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ABSTRACT

Cellular responses to sudden changes in their environment require prompt expression of the correct
levels of the appropriate enzymes. These enzymes are typically regulated by transcription factors
that sense the presence of inducers and control gene expression for the duration of the response. The
specific choice of regulatory strategy depends on the characteristics of each cell response, with the
pattern of gene expression dictated by parameters such as the affinity of the transcription factor to its
binding sites and the strength of the promoters it regulates. Although much is known about how gene
regulation determines the dynamics of cell responses, we still lack a framework to understand how
the many different regulatory strategies evolved in natural systems relate to the constraints imposed
by the selective pressures acting in each particular case. Here, we analyze a dynamical model of a cell
response where expression of a transcriptionally repressed enzyme is induced by a sudden exposure
to its substrate. We identify strategies of gene regulation that optimize the response for different
types of selective pressures, which we define as a set of costs associated with substrate, enzyme and
repressor intracellular concentrations during the response. We find that regulated responses happen
within a defined region in the parameter space. While responses to costly (toxic) substrates favor
the usage of strongly self-regulated repressors, responses where expression of enzyme is more costly
than its substrate favor the usage of constitutively expressed repressors. There is only a very narrow
range of selective pressures that would favor weakly self-regulated repressors. This framework can
be used to infer which costs and benefits are most critical in the evolution of natural examples of
cellular responses, and to predict how a response can optimize its regulation when transported to a
new environment with different demands.

INTRODUCTION

Cellular responses to changes in their environment, in fact cellular processes in general, require the coordinated
expression of genes. When exposed to a chemical compound that demands urgent processing, the cell needs to sense
its presence and synthesize precise amounts of correct enzymes in a timely fashion. Therefore, the optimization of
responses does not involve solely the evolution of enzymes, but also the evolution of appropriate regulation that
can manage the costs and benefits associated with the expression of these enzymes over the course of the response
[1]. Both of these aspects evolve in concert in the cell’s DNA sequence: while the coding regions (genes) contain
information about the biochemical properties of enzymes and regulators, the non-coding regions contain information
about DNA binding sites that together dictate the patterns of enzyme expression. Much attention has been given to
the evolution of genes [2], while other studies recognize that the evolution of cell responses typically involve changes
in regulatory pathways [3, 4]. However, we still lack a framework to describe the evolution of cellular responses as
dynamical processes [5–8] that can be directly inferred from genotype.

The balance of costs and benefits shaping the evolution of genes and their regulation depends on the particular
context of each cell response [9]. The enzymes at play invariably interfere with other cell processes, so their expression
often poses tradeoffs between their intended function and their unintended consequences. For instance, the presence
of a toxin is harmful for the cell, but overproduction of the enzyme that rids the cell of this toxin can disrupt other
cell functions, posing heavy metabolic burdens and impairing cell growth [10]. In this case, the choice of regulation
of such enzyme will depend strongly on the relation between the cost of the presence of the toxin versus the cost of
enzyme side effects. Ultimately, the selective pressures guiding the evolution of a cell response can be translated into
a set of costs associated with the time-dependent concentration of each of the molecular components participating in
the response. Evolution then proceeds to minimize the costs, by optimizing the rates of the biochemical interactions
involving these components.

Here, we analyze how selective pressures shape the evolution of a typical cell response pathway: a transcription
factor regulating an enzyme for a particular substrate (Fig. 1A). In the absence of the substrate, the expression of the
enzyme is repressed by the transcription factor. In the presence of the substrate, however, as its concentration starts
accumulating in the cytoplasm, the transcription factor recognizes and binds the substrate, losing affinity to the DNA
and de-repressing the enzyme. The enzyme then proceeds to process the substrate, until its intracellular levels begin
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FIG. 1: General model of cell responses. A In the absence of substrate, a transcription factor represses the expression of
an enzyme and of itself. When substrate is imported into the cell, it binds and inactivates the repressor, releasing expression
of both genes, and the enzyme proceeds to process the substrate. Cell components are degraded or diluted due to cell growth.
B Regulation of repressor and enzyme are modeled as ”on/off” according to the concentration of free repressor. Repressor
and enzyme are fully expressed at rates Hr and Hz when free repressor levels are below thresholds Rr and Rz, respectively,
and are not expressed if free repressor concentration exceeds these thresholds. C A typical response to a sudden increase in
extracellular substrate concentration S at time zero, showing subsequent peaks in intracellular substrate (sm) and enzyme (zm)
concentrations, before stabilizing to final values se, ze and re.

