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Abstract: We evaluated associations between nine epigenetic age acceleration (EAA) scores and 18 1

cardio-metabolic phenotypes using an Eastern European ageing population cohort richly annotated 2

for a diverse set of phenotypes (subsample, n = 306; aged 45-69 years). This was implemented by 3

splitting the data into groups with positive and negative EAAs. We observed strong association 4

between all epigenetic age acceleration scores and sex, suggesting that any analysis of EAAs should 5

be adjusted by sex. We found that some sex-adjusted EAA scores were significantly associated with 6

several phenotypes such as blood levels of gamma-glutamyl transferase and low-density lipoprotein, 7

smoking status, annual alcohol consumption, multiple carotid plaques, and incident coronary heart 8

disease status (not necessarily the same phenotypes for different EAAs). We demonstrated that even 9

after adjusting EAAs for sex, EAA-phenotype associations remain sex-specific, which should be 10

taken into account in any downstream analysis involving EAAs. The obtained results suggest that 11

in some EAA-phenotype associations, negative EAA scores (i.e. epigenetic age below chronological 12

age) indicated more harmful phenotype values, which is counter-intuitive. Among all considered 13

epigenetic clocks, GrimAge was significantly associated with more phenotypes than any other EA 14

scores in this Russian sample. 15

Keywords: DNAm age; epigenetic clock; epigenetic age acceleration. 16

1. Introduction 17

It has been more than a decade since the very first epigenetic age predictor was 18

proposed [1], and since then dozens of DNA methylation (DNAm) based clocks have been 19

developed. "Epigenetic age" (EA) is a score that is calculated by applying an EA prediction 20

model (a DNAm clock) onto a set of DNA methylation measurements at particular loci 21

(CpGs). Epigenetic age acceleration (EAA) is defined as the deviation of the estimated EA 22

from the chronological age (CA), and is typically derived as either the difference between 23

EA and CA, or as the residual from regressing EA onto CA (EA ∼ CA). 24

In the beginning of the epigenetic clock era, the first generation EA predictors (i.e. [1], 25

[2], [3]) were primarily focused on accurate age prediction. The new EAA measures, which 26

are derived from second generation epigenetic clocks (i.e. [4], [5]), are more focused on 27

capturing physiological dysregulation [6] while still keeping strong links to chronological 28

age [7]. 29

Various measures of EAA are shown to be associated with different phenotypes and 30

diseases (see reviews [8] and [9]). For example, deviations in EAA were shown to be 31
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connected to cancer [10,11], metabolic syndrome [12], and cognitive function decline [13]. 32

All of these conditions are linked with ageing, which is a complex process that involves 33

changes in all organs, tissues, and cells; and cannot be quantified by a single biological 34

measure. Similarly, there is no single EAA measure that could be declared as the best 35

epigenetic marker of ageing. 36

In this study we investigate the relationship between several widely-used EAA scores 37

with the phenotypic data on cardio-vascular disease (CVD) related risk factors and condi- 38

tions available for a random population sample (n = 306) that is a part of The HAPIEE 39

Project [14], a Siberian cohort established in 2003 as a multicentre epidemiological study of 40

CVD in Eastern and Central Europe. One of our aims was to determine which EAA mea- 41

sures are "sensitive" to which phenotypes and health-related conditions. By comparing the 42

distributions of phenotypes between those with positive and negative EAAs we identified 43

how EAAs are associated with clinical data in an ageing Russian population. 44

2. Methods 45

2.1. Data collection 46

This study is based on the data generated from a subset of the Russian branch of 47

the HAPIEE (Health, Alcohol, and Psychosocial Factors in Eastern Europe) cohort [14], 48

which was established in Novosibirsk (Russia) in 2003-2005 and followed up in 2006-2008 49

and then again in 2015-2017. The protocol of the baseline cohort examination included an 50

assessment of cardiovascular and other chronic disease history, lifestyle habits and general 51

health, socio-economic circumstances, an objective measurement of blood pressure (BP), 52

anthropometric parameters, physical performance, and instrumental measurement. The 53

details of protocol are reported elsewhere [14]. 54

This study is based on a cohort of n = 306 HAPIEE participants who did not have any 55

indications of cardiovascular disease during the baseline measurement, as well as having 56

a whole blood DNA methylation profile. DNAm was measured in accordance with the 57

manufacturer’s recommended procedures using the Illumina MethylationEPIC BeadChip 58

(Illumina, San Diego, CA, USA), a detailed description is available in [15] 59

2.2. Variables description 60

All variables involved in our analyses were collected during the baseline examination 61

(with the exception of incident coronary heart disease). Phenotypic data available for 62

our study includes age, sex, systolic and diastolic blood pressure values (SBP and DBP, 63

mmHg; respectively), anthropometric parameters - body mass index (BMI, kg/m2) and 64

waist-hip ratio (WHR, units), smoking status (ever smoker or never smoker), and the 65

estimated annual alcohol intake (g of ethanol and number of annual occasions). A person 66

who smoked at least one cigarette a day was classified as an "ever smoker". The amount 67

of alcohol consumed was assessed using the Graduated Frequency Questionnaire and 68

was then converted to pure ethanol (g) [16]. The height and weight was measured with 69

accuracy to 1 mm and 100 g, respectively. Blood pressure (BP) was measured three times 70

(Omron M-5 tonometer) on the right arm in a sitting position after a 5 minute rest period 71

with 2 minutes interval between measurements. The average of three BP measurements 72

was calculated and recorded. 73

Fasting blood serum tests’ results contain measured levels of total cholesterol (TC, 74

mmol/l), triglycerides (TG, mmol/l), high-density lipoprotein cholesterol (HDL, mmol/l), 75

gamma-glutamyl transferase (GGT, mmol/l) and plasma glucose (mmol/l). The levels of 76

TC, TG, HDL, GGT, and glucose in blood serum were measured enzymatically with the 77

KoneLab 300i autoanalyser (Thermo Fisher Scientific Inc., USA) using Thermo Fisher Sci- 78

entific kits. The Friedewald formula [17] was applied to calculate low-density lipoprotein 79

cholesterol (LDL, mmol/l). Fasting plasma glucose (FPG) was calculated from the fasting 80

serum glucose levels using the European Association for the Study of Diabetes (EASD) 81

formula [18]. Hypertension (HT) comprises SBP ≥ 140 mmHg or DBP ≥ 90 mmHg accord- 82

ing to the European Society of Cardiology/European Society of Hypertension (ESC/ESH) 83
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Guidelines [19] and/or antihypertensive medication intake within two weeks prior to 84

the blood draw. Presence of type 2 diabetes mellitus (T2DM) was defined as FPG > 7.0 85

mmol/l, or ongoing treatment with insulin or oral hypoglycaemic medicines [20]. None 86

of the participants included in our analysis had a history of major cardiovascular disease 87

(CVD), such as myocardial infarction (MI), acute coronary syndrome (ACS), stroke, or 88

transit ischemic attack at the time of the baseline examination and blood draw. The binary 89

coronary heart disease (CHD) variable in our dataset includes any incident CHD events 90

(MI/ACS) which occurred within the 15-year follow-up period of the cohort. 91

Carotid arteries were examined via high resolution ultrasound using the systems Vivid 92

q or Vivid7 (GE HealthCare) with a 7.5/10-mHz phased-array linear transducer. Device 93

settings were adjusted in accordance to the American Society of Echocardiography (ASE) 94

recommendations [21]. Longitudinal and transverse scans were performed at the right and 95

left common carotid arteries with branches to assess anatomy and atherosclerotic lesions. 96

The digital images were archived and the measurements were conducted off-line by an 97

experienced researcher (A.R.) who was blinded to the participants’ characteristics [22]. The 98

plaques were defined in accordance with the Mannheim consensus [23]. For the present 99

analysis we used two phenotypes of atherosclerosis: presence of at least one carotid plaque 100

(CP) or multiple plaques (MCP). The ultrasound variables are only available for a subset of 101

samples (n = 105, 35% of all samples). 102

Individual phenotypes were also combined into five groups of phenotypes, which we 103

define as follows: 104

1. Anthropometric: BMI and WHR; 105

2. Lifestyle: smoking status and annual alcohol consumption (intake and number of 106

occasions); 107

3. Metabolic: GGT, T2DM and plasma glucose; 108

4. Lipids: TC, HDL, LDL, TG; 109

5. Cardio-vascular: SBP, DBP, HT, CHD, CP and MCP. 110

2.3. DNAm data quality control (QC) and preprocessing 111

In preprocessing raw DNAm data we mostly followed the procedures from [24] 112

which are in line with the manufacturer’s recommended steps. In brief, we checked 113

the array control probes’ metrics (Illumina Bead Control Reporter), signal detection p- 114

values, and bead count numbers for all available cytosine-phospate-guanine (CpG) probes. 115

Furthermore, we compared actual and DNAm predicted sex data for each sample. The 116

samples included in this analysis were those where less than 1% of CpGs had a detection 117

p ≥ 0.01, as well as having probes with a bead count number ≥ 3 and detection p < 0.01 118

in at least 99% of samples Initial DNAm data processing and QC data filtering were 119

implemented using R v.4.1.0 [25] together with specialised R libraries minfi [26], ChAMP [27], 120

and ENmix [28]. 121

2.4. Epigenetic Age Acceleration 122

Epigenetic age acceleration (EAA) scores were calculated using the DNA Methylation 123

Online Calculator [3]. This web based tool gives nine EAAs based on five epigenetic scores, 124

namely Horvath’s [3], Hannum’s [2], Skin and Blood [29], PhenoAge [4], and GrimAge [5] 125

measures, see Table 1. Further details regarding epigenetic clocks and various EAAs are 126

given in Appendix B. 127

2.5. Grouping 128

In this study we evaluated CVD-related phenotypes and their association with differ- 129

ent EAA scores. It is expected that these phenotypes show small effect size (in comparison 130

with some types of cancer) in blood DNA methylation, and hence in EAAs as well. Taking 131

into account the relatively small sample size of our study, we decided to limit our analyses 132

to the grouping of EAAs as described below. 133
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Table 1. Summary of the EAA scores measured using DNA Methylation Online Calculator.
Abbreviations: CA - chronological age, EA - epigenetic age, EAA - epigenetic age acceleration, IEAA -
intrinsic epigenetic age acceleration, EEAA - extrinsic epigenetic age acceleration

EAA Clock Info

HannumAA Hannum [2] Residuals from regressing EA on CA
HannumEEAA Hannum [30] Residual from regressing the weighted aver-

age of Hannum’s EA and estimated measures
of blood cells counts on CA

HannumIEAA Hannum [30] Residuals from regressing Hannum’s EA on
CA and various blood immune cell counts

HorvathAAd Horvath [3] Difference between EA and CA
HorvathAAr Horvath [3] Residuals from regressing EA on CA
HorvathIEAA Horvath [30] Residuals from regressing Horvath’s EA on

CA and various blood immune cell counts
SkinBloodAA Skin and Blood [29] Residuals from regressing EA on CA
PhenoAA PhenoAge [4] Residuals from regressing EA on CA
GrimAA GrimAge [5] Residuals from regressing EA on CA

Analysis of associations between EAAs and phenotypes in our study involves com-
paring the distributions of the phenotypic data in two groups. The grouping is based on
binary split with respect to the sign of EAA, defined as follows:

All samples =

{
EAA+, samples with non-negative EAA,
EAA−, samples with negative EAA.

