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Abstract 26 

 Accurate phenotype prediction based on genotypical information has numerous societal 27 

applications, such as design of useful crops of cellular factories. However, the prevalence of 28 

epistasis, a phenomenon that prevents many biological systems to perform in accordance with 29 

the sum of its parts, necessitates modelling the complex path between genotype and phenotype. 30 

Defining intermediate levels in this path reduces the complexity of prediction, and may also 31 

elucidate the phenotype coupling to other levels by evolution. Inconveniently, the latter requires 32 

definitions that maintain biophysical justification from the bottom-up, which conflicts with 33 

tractability. By means of a cell growth model, we exemplify a resolution for this conflict by 34 

polarization of Cdc42p in budding yeast, a process requiring clustering of active Cdc42p to one 35 

zone on the membrane and known to generate ample epistasis. Concretely, our model 36 

parsimoniously encompasses constant membrane area growth, stochastic Cdc42p turnover and 37 

a simple, justifiable polarity rule we define as the ‘mesotype’. Through intuitively interpretable 38 

simulations, we describe previously documented, yet puzzling epistasis inside the polarity 39 

module. Moreover, we generate evolutionary relevant predictions e.g., on environmental 40 

perturbations, which are general enough to apply to other systems. We quantify how poor 41 

growth medium can equalize fitness differentials and enables, otherwise very distinct, 42 

evolutionary paths. For example, the fitness of the crippled Δbem1 relative to WT can easily be 43 

raised from 0.2 to above 0.95. Finally, we can extend our predictions on epistasis to other 44 

modules. We determine that modelled epistasis predictions only add predictive value when 45 

functional information of the involved modules is included. This inspires a road-map towards 46 

modelling the bidirectional genotype-phenotype map for other model systems with abundant 47 

interactions, where the intermediate levels reveal targets that evolution can optimize and 48 

facilitate a biophysical justifiable incorporation of epistasis. 49 

 50 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.374363doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374363
http://creativecommons.org/licenses/by/4.0/


3 

 

Author summary 51 

 Efforts to understand how traits follow from genes facilitate a broad range of 52 

applications. For example, crops can be engineered faster to better resist drought, salt and heat 53 

stress, and medicines can be better tailored to individuals. Unfortunately, the path from genes 54 

to traits can generally involve a complex interplay of hundreds of genes and gene products 55 

whose individual contributions can be heavily context-dependent. In this work, we provide the 56 

proof-of-concept in a relatively simple system for a road-map towards elucidating this path. We 57 

have constructed a cell growth model for budding yeast, only involving simple rules on 58 

membrane growth, protein production and centrally, polarity, the process where yeast chooses 59 

the future division site. Despite the simplicity, the polarity rule is fully justifiable from 60 

underlying biophysics. Model simulations show good accordance with formerly puzzling traits, 61 

and also predict the ease with which the environment can change evolutionary paths. While lab 62 

conditions may prohibit the emergence of certain polarity mutations, this becomes much more 63 

feasible ‘in the wild’. The tractable model nature allows us to extrapolate the context 64 

dependence of mutational effects beyond polarity, showing that this method for understanding 65 

trait generation also helps to elucidate protein evolution. 66 

 67 

Introduction 68 

Many fields, such as personalized medicine [1], agriculture [2], chemical production [3] 69 

and forensics [4], will greatly benefit from advances in understanding of the so-called genotype-70 

phenotype (GP) map, the way that traits are connected to genes. However, this connection can 71 

be quite complex even for known heritable traits (“missing heritability”) [5], limiting the power 72 

of genome-wide association studies [6]. On the one hand, one gene can be responsible for 73 

multiple traits, pleiotropy, although this may not always be very common [7]. On the other 74 

hand, multiple genes can contribute to one trait. Frequently, their individual effects are non-75 
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additive in humans [8,9], but also in model systems as Escherichia coli [10] or Saccharomyces 76 

cerevisiae (budding yeast) [11], a phenomenon known as epistasis. Theoretically, epistasis is 77 

expected to surface very easily based on metabolic network analysis [12], and has some known 78 

molecular origins [13]. While epistasis can be inconsequential for fitness evolution [14], its 79 

presence complicates the predictions of phenotypes from genotypes and consequently gene 80 

evolution [15,16]. Therefore, predictions on epistasis constitute an important challenge for GP-81 

map models. 82 

 83 

As a modelling tool to more easily decompose the GP-map, intermediate levels can be defined 84 

as stepping stones [17], which can be brought under the general denominator of causally 85 

cohesive genotype-phenotype models [18]. An intermediate level may provide an entry point 86 

for additional observables that fine-tune predictions, but an abstract, unobservable entity as a 87 

definition is also possible. Most importantly, a level serves to break up and re-bundle the 88 

intertwined paths from individual genes to traits such that a more modular and hence more 89 

tractable picture arises. In that view, a suitable level definition acts as a tree which branches out 90 

