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Blurb 55 

We describe the organization of human neocortex on multiple spatial scales based on resting 56 

state intracranial electrophysiology. We focus on cortical regions involved in auditory 57 

processing and examine inter-regional hierarchical relationships, network topology, and 58 

hemispheric lateralization. This work introduces a powerful analytical tool to examine 59 

mechanisms of altered arousal states, brain development, and neuropsychiatric disorders. 60 

Abstract  61 

Understanding central auditory processing critically depends on defining underlying auditory 62 

cortical networks and their relationship to the rest of the brain. We addressed these questions 63 

using resting state functional connectivity derived from human intracranial 64 

electroencephalography. Mapping recording sites into a low-dimensional space where 65 

proximity represents functional similarity revealed a hierarchical organization. At fine scale, a 66 

group of auditory cortical regions excluded several higher order auditory areas and segregated 67 

maximally from prefrontal cortex. On mesoscale, the proximity of limbic structures to auditory 68 

cortex suggested a limbic stream that parallels the classically described ventral and dorsal 69 

auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex 70 

depended on frequency band, consistent with diverse roles in semantic and cognitive 71 

processing. On a macro scale, observed hemispheric asymmetries were not specific for speech 72 

and language networks. This approach can be applied to multivariate brain data with respect to 73 

development, behavior, and disorders.   74 
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Introduction 75 

The meso- and macroscopic organization of human neocortex has been investigated extensively 76 

using resting state (RS) functional connectivity, primarily using functional magnetic resonance 77 

imaging (fMRI)[1, 2]. RS data are advantageous as they avoid the substantial confound of 78 

stimulus-driven correlations yet identify networks that overlap with those obtained using 79 

event-related data[3], and thus are relevant to cognitive and perceptual processing. RS fMRI 80 

has contributed greatly to our understanding of the organization of the human auditory cortical 81 

hierarchy[4-6], but only a few complementary studies have been conducted using 82 

electrophysiology in humans (e.g., Refs.[7-9]). Compared to fMRI, intracranial 83 

electroencephalography (iEEG) offers superior spatio-temporal resolution, allowing for analyses 84 

that accommodate frequency-dependent features of information exchange in these 85 

networks[10, 11]. For example, cortico-cortical feedforward versus feedback information 86 

exchange occurs via band-specific communication channels (gamma band and beta/alpha 87 

bands, respectively) in both the visual[11-15] and auditory[16-19] systems. There are also 88 

important regions involved in speech and language processing for which iEEG can provide 89 

superior spatial resolution and signal characteristics compared to fMRI, including in the anterior 90 

temporal lobe[20, 21] and the upper versus lower banks of the superior temporal sulcus 91 

(STS)[22, 23]. However, variable electrode coverage in human intracranial patients and small 92 

sample sizes are challenges to generalizing results.  93 

We overcome these limitations using a large cohort of subjects that together have coverage 94 

over most of the cerebral cortex and leverage these data to address outstanding questions 95 

about auditory networks. We address the organization of human auditory cortex at three 96 

spatial scales: fine-scale organization of regions adjacent to canonical auditory cortex, 97 

clustering of cortical regions into functional processing streams, and hemispheric (a)symmetry 98 

associated with language dominance. We present a unified analytical framework applied to 99 

resting state human iEEG data that embeds functional connectivity data into a Euclidean space 100 

in which proximity represents functional similarity. A similar analysis has been applied 101 

previously to RS fMRI data[24-26] . We extend this analytical approach and demonstrate 102 

methodology appropriate for hypothesis testing at each of these spatial scales.  103 

At the fine scale, individual areas within canonical auditory cortex and beyond have different 104 

sensitivity and specificity of responses with respect to stimulus attributes[27-29]. These 105 

differences are related to underlying connectivity patterns both within the auditory cortex and 106 

with other brain areas[22]. Though there is broad agreement that posteromedial Heschl’s gyrus 107 

(HGPM) represents core auditory cortex, functional relationships among HGPM and 108 

neighboring higher-order areas are still a matter of debate. For example, the anterior portion of 109 

the superior temporal gyrus (STGA) and planum polare (PP) are adjacent to auditory cortex on 110 

Heschl’s gyrus, yet diverge from it functionally[30, 31]. The posterior insula (InsP), on the other 111 

hand, has response properties similar to HGPM, yet is not considered a canonical auditory 112 

area[32]. The STS is a critical node in speech and language networks[22, 33-37], yet its 113 
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functional relationships with other auditory areas are difficult to distinguish with neuroimaging 114 

methods. Indeed, distinct functional roles of its upper and lower banks (STSU, STSL) have only 115 

been recently elucidated with iEEG[23].  116 

Questions remain regarding mesoscale organization as well. The auditory hierarchy is posited to 117 

be organized along two processing streams (ventral “what” and dorsal “where/audiomotor”) 118 

[38-40]. The specific brain regions involved and the functional relationships within each stream 119 

are vigorously debated[41-44]. Furthermore, communication between auditory cortex and 120 

hippocampus, amygdala, and anterior insula (InsA)[45] – areas involved in auditory working 121 

memory and processing of emotional aspects of auditory information[46-49] – suggests a third 122 

“limbic” auditory processing stream, complementary to the dorsal and ventral streams. 123 

At a macroscopic scale, hemispheric lateralization is a classically described organizational 124 

feature of speech and language function[50, 51]. However, previous studies have shown 125 

extensive bilateral activation during speech and language processing[52-54], and more recent 126 

models emphasize this bilateral organization[39]. Thus, the degree to which lateralization 127 

shapes the auditory hierarchy and is reflected in hemisphere-specific connectivity profiles is 128 

unknown[38, 42, 55-58].  129 

To address these questions, we applied diffusion map embedding (DME)[59, 60] to functional 130 

connectivity measured between cortical regions of interest (ROIs). DME is part of a broader 131 

class of analytical approaches that leverage the spectral properties of similarity matrices to 132 

reveal the intrinsic structure of datasets[61]. When applied to multivariate neurophysiological 133 

signals, DME maps connectivity from anatomical space (i.e., the location of the recording sites 134 

in the brain) into a Euclidean embedding space that reveals a “functional geometry”[24]. In this 135 

space, the proximity of two ROIs reflects similarity in connectivity to the rest of the network. 136 

Implicit in the use of the term ‘functional’ is the assumption that two regions of interest that 137 

are similarly connected to the rest of the brain are performing similar functions. Here, we use 138 

the DME approach to provide a low-dimensional representation convenient for display while 139 

also facilitating quantitative comparisons on multiple spatial scales. We tested pre-specified 140 

hypotheses of specific ROI relationships involving STSL and STSU in the gamma band using 141 

permutation tests. We applied exploratory analyses to other bands, to hierarchical clustering to 142 

identify functional processing streams, and to contrasts of whole embeddings between 143 

participant cohorts to investigate hemispheric differences in network organization.  144 

This is the first time to our knowledge DME analysis has been applied to electrophysiological 145 

data, which allows exploration of the band-specificity of network structure. Also novel in our 146 

approach is the examination of relationships based on inter-ROI distances in embedding space, 147 

which are robust to changes in the underlying basis functions of the space.   148 
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Results 149 

DME applied to iEEG data 150 

Intracranial electrodes densely sampled cortical structures involved in auditory processing in 151 

the temporal and parietal lobes, as well as prefrontal, sensorimotor, and other ROIs in 49 152 

participants (22 female; Fig. 1, Supplementary Tables 1, 2). A total of 6742 recording sites 153 

(66.1% subdural, 33.9% depth) were used in the analyses. On average, each participant 154 

contributed 138±54 recording sites, representing 28±7.7 ROIs (mean ± standard deviation) (see 155 

example in Fig. 2a). Figure 1b summarizes both subdural and depth electrode coverage by 156 

plotting recording sites in Montreal Neurological Institute (MNI) coordinate space and 157 

projecting them onto an average template brain for spatial reference. Of note, assignment of 158 

recording sites to ROIs as depicted in Figure 1 was made based on the sites’ locations in each 159 

participant’s brain rather than based on the projection onto the template brain, thus 160 

accounting for the high individual variability in cortical anatomy (see Methods for details). 161 

The brain parcellation scheme depicted in Figure 1a was developed based on a combination of 162 

physiological and anatomical criteria and has been useful in our previous analyses that were 163 

largely focused on auditory processing[62-67]. One goal of the analysis presented in this study 164 

is to develop instead a parcellation scheme based on functional relationships between brain 165 

areas. Accordingly, we revisit below the parcellation shown in Fig. 1a with a data-driven 166 

scheme. 167 

DME was applied to pairwise functional connectivity measured as orthogonalized power 168 

envelope correlations[68] computed between recording sites in each participant. We focus on 169 

gamma band power envelope correlations because of its established role in feedforward 170 

information exchange in the auditory system[16-19], and use gamma band as a reference in 171 

presentation of data from other bands. The functional connectivity matrix was normalized and 172 

thresholded to yield a diffusion matrix Psymm with an apparent community structure along the 173 

horizontal and vertical dimensions (Fig. 2b). DME reveals the functional geometry of the 174 

sampled cortical sites by using the structure of Psymm and a free parameter t to map the 175 

recording sites into an embedding space. In this space, proximity between nodes represents 176 

similarity in their connectivity to the rest of the network (Fig. 2c; see Supplementary Fig. 1 for 177 

additional views). The parameter t corresponds to diffusion time: larger values of t shift focus 178 

from local towards global organization. DME exhibited superior signal-to noise characteristics 179 

compared to direct analysis of functional connectivity in 43 out of 49 participants 180 

(Supplementary Fig. 2).  181 

Functionally distinct regions are isolated along principal dimensions in embedding space. For 182 

example, in Figure 2c, auditory cortical sites (red/orange/yellow) and sites in prefrontal cortex 183 

(blue) were maximally segregated along dimension 1 (see Fig. 1 and Supplementary Table 3 for 184 

the list of abbreviations). Other regions (e.g., middle temporal gyrus) had a more distributed 185 

representation within the embedding space, consistent with their functional heterogeneity.  186 
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Figure 1. ROIs and electrode coverage in all 49 participants. a: ROI parcellation scheme. b: Locations of 188 

recording sites, determined for each participant individually and color-coded according to the ROI 189 

group, are plotted in Montreal Neurological Institute (MNI) coordinate space and projected onto the 190 

Freesurfer average template brain for spatial reference. Color shades represent different ROIs within a 191 

group. Projections are shown on the lateral, top-down (superior temporal plane), ventral and mesial 192 

views (top to bottom). Recording sites over orbital, transverse frontopolar, inferior temporal gyrus and 193 

temporal pole are shown in both the lateral and the ventral view. Sites in fusiform, lingual, 194 

parahippocampal gyrus and gyrus rectus are shown in both the ventral and medial view. Sites in the 195 

frontal operculum (n = 23), parietal operculum (n = 21), amygdala (n = 80), hippocampus (n = 86), 196 

putamen (n = 15), globus pallidus (n = 1), caudate nucleus (n = 10), substantia innominata (n = 5), and 197 

ventral striatum (n = 2) are not shown. See Supplementary Table 2 for detailed information on electrode 198 

coverage. c: ROI groups, ROIs and abbreviations used in the present study. See Supplementary Table 3 199 

for alphabetized list of abbreviations. 200 
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 201 

Figure 2. Functional geometry of cortical networks revealed by DME applied to gamma band power 202 

envelope correlations in a single participant (R376). a: Electrode coverage. b: Diffusion matrix Psymm. c: 203 

