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Abstract 
Background: Transcranial magnetic stimulation (TMS) can modulate neural activity by evoking action 

potentials in subpopulations of cortical neurons. The TMS-induced electric field (E-field) can be 

simulated in subject-specific head models derived from MR images, but the spatial distribution of the E-

field alone does not predict the physiological response. Coupling E-field models to populations of 

biophysically realistic neuron models yields insights into the activation mechanisms of TMS, but the 

significant computational cost associated with these models limits their use and eventual translation to 

clinically relevant applications. Objective: The objective was to develop computationally efficient 

estimators of the activation thresholds of multi-compartmental cortical neuron models in response to 

TMS-induced E-field distributions. Methods: Multi-scale models combining anatomically accurate finite 

element method (FEM) simulations of the TMS E-field with layer-specific representations of cortical 

neurons were used to generate a large dataset of activation thresholds. 3D convolutional neural 

networks (CNNs) were trained on these data to predict the activation threshold of specific model 

neurons given the local E-field distribution. Using training and test data from different head models, the 

CNN estimator was compared to an approach using the uniform E-field approximation to estimate 

thresholds in the non-uniform TMS-induced E-field. Results: The 3D CNNs were more accurate than 

the uniform E-field approach, with mean absolute percent error (MAPE) on the test dataset below 2.5% 

compared to 5.9 – 9.8% with the uniform E-field approach. Further, there was a strong correlation 

between the CNN predicted and actual thresholds for all cell types (𝑅! > 0.96) compared to the uniform 

E-field approach (𝑅! = 0.62 – 0.91). The CNNs estimate thresholds with a 2 – 4 orders of magnitude 

reduction in the computational cost of the multi-compartmental neuron models. Conclusion: 3D CNNs 

can estimate rapidly and accurately the TMS activation thresholds of biophysically realistic neuron 

models using sparse samples of the local E-field, enabling simulating responses of large neuron 

populations or parameter space exploration on a personal computer. 

1. Introduction 
 Transcranial magnetic stimulation (TMS) is a technique for noninvasive modulation of brain 

activity in which an electric field (E-field) is induced in the head by a current pulse applied through an 

external coil [1]. TMS is FDA-cleared to treat depression, obsessive compulsive disorder, smoking 

addiction, and migraine [2–7], and is under investigation for numerous other psychiatric and 

neurological disorders [8]. In addition, non-invasive stimulation of the cerebral cortex with TMS is 

valuable for human neuroscience research [9]. Nonetheless, TMS suffers from several limitations 

including large inter- and intra-subject variability in responses [10,11] and modest effect sizes relative to 

those achieved, for example, by electroconvulsive therapy [12]. Improving TMS efficacy and reliability is 
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difficult using empirical methods alone due to the vast parameter space and limited understanding of 

the neural mechanisms by which TMS activates neurons and produces long-lasting changes to 

excitability. 

Computational modeling of the TMS-induced E-field distribution in subject-specific volume 

conductor head models enables quantifying the E-field delivery to cortical targets [13–17]. However, the 

E-field distribution alone does not predict the response to stimulation, particularly when considering 

temporal characteristics of the stimulus (e.g., pulse shape and direction) or the diversity of neural 

elements in the brain. How TMS affects neural activity is still unclear and presents a complex problem, 

as the cortex is composed of various cell types, differing in morphology, electrophysiology, and 

connectivity, which all can contribute to the responses evoked by stimulation. 

Previously, we developed models of human cortical neurons to study the response to the 

simulated TMS E-field [18,19]. This multi-scale modeling framework computes the polarization and 

activation of neural elements in response to arbitrary coil geometries and placements, as well as pulse 

waveforms and successfully reproduced trends in TMS thresholds as a function of pulse shape, width, 

and direction [18]. However, this approach has considerable computational cost of solving numerically 

the large system of partial differential equations associated with each neuron model, and requires high 

performance computing (HPC) resources when simulating large populations of neurons or variations in 

stimulus parameters. For example, simulating the threshold of a single neuron in our model [18] 

required 5–15 seconds; therefore, simulating the response of all neurons in the precentral gyrus 

(approximately 154 million1) to a TMS pulse would require 24–73 years run serially on a typical laptop 

or 3–10 months if parallelized over 100 CPUs. Thus, alternative approaches are required to advance 

models of the effects of TMS on neurons. 

Machine learning provides a potential alternative to generate accurate, computationally efficient 

estimators of the neural response. Artificial neural networks (ANNs) and deep learning have achieved 

substantial success in multiple problem domains involving complex, high-dimensional data [23]. 

Convolutional neural networks (CNNs) are a class of deep, feed-forward ANNs that use convolutional 

kernels to extract local features from spatially structured data [23]. 3D CNNs were used to estimate 

TMS-induced E-field distributions in real-time [24,25] and to learn the mapping between the E-field 

distribution and evoked muscle responses [26]. CNNs were also used to learn the input–output 

properties of single neuron models for synaptic inputs [27,28], but they have yet to be applied to 

estimating neural activation by extracellular E-fields. 

 
1 The estimate of 154 million neurons was calculated based on a neocortical neuron density of 120,000 per mm2 

(through the cortical depth) [67] and the surface area of the precentral gyrus of 1,280 mm2 in the SimNIBS v1.0 
almi5 example head mesh [29]. 
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We designed a CNN that learned the mapping between TMS induced E-field distributions and 

the firing responses of biophysically realistic, multicompartmental model neurons, providing a rapid, 

computationally efficient method to quantify neural activation within E-field volume conductor models. 

We evaluated the performance of the CNNs and found them to produce accurate estimates of 

activation threshold, with mean absolute percent error close to the 2% window used in the simulated 

threshold binary search, in comparison to a simpler estimation approach using the uniform E-field 

approximation, which had mean absolute percent error of over 6%. Crucially, the CNN estimators ran 

2–4 orders of magnitude faster than the full neuronal simulations.  

2. Methods 
We developed computationally efficient CNN estimators of the activation thresholds of 

biophysically realistic, multi-compartmental cortical neuron models in response to a TMS-induced 

electric field in subject-specific FEM head models derived from MRI data. After determining activation 

thresholds in the biophysically realistic neuron models, we trained a CNN to take as input the local E-

field at regularly defined points around a neuron and output the threshold E-field magnitude to activate 

the neuron. CNNs were trained on thresholds for neurons placed in one head model (almi5) and tested 

on neuron thresholds from another head model (ernie). 

2.1. Multi-scale model of TMS-induced cortical activation 
The “ground truth” neural responses were obtained by simulating biophysically realistic models 

of L2/3 pyramidal cells (PCs), L4 large basket cells (LBCs), and L5 PCs coupled to E-fields computed 

within two MRI-derived volume conductor head models in SimNIBS v3.1 [29].  

