

Article Evaluation of epigenetic age acceleration scores and their associations with CVD related phenotypes in a population cohort

Olga Chervova¹*[®], Elizabeth Chernysheva^{2†}[®], Kseniia Panteleeva^{1†}[®], Tyas Arum Widayati^{1†}[®], Natalie Hrbkova¹,[®], Jadesada Schneider¹,[®], Vladimir Maximov³[®], Andrew Ryabikov³[®], Taavi Tillmann⁴[®], Hynek Pikhart⁵[®], Martin Bobak⁵[®], Vitaly Voloshin⁶[®], Sofia Malyutina³[®] and Stephan Beck¹[®]

- ¹ UCL Cancer Institute, University College London, London, UK
- ² Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- ³ Institute of Internal and Preventive Medicine–Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- ⁴ Institute of Family Medicine and Public Health, Tartu, Estonia
- ⁵ Institute of Epidemiology and Health Care, University College London, London, UK
- ⁶ Royal Botanical Gardens Kew, London, UK
- * Correspondence: o.chervova@ucl.ac.uk
- + These authors contributed equally to this work.

Abstract: We evaluated associations between nine epigenetic age acceleration (EAA) scores and 18 cardio-metabolic phenotypes using an Eastern European ageing population cohort richly annotated 2 for a diverse set of phenotypes (subsample, n = 306; aged 45-69 years). This was implemented by splitting the data into groups with positive and negative EAAs. We observed strong association between all epigenetic age acceleration scores and sex, suggesting that any analysis of EAAs should 5 be adjusted by sex. We found that some sex-adjusted EAA scores were significantly associated with 6 several phenotypes such as blood levels of gamma-glutamyl transferase and low-density lipoprotein, 7 smoking status, annual alcohol consumption, multiple carotid plaques, and incident coronary heart disease status (not necessarily the same phenotypes for different EAAs). We demonstrated that even 9 after adjusting EAAs for sex, EAA-phenotype associations remain sex-specific, which should be 10 taken into account in any downstream analysis involving EAAs. The obtained results suggest that 11 in some EAA-phenotype associations, negative EAA scores (i.e. epigenetic age below chronological 12 age) indicated more harmful phenotype values, which is counter-intuitive. Among all considered 13 epigenetic clocks, GrimAge was significantly associated with more phenotypes than any other EA 14 scores in this Russian sample. 15

Keywords: DNAm age; epigenetic clock; epigenetic age acceleration.

16

17

1. Introduction

It has been more than a decade since the very first epigenetic age predictor was proposed [1], and since then dozens of DNA methylation (DNAm) based clocks have been developed. "Epigenetic age" (EA) is a score that is calculated by applying an EA prediction model (a DNAm clock) onto a set of DNA methylation measurements at particular loci (CpGs). Epigenetic age acceleration (EAA) is defined as the deviation of the estimated EA from the chronological age (CA), and is typically derived as either the difference between EA and CA, or as the residual from regressing EA onto CA (EA \sim CA).

In the beginning of the epigenetic clock era, the first generation EA predictors (i.e. [1], [2], [3]) were primarily focused on accurate age prediction. The new EAA measures, which are derived from second generation epigenetic clocks (i.e. [4], [5]), are more focused on capturing physiological dysregulation [6] while still keeping strong links to chronological age [7].

Various measures of EAA are shown to be associated with different phenotypes and diseases (see reviews [8] and [9]). For example, deviations in EAA were shown to be

Citation: Chervova, O.; Chernysheva, E.: Panteleeva, K.: Widayati, T.A.; Hrbkova, N.; Schneider, J.; Maximov, V.; Ryabikov, A.; Tillmann, T.; Pikhart, H.; Bobak, M.; Voloshin, V.; Malyutina S.; Beck, S. Evaluation of epigenetic age acceleration scores and their associations with CVD related phenotypes in a population cohort. *Biology* 2022, 1, 0. https://doi.org/

Received: Accepted: Published:

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted to *Biology* for possible open access publication under the terms and conditions of the Creative Commons Attri-bution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

connected to cancer [10,11], metabolic syndrome [12], and cognitive function decline [13]. 32 All of these conditions are linked with ageing, which is a complex process that involves 33 changes in all organs, tissues, and cells; and cannot be quantified by a single biological 34 measure. Similarly, there is no single EAA measure that could be declared as the best 35 epigenetic marker of ageing.

In this study we investigate the relationship between several widely-used EAA scores 37 with the phenotypic data on cardio-vascular disease (CVD) related risk factors and condi-38 tions available for a random population sample (n = 306) that is a part of The HAPIEE 39 Project [14], a Siberian cohort established in 2003 as a multicentre epidemiological study of 40 CVD in Eastern and Central Europe. One of our aims was to determine which EAA mea-41 sures are "sensitive" to which phenotypes and health-related conditions. By comparing the 42 distributions of phenotypes between those with positive and negative EAAs we identified 43 how EAAs are associated with clinical data in an ageing Russian population. 44

2. Methods

2.1. Data collection

This study is based on the data generated from a subset of the Russian branch of 47 the HAPIEE (Health, Alcohol, and Psychosocial Factors in Eastern Europe) cohort [14], 48 which was established in Novosibirsk (Russia) in 2003-2005 and followed up in 2006-2008 49 and then again in 2015-2017. The protocol of the baseline cohort examination included an 50 assessment of cardiovascular and other chronic disease history, lifestyle habits and general 51 health, socio-economic circumstances, an objective measurement of blood pressure (BP), 52 anthropometric parameters, physical performance, and instrumental measurement. The 53 details of protocol are reported elsewhere [14]. 54

This study is based on a cohort of n = 306 HAPIEE participants who did not have any indications of cardiovascular disease during the baseline measurement, as well as having a whole blood DNA methylation profile. DNAm was measured in accordance with the 57 manufacturer's recommended procedures using the Illumina MethylationEPIC BeadChip 58 (Illumina, San Diego, CA, USA), a detailed description is available in [15]

2.2. Variables description

All variables involved in our analyses were collected during the baseline examination 61 (with the exception of incident coronary heart disease). Phenotypic data available for 62 our study includes age, sex, systolic and diastolic blood pressure values (SBP and DBP, 63 mmHg; respectively), anthropometric parameters - body mass index (BMI, kg/m^2) and 64 waist-hip ratio (WHR, units), smoking status (ever smoker or never smoker), and the 65 estimated annual alcohol intake (g of ethanol and number of annual occasions). A person 66 who smoked at least one cigarette a day was classified as an "ever smoker". The amount of alcohol consumed was assessed using the Graduated Frequency Questionnaire and 68 was then converted to pure ethanol (g) [16]. The height and weight was measured with 69 accuracy to 1 mm and 100 g, respectively. Blood pressure (BP) was measured three times 70 (Omron M-5 tonometer) on the right arm in a sitting position after a 5 minute rest period 71 with 2 minutes interval between measurements. The average of three BP measurements 72 was calculated and recorded. 73

Fasting blood serum tests' results contain measured levels of total cholesterol (TC, 74 mmol/l), triglycerides (TG, mmol/l), high-density lipoprotein cholesterol (HDL, mmol/l), 75 gamma-glutamyl transferase (GGT, mmol/l) and plasma glucose (mmol/l). The levels of 76 TC, TG, HDL, GGT, and glucose in blood serum were measured enzymatically with the 77 KoneLab 300i autoanalyser (Thermo Fisher Scientific Inc., USA) using Thermo Fisher Sci-78 entific kits. The Friedewald formula [17] was applied to calculate low-density lipoprotein 79 cholesterol (LDL, mmol/l). Fasting plasma glucose (FPG) was calculated from the fasting 80 serum glucose levels using the European Association for the Study of Diabetes (EASD) 81 formula [18]. Hypertension (HT) comprises SBP \geq 140 mmHg or DBP \geq 90 mmHg accord-82 ing to the European Society of Cardiology/European Society of Hypertension (ESC/ESH) 83

2 of 43

45

46

55

56

59

Version November 30, 2022 submitted to Biology

3 of 43

Guidelines [19] and/or antihypertensive medication intake within two weeks prior to the blood draw. Presence of type 2 diabetes mellitus (T2DM) was defined as FPG > 7.0 mmol/l, or ongoing treatment with insulin or oral hypoglycaemic medicines [20]. None of the participants included in our analysis had a history of major cardiovascular disease (CVD), such as myocardial infarction (MI), acute coronary syndrome (ACS), stroke, or transit ischemic attack at the time of the baseline examination and blood draw. The binary coronary heart disease (CHD) variable in our dataset includes any incident CHD events (MI/ACS) which occurred within the 15-year follow-up period of the cohort.

Carotid arteries were examined via high resolution ultrasound using the systems Vivid 92 q or Vivid7 (GE HealthCare) with a 7.5/10-mHz phased-array linear transducer. Device 93 settings were adjusted in accordance to the American Society of Echocardiography (ASE) 94 recommendations [21]. Longitudinal and transverse scans were performed at the right and 95 left common carotid arteries with branches to assess anatomy and atherosclerotic lesions. 96 The digital images were archived and the measurements were conducted off-line by an experienced researcher (A.R.) who was blinded to the participants' characteristics [22]. The 98 plaques were defined in accordance with the Mannheim consensus [23]. For the present analysis we used two phenotypes of atherosclerosis: presence of at least one carotid plaque 100 (CP) or multiple plaques (MCP). The ultrasound variables are only available for a subset of 101 samples (n = 105, 35% of all samples). 102

Individual phenotypes were also combined into five groups of phenotypes, which we define as follows:

- Anthropometric: BMI and WHR;
 Lifestyle: smoking status and annual alcohol consumption
- Lifestyle: smoking status and annual alcohol consumption (intake and number of occasions);
- Metabolic: GGT, T2DM and plasma glucose;
 Lipids: TC, HDL, LDL, TG;
- Lipids: TC, HDL, LDL, TG;
 Cardio-vascular: SBP, DBP, HT, CHD, CP and MCP.

2.3. DNAm data quality control (QC) and preprocessing

In preprocessing raw DNAm data we mostly followed the procedures from [24] 112 which are in line with the manufacturer's recommended steps. In brief, we checked 113 the array control probes' metrics (Illumina Bead Control Reporter), signal detection p-114 values, and bead count numbers for all available cytosine-phospate-guanine (CpG) probes. 115 Furthermore, we compared actual and DNAm predicted sex data for each sample. The 116 samples included in this analysis were those where less than 1% of CpGs had a detection 117 $p \ge 0.01$, as well as having probes with a bead count number ≥ 3 and detection p < 0.01118 in at least 99% of samples Initial DNAm data processing and QC data filtering were 119 implemented using R v.4.1.0 [25] together with specialised R libraries minfi [26], ChAMP [27], 120 and ENmix [28]. 121

2.4. Epigenetic Age Acceleration

Epigenetic age acceleration (EAA) scores were calculated using the DNA Methylation Online Calculator [3]. This web based tool gives nine EAAs based on five epigenetic scores, namely Horvath's [3], Hannum's [2], Skin and Blood [29], PhenoAge [4], and GrimAge [5] measures, see Table 1. Further details regarding epigenetic clocks and various EAAs are given in Appendix B.

2.5. Grouping

In this study we evaluated CVD-related phenotypes and their association with different EAA scores. It is expected that these phenotypes show small effect size (in comparison with some types of cancer) in blood DNA methylation, and hence in EAAs as well. Taking into account the relatively small sample size of our study, we decided to limit our analyses to the grouping of EAAs as described below.

128

122

105

108

109

110

Version November 30, 2022 submitted to Biology

 Table 1. Summary of the EAA scores measured using DNA Methylation Online Calculator.

EAA	Clock	Info				
HannumAA	Hannum [2]	Residuals from regressing EA on CA				
HannumEEAA	Hannum [30]	Residual from regressing the weighted aver				
		age of Hannum's EA and estimated measures				
		of blood cells counts on CA				
HannumIEAA	Hannum [30]	Residuals from regressing Hannum's EA on				
		CA and various blood immune cell counts				
HorvathAAd	Horvath [3]	Difference between EA and CA				
HorvathAAr	Horvath [3]	Residuals from regressing EA on CA				
HorvathIEAA	Horvath [30]	Residuals from regressing Horvath's EA on				
		CA and various blood immune cell counts				
SkinBloodAA	Skin and Blood [29]	Residuals from regressing EA on CA				
PhenoAA	PhenoAge [4]	Residuals from regressing EA on CA				
GrimAA	GrimAge [5]	Residuals from regressing EA on CA				

Abbreviations: CA - chronological age, *EA* - epigenetic age, *EAA* - epigenetic age acceleration, *IEAA* - intrinsic epigenetic age acceleration, *EEAA* - extrinsic epigenetic age acceleration

Analysis of associations between EAAs and phenotypes in our study involves comparing the distributions of the phenotypic data in two groups. The grouping is based on binary split with respect to the sign of EAA, defined as follows:

$$All \text{ samples} = \begin{cases} EAA^+, & \text{samples with non-negative EAA,} \\ EAA^-, & \text{samples with negative EAA.} \end{cases}$$
(1)

In other words, for each clock we use the definition (1) to split our cohort into two groups, one with EAA < 0 and the other with EAA ≥ 0 , and then study the differences in phenotypic distribution between these groups. Similar grouping was also featured in previous studies based on EAAs [31,32].

2.6. Statistical Analysis

All statistical analyses were performed using R v.4.1.2. They include descriptive analysis of the available data using relevant techniques, such as univariate analysis, crosstabulation, statistical hypothesis testing (Welch's *t*-test [33] for continuous variables and Fisher's exact test [34] for binary data), and linear regression-based data adjustments. Welch's *t*-test null-hypothesis: mean values of a given variable in EAA^+ and EAA^- groups are not different. Fisher's exact test null-hypothesis: classifications of a given binary variable in EAA^+ and EAA^- groups are not different. The significance level is defined as $\alpha = 0.05$ for each EAA-phenotype association hypothesis test.

In order to consider the association between different EAAs and groups of phenotypes 147 (all apart from the Lifestyle group), we controlled for family-wise error rate (FWER) using 148 the Bonferroni correction [35,36], which was performed per group of phenotypes per EAA. 149 The significance threshold for the Anthropometric, Metabolic, Lipids, and Cardio-vascular 150 groups of phenotypes were calculated to be 0.025, 0.0166, 0.0125, and 0.0083, respectively. 151 In the Lifestyle group we considered the smoking and alcohol intake data separately, thus, 152 FWER-controlled significance threshold for alcohol consumption phenotypes is 0.025, and 153 0.05 for smoking status. It means that for each clock the group association was inferred 154 from the individual phenotypes by controlling for FWER in the different phenotype groups. 155 In other words, we define the EAA score to be associated with the group of phenotypes 156 if for at least one of the phenotypes in the group the significance of the relationship is 157 sustained with the Bonferroni-corrected threshold. 158

Version November 30, 2022 submitted to Biology

5 of 43

161

162

180

All the graphs presented in the paper were produced using ggplot2 [37] and its extensions, pheatmap [38], PerformanceAnalytics [39] and base R functions.