Data plotted on the same scale in the 1st and 2nd, 1st and 3rd, and 1st and 4th dimensions of 204 

embedding space (top to bottom). Two points that are close in embedding space are similarly connected 205 

to the rest of the network, and thus assumed to be functionally similar.   206 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2023. ; https://doi.org/10.1101/2022.02.06.479292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/


Functional geometry of cortical networks 207 

To pool data across participants with variable electrode coverage, Psymm matrices were 208 

computed at the ROI level and averaged across participants. The results for gamma band data 209 

are shown in Figure 3a. The eigenvalue spectrum |λi| of this averaged Psymm showed a clear 210 

separation between the first four and the remaining dimensions (Fig. 3a, inset), indicating that 211 

the first four dimensions of embedding space accounted for much of the community structure 212 

of the data. Indeed, these first four dimensions accounted for >80% of the diffusion distance 213 

averaged across all pairwise distances in the space, a typical measure for deciding which 214 

dimensions to retain when DME is used as a dimensionality reduction method[60]. This 215 

inflection point in the eigenvalue spectrum was identified algorithmically (see Methods) for 216 

each frequency band and yielded the number of retained dimensions n = 6,6,7,4, and 6 for 217 

theta, alpha, beta, gamma, and high gamma bands, respectively.  218 

The gamma band data are plotted in the first four dimensions of embedding space in Figure 3b, 219 

where the sizes of the ellipsoids for each ROI represent estimates of position variance across 220 

participants obtained via bootstrapping. These data provide a graphical representation of the 221 

functional geometry of all sampled brain regions (see also Supplementary Fig. 3 and 222 

Supplementary Movies 1 and 2; see Supplementary Fig. 4 for average beta band embeddings). 223 

Functionally related ROIs tended to group together, and these ROI groups segregated within 224 

embedding space. For example, auditory cortical and prefrontal ROIs were at opposite ends of 225 

dimension 1, as were visual cortical (ITGP, ITGM, LingG, FG) and prefrontal ROIs. Parietal and 226 

limbic ROIs were at opposite ends of dimension 2, and auditory and visual ROIs were maximally 227 

segregated along dimension 4. By contrast, some ROIs [e.g., STGA, anterior and middle portions 228 

of middle temporal gyrus (MTGA, MTGM), middle cingulate (CingM)] were situated in the 229 

interior of the data cloud. 230 

One advantage of applying DME to electrophysiological data is the opportunity to examine 231 

features of the embeddings that are band-specific. DME applied to bands other than gamma 232 

produced similar embeddings. Inter-ROI distances were similar for adjacent bands (r ≥ 0.82), 233 

and even for non-adjacent bands (r ≥ 0.67; Supplementary Fig. 5). Thus, DME identified some 234 

organizational features of cortical networks that were not band-specific. 235 

The mean correlation between inter-ROI embedding distances for original versus bootstrapped 236 

data was high in each band (r = 0.91, 0.85, 0.87, 0.88, and 0.86 for high gamma, gamma, beta, 237 

alpha, and theta, respectively). These analyses suggest that DME offers a robust approach to 238 

exploring functional geometry. 239 

 240 

  241 
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Figure 3. Summary of functional geometry of cortical networks via DME applied to gamma band power 243 

envelope correlations. a: Average diffusion matrix. Inset: Eigenvalue spectrum. b: Data plotted on the 244 

same scale in the 1st and 2nd, 1st and 3rd, and 1st and 4th dimensions of embedding space (top to 245 

bottom). Estimates of variance across participants in the locations of each ROI in embedding space were 246 

obtained via bootstrapping and are represented by the size of the ellipsoid for each ROI. 247 
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DME elucidates fine-scale functional organization beyond anatomical proximity 248 

The connectivity metric employed here discards components exactly in phase between two 249 

brain regions, mitigating the influence of volume conduction[68]. However, brain areas that are 250 

anatomically close to each other are often densely interconnected[69-71]. Thus, anatomical 251 

proximity is expected to contribute to the observed functional geometry. Overall, however, 252 

anatomical proximity explained only 14% of the variance in embedding distance derived from 253 

gamma band connectivity (mean adjusted r
2
 = 0.14 for regressions between anatomical and 254 

embedding Euclidean distance, calculated separately for each ROI). Anatomically adjacent ROIs 255 

that were separated in embedding space for gamma band included STGA and STGM, temporal 256 

pole (TP) and the rest of the anterior temporal lobe (ATL), and InsA and InsP. Similar results 257 

were obtained for embeddings derived from beta band data (Supplementary Figure 4). Thus, 258 

the embedding representation elucidates organizational features beyond anatomical proximity. 259 

 260 

Planum polare (PP) and posterior insula (InsP) are functionally distinct from other auditory 261 

cortical ROIs 262 

The grouping of canonical auditory ROIs is apparent in Figure 3b and Supplementary Figure 4, 263 

as PT, HGAL, and middle and posterior portions of the superior temporal gyrus (STGM, STGP) 264 

were all close to HGPM in embedding space. One notable exception, planum polare (PP), 265 

located immediately anterior to anterolateral Heschl’s gyrus (HGAL), segregated from the rest 266 

of auditory cortical ROIs along dimension 2 in embedding space (Fig. 3b, upper panel, lower left 267 

corner; Supplementary Fig. 4, upper left panel, lower left corner). This result is consistent with 268 

PP being a higher order auditory area. 269 

In contrast, InsP is a region that is anatomically distant from HGPM yet responds robustly to 270 

acoustic stimuli[32], suggesting that a portion of this area could be considered an auditory 271 

region[72]. For example, InsP can track relatively fast (>100 Hz) temporal modulations, similar 272 

to HGPM[32, 73], possibly due to direct inputs from the auditory thalamus. However, InsP was 273 

functionally segregated from HGPM and was situated between auditory and limbic ROIs, 274 

consistent with the broader role of InsP in polysensory exteroceptive processing and 275 

interoception[74, 75]. 276 

 277 

Hierarchical distinction of STSU and STSL 278 

Unlike InsP and PP, STSU was located near early auditory regions in embedding space, and for 279 

gamma band was significantly closer to auditory cortex (core and non-core ROIs; see Fig. 1) in 280 

embedding space compared to STSL (test by permutation of STSU/STSL labels, p < 0.0001). In 281 

beta band, the difference in distance to auditory cortex was not significant (p = 0.051). This 282 

distinction between STSL and STSU is consistent with differences in their response properties 283 

reported recently[23]. Particularly, responses in STSL, but not STSU, were predictive of 284 
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performance in a semantic categorization task. Those results suggest that STSL would likely be 285 

closer in embedding space to regions involved in semantic processing compared to STSU. 286 

Indeed, for gamma band, STSL was significantly closer to ROIs reported to contribute to 287 

semantic processing [inferior frontal gyrus (IFG) pars operculum/triangularis/orbitalis (IFGop, 288 

IFGtri, IFGor), TP, STGA, MTGA, MTGP, anterior and posterior portions of inferior temporal 289 

gyrus (ITGA, ITGP), anterior and posterior angular gyrus (AGA, AGP), supramarginal gyrus 290 

(SMG)][76-78] compared to STSU (test by permutation of STSU/STSL labels, p = 0.0011). Similar 291 

results were obtained in beta band (p = 0.00044) 292 

 293 

Organization of ROIs outside auditory cortex  294 

The data of Figure 3b and Supplementary Figure 4 also characterize the temporal and parietal 295 

ROIs outside auditory cortex that are nonetheless part of the extended auditory network, 296 

including components of the dorsal and ventral processing streams. These ‘auditory-related’ 297 

ROIs (shades of green), were distributed along a considerable extent of all four dimensions, 298 

consistent with functional heterogeneity of these regions and their involvement in integration 299 

of sensory information from multiple modalities[79].  300 

This heterogeneity, as well as the embedding locations of PP and STSU, suggests that DME can 301 

be used to improve the brain parcellation scheme from Figure 1. For instance, MTGA in that 302 

scheme was labeled as part of the ‘Auditory-related’ group based on its location on the lateral 303 

temporal convexity and its anatomical proximity to canonical auditory cortex. The ‘Other’ group 304 

contains a large and diverse collection of ROIs whose relationship to auditory structures and 305 

speech and language processing is unclear. A more principled approach is warranted to arrange 306 

these and other ROIs into functional groups or streams based upon their physiology. One 307 

approach to developing such a data-driven parcellation scheme is to apply hierarchical 308 

clustering to the data in embedding space. 309 

 310 

Hierarchical clustering identifies mesoscale-level organizational features: ROI groups and 311 

processing streams 312 

Hierarchical clustering was applied to the first four dimensions of the embedded gamma band 313 

data shown in Figure 3. The analysis illustrated a mesoscale organization of cortical ROIs (Fig. 4) 314 

that aligned with the qualitative observations discussed above. As with any clustering scheme, 315 

the number of clusters is difficult to determine based on the data alone. In the left column of 316 

Figure 4a, we illustrate two possible thresholds yielding 5 and 9 clusters, respectively. In the 5-317 

cluster scheme, auditory cortical ROIs (excluding PP) formed an ‘Auditory’ cluster with STSU at 318 

one end of the dendrogram. At the other end, sensorimotor ROIs and ROIs typically considered 319 

part of the dorsal auditory stream formed clusters (labeled ‘Action’ and ‘Dorsal’, respectively). 320 
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The remaining two large clusters were dominated by ventral temporal and limbic ROIs and by 321 

prefrontal and mesial ROIs (colored green and blue, respectively). 322 

At a lower threshold, a 9-cluster scheme emerged. The ventral temporal/limbic cluster divided 323 

into three distinct clusters. One of these (‘Limbic’) included ROIs traditionally considered part of 324 

the limbic system [parahippocampal gyrus (PHG), amygdala and hippocampus], as well as TP 325 

and the insula. A second (‘Visual’) included ROIs in the ventral visual stream, and a third 326 

(‘Ventral’) consisted of ROIs typically considered part of the ventral auditory stream. Similarly, 327 

the prefrontal cluster divided into three distinct clusters (‘Ventromedial prefrontal’, ‘Lateral 328 

prefrontal’, and ‘Executive’). Thus, the hierarchical clustering analysis revealed a segregation of 329 

ROIs in embedding space that aligned with known functional differentiation of brain regions. 330 

Further, we can use this analysis to expand our understanding of hierarchical relationships 331 

among clusters. For example, the ‘Auditory’ cluster was distinct from other clusters primarily in 332 

the temporal lobe, but is closer to the ‘Limbic’ cluster than ‘Ventral’ or ‘Visual’. 333 

Results of hierarchical agglomerative clustering applied to data from all five frequency bands 334 

are shown in Supplementary Figure 6. The color scheme for the ROIs is based on the gamma 335 

band results to provide a reference for similarity and difference across bands. Auditory cortical 336 

ROIs consistently clustered together, though the specific membership of that cluster varied 337 

slightly in alpha- and beta bands. Sensorimotor ROIs consistently clustered together, usually at 338 

a considerable distance from auditory ROIs, though in high gamma band dorsal and ventral 339 

sensorimotor ROIs were separated. Prefrontal and mesial ROIs tended to cluster together in all 340 

bands, albeit at variable overall position relative to auditory and sensorimotor ROIs. PP tended 341 

to cluster with anterior temporal lobe structures, and TP with limbic structures, regardless of 342 

frequency band. Thus, the temporal scale of neuronal signaling contributes importantly to 343 

establishing the structure of functional networks, consistent with previous results[10, 11, 80-344 