to decrease. Finally, when the intracellular concentration of the substrate returns to low levels, the transcription
factor is released and resumes repression of the enzyme. We focus on the case of a sudden shift in the substrate
concentration eliciting a fast response, bringing the system out of equilibrium, such as in the case of a bacterium
responding to an environmental stress.

GENERAL MODEL OF CELL RESPONSES

We model the cell response by a system of three differential equations describing the concentrations of the enzyme
z, the repressor r and the substrate s [11]:

ż = hz(rf ) − λz, (1)

ṙ = hr(rf ) − λr, (2)

ṡ = Ki(S(t) − sf ) − Kz z sf
kz + sf

− λs. (3)

with rf = r
kd

kd + sf
(4)

The substrate is imported into the cell with a rate proportional to the difference between its extracellular (S) and
intracellular (s) concentrations with an import rate constant Ki, as is the case when the substrate diffuses across the
cell membrane. The substrate is processed by the enzyme z following Michaelis-Menten kinetics, with a catalytic rate
constant Kz and a Michaelis constant kz. As intracellular substrate binds and inactivates the repressor, the synthesis
of the enzyme and the repressor inside the cell is regulated by the amount of free (not bound to the substrate)
repressor rf according to regulatory functions hz and hr, respectively (discussed below). All intracellular components
are diluted in the cytoplasm as the cell grows with a rate λ, which we consider constant for the duration of the
response. Since the biochemical binding and unbinding of the substrate to the transcription factor typically happens
at a much faster rate than the aforementioned processes, we consider their unbound (free) forms (sf , rf ) to be in
chemical equilibrium with the bound form [rs] with a dissociation constant kd, such that rfsf = kd[rs]. Therefore,
the inactivation of repressor by the substrate is included in the differential equations implicitly, with rf calculated
from this binding equilibrium.

We consider a simple ”on/off” regulation of the synthesis rates of enzyme and repressor (hz, hr) by the concentration
of free repressor rf (Fig. 1B). Synthesis is kept at a constant rate (Hz, Hr) at low levels of free repressor and is
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shut down when the concentration of free repressor crosses a threshold for inhibition (Rz, Rr). This description
results in four parameters describing gene regulation during the response, corresponding to promoter strengths and
thresholds of inhibition of each the enzyme and its repressor. Although the ”on/off’ description misses finer details
of the regulation [12, 13] that are important in setting the steady-state concentrations of the molecular components
of the response, it still captures essential aspects of the dynamics of cell processes out of equilibrium. ”On/off” gene
expression implements ”bang bang” control, ubiquitous among cell processes, which is frequently the optimal solution
for minimum-time problems [14]. For instance, the quickest way to reach a specific concentration of enzyme is to
synthesize it at maximum speed until a switching point where expression is shut off. ”On/off” expression also captures
the temporal organization of gene expression in pulses, typical of cell processes such as stress responses, signaling and
development [5, 15–18].