2.1.1. E-field model  

Two tetrahedral FEM meshes were generated using the almi5 and ernie datasets included with 

SimNIBS, consisting of both T1- and T2-weighted images and diffusion tensor imaging (DTI) data. We 

used the mri2mesh pipeline [30] with white matter surface resolution set to 60,000 vertices for the almi5 

dataset and 120,000 vertices for the ernie dataset. The almi5 volume head mesh consisted of 646,359 

vertices and 3.6 million tetrahedral elements, and the ernie volume head mesh consisted of 1.6 million 

vertices and 8.8 million tetrahedral elements. The meshes consisted of five homogenous 

compartments: white matter, gray matter, cerebrospinal fluid (CSF), bone, and scalp. For the ernie 

mesh, all compartments were assigned default conductivity values, with anisotropic conductivity in the 

white matter using the DTI data and the volume normalized approach (mean conductivity = 0.126 S/m), 

and isotropic conductivities in the other tissues: gray matter: 0.275 S/m, CSF: 1.654 S/m, bone: 0.01 

S/m, scalp: 0.25 S/m. All conductivities were the same in the almi5 mesh, except for the gray matter 

(0.276 S/m) and CSF (1.79 S/m), which were the values used in our previous publication [18]. 
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E-field distributions were simulated for the MC-B70 figure-of-8 coil (P/N 9016E056, MagVenture 

A/S, Farum, Denmark), which has ten turns in each of the two windings with outer and inner diameters 

of 10.8 and 2.4 cm, respectively [31]. The coil was positioned in both cases above the left motor hand 

knob, located on the precentral gyrus [32]. For the almi5 mesh, we simulated both posterior–anterior 

(P–A) and latero–medial (L–M) coil orientations, with the coil handle oriented 45° and 90° relative to the 

midline, respectively. Using these two orientations, the E-field distributions for the A–P and M–L pulse 

directions were generated by flipping all E-field vectors. For the ernie mesh, we simulated the P–A coil 

orientation of the motor hand knob. The E-field distributions were computed with a coil-to-scalp 

distance of 2 mm and coil current of 1 A/µs.  

2.1.2. Neuron models 

Previously, we adapted the multi-compartmental, conductance-based models of juvenile (P14) 

rat cortical neurons implemented by the Blue Brain Project [33,34] to the biophysical and geometric 

properties of adult, human cortical neurons, and implemented them in NEURON [35]. TMS activated 

with lowest intensity the L5 and L2/3 PCs as well as L4 large basket cells (LBCs); therefore, the current 

study focused on these neurons (we focused our simulations on the L4 LBCs, but preliminary 

simulations indicated LBCs in other layers had similar thresholds [18]). Each cell type had five “virtual 

clones”, which had stochastically varied morphologies but identical biophysical parameters [18,19]. The 

cell morphologies are plotted in Supplementary Figure S1. 

2.1.3. Embedding neuron populations in head model 

Regions of interest (ROIs) were defined within each head mesh to embed layer-specific 

populations of model neurons. The almi5 mesh ROI was defined as a 32 × 34 × 50 mm3 region 

containing the M1 hand knob on the precentral gyrus and opposing postcentral gyrus [18]. For the ernie 

mesh, a larger ROI was defined to include the precentral gyrus, central sulcus, and postcentral gyrus 

labeled regions generated by Freesurfer’s automatic cortical parcellation with the Destrieux Atlas [36]. 

These regions were cropped with a 48 x 55 x 50 mm3 box. Neuron models were positioned and 

oriented within the gray matter by interpolating surface meshes representing each cortical layer 

between the gray matter and white matter surfaces and discretizing the surfaces with the number of 

triangular elements matching the desired number of neurons in each layer. For the almi5 and ernie 

ROIs, 3,000 and 5,000 elements were used for each layer, resulting in surfaces with mean density of 

1.7 and 0.64 elements (i.e., neuron positions) per mm2, respectively. The layer depths were defined 

using layer depth boundaries from the recently published layer segmentation of the BigBrain 

histological atlas; in von Economo area FA, the boundaries between adjacent layers were at 

normalized depths of 0.0993 (L1–L2/3), 0.466 (L2/3–L4), 0.524 (L4–L5), 0.753 (L5–L6) (total depth of 

gray matter is 1) [37]. Accordingly, the cell placement surface meshes were positioned between these 
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boundaries at normalized depths of L2/3: 0.4, L4: 0.5, L5: 0.75 for the ernie model and L2/3: 0.4, L4: 

0.55, L5 0.65 for the almi5 model. The slight differences in the tissue conductivity values and layer 

depths add to the anatomical variation between the two head models which was advantageous for 

testing of the robustness of the CNN estimators. 

Single model neurons were placed with their cell bodies centered in each element and oriented 

to align their somatodendritic axis normal to the element. Using the somatodendritic axis as the polar 

axis of the local spherical coordinate system (Figure 1D), each model neuron was placed with initial 

random azimuthal orientation and then rotated to 11 additional orientations with 30° steps to sample the 

full range of possible orientations and generate a larger dataset for training and evaluating the CNNs 

(discussed in Section 2.2.4).  

Mesh generation, placement of neuronal morphologies, extraction of E-field vectors from the 

SimNIBS output, NEURON simulation control, analysis, and visualization were conducted in MATLAB 

(R2016a & R2017a, The Mathworks, Inc., Natick, MA, USA). 

 
Figure 1. Multi-scale model of TMS-induced activation. A) FEM head models used in this study to 
compute E-fields with simulated TMS coil positions (yellow sphere is location of coil center) and directions 
(green arrow points opposite of coil handle). Model neurons were populated throughout ROI (red region) 
encompassing the motor hand knob and opposing postcentral gyrus. B) E-field magnitudes plotted on 
gray matter surface for P–A and L–M coil orientations (top) and P–A (bottom) in corresponding meshes. 
C) Neuron populations in corresponding head meshes shown with zoomed in view. D) Example L5 PC 
placed in gyral crown (top), oriented with the somatodendritic axis normal to the element and reference 
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vectors indicating azimuthal rotations simulated at all positions (tangential to element normal). Same L5 
PC model neuron shown in cell-centered coordinate system with somatodendritic axis aligned to polar 
axis (bottom) with polar angle 𝜃 and azimuthal angle 𝜙. The azimuthal rotations shown are the same as 
in the top panel.  

2.1.4. Neuron simulations 

Applying the quasi-static approximation [38,39] allows the separation of the spatial and temporal 

components of the TMS-induced E-field. The spatial component was derived from the E-field 

distributions computed in SimNIBS with a coil current rate of change of 1 A/µs by interpolating the E-

field vectors at each model neuron’s compartments after placement within the head mesh. The E-field 

at the model neuron compartments was linearly interpolated from the 10 nearest mesh points 

(tetrahedral vertices in SimNIBS) within the gray and white matter volumes using the MATLAB 

scatteredInterpolant function. The E-field vectors were integrated along each neural process to 

generate a quasipotential [40–42], which was coupled as an extracellular voltage to each compartment 

in NEURON using the extracellular mechanism [35]. The neuron models were discretized with 

isopotential compartments no longer than 20 µm. 