to otherwise difficult to connect genotypes and phenotypes. 91 

 92 

Multiple level examples exist, such as the biofunctional gene ontology level (ontotypes) [19], 93 

the network based trophic level [20],  the diffuse endophenotypes [21] and the mathematical 94 

system design space [22]. Ideally, a one-level-fits-all approach exists, where the level definition 95 

facilitates understanding of the emergence of phenotypes from genotypes, while at the same 96 

time elucidating the handles for evolution, the reverse path in the GP-map. This requires 97 

steering away from phenomenological or statistical formulations to move towards biophysically 98 

sound versions, while at the same time maintaining tractability which often complicates bottom-99 

up approaches. Consequently, the generation of a suitable level definition for the tractable 100 
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bidirectional path in the GP-map, if possible, involves coarse-graining of the underlying 101 

biophysics, specifically of molecular interactions and protein transport. 102 

 103 

A promising attempt is the iMeGroCy model [23], where growth and cell cycle processes are 104 

simplified, and more details are kept for the module of interest, in this case the metabolism, 105 

which follows Michaelis-Menten kinetics. While effective in modularizing e.g., the pedigree 106 

phenotype emergence as a function of medium in S. cerevisiae, it is not straightforward to 107 

extrapolate this approach to other modules. The kinetics crucially assume well-mixed 108 

components, neglecting spatial heterogeneity arising from crowding in the cell [24]. 109 

Furthermore, coupling of diffusion and reactions involves conditions for pattern formation [25] 110 

that should be taken into account. Inclusion of spatio-temporal information is also known to be 111 

essential to understand the evolution of a network [26]. We therefore construct a cell growth 112 

model that encompasses the lessons derived from rigorous reaction-diffusion analysis, and 113 

maintains the simplicity across other growth features. The level definition associated with 114 

coarse-graining the molecular details will be called the ‘mesotype’. 115 

  116 

For the purpose of testing this bottom-up modelling approach, we require a model system 117 

known to exhibit ample epistasis (e.g., in doubling times) [27], namely polarity establishment 118 

in S. cerevisiae. Here, the unicellular organism budding yeast breaks its internal spherical 119 

symmetry to direct bud growth in one direction. This process is essential for the proliferation 120 

of the cell and relies on correct functioning of Cdc42p [28]. The mechanics behind this process 121 

is known to large detail (except the role of unexpected wildcard Nrp1p [27]), and involves 122 

clustering of the active form of small GTPase Cdc42p, which is bound to a GTP molecule, to 123 

one patch on the plasma membrane (Fig. 1A). In a wild-type (WT) background, rapid Cdc42p 124 

clustering is governed by a positive feedback involving Bem1p and Cdc24p [29], the relevant 125 
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guanine nucleotide exchange factor (GEF) for Cdc42p [30], which appropriately transport and 126 

activate Cdc42p. By contrast, its deactivation outside the membrane patch is ensured by GTPase 127 

activating proteins (GAPs), a protein class to which Bem2p, Bem3p [30], Rga1p [31] and 128 

Rga2p [32] pertain. 129 

 130 

 131 

Fig 1. Yeast polarity as suitable genotype-phenotype map model for epistasis description.  132 

(A) Brightfield (left) and widefield fluorescence example images of a polarizing budding yeast 133 

cell (scale bar 5 µm). Key for polarity is clustering of active Cdc42p (of which a binding partner 134 

is fluorescently labelled in the images) to one zone on the membrane. This location marks the 135 

site of polarized growth. (B) Schematic overview of polarity protein core (proteins not to scale). 136 
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A positive feedback for (active) Cdc42p-GTP is mediated by either the Bem1p-Cdc24p 137 

complex, and likely to lesser extent by Cla4p. For Nrp1p it is unclear how it mechanistically 138 

links to other components. (C) Schematic diagram depicting phenotype (viability) as function 139 

of genotype through Cdc42p (active and inactive) and GAP concentration in the cell with or 140 

without Bem1p. An intermediate, the ‘mesotype’, is defined here as the limiting Cdc42p 141 

concentration. Epistasis is readily observed as the same increase in e.g., GAP concentration can 142 

yield inviability in the Δbem1 background but not in the BEM1 background. 143 

 144 

In absence of Bem1p, GAPs can more easily deactivate even the Cdc42p localized in the main 145 

patch that marks the future division site, which would generate a lethal situation for the cell. 146 

This can be circumvented if the abundance of Cdc42p is large enough to continuously sequester 147 

the GAPs found around the main patch, forming a rescue mechanism to establish polarity when 148 

combined with a generic positive feedback [33], such as through Cla4p [34] (Fig. 1B). 149 