We can now numerically evaluate the time course of all the relevant concentrations in a typical response where the
extracellular concentration of substrate suddenly rises from zero to a high level S at time zero (Fig. 1C). In the absence
of substrate, the concentration of repressor will sit at the threshold for its own repression Rr (provided Hr/λ > Rr).
Decreases in repressor concentration will activate its synthesis, while increases in its concentration will shut it off.
Provided that Rz < Rr, the enzyme concentration will be zero. Once the substrate is present, it starts to flow into
the cell and bind the repressor, decreasing the amount of free repressor until it crosses the threshold for activation
of enzyme Rz at time t1. The enzyme is then expressed, processing substrate until its intracellular concentration
starts to decrease, after reaching a peak concentration sm. The concentration of free repressor then starts to increase
until it crosses back the threshold for enzyme repression Rz at time tz, after which the concentration of enzyme
begins to decrease. After a series of decaying oscillations in substrate and enzyme concentrations, caused by filtering
delays in the regulatory negative feedback loop, during which the enzyme synthesis is intermittently switched on and
off, the levels of response components equilibrate to their final steady-state values. In this process, free repressor
concentration equilibrates to Rz, while the repressor synthesis is unchecked, reaching maximum levels.

We further consider two approximations. Inequality sf � kz assumes that the concentration of intracellular
substrate does not reach high enough levels to saturate the enzyme. This regime is typical of fast responses, which
are readily induced by the substrate and are pressured to process it rapidly. Inequality rf � kd assumes that the
concentration of intracellular substrate is much higher than the concentration of repressor, such that sf ≈ s. This
means that regulation operates at relatively low levels of repressor, as is usually the case, and repressor binding
does not significantly reduce the concentration of free substrate. We also rescale the variables and parameters of the
system, as described in the SI and summarized in table I, to arrive at non-dimensional equations:

ż = Hz H(1 − rf ) − z, (5)

ṙ = Hr H(Rr − rf ) − r, (6)

ṡ = Ki(S(t) − s) − z s− s. (7)

with rf = r/(1+s) and H(x) the Heaviside function. In these rescaled variables without loss of generality we choose
the dilution rate λ and the threshold repressor value for activator Rz to be unity. The regulation of the system is now
described by three non-dimensional parameters. H ′

z = KzHz/λ
2kz is the enzyme level at full expression, with enzyme

levels rescaled to the enzyme catalytic rate. H ′
r = Hr/λRz is the repressor level at full expression, with repressor

levels rescaled to the threshold for enzyme repression. R′
r = Rr/Rz is the threshold of repressor self-repression in

relation to the threshold for enzyme repression (primes are dropped below for convenience).
We can now theoretically analyze the time course of a response to a sudden increase in extracellular levels of

substrate. For this, we can divide the time course of the response by the events when the concentration of free
repressor crosses the thresholds for repression of either the enzyme or the repressor itself. In the intervals between
these events, the synthesis rates of both the enzyme and the repressor are constant, and the model equations can be
integrated explicitly. We detail this procedure in the SI. Next, we consider the different regimes of the cell response
in the parameter space defined by Hz, Hr and Rr.

OPTIMIZATION OF RESPONSE DYNAMICS

In this section we will discuss how selective pressures in the cell environment determine the choice of parameter
values that optimize the response. Let us fix the enzyme full expression level Hz and only consider the two-parameter
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Variables

t time

z enzyme concentration

r total repressor concentration

s intracellular substrate concentration

S extracellular substrate concentration

rf free (active) repressor concentration

sf ≈ s free intracellular substrate concentration

Parameters

λ cell growth rate

Ki substrate import rate

Kz enzyme catalytic rate

kz � sf enzyme Michaelis constant

kd � rf repressor/substrate dissociation constant

Hz enzyme synthesis rate (when on)

Hr repressor synthesis rate (when on)

Rz threshold for enzyme repression

Rr threshold for repressor self-repression

Dimensionless Variables

t′ λ t

z′ Kzz/λkz

r′ r/Rz

s′ s/kd

S′ S/kd

r′f rf/Rz

Dimensionless Parameters

K′
i Ki/λ

H ′
z KzHz/λ

2kz

H ′
r Hr/λRz

R′
r Rr/Rz

TABLE I: Description of variables and parameters used in the model (primes are dropped in the main text for simplicity)