82]. 345 

We evaluated the robustness of this clustering scheme in our dataset by calculating stability as 346 

the median normalized Fowlkes-Mallows index[83] across bootstrap iterations. The index varies 347 

between 0 (random clustering across iterations) and 1 (identical clustering across iterations). 348 

The results of the analysis as a function of threshold and frequency band indicated that stability 349 

was not strongly dependent on either band or threshold, especially for 5 or more clusters 350 

(Supplementary Fig. 7a). We also calculated cluster-wise stability as a function of the number of 351 

clusters for gamma band using the Jaccard coefficient[84]. Stability varied across threshold and 352 

clusters (Supplementary Fig. 7b). Notably, the auditory cluster was the most stable for gamma 353 

band data for both the nClust = 5 and 9 results illustrated in Figure 4. By contrast, the ‘Executive’ 354 

cluster for nClust = 9 was the least stable of the group. 355 

In addition to these resting state recordings, most participants engaged in additional 356 

experiments investigating representation of acoustic stimuli in the brain[23, 85-87]. We used 357 

these data to evaluate auditory responsiveness of each recording site (Fig. 4a, right column) 358 

and compare these response profiles to the clustering results of Figure 4a (left column). As 359 
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expected, ROIs in the auditory cluster exhibited consistently high responsiveness to auditory 360 

stimuli, while visual ROIs did not. By contrast, some clusters exhibited mixed responsiveness 361 

(e.g. InsP in the limbic cluster), possibly indicating ROIs that serve as nodes bridging auditory 362 

and other brain networks. 363 

A brain parcellation scheme based on the gamma band clustering results is illustrated in Figure 364 

4c. We note that as for other parcellation schemes based on functional connectivity (e.g., [2, 365 

88]), the specific threshold that is most relevant and useful depends on the questions being 366 

asked and the sample size available for hypothesis testing. 367 

 368 

 369 

Figure 4. Hierarchical clustering of embedding data shown in Figure 3. a: Linkages between ROI groups 370 

identified using agglomerative clustering. Two thresholds are denoted (vertical dashed lines), one 371 
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yielding 5 clusters and one yielding 9. ROIs are colored to indicate cluster membership. b: Auditory 372 

responsiveness in each ROI. Shown are percentages of sites in each ROI with early (50-350 ms after 373 

stimulus onset; black bars) and late (350-650 ms; white bars) high gamma responses to 300 ms 374 

monosyllabic words. c: Brain parcellation based on hierarchical clustering illustrated in a.  375 
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DME identifies mesoscale topological features of cortical networks 376 

In a network, ‘global hubs’ integrate and regulate information flow by virtue of their centrality 377 

and strong connectivity; spokes send and receive information to/from these hubs. Identification 378 

of these nodes is critical for understanding the topology of brain networks [89], yet there is 379 

ongoing debate about effective methods for identifying hubs and spokes[90]. Here, we propose 380 

a novel approach to use DME to identify global hubs versus spokes. First, we note that the 381 

closer an ROI is to the center of the data cloud in embedding space, the more equal is its 382 

connectivity to the rest of the network. A simulated example is illustrated in Figure 5a, which 383 

depicts a network of five ROIs, with one serving as a global hub (Fig. 5a, left panel, green). The 384 

network structure can also be represented as an adjacency matrix, wherein the hub ROI has 385 

strong connectivity with other ROIs (Fig. 5a, middle panel). In embedding space, this ROI 386 

occupies a central location, with the other four serving as spokes, i.e., nodes that interact with 387 

each other through the central hub (Fig. 5a, right panel).  388 

However, a node’s proximity to the center of the data cloud reflects the homogeneity of its 389 

connectivity to the rest of the network, not necessarily the strength of that connectivity. In 390 

theory a node could appear at a central location if it is weakly but consistently connected to all 391 

other nodes. To determine whether this occurs in our dataset, we computed the Euclidean 392 

distance from the center of embedding space and mean connectivity for all of the ROIs in Figure 393 

3b. We show in Figure 5b a strong inverse relationship between these two measures. ROIs close 394 

to the center of embedding space also exhibited strong mean connectivity, suggesting that 395 

global hubs can be identified in these data using distance from the center of embedding space 396 

alone.  397 

The identity of global hubs, and the extent to which specific nodes act as global hubs, varied 398 

across frequency bands. In the high gamma and gamma bands, ROIs presenting most strongly 399 

as global hubs included MTGA, STGA, and MTGM. ITGA, CingM, posterior cingulate/precuneus 400 

(PCC/pC), PP, fOperc, and STSL also exhibited hub-like properties. By contrast, the ROIs that 401 

were farthest from the center of embedding space were mostly unimodal sensory and motor 402 

regions, consistent with their roles as spokes in the network. The positioning of these ROIs in 403 

embedding space and their roles as spokes are also indicated by the position of these ROIs at 404 

the edges of the 1-D representation depicted in the dendrograms of Figure 4 and 405 

Supplementary Figure 6. 406 

In lower frequency bands, by contrast, CingM along with MTGM, InsP, and InsA, presented 407 

most strongly as global hubs, with the addition of ACC in the theta band. These results are 408 

consistent with network organization depending on temporal scale, and suggests that mesial 409 

cortical structures regulate information flow on slower time scales, consistent with previous 410 

reports[10]. Thus, DME can identify band-specific topological features critical to information 411 

flow within cortical networks.  412 

 413 
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 414 

 415 

Figure 5. Identification of network hubs. a: Schematic example illustrating the central positioning of 416 

global hubs in embedding space. b: ROIs from average embedding are plotted according to their mean 417 

connectivity to the rest of the network versus their Euclidean distance to the centroid of the data cloud 418 

in the first four dimensions of embedding space. Dashed lines denote across-ROI means. Dashed ellipses 419 

represent 1 and 2 standard deviations from the mean. c: Distance to center of embedding space for 420 

each ROI in the five studied frequency bands. Distances are normalized to the median distance within 421 

each band to allow for comparison across bands.  422 
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Differences between language-dominant and non-dominant hemispheres are not specific to 423 

auditory-responsive and language-specialized ROIs 424 

On a macroscopic scale, speech and language networks are lateralized in the human brain, with 425 

nearly all right-handed and most left-handed individuals left hemisphere language-426 

dominant[91]. However, both hemispheres are activated during speech processing[33, 39, 56, 427 

92], and the extent to which lateralization is reflected in asymmetries in the organization of 428 

resting state auditory networks is unclear. We hypothesized that that we would observe 429 

asymmetry in gamma band data, specifically that ROIs would be in different positions in 430 

embedding space in the language-dominant versus non-dominant hemisphere. We investigated 431 

this issue by comparing the functional geometry of cortical networks derived from participants 432 

with electrode coverage in the language-dominant (N = 24) versus non-dominant (N = 22) 433 

hemisphere. ROIs in the two hemispheres exhibited a similar functional organization in 434 

embedding space (Supplementary Fig. 8). Permutation analysis indicated that for gamma band, 435 

the positions of ROIs in embedding space were not significantly different between dominant 436 

and non-dominant hemispheres (all p-values > 0.05). Furthermore, there was no significant 437 

correlation between the change in position in embedding space and either early or late 438 

auditory responsiveness (early: p = 0.94; late: p = 0.86; Fig. 6a). Similar results were obtained in 439 

exploratory analyses of beta band data, though one ROI (MTGP, p = 0.013) did survive false 440 

discovery rate (FDR) correction for difference in position between the two hemispheres. 441 

We also analyzed inter-ROI distances to determine whether functional interactions between 442 

ROIs were different in the two hemispheres. For gamma band, pairwise inter-ROI distances in 443 

embedding space, calculated separately for dominant versus non-dominant hemisphere, were 444 

highly correlated (r = 0.88), with no obvious outliers (Fig. 6b, left panel). The data shown in 445 

Figure 6a have a slope <1, indicating that inter-ROI distances are consistently longer in the 446 

dominant hemisphere compared to the non-dominant hemisphere (p = 0.0032). This 447 

multiplicative scaling of the distances is consistent with the data occupying a larger volume in 448 

embedding space for the dominant versus non-dominant hemisphere, suggesting a greater 449 

functional heterogeneity for the language-dominant side of the brain. After accounting for this 450 

multiplicative scaling effect, following FDR correction, there were no specific inter-ROI 451 

distances that were significantly different between the two hemispheres. Similar results were 452 

obtained in exploratory analyses of beta band data (pairwise inter-ROI distances r = 0.79; longer 453 

inter-ROI distances in dominant hemisphere p = 0.0071; no pairwise distances significant after 454 

FDR correction). 455 

When considering ROIs specifically involved in speech and language comprehension and 456 

production [PT, PP, STSL, STGP, STGM, STGA, SMG, AGA, premotor cortex (PMC), precentral 457 

gyrus (PreCG), IFGop, IFGtr][36, 42, 93], the correlation in pairwise inter-ROI distances in 458 

embedding space was also high (r = 0.90; Figure 6b). Furthermore, the data in Figure 6b 459 

exhibited a similar multiplicative scaling as observed for all the ROIs shown in Figure 6a. Indeed, 460 

the slope for the data in Figure 6b was indistinguishable from the slope for the data in Figure 6a 461 
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(p = 0.93). Similar results were obtained in exploratory analyses of beta band data (pairwise 462 

inter-ROI distance correlations r = 0.76; difference between speech and language ROIs versus 463 

others p = 0.35). Thus, hemispheric asymmetry of functional organization specific to speech and 464 

language networks was not detectable in RS connectivity. 465 

 466 

 467 

Figure 6. Hemispheric asymmetries in RS connectivity are not driven by auditory-responsive and 468 

language-specialized ROIs. Inter-ROI distances in embedding space for non-dominant versus dominant 469 

hemisphere participants. a: Comparison between the change in position in embedding space from 470 

dominant to non-dominant hemisphere and the auditory responsiveness of individual ROIs. Two-tailed 471 

Spearman’s rank tests did not reveal a significant correlation between ROI asymmetry and percentage of 472 

either early or late auditory responsive sites within the ROI (left and right panel, respectively). b: 473 
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Pairwise distances between all ROIs and between ROIs involved in speech and language perception and 474 

production (PT, PP, STSL, STGP, STGM, STGA, SMG, AGA, PMC, PreCG, IFGop, IFGtr) are shown in the left 475 

and right panel, respectively. Note that after splitting the data into the two subsets (dominant and non-476 

dominant) STSU did not meet the inclusion criteria for analysis presented in the right panel (see 477 

Methods, Supplementary Table 2).   478 
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Comparison to embeddings derived from RS-fMRI data 479 

So far, we’ve presented results at multiple spatial scales based on intracranial 480 

electrophysiology. However, these intracranial recordings sample the brain non-uniformly and 481 

sparsely as dictated by clinical considerations. This feature presents problems at two spatial 482 

scales: first, cortical regions are not sampled uniformly (with some not sampled at all). Second, 483 