The temporal component of the E-field was included by scaling uniformly the quasipotentials 

over time by either a monophasic or biphasic TMS pulse recorded from a MagPro X100 stimulator 

(MagVenture A/S, Denmark) with a MagVenture MCF-B70 figure-of-8 coil (P/N 9016E0564) using a 

search coil and sampling rate of 5 MHz. The E-fields were down-sampled to twice the simulation time 

step and normalized to unity amplitude for subsequent scaling in the neural simulations. We used a 

simulation time step of 5 µs, simulation window of 1 ms, and backward Euler integration. Activation 

thresholds were determined by scaling the pulse waveform using a binary search algorithm to find the 

minimum stimulus intensity, within 2%, necessary to elicit an action potential, defined as the membrane 

potential in at least 3 compartments crossing 0 mV with positive slope.  

2.2. Convolutional neural network for threshold estimation 
We used a two-stage 3D CNN followed by 1D dense layers to estimate the threshold to activate 

each model neuron (Figure 2). The CNN does not represent the temporal dynamics of the neural 

response; therefore, each CNN estimates the activation thresholds for the specific TMS pulse 

waveform that was used to generate the training data. CNNs were trained on thresholds for neurons 

placed in the almi5 model and tested on neuron thresholds from the ernie model. Hyperparameters 

were tuned using random search with the training dataset. The result was a set of 15 trained CNNs for 

each of the 15 model neurons, with each CNN outputting the activation threshold of a model neuron for 

any local E-field distribution and the specific pulse waveform.  

2.2.1. E-field input and preprocessing 
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The input to the CNN was E-field vectors defined on an 𝑁 × 𝑁 × 𝑁 cubic grid with side length 

𝑙	centered on the cell body and rotated into the cell-centered coordinate system, comprising a 4D 

tensor (𝑁 × 𝑁 × 𝑁 × 3). This ensured the spatial relationship between the E-field sampling points and 

the morphology was constant for any model neuron placed in the brain. We set 𝑙	to encompass 

approximately the cell dimensions while minimizing grid points penetrating the CSF: 2 mm for L2/3 

PCs, 1.5 mm for L4 LBCs, and 1.5 mm for L5 PCs. The effect of varying the number of grid points and 

grid size was tested with the L5 PCs, using 𝑁 = 3, 5, 7, and 9 points per dimension and 𝑙 = 1 to 3 mm 

in 0.5 mm steps. The sampling grids used in the main results for all cells are shown in Supplementary 

Figure S1.  

The E-field tensors were input to the CNN with E-field components in either Cartesian 

coordinates (𝐸" , 𝐸# , 𝐸$) or spherical coordinates (𝐸% , 𝐸& , 𝐸'), again using the somatodendritic axis as 

the polar axis of the local spherical coordinate system. Since the azimuthal angle ranged from 0–360°, 

creating a periodic discontinuity at 0°, the azimuthal angle was separated into two components ranging 

from −1 to 1 using cos	and sin	, i.e., (𝐸% , 𝐸& , cos 𝐸' , sin 𝐸'). We hypothesized using spherical 

coordinates would enable the CNN learn the strong dependence of model thresholds on the E-field 

magnitude [18], which is included explicitly in the spherical coordinate representation.  

2.2.2. Local E-field characterization 

To determine how well the E-field sampling grids represented spatial gradients of the E-field 

from the FEM solution, we computed the magnitude of the directional gradients at each neuronal 

position, given by the norm of the E-field Jacobian,  
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and extracted the median value of this metric within each sampling grid size 𝑁. The E-field vectors at 

each grid point were first divided by the magnitude of the E-field at the center grid point (cell body). We 

also computed this gradient metric with an 𝑁 = 13	sampling grid to capture better the higher spatial 

frequencies in the FEM solution. Additionally, we quantified how well the E-field sampling grids 

captured the E-field at the action potential (AP) initiation site by linearly interpolating the E-field vector 

within each sampling grid at the AP initiation site, extracted from the NEURON simulations. We 

compared this interpolated E-field vector 𝐸9⃗ ()(*
()*+%, to the actual E-field vector from the FEM solution 
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𝐸9⃗ ()(*-.*/-0 by computing the absolute percent error in magnitude 𝐸𝑟𝑟|2!"!#| and error in angle 𝜃+%%,()(* 

between them, given by 

 
	𝐸𝑟𝑟|24⃗ !"!#| = 100 ⋅ J

|𝐸9⃗ ()(*
()*+%,| − |𝐸9⃗ ()(*-.*/-0|

|𝐸9⃗ ()(*-.*/-0|
J  

(2) 

and 

 
𝜃+%%,()(* = cos67

𝐸9⃗ ()(*-.*/-0 ⋅ 𝐸9⃗ ()(*
()*+%,

|𝐸9⃗ ()(*
-.*/-0||𝐸9⃗ ()(*

()*+%,|
	 . 

(3) 

 

2.2.3. CNN architecture 

The architecture consisted of a series of 3D convolutional layers (Conv3D) followed by a 

flattening operation (Flatten layer) and a series of fully connected, 1D dense layers (Dense) and a final 

one-unit output layer corresponding to the estimated threshold E-field magnitude. This threshold can 

then be converted to the threshold TMS device intensity setting by scaling with the ratio between the 

coil current rate of change and the local E-field magnitude from the FEM simulation. The model weights 

(both convolutional kernels and dense layers) were initialized with Xavier uniform initialization [43] 

(glorot_uniform) and trained using the Adam adaptive, stochastic gradient-based optimization algorithm 

[44] with the mean squared error loss function. The CNNs were implemented using Tensorflow 2.2 [45] 

with the Keras deep-learning API in Python 3.7. 

ANN hyperparameters are still commonly tuned by hand based on intuition, due to the vast 

parameter space and often slow training times required to evaluate each selected hyperparameter set. 

Here, we tuned the hyperparameters of the general architecture described above (e.g., number of 

convolutional layers, dense layers, etc.) using random search, based on previous work that it was more 

efficient than grid search [46], followed by some manual tuning of individual hyperparameters. Each set 

of hyperparameters tested in the random search was used to train a candidate CNN architecture on a 

third of the training dataset to speed up training time. The search ranges and best hyperparameters 

obtained are included in  

. Using the RandomizedSearchCV function in the scikit-learn Python module [47], a total of 52 

hyperparameter sets were randomly selected and evaluated based on their final test dataset loss 

(MSE) after 1000 epochs for each of the L5 PC clones, without using cross validation to reduce search 

time. We first conducted the hyperparameter search for the five L5 PCs and found that model 

performance was always the same across clones. Therefore, we ran random searches for a single L2/3 

PC and L4 LBC clone and found that the best hyperparameters from the first search with the L5 PCs 

were not outperformed by any new hyperparameter sets tested. 
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After exploring the hyperparameter space, we found the best performing CNN architecture for 

the 9 × 9 × 9	E-field sampling grid consisted of four convolutional layers and three dense layers with 

3 × 3 × 3 convolutional kernels (Table 1). The number of filters and dense units were defined for the 

initial convolutional and dense layer, respectively, and then decreased in each subsequent layer by 

multiplying the first layer’s value (115 filters and 57 dense units) by a shrink rate 𝑟(67, where 𝑖 is the 

index of the convolutional or dense layer. The output of each convolutional and dense layer was 

passed through rectified linear units (ReLU). The convolutional layers all had kernels of size 3 × 3 × 3 

(stride of 1) and did not use zero-padding, resulting in layers with decreasing dimension: for the 

9 × 9 × 9 E-field vector sampling grid, the first three dimensions of the layer outputs were 7, 5, 3, and 1. 