Theoretical analysis of the underlying reaction-diffusion equations reveals a strong dependence 150 

of the ability to polarize success on the GAP/Cdc42p copy number ratio, where a broader range 151 

is viable in the presence of Bem1p [33] (Fig. 1C). This motivates a coarse-graining of the 152 

protein dynamics to a threshold for the protein concentration, which forms the mesotype level 153 

definition in this context. 154 

 155 

Results 156 

Coarse-grained bottom-up model design 157 

Coarse description of cell expansion. We modeled the yeast cell cycle as a process involving 158 

three modules, namely coarse-grained cell growth, protein turnover and cell polarity (Fig. 2A). 159 

A parsimonious approach to cell membrane growth was chosen consisting of two stages of 160 

constant membrane area growth, as several alternative formulations proved immaterial for 161 
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phenotype description (S1 Fig.). The membrane expansion rates (C1 for G1, C2 elsewhere) were 162 

brought in decent agreement with literature [35,36] (see S2 Table for further justification of 163 

parameter choices.). 164 

 165 

 166 

Fig 2. Coarse-grained, bottom-up growth model integrating the polarity mesotype to 167 

facilitate epistasis and phenotype prediction. (A) Schematic depiction of the translation of 168 
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the budding yeast cell cycle to model processes and parameters. Central is the moment of 169 

polarization which occurs when the cell has sufficient size, has been sufficiently long in G1 and 170 

has a Cdc42 concentration (abbreviated as [P]) exceeding a threshold, the latter defining the 171 

mesotype checkpoint for this system. Together with a coarse description of cell growth 172 

(constant membrane expansion of either mother or bud and a bud size checkpoint), stochastic 173 

protein production and deterministic degradation, this allows construction of the genotype-174 

phenotype map. (B) Example trace of the Cdc42 copy number (blue) and concentration (green) 175 

of a single cell, which are subject to protein production and degradation (and dilution for 176 

concentrations). The cell must exceed the mesotype threshold ([P]min) before division can take 177 

place. When this is delayed for too long, the cells expands beyond rmax and the cell dies (after 178 

almost 15h). (C) Convergence of Cdc42 copy number distribution during simulations. 179 

Simulated time since ancestor is approximate as birth times of the cells in the starting population 180 

are distributed across an 83 min. bandwidth. The inset shows how the estimates of the 181 

population doubling time and the average effective cell size equilibrate as a function of time. 182 

 183 

The first stage involves isotropic growth of a spherical cell of radius rm(t), which corresponds 184 

to the G1 phase including the Start transition, at the end of which a checkpoint must be passed, 185 

which is further explained in the following paragraph. Thereafter, the cell switches to the second 186 

stage of growth, where the membrane grows in a polarized manner defining a bud with radius 187 

rb(t), while the rest of the mother cell retains its size. The bud membrane growth area is constant 188 

for the modelled equivalent of the S, G2 and M phase but larger than for the mother in G1. Bud 189 

growth lasts until the second checkpoint, at which the bud proceeds as an independent cell when 190 

it has reached a sufficient size (rb=rm cr). 191 

 192 
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Biophysically justifiable mesotype inclusion. The cells grow isotropically until three 193 

conditions are met, defining the first checkpoint. Firstly, the radius rm of the cell must exceed 194 

the minimum size threshold rmin. Secondly, the time in this stage (t1) exceeds a minimum time 195 

(tG1,min), which may be modified by a factor 𝑡𝑚𝑢𝑡 for certain mutations with respect to WT. 196 

These two criteria result from key events in the timing pathway, particularly cell size dependent 197 

control of Cln3p arrival to the nucleus by Ydj1p [37]. Finally, the concentration of Cdc42p, [P], 198 

must exceed a minimum concentration threshold [P]min. The existence of the Cdc42p 199 

concentration threshold, which we define as the ‘mesotype’ for a particular mutant, follows 200 

from rigorous theoretical and experimental analysis of reaction-diffusion equations of the 201 

polarity network [33].  202 

 203 

Once all three conditions are met, isotropic growth continues for a period of tpol, which lasts at 204 

least tpol,min and depends exponentially on the relative excess Cdc42 concentration above the 205 

threshold (scaled by ϕpol). This is a simplified representation of the results in [33] and reflects 206 

the period where Cdc42p clusters to one zone in the membrane. As it can occur that the Cdc42 207 

threshold is never exceeded while growth continues and concentration are diluted, the cell is 208 

considered dead when its radius exceeds the maximum size rmax. 209 

 210 

Noisy protein production. Whether the Cdc42 concentration condition is met depends also 211 

strongly on protein production, which is modelled as a stochastic process. Since mRNA lifetime 212 

of Cdc42 is much smaller than its protein half-life th [38,39], Cdc42p production essentially 213 

follows from instantaneous bursts, which are modelled as an compound Poisson process burst 214 

process Nt with exponentially distributed size ηt (on average pb) at exponentially distributed 215 

intervals (on average tb) [40]. Because it may be important for the precise crossing time of the 216 