plane Rr ×Hr, which describes the regulation by the transcriptional repressor (Fig. 2). This plane can be divided
into regions where the progressions of the response are qualitatively different, and the boundaries between these
different regimens can be used to constrain the search for optimal parameters. Constitutive enzyme expression: when
Hr < 1 full expression of repressor does not reach the threshold for enzyme inhibition, and when Rr < 1 the repressor
represses itself more strongly than it represses the enzyme. In both of these cases, the repressor is unable to regulate
the enzyme, which is always expressed at a constant level Hz (Region 0). Constitutive repressor expression: when
Rr > Hr, the threshold for repressor self-repression is higher than its full-expression level. Since self-repression is
never reached, the repressor is always expressed at a constant level Hr (Regions 1, 3 and 5). Notably, constitutive
expression of repressor in this regions is independent of Rr, so any point where Rr > Hr is equivalent to the point
in the boundary where Rr = Hr, where constitutive repressor expression is already reached. Repressor levels for
regulated response: at very high levels of repressor expression Hr > α2 = Ki S/(Ki + 1) (or very low substrate level
S), the concentration of free repressor never drops below the threshold to activate the enzyme, so the response is
never induced (Regions 5 and 6). At lower levels of repressor expression 1 < Hr < α1 = Ki S/(Ki +Hz +1), repressor
levels are insufficient to curb enzyme expression once the response is induced, leading to unnecessary full expression
of enzyme (Regions 1 and 2). Therefore, regardless of the selective pressures applied, optimized parameters for the
response can be expected to be found in the region defined by 1 < Rr < Hr and α1 < Hr < α2 (Region 4), with
the remaining parameter space either being equivalent to the boundaries of this region or presenting extreme and
obviously suboptimal solutions.

The selective pressures acting on the system during its evolution dictate the choice of parameters that maximize its
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FIG. 2: Distinct progressions of cell responses. A Regions in the Rr ×Hr plane that correspond to qualitatively different
response progressions. Region 4, highlighted in red boundaries, contains the parameters resulting in all possible regulated
responses, where the enzyme is repressed in the absence of substrate and is induced in its presence. B Values of the key
concentrations in the time course of the response: ri and zi are the initial repressor and enzyme concentrations, zm and sm are
the peak values of enzyme and substrate, and re, ze and se are the end values of repressor, enzyme and substrate, respectively.
Expressions for α1, α2, Ze, Zm, Se, Sm are summarized in the SI. C Time courses of the responses corresponding to the
different regions in the Rr ×Hr plane in A.

efficiency. An ideal response should achieve maximal processing of the substrate, while expending the least amounts
of enzyme and repressor. Therefore, the optimization of the response involves the minimization of substrate, enzyme
and repressor levels during the course of the response. We note that minimization of substrate levels is desirable both
in the case of a drug response, where there is a cost associated with the toxicity of the substrate, or in the case of
a metabolic pathway, where there is a benefit associated with the processing of the substrate. The specific context
of the system operation poses additional constraints that might prioritize the minimization of one of the response
components over the other. For instance, the choice between minimization of substrate or enzyme levels depends on
which of them imposes higher costs for the cell. In addition, costs associated with each component can depend not
only on the maximum concentrations reached, but also on the duration for which they are sustained. Strictly speaking,
the system performance is characterized by the whole time courses of substrate, enzyme, and repressor levels during
the response, which makes the optimization problem infinite-dimensional. To keep the dimensionality of the problem
finite, we approximate the total cost of a given response using a finite set of key concentrations ci: initial, maximum
and final levels for each of the three components (substrate si, sm, se, enzyme zi, zm, ze, and repressor ri, rm, re). Since
we always have rm = re, and we always assume that si = 0, we are left with seven output metrics. We then define the
selective pressure acting on the system by a set of weights wi assigned to each of these metrics, and compute the total
cost of the response as a weighted sum of individual metrics C =