3. Results

3.1. Associations between sex and phenotypes

Our dataset consists of (n = 306) samples (166 females and 140 males). Summaries of the dataset characteristics for all samples and for sex-specific groups are given in Tables A1 and A3. Table A1 contains descriptive statistics (range, mean, and standard deviation) for the available continuous phenotype data and the corresponding Welch's *t*-test *p*-values and 95% confidence intervals. Table A3 includes count numbers and percentages for dichotomous variables, together with sex-specific odds ratios, 95% confidence intervals, and *p*-values calculated by performing a Fisher's exact statistical test.

The Russian sample being considered in this study showed no significant difference 170 between males and females in the distribution of chronological age, blood pressure values 171 (both SBP and DBP), incidence of acute CHD events, diagnosis of hypertension and diabetes, 172 or levels of triglycerides and fasting glucose. The phenotypes which were significantly 173 different in males vs. females are anthropometric measures (BMI and WHR), lifestyle 174 choices (alcohol consumption and smoking status), and blood levels of gamma-glutamyl 175 transferase (GGT) and lipids (both LDL and HDL). Interestingly, in this Russian dataset 176 there was no significant difference between the male and female odds ratios of being 177 diagnosed with a carotid plaque (CP), but the odds ratios of having multiple carotid 178 plaques (MCP) significantly differed between sexes. 179

3.2. EAAs are associated with some phenotypes and have strong sex bias

Our EAA analyses are based on nine EAA scores (described in Section 2.4) which 181 were obtained from the five different epigenetic clock models, with multiple EAA scores 182 derived from Horvath's multi-tissue and Hannum's clocks (3 EAAs each). Correlation 183 coefficients are higher among EAAs based on the same clock than among EAAs from 184 different clocks. Namely, Pearson correlation coefficients range between 0.78 and 0.97 185 within EAAs derived from Horvath's and Hannum's models, whilst the highest value 186 of correlation for EAAs derived from separate clocks is r = 0.57, see correlation table on 187 Figure A2. Note that neither of the EAAs is significantly correlated with chronological age 188 apart from HorvathAAd, which is the only measure calculated without chronological age 189 adjustment.

To explore connections among the variables we calculated correlation coefficients (Spearman correlation) and normalised entropy-based mutual information values for all the phenotypes and EAAs. Heatmaps for correlations (absolute values) and mutual information values, as well as correlations-based network plots are presented in corresponding Figures 1, A1, and 2, respectively. In both the correlation and mutual information plots the EAAs are clustered together with the exception of GrimAA, which displays very strong associations with sex and smoking status.

We further investigated the relationship between phenotypes and EAAs by splitting the dataset into EAA⁺ and EAA⁻ groups using (1), and, subsequently, testing the phenotype data distribution using a *t*-test for continuous variables, and Fisher's exact test for binary variables. The corresponding statistical testing results are presented in Tables A5 and A6.

We noted that in nearly all EAA measures the size distribution of the EAA⁺ and EAA⁻ 203 groups were within a 45%-55% range. The only exceptions to this were HorvathAAd (32% 204 EAA⁺ samples vs. 68% EAA⁻ samples) and GrimAA (61% EAA⁺ samples vs. 39% EAA⁻ 205 samples). Sex specific group splitting was found to be very unbalanced for all the EAAs for 206 both sexes with an exception of HorvathIEAA, see Table A4. Furthermore, we observed 207 significant differences in distributions of all nine EAA measures in our data between males 208 and females, the corresponding data along with descriptive statistics are presented in 209 Table A2. Given the strong association between sex and the various phenotypes examined 210

6 of 43

in this study, the significant results obtained for EAA-phenotype associations might have ²¹¹ been confounded by sex. ²¹²

Figure 1. Heatmap of the correlations between all available traits and epigenetic age accelerations

3.3. Sex-adjusted EAAs are associated with various phenotypes

In order to eliminate the undesired sex bias we adjusted all of the EAA scores by sex and then repeated the analyses described in the previous section, based on the calculated adjusted EAAs (adjEAA). Splitting the data into EAA⁺ and EAA⁻ resulted in balanced group sizes for all the adjEAAs, all of the groupings were within a 44%-56% range, see Table A4. The medians of the adjEAAs for sex-specific subsets located closer to 0 compared to the medians of unadjusted EAAs, see Figure 3A.

The significant results from testing the differences in phenotype distribution between 220 the EAA⁺ and EAA⁻ groups are given in Table 2. This table contains 95% confidence 221 intervals, which indicate the trends in the direction of differences. The corresponding 222 means and odds ratio values could be found in Table A6, where we present all testing 223 outcomes regardless of their significance. For all available samples only four adjEAAs 224 (GrimAA, PhenoAA, Horvath's residuals, and IEAA) demonstrated statistically significant 225 results for six phenotypes, with 4 phenotypes highlighted by GrimAA, and one phenotype 226 each by the rest of the adjAAs (7 phenotype-EAA combinations in total). Among the 227 differently distributed phenotypes are blood levels of GGT and LDL, smoking status and 228 annual alcohol consumption, diagnosed MCP and incident CHD status; with the latter 229

254

Figure 2. Network plot of the connections among the phenotypes and EAAs in the dataset. Based on Spearman correlation coefficients with absolute values above 0.3

Seven phenotype-EAA combinations were demonstrated to be statistically significant. 234 Of these, five remained significant in male-only data subsets, and three remained significant 235 in female-only subsets. In males the significant differences between the EAA⁺ and EAA⁻ 236 groups were confirmed by four EAAs (the same for all samples) and seven phenotypes 237 (10 phenotype-EAA combinations). Significant results for females feature seven EAAs (all 238 apart from Horvath's and HannumIEAA) and 10 traits (21 phenotype-EAA combinations). 239 Nearly half (10 out of 21) of the results for the female subgroup presented in Table 2 relate 240 to blood lipids measures (TG, LDL and HDL), and another 6 results for females relate to 241 the presence of a hypertension diagnosis and blood pressure values (SBP and DBP). Nei-242 ther lipid- nor blood pressure-related phenotypes were associated with the EAA⁺/EAA⁻ 243 grouping in males, unlike the presence of a CP/MCP diagnosis. Anthropometric parame-244 ters were also found to be statistically different in both sex-specific groups (BMI in males 245 and WHR in females), but not for the combined dataset. 246

Our findings also suggest that some of the clocks are associated with groups of phenotypes. In particular, we observed that GrimAA and HorvathAAr are significantly associated with the cardio-vascular group of phenotypes for the entire dataset. In the femaleonly subset, HorvathAAd and GrimAA are both associated with the anthropometric and cardio-vascular groups, whilst PhenoAA, HannumAA, and HannumEEAA are associated with the lipids group. No significant results were found for the metabolic group or in the male-only subset.

3.4. Directions of some EAA-phenotype associations in sex-specific subsets are different

The results presented in Tables 2 and 3 summarise the significant outcomes of statistical hypothesis testing of our data based on grouping (1). Some of the phenotypes in the sex-specific groupings were highlighted by multiple EAAs, e.g. female total cholesterol 257

Table 2. Significant differences between groups with positive and negative epigenetic age acceleration scores (EAA $^+$ and EAA $^-$).

Results which remained significant after controlling for family-wise error rate of 0.05 in groups of phenotypes per clock (as described in the Methods section 2.6) are presented in **bold**.

Phenotype	EAA	<i>p</i> , all	95% CI, all	<i>p</i> , F	95% CI, F	<i>р</i> , М	95% CI, M
Anthropometri	с						
BMI	GrimAA					0.039	(-3.079, -0.079)
WID	HorvathAAd			0.004	(-0.048, -0.009)		
WIK	GrimAA			0.010	(0.006, 0.046)		
Lifestyle							
Cru altin a	GrimAA	<0.001	(1.799, 4.895)	0.026	(1.077, 8.931)	<0.001	(4.5, 58.7)
Smoking	HorvathAAd		, , , , , , , , , , , , , , , , , , , ,	0.016	(1.140, 9.454)		
status	PhenoAA					0.004	(1.360, 8.319)
Alcohol,	HorvathIEAA	0.028	(-2832, -163)			0.023	(-5522, -422)
annual intake	GrimAA					0.049	(16, 5370)
Metabolic			-				
CCT	GrimAA	0.023	(0.728, 9.699)				
GGI	HorvathAAr		, , , , , , , , , , , , , , , , , , , ,			0.030	(0.738, 14.5)
Lipids							
	HannumAA			0.009	(-0.947, -0.141)		
TO	GrimAA			0.046	(0.008, 0.818)		
IC	PhenoAA			0.010	(-0.919, -0.127)		
	HannumEEAA			0.003	(-1.004, -0.203)		
TG	GrimAA			0.015	(0.070, 0.632)		
וחע	HorvathAAr			0.013	(0.026, 0.219)		
	SkinBloodAA			0.027	(0.012, 0.205)		
	PhenoAA	0.037	(-0.523, -0.016)	0.004	(-0.840, -0.157)		
LDL	HannumAA			0.010	(-0.811, -0.112)		
	HannumEEAA			0.002	(-0.904, -0.215)		
Cardio-vascula	ır						
СПР	GrimAA	<0.001	(1.518, 4.060)	0.001	(1.458, 5.955)	0.042	(1.020, 4.389)
	HorvathAAr	0.006	(1.187, 3.139)			0.018	(1.150, 4.995)
СР	GrimAA					0.009	(1.367, 22.723)
MCP	GrimAA	0.004	(1.584, 26.779)			0.009	(1.401, 33.864)
нт	HorvathAAd			0.005	(0.202, 0.781)		
111	GrimAA			0.043	(0.987, 3.764)		
SRP	HorvathAAd			0.008	(-20.1, -3.2)		
	GrimAA			0.024	(1.3, 18.4)		
	HorvathAAd			0.003	(-10.626, -2.144)		
	GrimAA			0.039	(0.228, 8.832)		

Version November 30, 2022 submitted to Biology

Figure 3. Boxplots of EAAs and sex-adjusted EAAs for all samples and sex-specific subsets (panel **A**), distribution of GrimAA distribution stratified by sex (panel **B**) and adjusted for sex (panel **C**).

(HannumAA, PhenoAA, GrimAA and EEAA) and male alcohol consumption (IEAA and GrimAA), however, the signs of the groups' mean differences are not consistent. 259

For instance, in Table 2, the confidence intervals for female WHR are positive for GrimAA and negative for HorvathAAd. Further investigation revealed that the EAA⁺ group have a higher mean WHR than in EAA⁻ for GrimAA, but the opposite is true for HorvathAAd, see Figure A6. Furthermore, the mean WHR values were higher in the EAA⁻ group for all three EAAs derived from Horvath's clock, together with HannumIEAA and SkinBloodAA. Similar trends were observed in male annual alcohol consumption, see Figure A3, and in female levels of TC, HDL, LDL, and blood pressure values (SBP and DBP), see Figures A9, A8, A7, A12, and A11, respectively.

4. Discussion

The question of which EAA measure is the "best" or "most suitable" to study particular phenotypes is yet to be answered. For our data we decided to take into consideration all the EAA measures that could be calculated using DNA Methylation Online Calculator [3], which is a relatively easy-to-use open-access tool. Epigenetic clocks included in the Online Calculator are featured in the vast majority of studies related to EAA-phenotype/disease associations (see e.g. [32,40–42]), as well as in benchmarking the newly developed DNAmbased clocks' performance (see e.g.[43]).

9 of 43

Table 3. EAA-Phenotype association table. White colour indicates no significant association, green/red colour indicate significantly higher/lower values of phenotype measures (higher odds ratios) in EAA^+ group compared to EAA^- for continuous (binary) phenotypes. Lower case letters indicate individual significant associations between a clock and a phenotype for all cohort participants (a), females (f), and males (m); capital letters indicate phenotype group significant association (controlled for family-wise error rate) for all (**A**), females (**F**), and males (**M**).

	HannumIEAA	HannumEEAA	HannumAA	HorvathAAd	HorvathAAr	HorvathIEAA	SkinBloodAA	PhenoAA	GrimAA
BMI									m
WHR				F					F
Smoking Status				F				Μ	AFM
Alcohol (annual intake)						a M			m
Alcohol (annual occasions)									
GGT					m				а
TC		F	F					F	f
TG									f
HDL					f		f		
LDL		F	F					aF	
CHD					A m				AFm
CP									m
MCP									A m
HT				F					f
SBP				F					f
DBP				F					f

Version November 30, 2022 submitted to Biology

11 of 43

All the considered EAAs were independent (apart from HorvathAAd) of chronological 282 age, but clearly sex-biased (Table A2), with generally lower EAA values for females. It 283 was particularly obvious for the GrimAA scores, with distribution profiles separated for 284 males and females, see Figure 3 B-C. As we pointed out in Section 3.3, splitting the dataset 285 into EAA⁺ and EAA⁻ groups revealed big variation in group sizes for different scores 286 (Table A4), which became particularly extreme for sex-specific subsets. To avoid unwanted 287 confounding, for our analyses we adjusted EAAs by sex and proceeded with adjEAA values. 288 This step resulted in more balanced EAA⁺/EAA⁻ group split for all adjEAAs. Of course, adjusting EAAs for sex did not affect the actual differences in phenotypes distributions 290 between male and female subjects (see Tables A3 and A1). As a result, several phenotype-291 EAA combinations, which have previously demonstrated statistically significant results, 292 did not persist after the adjustment (see Table A5).