ROIs are not sampled uniformly across their volume. To examine the impact of these sampling 484 

issues, we compared iEEG-based DME to DME applied to RS-fMRI data available in a subset of 485 

ten participants. 486 

We first tested the consistency of functional geometry derived from the two modalities in the 487 

same participants (Fig. 7). Connectivity matrices were constructed based on RS-fMRI data from 488 

voxels located at iEEG recording sites and grouped into the same ROIs as in Figure 1. The iEEG 489 

and fMRI embeddings averaged across participants were qualitatively similar (Fig. 7a, b), and 490 

the overall organization derived from this subset was consistent with that observed in the full 491 

iEEG dataset (cf. Fig. 3b). Inter-ROI distances in the fMRI and iEEG embedding spaces were 492 

correlated (Fig. 7c). These correlations varied across band, with highest correlations for gamma 493 

and high gamma band envelopes (r > 0.45; Fig. 7d, line and symbols), consistent with previous 494 

reports[80, 94].  495 

The analysis presented in Figure 7 provide a context for using fMRI data to address questions 496 

regarding the effects of limited, non-uniform sampling. We used a standard parcellation 497 

scheme developed for fMRI data (Schaefer-Yeo 400 ROIs;[88]) rather than the iEEG parcellation 498 

scheme introduced in Figure 1.  499 

The first question we addressed was the effect of non-uniformly sampling only a subset of brain 500 

regions. For each participant, embeddings were derived from RS-fMRI connectivity matrices 501 

computed from all cortical ROIs (Fig. 8a, “Full fMRI”, first column). From these embeddings, we 502 

selected only points in embedding space corresponding to ROIs sampled with iEEG (Fig. 8a, “Full 503 

fMRI (iEEG subset)”, second column). We also computed embeddings for each subject from 504 

only the fMRI ROIs sampled with iEEG in that subject [“Partial fMRI (ROI level)”, Fig. 8a, 3rd 505 

column]. We compared these embeddings to the “Full fMRI (iEEG subset)” embeddings by 506 

computing the correlation between inter-ROI distances (Fig. 8b). Although the scale of the 507 

embeddings was different for the full fMRI versus partial fMRI data (because the number of 508 

dimensions was different), the two were highly correlated (median r = 0.90; Fig. 8c). Thus, 509 

embeddings constructed from the portion of the brain sampled by iEEG were quite similar to 510 

embeddings derived from the whole brain. 511 

The second question we addressed was the effect of representing an entire ROI by sparse 512 

sampling with a limited number of electrodes. We computed embeddings from the voxel 513 

averages across entire ROIs in each participant [“Partial fMRI (ROI level)”, Fig. 8a, 3rd column] 514 

and from averages of the voxels in grey-matter spheres around iEEG recording sites [“Partial 515 
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fMRI (site level)”, Fig. 8a, rightmost column]. ROI- and site-level embedding distances were 516 

strongly correlated (median r = 0.65; Fig. 8c). 517 

Thus, sparse sampling within an ROI had a greater impact on estimates of functional geometry 518 

than limited sampling of the complete set of ROIs. Overall, however, ROIs were faithfully 519 

represented in embedding space even when DME was based on a small number of locations 520 

within ROIs. Taken together, these results indicate broad consistency between functional 521 

organization derived from iEEG and fMRI and the robustness of this approach to sparse 522 

sampling afforded by iEEG recordings.  523 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2023. ; https://doi.org/10.1101/2022.02.06.479292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/


 524 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2023. ; https://doi.org/10.1101/2022.02.06.479292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/


Figure 7. Comparison of iEEG and fMRI connectivity data in embedding space. a: Participant-averaged 525 

embeddings for iEEG (gamma band power envelope correlations). b: Participant-averaged embeddings 526 

for fMRI. c: Inter-ROI embedding distances computed from the data in a and b. d: Summary of distance 527 

correlations at each frequency band.   528 
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 529 

 530 

Figure 8. Comparison of embeddings derived from full fMRI connectivity matrices and connectivity 531 

matrices computed using only ROIs sampled with iEEG. a: Data in the first four dimensions of embedding 532 

space for a single participant. Shown are embeddings of all derived from the full RS-fMRI connectivity 533 

matrix (1st column); the subset of the data points in the 1st column corresponding to ROIs sampled via 534 

iEEG (2nd column); and embeddings derived from connectivity matrices including only the ROIs sampled 535 

via iEEG, calculated by averaging across the entire ROI (3rd column), and calculated based on the specific 536 

recording sites in that participant (4th column). b: Comparison of embedding distances calculated from 537 

the full fMRI embedding (i.e., data in a, 2nd column) versus distances calculated from the partial fMRI 538 

embedding (i.e., data in a, 3rd column). c: Summary across participants of distance correlations between 539 

full fMRI embeddings versus partial embeddings calculated based on the entire ROI (left: “Full vs. Partial 540 

(ROI)”) and between partial embeddings calculated based on the entire ROI versus those calculated 541 

based on recording sites [i “Partial (ROI) vs. Partial (site)”].  542 
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Discussion 543 

Organization of auditory cortical networks 544 

We have shown that DME applied to iEEG data can be used to characterize the organization of 545 

the human auditory cortical hierarchy at multiple spatial scales. We demonstrate methodology 546 

for testing specific hypotheses about gamma band data at each of these scales using DME. We 547 

also use exploratory analyses (e.g., hierarchical clustering, analyses of other frequency bands) 548 

to generate data-driven hypotheses for study using future data sets. 549 

 550 

Investigating cortical network organization using resting state data 551 

The results presented here are based on analysis of resting state (i.e., task-free) data. 552 

Relationships between brain signals recorded at different locations derive from synaptic 553 

connections between neurons in those locations. Thus, these data provide valuable information 554 

about the underlying brain organization despite the absence of a task or a controlled sensory 555 

stimulus. The same areas that are co-activated during sensory processing exhibit resting state 556 

connectivity with each other, and resting state networks map onto relevant behavioral and 557 

task-related domains [2, 3]. Numerous previous studies based on BOLD fMRI have used 558 

analyses of resting state activity to gain insight into the organization of human brain networks 559 

and how this organization is altered due to brain disorders, during development and ageing, 560 

and in response to pharmacological treatments [22, 26, 95-99].  561 

A key advantage of resting state analyses is that they are based data that is far more stationary 562 

compared to data derived from task-based experiments. In the case of sensory regions, this 563 

avoids a confound inherent to investigations of connectivity in the presence of a stimulus, 564 

which itself would produce correlated activity at directly driven sites. That is, two unconnected 565 

sites in the brain driven by the same sensory stimulus will exhibit apparent connectivity solely 566 

due to the stimulus, in the absence of a physical connection between the sites. Additionally, 567 

resting state analyses typically can draw on considerably more data than is available from task-568 

based experiments, allowing for better estimates of connectivity.  569 

As in previous studies, we provide a snapshot of the organization of these networks, 570 

corresponding to a static representation. However, these networks are dynamic due to short- 571 

and long-term plasticity driven both by internal (e.g., changes in arousal state) and external 572 

factors (e.g., sensory stimulation and directed behavior). The organization derived from studies 573 

such as this one provides a framework for understanding these dynamics. 574 

 575 

Frequency band-specific properties of cortical networks 576 

Previous reports have shown that cortical networks defined by functional or effective 577 

connectivity derived from electrophysiological data exhibit organizational structure that 578 
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depends on the frequency band being analyzed. This manifests in two ways relevant to the 579 

results presented here. First, canonical resting state networks originally identified using resting 580 

state BOLD fMRI data vary across band in the strength of within-network connectivity and in 581 

the relationship between electrophysiological- and fMRI-derived connectivity networks [10, 80]. 582 

Second, detailed analyses of the relationship between anatomical projection patterns and 583 

functional or effective connectivity indicate that especially in auditory and visual cortical 584 

hierarchies, feedforward information streams rely on connectivity primarily in gamma and high-585 

gamma bands, while lower frequency bands (alpha, beta) underlie feedback connectivity[11-586 

19]. Based on these previous reports, we suggest that the gamma band organization that is the 587 

focus of the current report reflects feedforward connectivity. Indeed, the auditory 588 

responsiveness profile depicted in Figure 4b is most strongly predicted by clustering analysis 589 

applied to gamma and high-gamma band data in embedding space. Results for other bands 590 

differed from gamma band results especially in the identity of network hubs (Figure 5), where 591 

middle cingulate cortex emerged as the ROI with the most pronounced ‘hubness’. By contrast, 592 

the overall organization features considered at various spatial scales did not differ strongly 593 

between bands, suggesting that while temporal scale is an important contributor to network 594 

organization, functional connectivity on these different scales tends to overlap. In the case of 595 

comparisons between feedforward and feedback networks, this is consistent with the tendency 596 

of cortical areas to be coupled bidirectionally[100]. 597 

 598 

Fine scale: Organization of auditory cortex 599 

At a fine spatial scale, previous work in non-human primates has defined over a dozen auditory 600 

cortical fields based on cytoarchitectonics, connectivity, and response properties[101]. By 601 

contrast, there is no consensus on how auditory cortex is organized in humans, with multiple 602 

parcellations based on cytoarchitectonics, tonotopy or myeloarchitecture[102-105]. Our results 603 

contribute to this body of knowledge by showing that several superior temporal ROIs including 604 

core auditory cortex (HGPM) and putative auditory belt and parabelt areas (PT, HGAL, 605 

STGM)[102, 105] group together in embedding space across all frequency bands. Thus, in spite 606 

of their diversity in processing of specific features of acoustic signals, these ROIs are positioned 607 

at a similar level in the auditory cortical hierarchy. Other regions, such as STGP and STSU, group 608 

with these cortical ROIs in theta, gamma, and high-gamma, but not in alpha and beta. For 609 

gamma band, proximity of STGP and STGM to HGPM in embedding space is consistent with 610 

previous studies that interpret these regions as relatively early non-core auditory cortex[29, 611 

106, 107]. By contrast, although PP is anatomically close and connected to HGPM[108], for both 612 

gamma and beta band it was not close to HGPM in embedding space. PP is distinguished among 613 

auditory cortical regions for its syntactic-level language processing[30] and its preferential 614 

activation by music, which has a strong affective component[31]. This functional differentiation 615 

is reflected in its segregation from the group of auditory cortical ROIs in embedding space. 616 

 617 
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Fine scale: Functional differentiation between STSU and STSL 618 

The superior temporal sulcus is a critical node in speech and language networks linking 619 

canonical auditory cortex with higher order temporal, parietal, and frontal areas[22, 33-37]. 620 

Previous studies have shown that STSU and STSL differ in cytoarchitecture[109] and have 621 

distinct responses to speech[27, 57, 110, 111]. A recent iEEG study demonstrated enhanced, 622 

shorter-latency responses to speech syllables in STSU compared to STSL[23]. STSU is 623 

traditionally not considered part of canonical auditory cortex (but see[103]), yet it was located 624 

close to auditory cortical ROIs in embedding space in gamma band. STSL, by contrast, was 625 

closer in embedding space to semantic ROIs in both beta and gamma band. This is consistent 626 

with iEEG evidence that responses in STSL, but not STSU, correlated with performance on a 627 

semantic categorization task[23]. The regions specifically involved in semantic processing is a 628 

current topic of debate, with multiple competing models[21, 76-78]. We defined a list of 629 

semantic processing regions by combining across these models. Taken together, the results 630 

firmly place STSU and STSL at different levels of the auditory cortical hierarchy defined by 631 

gamma band connectivity.  632 

Mesoscale: Functional and theoretical framework of a limbic auditory pathway 633 

Multiple lines of evidence support a pathway linking auditory cortical and limbic structures[112-634 

115] that subserves auditory memory[45, 48, 49] and affective sound processing[116]. The data 635 

presented here contribute to our understanding of this pathway. Clustering analysis identified a 636 

set of ROIs including structures classically labeled as limbic (PHG, Amy, Hipp) as well as insula 637 