For the models using fewer E-field sampling points (𝑁	 = 3, 5, 7), the dimensions of the input were 

incompatible with this architecture, so we used two approaches to adapt the network to these inputs. 

The first was to reduce the kernel size to 2 × 2 × 2, and, for the 𝑁 = 3 case, reduce the number of 

convolutional layers to two (variable network size). However, since this changed the overall number of 

weights, we tested a second approach in which the architecture was kept constant and the E-fields 

were upsampled to the 9 × 9 × 9 grid using linear interpolation (constant network size).  
Hyperparameter Tuning range 

 

Best 

 
Number of convolutional layers 2 – 6 4 

Convolutional kernel size  1 – 3 3 

Number of convolutional filters (1st layer) 50–100 115 
Number of dense layers 1–5 3 

Number of dense units (1st layer) 50 – 1000 57 
Shrink rate 0.5 – 0.9 0.8 
Batch size 8–128 62 

Learning rate (initial) 10−8 – 10–5 10−5 
Activation function ReLU or leaky ReLU ReLU 

Dropout rate 0 – 0.5 0 
Batch normalization off or on off 

Output activation function – linear 

Table 1. Convolutional neural network (CNN) hyperparameters. Columns include tuning range 
randomly searched for each hyperparameter and best hyperparameters identified.  

Training was conducted using mini-batches of 62 samples and an initial learning rate of 10−5. To 

train the final set of CNNs with the best parameter set, we used a maximum of 2000 epochs, and 

training was terminated to reduce overfitting if the validation loss did not decrease after 30 epochs 

(EarlyStop). We also used learning rate scheduling to reduce the learning rate by a factor of 5 if the 
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validation loss plateaued for 15 epochs (ReduceLRonPlateau). Example training curves are shown in 

Supplementary Figure S2. 

We tested including dropout layers between each dense layer, as well as batch normalization 

either before or after the non-linearity for regularization. These operations did reduce training time, but 

they resulted in higher prediction error and were not included in the final hyperparameter set. The same 

hyperparameter set was then used for each of the 15 CNNs corresponding to the model neurons.  

2.2.4. Training and testing datasets 

The training and test datasets for each model neuron consisted of pairings of 4D E-field tensors 

sampled around each model neuron position within the cortical geometry and the corresponding 

activation thresholds. For each of the 11 additional azimuthal rotations, the E-field sampling grids were 

rotated to ensure the E-field vector orientations relative to the model neuron were constant, while 

providing a unique E-field distribution for training the CNN. The training dataset was derived from the E-

field simulations in the almi5 mesh, consisting of four stimulation directions (P–A, A–P, L–M, M–L), 

2,999–3,000 neuron positions per cell, and 12 rotations, totaling 143,952 or 144,000 unique E-field–

threshold combinations for each of the 15 model neurons (2.16 million simulations). This training 

dataset was split, with 85% of the data used for training the model and 15% used for validation. CNNs 

were trained on HPC cluster nodes each equipped with a GeForce RTX 2080 Ti graphics card.  

To test model generalization to a new head model, the test dataset consisted of E-field 

distributions from two stimulation directions (P–A and A–P) in the ernie mesh, with 4,999 neuron 

positions, and 12 rotations at each position, totaling 119,976 unique E-field–threshold combinations for 

each model neuron. After training with the training/validation dataset, the performance of each CNN 

was evaluated on this test dataset.  

2.3. Method for estimating TMS activation thresholds with uniform E-field simulations 
We implemented an additional method to estimate the neuron model thresholds that 

approximated the local E-field as uniform. The thresholds were pre-simulated for uniform E-field applied 

at range of directions spanning the polar and azimuthal directions. To simulate the response to uniform 

E-field, the extracellular potential 𝑉8	was computed at each compartment with position (𝑥, 𝑦, 𝑧) using 

 𝑉8(𝑥, 𝑦, 𝑧) = −P𝐸9⃗ P ⋅ (𝑥 sin 𝜃 cos𝜙 + 𝑦 sin 𝜃 sin𝜙 + 𝑧 cos 𝜃) , (4) 

where the direction of the uniform E-field was given by polar angle 𝜃 and azimuthal angle 𝜙, in 

spherical coordinates with respect to the somatodendritic axes (Figure 1D), and the potential of the 

origin (soma) was set to zero, as in [18,19]. Uniform E-field was applied with the monophasic or 

biphasic TMS pulse at each direction with steps of 5° for both the polar and azimuthal directions, for a 

total of 2,522 directions, generating threshold–direction maps for each model neuron.  
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The threshold–direction maps were then used to estimate thresholds of neurons embedded in 

the non-uniform FEM E-field. For a given neuron, the E-field vector at the soma was extracted and 

rotated into the cell-centered coordinate system used in the uniform E-field simulations (Figure 1D). 

The threshold (in V/m) for the corresponding E-field direction was then interpolated from the uniform E-

field threshold–direction map. This threshold was divided by the FEM E-field vector’s magnitude per 

A/µs current rate of change to convert to stimulator output intensity. This latter step was only necessary 

to determine thresholds in terms of stimulator intensity, which would be the relevant “knob” for an 

experimenter, rather than local E-field intensity. The threshold–direction map interpolant was 

implemented in MATLAB as a griddedInterpolant using first-order (linear) interpolation. 

 
Figure 2. Estimating E-field threshold of multi-compartmental neurons using convolutional neural 
networks (CNNs). A) E-field distribution computed throughout head model using SimNIBS, shown on 
gray matter surface. B) For a model neuron at any location, local E-field vectors were sampled at 
𝑵×𝑵×𝑵 regular grid (red points) centered on cell body and rotated into cell-centered coordinate system 
(red vector indicates somatodendritic axis, i.e., polar axis). Color and length of each vector indicates 
magnitude. C) After normalizing the E-field vector magnitudes by that of the grid central node, the E-field 
vectors were structured as a 4D tensor (𝑁 × 𝑁 × 𝑁 × 3) input to the 3D convolutional layers. The output 
of the final 3D convolutional layer was flattened and input into dense, fully connected layers, which ended 
with a single linear output layer element with the predicted threshold E-field magnitude in V/m. E-field 
magnitude is referenced to E-field at the central grid point, as off-center points have, in general, different 
direction/magnitude. Separate models were trained on thresholds obtained with different pulse shapes, 
either a monophasic or biphasic TMS pulse, shown below. 