(1)

In other words, for each clock we use the definition (1) to split our cohort into two groups, 134

one with EAA < 0 and the other with EAA ≥ 0, and then study the differences in 135

phenotypic distribution between these groups. Similar grouping was also featured in 136

previous studies based on EAAs [31,32]. 137

2.6. Statistical Analysis 138

All statistical analyses were performed using R v.4.1.2. They include descriptive 139

analysis of the available data using relevant techniques, such as univariate analysis, cross- 140

tabulation, statistical hypothesis testing (Welch’s t-test [33] for continuous variables and 141

Fisher’s exact test [34] for binary data), and linear regression-based data adjustments. 142

Welch’s t-test null-hypothesis: mean values of a given variable in EAA+ and EAA− groups 143

are not different. Fisher’s exact test null-hypothesis: classifications of a given binary 144

variable in EAA+ and EAA− groups are not different. The significance level is defined as 145

α = 0.05 for each EAA-phenotype association hypothesis test. 146

In order to consider the association between different EAAs and groups of phenotypes 147

(all apart from the Lifestyle group), we controlled for family-wise error rate (FWER) using 148

the Bonferroni correction [35,36], which was performed per group of phenotypes per EAA. 149

The significance threshold for the Anthropometric, Metabolic, Lipids, and Cardio-vascular 150

groups of phenotypes were calculated to be 0.025, 0.0166, 0.0125, and 0.0083, respectively. 151

In the Lifestyle group we considered the smoking and alcohol intake data separately, thus, 152

FWER-controlled significance threshold for alcohol consumption phenotypes is 0.025, and 153

0.05 for smoking status. It means that for each clock the group association was inferred 154

from the individual phenotypes by controlling for FWER in the different phenotype groups. 155

In other words, we define the EAA score to be associated with the group of phenotypes 156

if for at least one of the phenotypes in the group the significance of the relationship is 157

sustained with the Bonferroni-corrected threshold. 158
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All the graphs presented in the paper were produced using ggplot2 [37] and its 159

extensions, pheatmap [38], PerformanceAnalytics [39] and base R functions. 160

3. Results 161

3.1. Associations between sex and phenotypes 162

Our dataset consists of (n = 306) samples (166 females and 140 males). Summaries of 163

the dataset characteristics for all samples and for sex-specific groups are given in Tables A1 164

and A3. Table A1 contains descriptive statistics (range, mean, and standard deviation) for 165

the available continuous phenotype data and the corresponding Welch’s t-test p-values 166

and 95% confidence intervals. Table A3 includes count numbers and percentages for 167

dichotomous variables, together with sex-specific odds ratios, 95% confidence intervals, 168

and p-values calculated by performing a Fisher’s exact statistical test. 169

The Russian sample being considered in this study showed no significant difference 170

between males and females in the distribution of chronological age, blood pressure values 171

(both SBP and DBP), incidence of acute CHD events, diagnosis of hypertension and diabetes, 172

or levels of triglycerides and fasting glucose. The phenotypes which were significantly 173

different in males vs. females are anthropometric measures (BMI and WHR), lifestyle 174

choices (alcohol consumption and smoking status), and blood levels of gamma-glutamyl 175

transferase (GGT) and lipids (both LDL and HDL). Interestingly, in this Russian dataset 176

there was no significant difference between the male and female odds ratios of being 177

diagnosed with a carotid plaque (CP), but the odds ratios of having multiple carotid 178

plaques (MCP) significantly differed between sexes. 179

3.2. EAAs are associated with some phenotypes and have strong sex bias 180

Our EAA analyses are based on nine EAA scores (described in Section 2.4) which 181

were obtained from the five different epigenetic clock models, with multiple EAA scores 182

derived from Horvath’s multi-tissue and Hannum’s clocks (3 EAAs each). Correlation 183

coefficients are higher among EAAs based on the same clock than among EAAs from 184

different clocks. Namely, Pearson correlation coefficients range between 0.78 and 0.97 185

within EAAs derived from Horvath’s and Hannum’s models, whilst the highest value 186

of correlation for EAAs derived from separate clocks is r = 0.57, see correlation table on 187

Figure A2. Note that neither of the EAAs is significantly correlated with chronological age 188

apart from HorvathAAd, which is the only measure calculated without chronological age 189

adjustment. 190

To explore connections among the variables we calculated correlation coefficients 191

(Spearman correlation) and normalised entropy-based mutual information values for all the 192

phenotypes and EAAs. Heatmaps for correlations (absolute values) and mutual information 193

values, as well as correlations-based network plots are presented in corresponding Figures 1, 194

A1, and 2, respectively. In both the correlation and mutual information plots the EAAs are 195

clustered together with the exception of GrimAA, which displays very strong associations 196

with sex and smoking status. 197

We further investigated the relationship between phenotypes and EAAs by splitting 198

the dataset into EAA+ and EAA− groups using (1), and, subsequently, testing the pheno- 199

type data distribution using a t-test for continuous variables, and Fisher’s exact test for 200

binary variables. The corresponding statistical testing results are presented in Tables A5 201

and A6. 202

We noted that in nearly all EAA measures the size distribution of the EAA+ and EAA−
203

groups were within a 45%-55% range. The only exceptions to this were HorvathAAd (32% 204

EAA+ samples vs. 68% EAA− samples) and GrimAA (61% EAA+ samples vs. 39% EAA−
205

samples). Sex specific group splitting was found to be very unbalanced for all the EAAs for 206

both sexes with an exception of HorvathIEAA, see Table A4. Furthermore, we observed 207

significant differences in distributions of all nine EAA measures in our data between males 208

and females, the corresponding data along with descriptive statistics are presented in 209

Table A2. Given the strong association between sex and the various phenotypes examined 210
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in this study, the significant results obtained for EAA-phenotype associations might have 211

been confounded by sex. 212

Figure 1. Heatmap of the correlations between all available traits and epigenetic age accelerations

3.3. Sex-adjusted EAAs are associated with various phenotypes 213

In order to eliminate the undesired sex bias we adjusted all of the EAA scores by sex 214

and then repeated the analyses described in the previous section, based on the calculated 215

adjusted EAAs (adjEAA). Splitting the data into EAA+ and EAA− resulted in balanced 216

group sizes for all the adjEAAs, all of the groupings were within a 44%-56% range, see 217

Table A4. The medians of the adjEAAs for sex-specific subsets located closer to 0 compared 218

to the medians of unadjusted EAAs, see Figure 3A. 219

The significant results from testing the differences in phenotype distribution between 220

the EAA+ and EAA− groups are given in Table 2. This table contains 95% confidence 221

intervals, which indicate the trends in the direction of differences. The corresponding 222

means and odds ratio values could be found in Table A6, where we present all testing 223

outcomes regardless of their significance. For all available samples only four adjEAAs 224

(GrimAA, PhenoAA, Horvath’s residuals, and IEAA) demonstrated statistically significant 225

results for six phenotypes, with 4 phenotypes highlighted by GrimAA, and one phenotype 226

each by the rest of the adjAAs (7 phenotype-EAA combinations in total). Among the 227

differently distributed phenotypes are blood levels of GGT and LDL, smoking status and 228

annual alcohol consumption, diagnosed MCP and incident CHD status; with the latter 229
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Figure 2. Network plot of of the connections among the phenotypes and EAAs in the dataset. Based
on Spearman correlation coefficients with absolute values above 0.3

being the only phenotype that tested significantly different by multiple adjEAAs (GrimAA 230

and Horvath’s differences). Interestingly, for the GrimAA clock, incident CHD and smoking 231

status stayed significantly different for both male-only and female-only subsets, whilst 232

GGT was not significantly different in any sex-specific groupings. 233

Seven phenotype-EAA combinations were demonstrated to be statistically significant. 234

Of these, five remained significant in male-only data subsets, and three remained significant 235

in female-only subsets. In males the significant differences between the EAA+ and EAA−
236

groups were confirmed by four EAAs (the same for all samples) and seven phenotypes 237

(10 phenotype-EAA combinations). Significant results for females feature seven EAAs (all 238

apart from Horvath’s and HannumIEAA) and 10 traits (21 phenotype-EAA combinations). 239

Nearly half (10 out of 21) of the results for the female subgroup presented in Table 2 relate 240

to blood lipids measures (TG, LDL and HDL), and another 6 results for females relate to 241

the presence of a hypertension diagnosis and blood pressure values (SBP and DBP). Nei- 242

ther lipid- nor blood pressure-related phenotypes were associated with the EAA+/EAA−
243

grouping in males, unlike the presence of a CP/MCP diagnosis. Anthropometric parame- 244

ters were also found to be statistically different in both sex-specific groups (BMI in males 245

and WHR in females), but not for the combined dataset. 246

Our findings also suggest that some of the clocks are associated with groups of 247

phenotypes. In particular, we observed that GrimAA and HorvathAAr are significantly 248

associated with the cardio-vascular group of phenotypes for the entire dataset. In the female- 249

only subset, HorvathAAd and GrimAA are both associated with the anthropometric and 250

cardio-vascular groups, whilst PhenoAA, HannumAA, and HannumEEAA are associated 251

with the lipids group. No significant results were found for the metabolic group or in the 252

male-only subset. 253

3.4. Directions of some EAA-phenotype associations in sex-specific subsets are different 254

The results presented in Tables 2 and 3 summarise the significant outcomes of statistical 255

hypothesis testing of our data based on grouping (1). Some of the phenotypes in the 256

sex-specific groupings were highlighted by multiple EAAs, e.g. female total cholesterol 257
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Table 2. Significant differences between groups with positive and negative epigenetic age acceler-
ation scores (EAA+ and EAA−).
Results which remained significant after controlling for family-wise error rate of 0.05 in groups of
phenotypes per clock (as described in the Methods section 2.6) are presented in bold.

Phenotype EAA p, all 95% CI, all p, F 95% CI, F p, M 95% CI, M
Anthropometric
BMI GrimAA 0.039 (-3.079, -0.079)

WHR HorvathAAd 0.004 (-0.048, -0.009)
GrimAA 0.010 (0.006, 0.046)

Lifestyle

Smoking
status

GrimAA <0.001 (1.799, 4.895) 0.026 (1.077, 8.931) <0.001 (4.5, 58.7)
HorvathAAd 0.016 (1.140, 9.454)
PhenoAA 0.004 (1.360, 8.319)

Alcohol,
annual intake

HorvathIEAA 0.028 (-2832, -163 ) 0.023 (-5522, -422)
GrimAA 0.049 (16, 5370)

Metabolic

GGT GrimAA 0.023 (0.728, 9.699)
HorvathAAr 0.030 (0.738, 14.5)

Lipids

TC

HannumAA 0.009 (-0.947, -0.141)
GrimAA 0.046 (0.008, 0.818)
PhenoAA 0.010 (-0.919, -0.127)
HannumEEAA 0.003 (-1.004, -0.203)

TG GrimAA 0.015 (0.070, 0.632)

HDL HorvathAAr 0.013 (0.026, 0.219)
SkinBloodAA 0.027 (0.012, 0.205)

LDL
PhenoAA 0.037 (-0.523, -0.016) 0.004 (-0.840, -0.157)
HannumAA 0.010 (-0.811, -0.112)
HannumEEAA 0.002 (-0.904, -0.215)

Cardio-vascular

CHD GrimAA <0.001 (1.518, 4.060) 0.001 (1.458, 5.955) 0.042 (1.020, 4.389)
HorvathAAr 0.006 (1.187, 3.139) 0.018 (1.150, 4.995)

CP GrimAA 0.009 (1.367, 22.723)
MCP GrimAA 0.004 (1.584, 26.779) 0.009 (1.401, 33.864)

HT HorvathAAd 0.005 (0.202, 0.781)
GrimAA 0.043 (0.987, 3.764)

SBP HorvathAAd 0.008 (-20.1, -3.2)
GrimAA 0.024 (1.3, 18.4)

DBP HorvathAAd 0.003 (-10.626, -2.144)
GrimAA 0.039 (0.228, 8.832)

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.07.06.498980doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498980
http://creativecommons.org/licenses/by/4.0/


Version November 30, 2022 submitted to Biology 9 of 43

Figure 3. Boxplots of EAAs and sex-adjusted EAAs for all samples and sex-specific subsets (panel A),
distribution of GrimAA distribution stratified by sex (panel B) and adjusted for sex (panel C).