(InsP, InsA) and TP positioned close to the auditory cluster in embedding space for both gamma 638 

and beta bands (Fig. 4; Supplementary Fig. 4). This suggests a close functional relationship that 639 

could form the basis for a limbic stream. InsP, with strong auditory responsiveness and 640 

overlapping response properties with HGPM, is likely involved in the transformation of auditory 641 

information in auditory cortex to affective representations in InsA[32]. Thus, InsP could serve as 642 

critical linking node between auditory and limbic structures.  643 

TP is involved in semantic processing[21, 30] and auditory memory[117], in particular the 644 

representation and retrieval of memories for people, social language, and behaviors (‘social 645 

knowledge’)[118]. Tight clustering of TP with limbic ROIs in embedding space is consistent with 646 

its previously reported functional association with limbic cortex[119, 120], with which TP shares 647 

key features of laminar cytoarchitecture and strong connectivity[121]. We suggest that the 648 

organization depicted in Figures 3 and 4, combined with evidence for bidirectional information 649 

sharing between auditory cortex and limbic areas, merits the identification of a third auditory 650 

processing stream alongside the dorsal and ventral streams[38, 122]. This ‘limbic stream’ would 651 

underlie auditory contributions to affective and episodic memory processing.  652 

 653 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2023. ; https://doi.org/10.1101/2022.02.06.479292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/


Mesoscale: Ventral and dorsal streams linking auditory and frontal cortex 654 

Current models of speech and language processing posit the existence of ventral and dorsal 655 

processing streams linking non-core auditory cortex with PMC and inferior frontal gyrus via 656 

several distinct anatomical pathways encompassing temporal, parietal, and frontal cortex[36, 657 

38-40]. Despite substantial experimental evidence supporting these models, there is a lack of 658 

consensus on the specific functions subserved by the two streams. For example, while there is 659 

consensus that the ventral stream subserves auditory object identification (“what” processing), 660 

the dorsal stream has been envisioned to subserve spatial processing (“where”[38]) and 661 

audiomotor processing[39]. There is a parallel debate about the specific cortical regions 662 

comprising the two streams.  663 

As broadly predicted by these models, temporal and parietal ROIs segregated in embedding 664 

space in the analysis presented here (Fig. 3b, 4; Supplementary Figs. 4 & 6). Across frequency 665 

bands, we observed a cluster that included STSL and ATL ROIs, in conformity with the ventral 666 

auditory stream proposed by Hickok and Poeppel[39] and Friederici[40]. By contrast, the cluster 667 

that included SMG, AGP, and AGA aligned with the dorsal processing stream as proposed by 668 

Rauschecker and Scott[38]. The proximity of these dorsal ROIs to sensorimotor ROIs is 669 

consistent with sensorimotor contributions to dorsal stream processing[43, 123]. Association of 670 

FG and MOG with the ventral and dorsal clusters, respectively, likely represents the sharing of 671 

information across sensory modalities. For example, visual information has been shown to 672 

contribute to processing in the ventral (“what”) pathway[124, 125]. 673 

A previous fMRI-based DME study found that primary sensory and default mode ROIs 674 

segregated along the first dimension in embedding space[25]. Coverage of mesial cortex in our 675 

dataset was limited, precluding a direct comparison. However, the striking separation between 676 

auditory and prefrontal cortex in embedding space shown here indicate that the current results 677 

align well with the previous report. This separation places auditory and frontal regions at 678 

opposite ends of a cortical hierarchy, linked by ventral and dorsal processing streams[38-40].  679 

 680 

Mesoscale: Network hubs 681 

Hubs in brain networks play a critical role in integrating distributed neural activity[89, 126]. In 682 

the present analysis, global hubs were characterized by their central location within embedding 683 

space (Fig. 5). In the gamma band, these hubs included STGA and MTGA, both components of 684 

the ATL. Previous reports indicate that ATL serves as a transmodal hub, transforming sensory 685 

domain-specific to domain-general representations[21, 127, 128] and playing a central role in 686 

semantic processing and social memory[21, 118, 129]. MTGM also appears as a global hub, 687 

even though it is anatomically distinct from the ATL. Interestingly, patients with semantic 688 

dementia have ATL degeneration[130, 131], but the damage is often more widespread and can 689 

include MTGM[132].  690 
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Cingulate cortical ROIs (CingM, ACC) and insula were identified as hubs in lower frequency 691 

bands. CingM and ACC are described as transmodal and are active during a wide array of 692 

emotional and cognitive processes[133, 134], both consistent with their previous 693 

characterization as network hubs[126]. The identification of hubs specific to each frequency 694 

band supports the model in which the temporal scale of communication in the brain supports 695 

distinct functional networks[80-82, 135]. Also consistent with this model is the frequency band-696 

specific correspondence between iEEG and fMRI connectivity observed here (Fig. 7d) and in 697 

previous reports[80, 94]. Strong correspondence between BOLD fMRI connectivity and higher 698 

frequency band envelope correlations in iEEG are observed, while the correspondence for theta 699 

and alpha bands is usually still positive but lower in magnitude. Of note, this frequency 700 

dependence of connectivity is distinct from previous observations of a frequency-dependent 701 

correspondence between iEEG power and BOLD fMRI signal magnitude[136]. This relationship 702 

for connectivity also depends on brain location[80]. Because we did analyze the relationship 703 

between fMRI and iEEG in a region-specific manner, the results presented here represent an 704 

average analysis over all sampled brain regions.  705 

Unlike other ATL structures, TP does not present as a global hub in any frequency band (Fig. 5c). 706 

The close association of TP with limbic structures in embedding space suggests that TP 707 

mediates interactions between transmodal integration centers in the ATL and structures 708 

subserving memory functions. More broadly, the heterogeneity of ATL ROIs in terms of their 709 

global hub-like connectivity profiles conforms to the observation that the terminal fields of 710 

white matter tracts converging in the ATL only partially overlap[21, 137, 138].  711 

 712 

Macroscale: Hemispheric lateralization 713 

Although speech and language networks are classically described as highly lateralized, imaging 714 

studies have demonstrated widespread bilateral activation during speech and language 715 

tasks[52-54]. Indeed, a recent fMRI study showed RS connectivity patterns in lateral temporal 716 

cortex that were comparable between left and right hemispheres[6]. We found evidence for 717 

hemispheric differences in RS cortical functional organization based on analysis of all sampled 718 

brain regions, with inter-ROI distances being systematically greater in embedding space for the 719 

language-dominant hemisphere (Fig. 6b). This is consistent with greater inter-regional 720 

heterogeneity in that hemisphere compared to the non-dominant side. Importantly, the 721 

observed asymmetry could not be attributed specifically to ROIs involved in speech and 722 

language processing (Fig. 6b), nor was the difference in position in embedding space related to 723 

auditory responsiveness (Fig. 6a).  724 

Recent studies that identified hemispheric differences in RS connectivity for the STS[22] and 725 

semantic networks more broadly[139] may reflect the general asymmetry observed here. This 726 

asymmetry may relate as well to the dichotomy between domain-specific (e.g., sensory 727 

processing) and domain-general (e.g., attention, working memory) cortical systems. In 728 
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particular, studies have emphasized that domain-general systems also exhibit hemispheric 729 

laterality[140, 141], suggesting that the asymmetry observed here may reflect this broader 730 

organization feature. This does not exclude the possibility of asymmetries specific to auditory 731 

regions emerging during sensory tasks, for example reflecting hemispheric biases in spectral 732 

and temporal processing[39, 42]. 733 

 734 

Caveats & limitations 735 

A key concern regarding all human iEEG studies is that participants may not be representative 736 

of a healthy population. In the present study, results were consistent across participants 737 

despite differences in seizure disorder histories, medications, and seizure foci, and aligned with 738 

results obtained previously in healthy participants[25]. Another caveat is that our dataset, 739 

however extensive, did not sample the entire brain, and it was not possible to infer connectivity 740 

with unsampled regions. To address this, we applied DME analysis to fMRI data to establish that 741 

the organization of ROIs in embedding space was robust to the exclusion of unsampled ROIs. 742 

Although there was a greater effect of sparse, non-uniform sampling within an ROI, there was 743 

still considerable similarity in functional organization to embeddings derived from averages 744 

across the entire ROI  745 

While subcortical structures (e.g., thalamus) that link sensory and higher order networks[142] 746 

were not sampled, the functional organization presented here was likely influenced indirectly 747 

by thalamo-cortical pathways[29, 143]. Previous fMRI studies of RS networks focused 748 

exclusively on cortical ROIs and did not consider the role of the thalamus and other subcortical 749 

structures. Despite this limitation, these studies have yielded valuable insights into the 750 

functional organization of the human cortical networks[1, 144]. 751 

 752 

Concluding remarks and future directions 753 

This study extends the DME approach to characterize functional relationships between cortical 754 

regions investigated using iEEG recordings. These data help resolve several outstanding issues 755 

regarding the functional organization of human auditory cortical networks and stress the 756 

importance of a limbic pathway complementary to the dorsal and ventral streams. These 757 

results lay the foundation for future work investigating network organization during active 758 

speech and language processing. The superior time resolution of electrophysiological data 759 

allows for dynamic connectivity analysis on time scales relevant to this processing. An 760 

important next step for this work is to adapt this analysis to scalp EEG recordings, which offer 761 

considerable advantages over fMRI in terms of accessibility and cost. While the current work 762 

focused on auditory cortical networks, this approach can be readily generalized to advance our 763 

understanding of changes in brain organization during sleep and anesthesia, disorders of 764 

consciousness, as well as reorganization of cortical functional geometry secondary to lesions.  765 
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Materials and Methods 766 

Ethics Statement 767 

Research protocols aligned with best practices recently aggregated in[145] and were approved 768 

by the University of Iowa Institutional Review Board and the National Institutes of Health; 769 

written informed consent was obtained from all participants. Research participation did not 770 

interfere with acquisition of clinically necessary data, and participants could rescind consent for 771 

research without interrupting their clinical management. 772 

 773 

Participants 774 

The study was carried out in 49 neurosurgical patients (22 females) diagnosed with medically 775 

refractory epilepsy. The patients were undergoing chronic invasive electrophysiological 776 

monitoring to identify seizure foci prior to resection surgery (Supplementary Table 1). All 777 

participants except two were native English speakers. The participants were predominantly 778 

right-handed (42 out of 49); six participants were left-handed, and one had bilateral 779 

handedness. The majority of participants (35 out of 49) were left language-dominant, as 780 

determined by Wada test. Two participants were right hemisphere-dominant, and one had 781 

bilateral language dominance. The remaining 11 participants were not evaluated for language 782 

dominance; 9 of them were right-handed and thus were assumed left language-dominant for 783 

the purposes of the analysis of lateralization (see below). The participant with bilateral 784 

dominance, and the remaining two participants who did not undergo Wada test and who were 785 

left-handed were not included in the analysis of hemispheric asymmetry in Figure 6. All 786 

participants underwent audiological and neuropsychological assessment prior to electrode 787 

implantation, and none had auditory or cognitive deficits that would impact the results of this 788 

study. The participants were tapered off their antiepileptic drugs during chronic monitoring 789 

when RS data were collected.  790 

 791 

Experimental procedures 792 

Pre-implantation neuroimaging. All participants underwent whole-brain high-resolution T1-793 

weighted structural MRI scans before electrode implantation. In a subset of ten participants (     794 

Supplementary Table 2), RS-fMRI data were used for estimates of functional connectivity. The 795 

scanner was a 3T GE Discovery MR750W with a 32-channel head coil. The pre-electrode 796 

implantation anatomical T1 scan (3D FSPGR BRAVO sequence) was obtained with the following 797 

parameters: FOV = 25.6 cm, flip angle = 12 deg., TR = 8.50 ms, TE = 3.29 ms, inversion time = 798 