2.4. Code and data availability 
The code and relevant data of this study will be made available on GitHub upon publication. 
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3. Results 
3.1. CNN predicts accurately the threshold response of single neurons to TMS 

The best CNN architecture provided remarkably accurate predictions of the activation 

thresholds for L2/3 PC, L4 LBC, and L5 PC neurons. Figure 3A shows the spatial distribution of 

thresholds for monophasic, P–A TMS of M1 in the ernie head model (test dataset) calculated in 

NEURON, predicted with the ML trained on the almi5 head model, and estimated with the uniform E-

field approximation. The relative errors were substantially lower for the CNN compared to the uniform 

E-field method (Figure 3B). Median errors across clones and rotations for the L4 LBCs and L5 PCs 

ranged from −3.4 to 6.6% and −1.9% to 3.5%, respectively, for the CNN, and −29.5% to 38.8% and 

−27.5 to 49.5%, respectively, for the uniform E-field method. The L2/3 PCs had the largest errors for 

either approach, with median error ranging from −23.7% to 37.1% with the CNN and −31.9% to 97.1% 

with the uniform E-field method. These outer extrema of the median error distributions were driven by 

outliers, with 97.3% below 5% error for the CNN, compared to only 59.2% for the uniform E-field 

method. The full error distributions across layers for both methods are shown in Supplementary Figure 

S3. 
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Figure 3. CNN accurately predicts thresholds for activation of neurons across the cortex. Actual 
and predicted thresholds for monophasic, P–A TMS of M1 in ernie head model (test dataset). A) Surface 
plots of median threshold stimulator intensity (in coil current rate of change) across clones and rotations 
of L2/3 PCs (top row), L4 LBCs (middle row), and L5 PCs (bottom row) for NEURON simulations (left 
column), CNN prediction (middle column), and uniform E-field method (right column). B) Surface plots of 
median percent error of thresholds across clones and rotations of L2/3 PCs (top row), L4 LBCs (middle 
row), and L5 PCs (bottom row) for CNN prediction (left column), and uniform E-field method (right 
column). Note the different color bar limits for the error distributions with CNN and uniform E-field method. 

The CNN-predicted thresholds had high correlations with the thresholds calculated by repeatedly 

solving the non-linear cable equations across the entire set of neurons and positions, with 𝑅! ranging 

0.959 – 0.980, 0.974 – 0.993, and 0.988 – 0.996 across the L2/3 PC, L4 LBC, and L5 PC clones, 

respectively (Figure 4A). The correlations for thresholds predicted with the uniform E-field method were 
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much weaker, with 𝑅! ranging 0.6371 – 0.8405, 0.618 – 0.938, and 0.645 – 0.914 across the L2/3 PC, 

L4 LBC, and L5 PC clones, respectively (Figure 4A). The CNN outperformed the uniform E-field 

approach for all model neurons, yielding mean absolute percent error (MAPE) less than 2.2% (L2/3 

PCs), 1.1% (L4 LBCs), and 1.4% (L5 PCs), and median absolute percent errors were less than 1.2% 

(L2/3 PCs), 0.75% (L4 LBCs), and 0.74% (L5 PCs). For the uniform E-field approach, MAPE was less 

than 9.0% (L2/3 PCs), 5.9% (L4 LBCs), and 9.8% (L5 PCs) (Figure 4B), and median absolute percent 

errors were less than 5.4% (L2/3 PCs), 3.3% (L4 LBCs), and 4.5% (L5 PCs). We also trained a set of 

CNNs on thresholds obtained with biphasic TMS pulses and found their performance was similar to that 

of the monophasic pulse CNN estimators (Supplementary Figure S4). 
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Figure 4. Distribution of threshold E-field errors for CNN and uniform E-field approximation. A) 
Predicted thresholds by CNN (left column) and uniform E-field approximation (middle column) across 
entire test dataset plotted against thresholds from NEURON simulations (actual) in magnitude of E-field 
at soma for L2/3 PCs (top row), L4 LBCs (middle row), and L5 PCs (bottom row). Different colors 
correspond to different clones within layer. B) Mean absolute percent error (MAPE) on test dataset for 
CNN (magenta) and uniform E-field approach (green), separated by clone within layer.  

3.2. Dependence of CNN performance on E-field representation 
The performance of ANNs often benefit from data pre-processing to assist in training or pre-

identifying features that are known a priori to correlate with the output [48]; thus, we tested the effect of 

E-field representation and sampling parameters on CNN performance with the L5 PCs. Representing 

the E-field vectors in Cartesian coordinates yielded lower errors than spherical coordinates (Figure 5A). 

This held true for the L2/3 PCs and L4 LBCs as well (Supplementary Figure S5). Focusing on the L5 
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PCs, the optimal sampling grid size varied by clone, with lowest errors for the grid size that best 

matched the spatial extent of each specific axonal morphology (Figure 5B). The 1.5 mm grid produced 

the lowest mean error across all L5 PC clones, and we used this single grid size for the remaining 

results. Finally, reducing the number of sampling points increased the mean error, although MAPE was 

still below 4% for even the 3 × 3 × 3 sampling grid (27 E-field vectors) (Figure 5C). This trend held for 

both the variable and constant network sizes, with prediction errors differing by less than 1% 

(Supplementary Figure S6).  

We hypothesized that increasing sampling resolution improved CNN performance by more 

accurately representing local E-field gradients and the E-field magnitude and direction at the site of AP 

initiation. As expected, the FEM E-field was represented on average with lower spatial gradients when 

using fewer sampling points (Figure 5D, left), indicating higher spatial gradients of the E-field were lost 

due to undersampling. Furthermore, at the AP initiation site identified from the NEURON simulations, 

the E-field amplitude and direction were estimated less accurately using linear interpolation with fewer 

sampling points (Figure 5D, middle and right). We tested the contribution of these E-field metrics to 

prediction errors across the test dataset for each sampling resolution using linear regression 

(Supplementary Figure S7). Prediction errors were significantly correlated with all three metrics 

individually, with 𝑅! = 0.14	for the median magnitude of the directional E-field gradients, 𝑅! = 0.25 for 

the absolute percent error in the E-field magnitude at the AP initiation site, and 𝑅! = 	0.10 for the angle 

error of the E-field at the AP initiation site (all 𝑁 = 3, 𝑝 < 1069) (Supplementary Figure S7D). 

Correlation strength was inversely related to sampling resolution, and multiple linear regression with all 

three metrics yielded 𝑅! from 0.30 to 0.20 for 𝑁 = 3 to 9, respectively. Of these metrics, the strongest 

contributor to the overall prediction error was the error in the interpolated E-field magnitude at the AP 

initiation site (𝛽 = 1.09, 𝑁 = 3), followed by the E-field gradients (𝛽 = 0.58, 𝑁 = 3) and error in the E-

field direction at the AP initiation site (𝛽 = 0.11, 𝑁 = 3) (Supplementary Figure S7E). 

The performance on the test dataset demonstrated that the CNN could generalize to TMS 

thresholds for E-fields simulated in a head model not used in training, but the space of possible E-field 

distributions experienced by the model neurons may not be substantially different between head 

models. Therefore, we tested whether the CNNs could also predict response thresholds to uniform E-

fields, which are essentially zeroth order polynomial components of the non-uniform E-fields seen in the 

training and test datasets. Figure 6A shows the threshold–direction maps for an example L5 PC 

generated with NEURON simulations and with the CNN; the CNN produced extremely low error, 

ranging from −2.5 to 1.9% across directions (Figure 6B).  