Due to some phenotypes show sex-specific behaviour, see e.g. [44–46], we presented 294 the results for males and females separately, alongside the results for the entire dataset. In one of the recent reviews [47], the authors pointed out the lack of sex-specific results 296 involving EAAs and recommended splitting data by sex in downstream analyses. Our findings confirm the importance of using EAAs in sex-specific groups. We observed that 298 the most phenotypes are reflected by some EAAs in one sex-specific group only. It should 299 be noted that the results presented using positive and negative EAAs grouping (see Section 300 2.5). The observed association in groups could be further investigated on larger datasets 301 using continuous EAAs. 302

We found that in our dataset both BMI and WHR were significantly different in males 303 and females. Without adjusting for sex, multiple EAAs groupings highlighted significant 304 differences in both BMI and WHR for all samples, but none of those associations replicated 305 after adjustment (see Table A5). It is known [44], that in females WHR is associated with 306 risks of CHD regardless of BMI, whilst in males WHR was found to be associated with 307 incidence of CHD only for subjects with normal BMI measures. Our analysis found the 308 anthropometric parameters to be statistically different in both sex-specific groups (BMI 309 (GrimAA) in males and WHR (GrimAA and HorvathAA) difference in females), which is in line with results reported in large-scale US Sisters study [48] and Taiwan Biobank [49] 311 cohorts. Interestingly (and opposite to findings in [44]), in [49] the authors report significant 312 associations between WHR and EAAs (PhenoAge and GrimAge) in males, and between 313 BMI and EAAs (PhenoAge and GrimAge) in females, which is the other way round in studied Russian sample (WHR in females and BMI in males). We would like to point out, 315 that GrimAA grouping revealed higher mean WHR in female EAA⁺, but lower male mean 316 BMI in the same group with positive EAAs (see Figures A6 and A5). 317

Lifestyle habits, including diet, smoking and alcohol consumption, are known to 318 impact DNAm and being associated with epigenetic age in multiple studies, see e.g. [50– 319 52]. Some DNAm clocks were specifically developed to be sensitive to smoking status, 320 like, for example, GrimAge [5]. GrimAA was the only score associated with smoking 321 status in the entire dataset, and the associations replicated in sex-specific subsets (Table 2). 322 PhenoAA and HorvathAAd were also found to be significantly associated in male and 323 female subgroups respectively. HorvathIEAA was significantly associated with annual 324 alcohol consumption for all the samples and this association persisted in males, together 325 with GrimAA, but not in females. Interestingly, the mean annual alcohol volume was 326 higher in EAA⁺ group for GrimAA, but lower in EAA⁺ group for IEAA (Figure A3), which 327 is not in line with the current state of the art in alcohol-ageing relationship, see e.g. review 328 [53]. 329

Version November 30, 2022 submitted to Biology

12 of 43

Previous publications suggest that EAAs are associated with diabetes and/or glucose 330 levels [9,54,55]. It was also found that positive GrimAA (but not PhenoAA) is associated 331 with higher 5-10 years incidence of type 2 diabetes, particularly for obese individuals [32]. 332 In analysing this Russian sample we have not observed any significant associations of the 333 considered EAAs with prevalent type 2 diabetes mellitus (T2DM) status and/or fasting 334 blood glucose values. This might be attributed to the small proportion (11%) of the diabetics 335 in our data compared to other studies (e.g. nearly 20% in [55]). Blood levels of GGT are 336 associated with many dismetabolic conditions, including fatty liver, excessive alcohol 337 consumption, increased risks of CHD and T2DM [56,57], and is known to be different in 338 men and women [45], with no unified reference values. For the entire dataset, GrimAA 339 EAA⁺/EAA⁻ grouping demonstrated significant difference in serum GGT measures. This 340 result was not replicated in sex-specific subsets, but at the same time, in male subgroup 341 GGT level difference was detected in HorvathAAr split (see Figure A4). 342

Blood levels of total cholesterol, TG and lipoproteins (HDL and LDL) are known to be sex-specific and associated with risk of developing CVD in both sexes, see e.g. [58]. Changes 344 in lipids concentrations are also shown to be reflected in age-related changes in DNAm following dietary interventions [59]. Furthermore, associations of EAAs and lipids levels 346 were confirmed in several studies [60,61]. In our entire dataset, among all available lipids data, only mean LDL levels in EAA⁺ with PhenoAA grouping were significantly lower than 348 in EAA⁻, and this result persisted in female subset. No significant differences in mean lipids 349 concentrations were highlighted by any EAA split for the male subgroup, whilst ten EAA-350 lipids phenotypes associations were highlighted in females. In particular, in female subset 351 GrimAA grouping demonstrated significantly higher group mean levels of total cholesterol 352 and TG in EAA⁺ compared to EAA⁻ (see Table 2, Figures A9 and A10). At the same time 353 mean TC and LDL concentrations (Figure A7) were significantly lower in EAA⁺ group 354 in PhenoAA, HannumAA and EEAA splits. Female HDL levels associations were picked 355 up in SkinBloodAA and HorvathAAr groupings, with higher lipoprotein concentration in 356 EAA⁺ group (see Figure A8). Remarkably, for all four considered lipids-related measures, 357 known CVD risk factors (high TC, LDL, TG, and low HDL) were associated (not all 358 significantly) with positive age acceleration only for GrimAA grouping, whilst the opposite 350 was demonstrated in all the significant (and vast majority of insignificant) EAAs-lipids 360 associations based on other EAA splits (see Figures A7, A8, A9 and A10). In view of recently 361 published age-related sex-specific trends in lipid levels [62] and hypertension prevalence 362 [46], it would be interesting to conduct an extended sex-specific analyses on EAA-lipids 363 and hypertension associations for the particular age groups to see whether EAA values reflect the observed age-related patterns. 365

Data on carotid atherosclerosis and advanced atherosclerosis, which are defined in our study as the presence of at least a single (CP) and multiple carotid plaques (MCP) 367 respectively, was available for only 34% of the participants, with 50/23/14 and 55/23/2 total/CP/MCP samples available for males and females. Only GrimAA grouping was 369 significantly associated with CP in males and MCP in the entire dataset and its male only 370 subset. In female specific subset blood pressure values (both SBP and DBP) and hyper-371 tension status were significantly associated with HorvathAAd and GrimAA groupings. 372 Interestingly, in case of GrimAA group split, mean values of SBP and DBP were higher in 373 EAA⁺ group, which might indicate the increased risk of CVD [63]. This is the opposite to 374 the corresponding results of HorvathAAd grouping. None of these phenotypes were high-375 lighted in the entire dataset and male subset. Two groupings, GrimAA and HorvathAAr, 376 were significantly associated with incident CHD for all available samples. The results 377 persisted in male subset for both groupings and in female subset for GrimAA split only. 378 Similar results were also described in Genetic Epidemiology Network of Arteriopathy 379 (GENOA) dataset study [55], where the authors reported significant connections not only 380 between GrimAA and incident CVD, but also between GrimAA and time to the CVD event.

Notably, while higher odds of CHD were associated with EAA⁺ for both GrimAA 382 and HorvathAAr, only GrimAA EAA⁺ was consistently associated with more harmful 383 phenotypes values, indicating higher risk of CHD. All other EAA splits demonstrated mostly the opposite behaviour regarding available risk factors (lipids, anthropometric, lifestyle and cardio-vascular).

The observed associations of the various EAAs with both individual and groups of phenotypes suggest that epigenetic age acceleration scores are sensitive to various cardiometabolic parameters, which might indicate their prognostic potential for related disorders. Further investigations conducted on well-annotated larger datasets are needed to improve the understanding the mechanisms behind those associations, and, possibly developing new biomarkers. These might be extended by applying other epigenetic age models and using continuous EAAs in association studies. 300

5. Conclusions

Our study conducted on a subset of HAPIEE cohort shows that EAAs are sex-specific and should be adjusted for sex in EAA-phenotypes association studies. Moreover, even after adjusting for sex, the associations between EAAs and considered 18 cardiometabolic phenotypes are sex-specific. The only two phenotype-EAA associations persisted through the entire dataset and both male and female subsets are incident CHD and smoking status. 300

Among all considered epigenetic clocks, GrimAge was significantly associated with more phenotypes than any other EA scores, but for most of the phenotypes those associations are weaker than in other scores. Furthermore, for some EAAs, the direction of the association with phenotype is counter-intuitive, i.e. lower EAA scores corresponded to more harmful values of the phenotypes. The observed associations of the various EAAs with both individual and groups of phenotypes suggest that epigenetic age acceleration scores are sensitive to various cardio-metabolic parameters, which might indicate their prognostic potential for related disorders.

Author Contributions:OC drafted the manuscript with the input from all the authors. EC, KP and
TAW equally contributed to all aspects of data analysis and draft preparation. NH, JS, AR, VM, MB,
HP, VV, SM, and SB participated in data generation, analyses design and manuscript preparation. VV,
SM and SB supervised the study. All authors read and approved the manuscript.408

Funding: The baseline HAPIEE study was funded by the Welcome Trust (WT064947, WT081081,106554/Z/14/Z), the US National Institute of Aging (1RO1AG23522). O. Chervova and S. Beck weresupported by grants from the Frances and Augustus Newman Foundation (172074). O. Chervova,S. Beck, M. Bobak and H. Pikhart were supported by EU-H2020 Project "CETOCOEN Excellence"(857560). T.A. Widayati was funded by Indonesian Endowment Fund (Lembaga Pengelola DanaPendidikan).

Institutional Review Board Statement: The study was conducted in accordance with the Declarationof Helsinki, and approved by the Institutional Ethics Committee of IIPM—Branch of IC&G SB RAS(Institute of Internal and Preventive Medicine—Branch of Federal State Budgeted Research Institution,"Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academyof Sciences"), Protocol no. 1 from 14 March 2002 and Protocol no. 12 from 8 December 2020.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. 423

 Data Availability Statement:
 Raw DNA methylation IDAT files have been deposited at the European

 Genome-phenome Archive (EGA), which is hosted by the EBI and the CRG, under accession number
 425

 EGAS00001006390.
 The dataset is under embargo at the moment. Further information about EGA
 427

 can be found on https://ega-archive.org
 "The European Genome-phenome Archive of human
 428

 data consented for biomedical research" [64].
 429

Acknowledgments: The authors are grateful to UCL Cancer Institute Medical Genomics Lab 430 members for stimulating discussions. 431

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design432of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or433in the decision to publish the results.434

Version November 30, 2022 submitted to Biology

14 of 43

Abbreviat	ions	435
The followi	ng abbreviations are used in this manuscript:	436
ACS	Acute coronary syndrome	
adjEAA	Adjusted epigenetic age acceleration	
ASE	American Society of Echocardiography	
BMI	Body mass index	
BP	Blood pressure	
CA	Chronological age	
CARDIA	Coronary Artery Risk Development in Young Adults	
CHD	Coronary heart disease	
СР	Carotid plaque	
CpG	Cytosine-phospate-guanine	
CVD	Cardio-vascular disease	
DBP	Diastolic blood pressure	
DNAm	DNA methylation	
EA	Epigenetic age	
EAA	Epigenetic age acceleration	
EASD	European Association for the Study of Diabetes	
EEAA	Extrinsic epigenetic age acceleration	
EGA	European Genome-phenome Archive	
ESC	European Society of Cardiology	437
ESH	European Society of Hypertension	
FPG	Fasting plasma glucose	
GENOA	Genetic Epidemiology Network of Arteriopathy	
GGT	Gamma-glutamyl transferase	
HAPIEE	Health, Alcohol, and Psychosocial Factors in Eastern Europe	
HDL	High-density lipoprotein	
HT	Hypertension	
IEAA	Intrinsic epigenetic age acceleration	
IIPM	Institute of Internal and Preventive Medicine	
LDL	Low-density lipoprotein	
MCP	Multiple carotid plaques	
MI	Myocardial infarction	
QC	Quality control	
SBP	Systolic blood pressure	
T2DM	Type 2 diabetes mellitus	
TC	Total cholesterol	
TG	Triglycerides	
WHR	Waist-hip ratio	

Appendix A. Supplementary Figures and Tables

Table A1. Summary of the continuous phenotype data for males and females.

Sample size is n = 306, 166/140 female/male. Glucose measurements are only available for n = 298, 159/139 female/male samples. *p*-values obtained from the Welch's *t*-test testing difference between male and female groups for each variable (**H**₀: Mean value of the variable is the same for male and female groups).

Phenotype	Sex	(min,max)	Mean (SD)	<i>p</i> -value	95% CI
	All	(44.78, 70.37)	56.78 (7.13)		
Age, years	F	(44.78, 70.11)	57.3 (7.28)	0.16	(-0.46, 2.75)
	Μ	(45.15, 70.37)	56.15 (6.92)		
	All	(16.76, 53.62)	28.06 (5.3)		
BMI , kg/m ²	F	(16.76, 53.62)	29.12 (5.66)	< 0.001	(1.18, 3.48)
Ű	М	(18.37, 43.27)	26.8 (4.54)		
	All	(0.69, 1.13)	0.88 (0.08)		
WHR, units	F	(0.69, 1.01)	0.84 (0.06)	< 0.001	(-0.12, -0.09)
	M	(0.79, 1.13)	0.94 (0.07)		
Alcohol (appual	All	(0, 43530)	2696.73 (5936.95)		
intako) g	F	(0, 14850)	504.52 (1323.39)	< 0.001	(-6129.87, -3453.23)
intakc), g	Μ	(0, 43530)	5296.07 (7919.46)		
	All	(0, 365)	47 (75.56)		
Alcohol (annual	F	(0, 198)	19.19 (34.44)	< 0.001	(775444)
occasions), n	Μ	(0, 365)	79.96 (95.4)	< 0.001	(-77.34, -44)
	All	(10, 140)	31.26 (19.92)		
GGT , mmol/l	F	(10, 140)	27.5 (18.34)	< 0.001	(-12.69, -3.77)
	Μ	(12, 130)	35.73 (20.85)		
	All	(4.11, 17.11)	6.04 (1.65)		
Glucose, mmol/l	F	(4.11, 16)	6.02 (1.6)	0.766	(-0.44, 0.32)
	Μ	(4.56, 17.11)	6.07 (1.72)		
	All	(4.04, 11.06)	6.5 (1.28)		
TC, mmol/l	F	(4.14, 11.06)	6.72 (1.33)	0.001	(0.19, 0.75)
	M	(4.14, 11.06)	6.25 (1.17)		
	All	(0.56, 5.56)	1.62 (0.84)		
TG , mmol/l	F	(0.56, 5.56)	1.67 (0.92)	0.189	(-0.06, 0.31)
	M	(0.63, 4.59)	1.55 (0.71)		
	All	(0.7, 3.29)	1.54 (0.33)		
HDL, mmol/l	F	(0.93, 2.46)	1.59 (0.32)	0.015	(0.02, 0.17)
	M	(0.7, 3.29)	1.49 (0.35)		
	All	(1.46, 8.3)	4.22 (1.14)		
LDL, mmol/l	F	(1.94, 8.09)	4.37 (1.15)	0.013	(0.07, 0.58)
	M	(1.46, 8.3)	4.05 (1.1)		
	All	(93.33, 247)	140.95 (25.75)		
SBP , mmHg	F	(93.33, 227.67)	141.18 (28.19)	0.861	(-5.21, 6.23)
	M	(99.67, 247)	140.67 (22.62)		
	All	(54.33, 135.33)	88.65 (13.76)		
DBP , mmHg	F	(59, 135)	87.87 (14.15)	0.275	(-4.8, 1.37)
	M	(54.33, 135.33)	89.59 (13.26)		

Version November 30, 2022 submitted to Biology

Table A2. Summary of EAAs scores data for males and females. EAA scores before adjustment for sex. *p*-values obtained from the Welch's *t*-test testing difference between male and female groups for each EAA (**H**₀: Mean value of the EAA is the same for male and female groups).