∑
i wici. The relative weights of different metrics

determine which set of regulatory parameters (Hz, Hr, Rr) minimizes the total cost C. This approach assumes for
simplicity that the cost grows linearly with each key concentration, which might not hold true, particularly in cases
where the cost saturates at specific levels.
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FIG. 3: Selective pressures to minimize enzyme or substrate concentration result in qualitatively different
optimal regulatory strategies. A Cost of the response across the Rr ×Hr plane for Ki = 1, Hz = 25, S = 50 and weights
[wri wzi wzm wsm wre wze wse] = [0 10 2 1 0 1 1], where peak enzyme concentration is relatively more costly for the cell than
peak substrate concentration. The cost of expressing enzyme in the absence of substrate is very high, but there is no cost of
regulation. Optimal parameters are indicated by the red dot, located at the edge corresponding to a constitutively expressed
repressor. B Cost of the response across the Rr ×Hz plane for the same parameters as A. Hr is at the optimal value calculated
in A, and the dashed line corresponds to Hz = 25 used in A. C Time course of the response for the optimal parameters
calculated in A, with low peak concentration of enzyme. D-F Cost and time course of the response for the same parameters as
in A, except for weights [wri wzi wzm wsm wre wze wse] = [0 10 1 2 0 1 1], where peak substrate concentration is more costly for
the cell than peak enzyme concentration. The optimum is now located at the edge corresponding to a strongly self-repressed
repressor (red dot), and the time course of the response shows a low peak substrate concentration. Intermediate optima found
when weights shift linearly from values in A (blue dot) to values in B are shown in gray. G-I Cost and time course of the
response for the same parameters as A, except for weights [wri wzi wzm wsm wre wze wse] = [1 10 1 2 1 1 1], when there is a cost
of regulation. The optimum (green dot) is now found for an intermediate value of Hz.

Next, we analyze the importance of the cost of individual components in determining the optimal response regula-
tion. The initial levels of components ri and zi are sustained in the absence of substrate. Therefore, if the presence
of substrate and demand for the enzyme are relatively rare, the cost of these initial levels should be high to reflect a
selective pressure to keep the system repressed by default. Otherwise, constitutive expression of appropriate levels of
the enzyme is optimal. For regulated responses, if we disregard the costs of expressing repressor and consider only the
costs associated with substrate and enzyme, optimal solutions are found at the highest enzyme expression rate Hz

physiologically permitted. Regulation is then designed to ensure that enzyme production is shut down after only a
short burst of expression, which often also involves high levels of repressor expression (Fig. 3BEH). However, as long
as there is a cost for expression of repressor, a local optimum can exist at an intermediate level of enzyme expression
rate (Fig. 3GH). From here on, we will consider the maximal rate of enzyme expression Hz fixed at a high level and
focus on the design of regulation that optimizes the response accordingly.

Depending on the relative costs of substrate and enzyme, the system is optimally regulated by qualitatively different
strategies. Responses that prioritize minimization of enzyme levels show optimal responses with constitutive repressor
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FIG. 4: Changes in relative weight of selective pressures cause optimal regulatory strategy to switch. A
Archetypes minimize each selective pressure while disregarding the others, leading to extreme values mostly outside of the
region corresponding to regulated responses. B The parameter region corresponding to regulated responses is the Pareto front
of optimal solutions. The edges of this region each minimize one of the selective pressures of peak and final enzyme and substrate
concentrations, as indicated by the colors. The green dot in the middle of the region indicates the ”generalist” strategy which
optimizes the response when all four indicated selective pressures have the same weight ([wzm wsm wze wse] = [1 1 1 1] while
wzi � 1 and all wr = 0). C-F Tracking of optimal solutions when the weight of each selective pressure changes linearly from 0
to 10, with all other weights held constant at 1. 200 points are shown. In each case, the regulatory strategy switches between
a constitutively expressed and a self-regulated repressor, passing through the generalist strategy.