450 ms, voxel size = 1.0 × 1.0 × 0.8 mm. For RS-fMRI, 5 blocks of 5-minute gradient-echo EPI 799 

runs (650 volumes) were collected with the following parameters: FOV = 22.0 cm, TR = 2260 800 

ms, TE = 30 ms, flip angle = 80 deg., voxel size = 3.45 × 3.45 × 4.0 mm. In some cases, fewer RS 801 

acquisition sequences were used in the final analysis due to movement artifact or because the 802 
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full scanning session was not completed. For each participant, RS-fMRI runs were acquired in 803 

the same session but non-contiguously (dispersed within an imaging session to avoid 804 

habituation). Participants were asked to keep their eyes open, and a fixation cross was 805 

presented through a projector. 806 

iEEG recordings. iEEG recordings were obtained using either subdural and depth electrodes, or 807 

depth electrodes alone, based on clinical indications. Electrode arrays were manufactured by 808 

Ad-Tech Medical (Racine, WI). Subdural arrays, implanted in 36 participants out of 46, consisted 809 

of platinum-iridium discs (2.3 mm diameter, 5-10 mm inter-electrode distance), embedded in a 810 

silicon membrane. Stereotactically implanted depth arrays included between 4 and 12 811 

cylindrical contacts along the electrode shaft, with 5-10 mm inter-electrode distance. A 812 

subgaleal electrode, placed over the cranial vertex near midline, was used as a reference in all 813 

participants. All electrodes were placed solely on the basis of clinical requirements, as 814 

determined by the team of epileptologists and neurosurgeons[146].  815 

No-task RS data were recorded in the dedicated, electrically shielded suite in The University of 816 

Iowa Clinical Research Unit while the participants lay in the hospital bed. RS data were collected 817 

6.4 +/- 3.5 days (mean ± standard deviation; range 1.5 – 20.9) after electrode implantation 818 

surgery. In the first 15 participants (L275 through L362), data were recorded using a TDT RZ2 819 

real-time processor (Tucker-Davis Technologies, Alachua, FL). In the remaining 34 participants 820 

(R369 through L585), data acquisition was performed using a Neuralynx Atlas System 821 

(Neuralynx Inc., Bozeman, MT). Recorded data were amplified, filtered (0.7–800 Hz bandpass, 5 822 

dB/octave rolloff for TDT-recorded data; 0.1–500 Hz bandpass, 12 dB/octave rolloff for 823 

Neuralynx-recorded data) and digitized at a sampling rate of 2034.5 Hz (TDT) or 2000 Hz 824 

(Neuralynx). In all but two participants, recording durations were between 10 and 18 minutes, 825 

the median was 10; in one participant duration was 6 min., and in one participant the duration 826 

was 81 min.  827 

 828 

Data analysis 829 

Anatomical reconstruction and ROI parcellation. Localization of recording sites and their 830 

assignment to ROIs relied on post-implantation T1-weighted anatomical MRI and post-831 

implantation computed tomography (CT). All images were initially aligned with pre-operative T1 832 

scans using linear coregistration implemented in FSL (FLIRT)[147]. Electrodes were identified in 833 

the post-implantation MRI as magnetic susceptibility artifacts and in the CT as metallic 834 

hyperdensities. Electrode locations were further refined within the space of the pre-operative 835 

MRI using three-dimensional non-linear thin-plate spline warping[148], which corrected for 836 

post-operative brain shift and distortion. The warping was constrained with 50-100 control 837 

points, manually selected throughout the brain, which were visually aligned to landmarks in the 838 

pre- and post-implantation MRI. 839 
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Electrode locations were mapped into a common anatomical template space using a 840 

combination of surface-based and volumetric coregistration. Automated identification and 841 

parcellation of the cortical surface within T1-weighted images was carried out with FreeSurfer 842 

[149, 150]. Electrodes were assigned anatomical labels within the parcellation scheme of 843 

Destrieux et al. [151, 152], according to the label of the nearest vertex (within the T1 image 844 

space) of the cortical surface mesh generated by FreeSurfer. Labeling was visually inspected 845 

and corrected whenever the automated parcellation did not conform to expected gyral 846 

boundaries. Volumetric mapping of T1 images to the MNI-152 space relied on automated linear 847 

coregistration implemented in the fsl_anat pipeline of the FSL toolbox [153]. Electrode 848 

coordinates in MNI-152 space were obtained by applying the resulting transformation to the 849 

coordinates from the T1 image space. 850 

To pool data across participants, the dimensionality of connectivity matrices was reduced by 851 

assigning electrodes to one of 58 ROIs organized into 6 ROI groups (see Fig. 1; Supplementary 852 

Table 2, 3) based upon anatomical reconstructions of electrode locations in each participant. 853 

For subdural arrays, ROI assignment was informed by automated parcellation of cortical 854 

gyri[151, 152] as implemented in the FreeSurfer software package. For depth arrays, it was 855 

informed by MRI sections along sagittal, coronal, and axial planes. For recording sites in 856 

Heschl’s gyrus, delineation of the border between core auditory cortex and adjacent non-core 857 

areas (HGPM and HGAL, respectively) was performed in each participant using physiological 858 

criteria[154, 155]. Specifically, recording sites were assigned to HGPM if they exhibited phase-859 

locked (frequency-following) responses to 100 Hz click trains and if the averaged evoked 860 

potentials to these stimuli featured short-latency (<20 ms) peaks. Such response features are 861 

characteristic for HGPM and are not present within HGAL[154]. Additionally, correlation 862 

coefficients between average evoked potential waveforms recorded from adjacent sites were 863 

examined to identify discontinuities in response profiles along Heschl’s gyrus that could be 864 

interpreted as reflecting a transition from HGPM to HGAL. Superior temporal gyrus was 865 

subdivided into posterior and middle non-core auditory cortex ROIs (STGP and STGM), and 866 

auditory-related anterior ROI (STGA) using the transverse temporal sulcus and ascending ramus 867 

of the Sylvian fissure as macroanatomical boundaries. The insula was subdivided into posterior 868 

and anterior ROIs, with the former considered within the auditory-related ROI group[32]. 869 

Middle and inferior temporal gyrus were each divided into posterior, middle, and anterior ROIs 870 

by diving the gyrus into three approximately equal-length thirds. Angular gyrus was divided into 871 

posterior and anterior ROIs using the angular sulcus as a macroanatomical boundary. Anterior 872 

cingulate cortex was identified by automatic parcellation in FreeSurfer and was considered as 873 

part of the prefrontal ROI group, separately from the rest of the cingulate gyrus. Postcentral 874 

and precentral gyri were each divided into ventral and dorsal portions using the zMNI coordinate 875 

(see below) of 40 mm as a boundary. Recording sites identified as seizure foci or characterized 876 

by excessive noise, or outside brain, were excluded from analyses and are not listed in 877 

Supplementary Table 2. Depth electrode contacts localized to the white matter were also 878 

excluded. Location within cortical white matter was determined based on visual inspection of 879 
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anatomical reconstruction data (MRI sections along sagittal, coronal, and axial planes) as done 880 

in our previous studies (e.g., [62]). Electrode coverage was largely restricted to a single 881 

hemisphere in individual participants, and contacts on the contralateral hemisphere were 882 

excluded from analysis (and are not listed in Supplementary Table 2) such that all connections 883 

represent intra-hemisphere functional connectivity. 884 

Preprocessing of fMRI data. Standard preprocessing was applied to the RS-fMRI data acquired 885 

in the pre-implantation scan using FSL’s FEAT pipeline, including spatial alignment and nuisance 886 

regression. White matter, cerebrospinal fluid and global ROIs were created using deep white 887 

matter, lateral ventricles and a whole brain mask, respectively. Regression was performed using 888 

the time series of these three nuisance ROIs as well as 6 motion parameters (3 rotations and 3 889 

translations) and their derivatives, detrended with second order polynomials. Temporal 890 

bandpass filtering was 0.008–0.08 Hz. Spatial smoothing was applied with a Gaussian kernel (6 891 

mm full-width at half maximum). The first two images from each run were discarded. Frame 892 

censoring was applied when the Euclidean norm of derivatives of motion parameters exceeded 893 

0.5 mm[156]. All runs were processed in native EPI space, then the residual data were 894 

transformed to MNI152 and concatenated.  895 

Preprocessing of iEEG data. Analysis of iEEG data was performed using custom software written 896 

in MATLAB Version 2020a programming environment (MathWorks, Natick, MA, USA). After 897 

initial rejection of recording sites identified as seizure foci, several automated steps were taken 898 

to exclude recording channels and time intervals contaminated by noise. First, channels were 899 

excluded if average power in any frequency band [broadband, delta (1-4 Hz), theta (4-8 Hz), 900 

alpha (8-13Hz), beta (13-30 Hz), gamma (30-50 Hz), or high gamma (70-110 Hz); see below] 901 

exceeded 3.5 standard deviations of the average power across all channels for that participant. 902 

Next, transient artifacts were detected by identifying voltage deflections exceeding 10 standard 903 

deviations on a given channel. A time window was identified extending before and after the 904 

detected artifact until the voltage returned to the zero-mean baseline plus an additional 100 ms 905 

buffer before and after. High-frequency artifacts were also removed by masking segments of 906 

data with high gamma power exceeding 5 standard deviations of the mean across all segments. 907 

Only time bins free of these artifact masks were considered in subsequent analyses. Artifact 908 

rejection was applied across all channels simultaneously so that all connectivity measures were 909 

derived from the same time windows. Occasionally, particular channels survived the initial 910 

average power criteria yet had frequent artifacts that led to loss of data across all the other 911 

channels. There is a tradeoff in rejecting artifacts (losing time across all channels) and rejecting 912 

channels (losing all data for that channel). If artifacts occur on many channels, there is little 913 

benefit to excluding any one channel. However, if frequent artifacts occur on one or 914 

simultaneously on up to a few channels, omitting these can save more data from other 915 

channels than those channels contribute at all other times. We chose to optimize the total data 916 

retained, channels × time windows, and omitted some channels when necessary.  917 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2023. ; https://doi.org/10.1101/2022.02.06.479292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/


On occasion, noise from in-room clinical equipment and muscle artifacts appeared in the data 918 

as shared signals across channels. These types of noise are typically broadband, and can be 919 

detected via analysis of frequencies higher than those of interest here. To remove these signals, 920 

data from retained channels were high-pass filtered above 200 Hz, and a spatial filter was 921 

derived from the singular value decomposition omitting the first singular vector. This spatial 922 

filter was then applied to the broadband signal to remove this common signal.  923 

Connectivity analysis. For RS-fMRI data, BOLD signals were averaged across voxel groupings and 924 

functional connectivity was calculated as Pearson correlation coefficients. Voxel groupings were 925 

either based on the Schaefer-Yeo 400 parcellation scheme[88] in MNI-152 space, or were based 926 

on iEEG electrode location in participant space (see Fig. 1). For the latter, fMRI voxels were 927 

chosen to represent comparable regions of the brain recorded by iEEG electrodes. For each 928 

electrode, the anatomical coordinates of the recording site were mapped to the closest valid 929 

MRI voxel, E, and a sphere of 25 voxels (25 mm
3
) centered on E used as the corresponding 930 

recording site. This process was repeated for all N electrodes in the same ROI, and a single time 931 

series computed as the average of the fMRI BOLD signal in these N×25 voxels. These averages 932 

were used to compute an ROI-by-ROI connectivity matrix for RS-fMRI data. For comparisons 933 

between iEEG and fMRI embeddings, voxels were processed in participant space and ROI labels 934 

from the parcellation scheme illustrated in Figure 1 and Supplementary Table 2 were applied to 935 

the fMRI data. For comparisons between fMRI embeddings derived from all cortical ROIs versus 936 

fMRI embeddings derived from just ROIs sampled in the iEEG experiments, electrode locations 937 

were transformed from participant space to MNI-152 space, then assigned to ROIs within the 938 