polarity threshold, we avoid absorbing protein degradation in an effective burst size, by 217 
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explicitly adding degradation to the Cdc42 copy number process Pt. Stochasticity in total GAP 218 

copy number is not included as the cell-to-cell variability is much less than for Cdc42p (GAP 219 

coefficient of variation < 0.15, only just above the smallest measured value of 0.10 [41], 220 

compared to 0.83 for Cdc42p measured in this study). 221 

 222 

Coarse-grained bottom-up model verification and validation 223 

Firstly, the model design was verified by simulations of the computational model 224 

implementation (see Materials and Methods) which allowed tracking the states of individual 225 

cells or the population. Fig. 2B shows a Cdc42p copy number and concentration time trace of 226 

a single cell. The Cdc42p production is burst-like and occurs as indicated on the time axis. The 227 

copy number trace shows the proteins degrade between these bursts, and there is also dilution 228 

due to cell volume growth for the concentration curve. In this example, divisions occur twice 229 

shortly after checkpoint 1 has been passed, which also implies exceeding the mesotype 230 

concentration threshold. Ultimately, this cell fails to exceed the threshold a third time and dies 231 

after exceeding the maximum size rmax, as designed. Fig. 2C shows the rate of convergence of 232 

relevant population phenotypes (without plotting the dilution step). After the population has 233 

grown approximately 25 hours counted from the ancestor seed, the Cdc42p distribution has 234 

largely converged. The size and doubling time change 0.6% and 0.9% respectively across the 235 

last 200 minutes, well within the typical experimental error (see S2 Fig. for an example of 236 

results including dilution). 237 

 238 

Secondly, we turned to the model validation, where five parameters (four mesotype thresholds, 239 

and one nrp1-dependent G1 time factor tmut) are fitted. Non-trivial previously measured 240 

observables are considered mostly from [27]; strong epistasis in growth rates between GAP 241 

mutants only in the Δbem1 background, strong epistasis between BEM1 and NRP1, and non-242 
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monotonous optimization of G1 times for (reconstructed) experimentally evolved mutants 243 

starting from Δbem1. For the latter phenotype, the acceleration of G1 speed of the Δbem1 cells, 244 

despite its poor fitness, compared to WT cells is particularly noteworthy. This combines to a 245 

total of 20 phenotypes, well identifying the five free parameters. 246 

 247 

Description of the coarse GP-map exhibiting epistasis. The simulated growth rates of 248 

polarity mutants of [27] were calculated as a function of mesotype ([Cdc42]min), which scales 249 

linearly with total GAP concentration [GAP]tot due to the cone-like structure of Fig. 1C. These 250 

can be converted to relative fitness values through division by the WT growth rate. Fitness 251 

values in presence of NRP1 were brought in accurate accordance with experiments of [27] (Fig. 252 

3A) and consequently, the observed GAP epistasis is well (and robustly, see S1 Fig.) described. 253 

The nrp1 background was not always well fitted (5/8 correct within experimental error), 254 

although these mutants suffered from relatively large experimental uncertainties. The four fitted 255 

mesotype threshold concentrations are consistent with the bem3 deletion effect that is twice as 256 

large as for bem2. Given the GAP abundancies [42], this sets the in vivo Bem3p effective GAP 257 

activity to be almost four times as large as for Bem2p, a difference much less pronounced than 258 

measured in vitro [30]. 259 

 260 
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 261 

Fig 3. Comparison of the coarse-grained growth model to experimental data on coarse 262 

and subtler GP-maps. (A) Experimental fitness values relative to WT (phenotypes) for 16 263 

different polarity genotypes [27] denoted by diamonds, which are fitted by the model as 264 

depicted by the dark purple and emerald lines for nrp1 and NRP1 background respectively. 265 

GAP genotypes can be linearly linked to the minimum Cdc42 concentration to polarize, the 266 

mesotype, as displayed on the top horizontal axis. Error of the BEM2 NRP1 was not available 267 

and conservatively guessed. (B) The detailed phenotype of minimum G1 time as displayed by 268 

WT and four polarity mutants, comprising a single evolutionary trajectory. Experimental values  269 

are from [27] in emerald (defined there as tie to first polarity spot), model values are in dark 270 

purple (defined here as the time in G1 until both the size and time criteria are met). Both cases 271 

are normalized to their respective WT values, such that each column denoted the relative change 272 

in G1 time compared to the previous step in the trajectory. 273 

 274 
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Incorporation of a subtler GP-map. While doubling times represent a rather coarse 275 

phenotype, an example of the more detailed traits that can be modelled is time spent in G1. To 276 

this end, simulations were performed with half the normal membrane area rates C1 and C2, to 277 

mimic the poorer content of synthetic medium in which experiments from literature [27] were 278 

performed. The observed trends in G1 times along the evolutionary trajectory from WT to the 279 

fully evolved mutant in that paper were qualitatively matched, including the unusual inversion 280 

for the Δbem1 (Fig. 3B). The logic behind this inversion is that for WT cells in slower growth 281 

medium, the size requirement is the most important criterion for the first checkpoint of Fig. 2A, 282 

which can last longer than the minimum G1 time. By contrast, the on average less fit and larger 283 