Sex	(min, max)	Mean (SD)	Median (IQR)	p-value	95% CI
All	(-17.6, 20.49)	0 (4.35)	-0.33 (5.2)		
F	(-17.6, 10.69)	-1.15 (4.06)	-1.06 (4.77)	< 0.001	(-3.46, -1.56)
M	(-7.65, 20.49)	1.36 (4.32)	0.7 (5.85)		
All	(-20, 24.18)	0 (5.42)	0.04 (6.73)		
F	(-20, 13.44)	-1.57 (5.15)	-1.55 (5.8)	< 0.001	(-4.59, -2.27)
M	(-9.24, 24.18)	1.86 (5.16)	1.29 (7.2)		
All	(-15.55, 18.54)	0 (3.91)	-0.19 (4.98)		
F	(-15.55, 8.11)	-0.72 (3.57)	-0.67 (4.43)	0.001	(-2.44, -0.69)
M	(-7.49, 18.54)	0.85 (4.13)	0.55 (5.19)		
All	(-17.16, 21.87)	2.16 (4.95)	2 (6.02)		
F	(-17.16, 13.42)	1.06 (4.58)	0.82 (5.55)	< 0.001	(-3.51, -1.31)
M	(-10.84, 21.87)	3.47 (5.07)	3.49 (6.15)		
All	(-16.11, 17.01)	0 (4.49)	-0.07 (5.55)		
F	(-16.11, 11.83)	-0.95 (4.13)	-0.9 (5.43)	< 0.001	(-3.07, -1.08)
M	(-9.98, 17.01)	1.13 (4.65)	1.08 (5.79)		
All	(-15.62, 15.93)	0 (4.32)	0.07 (5.57)		
F	(-15.62, 10.23)	-0.7 (4.07)	-0.48 (5.26)	0.002	(-2.51, -0.56)
M	(-8.84, 15.93)	0.83 (4.48)	0.58 (5.56)		
All	(-21.55, 13.15)	0 (3.68)	-0.39 (4.82)		
F	(-21.55, 9.82)	-0.38 (3.73)	-0.58 (4.85)	0.048	(-1.66, -0.01)
M	(-9.33, 13.15)	0.45 (3.58)	0.18 (4.48)		
All	(-17.95, 26.12)	0 (5.74)	-0.53 (7.4)		
F	(-17.95, 26.12)	-1.08 (5.68)	-1.62 (5.78)	< 0.001	(-3.62, -1.08)
M	(-10.35, 15.91)	1.27 (5.56)	0.71 (7.88)		
All	(-10.46, 15.05)	0 (5.44)	-1.47 (7.73)		
F	(-10.46, 8.45)	-3.31 (2.94)	-3.44 (3.16)	< 0.001	(-8.19, -6.26)
M	(-7.71, 15.05)	3.92 (5.12)	3.66 (8.39)		
	SexAllFMAllFMAllFMAllFMAllFMAllFMAllFMAllFMAllFMAllFMAllFM	Sex (min, max) All (-17.6, 20.49) F (-17.6, 10.69) M (-7.65, 20.49) All (-20, 24.18) F (-20, 13.44) M (-9.24, 24.18) F (-17.65, 50.49) All (-9.24, 24.18) F (-20, 13.44) M (-9.24, 24.18) All (-15.55, 18.54) F (-15.55, 8.11) M (-7.49, 18.54) All (-17.16, 21.87) F (-17.16, 13.42) M (-10.84, 21.87) F (-16.11, 17.01) F (-16.11, 17.01) F (-16.11, 11.83) M (-9.98, 17.01) All (-15.62, 10.23) F (-15.62, 10.23) F (-15.62, 10.23) M (-8.84, 15.93) All (-21.55, 9.82) M (-9.33, 13.15) F (-17.95, 26.12) F (-17.95, 26.12) <	Sex(min, max)Mean (SD)All(-17.6, 20.49)0 (4.35)F(-17.6, 10.69)-1.15 (4.06)M(-7.65, 20.49)1.36 (4.32)All(-20, 24.18)0 (5.42)F(-20, 13.44)-1.57 (5.15)M(-9.24, 24.18)1.86 (5.16)All(-15.55, 18.54)0 (3.91)F(-15.55, 8.11)-0.72 (3.57)M(-7.49, 18.54)0.85 (4.13)All(-17.16, 21.87)2.16 (4.95)F(-17.16, 13.42)1.06 (4.58)M(-10.84, 21.87)3.47 (5.07)All(-16.11, 17.01)0 (4.49)F(-16.11, 11.83)-0.95 (4.13)M(-9.98, 17.01)1.13 (4.65)All(-15.62, 10.23)-0.7 (4.07)M(-8.84, 15.93)0.83 (4.48)All(-21.55, 9.82)-0.38 (3.73)M(-9.33, 13.15)0 (5.68)F(-17.95, 26.12)0 (5.74)F(-10.46, 15.05)0 (5.44)F(-10.46, 8.45)-3.31 (2.94)M(-7.71, 15.05)3.92 (5.12)	Sex(min, max)Mean (SD)Median (IQR)All $(-17.6, 20.49)$ $0 (4.35)$ $-0.33 (5.2)$ F $(-17.6, 10.69)$ $-1.15 (4.06)$ $-1.06 (4.77)$ M $(-7.65, 20.49)$ $1.36 (4.32)$ $0.7 (5.85)$ All $(-20, 24.18)$ $0 (5.42)$ $0.04 (6.73)$ F $(-20, 13.44)$ $-1.57 (5.15)$ $-1.55 (5.8)$ M $(-9.24, 24.18)$ $1.86 (5.16)$ $1.29 (7.2)$ All $(-15.55, 18.54)$ $0 (3.91)$ $-0.19 (4.98)$ F $(-15.55, 8.11)$ $-0.72 (3.57)$ $-0.67 (4.43)$ M $(-7.49, 18.54)$ $0.85 (4.13)$ $0.55 (5.19)$ All $(-17.16, 21.87)$ $2.16 (4.95)$ $2 (6.02)$ F $(-17.16, 13.42)$ $1.06 (4.58)$ $0.82 (5.55)$ M $(-10.84, 21.87)$ $3.47 (5.07)$ $3.49 (6.15)$ All $(-16.11, 17.01)$ $0 (4.49)$ $-0.07 (5.55)$ F $(-16.11, 11.83)$ $-0.95 (4.13)$ $-0.9 (5.43)$ M $(-9.98, 17.01)$ $1.13 (4.65)$ $1.08 (5.79)$ All $(-15.62, 15.93)$ $0 (4.32)$ $0.07 (5.57)$ F $(-15.62, 15.93)$ $0 (3.68)$ $-0.39 (4.82)$ F $(-21.55, 9.82)$ $-0.38 (3.73)$ $-0.58 (4.85)$ M $(-9.33, 13.15)$ $0.45 (3.58)$ $0.18 (4.48)$ All $(-17.95, 26.12)$ $-1.08 (5.68)$ $-1.62 (5.78)$ M $(-10.35, 15.91)$ $1.27 (5.56)$ $0.71 (7.88)$ All $(-10.46, 8.45)$ $-3.31 (2.94)$ $-3.44 (3.16)$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Figure A1. Normalised mutual information heatmap.

Figure A2. Correlation table for EAAs

Figure A3. Histograms of distributions of annual alcohol consumption in males in EAA⁺ and EAA⁻ groups. Dashed lines correspond to the group means.

Figure A4. Histograms of distributions of GGT levels in males in EAA⁺ and EAA⁻ groups. Dashed lines correspond to the group means.

Figure A5. Histograms of distributions of BMI in males in EAA⁺ and EAA⁻ groups. Dashed lines correspond to the group means.

Figure A6. Histograms of distributions of waist-hip ratio in females in EAA⁺ and EAA⁻ groups. Dashed lines correspond to the group means.

Figure A7. Histograms of distributions of LDL levels in females in EAA⁺ and EAA⁻ groups. Dashed lines correspond to the group means.

Figure A8. Histograms of distributions of HDL levels in females in EAA⁺ and EAA⁻ groups. Dashed lines correspond to the group means.

Figure A9. Histograms of distributions of TC levels in females in EAA⁺ and EAA⁻ groups. Dashed lines correspond to the group means.

Figure A10. Histograms of distributions of TG levels in females in EAA⁺ and EAA⁻ groups. Dashed lines correspond to the group means.

Figure A11. Histograms of distributions of DBP levels in females in EAA⁺ and EAA⁻ groups. Dashed lines correspond to the group means.

Figure A12. Histograms of distributions of SBP levels in females in EAA⁺ and EAA⁻ groups. Dashed lines correspond to the group means.

Table A3. Summary of binary phenotypes. Being case means having phenotype. Smoking status cases correspond to current or former smokers. *p*-values and odds ratios (with corresponding 95% confidence intervals) obtained from the Fisher's exact test testing difference in ratio of each class of the variable between male and female groups (H_0 : Classification for given binary variable for male and female groups are not different).

Phenotype	Sex	Samples, n	Cases, n (%)	OR (95%CI)	p-value
Smoking	All	306	126 (41.18%)		
status	F	166	24 (14.46%)	0.06 (0.03, 0.12)	< 0.001
status	M	140	102 (72.86%)	15.69 (8.67, 29.34)	
	All	306	34 (11.11%)		
T2DM	F	166	16 (9.64%)	0.72 (0.33, 1.57)	0.466
	M	140	18 (12.86%)	1.38 (0.64, 3.03)	
	All	306	130 (42.48%)		
CHD	F	166	63 (37.95%)	0.67 (0.41, 1.08)	0.083
	Μ	140	67 (47.86%)	1.5 (0.93, 2.43)	
	All	105	46 (43.81%)		
СР	F	55	23 (41.82%)	0.85 (0.36, 1.96)	0.698
	М	50	23 (46%)	1.18 (0.51, 2.75)	
	All	105	16 (15.24%)		
MCP	F	55	2 (3.64%)	0.1 (0.01, 0.47)	0.001
	Μ	50	14 (28%)	10.1 (2.12, 96.93)	
	All	306	176 (57.52%)		
HT	F	166	93 (56.02%)	0.88 (0.54, 1.41)	0.643
	Μ	140	83 (59.29%)	1.14 (0.71, 1.85)	

ЕЛЛ	Say	EAA group	size, n (%)	adjEAA grou	1 p size, <i>n</i> (%)
LAA	Sex	EAA < 0	$\mathbf{EAA} \ge 0$	adjEAA< 0	adjEAA≥ 0
	All	162 (53%)	144 (47%)	155 (51%)	151 (49%)
HannumAA	F	104 (63%)	62 (37%)	80 (48%)	86 (52%)
	М	58 (41%)	82 (59%)	75 (54%)	65 (46%)
	All	150 (49%)	156 (51%)	159 (52%)	147 (48%)
HannumEEAA	F	100 (60%)	66 (40%)	81 (49%)	85 (51%)
	М	50 (36%)	90 (64%)	78 (56%)	62 (44%)
	All	160 (52%)	146 (48%)	159 (52%)	147 (48%)
HannumIEAA	F	95 (57%)	71 (43%)	82 (49%)	84 (51%)
	М	65 (46%)	75 (54%)	77 (55%)	63 (45%)
HorvathAAd	All	98 (32%)	208 (68%)	156 (51%)	150 (49%)
	F	68 (41%)	98 (59%)	87 (52%)	79 (48%)
	М	30 (21%)	110 (79%)	69 (49%)	71 (51%)
	All	155 (51%)	151 (49%)	151 (49%)	155 (51%)
HorvathAAr	F	98 (59%)	68 (41%)	81 (49%)	85 (51%)
	M	57 (41%)	83 (59%)	70 (50%)	70 (50%)
	All	150 (49%)	156 (51%)	152 (50%)	154 (50%)
HorvathIEAA	F	89 (54%)	77 (46%)	79 (48%)	87 (52%)
	M	61 (44%)	79 (56%)	73 (52%)	67 (48%)
	All	163 (53%)	143 (47%)	162 (53%)	144 (47%)
SkinBloodAA	F	96 (58%)	70 (42%)	91 (55%)	75 (45%)
	Μ	67 (48%)	73 (52%)	71 (51%)	69 (49%)
	All	168 (55%)	138 (45%)	164 (54%)	142 (46%)
PhenoAA	F	105 (63%)	61 (37%)	89 (54%)	77 (46%)
	M	63 (45%)	77 (55%)	75 (54%)	65 (46%)
	All	186 (61%)	120 (39%)	157 (51%)	149 (49%)
GrimAA	F	151 (91%)	15 (9%)	85 (51%)	81 (49%)
	Μ	35 (25%)	105 (75%)	72 (51%)	68 (49%)

Table A4. Number of samples in EAA^- and EAA^+ groups for unadjusted and adjusted for sex EAA scores.

I		1			Unadiusted			Adjusted for sex					
Phenotype	EAA		All		Female		Male		All		Female		Male
		р	95% CI	р	95% CI	р	95% CI	р	95% CI	р	95% CI	р	95% CI
Anthropome	tric												
BMI	GrimAA	0.011	(-2.767, -0.364)									0.039	(-3.079, -0.079)
DIVII	HorvathAAd	0.019	(-2.950, -0.267)	0.031	(-3.751, -0.188)								
	HorvathAAd			0.007	(-0.048, -0.008)					0.004	(-0.048, -0.009)		
WHR	GrimAA	< 0.001	(0.069, 0.103)			0.046	(-0.0004, 0.042)			0.010	(0.006, 0.046)		
	SkinBloodAA	0.041	(-0.001,0.038)										
	HannumEEAA	0.016	(-0.004, 0.042)										
Lifestyle									<u> </u>				
	GrimAA	< 0.001	(15.646, 61.134)	< 0.001	(3.642, 52.054)	< 0.001	(5.237, 39.030)	< 0.001	(1.799, 4.895)	0.026	(1.077, 8.931)	< 0.001	(4.515, 58.734)
Caral days	HorvathAAd	0.003	(1.294, 3.884)			0.010	(1.001.(.404)			0.016	(1.140, 9.454)	0.004	(1.2(00.210)
Smoking	PhenoAA Hannum AAr	0.002	(1.262, 3.359)			0.013	(1.201, 6.494)					0.004	(1.360, 8.319)
status	HannumAAr	<0.001	(1.447, 3.873)										
	HannumFFAA	<0.013	(1.112, 2.940)										
0		<0.001	(1.717, 1.077)			0.000	((701.100	0.029	(2822 4(1 - 1(2 520)			0.022	(5501 (50 400 00()
Alcohol	HorvathAAr					0.009	(-6/21.199, -1003.0/2)	0.028	(-2052.401, -105.529)			0.025	(-3321.030, -422.220)
(annual	CrimAA	<0.001	(2477 312 5546 062)			0.033	(-3970.024, -204.277)					0.049	(16.036.5369.626)
intake)	HannumAAr	0.028	(165 525 2866 550)									0.047	(10.030, 3307.020)
	HannumEEAA	0.009	(432.292.3063.949)										
u	HorvathIEAA		(1011) (100000 17)			0.020	(-73.632 -6.503)	1					
Alcohol	HorvathAAr					0.020	(4 412 72 233)						
(annual	HannumEEAA	0.015	(4 092 37 637)			0.027	(4.412,72.200)						
occasions)	GrimAA	< 0.001	(28.848, 66.692)										
	HannumAAr	0.016	(3,953,38,375)										
Metabolic			(****/*****/	1		1		11		1			
lineineene	HannumIEAA					0.029	(0.817 15 130)	1					
GGT	GrimAA	0.003	(2.518, 11.746)			0.02)	(0.017) 10.100)	0.023	(0.728, 9.699)				
	HorvathAAr		(0.020	(0.1.20) 7 107 7 7			0.030	(0.738, 14.519)
Linids	П	11		1				Ш					, , ,
2.1.1.1.1	HannumAAr	0.011	(-0.652, -0.085)	0.014	(-0.904, -0.103)			1		0.009	(-0.947, -0.141)		
	GrimAA	0.025	(-0.630, -0.042)		(0.0 0 2) 0.200)					0.046	(0.008, 0.818)		
TC	PhenoAA	0.010	(-0.653, -0.088)	0.004	(-0.993, -0.198)					0.010	(-0.919, -0.127)		
	HannumEEAA	0.012	(-0.653, -0.082)	0.012	(-0.904, -0.113)					0.003	(-1.004, -0.203)		
1	GrimAA	1				1		1		0.015	(0.070, 0.632)	1	
TG	HannumIEAA	0.043	(-0.378, -0.006)			0.028	(-0.510, -0.030)				()		
	HannumAAr	0.023	(-0.403, -0.031)			0.034	(-0.522, -0.021)						
1	HorvathAAr	li i		0.004	(0.046, 0.236)	1		1		0.013	(0.026, 0.219)		
	SkinBloodAA				(, , , , , , , , , , , , , , , , , , ,					0.027	(0.012, 0.205)		
	HorvathIEAA			0.002	(0.053, 0.241)								
HDL	HannumIEAA					0.033	(0.010, 0.236)						
	HannumAAr					0.036	(0.008, 0.233)						
	GrimAA	0.004	(-0.192, -0.036)										
	PhenoAA	0.012	(-0.575, -0.070)	0.002	(-0.891, -0.208)			0.037	(-0.523, -0.016)	0.004	(-0.840, -0.157)		
LDL	HannumAAr	0.013	(-0.575, -0.068)	0.007	(-0.822, -0.129)					0.010	(-0.811, -0.112)		
	HannumEEAA	0.008	(-0.601, -0.093)	0.004	(-0.848, -0.165)					0.002	(-0.904, -0.215)		
Cardio-vasc	ular												
СНД	GrimAA	0.003	(1.267, 3.408)			0.011	(1.220, 7.596)	< 0.001	(1.518, 4.060)	0.001	(1.458, 5.955)	0.042	(1.020, 4.389)
CIID	HorvathAAr	0.015	(1.106, 2.913)					0.006	(1.187, 3.139)			0.018	(1.150, 4.995)
СР	GrimAA											0.009	(1.367, 22.723)
MCP	GrimAA	0.001	(1.979, 46.687)					0.004	(1.584, 26.779)			0.009	(1.401, 33.864)
1	HorvathAAd	0.009	(0.296_0.867)	0.007	(0.195 0.793)			1		0.005	(0.202.0781)		
нт	GrimAA	0.007	(0.2.) 0, 0.00,)		(511)0,011 (0)					0.043	(0.987, 3.764)		
и П	HorvathAAd	0.024	(-13 311 -0.964)	0.028	(-18 191 -1 045)		1	1	<u> </u>	0.008	(-20 142 -3 153)		1
SBP	GrimAA	0.024	(10.011, -0.704)	0.020	(10.171,-1.045)					0.024	(1.294, 18 398)		
u	HorvathAAd	II		0.048	(-8.648 -0.021)	I	1	1		0.0021	(-10.626 -2.144)		
DBP	CrimAA			0.040	(0.040,-0.001)		+			0.003	(0.228, 8.832)		