expression, while responses that prioritize minimization of substrate levels require strong self-repression of the repressor
(Fig. 3A-F). To avoid any unnecessary expression of enzyme, the cell must keep high concentrations of repressors
throughout the response. Therefore, selective pressures with a high cost of peak enzyme concentration find optima
along the Rr = Hr boundary, with high constitutive expression of the repressor. However, this solution comes at the
expense of a slow induction of the expression of the enzyme, since intracellular substrate levels need to rise further to
bind and deplete a large initial pool of repressor. To avoid the resulting accumulation of substrate the response must
follow the inverse logic. For a rapid response, where the enzyme is induced quickly upon exposure to the substrate,
the initial concentration of repressor must be as low as possible. Therefore, selective pressures with a high cost of the
maximal substrate concentration find optima near the Rr = 1 boundary (Rr = Rz, in dimensional units), where the
threshold for repressor self-repression is just above the threshold for enzyme repression. This solution requires the
strongest possible repressor self-repression while still being able to shut off the enzyme in the absence of substrate.

SET OF PARETO-OPTIMAL SOLUTIONS SHOWS DISTINCT STRATEGIES OF REGULATION

In order to determine the set of all possible optimized responses, regardless of selective pressures, we numerically
determined the parameter sets corresponding to Pareto-optimal regimes [19–21]. Phenotypes that perform best at
one single metric while disregarding all other metrics are called archetypes, and often involve extreme solutions (Fig.
4A). A phenotype involving multiple metrics is said to be Pareto optimal if, due to constraints inherent to the system,
it is impossible to find any other phenotype where all metrics are simultaneously improved. For a Pareto-optimal
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phenotype, improving one metric necessarily decreases the performance of at least one other metric. The evolution of
a given phenotype will try to improve a certain combination of the metrics that reflects the selective pressures applied
to the system. Since improving all metrics together is always desirable, evolution towards Pareto-optimal solutions
does not depend on the selective pressures applied. Therefore, evolution of responses under any selective pressure
should bring the system to an optimal response belonging to the Pareto front, which contains all Pareto-optimal
solutions. To identify the Pareto front in our system, we compute all metrics for each point in the parameter space,
and then numerically eliminate points for which all metrics can be simultaneously improved [22] (so-called dominated
solutions, SI). In agreement with our arguments above, the Pareto front containing all optimal solutions for any
possible selective pressure applied to the system coincides with region 4 of the parameter plane (Fig. 4B).

The Pareto set of optimal solutions shows general design principles of gene regulation. We calculated how each
metric (key concentrations) varies across the set, showing the trade-offs in performance among the Pareto-optimal
solutions. A ”generalist” response, which balances minimizing both maximum and final concentrations of both
substrate and enzyme (equal weights for sm, se, zm and ze), is optimized by parameters in the middle of the Pareto
set, with a moderately expressed and weakly self-regulated repressor. However, we find that parameter sets that
prioritize single traits are located along the boundaries of the region. The strength of repressor expression Hr can be
adjusted to control final levels of enzyme and substrate, with weak repressor expression resulting in minimal levels of
substrate and strong repressor expression resulting in minimal levels of enzyme. Conversely, the threshold of repressor
self-repression Rr can be adjusted to optimize maximum levels of enzyme and substrate, with strong self-repression
(Rr ≈ 1) resulting in minimal peak levels of substrate and weak self-repression (constitutive repressor expression,
Rr ≈ Hr) resulting in minimal peak levels of enzyme (Fig. 4B).

Although generalist responses may be optimized by a weakly self-repressed repressor, most responses are optimized
by either constitutive or strongly self-repressed repressors. Analyzing the locations of optima within the Pareto front
for different combinations of weights, we note that they typically occur along the edges: either at the line Rr = 1
(strong self-repression) or along the diagonal Rr = Hr (constitutive repressor expression). Varying the weight of each
of the metrics sm, se, zm and ze, we find that the optimum starts by moving along one edge, then quickly transitions
through the generalist optimum towards the opposite edge. (Fig. 4C-F). Optimal parameters in the interior of the
Pareto front, while possible, require careful balancing of the weights for all metrics and appear to be much less typical.

