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Abstract

Background: Nowadays, multiple omics data are measured on the same
samples in the belief that these different omics datasets represent various as-
pects of the underlying biological systems. Integrating these omics datasets
will facilitate the understanding of the systems. For this purpose, various
methods have been proposed, such as Partial Least Squares (PLS), decom-
posing two datasets into joint and residual subspaces. Since omics data are
heterogeneous, the joint components in PLS will contain variation specific to
each dataset. To account for this, Two-way Orthogonal Partial Least Squares
(O2PLS) captures the heterogeneity by introducing orthogonal subspaces and
better estimates the joint subspaces. However, the latent components span-
ning the joint subspaces in O2PLS are linear combinations of all variables,
while it might be of interest to identify a small subset relevant to the research
question. To obtain sparsity, we extend O2PLS to Group Sparse O2PLS
(GO2PLS) that utilizes biological information on group structures among
variables and performs group selection in the joint subspace.

Results: The simulation study showed that introducing sparsity improved
the feature selection performance. Furthermore, incorporating group struc-
tures increased robustness of the feature selection procedure. GO2PLS per-
formed optimally in terms of accuracy of joint score estimation, joint loading
estimation, and feature selection. We applied GO2PLS to datasets from two
studies: TwinsUK (a population study) and CVON-DOSIS (a small case-
control study). In the first, we incorporated biological information on the
group structures of the methylation CpG sites when integrating the methyla-
tion dataset with the IgG glycomics data. The targeted genes of the selected
methylation groups turned out to be relevant to the immune system, in which
the IgG glycans play important roles. In the second, we selected regulatory
regions and transcripts that explained the covariance between regulomics and
transcriptomics data. The corresponding genes of the selected features ap-
peared to be relevant to heart muscle disease.

Conclusions: GO2PLS integrates two omics datasets to help understand
the underlying system that involves both omics levels. It incorporates external
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group information and performs group selection, resulting in a small subset
of features that best explain the relationship between two omics datasets for
better interpretability.

Keywords— Integration of Omics data, Dimension reduction, Feature selection,
Group structure, O2PLS

Background

With the advancements in high throughput technology, multiple omics data are commonly
available on the same subjects. To identify a set of relevant related features across the
omics levels, these datasets need to be integrated and analyzed jointly. For statistical
integration of omics data, there are several challenges to overcome: complex correlation
structure within and between omics data, high-dimensionality (p � n, or “large p, small
n”), heterogeneity between different omics datasets, and selection of relevant features in
each dataset. To deal with the first two challenges, Partial Least Squares (PLS) has been
proposed [5, 30]. Dimension reduction is achieved by decomposing two datasets X and Y
into joint and residual subspaces. The joint (low-dimensional) subspace of one dataset rep-
resents the best approximation of X or Y based on maximizing the covariance of the two.
However, by integrating two heterogeneous omics datasets, the PLS joint components also
contain (strong) omic-specific variation. This heterogeneity can be caused by differences
(e.g. between methylation and glycomics) in size, distribution, and measurement plat-
form. Ignoring these omic-specific characteristics (variation specific to each of the data)
in the model may lead to a biased representation of the underlying system. Two-way
orthogonal partial least squares (O2PLS) [24, 9] was proposed to decompose each dataset
into joint, orthogonal, and residual subspaces. The orthogonal subspaces in X and Y
capture variation unrelated to each other, making the joint subspaces better estimates
for the true relation between X and Y. Hence, O2PLS accounts for the heterogeneity of
two omics datasets. However, the resulting low-dimensional latent components spanning
the joint subspaces are linear combinations of all the observed variables. Therefore, to
select a small subset of relevant features for better interpretation, one can impose sparsity
on the loadings of the principal components. A straightforward approach is to ignore all
loadings smaller than some threshold value, effectively treating them as zero, which can
be misleading [13].

Several sparse methods based on PLS have been proposed. Chun and Keleş proposed
sparse PLS (SPLS) [8] which fits PLS on a reduced X space, consisting of pre-selected X-
variables using a penalized regression. Sparse PLS (sPLS) by Lê Cao et al. [15] imposes
L1 penalty on the singular value decomposition (SVD) of the covariance matrix of X
and Y , resulting in sparse loading vectors for both datasets. Often it is of interest to
select a group of features instead of individual features, e.g. features within a gene or
a pathway. By so doing, one can improve power by identifying aggregate effects of the
selected features [25, 31, 16]. Liquet et al. extended sPLS to group PLS (gPLS) [16],
imposing group-wise L2 penalties on the loadings of the pre-defined feature groups. It
results in group-wise sparsity (i.e., features belonging to the same group will always be
selected altogether).

In this work, we propose to extend O2PLS to incorporate sparsity, called Group Sparse
O2PLS (GO2PLS). GO2PLS obtains sparse solutions by pushing a large number of small
non-zero weights (or loading values) to zeros, instead of employing hard thresholding
using arbitrary cut-off values. Therefore, GO2PLS constructs joint low-dimensional latent
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components representing the underlying systems involving both omics levels while taking
into account the heterogeneity of different omics data, incorporates external biological
information such as known group structure, and performs variable selection by imposing
group-wise penalties on the loading vectors in the joint subspaces.