Schaefer-Yeo 400 scheme.  939 

Connectivity was measured for iEEG data using orthogonalized band power envelope 940 

correlation[68]. This measure avoids artifacts due to volume conduction by discounting 941 

connectivity near zero phase lag. Data were divided into 60-second segments, pairwise 942 

connectivity estimated in each segment, and then connectivity estimates averaged across all 943 

segments for that subject. Power envelope correlations were calculated using a method similar 944 

to [68], except time-frequency decomposition was performed using the demodulated band 945 

transform[157] rather than wavelets. This measure avoids artifacts due to volume conduction 946 

by discounting connectivity near zero phase lag. For each frequency band (theta, alpha, beta, 947 

gamma; high gamma), the power at each time bin was calculated as the average (across 948 

frequencies) log of the squared amplitude. For each pair of signals X and Y, one was 949 

orthogonalized to the other by taking the magnitude of the imaginary component of the 950 

product of one signal with the normalized complex conjugate of the other:  951 

����� �  |Im�� � 	�/|	|�| 
Both signals were band-pass filtered (0.2 – 1 Hz), and the Pearson correlation calculated 952 

between signals. The process was repeated by orthogonalizing in the other direction and the 953 

overall envelope correlation for a pair of recording sites was the average of the two Pearson 954 

correlations. Lastly, correlations were averaged across segments. 955 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2023. ; https://doi.org/10.1101/2022.02.06.479292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/


Connectivity matrices were thresholded prior to diffusion map embedding to reduce the 956 

contribution of spurious connections to the analysis. We balanced our desire to minimize noisy 957 

connections while maintaining a connected graph (i.e., that that there are no isolated nodes; 958 

required by DME[59]) by saving at least the top third (rounded up) connections for every row, 959 

as well as their corresponding columns (to preserve symmetry). To ensure that the graph was 960 

connected after thresholding, we also included any connections making up the minimum 961 

spanning tree of the graph represented by the elementwise reciprocal of the connectivity 962 

matrix to ensure the graph is connected. 963 

ROI-based connectivity analysis. Connectivity between ROIs was computed as the average 964 

envelope correlation between all pairs of recording sites in the two ROIs. For analyses in which 965 

connectivity was summarized across participants (Fig. 3-8), we used only a subset of ROIs such 966 

that every possible pair of included ROIs was represented in at least two participants 967 

(Supplementary Table 2). This list of ROIs was obtained by iteratively removing ROIs with the 968 

worst cross-coverage with other ROIs until every ROI remaining had sufficient coverage with all 969 

remaining ROIs. 970 

Diffusion map embedding. See the Appendix I for details about DME.  971 

In brief, the functional connectivity is transformed by applying cosine similarity[25] to yield the 972 

similarity matrix K = [k(i,j)]. This matrix then normalized by degree to yield a matrix P = D
-1

K, 973 

where D is the degree matrix, i.e. the diagonal elements of D = ∑ 
��, ���
��	 , where N is the 974 

number of recording sites, and the off-diagonal elements of D are zero. If the recording sites 975 

are conceptualized as nodes on a graph with edges defined by K, then P can be understood as 976 

the transition probability matrix for a ‘random walk’ or a ‘diffusion’ on the graph (see Appendix 977 

I;[59, 60]). DME consists of mapping the recording sites into an embedding space using an 978 

eigendecomposition of P,  979 

Ψ
(t)

(xi) = [λ1
t
ψ1(xi), λ2

t
ψ2(xi), …, λM

t
ψM(xi)]

T
 , 980 

where ψj are the eigenvectors of P.  981 

The parameter t corresponds to the number of steps in the diffusion process (random walk on 982 

the graph). The coordinates of the data in embedding space are scaled according to λi
t
, where λi 983 

is the eigenvalue of the i
th

 dimension being scaled. Thus, the value of t sets the spatial scale of 984 

the analysis, with higher values de-emphasizing smaller eigenvalues. Because |λi|<1 ∀ i, at 985 

higher values of t each dimension will be scaled down (‘collapse’), with the dimension 986 

corresponding to max(|λi|) (i.e., λ1) scaled the least. For t > 5 in this dataset, the data collapses 987 

onto the single dimension of the largest eigenvalue. Because we wished to explore the 988 

structure of the data over multiple dimensions, we restricted our analyses to smaller values of 989 

t. Here, we present data for t = 1.  990 

DME can be implemented alternatively based on a symmetric version of diffusion matrix Psymm 991 

= D
-0.5

KD
-0.5

. Basing DME on Psymm has the advantage that the eigenvectors of Psymm form an 992 
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orthogonal basis set (unlike the eigenvectors of P), providing some additional convenience 993 

mathematically that is beyond the scope of this paper[60]. Additionally, the eigenvalues of P 994 

and Psymm are identical. 995 

In two sets of analyses presented here, pairs of embeddings were compared to each other: in 996 

the analysis of lateralization of speech and language networks, and in the comparison between 997 

iEEG and fMRI data. To do that, we used a change of basis operator to map embeddings into a 998 

common embedding space using the method described in Coifman et al 2014[60].  999 

Dimensionality reduction via low rank approximations to Psymm. Diffusion map embedding offers 1000 

an opportunity to reduce the dimensionality of the underlying data by considering only those 1001 

dimensions that contribute importantly to the structure of the data, as manifested in the 1002 

structure of the transition probability matrix P, or, equivalently, of the diffusion matrix Psymm. 1003 

We used the eigenvalue spectrum of Psymm to determine its ideal low rank approximation, 1004 

balancing dimensionality reduction and information loss. The basis for this is most easily 1005 

understood in terms of the eigenvalue spectrum of P, whose spectrum is identical to that of 1006 

Psymm[60]. Because P is real and symmetric, the magnitude of the eigenvalues is identical to the 1007 

singular values of P. The singular values tell us about the fidelity of low rank approximations to 1008 

P. Specifically, if P has a set of singular values σ1≥ σ1≥…≥ σn, then for any integer k ≥ 1, 1009 

min
��
�

�� �  ����
�

	  
���, 

where �

� is the rank-k approximation to P. Thus, the magnitude of the eigenvalues corresponds 1010 

to the fidelity of the lower dimensional approximation, and the difference in the magnitude of 1011 

successive eigenvalues represents the improvement in that approximation as the 1012 

dimensionality increases. The spectrum of P invariably has an inflection point (“elbow”), 1013 

separating two sets of eigenvalues λi: those whose magnitude decreases more quickly with 1014 

increasing i, and those beyond the inflection point whose magnitude decreases more slowly 1015 

with increasing i. The inflection point thus delineates the number of dimensions that are most 1016 

important for approximating P or Psymm. The inflection point kinfl was identified 1017 

algorithmically[158], and the number of dimensions retained set equal to kinfl – 1.  1018 

Comparing distances in embedding space. The relative distance between points in embedding 1019 

space provides insight into the underlying functional geometry. In several analyses presented 1020 

here, two embeddings of identical sets of ROIs were compared as ROI distances within the two 1021 

embeddings. After mapping to a common space and reducing dimensionality as described 1022 

above, the two embeddings A and B were used to create the pairwise distance matrices A` and 1023 

B`. The Pearson correlation coefficient r was then computed between the upper triangles 1024 

(excluding the diagonal) of the corresponding elements in the distance matrices. To compare 1025 

anatomical distance and distance in embedding space, inter-ROI anatomical distances were 1026 

calculated for each participant by computing the centroid of each ROI in MNI space, then 1027 

calculating Euclidean distances between centroids, followed by averaging distances across 1028 

participants. 1029 
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Signal to noise (SNR) characteristics. To measure the robustness of the embedding analysis to 1030 

variability over time, an SNR was computed as follows. For each participant, a channel × 1031 

channel Psymm matrix was calculated for each 60 s segment of data. For each segment, DME 1032 

analysis was applied and a channel × channel distance matrix calculated. These distance 1033 

matrices were averaged across segments. The ‘signal’ of interest was defined as the variability 1034 

(standard deviation) of this averaged distance matrix (ignoring the diagonals). The ‘noise’ was 1035 

defined as the variability across time, estimated for each element of the distance matrix as the 1036 

standard deviation across segments, then averaged across the elements of the matrix. The SNR 1037 

for functional connectivity itself was computed in an analogous manner, using the original 1038 

channel × channel connectivity matrix rather than the matrix of embedding distances. 1039 

Estimating precision in position and distances in embedding space. To obtain error estimates for 1040 

both ROI locations in embedding space and embedding distance between ROIs, average ROI × 1041 

ROI adjacency matrices were calculated. Our data are hierarchical/multilevel, in that we 1042 

sampled participants in whom there are multiple recording sites. Nonparametric bootstrap 1043 

sampling at the highest level (“cluster bootstrap”[159]; here the word “cluster” refers to the 1044 

hierarchical/multilevel structure of the data, with multiple recording sites within participants, 1045 

rather than algorithmic clustering) is the preferred approach for hierarchical data when groups 1046 

(here, participants) are sampled and observations (here, recording sites) occur within those 1047 

groups[160], with fewer necessary assumptions than multilevel (mixed-effects) modelling (e.g., 1048 

subject effects are not assumed to be linear). Using this approach, participants were resampled 1049 

with replacement, connectivity averaged across the bootstrapped samples, and diffusion map 1050 

embedding performed for 100,000 such adjacency matrices. For locations in embedding space, 1051 

these embeddings were then mapped via the change of basis procedure described above to the 1052 

original group average embedding space. For each ROI, the mapped bootstrap iterations 1053 

produced a cloud of locations in embedding space that were summarized by the standard 1054 

deviation in each dimension. For embedding distances, no change of basis was necessary 1055 

because distances are preserved across bases. 1056 

To compare the positions of STSL versus STSU relative to canonical auditory cortical ROIs 1057 

(HGPM, HGAL, PT, PP, STGP, and STGM) or ROIs involved in semantic processing (STGA, MTGA, 1058 

MTGP, ITGA, ITGP, TP, AGA, AGP, SMG, IFGop, IFGtr, IFGor[21, 76-78]), we calculated the 1059 

average pairwise distance from STSL or STSU to each such ROI. The difference between these 1060 

averages was compared to a null distribution obtained by Monte Carlo sampling of the 1061 

equivalent statistic obtained by randomly exchanging STSL/STSU labels by participant. The 1062 

specific comparisons performed were chosen a priori to constrain the number of possible 1063 

hypotheses to test; pairwise comparisons of all possible ROI pairs (let alone comparisons of all 1064 

higher-order groupings) would not have had sufficient statistical power under appropriate 1065 

corrections for multiple comparisons. Though different choices could have been made for 1066 

inclusion in the “semantic processing” category, exchanging one or two of these ROIs would not 1067 

strongly influence the average distance in a group of twelve ROIs. 1068 
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Hierarchical clustering. Agglomerative hierarchical clustering was done using the linkage 1069 

function in MATLAB, with Euclidean distance as the distance metric and Ward’s linkage 1070 

(minimum variance algorithm) as the linkage method. The ordering of ROIs along the horizontal 1071 

axis in the dendrogram was determined using the optimalleaforder function in MATLAB, with 1072 

the optimization criterion set to ‘group’.  1073 

Non-parametric bootstrapping at the participant level, as described above, was used to 1074 

evaluate the robustness of clustering results both overall and at the level of individual clusters. 1075 