DISCUSSION

Although it is not always possible to determine exactly which selective pressures result in a given set of optimized
regulation parameters, the choice of regulatory strategy still reflects which costs are most critical in the evolution of a
response. In some cases where not all of the key concentrations contribute towards the cost of the response, the enzyme
can be regulated (or not) as one the archetypes. The gene ampC, which produces an enzyme that confers resistance
against β-lactam antibiotics, is notably expressed constitutively in low levels in E. coli, suggesting that at typical drug
concentrations for this organism the level of enzyme necessary to inactivate the drug does not pose significant costs
for the cell. However, many pathogenic strains of E. coli that are exposed to higher antibiotic concentrations develop
mutations that increase expression of AmpC, which incurs fitness costs for the cell [23, 24]. In typical responses where
multiple costs are relevant, however, responses are regulated. Therefore, in many pathogen species ampC is expressed
much more strongly, but regulated by a self-regulated repressor ampR, which indicates that the cost of expressing
the enzyme is relevant for these organisms [25, 26]. Conversely, repressor LexA of the SOS response is often lost in
pathogenic spirochetes when these species are continuously exposed to DNA damage, which results in a constitutively
expressed response [27, 28]. We next characterize the regulatory strategies of several types of cell responses that are
well described in the literature by calculating the regulatory parameters from data on protein expression and placing
them into our optimization framework (Fig. 5, details in the SI).

Antibiotic responses are very often regulated by strongly self-repressed repressors, which minimizes the peak antibi-
otic concentration reached during the response. Negative auto-regulation has been shown to significantly increase the
speed of transcriptional responses [29, 30], which is essential to keep peak drug levels low. Negative auto-regulation
also decreases noise and increases the input dynamic-range of responses, which makes the system more adaptable to
different drug concentrations [31–33]. In the tetracycline resistance tet operon, repressor TetR is expressed from a
promoter that is marginally less repressed than the tightly controlled promoter that expresses efflux pump TetA [34].
Therefore, when TetR levels drop slightly, the repressor pool is replenished before the costly induction of the efflux
pump, protecting the system against unnecessary activation [7].

The marRAB operon is induced by phenolic compounds and activates expression of global activator MarA, which
is not an enzyme that acts directly on its inducers, but instead initiates a broad response that controls a wide array
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FIG. 5: Natural examples of cellular response systems show different strategies of regulation. Regulatory pa-
rameters were calculated for a variety of cell responses. Antibiotic resistance mechanisms, such as the tetracycline resistance
tet operon repressed by TetR and the multidrug resistance marRAB operon repressed by MarR, present strong repressor self-
repression and moderate repressor expression. The lactose utilization lac operon is repressed by a constitutive repressor LacI,
expressed much above the threshold for repression of the lac genes. The acetate utilization aceBAK operon is repressed by a
strongly self-repressed IclR repressor, as in antibiotic responses. The SOS response to DNA damage involves the coordination
of many genes regulated by the LexA repressor, which are expressed by promoters with different affinities to LexA to ensure
expression in a temporally structured fashion. Different genes in the LexA regulon are therefore located in different positions
along the dotted line. The edges of the Pareto front that minimize each of the selective pressures of peak and final enzyme and
substrate are indicated by the colors described in the legend.

of genes that improves resistance against many stressors, including multiple antibiotics [35, 36]. The repressor of
the operon, MarR, is expressed from the same promoter as MarA, so when MarR levels drop slightly MarA is also
expressed. However, full expression of the operon depends also on a positive feedback loop of MarA activation, which
occurs only at higher expression levels [37–39]. This mechanism also prevents unnecessary activation of the response.
Parameter Hr, which measures expression of repressor in relation to its ability to repress enzyme, is typically not very
high in antibiotic responses, since that would increase steady-state levels of drug inside the cell.