(HannumAA, PhenoAA, GrimAA and EEAA) and male alcohol consumption (IEAA and 258

GrimAA), however, the signs of the groups’ mean differences are not consistent. 259

For instance, in Table 2, the confidence intervals for female WHR are positive for 260

GrimAA and negative for HorvathAAd. Further investigation revealed that the EAA+
261

group have a higher mean WHR than in EAA− for GrimAA, but the opposite is true for 262

HorvathAAd, see Figure A6. Furthermore, the mean WHR values were higher in the EAA−
263

group for all three EAAs derived from Horvath’s clock, together with HannumIEAA and 264

SkinBloodAA. Similar trends were observed in male annual alcohol consumption, see 265

Figure A3, and in female levels of TC, HDL, LDL, and blood pressure values (SBP and 266

DBP), see Figures A9, A8, A7, A12, and A11, respectively. 267

4. Discussion 268

The question of which EAA measure is the "best" or "most suitable" to study particular 269

phenotypes is yet to be answered. For our data we decided to take into consideration all 270

the EAA measures that could be calculated using DNA Methylation Online Calculator [3], 271

which is a relatively easy-to-use open-access tool. Epigenetic clocks included in the Online 272

Calculator are featured in the vast majority of studies related to EAA-phenotype/disease 273

associations (see e.g. [32,40–42]), as well as in benchmarking the newly developed DNAm- 274

based clocks’ performance (see e.g.[43]). 275
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Table 3. EAA-Phenotype association table. White colour indicates no significant association,
green/red colour indicate significantly higher/lower values of phenotype measures (higher odds
ratios) in EAA+ group compared to EAA− for continuous (binary) phenotypes. Lower case letters
indicate individual significant associations between a clock and a phenotype for all cohort participants
(a), females (f), and males (m); capital letters indicate phenotype group significant association
(controlled for family-wise error rate) for all (A), females (F), and males (M).
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Ability of the considered nine EAAs to reflect the differences in phenotype distribution 276

was investigated by splitting the data based on the sign of the EAA scores. Similar grouping 277

was also used in [31], where the risk of CHD was studied by splitting HorvathAAd and 278

HannumAA to positive and negative groups. In recent paper [32], the authors used 279

the positive/negative GrimAA and PhenoAA split to study the incident diabetes in the 280

Coronary Artery Risk Development in Young Adults (CARDIA) cohort. 281

All the considered EAAs were independent (apart from HorvathAAd) of chronological 282

age, but clearly sex-biased (Table A2), with generally lower EAA values for females. It 283

was particularly obvious for the GrimAA scores, with distribution profiles separated for 284

males and females, see Figure 3 B-C. As we pointed out in Section 3.3, splitting the dataset 285

into EAA+ and EAA− groups revealed big variation in group sizes for different scores 286

(Table A4), which became particularly extreme for sex-specific subsets. To avoid unwanted 287

confounding, for our analyses we adjusted EAAs by sex and proceeded with adjEAA values. 288

This step resulted in more balanced EAA+/EAA− group split for all adjEAAs. Of course, 289

adjusting EAAs for sex did not affect the actual differences in phenotypes distributions 290

between male and female subjects (see Tables A3 and A1). As a result, several phenotype- 291

EAA combinations, which have previously demonstrated statistically significant results, 292

did not persist after the adjustment (see Table A5). 293

Due to some phenotypes show sex-specific behaviour, see e.g. [44–46], we presented 294

the results for males and females separately, alongside the results for the entire dataset. 295

In one of the recent reviews [47], the authors pointed out the lack of sex-specific results 296

involving EAAs and recommended splitting data by sex in downstream analyses. Our 297

findings confirm the importance of using EAAs in sex-specific groups. We observed that 298

the most phenotypes are reflected by some EAAs in one sex-specific group only. It should 299

be noted that the results presented using positive and negative EAAs grouping (see Section 300

2.5). The observed association in groups could be further investigated on larger datasets 301

using continuous EAAs. 302

We found that in our dataset both BMI and WHR were significantly different in males 303

and females. Without adjusting for sex, multiple EAAs groupings highlighted significant 304

differences in both BMI and WHR for all samples, but none of those associations replicated 305

after adjustment (see Table A5). It is known [44], that in females WHR is associated with 306

risks of CHD regardless of BMI, whilst in males WHR was found to be associated with 307

incidence of CHD only for subjects with normal BMI measures. Our analysis found the 308

anthropometric parameters to be statistically different in both sex-specific groups (BMI 309

(GrimAA) in males and WHR (GrimAA and HorvathAA) difference in females), which is 310

in line with results reported in large-scale US Sisters study [48] and Taiwan Biobank [49] 311

cohorts. Interestingly (and opposite to findings in [44]), in [49] the authors report significant 312

associations between WHR and EAAs (PhenoAge and GrimAge) in males, and between 313

BMI and EAAs (PhenoAge and GrimAge) in females, which is the other way round in 314

studied Russian sample (WHR in females and BMI in males). We would like to point out, 315

that GrimAA grouping revealed higher mean WHR in female EAA+, but lower male mean 316

BMI in the same group with positive EAAs (see Figures A6 and A5). 317

Lifestyle habits, including diet, smoking and alcohol consumption, are known to 318

impact DNAm and being associated with epigenetic age in multiple studies, see e.g. [50– 319

52]. Some DNAm clocks were specifically developed to be sensitive to smoking status, 320

like, for example, GrimAge [5]. GrimAA was the only score associated with smoking 321

status in the entire dataset, and the associations replicated in sex-specific subsets (Table 2). 322

PhenoAA and HorvathAAd were also found to be significantly associated in male and 323

female subgroups respectively. HorvathIEAA was significantly associated with annual 324

alcohol consumption for all the samples and this association persisted in males, together 325

with GrimAA, but not in females. Interestingly, the mean annual alcohol volume was 326

higher in EAA+ group for GrimAA, but lower in EAA+ group for IEAA (Figure A3), which 327

is not in line with the current state of the art in alcohol-ageing relationship, see e.g. review 328

[53]. 329
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Previous publications suggest that EAAs are associated with diabetes and/or glucose 330

levels [9,54,55]. It was also found that positive GrimAA (but not PhenoAA) is associated 331

with higher 5-10 years incidence of type 2 diabetes, particularly for obese individuals [32]. 332

In analysing this Russian sample we have not observed any significant associations of the 333

considered EAAs with prevalent type 2 diabetes mellitus (T2DM) status and/or fasting 334

blood glucose values. This might be attributed to the small proportion (11%) of the diabetics 335

in our data compared to other studies (e.g. nearly 20% in [55]). Blood levels of GGT are 336

associated with many dismetabolic conditions, including fatty liver, excessive alcohol 337

consumption, increased risks of CHD and T2DM [56,57], and is known to be different in 338

men and women [45], with no unified reference values. For the entire dataset, GrimAA 339

EAA+/EAA− grouping demonstrated significant difference in serum GGT measures. This 340

result was not replicated in sex-specific subsets, but at the same time, in male subgroup 341

GGT level difference was detected in HorvathAAr split (see Figure A4). 342

Blood levels of total cholesterol, TG and lipoproteins (HDL and LDL) are known to be 343

sex-specific and associated with risk of developing CVD in both sexes, see e.g. [58]. Changes 344

in lipids concentrations are also shown to be reflected in age-related changes in DNAm 345

following dietary interventions [59]. Furthermore, associations of EAAs and lipids levels 346

were confirmed in several studies [60,61]. In our entire dataset, among all available lipids 347

data, only mean LDL levels in EAA+ with PhenoAA grouping were significantly lower than 348

in EAA−, and this result persisted in female subset. No significant differences in mean lipids 349

concentrations were highlighted by any EAA split for the male subgroup, whilst ten EAA- 350

lipids phenotypes associations were highlighted in females. In particular, in female subset 351

GrimAA grouping demonstrated significantly higher group mean levels of total cholesterol 352

and TG in EAA+ compared to EAA− (see Table 2, Figures A9 and A10). At the same time 353

mean TC and LDL concentrations (Figure A7) were significantly lower in EAA+ group 354

in PhenoAA, HannumAA and EEAA splits. Female HDL levels associations were picked 355

up in SkinBloodAA and HorvathAAr groupings, with higher lipoprotein concentration in 356

EAA+ group (see Figure A8). Remarkably, for all four considered lipids-related measures, 357

known CVD risk factors (high TC, LDL, TG, and low HDL) were associated (not all 358

significantly) with positive age acceleration only for GrimAA grouping, whilst the opposite 359

was demonstrated in all the significant (and vast majority of insignificant) EAAs-lipids 360

associations based on other EAA splits (see Figures A7, A8, A9 and A10). In view of recently 361

published age-related sex-specific trends in lipid levels [62] and hypertension prevalence 362

[46], it would be interesting to conduct an extended sex-specific analyses on EAA-lipids 363

and hypertension associations for the particular age groups to see whether EAA values 364

reflect the observed age-related patterns. 365

Data on carotid atherosclerosis and advanced atherosclerosis, which are defined in 366

our study as the presence of at least a single (CP) and multiple carotid plaques (MCP) 367

respectively, was available for only 34% of the participants, with 50/23/14 and 55/23/2 368

total/CP/MCP samples available for males and females. Only GrimAA grouping was 369

significantly associated with CP in males and MCP in the entire dataset and its male only 370

subset. In female specific subset blood pressure values (both SBP and DBP) and hyper- 371

tension status were significantly associated with HorvathAAd and GrimAA groupings. 372

Interestingly, in case of GrimAA group split, mean values of SBP and DBP were higher in 373

EAA+ group, which might indicate the increased risk of CVD [63]. This is the opposite to 374

the corresponding results of HorvathAAd grouping. None of these phenotypes were high- 375

lighted in the entire dataset and male subset. Two groupings, GrimAA and HorvathAAr, 376

were significantly associated with incident CHD for all available samples. The results 377

persisted in male subset for both groupings and in female subset for GrimAA split only. 378

Similar results were also described in Genetic Epidemiology Network of Arteriopathy 379

(GENOA) dataset study [55], where the authors reported significant connections not only 380

between GrimAA and incident CVD, but also between GrimAA and time to the CVD event. 381

Notably, while higher odds of CHD were associated with EAA+ for both GrimAA 382

and HorvathAAr, only GrimAA EAA+ was consistently associated with more harmful 383
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phenotypes values, indicating higher risk of CHD. All other EAA splits demonstrated 384

mostly the opposite behaviour regarding available risk factors (lipids, anthropometric, 385

lifestyle and cardio-vascular). 386

The observed associations of the various EAAs with both individual and groups of 387

phenotypes suggest that epigenetic age acceleration scores are sensitive to various cardio- 388

metabolic parameters, which might indicate their prognostic potential for related disorders. 389

Further investigations conducted on well-annotated larger datasets are needed to improve 390

the understanding the mechanisms behind those associations, and, possibly developing 391

new biomarkers. These might be extended by applying other epigenetic age models and 392

using continuous EAAs in association studies. 393

5. Conclusions 394

Our study conducted on a subset of HAPIEE cohort shows that EAAs are sex-specific 395

and should be adjusted for sex in EAA-phenotypes association studies. Moreover, even 396

after adjusting for sex, the associations between EAAs and considered 18 cardiometabolic 397

phenotypes are sex-specific. The only two phenotype-EAA associations persisted through 398

the entire dataset and both male and female subsets are incident CHD and smoking status. 399