The CNN trained on the TMS data also approximated the thresholds for a point current source 

(e.g., for intracortical microsimulation), reproducing qualitatively the current–distance relationship 
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(Supplementary Figure S8). However, as expected, the prediction error was much higher than for TMS, 

as the point source generates a highly non-uniform E-field distribution. For comparison, the mean peak 

magnitude of directional gradients for the point source E-field was 482.3 V/m/mm, about 340 times 

higher than the mean peak gradient of the TMS-induced E-fields sampled with the 9 × 9 × 9 grid. Lower 

distances between the point source and activated neuronal compartment, which subject the neuron to 

higher spatial gradients, also led to higher errors (Supplementary Figure S8D). 

 

 
Figure 5. Effect of E-field representation on CNN performance. A) Mean absolute percent error metric 
on test dataset for L5 PC CNNs with E-field input in either spherical coordinates (represented with four 
variables; pre-processing described in Section 2.2.1) or Cartesian coordinates (represented with three 
variables). B) MAPE of test dataset for L5 PC CNNs for varying sampling grid sizes 𝑙. C) MAPE metric 
for example L5 PC (clone 1) CNN for different sampling resolutions 𝑁 (magenta bars), using constant 
network size, with uniform E-field error metric included for comparison (green bar). D) Median magnitude 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.18.490331doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.490331


 19 

of directional E-field gradients (left) and error in magnitude (middle) and direction (right) of the interpolated 
E-field at the AP initiation site in test dataset for different sampling resolutions 𝑁 for L5 PC (clone 1).  

 

 
Figure 6. CNN trained on non-uniform TMS-induced E-field reproduces response to uniform E-
field. A) Threshold–direction maps generated with NEURON simulations (left) and CNN estimation (right) 
for an example L5 PC. Mollweide projection of thresholds on a sphere in which normal vectors represent 
uniform E-field direction. Arrows indicate direction of E-field relative to cell (shown on right). Crossed 
circle represents E-field pointing into the page, and circle with dot represents E-field pointing out of the 
page. B) Percent error of CNN prediction. Inset: morphology of L5 PC used in this figure (blue are apical 
dendrites, green are basal dendrites, and black is axon).  

3.3. CNN estimation provides massive speed up over NEURON simulations 
We quantified the computational savings resulting from using the CNN to estimate thresholds 

compared to running simulations in NEURON on a single CPU of a typical laptop (Macbook Pro with 

2.2 GHz i7-4770 CPU) or on an HPC machine with 76 CPUs (2.2 GHz Xeon Gold 6148) (Figure 7). 

Determining a single threshold with a binary search algorithm requires several evaluations, depending 

on the proximity of the initial guess to the threshold value; on a single CPU, this required 5.0 ± 0.2 sec 

for the L2/3 PCs (mean ± STD), 8.8 ± 0.5 sec for the L4 LBCs, and 9.5 ± 1.3 sec for the L5 PCs (n = 5 

for all). In contrast, estimating thresholds for 1000 E-field inputs with the CNNs required 0.75 ± 0.17 ms 

per threshold (n = 5), which was similar between cell models due to the identical model architecture. 

Figure 7 illustrates how total time scales with the number of simulations (i.e., thresholds), showing 

sublinear increase in total time until ~100 simulations for the CNN on a single CPU laptop, at which 

point total time increases linearly. In addition, Figure 7 depicts the best-case scenario for NEURON 

simulations by extrapolating total time based on the minimum time per simulation for each cell type if 

run on a single CPU or run in parallel on a 76 CPU HPC node with no parallelization overhead. By this 

conservative estimate, the CNN provides 2 to 4.2 orders of magnitude in computational savings 
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compared to the NEURON simulations run serially2 and 2.1 to 2.7 orders of magnitude in computational 

savings compared to the NEURON simulations run in parallel on 76 CPUs on an HPC machine. 

 
Figure 7. CNN threshold estimation is 2 – 4 orders of magnitude faster than NEURON. Simulation 
time for determining thresholds with binary search in NEURON on single CPU (light green), parallelized 
on single high-performance computing (HPC) node with 76 CPUs (dark green), or with CNN on single 
CPU (magenta) for example L2/3 PC (circles), L4 LBC (squares), and L5 PC (triangles). NEURON data 
points are based on average single threshold simulation time (𝑛 = 5) on a single CPU of laptop or HPC 
machine, and these were then extrapolated by assuming linear scaling (best case) and parallelization 
across all 76 CPUs for the latter approach. CNN data points are the actual run times for estimating the 
corresponding number of thresholds.  

4. Discussion and conclusion 
We developed a 3D CNN architecture that provided accurate estimates of the thresholds of 

biophysically realistic cortical neuron models for activation by TMS-induced E-fields. Using E-field 

vectors sampled on regularly spaced grids encompassing the neuronal morphologies, the CNNs 

predicted activation thresholds for TMS pulses with mean absolute percent error less than 2.5% for all 

models. The CNNs substantially outperformed an alternative approach in which the non-uniform E-field 

in the vicinity of the neurons was approximated as uniform, which yielded lower correlations and higher 

error. Reducing the number of E-field sampling points slightly increased error while still outperforming 

the uniform E-field method. The optimal E-field sampling grid size was determined by a balance 

 
2 Single CPU run times in NEURON varied between the different CPUs tested, with faster serial run times 

on the Macbook Pro (shown in Figure 7). On the HPC node, single CPU run times were 6.6 ± 0.3 sec for the L2/3 
PC, 10.5 ± 0.3 sec for the L4 LBC, and 11.2 ± 0.2 sec for the L5 PC. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.18.490331doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.490331


 21 

between encompassing the spatial extent of the neuron without reducing significantly the sampling 

density or sampling extraneous distant points, e.g., E-fields outside the gray matter tissue volume. 

Representing the E-field vectors in spherical coordinates using four variables, compared to Cartesian 

coordinates using three variables, increased the error of the CNN predictions. Additionally, the CNNs 

were able to predict accurately thresholds for uniform E-fields, which were never seen during training, 

and the CNNs also performed well at predicting thresholds for point source stimulation, even though the 

CNNs were not trained on such data and the point source E-field is highly non-uniform compared to the 

TMS or uniform E-fields. On a single CPU, estimating thresholds with the CNN for 1000 unique E-field 

distributions, corresponding to different neuron locations and orientations in the brain, required only 670 

ms, while the equivalent NEURON simulations would take, at minimum, 1.4 to 2.6 hours (depending on 

model complexity), providing three to four orders of magnitude speedup. 

Our approach took advantage of the ability of CNNs to extract salient features from data with 

regular spatial structure, as exists in 2D and 3D images. The 3D grid of E-field vectors is analogous to 

a volumetric image with three color channels for each E-field component. By convolving the entire 

image with multiple local kernels, in this case 9 × 9 × 9 images convolved with 3 × 3 × 3 kernels, CNNs 

extract spatially invariant features of input images for processing by deeper layers with fewer 

parameters than fully connected 1D networks.  

