A549 cells with G4P 
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ChIP-seq (32). A549 and HeLa cell lines are epithelial-like cells derived from lung and uterus, 

respectively, whereas HaCaT are keratinocytes; HEK293T are derived from kidney cells, and K562 

are lymphoblast cells. G4P ChIP-seq and CUT&Tag methods detect G4s in situ, while BG4 ChIP-seq 

detects G4s ex vivo. We found that only 53% of HaCaT, 76% of HEK293T, 60% of K562 (BG4 ChIP-
seq), 38% of K562 (CUT&Tag) and 82% of HeLa G4 peaks are common with A549. To assess how 

well our model performs on different cell types with distinct underlying epigenetic landscapes, we 

additionally carried out model evaluation on HEK293T (G4P ChIP-seq) and K562 (CUT&Tag) cell 

lines. As epiG4NN was trained on G4 peaks from A549 cells obtained with G4P ChIP-seq, we only 

used data from in situ G4 detection experiments to exclude possible technical variability. We selected 

the three best models as tested on A549 unseen samples (epiG4NN-H3K4me3, epiG4NN-ATAC, 

epiG4NN-H3K27ac) together with the baseline sequence-only model G4NN and measured their 

performance on new cell lines with AUROC and AUPRC (Fig. 5). epiG4NN-H3K4me3 showed the 
best performance with both HEK293T (AUPRC = 0.836) and K562 (CUT&Tag) (AUPRC = 0.838) cell 

data, followed by epiG4NN-ATAC for K562 (CUT&Tag) and epiG4NN-H3K27ac for HEK293T. 

epiG4NN-ATAC, however, performed slightly worse than sequence alone for HEK293T.  

 

Figure 5. epiG4NN predicts G4 formation in unseen cell lines. Receiver operating characteristics and precision-recall 

curves for epiG4NN evaluation of G4 formation prediction: a) in K562 cells obtained with an in situ CUT&Tag experiment (34), b) 

in HEK293T cells obtained in an in situ G4P ChIP-seq experiment (32), all evaluated with G4NN (sequence-only, gray dashed 

line) and epiG4NN-ATAC, epiG4NN-H3K27ac, and epiG4NN-H3K4me3. Areas under the receiver operating characteristic 

curve (AUROC) and under the precision-recall curve (AUPRC) are shown in the legend.  

Model learned from in situ data cannot predict ex vivo data well.  Additionally, we tested 

another K562 cell line G4 dataset obtained with the ex vivo BG4 ChIP-seq method. Given the same 

epigenetic profile and the same sequence motifs as for the K562 (CUT&Tag) data, with a different set 
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of G4 peaks to predict, epiG4NN-H3K4me3 and epiG4NN-H3K27ac models were only able to perform 

marginally better than the G4NN baseline in terms of AUROC and AUPRC; epiG4NN-ATAC resulted 

in a slightly better evaluation (AUROC = 0.909, AUPRC = 0.342) (Fig. 6). The underlying 

technical/experimental condition difference between BG4 ChIP-seq and CUT&Tag methods of G4 
detection in cells, therefore, makes the transfer of learned features challenging. The features learnt 

from one experimental condition may differ from the features in other conditions, resulting in poor 

cross-method model performance.  

 

Figure 6. epiG4NN has compromised performance in an ex vivo G4 dataset. epiG4NN-ATAC, epiG4NN-H3K27ac, and 

epiG4NN-H3K4me3 models were evaluated on BG4 ChIP-seq data of K562 cells with receiver operating characteristics and 

precision-recall curves. Areas under the receiver operating characteristic curve (AUROC) and under the precision-recall curve 

(AUPRC) are shown in the legend.  

An example of differential epiG4NN prediction. The first intronic region of the human GRHL3 

gene, located on the chromosome 1, contains a few PQS, where one PQS is formed in both 

HEK293T and A549 cell lines, while the other PQS is formed in HEK293T cells but not in A549 cells 

(32) (Fig. 7). We created pseudo-genomic tracks that demonstrate the formation of these PQS using 

epiG4NN-H3K4me3 and making point predictions for each nucleotide in the region of interest. 

 

Figure 7. epiG4NN predicts universally and differentially formed G4 in the GRHL3 first intron region. Genome tracks, from 

top to bottom: 1) RefSeq transcripts; PQS detected in hg19 with bioinformatic motif search, plus strand: yellow, minus strand: 

blue; 2) in vitro detected G4 peaks (G4-seq in K+) (31), plus strand: green, minus strand: not detected; 3) A549 predictions with 

epiG4NN-H3K4me3 and G4 peaks detected with G4P ChIP-seq (32); 4) HEK293T predictions with epiG4NN-H3K4me3 and G4 

peaks detected with G4P ChIP-seq (32). PQS numbered 3 has a peak in both HEK293T and A549 cells, while PQS number 5 

has a peak in HEK293T only. PQS number 5 is highlighted, and its sequence is shown. 
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We found seven PQS corresponding to GRHL3 intron 1 region (Fig. 7), where four PQS are found 

on the plus strand (numbered 1, 3, 5, and 7), and three PQS on the minus strand (numbered 2, 4, and 

6). We additionally refer to the in vitro data. Interestingly, only one in vitro formed G4 on the plus 

strand was matching the region, and it did not overlap with any of the PQS motifs. In cells, A549 G4P 
ChIP-seq data has one G4 peak corresponding to PQS number 3 and HEK293T has two peaks 

corresponding to PQS numbers 3, 5 (Fig. 7). epiG4NN-H3K4me3 captures the difference between the 

H3K4me3 features in A549 and HEK293T cell lines given the same sequence of the G4 motif and 

predicts unique formation of the PQS number 5 in HEK293T, while PQS number 3 is predicted in both 

cell lines. Previously reported DeepG4 model only used G4 forming both in cells and in vitro for 

training and testing (42). The lack of matching in vitro peak highlights the importance of prediction in 

cells irrespective of the G4 formation in vitro. 

epiG4NN-H3K4me3 exhibits a promoter and enhancer bias. Certain histone marks are known 

to be enriched in open chromatin, gene enhancer, and promoter regions of the genome (68). 