Among all considered epigenetic clocks, GrimAge was significantly associated with 400

more phenotypes than any other EA scores, but for most of the phenotypes those associa- 401

tions are weaker than in other scores. Furthermore, for some EAAs, the direction of the 402

association with phenotype is counter-intuitive, i.e. lower EAA scores corresponded to 403

more harmful values of the phenotypes. The observed associations of the various EAAs 404

with both individual and groups of phenotypes suggest that epigenetic age acceleration 405

scores are sensitive to various cardio-metabolic parameters, which might indicate their 406

prognostic potential for related disorders. 407
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Abbreviations 435

The following abbreviations are used in this manuscript: 436

ACS Acute coronary syndrome
adjEAA Adjusted epigenetic age acceleration
ASE American Society of Echocardiography
BMI Body mass index
BP Blood pressure
CA Chronological age
CARDIA Coronary Artery Risk Development in Young Adults
CHD Coronary heart disease
CP Carotid plaque
CpG Cytosine-phospate-guanine
CVD Cardio-vascular disease
DBP Diastolic blood pressure
DNAm DNA methylation
EA Epigenetic age
EAA Epigenetic age acceleration
EASD European Association for the Study of Diabetes
EEAA Extrinsic epigenetic age acceleration
EGA European Genome-phenome Archive
ESC European Society of Cardiology
ESH European Society of Hypertension
FPG Fasting plasma glucose
GENOA Genetic Epidemiology Network of Arteriopathy
GGT Gamma-glutamyl transferase
HAPIEE Health, Alcohol, and Psychosocial Factors in Eastern Europe
HDL High-density lipoprotein
HT Hypertension
IEAA Intrinsic epigenetic age acceleration
IIPM Institute of Internal and Preventive Medicine
LDL Low-density lipoprotein
MCP Multiple carotid plaques
MI Myocardial infarction
QC Quality control
SBP Systolic blood pressure
T2DM Type 2 diabetes mellitus
TC Total cholesterol
TG Triglycerides
WHR Waist-hip ratio

437

Appendix A. Supplementary Figures and Tables 438
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Table A1. Summary of the continuous phenotype data for males and females.
Sample size is n = 306, 166/140 female/male. Glucose measurements are only available for n = 298,
159/139 female/male samples. p-values obtained from the Welch’s t-test testing difference between
male and female groups for each variable (H0: Mean value of the variable is the same for male and
female groups).

Phenotype Sex (min,max) Mean (SD) p-value 95% CI

Age, years
All (44.78, 70.37) 56.78 (7.13)

0.16 (-0.46, 2.75)F (44.78, 70.11) 57.3 (7.28)
M (45.15, 70.37) 56.15 (6.92)

BMI, kg/m2
All (16.76, 53.62) 28.06 (5.3)

< 0.001 (1.18, 3.48)F (16.76, 53.62) 29.12 (5.66)
M (18.37, 43.27) 26.8 (4.54)

WHR, units
All (0.69, 1.13) 0.88 (0.08)

< 0.001 (-0.12, -0.09)F (0.69, 1.01) 0.84 (0.06)
M (0.79, 1.13) 0.94 (0.07)

Alcohol (annual
intake), g

All (0, 43530) 2696.73 (5936.95)
< 0.001 (-6129.87, -3453.23)F (0, 14850) 504.52 (1323.39)

M (0, 43530) 5296.07 (7919.46)

Alcohol (annual
occasions), n

All (0, 365) 47 (75.56)

< 0.001 (-77.54, -44)F (0, 198) 19.19 (34.44)
M (0, 365) 79.96 (95.4)

GGT, mmol/l
All (10, 140) 31.26 (19.92)

< 0.001 (-12.69, -3.77)F (10, 140) 27.5 (18.34)
M (12, 130) 35.73 (20.85)

Glucose, mmol/l
All (4.11, 17.11) 6.04 (1.65)

0.766 (-0.44, 0.32)F (4.11, 16) 6.02 (1.6)
M (4.56, 17.11) 6.07 (1.72)

TC, mmol/l
All (4.04, 11.06) 6.5 (1.28)

0.001 (0.19, 0.75)F (4.14, 11.06) 6.72 (1.33)
M (4.14, 11.06) 6.25 (1.17)

TG, mmol/l
All (0.56, 5.56) 1.62 (0.84)

0.189 (-0.06, 0.31)F (0.56, 5.56) 1.67 (0.92)
M (0.63, 4.59) 1.55 (0.71)

HDL, mmol/l
All (0.7, 3.29) 1.54 (0.33)

0.015 (0.02, 0.17)F (0.93, 2.46) 1.59 (0.32)
M (0.7, 3.29) 1.49 (0.35)

LDL, mmol/l
All (1.46, 8.3) 4.22 (1.14)

0.013 (0.07, 0.58)F (1.94, 8.09) 4.37 (1.15)
M (1.46, 8.3) 4.05 (1.1)

SBP, mmHg
All (93.33, 247) 140.95 (25.75)

0.861 (-5.21, 6.23)F (93.33, 227.67) 141.18 (28.19)
M (99.67, 247) 140.67 (22.62)

DBP, mmHg
All (54.33, 135.33) 88.65 (13.76)

0.275 (-4.8, 1.37)F (59, 135) 87.87 (14.15)
M (54.33, 135.33) 89.59 (13.26)
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Table A2. Summary of EAAs scores data for males and females. EAA scores before adjustment for
sex. p-values obtained from the Welch’s t-test testing difference between male and female groups for
each EAA (H0: Mean value of the EAA is the same for male and female groups).

EAA Sex (min, max) Mean (SD) Median (IQR) p-value 95% CI

HannumAA
All (-17.6, 20.49) 0 (4.35) -0.33 (5.2)

< 0.001 (-3.46, -1.56)F (-17.6, 10.69) -1.15 (4.06) -1.06 (4.77)
M (-7.65, 20.49) 1.36 (4.32) 0.7 (5.85)

HannumEEAA
All (-20, 24.18) 0 (5.42) 0.04 (6.73)

< 0.001 (-4.59, -2.27)F (-20, 13.44) -1.57 (5.15) -1.55 (5.8)
M (-9.24, 24.18) 1.86 (5.16) 1.29 (7.2)

HannumIEAA
All (-15.55, 18.54) 0 (3.91) -0.19 (4.98)

0.001 (-2.44, -0.69)F (-15.55, 8.11) -0.72 (3.57) -0.67 (4.43)
M (-7.49, 18.54) 0.85 (4.13) 0.55 (5.19)

HorvathAAd
All (-17.16, 21.87) 2.16 (4.95) 2 (6.02)

< 0.001 (-3.51, -1.31)F (-17.16, 13.42) 1.06 (4.58) 0.82 (5.55)
M (-10.84, 21.87) 3.47 (5.07) 3.49 (6.15)

HorvathAAr
All (-16.11, 17.01) 0 (4.49) -0.07 (5.55)

< 0.001 (-3.07, -1.08)F (-16.11, 11.83) -0.95 (4.13) -0.9 (5.43)
M (-9.98, 17.01) 1.13 (4.65) 1.08 (5.79)

HorvathIEAA
All (-15.62, 15.93) 0 (4.32) 0.07 (5.57)

0.002 (-2.51, -0.56)F (-15.62, 10.23) -0.7 (4.07) -0.48 (5.26)
M (-8.84, 15.93) 0.83 (4.48) 0.58 (5.56)

SkinBloodAA
All (-21.55, 13.15) 0 (3.68) -0.39 (4.82)

0.048 (-1.66, -0.01)F (-21.55, 9.82) -0.38 (3.73) -0.58 (4.85)
M (-9.33, 13.15) 0.45 (3.58) 0.18 (4.48)

PhenoAA
All (-17.95, 26.12) 0 (5.74) -0.53 (7.4)

< 0.001 (-3.62, -1.08)F (-17.95, 26.12) -1.08 (5.68) -1.62 (5.78)
M (-10.35, 15.91) 1.27 (5.56) 0.71 (7.88)

GrimAA
All (-10.46, 15.05) 0 (5.44) -1.47 (7.73)

< 0.001 (-8.19, -6.26)F (-10.46, 8.45) -3.31 (2.94) -3.44 (3.16)
M (-7.71, 15.05) 3.92 (5.12) 3.66 (8.39)
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Figure A1. Normalised mutual information heatmap.
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Figure A2. Correlation table for EAAs
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Figure A3. Histograms of distributions of annual alcohol consumption in males in EAA+ and EAA−

groups. Dashed lines correspond to the group means.
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Figure A4. Histograms of distributions of GGT levels in males in EAA+ and EAA− groups. Dashed
lines correspond to the group means.
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Figure A5. Histograms of distributions of BMI in males in EAA+ and EAA− groups. Dashed lines
correspond to the group means.
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Figure A6. Histograms of distributions of waist-hip ratio in females in EAA+ and EAA− groups.
Dashed lines correspond to the group means.
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Figure A7. Histograms of distributions of LDL levels in females in EAA+ and EAA− groups. Dashed
lines correspond to the group means.
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Figure A8. Histograms of distributions of HDL levels in females in EAA+ and EAA− groups. Dashed
lines correspond to the group means.
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Figure A9. Histograms of distributions of TC levels in females in EAA+ and EAA− groups. Dashed
lines correspond to the group means.
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Figure A10. Histograms of distributions of TG levels in females in EAA+ and EAA− groups. Dashed
lines correspond to the group means.
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Figure A11. Histograms of distributions of DBP levels in females in EAA+ and EAA− groups.
Dashed lines correspond to the group means.
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Figure A12. Histograms of distributions of SBP levels in females in EAA+ and EAA− groups. Dashed
lines correspond to the group means.
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Table A3. Summary of binary phenotypes. Being case means having phenotype. Smoking status
cases correspond to current or former smokers. p-values and odds ratios (with corresponding 95%
confidence intervals) obtained from the Fisher’s exact test testing difference in ratio of each class of
the variable between male and female groups (H0: Classification for given binary variable for male
and female groups are not different).

Phenotype Sex Samples, n Cases, n (%) OR (95%CI) p-value

Smoking
status

All 306 126 (41.18%)
< 0.001F 166 24 (14.46%) 0.06 (0.03, 0.12)

M 140 102 (72.86%) 15.69 (8.67, 29.34)

T2DM
All 306 34 (11.11%)

0.466F 166 16 (9.64%) 0.72 (0.33, 1.57)
M 140 18 (12.86%) 1.38 (0.64, 3.03)

CHD
All 306 130 (42.48%)

0.083F 166 63 (37.95%) 0.67 (0.41, 1.08)
M 140 67 (47.86%) 1.5 (0.93, 2.43)

CP
All 105 46 (43.81%)

0.698F 55 23 (41.82%) 0.85 (0.36, 1.96)
M 50 23 (46%) 1.18 (0.51, 2.75)

MCP
All 105 16 (15.24%)

0.001F 55 2 (3.64%) 0.1 (0.01, 0.47)
M 50 14 (28%) 10.1 (2.12, 96.93)

HT
All 306 176 (57.52%)

0.643F 166 93 (56.02%) 0.88 (0.54, 1.41)
M 140 83 (59.29%) 1.14 (0.71, 1.85)
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Table A4. Number of samples in EAA− and EAA+ groups for unadjusted and adjusted for sex
EAA scores.