In the neuron simulations, action potentials were initiated at axon terminals aligned with the 

local E-field, and the estimated TMS thresholds were inversely correlated with the E-field magnitude, 

degree of branching, myelination, and diameter [19,49]. Therefore, for a given morphology, one would 

expect the exact location of the E-field vectors to be important for predicting the threshold, i.e., whether 

the E-field is high or low near an aligned axonal branch. The CNN predicted accurately thresholds for a 

wide range of non-uniform and uniform E-field inputs, with mean percent error close to the window used 

in the simulated binary search (2%), which suggests the CNN, to some degree, encoded features of the 

E-field distribution relative to an internal representation of the axonal geometry.  CNNs are classically 

thought to be insensitive to absolute spatial location; however, several studies have shown CNNs can 

learn implicitly spatial information by exploiting differences in convolutional kernel activations near 

image borders [50–52]. 

Several factors may have contributed to the residual error and outliers. One factor was likely the 

under-sampling of E-field variations in regions with higher gradients or near tissue boundaries (i.e., gray 

matter / white matter and gray matter / CSF), as errors were increased by reducing the sampling 

resolution while keeping the CNN architecture fixed. Using fewer sampling points would be 

advantageous to reduce the time spent interpolating E-field vectors within the FEM mesh, which can be 

substantial for high sampling densities and large neuronal populations. For reference, the NEURON 
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simulations require interpolating E-field vectors at all compartments, which number over 880 for all cell 

types, except one L2/3 PC with 610 compartments, and are as high as 4,196 for one of the L4 LBCs, 

due to its dense axonal arborization. Still, even the 9 × 9 × 9	CNN E-field sampling grid (729 E-field 

vectors total) required fewer E-field samples than most of the biophysically realistic neuron simulations. 

Reducing the sampling resolution of the E-field distributions provided the network with less accurate 

representations of the E-field gradients and the E-field strength and direction at the site of AP initiation. 

Metrics related to these three factors explained nearly 30% of the variance in CNN prediction error at 

the lowest sampling resolution. The CNNs were able to generalize well to predict thresholds for uniform 

E-field (zero spatial gradient), but, as expected, prediction errors were significantly higher for the point 

source E-fields, which had over 100 times higher spatial gradients. Nonetheless, the CNNs reproduced 

qualitatively the current–distance relationship without retraining, suggesting the models could learn to 

estimate more accurately responses to intracortical microstimulation, as well. This would require 

training a set of CNNs using the desired pulse waveform (e.g., 0.2 ms cathodic square pulse) and 

potentially using a higher E-field sampling resolution, although alternative approaches to spatial and 

temporal representation of the E-field can also be considered, as discussed below. 

TMS thresholds are strongly correlated with the E-field magnitude [14,18,53], so we expected 

that converting the E-field to spherical coordinates would reduce error further, since the magnitude is 

explicitly represented as one of the coordinate variables. However, the CNNs performed best with 

Cartesian E-field coordinates. This was possibly due to the additional E-field coordinate variable 

introduced to represent the azimuthal component; while avoiding circular discontinuities in the data 

[54,55], the use of spherical coordinates increased the dimensionality of the data without providing 

more information to the network [56]. Furthermore, prediction errors were slightly higher in the L2/3 PCs 

compared to the L4 LBCs and L5 PCs. The L2/3 PCs not only had a wider range of E-field thresholds 

due to their high threshold anisotropy (i.e., strong dependence on orientation with respect to the E-

field), but they also have long horizontal axon branches that extend several millimeters at oblique and 

tangential angles. This made it difficult to select a grid size that encompassed the neuron models 

without also sampling from points in the CSF tissue volume of the FEM, potentially resulting in some 

positions where the CNN did not have adequate E-field samples near the activated axonal branch. 

Using the regular sampling grid allowed the same grid points to be used for every clone at each 

position and reduced the number of E-field points to interpolate by a factor of five. However, one 

limitation of this approach is the sampling grid shape does not always conform to the anatomy of the 

neuron or the cortex, depending on neuron depth, local curvature, and thickness of the cortical sheet. 

An alternative approach might be to instead represent the E-field on the neural compartments, e.g. 

using graph convolutional neural networks [57], as the model morphologies are more reliably positioned 
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within the gray matter. Sampling along the morphology may also more efficiently capture variations of 

the E-field magnitude at relevant locations without including irrelevant E-field vectors distant from an 

axonal branch or E-field vectors that fall in a different tissue compartment. This approach, however, will 

require more preprocessing of the E-field simulations to obtain unique spatial sampling for each cell 

morphology and orientation. 

This is the first study to use ANNs to represent the response of morphologically realistic, 

multicompartmental neuron models to stimulation with exogenous E-fields. Previously, Chaturvedi et al. 

used an ANN with one hidden layer to estimate the volume of tissue activated (VTA) by multi-contact 

configurations of deep brain stimulation as computed with multicompartmental straight axon models 

[58]. Otherwise, recent studies used deep learning to predict the subthreshold and suprathreshold 

temporal dynamics of neuron models in response to synaptic inputs [27,28]. Olah et al. tested the ability 

of multiple ANN architectures to predict somatic voltage and current time series of biophysically realistic 

models of L5 PCs in NEURON, similar to those included in this study [27]. They found the only 

architecture capable of predicting accurately the subthreshold and suprathreshold dynamics was a 

model with both convolutional and long short-term memory (CNN-LSTM). Interestingly, the CNN-LSTM 

reliably reproduced the response of the NEURON models to distributed synaptic inputs using only the 

somatic voltage. At the same time, it is unclear whether this approach could predict efficiently the 

dynamics in the rest of the neuronal compartments, which is necessary for applications involving 

extracellular stimulation, as in the present study. Beniaguev et al. conducted a similar study and found 

a temporal convolutional network (TCN) could reproduce the input–output properties of a biophysically 

detailed L5 PC [28]. Our focus on estimating thresholds for activation allowed a simpler implementation 

that resulted in low prediction error, indicating the CNNs learned the dependency of activation 

thresholds on E-field spatial distributions without requiring explicit representation of underlying neural 

dynamics, i.e., voltage and current time courses in any compartment. Still, these studies suggest ANNs 

can accurately represent the spatiotemporal computations performed by spatially extended neuron 

models. In our approach, pulse waveform was implicit in the training data, and this requires separate 

CNNs to be trained on threshold data with other pulse waveforms. For most TMS applications, this 

approach is likely acceptable, due to the limited range of pulse waveforms produced by conventional 

TMS devices (e.g., monophasic and biphasic pulses). However, a time-dependent approach is 

necessary to estimate thresholds for novel pulse waveforms, such as those generated by the specific 

inductance and resistance of novel coils or by TMS devices with controllable pulse shape [59,60], 

without requiring separate training sets and CNNs for discrete waveform selections. Additionally, the 

calculation of “ground truth” thresholds was conducted with quiescent neurons, and endogenous 

activity can alter the response to TMS experimentally and shift the thresholds of individual neurons [61–
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63]. Combining 3D convolutional layers to encode the interaction between the extracellular E-field and 

the neuron morphology with recurrent layers to capture temporal dynamics of the pulse and/or the 

neural membrane could combine the advantages of both approaches and is likely an important 

direction for future research. 