Δbem1 cells are relatively more stalled by the minimum time criterion, and the long overall 284 

cycle times arise due to lengthy other phases. 285 

 286 

A more realistic (and less coarse-grained) modification of the modelled cell cycle progression 287 

can improve the quantitative match. Suppose for example the Δbem1 cells if the assumed 288 

minimum G1 time set is not a constant but a distribution (times for symmetry breaking in 289 

daughter cells can be quite stochastic [43]). Some Δbem1 cells have an early opportunity to 290 

fulfil the mesotype threshold concentration requirement, with which they usually struggle, 291 

while others are delayed more. This increases the cell-to-cell variation in fates in G1, since cells 292 

with fast G1 times are most likely to generate a first spot, while slow cells never generate this 293 

spot do not show up in the statistics. This is how less coarse-graining can lead to a larger 294 

decrease in G1 times than is the case with constant tG1,min. 295 

 296 

Genetic interaction predictions 297 

Poorer medium quality reduces fitness differentials. As aforementioned, the effect of the 298 

environmental effects such as changes in growth media quality can be integrated in the model 299 
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through a change in membrane area growth rates C1 and C2. To assess the evolutionary 300 

consequences of poorer medium content, we considered a roughly three-fold area growth rate 301 

range that caused WT fitness to span between 0.5 and 1 (normalized to maximum growth). Fig. 302 

4 shows the fitness ratio for various media within this range between the Δbem1 and BEM1 303 

background, as a function of GAP concentration, visualizing the trend of smaller fitness 304 

differentials for decreasing GAP concentrations and decreasing medium quality. 305 

 306 

 307 

Fig 4. Growth model predictions of the environmental effect on polarity epistasis. 308 

Simulated fitness differences between BEM1 and bem1 backgrounds as a function of medium 309 

quality, which is integrated in the model through varying cell membrane area growth rates. The 310 

colors depict these rates through their associated WT doubling times. Generally, poorer medium 311 

reduces differences in fitness and genetic interactions between GAPs when comparing the 312 

BEM1 and bem1 backgrounds. 313 

 314 

The intuition for this result is as follows. As seen in Fig. 3A, the Δbem1 background suffers 315 

from the high Cdc42p concentration threshold, relevant at checkpoint 1 (fig. 2A), and recover 316 

fitness when this threshold is lowered by successive GAP deletions. Fig. 2B had in turn shown 317 

the strong negative influence of dilution on the ability to exceed this threshold. Therefore, 318 

Δbem1 cells benefit greatly from reducing the speed of membrane growth, while WT cells, for 319 

which the threshold is not a problem at all, only suffer from slowing down the membrane 320 
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growth. An unmodelled inhibitor of this effect would be a reduced Cdc42p production in 321 

medium with lower quality. However, Cdc42p expression is at least known to remain stable 322 

upon switching from dextrose to ethanol, an inferior carbon source [44]. 323 

 324 

Information on biological function of mutated genes are a prerequisite for predicting 325 

epistasis.  To assess whether we can extend the model predictions beyond polarity, we focus 326 

on predictions of epistasis. This is the most generalizable quantity to assess cross-modular 327 

interactions and is as mentioned in the introduction critical for constructing GP-maps. For this 328 

purpose, we considered high-throughput data on numerous mutants, with varying levels of 329 

detail regarding the mutant phenotypes, which we define as the information content. This 330 

information will determine the precision with which the mutant can be incorporated into the 331 

model. 332 

 333 

Concretely, we restrict ourselves to epistasis between general mutants and Δbem1, since we 334 

suspected that fitness differences in this ill background are exaggerated and hence more likely 335 

to have been picked up in literature. We used Bayesian analysis on the prevalence of epistasis 336 

signs to determine what degree of information on the general mutants add value to sign 337 

predictions. The general mutants were absorbed in the model in three different ways; either 338 

using the coarse information on the single deletion phenotype (deleterious or beneficial), or the 339 

mid-detail information on the single deletion phenotype (faster, slower, larger or smaller in G1), 340 

or the functional information (proteasomal, phospholipid or ribosomal). Within these three 341 

categories, there is a further subdivision into two sets, based on whether the model predicts 342 

positive or negative epistasis with Δbem1 (Fig. 5A). 343 

 344 
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 345 

Fig 5. Adequate model predictions of epistasis rely on functional information concerning 346 

mutations. (A) Workflow for model prediction on epistasis ε of general mutants (fitness ωX) 347 

with Δbem1. Mutants are divided into three categories and two subsets, depending on the 348 

specificity of the mutant phenotype and model implementation and the subsequent model 349 

prediction. For each category n and subset a/b, the beta posterior density of the observed 350 

positive epistasis fraction can be constructed (from a binomial likelihood an uniform prior). The 351 

probability of a true prediction is then defined as the area below the posterior density of the 352 

difference of sets a (prediction ε>0) and b (prediction ε<0). (B) Bars reflecting Bayes factors 353 

for the model hypothesis; the ratio between the odds that the model prediction is true and false. 354 