Stress responses also follow the same pattern of strongly self-repressed repressors with a relatively low Hr. The
SOS response to DNA damage is induced by single stranded DNA, which causes cleavage of global repressor LexA,
resulting in the activation of dozens of genes involved in DNA repair [40]. Similarly to the marRAB operon, the
DNA repair enzymes activated in the SOS response do not act directly on the inducers of the response, but they
do indirectly cause their concentration to fall. This response requires coordinated expression of genes in the LexA
regulon, so promoters with different affinity for LexA are used to control repair genes according to their temporal
sequence. While some genes have lower thresholds of repression, as lexA itself, and are induced immediately as LexA
levels begin to drop, other genes are very tightly repressed, and are only expressed later in the response [41].

Metabolic responses are often regulated by constitutively expressed repressors, which minimizes peak enzyme levels
at the expense of a slower response and a higher peak of substrate concentration [42]. Such is the case of the lac operon,
which produces enzymes LacZ, LacY and LacA necessary for lactose metabolism. These enzymes are repressed by
repressor LacI, which is expressed nearly constitutively [43]. Although failure to quickly process lactose might result
in a competitive disadvantage for the cell, high intracellular concentration of a nutrient such as lactose is not costly
per se, as it is not toxic. Therefore, unlike the case of antibiotic resistance, induction of the response is less urgent.
Consequently, in metabolic responses such as lactose utilization the cell prioritizes controlling enzyme levels over
substrate levels, adopting a regulatory strategy that minimizes both peak and steady-state levels of the enzyme [44].

In the transition to stationary phase, E. coli cells induce a metabolic response that allows the consumption of
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the acetate secreted as a by-product during exponential growth. This response is regulated by repressor IclR which
represses the aceBAK operon necessary for growth on acetate. Unlike LacI, IclR strongly represses its own expression
[45, 46]. In this case, both the toxicity of high acetate levels and the scarcity of alternative carbon sources typical of
the stationary phase increase the costs associated with substrate levels, so the acetate metabolic response has similar
regulation to antibiotic or stress responses.

Although a ”generalist” regulation strategy, with relatively weak negative auto-regulation of the repressor, could
in theory optimize the system in situations where all costs are equally important, it is rarely observed in nature.
If the generalist strategy were to be adopted, moderate changes in the relative weights of the different costs would
either prompt the cell to adopt stronger self-repression of the repressor or to get rid of self-regulation altogether.
Moreover, self-repression or constitutive expression of the repressor does not simply depend on minor adjustments in
parameters of the regulation, but on the arrangement of regulatory elements such as promoters and repressor binding
sites. Therefore, strong differences in selective pressures would be necessary to switch from one strategy to the other.

We note that in metabolic responses, the benefit of processing substrate saturates when the cell is no longer capable
of utilizing the resulting metabolites. Therefore, the corresponding opportunity cost associated with unprocessed
intracellular substrate saturates at higher concentrations, and does not increase in a similar fashion as the costs of
intracellular stressors. Since in this case the costs associated with substrate levels are fundamentally different than
the costs associated with enzyme levels, the optimal regulation might deviate from the one suggested by the analysis
presented here. Similarly, with regulatory designs involving additional feedback loops can show different dynamics,
as is the case with the marRAB operon. This is also the case for responses where the proteins under direct control
of the transcription factor do not act on the substrate (or an inducer molecule) directly, so substrate levels only
decrease later after the activation of enzymes further downstream. Additionally, there are plausible scenarios where
the approximations used in our model would not be valid, such as when the intracellular substrate concentration is
low enough to be comparable to the repressor concentration or high enough to saturate the enzyme. However, this
model should hold in most cases during the initial phase of a response to a sharp increase in intracellular substrate
concentration.

While we focused our analysis on the case of an enzyme directly regulated by a transcription repressor, this
framework can be used to analyze other types of regulatory architectures. These include responses regulated by
transcription activators or by multiple regulators, responses involving multiple enzymes or responses with complex
regulation where the binding of transcription factor to DNA cannot be well approximated by ”on/off” states. While
an analytical solution to the model might be challenging, most of these cases could still be described by a manageable
number of parameters to permit numerical solutions. Therefore, this general framework can be used to study and
categorize the vast collection of regulatory architectures found in natural systems.
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