Table A5. Significant differences in EAA⁻ and EAA⁺ groups for unadjusted and adjusted for sex EAA scores.

Table A6. All results for EAA⁻ and EAA⁺ groups for adjusted for sex EAA scores.

For Welch's *t*-test group 1 is *EAA*⁻, group 2 is *EAA*⁺. For Fisher's exact test odds ratios depend on the phenotype value and grouping for the first sample in our data.

Phenotype	EAA	p, all	Δ mean/OR (95% CI, all)	p, female	Δ mean/OR (95% CI, female)	p, male	∆mean/OR (95% CI, male)
Anthropometric							
BMI	HorvathAAd	0.118	0.946 (-0.242, 2.133)	0.051	1.712 (-0.005, 3.428)	0.880	-0.117 (-1.641, 1.408)
BMI	HorvathAAr	0.955	0.034 (-1.159, 1.227)	0.665	-0.381 (-2.116, 1.353)	0.446	0.588 (-0.933, 2.108)
BMI	SkinBloodAA	0.768	-0.179 (-1.373, 1.014)	0.873	0.141 (-1.593, 1.875)	0.323	-0.764 (-2.285, 0.758)
BMI	HorvathIEAA	0.409	0.501 (-0.692, 1.694)	0.742	0.291 (-1.452, 2.034)	0.199	0.983 (-0.522, 2.488)
BMI	HannumEEAA	0.691	0.242 (-0.958, 1.442)	0.970	-0.033 (-1.768, 1.702)	0.228	0.929 (-0.589, 2.447)
BMI	HannumIEAA	0.465	0.442 (-0.746, 1.631)	0.656	0.394 (-1.348, 2.135)	0.296	0.789 (-0.698, 2.277)
BMI	HannumAA	0.982	0.014 (-1.181, 1.208)	0.830	0.190 (-1.556, 1.935)	0.921	0.078 (-1.460, 1.615)
BMI	GrimAA	0.844	-0.120 (-1.322, 1.082)	0.081	-1.543 (-3.281, 0.195)	0.039	1.579 (0.079, 3.079)
BMI	PhenoAA	0.841	-0.123 (-1.329, 1.084)	0.787	0.239 (-1.510, 1.989)	0.483	-0.554 (-2.113, 1.005)
WHR	HorvathAAd	0.178	0.013 (-0.006, 0.032)	0.004	0.029 (0.009, 0.048)	0.909	0.001 (-0.021, 0.023)
WHR	HorvathAAr	0.482	0.007 (-0.012, 0.026)	0.170	0.014 (-0.006, 0.034)	0.686	-0.004 (-0.026, 0.017)
WHR	SkinBloodAA	0.184	-0.013 (-0.032, 0.006)	0.604	-0.005 (-0.025, 0.015)	0.269	-0.012 (-0.034, 0.010)
WHR	HorvathIEAA	0.317	0.010 (-0.009, 0.028)	0.376	0.009 (-0.011, 0.029)	0.996	0.000 (-0.022, 0.022)
WHR	HannumEEAA	0.152	0.014 (-0.005, 0.033)	0.605	0.005 (-0.015, 0.025)	0.477	0.008 (-0.014, 0.030)
WHR	HannumIEAA	0.506	0.006 (-0.012, 0.025)	0.678	-0.004 (-0.024, 0.016)	0.583	0.006 (-0.016, 0.028)
WHR	HannumAA	0.609	0.005 (-0.014, 0.024)	0.810	-0.002 (-0.023, 0.018)	0.911	0.001 (-0.021, 0.023)
WHR	GrimAA	0.162	-0.013 (-0.032, 0.005)	0.010	-0.026 (-0.046, -0.006)	0.920	0.001 (-0.021, 0.023)
WHR	PhenoAA	0.475	0.007 (-0.012, 0.026)	0.104	0.016 (-0.003, 0.036)	0.714	-0.004 (-0.026, 0.018)
Lifestyle							
Alcohol (annual intake)	HorvathAAd	0.496	459.390 (-868.299, 1787.078)	0.292	-225.055 (-645.973, 195.864)	0.238	1595.070 (-1070.824, 4260.965)
Alcohol (annual intake)	HorvathAAr	0.107	1101.018 (-238.071, 2440.106)	0.522	-130.099 (-531.505, 271.307)	0.069	2435.000 (-192.278, 5062.278)
Alcohol (annual intake)	SkinBloodAA	0.438	519.830 (-797.085, 1836.746)	0.388	-190.837 (-627.538, 245.865)	0.182	1783.619 (-845.651, 4412.889)
Alcohol (annual intake)	HorvathIEAA	0.028	1497.995 (163.529, 2832.461)	0.485	-140.131 (-535.868, 255.606)	0.023	2971.938 (422.226, 5521.650)
Alcohol (annual intake)	HannumEEAA	0.833	144.007 (-1197.565, 1485.579)	0.373	-180.731 (-581.352, 219.891)	0.888	-193.486 (-2906.095, 2519.122)
Alcohol (annual intake)	HannumIEAA	0.506	448.790 (-878.267, 1775.846)	0.379	-180.038 (-583.961, 223.885)	0.642	616.522 (-2000.890, 3233.935)
Alcohol (annual intake)	HannumAA	0.529	426.629 (-906.939, 1760.197)	0.257	-228.406 (-625.223, 168.412)	0.627	646.862 (-1977.101, 3270.824)
Alcohol (annual intake)	GrimAA	0.105	-1119.352 (-2474.041, 235.337)	0.355	187.723 (-212.549, 587.995)	0.049	-2692.831 (-5369.626, -16.036)
Alcohol (annual intake)	PhenoAA	0.446	510.560 (-806.875, 1827.995)	0.727	-76.111 (-506.575, 354.353)	0.360	1210.595 (-1395.209, 3816.398)

Phenotype	EAA	p, all	Δ mean/OR (95% CI, all)	p, female	Δ mean/OR (95% CI, female)	p, male	Δ mean/OR (95% CI, male)
Alcohol (annual occasions)	HorvathAAd	0.886	-1.236 (-18.230, 15.759)	0.316	-5.429 (-16.092, 5.234)	0.629	7.843 (-24.213, 39.900)
Alcohol (annual occasions)	HorvathAAr	0.213	10.806 (-6.247, 27.859)	0.441	-4.114 (-14.640, 6.412)	0.096	26.900 (-4.801, 58.601)
Alcohol (annual occasions)	SkinBloodAA	0.884	1.253 (-15.668, 18.175)	0.375	-4.829 (-15.541, 5.883)	0.392	13.818 (-18.028, 45.664)
Alcohol (annual occasions)	HorvathIEAA	0.134	13.001 (-4.012, 30.013)	0.419	-4.305 (-14.803, 6.194)	0.083	27.554 (-3.661, 58.768)
Alcohol (annual occasions)	HannumEEAA	0.967	-0.360 (-17.423, 16.703)	0.515	-3.487 (-14.028, 7.054)	0.722	-5.854 (-38.391, 26.683)
Alcohol (annual occasions)	HannumIEAA	0.907	-1.014 (-18.093, 16.065)	0.587	-2.911 (-13.470, 7.647)	0.706	-6.212 (-38.690, 26.266)
Alcohol (annual occasions)	HannumAA	0.942	0.634 (-16.385, 17.654)	0.255	-6.066 (-16.547, 4.414)	0.927	1.484 (-30.599, 33.568)
Alcohol (annual occasions)	GrimAA	0.737	-2.923 (-20.017, 14.170)	0.529	3.366 (-7.167, 13.900)	0.512	-10.678 (-42.810, 21.453)
Alcohol (annual occasions)	PhenoAA	0.412	7.037 (-9.830, 23.903)	0.576	3.000 (-7.580, 13.580)	0.459	11.880 (-19.746, 43.506)
Smoking status	HorvathAAd	0.164	1.400 (0.865, 2.271)	0.016	3.112 (1.140, 9.454)	0.850	0.901 (0.398, 2.028)
Smoking status	HorvathAAr	0.908	0.957 (0.591, 1.547)	0.661	0.779 (0.294, 2.027)	0.849	1.154 (0.513, 2.613)
Smoking status	SkinBloodAA	0.908	1.039 (0.642, 1.682)	0.826	0.847 (0.314, 2.209)	1.000	0.962 (0.426, 2.169)
Smoking status	HorvathIEAA	1.000	0.978 (0.605, 1.582)	1.000	1.085 (0.417, 2.874)	0.706	1.186 (0.527, 2.700)
Smoking status	HannumEEAA	0.642	1.142 (0.706, 1.849)	0.512	1.397 (0.536, 3.769)	0.181	1.771 (0.771, 4.217)
Smoking status	HannumIEAA	0.642	1.142 (0.706, 1.849)	0.271	1.757 (0.669, 4.873)	0.451	1.360 (0.600, 3.150)
Smoking status	HannumAA	0.296	1.297 (0.802, 2.102)	0.128	2.048 (0.769, 5.900)	0.186	1.708 (0.750, 4.004)
Smoking status	GrimAA	0.000	2.954 (1.799, 4.895)	0.026	2.941 (1.077, 8.931)	0.000	14.047 (4.515, 58.734)
Smoking status	PhenoAA	0.132	1.424 (0.879, 2.311)	0.663	0.801 (0.297, 2.087)	0.004	3.249 (1.360, 8.319)
Metabolic							
T2DM	HorvathAAd	0.717	1.192 (0.548, 2.614)	0.441	0.635 (0.180, 2.043)	0.207	2.124 (0.685, 7.363)
T2DM	HorvathAAr	0.102	1.912 (0.866, 4.419)	0.794	1.250 (0.391, 4.172)	0.075	2.943 (0.914, 11.207)
T2DM	SkinBloodAA	0.720	1.141 (0.523, 2.489)	0.188	2.169 (0.673, 7.658)	0.451	0.618 (0.190, 1.882)
T2DM	HorvathIEAA	0.364	1.469 (0.674, 3.284)	0.798	1.186 (0.371, 3.956)	0.313	1.844 (0.605, 6.012)
T2DM	HannumEEAA	0.468	0.732 (0.328, 1.596)	0.794	1.250 (0.391, 4.172)	0.203	0.441 (0.116, 1.420)
T2DM	HannumIEAA	1.000	0.957 (0.436, 2.081)	0.432	1.706 (0.530, 6.018)	0.321	0.572 (0.165, 1.777)
T2DM	HannumAA	1.000	1.030 (0.472, 2.245)	0.436	1.618 (0.503, 5.706)	0.615	0.704 (0.216, 2.144)
T2DM	GrimAA	0.858	0.929 (0.424, 2.021)	1.000	1.054 (0.326, 3.410)	0.803	0.828 (0.264, 2.510)
T2DM	PhenoAA	0.586	0.788 (0.353, 1.718)	0.112	0.354 (0.079, 1.235)	0.455	1.518 (0.501, 4.757)
GGT	HorvathAAd	0.664	0.990 (-3.484, 5.464)	0.260	3.176 (-2.373, 8.725)	0.770	-1.037 (-8.046, 5.973)
GGT	HorvathAAr	0.614	-1.150 (-5.630, 3.330)	0.151	4.135 (-1.521, 9.791)	0.030	-7.629 (-14.519, -0.738)
GGT	SkinBloodAA	0.531	1.431 (-3.061, 5.924)	0.794	-0.766 (-6.551, 5.019)	0.178	4.752 (-2.182, 11.685)
GGT	HorvathIEAA	0.937	0.180 (-4.309, 4.669)	0.305	2.983 (-2.749, 8.715)	0.270	-3.955 (-11.026, 3.115)
GGT	HannumEEAA	0.186	2.997 (-1.449, 7.443)	0.192	3.749 (-1.902, 9.400)	0.803	0.873 (-6.041, 7.788)