EAA Sex EAA group size, n (%) adjEAA group size, n (%)
EAA< 0 EAA≥ 0 adjEAA< 0 adjEAA≥ 0

HannumAA
All 162 (53%) 144 (47%) 155 (51%) 151 (49%)
F 104 (63%) 62 (37%) 80 (48%) 86 (52%)
M 58 (41%) 82 (59%) 75 (54%) 65 (46%)

HannumEEAA
All 150 (49%) 156 (51%) 159 (52%) 147 (48%)
F 100 (60%) 66 (40%) 81 (49%) 85 (51%)
M 50 (36%) 90 (64%) 78 (56%) 62 (44%)

HannumIEAA
All 160 (52%) 146 (48%) 159 (52%) 147 (48%)
F 95 (57%) 71 (43%) 82 (49%) 84 (51%)
M 65 (46%) 75 (54%) 77 (55%) 63 (45%)

HorvathAAd
All 98 (32%) 208 (68%) 156 (51%) 150 (49%)
F 68 (41%) 98 (59%) 87 (52%) 79 (48%)
M 30 (21%) 110 (79%) 69 (49%) 71 (51%)

HorvathAAr
All 155 (51%) 151 (49%) 151 (49%) 155 (51%)
F 98 (59%) 68 (41%) 81 (49%) 85 (51%)
M 57 (41%) 83 (59%) 70 (50%) 70 (50%)

HorvathIEAA
All 150 (49%) 156 (51%) 152 (50%) 154 (50%)
F 89 (54%) 77 (46%) 79 (48%) 87 (52%)
M 61 (44%) 79 (56%) 73 (52%) 67 (48%)

SkinBloodAA
All 163 (53%) 143 (47%) 162 (53%) 144 (47%)
F 96 (58%) 70 (42%) 91 (55%) 75 (45%)
M 67 (48%) 73 (52%) 71 (51%) 69 (49%)

PhenoAA
All 168 (55%) 138 (45%) 164 (54%) 142 (46%)
F 105 (63%) 61 (37%) 89 (54%) 77 (46%)
M 63 (45%) 77 (55%) 75 (54%) 65 (46%)

GrimAA
All 186 (61%) 120 (39%) 157 (51%) 149 (49%)
F 151 (91%) 15 (9%) 85 (51%) 81 (49%)
M 35 (25%) 105 (75%) 72 (51%) 68 (49%)
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Table A5. Significant differences in EAA− and EAA+ groups for unadjusted and adjusted for sex EAA scores.

Phenotype EAA
Unadjusted Adjusted for sex

All Female Male All Female Male
p 95% CI p 95% CI p 95% CI p 95% CI p 95% CI p 95% CI

Anthropometric

BMI GrimAA 0.011 (-2.767, -0.364) 0.039 (-3.079, -0.079)
HorvathAAd 0.019 (-2.950, -0.267) 0.031 (-3.751, -0.188)

WHR

HorvathAAd 0.007 (-0.048, -0.008) 0.004 (-0.048, -0.009)
GrimAA <0.001 (0.069, 0.103) 0.046 (-0.0004, 0.042) 0.010 (0.006, 0.046)
SkinBloodAA 0.041 (-0.001,0.038)
HannumEEAA 0.016 (-0.004, 0.042)

Lifestyle

Smoking
status

GrimAA <0.001 (15.646, 61.134) <0.001 (3.642, 52.054) <0.001 (5.237, 39.030) <0.001 (1.799, 4.895) 0.026 (1.077, 8.931) <0.001 (4.515, 58.734)
HorvathAAd 0.003 (1.294, 3.884) 0.016 (1.140, 9.454)
PhenoAA 0.002 (1.262, 3.359) 0.013 (1.201, 6.494) 0.004 (1.360, 8.319)
HannumAAr <0.001 (1.447, 3.873)
HannumIEAA 0.015 (1.112, 2.940)
HannumEEAA <0.001 (1.717, 4.677)

Alcohol
(annual
intake)

HorvathIEAA 0.009 (-6721.199, -1005.072) 0.028 (-2832.461, -163.529) 0.023 (-5521.650, -422.226)
HorvathAAr 0.033 (-5976.624, -264.277)
GrimAA <0.001 (2477.312, 5546.062) 0.049 (16.036, 5369.626)
HannumAAr 0.028 (165.525, 2866.550)
HannumEEAA 0.009 (432.292, 3063.949)

Alcohol
(annual
occasions)

HorvathIEAA 0.020 (-73.632, -6.503)
HorvathAAr 0.027 (4.412, 72.233)
HannumEEAA 0.015 (4.092, 37.637)
GrimAA <0.001 (28.848, 66.692)
HannumAAr 0.016 (3.953,38.375 )

Metabolic

GGT
HannumIEAA 0.029 (0.817, 15.130)
GrimAA 0.003 (2.518, 11.746) 0.023 (0.728, 9.699)
HorvathAAr 0.030 (0.738, 14.519)

Lipids

TC

HannumAAr 0.011 (-0.652, -0.085) 0.014 (-0.904, -0.103) 0.009 (-0.947, -0.141)
GrimAA 0.025 (-0.630, -0.042) 0.046 (0.008, 0.818)
PhenoAA 0.010 (-0.653, -0.088) 0.004 (-0.993, -0.198) 0.010 (-0.919, -0.127)
HannumEEAA 0.012 (-0.653, -0.082 ) 0.012 (-0.904, -0.113) 0.003 (-1.004, -0.203)

TG
GrimAA 0.015 (0.070, 0.632)
HannumIEAA 0.043 (-0.378, -0.006) 0.028 (-0.510, -0.030)
HannumAAr 0.023 (-0.403, -0.031) 0.034 (-0.522, -0.021)

HDL

HorvathAAr 0.004 (0.046, 0.236) 0.013 (0.026, 0.219)
SkinBloodAA 0.027 (0.012, 0.205)
HorvathIEAA 0.002 (0.053, 0.241)
HannumIEAA 0.033 (0.010, 0.236)
HannumAAr 0.036 (0.008, 0.233)
GrimAA 0.004 (-0.192, -0.036 )

LDL
PhenoAA 0.012 (-0.575, -0.070) 0.002 (-0.891, -0.208) 0.037 (-0.523, -0.016) 0.004 (-0.840, -0.157)
HannumAAr 0.013 (-0.575, -0.068) 0.007 (-0.822, -0.129) 0.010 (-0.811, -0.112)
HannumEEAA 0.008 (-0.601, -0.093) 0.004 (-0.848, -0.165) 0.002 (-0.904, -0.215)

Cardio-vascular

CHD GrimAA 0.003 (1.267, 3.408) 0.011 (1.220, 7.596) <0.001 (1.518, 4.060) 0.001 (1.458, 5.955) 0.042 (1.020, 4.389)
HorvathAAr 0.015 (1.106, 2.913) 0.006 (1.187, 3.139) 0.018 (1.150, 4.995)

CP GrimAA 0.009 (1.367, 22.723)
MCP GrimAA 0.001 (1.979, 46.687) 0.004 (1.584, 26.779) 0.009 (1.401, 33.864)

HT HorvathAAd 0.009 (0.296, 0.867) 0.007 (0.195, 0.793) 0.005 (0.202, 0.781)
GrimAA 0.043 (0.987, 3.764)

SBP HorvathAAd 0.024 (-13.311, -0.964) 0.028 (-18.191, -1.045) 0.008 (-20.142, -3.153)
GrimAA 0.024 (1.294, 18.398)

DBP HorvathAAd 0.048 (-8.648, -0.031) 0.003 (-10.626, -2.144)
GrimAA 0.039 (0.228, 8.832)
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Table A6. All results for EAA− and EAA+ groups for adjusted for sex EAA scores.
For Welch’s t-test group 1 is EAA−, group 2 is EAA+. For Fisher’s exact test odds ratios depend on the phenotype value and grouping for the first sample in our
data.