 355 

Firstly, mutants of which the coarse information are incorporated through modifying the 356 

membrane area growth rates, concretely smaller and larger rates for deleterious and beneficial 357 

mutants respectively. As seen in Fig. 4, smaller rates reduce the deleterious effect of the Δbem1, 358 

prompting the prediction that negative epistasis with Δbem1 is generally more prevalent for 359 

deleterious mutants than for beneficial mutants. The analysis shows no evidence that this 360 

statement is correct (only a 20% chance, Fig. 5B). 361 

 362 
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Analogously, integrating the mutants on mid-detail information implies changing tG1,min (shorter 363 

when fast in G1, longer when slow) or rmin (lower when small in G1, higher when large). 364 

Mutants with shorter tG1,min and lower rmin disproportionally benefit the Δbem1 which suffers 365 

most from Cdc42p dilution before the mesotype checkpoint. Therefore, the model prediction is 366 

that mutants fast or small in G1 have more negative epistasis with Δbem1 than mutants that are 367 

slow or large in G1. Still, the experimental evidence is not compelling (70% chance). 368 

 369 

Finally, when incorporating the mutants using functional information, we lower τh 370 

(proteasomal), membrane growth rates (phospholipid) and mean burst size pb (ribosomal). The 371 

former two, which mitigate the problematic lack of Cdc42p in the Δbem1 to some extent, should 372 

exhibit more negative epistasis than the latter one, which deteriorates the Δbem1 situation. 373 

There is strong positive evidence for this statement (using the rules-of-thumb on Bayesian odds 374 

ratios [45]), which is true with around 95% certainty. This displays the benefit of integrating 375 

mutants based on functional information. 376 

 377 

Discussion 378 

We have constructed, verified, validated and applied a coarse-grained growth model 379 

encompassing the newly defined mesotype in order to describe phenotypes (subject to epistasis) 380 

from genotypes or predict these. When ample molecular information is present, as is the case 381 

for Bem1p and the GAPs, this strategy is quite successful to predict cell cycle times, given the 382 

largely good quantitative matches in Fig. 3A and C and qualitative match for the peculiar G1 383 

time inversion for the Δbem1 compared to WT (Fig. 3B). 384 

 385 

Additionally, the information content about the phenotypes, associated with mutated 386 

genes, required for predicting epistasis was assessed as it is a general hurdle for GP-map 387 
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models. As the mutant is encapsulated in our model through more detailed phenotypes, the 388 

prediction quality increases accordingly. Typically, functional information is required to make 389 

meaningful epistasis sign predictions (Fig. 5), similar to the ontotype strategy [19]. This 390 

delimits the scope of this model. 391 

 392 

Nevertheless, when only medium detail phenotypical information on the single deletion mutant 393 

(such as in the case with Nrp1p) is used, predictions can still be of decent quality (Fig. 3A). The 394 

efficacy of phenomenologically integrating Nrp1p into this model provided substance to the 395 

claim that this protein is mechanistically involved in shortening G1. Since obtaining near-396 

complete information on the function of proteins is not within reach for most organisms, it is 397 

comforting that mildly positive results may be achieved with phenomenological information 398 

when building an otherwise biophysically justifiable bottom-up model. 399 

 400 

Because the yeast polarity example shows the feasibility of our modelling strategy, we aim to 401 

provide a road-map to apply these to general genotype-phenotype maps (Fig. 6). The core 402 

functional component, in this case polarity, is modelled by justifiable coarse-graining, which 403 

results in the mesotype of the system. This mesotype in turn emerges from functional subunits 404 

[33], identifiable from the rigorous analysis of the underlying biophysics. Once multiple model 405 

systems (such as the PAR protein system in Caenorhabditis elegans [46]) have been described 406 

in this manner, it may be possible to construct a limited library of recurring subunits, making it 407 

easier to recognize these in other systems and construct the corresponding mesotype. In 408 

combination with a coarse-grained view of cell growth and noisy protein production, this 409 

completes the bottom-up (population) phenotype prediction process. 410 

 411 
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 412 

Fig 6. Proposed flow chart for phenotype predictions through intermediate levels. Bottom-413 

up approach for phenotype prediction from genotype through mesotypes, which result from 414 

selecting the appropriate functional subunits. When more model systems are analyzed (e.g., 415 

polarization in S. cerevisiae, the min-system in E. coli, PAR-system in C. elegans), the toolbox 416 

from which to retrieve the relevant subunits expands. While it is possible to bypass the 417 

functional subunits and retrieve the mesotypes with rigorous numerical analysis of simulations 418 

of all protein components, the path displayed lends itself better to transfer knowledge of 419 

mesotypes to other systems. Bottom-half exemplifies the flow chart with the yeast polarity case. 420 