We compared the original cluster results obtained with the full dataset to the result obtained 1076 

with each bootstrap sample, then summarized those results across iterations. 1077 

Overall stability of the cluster results was evaluated using the median normalized Fowlkes-1078 

Mallows index[83] across cluster bootstrap iterations, noted as Bk for k clusters (see Appendix 1079 

II). Normalizing to the expected value E(Bk) (see Appendix II) results in an index where 0 1080 

represents average random (chance) clustering and 1 represents perfectly identical clustering.  1081 

Cluster-wise stability was calculated by the membership of each cluster at each iteration to the 1082 

corresponding cluster obtained with the full dataset using the maximum Jaccard coefficient for 1083 

each reference cluster[84]. The Jaccard coefficient varies from 0 (no overlap in cluster 1084 

membership) to 1 (identical membership) and is defined as the ratio of the size of the set 1085 

containing intersection of the two clusters divided by the size of the set containing their union. 1086 

We then subtracted from this coefficient a bias estimate calculated by randomly permuting the 1087 

cluster assignments on each bootstrap iteration. 1088 

Auditory responsiveness. In a subset of 37 participants, auditory responsiveness was evaluated 1089 

as percentage of sites within each ROI that exhibited high gamma responses to monosyllabic 1090 

word stimuli. The stimuli were monosyllabic words (”cat”, “dog”, “five”, “ten”, “red”, “white”), 1091 

obtained from TIMIT (https://doi.org/10.35111/17gk-bn40) and LibriVox (http://librivox.org/) 1092 

databases. The words were presented in semantic categorization (animals and numbers target 1093 

categories) and tone target detection tasks as described previously [23, 85-87]. A total of 20 1094 

unique exemplars of each word were presented in each task: 14 spoken by different male and 6 1095 

by different female speakers. The stimuli were delivered via insert earphones (ER4B, Etymotic 1096 

Research, Elk Grove Village, IL) integrated into custom-fit earmolds. All stimuli had a duration of 1097 

300 ms, were root-mean-square amplitude-normalized and were delivered in random order. 1098 

The inter-stimulus interval was chosen randomly within a Gaussian distribution (mean 2 s; SD = 1099 

10 ms). The task was to push a response button whenever the participant heard a target sound. 1100 

The hand ipsilateral to the hemisphere in which the majority of electrodes were implanted was 1101 

used to make the behavioral response. There was no visual component to the task, and the 1102 

participants did not receive any specific instructions other than to respond to target auditory 1103 

stimuli by pressing a button. Mean high gamma (70-110 Hz) power within early (50 to 350 ms) 1104 

and late (350 to 650 ms) poststimulus time windows was compared with that in a prestimulus 1105 

window (-200 to -100 ms). Significance of high gamma responses was established at a α = 0.05 1106 

level using one-tailed Mann-Whitney U tests with false discovery rate correction. 1107 
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Comparing language dominant/non-dominant hemispheres. To test for differences in functional 1108 

geometry between language dominant and non-dominant hemispheres, two measures were 1109 

considered: differences in the location of individual ROIs in embedding space, and different 1110 

pairwise distances between ROIs in embedding space. To calculate differences in location of 1111 

individual ROIs, dominant/non-dominant average embeddings were mapped to a common 1112 

space (from an embedding using the average across all participants regardless of language 1113 

dominance) using the change of basis operator. The language-dominant location difference for 1114 

a specific ROI was calculated as the Euclidean distance between the two locations of each ROI 1115 

in this common space. To examine whether there was a consistent relationship between 1116 

hemispheric asymmetry in a given ROI’s location in embedding space and the percentage of 1117 

either early or late auditory responsive sites within that ROI, two-tailed Spearman’s rank tests 1118 

were used. To calculate differences in pairwise distances between ROIs, Euclidean distances 1119 

were calculated in embedding space for each hemisphere and then subtracted to obtain a 1120 

difference matrix. To determine whether the differences in location or pairwise distances were 1121 

larger than expected by chance, random permutations of the dominant/non-dominant labels 1122 

were used to generate empirical null distributions. Since this approach produces a p-value for 1123 

every pair of connections, p-values were adjusted using FDR to account for multiple 1124 

comparisons.  1125 

Analyses of fMRI connectivity in embedding space. Two sets of analyses were performed using 1126 

fMRI data. First, iEEG and fMRI data were compared in embedding space. In this analysis, 1127 

connectivity based on RS-fMRI data from voxels located at electrode recording sites was 1128 

compare with the corresponding connectivity matrix derived from iEEG data. The embedding 1129 

analysis was applied to the two connectivity matrices, all pairwise inter-ROI distances 1130 

computed, and iEEG and fMRI data compared using the correlation of the pairwise ROI 1131 

distances. The second analysis was to compare embeddings derived from all ROIs in the RS-1132 

fMRI scans to those derived from just ROIs sampled with iEEG electrodes. Here, ROI × ROI 1133 

connectivity matrices were computed for all ROIs, then embeddings created from the full 1134 

matrices or from matrices containing just rows and columns corresponding to the ROIs sampled 1135 

with iEEG.   1136 
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Data and code availability 1137 

Software and data used to generate figures are freely available at 1138 

https://zenodo.org/record/7846505 or DOI 10.5281/zenodo.7846505. Complete data set is 1139 

available via a request to the Authors pending establishment of a formal data sharing 1140 

agreement and submission of a formal project outline. Please contact Bryan Krause 1141 

(bmkrause@wisc.edu) for details. 1142 
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Appendix I: Diffusion Map Embedding 1143 

In the framework of DME, we consider a space X that is the set of N recording sites. We 1144 

compute the similarity between those sites based on the time varying signals recorded at each 1145 

site, defining similarity k(xi,xj) as the cosine similarity between functional connectivity of nodes 1146 

xi and xj.  1147 

Define the matrix K whose i,j
th

 element is k(xi,xj). k(xi,xj) is required to be symmetric, i.e., k(xi,xj) 1148 

= k(xj,xi), and positivity preserving, i.e. k(xi,xj) > 0 for all [i,j], to allow for spectral analysis of a 1149 

normalized version of K. 1150 

From X and K we can construct a weighted graph Γ in which the vertices are the nodes and the 1151 

edge weights are k(xi,xj). We take random walks on the graph at time steps t = 1, 2, …, jumping 1152 

from node xi to node xj at each time step, with the (stochastic) decision as to which node should 1153 

be visited next depending on k(xi,xj).  1154 

Define  1155 

p(xi,xj) = k(xi,xj)/d(xi), 1156 

where 1157 

d(xi) = Σj[k(xi,xj)] 1158 

is the degree of node xi. Normalizing k(xi,xj) in this way allows us to interpret it as the 1159 

probability p(xi,xj) that we'll jump from vertex xi to vertex xj in a single time step of our random 1160 

walk.  1161 

If we consider a single time step, we only capture the structure in X on a very local scale, since 1162 

we can only jump between vertices that are directly connected. As we run the random walk 1163 

forward in time, we begin to explore more of our neighborhood, and we begin to explore other 1164 

neighborhoods as well. Two vertices xi and xj that have similar connectivity to the rest of the 1165 

network have a high probability of being connected during these longer walks because they 1166 

themselves are connected to similar groups of vertices, and so there are many possible paths 1167 

between xi and xj.  1168 

The diffusion operator (matrix) P = [p(xi,xj)] describes how signals diffuse from node to node in 1169 

the graph. If v is a N×1 vector (i.e., a value assigned to each vertex, for example representing an 1170 

input to each node), then P describes what will happen to that input as time goes on.  1171 

Pv = [p(x1,x1)v[x1]+p(x1,x2)v[x2]+…; p(x2,x1)v[x1]+p(x2,x2)v[x2]+…;…]
T
 1172 

If, for example, all the nodes were insular, with p(xi,xi)=1 for all i, and otherwise p(xi,xj)=0, Pv = 1173 

v, i.e., no diffusion occurs. If the probabilities are more distributed, Pv would reveal how much 1174 

signals diffuse out from each node given the starting condition of v. Importantly, P
k
v would 1175 

reveal what that distribution looks like after k time steps. 1176 
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The eigenvector expansion of P based on its eigenvectors ψj and eigenvalues , λj, j = 1...N, is a 1177 

natural method for uncovering structure in P because each eigenvector of P is a dimension 1178 

along which relevant organizational features emerge. That is, clusters of related points 1179 

(communities) tend to be distinct and ordered along these dimensions. In fact, we could 1180 

preserve a lot of information about P by keeping just a subset of M of these vectors and 1181 

discarding the rest. The information we want to preserve in the context of diffusion map 1182 

embedding is the functional distance between the data at two nodes given t time steps to 1183 

meander through the graph. We can define the diffusion map  1184 

Ψ
(t)

(xi) = [λ1
t
ψ1(xi), λ1

t
ψ1(xi), …, λM

t
ψM(xi)]

T
, 1185 

which maps each point x in X to a point in an embedding space of dimension M ≤ N. In this 1186 

space, the diffusion distance D, which is the Euclidean distance between points, is the 1187 

difference in the probability distributions linking xi to the rest of the network and xj to the rest 1188 

of the network: 1189 

D
(t)

(xi,xj)
2
 = ||Ψ

(t)
(xi) - Ψ

(t)
(xj)||l2.= ||p

(t)
(xi,:)- p

(t)
(xj,:)||

2
l2. 1190 

To compare embeddings across groups of participants, or modalities of measurements, it is 1191 

necessary to map embeddings to a common space. To do so, consider two sets of data α and β, 1192 

and the data spaces Xα and Xβ. The problem is that Xα and Xβ are different spaces with different 1193 

kernels kα and kβ. This means that the eigenvectors for Pα and Pβ will be different, and data 1194 

projected into a space defined by some subset of the eigenvectors cannot be compared 1195 

directly. The solution is to apply a change of basis operator to one set of the eigenvectors to get 1196 

the data into the same embedding space[60]: 1197 

D
(t)

(xi|α,xi|β) = ||Ψ
(t)

α(x) − Oβ→ αΨ
(t)

β(x)||l2. 1198 

Where the change of basis operator Oβ→α is defined as  1199 

Oβ→α v = Σj[v(j)<ψ
(i)

α ,ψ
(j)

β>]i>=1, 1200 

Where <ψ
(i)

α ,ψ
(j)

β> is the inner product of ψ
(i)

α and ψ
(j)

β.1201 
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Appendix II: Fowkles-Mallows Index 1202 

The content of this appendix uses the functions and notation of Fowlkes and Mallows, 1983 1203 

{Fowlkes, 1983 #9946} with minor adjustments. Their index, denoted Bk, where k is the number 1204 

of clusters, represents the similarity of clusterings, independent of cluster ordering, as a value 1205 

between 0 and 1, where 1 represents identical clustering. Bk is given from the following 1206 

equations: 1207 

  1208 

�
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�
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…and M = [mij] is a matrix with k rows and k columns where each mij represents the number of objects in 1210 

cluster i from one clustering and cluster j from the other clustering. n is the total number of objects 1211 

clustered. In the case of random assignment to clusters of the sizes observed, however, Bk is biased (not 1212 

zero), and the expected value for this bias is given by: 1213 

����� �  
���	�


�
 � 1�
 

We normalized by this bias value to give a stability index that averages 0 for chance assignment to 1214 

clusters (with this normalization, values less than 0 are theoretically possible) and 1 for perfect 1215 

concordance: 1216 
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