Phenotype EAA p, all ∆mean/OR (95% CI, all) p, female ∆mean/OR (95% CI, female) p, male ∆mean/OR (95% CI, male)
Anthropometric
BMI HorvathAAd 0.118 0.946 (-0.242, 2.133) 0.051 1.712 (-0.005, 3.428) 0.880 -0.117 (-1.641, 1.408)
BMI HorvathAAr 0.955 0.034 (-1.159, 1.227) 0.665 -0.381 (-2.116, 1.353) 0.446 0.588 (-0.933, 2.108)
BMI SkinBloodAA 0.768 -0.179 (-1.373, 1.014) 0.873 0.141 (-1.593, 1.875) 0.323 -0.764 (-2.285, 0.758)
BMI HorvathIEAA 0.409 0.501 (-0.692, 1.694) 0.742 0.291 (-1.452, 2.034) 0.199 0.983 (-0.522, 2.488)
BMI HannumEEAA 0.691 0.242 (-0.958, 1.442) 0.970 -0.033 (-1.768, 1.702) 0.228 0.929 (-0.589, 2.447)
BMI HannumIEAA 0.465 0.442 (-0.746, 1.631) 0.656 0.394 (-1.348, 2.135) 0.296 0.789 (-0.698, 2.277)
BMI HannumAA 0.982 0.014 (-1.181, 1.208) 0.830 0.190 (-1.556, 1.935) 0.921 0.078 (-1.460, 1.615)
BMI GrimAA 0.844 -0.120 (-1.322, 1.082) 0.081 -1.543 (-3.281, 0.195) 0.039 1.579 (0.079, 3.079)
BMI PhenoAA 0.841 -0.123 (-1.329, 1.084) 0.787 0.239 (-1.510, 1.989) 0.483 -0.554 (-2.113, 1.005)
WHR HorvathAAd 0.178 0.013 (-0.006, 0.032) 0.004 0.029 (0.009, 0.048) 0.909 0.001 (-0.021, 0.023)
WHR HorvathAAr 0.482 0.007 (-0.012, 0.026) 0.170 0.014 (-0.006, 0.034) 0.686 -0.004 (-0.026, 0.017)
WHR SkinBloodAA 0.184 -0.013 (-0.032, 0.006) 0.604 -0.005 (-0.025, 0.015) 0.269 -0.012 (-0.034, 0.010)
WHR HorvathIEAA 0.317 0.010 (-0.009, 0.028) 0.376 0.009 (-0.011, 0.029) 0.996 0.000 (-0.022, 0.022)
WHR HannumEEAA 0.152 0.014 (-0.005, 0.033) 0.605 0.005 (-0.015, 0.025) 0.477 0.008 (-0.014, 0.030)
WHR HannumIEAA 0.506 0.006 (-0.012, 0.025) 0.678 -0.004 (-0.024, 0.016) 0.583 0.006 (-0.016, 0.028)
WHR HannumAA 0.609 0.005 (-0.014, 0.024) 0.810 -0.002 (-0.023, 0.018) 0.911 0.001 (-0.021, 0.023)
WHR GrimAA 0.162 -0.013 (-0.032, 0.005) 0.010 -0.026 (-0.046, -0.006) 0.920 0.001 (-0.021, 0.023)
WHR PhenoAA 0.475 0.007 (-0.012, 0.026) 0.104 0.016 (-0.003, 0.036) 0.714 -0.004 (-0.026, 0.018)
Lifestyle
Alcohol (annual intake) HorvathAAd 0.496 459.390 (-868.299, 1787.078) 0.292 -225.055 (-645.973, 195.864) 0.238 1595.070 (-1070.824, 4260.965)
Alcohol (annual intake) HorvathAAr 0.107 1101.018 (-238.071, 2440.106) 0.522 -130.099 (-531.505, 271.307) 0.069 2435.000 (-192.278, 5062.278)
Alcohol (annual intake) SkinBloodAA 0.438 519.830 (-797.085, 1836.746) 0.388 -190.837 (-627.538, 245.865) 0.182 1783.619 (-845.651, 4412.889)
Alcohol (annual intake) HorvathIEAA 0.028 1497.995 (163.529, 2832.461) 0.485 -140.131 (-535.868, 255.606) 0.023 2971.938 (422.226, 5521.650)
Alcohol (annual intake) HannumEEAA 0.833 144.007 (-1197.565, 1485.579) 0.373 -180.731 (-581.352, 219.891) 0.888 -193.486 (-2906.095, 2519.122)
Alcohol (annual intake) HannumIEAA 0.506 448.790 (-878.267, 1775.846) 0.379 -180.038 (-583.961, 223.885) 0.642 616.522 (-2000.890, 3233.935)
Alcohol (annual intake) HannumAA 0.529 426.629 (-906.939, 1760.197) 0.257 -228.406 (-625.223, 168.412) 0.627 646.862 (-1977.101, 3270.824)
Alcohol (annual intake) GrimAA 0.105 -1119.352 (-2474.041, 235.337) 0.355 187.723 (-212.549, 587.995) 0.049 -2692.831 (-5369.626, -16.036)
Alcohol (annual intake) PhenoAA 0.446 510.560 (-806.875, 1827.995) 0.727 -76.111 (-506.575, 354.353) 0.360 1210.595 (-1395.209, 3816.398)
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Phenotype EAA p, all ∆mean/OR (95% CI, all) p, female ∆mean/OR (95% CI, female) p, male ∆mean/OR (95% CI, male)
Alcohol (annual occasions) HorvathAAd 0.886 -1.236 (-18.230, 15.759) 0.316 -5.429 (-16.092, 5.234) 0.629 7.843 (-24.213, 39.900)
Alcohol (annual occasions) HorvathAAr 0.213 10.806 (-6.247, 27.859) 0.441 -4.114 (-14.640, 6.412) 0.096 26.900 (-4.801, 58.601)
Alcohol (annual occasions) SkinBloodAA 0.884 1.253 (-15.668, 18.175) 0.375 -4.829 (-15.541, 5.883) 0.392 13.818 (-18.028, 45.664)
Alcohol (annual occasions) HorvathIEAA 0.134 13.001 (-4.012, 30.013) 0.419 -4.305 (-14.803, 6.194) 0.083 27.554 (-3.661, 58.768)
Alcohol (annual occasions) HannumEEAA 0.967 -0.360 (-17.423, 16.703) 0.515 -3.487 (-14.028, 7.054) 0.722 -5.854 (-38.391, 26.683)
Alcohol (annual occasions) HannumIEAA 0.907 -1.014 (-18.093, 16.065) 0.587 -2.911 (-13.470, 7.647) 0.706 -6.212 (-38.690, 26.266)
Alcohol (annual occasions) HannumAA 0.942 0.634 (-16.385, 17.654) 0.255 -6.066 (-16.547, 4.414) 0.927 1.484 (-30.599, 33.568)
Alcohol (annual occasions) GrimAA 0.737 -2.923 (-20.017, 14.170) 0.529 3.366 (-7.167, 13.900) 0.512 -10.678 (-42.810, 21.453)
Alcohol (annual occasions) PhenoAA 0.412 7.037 (-9.830, 23.903) 0.576 3.000 (-7.580, 13.580) 0.459 11.880 (-19.746, 43.506)
Smoking status HorvathAAd 0.164 1.400 (0.865, 2.271) 0.016 3.112 (1.140, 9.454) 0.850 0.901 (0.398, 2.028)
Smoking status HorvathAAr 0.908 0.957 (0.591, 1.547) 0.661 0.779 (0.294, 2.027) 0.849 1.154 (0.513, 2.613)
Smoking status SkinBloodAA 0.908 1.039 (0.642, 1.682) 0.826 0.847 (0.314, 2.209) 1.000 0.962 (0.426, 2.169)
Smoking status HorvathIEAA 1.000 0.978 (0.605, 1.582) 1.000 1.085 (0.417, 2.874) 0.706 1.186 (0.527, 2.700)
Smoking status HannumEEAA 0.642 1.142 (0.706, 1.849) 0.512 1.397 (0.536, 3.769) 0.181 1.771 (0.771, 4.217)
Smoking status HannumIEAA 0.642 1.142 (0.706, 1.849) 0.271 1.757 (0.669, 4.873) 0.451 1.360 (0.600, 3.150)
Smoking status HannumAA 0.296 1.297 (0.802, 2.102) 0.128 2.048 (0.769, 5.900) 0.186 1.708 (0.750, 4.004)
Smoking status GrimAA 0.000 2.954 (1.799, 4.895) 0.026 2.941 (1.077, 8.931) 0.000 14.047 (4.515, 58.734)
Smoking status PhenoAA 0.132 1.424 (0.879, 2.311) 0.663 0.801 (0.297, 2.087) 0.004 3.249 (1.360, 8.319)
Metabolic
T2DM HorvathAAd 0.717 1.192 (0.548, 2.614) 0.441 0.635 (0.180, 2.043) 0.207 2.124 (0.685, 7.363)
T2DM HorvathAAr 0.102 1.912 (0.866, 4.419) 0.794 1.250 (0.391, 4.172) 0.075 2.943 (0.914, 11.207)
T2DM SkinBloodAA 0.720 1.141 (0.523, 2.489) 0.188 2.169 (0.673, 7.658) 0.451 0.618 (0.190, 1.882)
T2DM HorvathIEAA 0.364 1.469 (0.674, 3.284) 0.798 1.186 (0.371, 3.956) 0.313 1.844 (0.605, 6.012)
T2DM HannumEEAA 0.468 0.732 (0.328, 1.596) 0.794 1.250 (0.391, 4.172) 0.203 0.441 (0.116, 1.420)
T2DM HannumIEAA 1.000 0.957 (0.436, 2.081) 0.432 1.706 (0.530, 6.018) 0.321 0.572 (0.165, 1.777)
T2DM HannumAA 1.000 1.030 (0.472, 2.245) 0.436 1.618 (0.503, 5.706) 0.615 0.704 (0.216, 2.144)
T2DM GrimAA 0.858 0.929 (0.424, 2.021) 1.000 1.054 (0.326, 3.410) 0.803 0.828 (0.264, 2.510)
T2DM PhenoAA 0.586 0.788 (0.353, 1.718) 0.112 0.354 (0.079, 1.235) 0.455 1.518 (0.501, 4.757)
GGT HorvathAAd 0.664 0.990 (-3.484, 5.464) 0.260 3.176 (-2.373, 8.725) 0.770 -1.037 (-8.046, 5.973)
GGT HorvathAAr 0.614 -1.150 (-5.630, 3.330) 0.151 4.135 (-1.521, 9.791) 0.030 -7.629 (-14.519, -0.738)
GGT SkinBloodAA 0.531 1.431 (-3.061, 5.924) 0.794 -0.766 (-6.551, 5.019) 0.178 4.752 (-2.182, 11.685)
GGT HorvathIEAA 0.937 0.180 (-4.309, 4.669) 0.305 2.983 (-2.749, 8.715) 0.270 -3.955 (-11.026, 3.115)
GGT HannumEEAA 0.186 2.997 (-1.449, 7.443) 0.192 3.749 (-1.902, 9.400) 0.803 0.873 (-6.041, 7.788)
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Phenotype EAA p, all ∆mean/OR (95% CI, all) p, female ∆mean/OR (95% CI, female) p, male ∆mean/OR (95% CI, male)
GGT HannumIEAA 0.218 2.774 (-1.652, 7.201) 0.893 0.386 (-5.266, 6.037) 0.172 4.644 (-2.039, 11.326)
GGT HannumAA 0.120 3.530 (-0.925, 7.984) 0.304 2.968 (-2.716, 8.651) 0.344 3.255 (-3.530, 10.041)
GGT GrimAA 0.023 -5.213 (-9.699, -0.728) 0.087 -4.906 (-10.542, 0.729) 0.114 -5.618 (-12.606, 1.370)
GGT PhenoAA 0.916 0.244 (-4.285, 4.773) 0.205 3.549 (-1.960, 9.057) 0.314 -3.666 (-10.841, 3.510)
Glucose HorvathAAd 0.500 0.130 (-0.248, 0.508) 0.197 0.325 (-0.170, 0.820) 0.761 -0.089 (-0.664, 0.487)
Glucose HorvathAAr 0.706 -0.072 (-0.447, 0.303) 0.907 -0.029 (-0.527, 0.468) 0.675 -0.123 (-0.701, 0.455)
Glucose SkinBloodAA 0.686 0.077 (-0.297, 0.452) 0.778 -0.072 (-0.572, 0.428) 0.392 0.249 (-0.325, 0.824)
Glucose HorvathIEAA 0.873 -0.031 (-0.407, 0.346) 0.981 -0.006 (-0.503, 0.491) 0.828 -0.065 (-0.653, 0.524)
Glucose HannumEEAA 0.455 0.143 (-0.234, 0.521) 0.910 -0.029 (-0.533, 0.476) 0.260 0.335 (-0.251, 0.921)
Glucose HannumIEAA 0.360 -0.182 (-0.574, 0.209) 0.088 -0.439 (-0.944, 0.067) 0.730 0.108 (-0.509, 0.725)
Glucose HannumAA 0.488 -0.133 (-0.512, 0.245) 0.564 -0.147 (-0.647, 0.354) 0.680 -0.128 (-0.742, 0.486)
Glucose GrimAA 0.792 0.051 (-0.328, 0.430) 0.359 -0.234 (-0.736, 0.268) 0.200 0.376 (-0.201, 0.952)
Glucose PhenoAA 0.517 0.124 (-0.253, 0.501) 0.421 0.203 (-0.294, 0.700) 0.909 0.034 (-0.550, 0.618)
Lipids
HDL HorvathAAd 0.948 0.002 (-0.073, 0.077) 0.712 -0.018 (-0.117, 0.080) 0.725 0.021 (-0.096, 0.137)
HDL HorvathAAr 0.281 -0.041 (-0.116, 0.034) 0.013 -0.122 (-0.219, -0.026) 0.328 0.057 (-0.058, 0.173)
HDL SkinBloodAA 0.104 -0.062 (-0.136, 0.013) 0.027 -0.108 (-0.205, -0.012) 0.790 -0.016 (-0.131, 0.100)
HDL HorvathIEAA 0.328 -0.037 (-0.113, 0.038) 0.065 -0.091 (-0.188, 0.006) 0.541 0.035 (-0.079, 0.150)
HDL HannumEEAA 0.158 -0.054 (-0.129, 0.021) 0.959 -0.003 (-0.101, 0.095) 0.092 -0.102 (-0.221, 0.017)