 421 

Furthermore, the benefit of this approach is the tractable identification of evolutionary relevant 422 

quantities. For example, the GAP epistasis is accurately retrieved (Fig. 3A), and the prediction 423 

of the poor medium effect to reduce fitness differentials (Fig. 4) readily allows interpretation. 424 

The benefit of slower medium for the ill mutant Δbem1 fits the picture that haploinsufficiency 425 

in YPD is typically lifted in poorer medium [47], and opens up a distinct avenue for adaptation. 426 

Given that laboratory conditions are much more comfortable than the conditions under which 427 

historical evolution has taken and is taking place, the likelihood of fixation of a polarization 428 
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network optimized on Bem1p or an rescue mechanism (as experimentally occurring in [27]) 429 

becomes much more similar than naively expected. Moreover, this insight is quantifiable, we 430 

show e.g., that merely slowing WT down by a factor of 2 reduces the relative fitness differential 431 

to 0.05. Given that BEM1 has comparable characteristics to an essential gene, the evolvability 432 

of essential genes may be greater than anticipated. 433 

 434 

Materials and Methods 435 

Model simulations were performed in MATLAB R2016a following a partial leap-like 436 

Gillespie algorithm [48] implementation (the G1 time until r<rmin and t1<tG1,min, tpol and the 437 

time through S/G2/M are one leap each). The core function and example script to demonstrate 438 

the functionality are found in S1 Code and S2 Code respectively. 439 

Model parameters are summarized in S2 Table. An initial population asynchronized 440 

across a bandwidth of 83 minutes (all cells with equal radii of 2.2 µm and without protein) is 441 

grown until a population size of >5 million, after which a subsample of 1000 cells is regrown 442 

to the same condition. Doubling times are the average of the last hundred moving window (size 443 

201 min.) linear regressions on the log number of cells. 444 

 445 

Model calibration was done by supplying expression burst parameters for Cdc42p inferred from 446 

flow cytometry. These were fine-tuned, together with area growth rates C1 and C2, to yield a 447 

mean protein copy number of around 8700 [42] at the optimal growth doubling time of 83 448 

minutes (WT in YPD [27]). Fluorescence measurements of the required CDC42pr-GFP-449 

CDC42 strain and a non-fluorescent strain (from [49,50]) were performed using a BD FACScan 450 

flow cytometer. Cells were pregrown in YNB (Sigma) + CSM -Met (Formedium) + 2% 451 

dextrose (Sigma-Aldrich), diluted to an OD600 of 0.1 and measured after 15h. 452 

 453 
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Doubling times of [27] in Fig. 3A were fitted using the native fminsearch on a normalized score 454 

objective for varying [Cdc42]min and manual inspection for setting tmut (to 0.75) for the nrp1 455 

deletion. Interaction and phenotype data for Fig. 5 were obtained from BioGRID [51] and SGD 456 

[52] respectively (date of access March 2018). 457 
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 603 

 604 

Supporting Information 605 

The flow cytometry data (see S1 Dataset) was acquired using FlowJo CE software with 606 

a BD FACScan and later analyzed with home-written code in MATLAB. A single gamma 607 

distribution was maximum likelihood fitted on the fluorescence intensity counts of strains (from 608 

[49,50]) with simply endogenous CDC42 (‘background’) or CDC42p-GFP-CDC42 at 2% 609 

dextrose (‘WT expression’). The WT expression distributions was analytically deconvolved for 610 

background counts using a gamma-sum approximation [53]. The average burst interval duration 611 

and average burst size result from these normalized distributions [40], a coarse doubling time 612 

estimate (200 min., processed as in [33]) for RWS1421 and the Cdc42p copy number estimate 613 

of 8700 from [42]. Calibration shows average burst sizes require a 20% reduction due to explicit 614 

inclusion of degradation in our model. 615 

 616 

 617 

S1 Fig. Negligible influence of model details on GAP epistasis. Calculated GAP activity 618 

given model fits and abundancies from [42] (left) and relative multiplicative epistasis 619 

(definition of [54]) for the GAPs in the Δbem1 NRP1 background for the growth model and 620 

four variations; doubling of membrane area growth rate C1, 30% reduction of rmin, change of 621 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.374363doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374363
http://creativecommons.org/licenses/by/4.0/


29 

 

second checkpoint to a fixed bud size threshold of 1.8 µm, and constant cell volume instead of 622 

area expansion. WT membrane growth rates are recalibrated in each case to match 83 minutes. 623 