The CNNs provided several orders of magnitude reductions in required computation, making it 

feasible to incorporate neural response models in E-field simulation packages for use on commonly 

available computational resources. Simulating the TMS-induced E-field in head models with 1st order 

FEM, as used in SimNIBS [29], requires on the order of 1–2 minutes on a typical computer [64]. 

Estimating the response of the full population we modeled in the ernie mesh (3 layers, 5000 neurons 

per layer, 12 rotations) would add less than 3 minutes on a single CPU. This time would be dramatically 

reduced by using a GPU, but even if a GPU is not available, further speedup on CPUs is feasible by 

optimization of the CNN implementation. 

In conclusion, subject-specific head models of the E-field can support accurate dosing and 

targeting of cortical structures by TMS; however, these models alone cannot predict the physiological 

response. Combining E-field models with biophysically realistic neuron models addresses this 

limitation, but calculating the neural response is extremely computationally demanding [18]. Combining 

ANN estimators of the neural response with fast approaches to E-field computation [24,65,66] may 

enable more TMS users to adopt these multi-scale biophysically-based models in research and clinical 

applications.   
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7. Supplementary Figures 

 
Supplementary Figure S1. E-field sampling grids for all model neurons. E-field sampling grid for 
A) L2/3 PCs with side length 𝑙 = 2	mm shifted in z-direction by −0.49 mm; B) L4 LBCs with side length 
𝑙 = 1.5 mm; and C) L5 PCs with side length 𝑙 = 1.5	mm. All grids shown have 𝑁 = 9 points per 
dimension.  
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Supplementary Figure S2. Example CNN training curves. Training and validation loss, quantified as 
mean squared error (MSE), change in loss per training epoch for A) L2/3 PC (clone 1), B) L4 LBC (clone 
1), and C) L5 PC (clone 1). Change in loss is plotted on symmetrical log scale with linear range between 
± 10-1. For reference to corresponding clone’s morphology, see Supplementary Figure S1.  
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Supplementary Figure S3. Distribution of test prediction error for CNN and uniform E-field 
method. Distributions of A) percent errors of all clones and rotations and B) median percent errors 
across clones and rotations at each position shown with data points (gray); estimated probability kernel 
density (violin plots) spanning 98% of data; and box and whisker plots indicating median (white point), 
1st and 3rd quartiles (rectangular box), and whiskers (vertical lines) extending to 1.5	 × interquartile 
range below and above 1st and 3rd quartile, respectively. Note the log-linear-log vertical axis with linear 
scaling between -1 and 1% and logarithmic scaling outside this range. 
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Supplementary Figure S4. CNN also predicts accurately thresholds for biphasic TMS pulse. A) 
Predicted threshold E-field at soma of all five L5 PC clones for MagProX100 biphasic TMS pulse by CNN 
(left column) and uniform E-field approximation (middle column) across entire test dataset plotted against 
NEURON simulation thresholds (actual). B) Mean absolute percent error (MAPE) on test dataset for CNN 
(magenta) and uniform E-field approach (green), separated by clone. 
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Supplementary Figure S5. Effect of E-field vector coordinate system on performance for L2/3 PCs 
and L4 LBCs. Mean absolute percent error (MAPE) metric on test dataset for (A) L2/3 PC and (B) L4 
LBC CNNs with E-field input represented with either spherical coordinates (pre-processing described in 
Section 2.2.1) or Cartesian coordinates. 
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Supplementary Figure S6. CNN error increases with fewer E-field sampling points for both 
variable and constant network size. MAPE metric for example L5 PC (clone 1) CNN for different 
sampling resolutions using either variable network size, in which the architecture is modified to 
accommodate lower resolution inputs, or constant network size (see Section 2.2.3), in which the 
architecture is kept constant and the inputs are upsampled to the highest resolution (𝑁 = 9).  
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Supplementary Figure S7. CNN error correlates with E-field gradient and E-field at AP initiation 
site. CNN prediction errors for test dataset of example L5 PC (clone 1) plotted against A) median 
magnitude of directional E-field gradient, B) absolute percent error of E-field magnitude at AP initiation 
site, and C) error of E-field direction at AP initiation site for 𝑁 = 3, 5, 7, or 9 sampling points per dimension, 
with single regression lines overlaid. Median E-field gradients in A) were all calculated using E-field grids 
with 𝑁 = 13 sampling points per dimension. For definition of E-field magnitude and direction error metrics 
in B) and C), see section 2.2.1. D) 𝑅! values for multiple linear regression with all metrics (purple) and 
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single regression with the metrics in A–C for each sampling resolution. Adjusted 𝑅! used for the multiple 
linear regressions to account for the effect of adding model predictors. E) Standardized 𝛽 coefficients for 
multiple linear regression with all metrics in A–C at each sampling resolution.   

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.18.490331doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.490331


 39 

 
Supplementary Figure S8. CNN trained on TMS-induced E-field predicts response to point source 
with reduced accuracy. We modeled stimulation with a microelectrode as a point current source in a 
homogenous, isotropic medium with conductivity 𝜎 = 0.276 S/m, as in [19], and computed thresholds in 
NEURON for electrode locations throughout a 3D grid encompassing each of the L5 PC morphologies in 
100 µm steps. Electrode locations within 30 µm of a neuronal compartment and eliciting dendritic 
activation at lowest threshold were excluded. We used the same MagProX100 monophasic TMS pulse 
to match the pulse waveform used with the CNNs. We estimated thresholds with the CNNs pretrained on 
TMS thresholds by inputting the E-field distribution generated for each electrode location, normalized to 
the magnitude of the center grid point. The E-field per unit current is given by 𝐸9⃗ = 1/4𝜋𝜎𝑟!	𝑟\ , where 𝑟 is 
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the electrode-to-sampling-point distance and 	𝑟\  is the unit vector in the radial direction in spherical 
coordinates. A) Example L5 PC morphology (left) with electrode locations overlaid (middle) or E-field 
sampling points for CNN (right). B) Threshold current–distance plot for example L5 PC (clone 1) 
generated with NEURON simulations or the trained CNN. Each point represents the threshold for a 
different electrode location within the 3D grid and the distance from that electrode to the point of action 
potential initiation. C) Predicted current thresholds by CNN plotted against NEURON simulation 
thresholds (actual) for all five L5 PC clones. The correlations were weaker than for the TMS simulations, 
but were still significant, with 𝑅! ranging from 0.617 – 0.792 (𝑝 < 0.001). D) Threshold percent error 
plotted against distance for all five L5 PC clones, demonstrating lower errors for more distant electrode 
locations. This was likely due to the CNNs being trained on E-fields with low spatial gradients and the 
decrease in spatial gradient with distance from a point source.  
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