HDL HannumIEAA 0.195 -0.050 (-0.125, 0.026) 0.765 0.015 (-0.083, 0.113) 0.056 -0.116 (-0.234, 0.003)
HDL HannumAA 0.529 -0.024 (-0.099, 0.051) 0.450 0.038 (-0.060, 0.135) 0.148 -0.087 (-0.204, 0.031)
HDL GrimAA 0.935 -0.003 (-0.078, 0.072) 0.306 0.051 (-0.047, 0.148) 0.260 -0.066 (-0.183, 0.050)
HDL PhenoAA 0.604 -0.020 (-0.095, 0.055) 0.602 -0.026 (-0.122, 0.071) 0.825 -0.013 (-0.129, 0.103)
LDL HorvathAAd 0.458 0.097 (-0.160, 0.353) 0.324 0.177 (-0.176, 0.531) 0.916 -0.020 (-0.388, 0.349)
LDL HorvathAAr 0.643 -0.060 (-0.316, 0.195) 0.916 0.019 (-0.334, 0.372) 0.435 -0.146 (-0.515, 0.223)
LDL SkinBloodAA 0.138 0.193 (-0.063, 0.449) 0.055 0.343 (-0.007, 0.693) 0.954 -0.011 (-0.381, 0.359)
LDL HorvathIEAA 0.627 -0.063 (-0.319, 0.193) 0.779 0.050 (-0.302, 0.402) 0.379 -0.166 (-0.539, 0.207)
LDL HannumEEAA 0.096 0.216 (-0.039, 0.470) 0.002 0.560 (0.215, 0.904) 0.441 -0.146 (-0.520, 0.228)
LDL HannumIEAA 0.427 0.104 (-0.153, 0.360) 0.090 0.303 (-0.048, 0.654) 0.617 -0.095 (-0.468, 0.279)
LDL HannumAA 0.211 0.163 (-0.093, 0.418) 0.010 0.461 (0.112, 0.811) 0.413 -0.154 (-0.525, 0.217)
LDL GrimAA 0.446 -0.099 (-0.356, 0.157) 0.089 -0.304 (-0.655, 0.047) 0.439 0.145 (-0.224, 0.513)
LDL PhenoAA 0.037 0.270 (0.016, 0.523) 0.004 0.498 (0.157, 0.840) 0.994 -0.001 (-0.373, 0.371)
TC HorvathAAd 0.560 0.085 (-0.203, 0.374) 0.479 0.148 (-0.263, 0.558) 0.920 -0.020 (-0.411, 0.371)
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Phenotype EAA p, all ∆mean/OR (95% CI, all) p, female ∆mean/OR (95% CI, female) p, male ∆mean/OR (95% CI, male)
TC HorvathAAr 0.410 -0.120 (-0.407, 0.167) 0.610 -0.105 (-0.513, 0.302) 0.525 -0.126 (-0.517, 0.265)
TC SkinBloodAA 0.203 0.186 (-0.101, 0.472) 0.149 0.297 (-0.108, 0.702) 0.947 0.013 (-0.378, 0.404)
TC HorvathIEAA 0.404 -0.122 (-0.409, 0.165) 0.797 -0.053 (-0.460, 0.353) 0.431 -0.157 (-0.552, 0.237)
TC HannumEEAA 0.140 0.215 (-0.071, 0.500) 0.003 0.603 (0.203, 1.004) 0.378 -0.178 (-0.575, 0.220)
TC HannumIEAA 0.473 0.105 (-0.182, 0.392) 0.099 0.341 (-0.064, 0.747) 0.552 -0.120 (-0.516, 0.277)
TC HannumAA 0.192 0.190 (-0.096, 0.477) 0.009 0.544 (0.141, 0.947) 0.385 -0.174 (-0.568, 0.220)
TC GrimAA 0.215 -0.182 (-0.470, 0.106) 0.046 -0.413 (-0.818, -0.008) 0.633 0.095 (-0.296, 0.485)
TC PhenoAA 0.081 0.253 (-0.031, 0.538) 0.010 0.523 (0.127, 0.919) 0.738 -0.067 (-0.460, 0.326)
TG HorvathAAd 0.751 -0.031 (-0.220, 0.159) 0.867 -0.025 (-0.314, 0.265) 0.702 -0.046 (-0.285, 0.192)
TG HorvathAAr 0.667 -0.041 (-0.229, 0.147) 0.979 -0.004 (-0.288, 0.280) 0.498 -0.082 (-0.322, 0.157)
TG SkinBloodAA 0.215 0.119 (-0.069, 0.308) 0.342 0.137 (-0.148, 0.422) 0.474 0.087 (-0.153, 0.327)
TG HorvathIEAA 0.623 -0.047 (-0.235, 0.141) 0.851 -0.027 (-0.310, 0.256) 0.633 -0.059 (-0.302, 0.184)
TG HannumEEAA 0.222 0.117 (-0.071, 0.305) 0.479 0.102 (-0.182, 0.386) 0.198 0.155 (-0.082, 0.393)
TG HannumIEAA 0.243 0.112 (-0.076, 0.300) 0.718 0.052 (-0.232, 0.336) 0.097 0.200 (-0.036, 0.435)
TG HannumAA 0.233 0.114 (-0.074, 0.302) 0.491 0.099 (-0.185, 0.383) 0.222 0.147 (-0.090, 0.385)
TG GrimAA 0.070 -0.174 (-0.363, 0.014) 0.015 -0.351 (-0.632, -0.070) 0.767 0.036 (-0.204, 0.276)
TG PhenoAA 0.940 0.007 (-0.183, 0.198) 0.445 0.110 (-0.174, 0.395) 0.357 -0.115 (-0.361, 0.131)
Cardio-vascular
CHD HorvathAAd 0.419 0.820 (0.507, 1.323) 0.423 0.737 (0.372, 1.448) 0.866 0.895 (0.437, 1.830)
CHD HorvathAAr 0.006 1.924 (1.187, 3.139) 0.151 1.626 (0.826, 3.234) 0.018 2.377 (1.150, 4.995)
CHD SkinBloodAA 1.000 0.991 (0.613, 1.600) 0.521 0.776 (0.390, 1.528) 0.612 1.253 (0.613, 2.572)
CHD HorvathIEAA 0.134 1.421 (0.880, 2.303) 0.423 1.357 (0.690, 2.687) 0.236 1.568 (0.765, 3.239)
CHD HannumEEAA 0.420 1.209 (0.749, 1.954) 0.264 1.466 (0.746, 2.905) 1.000 1.039 (0.505, 2.136)
CHD HannumIEAA 0.730 1.086 (0.673, 1.754) 1.000 1.012 (0.516, 1.989) 0.611 1.237 (0.603, 2.547)
CHD HannumAA 0.298 1.296 (0.803, 2.095) 0.201 1.564 (0.795, 3.109) 0.865 1.107 (0.540, 2.273)
CHD GrimAA 0.000 2.474 (1.518, 4.060) 0.001 2.915 (1.458, 5.955) 0.042 2.102 (1.020, 4.389)
CHD PhenoAA 0.418 1.218 (0.754, 1.969) 0.873 1.083 (0.550, 2.128) 0.397 1.393 (0.680, 2.870)
MCP HorvathAAd 0.429 0.638 (0.184, 2.119) 1.000 0.964 (0.012, 78.414) 0.343 0.485 (0.112, 1.986)
MCP HorvathAAr 0.290 1.797 (0.540, 6.237) 0.170 Inf (0.265, Inf) 0.761 1.244 (0.302, 5.156)
MCP SkinBloodAA 0.426 0.616 (0.169, 2.062) 1.000 1.298 (0.016, 105.663) 0.211 0.404 (0.087, 1.672)
MCP HorvathIEAA 1.000 1.118 (0.333, 3.755) 0.236 Inf (0.196, Inf) 1.000 0.841 (0.197, 3.436)
MCP HannumEEAA 1.000 1.092 (0.315, 3.640) 1.000 1.400 (0.017, 114.021) 1.000 1.049 (0.244, 4.318)
MCP HannumIEAA 0.412 0.535 (0.134, 1.842) 1.000 1.118 (0.014, 90.951) 0.353 0.507 (0.097, 2.191)
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Phenotype EAA p, all ∆mean/OR (95% CI, all) p, female ∆mean/OR (95% CI, female) p, male ∆mean/OR (95% CI, male)
MCP HannumAA 1.000 1.043 (0.301, 3.475) 1.000 1.298 (0.016, 105.663) 1.000 1.049 (0.244, 4.318)
MCP GrimAA 0.004 5.795 (1.584, 26.779) 0.156 Inf (0.286, Inf) 0.009 6.225 (1.401, 33.864)
MCP PhenoAA 0.791 1.144 (0.330, 3.815) 1.000 1.400 (0.017, 114.021) 1.000 1.175 (0.273, 4.866)
CP HorvathAAd 0.332 0.677 (0.289, 1.571) 1.000 1.089 (0.328, 3.644) 0.153 0.392 (0.104, 1.397)
CP HorvathAAr 0.843 1.141 (0.488, 2.666) 1.000 1.122 (0.330, 3.793) 1.000 1.143 (0.326, 4.030)
CP SkinBloodAA 0.555 0.746 (0.318, 1.730) 1.000 0.989 (0.292, 3.317) 0.395 0.536 (0.148, 1.873)
CP HorvathIEAA 0.437 1.380 (0.595, 3.225) 0.176 2.239 (0.669, 7.862) 0.782 0.832 (0.234, 2.910)
CP HannumEEAA 1.000 0.957 (0.406, 2.244) 0.417 0.610 (0.171, 2.069) 0.567 1.544 (0.435, 5.598)
CP HannumIEAA 1.000 0.977 (0.417, 2.278) 1.000 1.038 (0.311, 3.462) 1.000 0.936 (0.257, 3.359)
CP HannumAA 0.844 0.894 (0.380, 2.090) 0.286 0.540 (0.151, 1.823) 0.567 1.544 (0.435, 5.598)
CP GrimAA 0.074 2.090 (0.883, 5.032) 1.000 0.941 (0.271, 3.199) 0.009 5.241 (1.367, 22.723)
CP PhenoAA 1.000 1.026 (0.435, 2.412) 0.787 0.829 (0.240, 2.796) 0.774 1.301 (0.362, 4.717)
HT HorvathAAd 0.064 0.642 (0.396, 1.038) 0.005 0.400 (0.202, 0.781) 0.864 1.113 (0.537, 2.309)
HT HorvathAAr 0.908 1.046 (0.648, 1.689) 0.877 0.941 (0.487, 1.818) 0.731 1.193 (0.576, 2.480)
HT SkinBloodAA 0.563 0.860 (0.532, 1.389) 0.351 0.744 (0.383, 1.440) 1.000 1.011 (0.488, 2.097)
HT HorvathIEAA 0.908 0.970 (0.601, 1.565) 0.876 0.930 (0.481, 1.797) 1.000 1.033 (0.498, 2.146)
HT HannumEEAA 0.644 1.140 (0.706, 1.843) 0.755 1.144 (0.592, 2.212) 0.730 1.160 (0.557, 2.430)
HT HannumIEAA 0.817 1.081 (0.669, 1.746) 0.876 1.096 (0.567, 2.118) 0.864 1.080 (0.520, 2.256)
HT HannumAA 0.356 1.248 (0.773, 2.018) 0.435 1.316 (0.681, 2.552) 0.730 1.189 (0.573, 2.482)
HT GrimAA 0.488 1.193 (0.739, 1.929) 0.043 1.917 (0.987, 3.764) 0.303 0.677 (0.324, 1.403)
HT PhenoAA 0.908 0.965 (0.597, 1.559) 0.876 1.088 (0.563, 2.109) 0.610 0.834 (0.401, 1.731)
SBP HorvathAAd 0.069 5.357 (-0.419, 11.133) 0.008 11.648 (3.153, 20.142) 0.582 -2.110 (-9.680, 5.461)
SBP HorvathAAr 0.606 -1.520 (-7.316, 4.276) 0.802 -1.100 (-9.759, 7.559) 0.602 -2.005 (-9.585, 5.576)
SBP SkinBloodAA 0.506 1.949 (-3.810, 7.708) 0.366 3.904 (-4.595, 12.403) 0.920 -0.386 (-7.976, 7.204)
SBP HorvathIEAA 0.931 -0.256 (-6.057, 5.546) 0.895 0.581 (-8.097, 9.260) 0.756 -1.198 (-8.816, 6.419)
SBP HannumEEAA 0.986 -0.051 (-5.865, 5.763) 0.570 2.492 (-6.159, 11.144) 0.432 -3.027 (-10.622, 4.569)
SBP HannumIEAA 0.356 2.712 (-3.058, 8.481) 0.102 7.186 (-1.433, 15.805) 0.505 -2.565 (-10.151, 5.021)
SBP HannumAA 0.710 -1.099 (-6.902, 4.704) 0.884 0.641 (-8.019, 9.300) 0.416 -3.117 (-10.675, 4.441)
SBP GrimAA 0.293 -3.104 (-8.899, 2.691) 0.024 -9.846 (-18.398, -1.294) 0.200 4.894 (-2.621, 12.409)
SBP PhenoAA 0.793 -0.779 (-6.619, 5.061) 0.590 -2.376 (-11.075, 6.322) 0.774 1.114 (-6.549, 8.778)
DBP HorvathAAd 0.135 2.356 (-0.735, 5.448) 0.003 6.385 (2.144, 10.626) 0.309 -2.288 (-6.718, 2.141)
DBP HorvathAAr 0.994 -0.011 (-3.106, 3.084) 0.922 0.215 (-4.131, 4.560) 0.886 -0.324 (-4.774, 4.127)
DBP SkinBloodAA 0.523 1.009 (-2.094, 4.113) 0.520 1.416 (-2.924, 5.756) 0.760 0.688 (-3.766, 5.142)
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Phenotype EAA p, all ∆mean/OR (95% CI, all) p, female ∆mean/OR (95% CI, female) p, male ∆mean/OR (95% CI, male)
DBP HorvathIEAA 0.443 1.209 (-1.887, 4.305) 0.462 1.626 (-2.730, 5.981) 0.809 0.551 (-3.945, 5.047)
DBP HannumEEAA 0.870 -0.259 (-3.374, 2.857) 0.989 0.030 (-4.303, 4.363) 0.701 -0.869 (-5.333, 3.595)
DBP HannumIEAA 0.383 1.373 (-1.719, 4.466) 0.273 2.419 (-1.921, 6.759) 0.972 -0.080 (-4.541, 4.381)
DBP HannumAA 0.614 -0.795 (-3.896, 2.306) 0.721 -0.786 (-5.121, 3.550) 0.653 -1.013 (-5.453, 3.427)
DBP GrimAA 0.505 -1.052 (-4.152, 2.047) 0.039 -4.530 (-8.832, -0.228) 0.172 3.064 (-1.353, 7.481)
DBP PhenoAA 0.678 -0.666 (-3.820, 2.487) 0.282 -2.399 (-6.790, 1.992) 0.547 1.390 (-3.173, 5.953)
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Appendix B. Epigenetic clocks information 439