Phenotype	EAA	p, all	Δ mean/OR (95% CI, all)	p, female	Δ mean/OR (95% CI, female)	p, male	Δ mean/OR (95% CI, male)
GGT	HannumIEAA	0.218	2.774 (-1.652, 7.201)	0.893	0.386 (-5.266, 6.037)	0.172	4.644 (-2.039, 11.326)
GGT	HannumAA	0.120	3.530 (-0.925, 7.984)	0.304	2.968 (-2.716, 8.651)	0.344	3.255 (-3.530, 10.041)
GGT	GrimAA	0.023	-5.213 (-9.699, -0.728)	0.087	-4.906 (-10.542, 0.729)	0.114	-5.618 (-12.606, 1.370)
GGT	PhenoAA	0.916	0.244 (-4.285, 4.773)	0.205	3.549 (-1.960, 9.057)	0.314	-3.666 (-10.841, 3.510)
Glucose	HorvathAAd	0.500	0.130 (-0.248, 0.508)	0.197	0.325 (-0.170, 0.820)	0.761	-0.089 (-0.664, 0.487)
Glucose	HorvathAAr	0.706	-0.072 (-0.447, 0.303)	0.907	-0.029 (-0.527, 0.468)	0.675	-0.123 (-0.701, 0.455)
Glucose	SkinBloodAA	0.686	0.077 (-0.297, 0.452)	0.778	-0.072 (-0.572, 0.428)	0.392	0.249 (-0.325, 0.824)
Glucose	HorvathIEAA	0.873	-0.031 (-0.407, 0.346)	0.981	-0.006 (-0.503, 0.491)	0.828	-0.065 (-0.653, 0.524)
Glucose	HannumEEAA	0.455	0.143 (-0.234, 0.521)	0.910	-0.029 (-0.533, 0.476)	0.260	0.335 (-0.251, 0.921)
Glucose	HannumIEAA	0.360	-0.182 (-0.574, 0.209)	0.088	-0.439 (-0.944, 0.067)	0.730	0.108 (-0.509, 0.725)
Glucose	HannumAA	0.488	-0.133 (-0.512, 0.245)	0.564	-0.147 (-0.647, 0.354)	0.680	-0.128 (-0.742, 0.486)
Glucose	GrimAA	0.792	0.051 (-0.328, 0.430)	0.359	-0.234 (-0.736, 0.268)	0.200	0.376 (-0.201, 0.952)
Glucose	PhenoAA	0.517	0.124 (-0.253, 0.501)	0.421	0.203 (-0.294, 0.700)	0.909	0.034 (-0.550, 0.618)
Lipids							
HDL	HorvathAAd	0.948	0.002 (-0.073, 0.077)	0.712	-0.018 (-0.117, 0.080)	0.725	0.021 (-0.096, 0.137)
HDL	HorvathAAr	0.281	-0.041 (-0.116, 0.034)	0.013	-0.122 (-0.219, -0.026)	0.328	0.057 (-0.058, 0.173)
HDL	SkinBloodAA	0.104	-0.062 (-0.136, 0.013)	0.027	-0.108 (-0.205, -0.012)	0.790	-0.016 (-0.131, 0.100)
HDL	HorvathIEAA	0.328	-0.037 (-0.113, 0.038)	0.065	-0.091 (-0.188, 0.006)	0.541	0.035 (-0.079, 0.150)
HDL	HannumEEAA	0.158	-0.054 (-0.129, 0.021)	0.959	-0.003 (-0.101, 0.095)	0.092	-0.102 (-0.221, 0.017)
HDL	HannumIEAA	0.195	-0.050 (-0.125, 0.026)	0.765	0.015 (-0.083, 0.113)	0.056	-0.116 (-0.234, 0.003)
HDL	HannumAA	0.529	-0.024 (-0.099, 0.051)	0.450	0.038 (-0.060, 0.135)	0.148	-0.087 (-0.204, 0.031)
HDL	GrimAA	0.935	-0.003 (-0.078, 0.072)	0.306	0.051 (-0.047, 0.148)	0.260	-0.066 (-0.183, 0.050)
HDL	PhenoAA	0.604	-0.020 (-0.095, 0.055)	0.602	-0.026 (-0.122, 0.071)	0.825	-0.013 (-0.129, 0.103)
LDL	HorvathAAd	0.458	0.097 (-0.160, 0.353)	0.324	0.177 (-0.176, 0.531)	0.916	-0.020 (-0.388, 0.349)
LDL	HorvathAAr	0.643	-0.060 (-0.316, 0.195)	0.916	0.019 (-0.334, 0.372)	0.435	-0.146 (-0.515, 0.223)
LDL	SkinBloodAA	0.138	0.193 (-0.063, 0.449)	0.055	0.343 (-0.007, 0.693)	0.954	-0.011 (-0.381, 0.359)
LDL	HorvathIEAA	0.627	-0.063 (-0.319, 0.193)	0.779	0.050 (-0.302, 0.402)	0.379	-0.166 (-0.539, 0.207)
LDL	HannumEEAA	0.096	0.216 (-0.039, 0.470)	0.002	0.560 (0.215, 0.904)	0.441	-0.146 (-0.520, 0.228)
LDL	HannumIEAA	0.427	0.104 (-0.153, 0.360)	0.090	0.303 (-0.048, 0.654)	0.617	-0.095 (-0.468, 0.279)
LDL	HannumAA	0.211	0.163 (-0.093, 0.418)	0.010	0.461 (0.112, 0.811)	0.413	-0.154 (-0.525, 0.217)
LDL	GrimAA	0.446	-0.099 (-0.356, 0.157)	0.089	-0.304 (-0.655, 0.047)	0.439	0.145 (-0.224, 0.513)
LDL	PhenoAA	0.037	0.270 (0.016, 0.523)	0.004	0.498 (0.157, 0.840)	0.994	-0.001 (-0.373, 0.371)
ТС	HorvathAAd	0.560	0.085 (-0.203, 0.374)	0.479	0.148 (-0.263, 0.558)	0.920	-0.020 (-0.411, 0.371)

Phenotype	EAA	p, all	Δ mean/OR (95% CI, all)	p, female	Δ mean/OR (95% CI, female)	p, male	Δ mean/OR (95% CI, male)
TC	HorvathAAr	0.410	-0.120 (-0.407, 0.167)	0.610	-0.105 (-0.513, 0.302)	0.525	-0.126 (-0.517, 0.265)
TC	SkinBloodAA	0.203	0.186 (-0.101, 0.472)	0.149	0.297 (-0.108, 0.702)	0.947	0.013 (-0.378, 0.404)
TC	HorvathIEAA	0.404	-0.122 (-0.409, 0.165)	0.797	-0.053 (-0.460, 0.353)	0.431	-0.157 (-0.552, 0.237)
TC	HannumEEAA	0.140	0.215 (-0.071, 0.500)	0.003	0.603 (0.203, 1.004)	0.378	-0.178 (-0.575, 0.220)
TC	HannumIEAA	0.473	0.105 (-0.182, 0.392)	0.099	0.341 (-0.064, 0.747)	0.552	-0.120 (-0.516, 0.277)
TC	HannumAA	0.192	0.190 (-0.096, 0.477)	0.009	0.544 (0.141, 0.947)	0.385	-0.174 (-0.568, 0.220)
TC	GrimAA	0.215	-0.182 (-0.470, 0.106)	0.046	-0.413 (-0.818, -0.008)	0.633	0.095 (-0.296, 0.485)
TC	PhenoAA	0.081	0.253 (-0.031, 0.538)	0.010	0.523 (0.127, 0.919)	0.738	-0.067 (-0.460, 0.326)
TG	HorvathAAd	0.751	-0.031 (-0.220, 0.159)	0.867	-0.025 (-0.314, 0.265)	0.702	-0.046 (-0.285, 0.192)
TG	HorvathAAr	0.667	-0.041 (-0.229, 0.147)	0.979	-0.004 (-0.288, 0.280)	0.498	-0.082 (-0.322, 0.157)
TG	SkinBloodAA	0.215	0.119 (-0.069, 0.308)	0.342	0.137 (-0.148, 0.422)	0.474	0.087 (-0.153, 0.327)
TG	HorvathIEAA	0.623	-0.047 (-0.235, 0.141)	0.851	-0.027 (-0.310, 0.256)	0.633	-0.059 (-0.302, 0.184)
TG	HannumEEAA	0.222	0.117 (-0.071, 0.305)	0.479	0.102 (-0.182, 0.386)	0.198	0.155 (-0.082, 0.393)
TG	HannumIEAA	0.243	0.112 (-0.076, 0.300)	0.718	0.052 (-0.232, 0.336)	0.097	0.200 (-0.036, 0.435)
TG	HannumAA	0.233	0.114 (-0.074, 0.302)	0.491	0.099 (-0.185, 0.383)	0.222	0.147 (-0.090, 0.385)
TG	GrimAA	0.070	-0.174 (-0.363, 0.014)	0.015	-0.351 (-0.632, -0.070)	0.767	0.036 (-0.204, 0.276)
TG	PhenoAA	0.940	0.007 (-0.183, 0.198)	0.445	0.110 (-0.174, 0.395)	0.357	-0.115 (-0.361, 0.131)
Cardio-vascular							
CHD	HorvathAAd	0.419	0.820 (0.507, 1.323)	0.423	0.737 (0.372, 1.448)	0.866	0.895 (0.437, 1.830)
CHD	HorvathAAr	0.006	1.924 (1.187, 3.139)	0.151	1.626 (0.826, 3.234)	0.018	2.377 (1.150, 4.995)
CHD	SkinBloodAA	1.000	0.991 (0.613, 1.600)	0.521	0.776 (0.390, 1.528)	0.612	1.253 (0.613, 2.572)
CHD	HorvathIEAA	0.134	1.421 (0.880, 2.303)	0.423	1.357 (0.690, 2.687)	0.236	1.568 (0.765, 3.239)
CHD	HannumEEAA	0.420	1.209 (0.749, 1.954)	0.264	1.466 (0.746, 2.905)	1.000	1.039 (0.505, 2.136)
CHD	HannumIEAA	0.730	1.086 (0.673, 1.754)	1.000	1.012 (0.516, 1.989)	0.611	1.237 (0.603, 2.547)
CHD	HannumAA	0.298	1.296 (0.803, 2.095)	0.201	1.564 (0.795, 3.109)	0.865	1.107 (0.540, 2.273)
CHD	GrimAA	0.000	2.474 (1.518, 4.060)	0.001	2.915 (1.458, 5.955)	0.042	2.102 (1.020, 4.389)
CHD	PhenoAA	0.418	1.218 (0.754, 1.969)	0.873	1.083 (0.550, 2.128)	0.397	1.393 (0.680, 2.870)
MCP	HorvathAAd	0.429	0.638 (0.184, 2.119)	1.000	0.964 (0.012, 78.414)	0.343	0.485 (0.112, 1.986)
MCP	HorvathAAr	0.290	1.797 (0.540, 6.237)	0.170	Inf (0.265, Inf)	0.761	1.244 (0.302, 5.156)
MCP	SkinBloodAA	0.426	0.616 (0.169, 2.062)	1.000	1.298 (0.016, 105.663)	0.211	0.404 (0.087, 1.672)
МСР	HorvathIEAA	1.000	1.118 (0.333, 3.755)	0.236	Inf (0.196, Inf)	1.000	0.841 (0.197, 3.436)
MCP	HannumEEAA	1.000	1.092 (0.315, 3.640)	1.000	1.400 (0.017, 114.021)	1.000	1.049 (0.244, 4.318)
MCP	HannumIEAA	0.412	0.535 (0.134, 1.842)	1.000	1.118 (0.014, 90.951)	0.353	0.507 (0.097, 2.191)

Phenotype	EAA	p, all	Δ mean/OR (95% CI, all)	p, female	Δ mean/OR (95% CI, female)	p, male	Δ mean/OR (95% CI, male)
MCP	HannumAA	1.000	1.043 (0.301, 3.475)	1.000	1.298 (0.016, 105.663)	1.000	1.049 (0.244, 4.318)
MCP	GrimAA	0.004	5.795 (1.584, 26.779)	0.156	Inf (0.286, Inf)	0.009	6.225 (1.401, 33.864)
MCP	PhenoAA	0.791	1.144 (0.330, 3.815)	1.000	1.400 (0.017, 114.021)	1.000	1.175 (0.273, 4.866)
СР	HorvathAAd	0.332	0.677 (0.289, 1.571)	1.000	1.089 (0.328, 3.644)	0.153	0.392 (0.104, 1.397)
СР	HorvathAAr	0.843	1.141 (0.488, 2.666)	1.000	1.122 (0.330, 3.793)	1.000	1.143 (0.326, 4.030)
СР	SkinBloodAA	0.555	0.746 (0.318, 1.730)	1.000	0.989 (0.292, 3.317)	0.395	0.536 (0.148, 1.873)
СР	HorvathIEAA	0.437	1.380 (0.595, 3.225)	0.176	2.239 (0.669, 7.862)	0.782	0.832 (0.234, 2.910)
СР	HannumEEAA	1.000	0.957 (0.406, 2.244)	0.417	0.610 (0.171, 2.069)	0.567	1.544 (0.435, 5.598)
СР	HannumIEAA	1.000	0.977 (0.417, 2.278)	1.000	1.038 (0.311, 3.462)	1.000	0.936 (0.257, 3.359)
СР	HannumAA	0.844	0.894 (0.380, 2.090)	0.286	0.540 (0.151, 1.823)	0.567	1.544 (0.435, 5.598)
СР	GrimAA	0.074	2.090 (0.883, 5.032)	1.000	0.941 (0.271, 3.199)	0.009	5.241 (1.367, 22.723)
СР	PhenoAA	1.000	1.026 (0.435, 2.412)	0.787	0.829 (0.240, 2.796)	0.774	1.301 (0.362, 4.717)
HT	HorvathAAd	0.064	0.642 (0.396, 1.038)	0.005	0.400 (0.202, 0.781)	0.864	1.113 (0.537, 2.309)
HT	HorvathAAr	0.908	1.046 (0.648, 1.689)	0.877	0.941 (0.487, 1.818)	0.731	1.193 (0.576, 2.480)
HT	SkinBloodAA	0.563	0.860 (0.532, 1.389)	0.351	0.744 (0.383, 1.440)	1.000	1.011 (0.488, 2.097)
HT	HorvathIEAA	0.908	0.970 (0.601, 1.565)	0.876	0.930 (0.481, 1.797)	1.000	1.033 (0.498, 2.146)
HT	HannumEEAA	0.644	1.140 (0.706, 1.843)	0.755	1.144 (0.592, 2.212)	0.730	1.160 (0.557, 2.430)
HT	HannumIEAA	0.817	1.081 (0.669, 1.746)	0.876	1.096 (0.567, 2.118)	0.864	1.080 (0.520, 2.256)
HT	HannumAA	0.356	1.248 (0.773, 2.018)	0.435	1.316 (0.681, 2.552)	0.730	1.189 (0.573, 2.482)
HT	GrimAA	0.488	1.193 (0.739, 1.929)	0.043	1.917 (0.987, 3.764)	0.303	0.677 (0.324, 1.403)
HT	PhenoAA	0.908	0.965 (0.597, 1.559)	0.876	1.088 (0.563, 2.109)	0.610	0.834 (0.401, 1.731)
SBP	HorvathAAd	0.069	5.357 (-0.419, 11.133)	0.008	11.648 (3.153, 20.142)	0.582	-2.110 (-9.680, 5.461)
SBP	HorvathAAr	0.606	-1.520 (-7.316, 4.276)	0.802	-1.100 (-9.759, 7.559)	0.602	-2.005 (-9.585, 5.576)
SBP	SkinBloodAA	0.506	1.949 (-3.810, 7.708)	0.366	3.904 (-4.595, 12.403)	0.920	-0.386 (-7.976, 7.204)
SBP	HorvathIEAA	0.931	-0.256 (-6.057, 5.546)	0.895	0.581 (-8.097, 9.260)	0.756	-1.198 (-8.816, 6.419)
SBP	HannumEEAA	0.986	-0.051 (-5.865, 5.763)	0.570	2.492 (-6.159, 11.144)	0.432	-3.027 (-10.622, 4.569)
SBP	HannumIEAA	0.356	2.712 (-3.058, 8.481)	0.102	7.186 (-1.433, 15.805)	0.505	-2.565 (-10.151, 5.021)
SBP	HannumAA	0.710	-1.099 (-6.902, 4.704)	0.884	0.641 (-8.019, 9.300)	0.416	-3.117 (-10.675, 4.441)
SBP	GrimAA	0.293	-3.104 (-8.899, 2.691)	0.024	-9.846 (-18.398, -1.294)	0.200	4.894 (-2.621, 12.409)
SBP	PhenoAA	0.793	-0.779 (-6.619, 5.061)	0.590	-2.376 (-11.075, 6.322)	0.774	1.114 (-6.549, 8.778)
DBP	HorvathAAd	0.135	2.356 (-0.735, 5.448)	0.003	6.385 (2.144, 10.626)	0.309	-2.288 (-6.718, 2.141)
DBP	HorvathAAr	0.994	-0.011 (-3.106, 3.084)	0.922	0.215 (-4.131, 4.560)	0.886	-0.324 (-4.774, 4.127)
DBP	SkinBloodAA	0.523	1.009 (-2.094, 4.113)	0.520	1.416 (-2.924, 5.756)	0.760	0.688 (-3.766, 5.142)