H3K4me3 is an “active” histone mark thought to play a role in transcription (69, 70) and is marking 

gene promoters (71), while H3K27ac is marking gene enhancers (72). To test whether our model is 

biased towards these regions, we extracted G4 overlapping gene promoters (73) and cell-specific 

enhancers for A549 and HEK293T cell lines (74), and evaluated the region-specific performance of 
epiG4NN-H3K4me3. Evaluation revealed overall better AUPRC scores for enhancer and promoter 

regions compared to random regions (Fig. 8) together with the fact that a greater proportion of G4 is 

formed in promoter regions. Ubiquitous formation of G4 in the promoter regions was indeed 

experimentally confirmed previously (31, 54, 75). A significantly lower proportion of the G4 is formed 

in the enhancer regions (Fig. 8d), and even less so in the random regions (Fig. 8f), while the quality of 

prediction drops the most drastically for random regions in HEK293T cell lines. 

 

Figure 8. Promoter-enhancer bias in the epiG4NN prediction quality. a), c), e) precision-recall curves for epiG4NN-

H3K4me3 in promoters, enhancers, and random regions in A549 (left-out chromosome set) and HEK293T (unseen) cells, 
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respectively. b), d), f) proportions of formed G4, experimental and predicted, in promoters, enhancers, and random regions in 

A549 and HEK293T cells. 

 

DISCUSSION 

Genome-wide G4 prediction methods are important for understanding G4 biology and for targeting 

such structures. Recent progress in chromatin immunoprecipitation methods was applied to G4 
detection, and multiple experimental G4 datasets were reported. However, the discrepancies between 

G4 formed in different cells and experiment types pointed to the need for understanding G4 formation 

in cells. The vast body of cellular epigenetic data allows to attribute G4 formation in cells to specific 

cellular features. So far, little is known about the correlations between G4 formation and such cellular 

data. Here, we demonstrate a novel approach, epiG4NN, that comprises of a hybrid deep neural 

network that uses cellular epigenetic features and DNA sequence for G4 prediction in genomic DNA. 

Compared to previously published methods, epiG4NN achieves unprecedented precision and recall in 

G4 prediction in unseen cell lines. Additionally, epiG4NN allows to rate the relevance of H3K4me1, 
H3K4me3, H3K9me3, H3K27ac, H3K36me3 and chromatin accessibility signals to G4 prediction 

problem. 

Through our experiments on the A549, HEK293T and K562 data, we show that supplementing 

epigenetic data improves learning, as compared to sequence-based model G4NN with the same 

architecture and number of parameters. We demonstrate that epiG4NN-H3K4me3, epiG4NN-
H3K27ac and epiG4NN-ATAC considerably outperform G4NN. H3K4me3 is the strongest predictor of 

the G4 formation in our experiments on A549 and HEK293T (G4P ChIP-seq (32)) and K562 cell data 

(CUT&Tag (34)), followed by ATAC-seq and H3K27ac signals. We found that the optimal epigenetic 

predictor for cell lines depends on the experimental condition of the underlying data. Independent 

evaluation of epiG4NN on G4 data obtained with G4P ChIP-seq (32) and CUT&Tag (34) showed that 

H3K4me3 is a good predictor of G4 formation for the G4 detected in situ, while open chromatin is the 

only predictor for ex vivo type of experiment (K562 data, BG4 ChIP-seq (37)) that improves over the 

sequence-only prediction. This likely reflects the different approach behind the experimental datasets: 
K562 cells in BG4 ChIP-seq were fixed and chromatin was fragmented before it reacted with a G4 

specific antibody, while A549 cells were subjected to a G4P knock-in and the antibody was expressed 

natively. It is not clear how fragmentation and purification of DNA affects G4 formation, and features 

learned by the model trained on in situ data do not seem to translate to another class of G4 detection 

experiment. The finding that ATAC-seq improves G4 predictions efficiency is in line with a previous 

report (42), while H3K4me3 was found to be highly colocalized with G4 sites in other recent studies 

(35, 38). Additionally, we have demonstrated that only H3K4me3, H3K27ac and open chromatin 
signals contribute to a large number of active G4 sites, while H3K4me1, H3K9me3 and H3K36me3 

are largely depleted. The key difference between epiG4NN and previously reported models lies in the 

usage and comparison of multiple epigenetic marks or features for contextual prediction of G4 

formation in cells. We achieve a better performance in G4 prediction and demonstrate relative 
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importance of different epigenetic features. We additionally retrained the previously reported model 

DeepG4 (42) on our data to compare the model architectures, and obtained an AUROC or 0.981 and 

an AUPRC of 0.644 for the A549 left-out test samples (Supplementary Fig. 5), demonstrating that our 

architecture may be more suitable for this task. Additionally, unlike DeepG4 – the only other model 
predicting DNA G4 in cells reported so far – we employ a full snapshot of the local epigenetic profile, 

in contrast with a single average value for a given G4 motif region. We show that our model can 

reproduce peak signatures from two different cell lines, A549 and HEK293T, where a PQS is formed 

differentially. Our model, however, suffers from a prediction accuracy bias in the random regions as 

compared with gene promoter or enhancer regions. We believe that epiG4NN can contribute to study 

the roles of chromatin marks on the sequence-structure dependence. 
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