Appendix B.1. First generation clocks: 440

By the first generation clocks we understand epigenetic age predictord which were 441

developed only based on chronological age. Chronological age is in itself a significant risk 442

factor for cardiovascular disease. With age, changes in the cardiovascular system lead to 443

a decline in functioning, and predispose to CVDs such as coronary artery disease (CAD), 444

hypertension, atherosclerosis, stroke, and myocardial infarction (MI). While structural 445

and functional changes which predispose individuals to cardiovascular events (e.g. left 446

ventricular hypertrophy, arrhythmia) have been characterised, the causes of cardiac ageing 447

are not fully understood. 448

Appendix B.1.1. Horvath’s clock: 449

This first multi-tissue age estimator was developed on about 8000 samples from 51 450

different tissues and cell types from both children and adults [3]. A penalised regression 451

model was used to regress transformed chronological age onto the 353 CpGs automatically 452

selected by the elastic net regression model. Specifically, methylation of 193 CpGs positively 453

correlates with chronological age, whilst the other 160 present negative correlation [3]. 454

Together, they form a very accurate molecular measure of chronological age, often used 455

in laboratories for validation of age data of clinical samples [8]. The greatest benefit of 456

Horvath’s clock is the accuracy of age prediction using DNA from a wide range of tissues 457

and organs, with the exception of breast tissue, uterine endometrium, dermal fibroblast, 458

skeletal muscle tissue, heart tissue and sperm cells. Horvath’s age estimate is also reliable 459

in testing all ages, children included [3]. 460

Appendix B.1.2. Hannum’s clock: 461

Hannum’s clock was developed by regressing chronological age using an elastic 462

net penalised multivariate regression method together with bootstrap approaches which 463

resulted in selection of 71 CpGs as accurate age predictor [2]. This clock was developed on 464

whole-blood DNA from 656 adults leading to possible biases in children and non-blood 465

tissues. 466

Appendix B.2. Second generation clocks: 467

The second generation epigenetic clocks are designed to incorporate not only chrono- 468

logical age, but also ageing-related physiological conditions. Specialised clocks (i.e. those 469

which were developed for specific phenotypes) are usually also attributed to the second 470

generation epigenetic clocks. 471

Intrinsic and extrinsic EAAs With the advance of the second-generation clock, mod- 472

ification to the first generation clocks has proposed to reflect both extrinsic and intrinsic 473

epigenetic age accelerations components (EEAA and IEAA) [65]. 474

IEAA is defined as a residual of the regression of epigenetic age on chronological age 475

and blood immune cell counts, inferred from DNAm data. The list of blood cell types 476

includes naive CD8+ T cells, exhausted CD8+ T cells, plasmablasts, CD4+ T cells, natural 477

killer cells, monocytes, and granulocytes. This EAA measure was created to estimate “pure” 478

epigenetic aging effects that are not influenced by differences in blood cell counts [65]. 479

By design, EEAA is positively correlated with the of counts of exhausted CD8+ T 480

cells, plasmablast cells, and a negative correlated with naive CD8+ T cells, estimated from 481

DNAm data. According to the authors, EEAA was developed to track both age related 482

changes in blood cell composition and intrinsic epigenetic changes[65]. 483

Appendix B.2.1. Skin and Blood clock: 484

The Skin and Blood Clock’s 391 CpGs were obtained from elastic net regression of 485

chronological age onto CpGs from datasets of human blood, saliva, keratinocytes, buccal 486

cells, endothelial cells, and fibroblasts [29]. In addition to these aforementioned tissues/cell 487
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types used in obtaining clock CpGs, Skin and Blood age estimates are strongly correlated 488

with chronological age in other tissues, including colon and heart tissue [29]. 489

Similar to Horvath’s clock, the Skin and Blood clock is accurate across multiple 490

tissues/cell types, and is only weakly affected by blood cell type counts, the clock may 491

capture the physiological processes of cell-intrinsic ageing [8,29]. It may capture cell- 492

intrinsic ageing in cardiac tissues with greater accuracy than Horvath’s clock, since it 493

is capable to detect: (1) age acceleration in individuals with HGPS, who often die from 494

myocardial infarction; and (2) increases in epigenetic age with proliferation of human 495

coronary artery endothelial cells [29]. 496

Appendix B.2.2. DNAm PhenoAge: 497

Development followed a two stage process. First, a “phenotypic age” metric was 498

created to consider the age-related changes that are associated with senescence, composed 499

from ten clinical characteristics: chronological age, albumin, creatinine, glucose, C-reactive 500

protein, lymphocyte percentage, mean cell volume, red blood cell distribution weight, 501

alkaline phosphatase, and white blood cell count. After that, 513 CpGs were isolated using 502

an elastic net regression of methylation data from whole blood samples onto phenotypic 503

age; this linear combination of CpGs estimates phenotypic age [4]. 504

As DNAm PhenoAge was designed to include CpGs which reflected “phenotypic” 505

ageing rather than chronological ageing [8], it predicts both mortality and age-related 506

morbidity risk with greater accuracy than Horvath and Hannum’s clock [4]. The clinical 507

characteristics used in PhenoAge can be particularly relevant to cardiovascular diseases. 508

For example, albumin is a modulator of vascular functioning and anticoagulation, as well 509

as antioxidation. Creatine has an effect on blood pressure and heart recovery, as well as 510

potentially increasing flow and ATP content while decreasing cell death [66]. 511

Appendix B.2.3. GrimAge: 512

Development followed a two stage process. First, DNAm-based surrogates for 513

biomarkers of smoking pack-years and twelve plasma proteins were produced, through 514

elastic net regression of DNA methylation data from blood samples. Subsequently, along- 515

side other patient characteristics, the DNAm-based surrogates were considered as covari- 516

ates in an elastic net Cox regression model for “time-of-death due to all-cause-mortality” 517

[5]. Significant covariates included: chronological age, sex, and DNAm surrogates for 518

smoking pack-years and seven (out of twelve) plasma proteins (ADM, B2M, Cystatin C, 519

Leptin, GDF-15, PAI-1, and TIMP-1). Transformation of the covariates’ linear combination 520

produced the algorithm’s age estimate [5]. According to the authors, GrimAge EAA is a 521

significant predictor of lifespan regardless of smoking history. Furthermore, upon compari- 522

son to other clocks (Hannum, Horvath, and DNAm PhenoAge), AgeAccelGrim is a more 523

accurate predictor of age-related disease onset, including coronary heart disease[5]. 524

By design, GrimAge is probably the most relevant epigenetic clock in studying car- 525

diovascular diseases, as the plasma proteins used as physiological variables are known to 526

be associated with CVD. Adrenomedullin (ADM) increases cardiac output and decreases 527

blood pressure [67], while increases of ADM in plasma correspond to hypertension [68]. 528

Beta-2-microglobulin is also an emerging biomarker for cardiovascular diseases [69]. In- 529

creased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) has been linked to 530

cardiac fibrosis and dysfunction of the heart [70]. Given that a significant number of the 531

physiological variables used in the development of GrimAge have been shown to associate 532

strongly specifically with cardiovascular pathology, it is important to consider this clock in 533

the study of cardiovascular disease. 534

Appendix B.3. Summary of the epigenetic clocks: 535

Epigenetic clocks use mathematical modelling to evaluate the methylation of the 536

specific CpG sites in DNA in order to estimate the epigenetic age. While the epigenetic 537

age highly correlates with the chronological age, a difference between chronological and 538
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epigenetics age, termed the epigenetic age acceleration (EAA) can be observed and has 539

been studied extensively. EAA has been associated with many later-life pathologies ranging 540

from cardiovascular and neurological diseases to cancer. To reflect the changes in cell- 541

type composition of blood naturally occurring with ageing, the extrinsic epigenetic age 542

acceleration (EEAA) has been termed. These changes are more accurately measured by 543

clocks from blood DNA, such as Hannum’s or PhenoAge [8]. On the other hand, the cell- 544

intrinsic ageing, which is believed to be more consistent over various tissues and organs is 545

more accurately measured by the Horvath’s multi-tissue clock, and has been termed the 546

intrinsic epigenetic age acceleration (IEAA) [8]. 547

Epigenetic clocks use different CpGs, and therefore naturally form different associa- 548

tions with different disease processes, and the ways in which the clocks are constructed 549

is highly relevant to the processes they capture. Specifically, associations between certain 550

CpGs and the biological processes underlying development, maintenance of cellular iden- 551

tity and cell differentiation have been captured [8]. Another possible association has been 552

made with regards to the circadian rhythm, suggesting that epigenetic ageing might be 553

linked to genetic oscillation, such as cell cycle oscillator. One review compared six different 554

types of ageing biomarkers, and found that epigenetic clocks were the best predictors of 555

chronological age. 556

Both first generation clocks used in our study (Horvath and Hannum) were con- 557

structed to accurately predict chronological age. PhenoAge and GrimAge both include a 558

training step which uses physiological variables, which may explain why both of these 559

clocks appear to be more sensitive to age-related pathologies than first generation clocks 560

constructed for the sole purpose of predicting chronological age. 561

For example, smoking, a known risk factor for disease, is not reflected in the Horvath 562

and Hannum clocks, despite being a strong DNAm mortality predictor [71]. PhenoAge 563

captures smoking-associated methylation changes, and GrimAge uses a DNAm surrogate 564

of pack-years, both of which lead to a better prediction of smoking-related pathology [5]. 565

It is not entirely clear what is measured by epigenetic clocks and to what extent 566

biological ageing is related to disease. In the review [72] the authors suggest that epigenetic 567

clocks track both CA and physiological/pathological mechanisms to differing proportions. 568
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