Phenotype	EAA	p, all	Δ mean/OR (95% CI, all)	p, female	Δ mean/OR (95% CI, female)	p, male	Δ mean/OR (95% CI, male)
DBP	HorvathIEAA	0.443	1.209 (-1.887, 4.305)	0.462	1.626 (-2.730, 5.981)	0.809	0.551 (-3.945, 5.047)
DBP	HannumEEAA	0.870	-0.259 (-3.374, 2.857)	0.989	0.030 (-4.303, 4.363)	0.701	-0.869 (-5.333, 3.595)
DBP	HannumIEAA	0.383	1.373 (-1.719, 4.466)	0.273	2.419 (-1.921, 6.759)	0.972	-0.080 (-4.541, 4.381)
DBP	HannumAA	0.614	-0.795 (-3.896, 2.306)	0.721	-0.786 (-5.121, 3.550)	0.653	-1.013 (-5.453, 3.427)
DBP	GrimAA	0.505	-1.052 (-4.152, 2.047)	0.039	-4.530 (-8.832, -0.228)	0.172	3.064 (-1.353, 7.481)
DBP	PhenoAA	0.678	-0.666 (-3.820, 2.487)	0.282	-2.399 (-6.790, 1.992)	0.547	1.390 (-3.173, 5.953)

38 of 43

Appendix B. Epigenetic clocks information

Appendix B.1. First generation clocks:

By the first generation clocks we understand epigenetic age predictord which were 441 developed only based on chronological age. Chronological age is in itself a significant risk 442 factor for cardiovascular disease. With age, changes in the cardiovascular system lead to 443 a decline in functioning, and predispose to CVDs such as coronary artery disease (CAD), 444 hypertension, atherosclerosis, stroke, and myocardial infarction (MI). While structural 445 and functional changes which predispose individuals to cardiovascular events (e.g. left 446 ventricular hypertrophy, arrhythmia) have been characterised, the causes of cardiac ageing are not fully understood. 448

Appendix B.1.1. Horvath's clock:

This first multi-tissue age estimator was developed on about 8000 samples from 51 450 different tissues and cell types from both children and adults [3]. A penalised regression 451 model was used to regress transformed chronological age onto the 353 CpGs automatically 452 selected by the elastic net regression model. Specifically, methylation of 193 CpGs positively 453 correlates with chronological age, whilst the other 160 present negative correlation [3]. 454 Together, they form a very accurate molecular measure of chronological age, often used 455 in laboratories for validation of age data of clinical samples [8]. The greatest benefit of 456 Horvath's clock is the accuracy of age prediction using DNA from a wide range of tissues 457 and organs, with the exception of breast tissue, uterine endometrium, dermal fibroblast, 458 skeletal muscle tissue, heart tissue and sperm cells. Horvath's age estimate is also reliable 459 in testing all ages, children included [3]. 460

Appendix B.1.2. Hannum's clock:

Hannum's clock was developed by regressing chronological age using an elastic 462 net penalised multivariate regression method together with bootstrap approaches which 463 resulted in selection of 71 CpGs as accurate age predictor [2]. This clock was developed on 464 whole-blood DNA from 656 adults leading to possible biases in children and non-blood 465 tissues. 466

Appendix B.2. Second generation clocks:

The second generation epigenetic clocks are designed to incorporate not only chrono-468 logical age, but also ageing-related physiological conditions. Specialised clocks (i.e. those 469 which were developed for specific phenotypes) are usually also attributed to the second 470 generation epigenetic clocks. 471

Intrinsic and extrinsic EAAs With the advance of the second-generation clock, mod-472 ification to the first generation clocks has proposed to reflect both extrinsic and intrinsic 473 epigenetic age accelerations components (EEAA and IEAA) [65]. 474

IEAA is defined as a residual of the regression of epigenetic age on chronological age 475 and blood immune cell counts, inferred from DNAm data. The list of blood cell types 476 includes naive CD8+ T cells, exhausted CD8+ T cells, plasmablasts, CD4+ T cells, natural 477 killer cells, monocytes, and granulocytes. This EAA measure was created to estimate "pure" 478 epigenetic aging effects that are not influenced by differences in blood cell counts [65]. 479

By design, EEAA is positively correlated with the of counts of exhausted CD8+ T 480 cells, plasmablast cells, and a negative correlated with naive CD8+ T cells, estimated from 481 DNAm data. According to the authors, EEAA was developed to track both age related 482 changes in blood cell composition and intrinsic epigenetic changes[65]. 483

Appendix B.2.1. Skin and Blood clock:

The Skin and Blood Clock's 391 CpGs were obtained from elastic net regression of chronological age onto CpGs from datasets of human blood, saliva, keratinocytes, buccal 486 cells, endothelial cells, and fibroblasts [29]. In addition to these aforementioned tissues/cell 487

430 440

461

467

Version November 30, 2022 submitted to Biology

39 of 43

types used in obtaining clock CpGs, Skin and Blood age estimates are strongly correlated with chronological age in other tissues, including colon and heart tissue [29]. 489

Similar to Horvath's clock, the Skin and Blood clock is accurate across multiple 400 tissues/cell types, and is only weakly affected by blood cell type counts, the clock may 491 capture the physiological processes of cell-intrinsic ageing [8,29]. It may capture cell-492 intrinsic ageing in cardiac tissues with greater accuracy than Horvath's clock, since it 493 is capable to detect: (1) age acceleration in individuals with HGPS, who often die from 494 myocardial infarction; and (2) increases in epigenetic age with proliferation of human 495 coronary artery endothelial cells [29]. 496

Appendix B.2.2. DNAm PhenoAge:

Development followed a two stage process. First, a "phenotypic age" metric was 498 created to consider the age-related changes that are associated with senescence, composed 499 from ten clinical characteristics: chronological age, albumin, creatinine, glucose, C-reactive 500 protein, lymphocyte percentage, mean cell volume, red blood cell distribution weight, 501 alkaline phosphatase, and white blood cell count. After that, 513 CpGs were isolated using 502 an elastic net regression of methylation data from whole blood samples onto phenotypic 503 age; this linear combination of CpGs estimates phenotypic age [4]. 504

As DNAm PhenoAge was designed to include CpGs which reflected "phenotypic" 505 ageing rather than chronological ageing [8], it predicts both mortality and age-related 506 morbidity risk with greater accuracy than Horvath and Hannum's clock [4]. The clinical 507 characteristics used in PhenoAge can be particularly relevant to cardiovascular diseases. 508 For example, albumin is a modulator of vascular functioning and anticoagulation, as well 509 as antioxidation. Creatine has an effect on blood pressure and heart recovery, as well as 510 potentially increasing flow and ATP content while decreasing cell death [66]. 511

Appendix B.2.3. GrimAge:

Development followed a two stage process. First, DNAm-based surrogates for 513 biomarkers of smoking pack-years and twelve plasma proteins were produced, through 514 elastic net regression of DNA methylation data from blood samples. Subsequently, along-515 side other patient characteristics, the DNAm-based surrogates were considered as covari-516 ates in an elastic net Cox regression model for "time-of-death due to all-cause-mortality" 517 [5]. Significant covariates included: chronological age, sex, and DNAm surrogates for 618 smoking pack-years and seven (out of twelve) plasma proteins (ADM, B2M, Cystatin C, 519 Leptin, GDF-15, PAI-1, and TIMP-1). Transformation of the covariates' linear combination 520 produced the algorithm's age estimate [5]. According to the authors, GrimAge EAA is a 521 significant predictor of lifespan regardless of smoking history. Furthermore, upon compari-522 son to other clocks (Hannum, Horvath, and DNAm PhenoAge), AgeAccelGrim is a more 523 accurate predictor of age-related disease onset, including coronary heart disease[5]. 524

By design, GrimAge is probably the most relevant epigenetic clock in studying car-525 diovascular diseases, as the plasma proteins used as physiological variables are known to 526 be associated with CVD. Adrenomedullin (ADM) increases cardiac output and decreases blood pressure [67], while increases of ADM in plasma correspond to hypertension [68]. 528 Beta-2-microglobulin is also an emerging biomarker for cardiovascular diseases [69]. Increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) has been linked to 530 cardiac fibrosis and dysfunction of the heart [70]. Given that a significant number of the 531 physiological variables used in the development of GrimAge have been shown to associate 532 strongly specifically with cardiovascular pathology, it is important to consider this clock in 533 the study of cardiovascular disease. 534

Appendix B.3. Summary of the epigenetic clocks:

Epigenetic clocks use mathematical modelling to evaluate the methylation of the 536 specific CpG sites in DNA in order to estimate the epigenetic age. While the epigenetic 537 age highly correlates with the chronological age, a difference between chronological and 538

497

512

Version November 30, 2022 submitted to Biology

40 of 43

epigenetics age, termed the epigenetic age acceleration (EAA) can be observed and has been studied extensively. EAA has been associated with many later-life pathologies ranging 540 from cardiovascular and neurological diseases to cancer. To reflect the changes in cell-541 type composition of blood naturally occurring with ageing, the extrinsic epigenetic age 542 acceleration (EEAA) has been termed. These changes are more accurately measured by 543 clocks from blood DNA, such as Hannum's or PhenoAge [8]. On the other hand, the cell-544 intrinsic ageing, which is believed to be more consistent over various tissues and organs is 545 more accurately measured by the Horvath's multi-tissue clock, and has been termed the 546 intrinsic epigenetic age acceleration (IEAA) [8]. 547

Epigenetic clocks use different CpGs, and therefore naturally form different associa-548 tions with different disease processes, and the ways in which the clocks are constructed 549 is highly relevant to the processes they capture. Specifically, associations between certain 550 CpGs and the biological processes underlying development, maintenance of cellular iden-551 tity and cell differentiation have been captured [8]. Another possible association has been made with regards to the circadian rhythm, suggesting that epigenetic ageing might be 553 linked to genetic oscillation, such as cell cycle oscillator. One review compared six different 554 types of ageing biomarkers, and found that epigenetic clocks were the best predictors of 555 chronological age.

Both first generation clocks used in our study (Horvath and Hannum) were constructed to accurately predict chronological age. PhenoAge and GrimAge both include a training step which uses physiological variables, which may explain why both of these clocks appear to be more sensitive to age-related pathologies than first generation clocks constructed for the sole purpose of predicting chronological age.

For example, smoking, a known risk factor for disease, is not reflected in the Horvath and Hannum clocks, despite being a strong DNAm mortality predictor [71]. PhenoAge captures smoking-associated methylation changes, and GrimAge uses a DNAm surrogate of pack-years, both of which lead to a better prediction of smoking-related pathology [5].

It is not entirely clear what is measured by epigenetic clocks and to what extent biological ageing is related to disease. In the review [72] the authors suggest that epigenetic clocks track both CA and physiological/pathological mechanisms to differing proportions.

References

- Bocklandt, S.; Lin, W.; Sehl, M.E.; Sánchez, F.J.; Sinsheimer, J.S.; Horvath, S.; Vilain, E. Epigenetic predictor of age. *PloS one* 2011, 6, e14821.
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. *Molecular Cell* 2013, 49, 359–367.
- 3. Horvath, S. DNA methylation age of human tissues and cell types. *Genome Biology* **2013**, *14*, 1–20.
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. *Aging (Albany NY)* 2018, *10*, 573.
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. *Aging (Albany NY)* 2019, *11*, 303.
- 6. Ecker, S.; Beck, S. The epigenetic clock: a molecular crystal ball for human aging? Aging (Albany NY) 2019, 11, 833.
- 7. Jylhävä, J.; Pedersen, N.L.; Hägg, S. Biological age predictors. EBioMedicine 2017, 21, 29–36.
- Horvath, S.; Raj, K. DNAmethylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics 2018, 19, 371–384.
- Oblak, L.; van der Zaag, J.; Higgins-Chen, A.T.; Levine, M.E.; Boks, M.P. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. *Ageing research reviews* 2021, 69, 101348.
- Perna, L.; Zhang, Y.; Mons, U.; Holleczek, B.; Saum, K.U.; Brenner, H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. *Clinical epigenetics* 2016, *8*, 1–7.
- Qin, N.; Li, Z.; Song, N.; Wilson, C.L.; Easton, J.; Mulder, H.; Plyler, E.; Neale, G.; Walker, E.; Zhou, X.; et al. Epigenetic age acceleration and chronic health conditions among adult survivors of childhood cancer. *JNCI: Journal of the National Cancer Institute* 2021, 113, 597–605.
- Nannini, D.R.; Joyce, B.T.; Zheng, Y.; Gao, T.; Liu, L.; Yoon, G.; Huan, T.; Ma, J.; Jacobs, D.R.; Wilkins, J.T.; et al. Epigenetic age acceleration and metabolic syndrome in the coronary artery risk development in young adults study. *Clinical epigenetics* 2019, 11, 1–9.