 624 

 625 

S2 Fig. Convergence of simulated doubling times. Doubling times as function of simulation 626 

time for a fast (WT), medium (Δbem1 Δbem2), and slow (Δbem1) growing strain background. 627 

Doubling times and simulation times normalized to their respective final value. The dilution 628 

step midway temporarily causes unreliable estimates. 629 

 630 

Strain name Genotype (W303 background) Source 

RWS116 

MATa his3-11,15 ade2-1 can1-100 ura3 

cln1::HisG Δcln2 cln3::HisG YipLac204-MET-CLN2::TRP1  

[49] 

RWS1421 

MATa his3-11,15 ade2-1 can1-100 ura3 

cln1::HisG Δcln2 cln3::HisG YipLac204-MET-CLN2::TRP1 

CDC42p-GFP-CDC42::URA3 

[50] 

S1 Table. Strain list. Strains used in this study. 631 

 632 
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Parameter Symbol 

Value 

(background) 

Source 

Cdc42 concentration 

threshold 

[Cdc42]min 

115 # proteins/µm3 

(Δbem1) 

4 # proteins /µm3 

(BEM1) 

-62% (Δbem3) 

-34% (Δbem2) 

This study, fitted 

Minimum G1 time 

multiplier 

tmut 

1 (NRP1) 

0.75 (Δnrp1) 

This study, fitted 

Minimum 

polarization time 

tpol,min 5 min. [55] 

Maximum 

polarization time 

tpol,max 600 min. 

To truncate computations for 

cells with extremely low 

GAP content 

Polarization time 

scaling parameter 

ϕpol 

25 (Δbem1) 

500 (BEM1) 

ϕpol,BEM1»1 and 

ϕpol,BEM1/ ϕpol,Δbem1≅ 

[Cdc42]min,Δbem1 

/[Cdc42]min,BEM1  for observed 

small excess Cdc42 across 

backgrounds (this study) 

Minimum G1 time tG1,min 15.6 min. [36] 

Minimum radius to 

polarize 

rmin 2 µm [36] 
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Maximum radius in 

G1 

rmax 6 µm 

To truncate computations for 

cells with very low Cdc42 

content 

Average Cdc42 

expression burst 

interval time 

tb,WT 57 min. 

This study, assuming theory 

from [40] 

Average Cdc42 

expression burst size 

pb,WT 4900 

This study, assuming theory 

from [40] and with 

calibration 

Cdc42p half-life τh 474 min. [39] 

Bud/mother volume 

ratio checkpoint 2 

cr 0.89 Consistent with [36] 

Ratio polarized/ 

isotropic membrane 

area growth rates 

(C2/C1) 

cp 2.13 Calibration 

Isotropic membrane 

area growth rate 

C1 0.086 µm2/min. 

Analytical considerations for 

optimized WT (see S1 Text) 

S2 Table. Growth model parameter list. 633 

 634 

S1 Dataset. Flow cytometry and growth assay data. Flow cytometry data (raw, processed 635 

and fitted) of strains used in this study, and OD600 measurements of one strain (with fits). 636 

 637 

S1 Code. Numerical implementation in MATLAB of the growth model in this study. 638 

 639 
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S2 Script. Test script in MATLAB calling the numerical model implementation of S1 640 

Code. 641 

 642 

S1 Text. Justification of membrane area growth rate value. We assume an optimized WT 643 

such that at checkpoint 1, the minimum size requirement is typically met at the same time that 644 

the minimum G1 time requirement is met, and that subsequent polarization time is minimal. 645 

After G1, the (squared) mother radius is then (integrating the radius equation from 0 to tpol,min): 646 

𝑑𝑟𝑚

𝑑𝑡
=

𝐶1

𝑟𝑚
⟹ 𝑟𝑚

2 = 𝑟𝑚𝑖𝑛
2 +

𝐶1𝑡𝑝𝑜𝑙,𝑚𝑖𝑛

2
 647 

Thus, the bud radius is after next M-phase rb=0.89 rm. For self-consistentcy, this new cell must 648 

then expand to size rmin again at checkpoint 1, such that: 649 

𝑟𝑚𝑖𝑛
2 = 𝑟𝑏

2 +
𝐶1𝑡𝐺1,𝑚𝑖𝑛

2
= 0.79𝑟𝑚𝑖𝑛

2 + 0.79
𝐶1𝑡𝑝𝑜𝑙,𝑚𝑖𝑛

2
+

𝐶1𝑡𝐺1,𝑚𝑖𝑛

2
 650 

⟹ 𝐶1 =
0.42𝑟𝑚𝑖𝑛

2

0.79 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛 + 𝑡𝐺1,𝑚𝑖𝑛
 651 

Using the values from S2 Table for 𝑟𝑚𝑖𝑛, 𝑡𝑝𝑜𝑙,𝑚𝑖𝑛, and 𝑡𝐺1,𝑚𝑖𝑛, this leads to C1=0.086 µm2/min. 652 
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