569

579

Version November 30, 2022 submitted to Biology

- 13. Beydoun, M.A.; Shaked, D.; Tajuddin, S.M.; Weiss, J.; Evans, M.K.; Zonderman, A.B. Accelerated epigenetic age and cognitive decline among urban-dwelling adults. *Neurology* **2020**, *94*, e613–e625.
- Peasey, A.; Bobak, M.; Kubinova, R.; Malyutina, S.; Pajak, A.; Tamosiunas, A.; Pikhart, H.; Nicholson, A.; Marmot, M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: rationale and design of the HAPIEE study. *BMC Public Health* 2006, 6, 1–10.
- Malyutina, S.; Chervova, O.; Tillmann, T.; Maximov, V.; Ryabikov, A.; Gafarov, V.; Hubacek, J.A.; Pikhart, H.; Beck, S.; Bobak, M.
 The Relationship between Epigenetic Age and Myocardial Infarction/Acute Coronary Syndrome in a Population-Based Nested Case-Control Study. *Journal of Personalized Medicine* 2022, 12, 110.
- 16. Hilton, M.E. A comparison of a prospective diary and two summary recall techniques for recording alcohol consumption. *British journal of addiction* **1989**, *84*, 1085–1092.
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. *Clinical chemistry* 1972, *18*, 499–502.
- Ryden, L.; Standl, E.; Bartnik, M.; Van den Berghe, G.; Betteridge, J.; De Boer, M.J.; Cosentino, F.; Jönsson, B.; Laakso, M.;
 Malmberg, K.; et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary: The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). European heart journal 2007, 28, 88–136.
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). European heart *journal* 2018, *39*, 3021–3104.
- Rydén, L.; Grant, P.; Anker, S.; Berne, C.; Cosentino, F.; Danchin, N.; Deaton, C.; Escaned, J.; Hammes, H.; Huikuri, H.; et al. Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); Document Reviewers. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). *European heart journal* 2013, *34*, 3035–3087.
- Stein, J.H.; Korcarz, C.E.; Hurst, R.T.; Lonn, E.; Kendall, C.B.; Mohler, E.R.; Najjar, S.S.; Rembold, C.M.; Post, W.S. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force endorsed by the Society for Vascular Medicine. *Journal of the American Society of echocardiography* 2008, 21, 93–111.
- Ryabikov, A.; Malyutina, S.; Halcox, J.; Nikitin, Y.; Marmot, M.; Bobak, M. Prevalence and predictors of carotid wall triple line pattern in a general population sample. *Arteriosclerosis, thrombosis, and vascular biology* 2011, 31, 1682–1688.
- Touboul, P.J.; Hennerici, M.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez, R.H.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). *Cerebrovascular diseases* 2012, 34, 290–296.
- Chervova, O.; Conde, L.; Guerra-Assunção, J.A.; Moghul, I.; Webster, A.P.; Berner, A.; Cadieux, E.L.; Tian, Y.; Voloshin, V.; Jesus,
 T.F.; et al. The Personal Genome Project-UK, an open access resource of human multi-omics data. *Scientific Data* 2019, *6*, 1–10.
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021.
- Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. *Bioinformatics* 2014, 30, 1363–1369.
- Tian, Y.; Morris, T.J.; Webster, A.P.; Yang, Z.; Beck, S.; Feber, A.; Teschendorff, A.E. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. *Bioinformatics* 2017, 33, 3982–3984.
- Xu, Z.; Niu, L.; Li, L.; Taylor, J.A. ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip. 636 Nucleic acids research 2016, 44, e20–e20.
- Horvath, S.; Oshima, J.; Martin, G.M.; Lu, A.T.; Quach, A.; Cohen, H.; Felton, S.; Matsuyama, M.; Lowe, D.; Kabacik, S.; et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. *Aging (Albany NY)* 2018, *10*, 1758.
- Horvath, S.; Gurven, M.; Levine, M.E.; Trumble, B.C.; Kaplan, H.; Allayee, H.; Ritz, B.R.; Chen, B.; Lu, A.T.; Rickabaugh, T.M.;
 et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. *Genome Biology* 2016, 17, 1–23.
- Lind, L.; Ingelsson, E.; Sundström, J.; Siegbahn, A.; Lampa, E. Methylation-based estimated biological age and cardiovascular disease. *European Journal of Clinical Investigation* 2018, 48, e12872.
- Kim, K.; Joyce, B.T.; Zheng, Y.; Schreiner, P.J.; Jacobs Jr, D.R.; Catov, J.M.; Shikany, J.M.; Carnethon, M.R.; Greenland, P.; Van Horn,
 L.V.; et al. DNA Methylation GrimAge and Incident Diabetes: The Coronary Artery Risk Development in Young Adults
 (CARDIA) Study. Diabetes 2021, 70, 1404–1413.
- Welch, B.L. The generalization of 'STUDENT'S' problem when several different population variances are involved. *Biometrika* 1947, 34, 28–35.
- 34. Fisher, R.A. On the interpretation of χ^2 from contingency tables, and the calculation of P. *Journal of the Royal Statistical Society* **1922**, *85*, 87–94.

Version November 30, 2022 submitted to Biology

42 of 43

Dunn, O.J. Multiple comparisons among means. Journal of the American statistical association 1961, 56, 52-64. 35. 652 36. Bonferroni, C. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 1936, 8, 3–62. Hadley, W. Ggplot2: Elegrant graphics for data analysis; Springer, 2016. 37. 655 Kolde, R. Package 'pheatmap'. R package 2015, 1, 790. 38. 656 39. Peterson, B.G.; Carl, P.; Boudt, K.; Bennett, R.; Ulrich, J.; Zivot, E.; Cornilly, D.; Hung, E.; Lestel, M.; Balkissoon, K.; et al. Package 657 'performanceanalytics'. R Team Cooperation 2018, 3, 13–14. 658 40. Roshandel, D.; Chen, Z.; Canty, A.J.; Bull, S.B.; Natarajan, R.; Paterson, A.D. DNA methylation age calculators reveal association 659 with diabetic neuropathy in type 1 diabetes. *Clinical epigenetics* **2020**, *12*, 1–16. 660 Wang, C.; Ni, W.; Yao, Y.; Just, A.; Heiss, J.; Wei, Y.; Gao, X.; Coull, B.A.; Kosheleva, A.; Baccarelli, A.A.; et al. DNA methylation-41. 661 based biomarkers of age acceleration and all-cause death, myocardial infarction, stroke, and cancer in two cohorts: the NAS, and 662 KORA F4. EBioMedicine **2021**, 63, 103151. 663 42. Roetker, N.S.; Pankow, J.S.; Bressler, J.; Morrison, A.C.; Boerwinkle, E. Prospective study of epigenetic age acceleration and 664 incidence of cardiovascular disease outcomes in the ARIC study (Atherosclerosis Risk in Communities). Circulation: Genomic and 665 Precision Medicine 2018, 11, e001937. 666 43. Snir, S.; Farrell, C.; Pellegrini, M. Human epigenetic ageing is logarithmic with time across the entire lifespan. *Epigenetics* 2019, 667 14,912-926. 668 Li, C.; Engström, G.; Hedblad, B.; Calling, S.; Berglund, G.; Janzon, L. Sex differences in the relationships between BMI, WHR and 44. 669 incidence of cardiovascular disease: a population-based cohort study. International journal of obesity 2006, 30, 1775–1781. 670 Ha, K.H.; Kim, H.C.; Park, S.; Ihm, S.H.; Lee, H.Y. Gender differences in the association between serum γ -Glutamyltransferase 45. 671 and blood pressure change: a prospective community-based cohort study. Journal of Korean medical science 2014, 29, 1379–1384. 672 Ramirez, L.A.; Sullivan, J.C. Sex differences in hypertension: where we have been and where we are going. American journal of 46. 673 hypertension 2018, 31, 1247-1254. 674 47. Fransquet, P.D.; Wrigglesworth, J.; Woods, R.L.; Ernst, M.E.; Ryan, J. The epigenetic clock as a predictor of disease and mortality 675 risk: a systematic review and meta-analysis. *Clinical epigenetics* **2019**, *11*, 1–17. 676 48. Kresovich, J.K.; Garval, E.L.; Martinez Lopez, A.M.; Xu, Z.; Niehoff, N.M.; White, A.J.; Sandler, D.P.; Taylor, J.A. Associations 677 of body composition and physical activity level with multiple measures of epigenetic age acceleration. American journal of 678 epidemiology 2021, 190, 984-993. 679 49. Lin, W.Y.; Wang, Y.C.; Teng, I.H.; Liu, C.; Lou, X.Y. Associations of five obesity metrics with epigenetic age acceleration: Evidence 680 from 2,474 Taiwan Biobank participants. Obesity 2021, 29, 1731–1738. 681 50. Liu, C.; Marioni, R.E.; Hedman, A.K.; Pfeiffer, L.; Tsai, P.C.; Reynolds, L.M.; Just, A.C.; Duan, Q.; Boer, C.G.; Tanaka, T.; et al. A 682 DNA methylation biomarker of alcohol consumption. *Molecular psychiatry* **2018**, 23, 422–433. 683 51. Ryan, J.; Wrigglesworth, J.; Loong, J.; Fransquet, P.D.; Woods, R.L. A systematic review and meta-analysis of environmental, 684 lifestyle, and health factors associated with DNA methylation age. The Journals of Gerontology: Series A 2020, 75, 481–494. 685 Quach, A.; Levine, M.E.; Tanaka, T.; Lu, A.T.; Chen, B.H.; Ferrucci, L.; Ritz, B.; Bandinelli, S.; Neuhouser, M.L.; Beasley, J.M.; et al. 52. 686 Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY) 2017, 9, 419. 687 Adamson, S.S.; Brace, L.E.; Kennedy, B.K. Alcohol and aging: From epidemiology to mechanism. Translational Medicine of Aging 53. 688 2017, 1, 18-23. 689 54. Shiau, S.; Wang, L.; Liu, H.; Zheng, Y.; Drong, A.; Joyce, B.T.; Wang, J.; Li, W.; Leng, J.; Shen, Y.; et al. Prenatal gestational diabetes 690 mellitus exposure and accelerated offspring DNA methylation age in early childhood. Epigenetics 2021, 16, 186–195. 691 Ammous, F.; Zhao, W.; Ratliff, S.M.; Mosley, T.H.; Bielak, L.F.; Zhou, X.; Peyser, P.A.; Kardia, S.L.; Smith, J.A. Epigenetic age 55. 692 acceleration is associated with cardiometabolic risk factors and clinical cardiovascular disease risk scores in African Americans. 693 *Clinical epigenetics* **2021**, 13, 1–13. 694 56. Emdin, M.; Passino, C.; Pompella, A.; Paolicchi, A. Gamma-glutamyltransferase as a cardiovascular risk factor, 2006. 695 57. Whitfield, J. Gamma glutamyl transferase. Critical reviews in clinical laboratory sciences 2001, 38, 263–355. 696 58. Bartlett, J.; Predazzi, I.M.; Williams, S.M.; Bush, W.S.; Kim, Y.; Havas, S.; Toth, P.P.; Fazio, S.; Miller, M. Is isolated low high-density 697 lipoprotein cholesterol a cardiovascular disease risk factor? New insights from the Framingham offspring study. Circulation: 698 Cardiovascular Quality and Outcomes 2016, 9, 206–212. 699 59. Hahn, O.; Grönke, S.; Stubbs, T.M.; Ficz, G.; Hendrich, O.; Krueger, F.; Andrews, S.; Zhang, Q.; Wakelam, M.J.; Beyer, A.; et al. 700 Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. 701 *Genome biology* **2017**, *18*, 1–18. 702 60. Irvin, M.R.; Aslibekyan, S.; Do, A.; Zhi, D.; Hidalgo, B.; Claas, S.A.; Srinivasasainagendra, V.; Horvath, S.; Tiwari, H.K.; Absher, 703 D.M.; et al. Metabolic and inflammatory biomarkers are associated with epigenetic aging acceleration estimates in the GOLDN 704 study. Clinical epigenetics 2018, 10, 1-9. 705 Gao, T.; Wilkins, J.T.; Zheng, Y.; Joyce, B.T.; Jacobs, D.R.; Schreiner, P.J.; Horvath, S.; Greenland, P.; Lloyd-Jones, D.; Hou, L. Plasma 706 lipid profiles in early adulthood are associated with epigenetic aging in the Coronary Artery Risk Development in Young Adults 707 (CARDIA) Study. Clinical epigenetics 2022, 14, 1-10. 708 Feng, L.; Nian, S.; Tong, Z.; Zhu, Y.; Li, Y.; Zhang, C.; Bai, X.; Luo, X.; Wu, M.; Yan, Z. Age-related trends in lipid levels: a 62. 709 large-scale cross-sectional study of the general Chinese population. BMJ open 2020, 10, e034226. 710

Version November 30, 2022 submitted to Biology

43 of 43

- 63. Stevens, S.L.; Wood, S.; Koshiaris, C.; Law, K.; Glasziou, P.; Stevens, R.J.; McManus, R.J. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. *bmj* 2016, 354.
 711
- Lappalainen, I.; Almeida-King, J.; Kumanduri, V.; Senf, A.; Spalding, J.D.; Saunders, G.; Kandasamy, J.; Caccamo, M.; Leinonen,
 R.; Vaughan, B.; et al. The European Genome-phenome Archive of human data consented for biomedical research. *Nature genetics* 2015, 47, 692–695.
- Chen, B.H.; Marioni, R.E.; Colicino, E.; Peters, M.J.; Ward-Caviness, C.K.; Tsai, P.C.; Roetker, N.S.; Just, A.C.; Demerath, E.W.;
 Guan, W.; et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. *Aging (Albany NY)* 2016, 8, 1844.
- 66. Balestrino, M. Role of creatine in the heart: Health and disease. Nutrients 2021, 13, 1215.
- Nagaya, N.; Satoh, T.; Nishikimi, T.; Uematsu, M.; Furuichi, S.; Sakamaki, F.; Oya, H.; Kyotani, S.; Nakanishi, N.; Goto, Y.; et al. Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. *Circulation* 2000, 721 101, 498–503.
- Ishimitsu, T.; Kojima, M.; Kangawa, K.; Hino, J.; Matsuoka, H.; Kitamura, K.; Eto, T.; Matsuo, H. Genomic structure of human adrenomedullin gene. *Biochemical and biophysical research communications* 1994, 203, 631–639.
- Shi, F.; Sun, L.; Kaptoge, S. Association of beta-2-microglobulin and cardiovascular events and mortality: A systematic review and meta-analysis. *Atherosclerosis* 2021, 320, 70–78.
- Heymans, S.; Schroen, B.; Vermeersch, P.; Milting, H.; Gao, F.; Kassner, A.; Gillijns, H.; Herijgers, P.; Flameng, W.; Carmeliet, P.;
 et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related
 to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. *Circulation* 2005, *112*, 1136–1144.
- Zhang, Y.; Wilson, R.; Heiss, J.; Breitling, L.P.; Saum, K.U.; Schöttker, B.; Holleczek, B.; Waldenberger, M.; Peters, A.; Brenner, H. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. *Nature communications* 2017, *8*, 1–11.
- Bell, C.G.; Lowe, R.; Adams, P.D.; Baccarelli, A.A.; Beck, S.; Bell, J.T.; Christensen, B.C.; Gladyshev, V.N.; Heijmans, B.T.; Horvath, 5.; et al. DNA methylation aging clocks: challenges and recommendations. *Genome biology* 2019, 20, 1–24.