For illustration, we apply GO2PLS to datasets from two studies. Firstly, TwinsUK
is a population based study [19, 17], where methylation (482K CpG sites) and 22 im-
munoglobulin G (IgG) glycans were measured. A previous research [27] suggested the
presence of an indirect influence of methylation on IgG glycosylation that may in part
capture environmental exposures. We integrate the two omics datasets, aiming to iden-
tify genes of CpG sites affecting IgG glycosylation. In the CVON-DOSIS case-control
study [1], regulomics (histone modification) and transcriptomics data were measured on
13 hypertrophic cardiomyopathy (HCM) patients and 10 controls. Histone modification
can have an impact on gene expression. Therefore we integrate the two omics datasets
and identify a small set of regulatory regions and transcripts explaining this relationship.
Moreover, the extreme imbalance in a high-dimensional setting (33K ChIP-seq and 15K
RNA-seq vs 23 subjects) poses computational challenges. The resulting selected features
are further studied using gene set enrichment analysis [21]. Several possible scenarios
containing these characteristics are designed and investigated in an extensive simulation
study.

This paper is organized as follows. In the methods section, an overview of O2PLS is
presented, followed by the formulation of GO2PLS. Via a simulation study, we explore the
properties of GO2PLS and compare its performance to other competitive methods. We
then apply GO2PLS to integrate methylation and glycomics in the TwinsUK study and
regulomics and transcriptomics in the CVON-DOSIS study. We conclude with a discussion
and possible directions to further extend the method.

Methods

Data description

TwinsUK datasets

Whole blood methylation (using Infinium HumanMethylation450 BeadChip) and IgG glyc-
omics (Ultra Performance Liquid Chromatography) data were measured on 405 indepen-
dent individuals, among which 392 are females and 13 are males. The age ranges from
18 to 81, with a median of 58. The methylation dataset consists of beta values (ratio of
intensities between methylated and unmethylated alleles) at 482563 CpG sites. CpG sites
with missing values, on allosomes, or labeled cross-active [7] were removed. We kept only
the CpG sites on CpG islands or surrounding areas (shelves and shores) that mapped to
genetic regions. Age, sex, batch effect, and cell counts were corrected for using multiple
regression. The glycomics dataset contains 22 glycan peaks. These peaks were normal-
ized using median quotient (MQ) normalization [26], log-transformed, and adjusted for
batch effect, age, and sex as well. The remaining 126299 CpG sites were then divided
into 16892 groups based on their target genes (biological information from the UCSC
database [14, 2]). No group information was available for the glycomics data.

CVON-DOSIS datasets

In the CVON-DOSIS study, regulomics and transcriptomics datasets were measured on
the samples taken from the heart tissues of 13 HCM patients and 10 healthy controls.
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HCM is a heart muscle disease that makes it harder for the heart to pump blood, leading
to heart failure. The regulomics data were measured using ChIP-seq, providing counts
of histone modification H3K27ac in 33642 regulatory regions. The transcriptomics data
contain counts of 15882 transcripts, measured by RNA-seq. The raw counts of regulomics
data were normalized with reads per kilobase million (RPKM) to adjust for sequencing
depth. Transcriptomics data were normalized with counts per million (CPM) with effective
library size (estimated using the TMM method in EdgeR R package [18]). Further, both
normalized data were log-transformed.

Two-way Orthogonal Partial Least Squares (O2PLS)

let X and Y be two data matrices with the number of rows equal to the sample size N and
the number of columns equal to the dimensionality p and q, respectively. Let the number
of joint, X-orthogonal (unrelated to Y ) and Y -orthogonal components be K, Kx and Ky,
respectively, where K, Kx and Ky are typically much smaller than p and q. The O2PLS
model decomposes X and Y as follows:

X = TW> + T⊥P
>
⊥ + E,

Y = UC> + U⊥Q
>
⊥ + F.

(1)

The relation between X and Y is captured through the inner relation between T and U,

U = TBT +H,

T = UBU + H̃.
(2)

In this model, the scores are: T (N×K), U (N×K), T⊥ (N×Kx), U⊥ (N×Ky). They
represent projections of the observed data X and Y to lower-dimensional subspaces. The
loadings, W (p×K), C (q×K), P⊥ (p×Kx), Q⊥ (q×Ky), indicate relative importance of
each X and Y variable in forming the corresponding scores. Further, E (N × p), F (N ×
q), H (N ×K), H̃ (N ×K), represent the residual matrices.

In O2PLS, estimates of the joint subspaces are obtained by first filtering out the
orthogonal variation. The filtered data matrices X̃ and Ỹ are constructed as follows:

X̃ = (IN − T⊥(T>⊥ T⊥)−1T>⊥ )X,

Ỹ = (IN − U⊥(U>⊥U⊥)−1U>⊥ )Y,
(3)

where T⊥ U⊥ are estimates for the orthogonal subspaces, and IN is identity matrix of size
N . For more details see [24]. The joint parts maximize the covariance between the joint
scores T = X̃W and U = Ỹ C. Here, W and C consist of loading vectors (w1, . . . , wK) and
(c1, . . . , cK), which can be found as the right and left singular vectors of the covariance

matrix Ỹ
>
X̃ [9]. Calculating and storing Ỹ

>
X̃ of dimension q×p can be cumbersome for

high dimensional omics data. Therefore we consider the following optimization problem
sequentially for components k = 1, . . . ,K:

max
‖ck‖2=1,‖wk‖2=1

c>k Ỹ
>
k X̃kwk, (4)

where parameters wk, ck are the loading vectors of the k-th joint components and X̃k, Ỹ k

are the filtered data matrices after k − 1 times of deflation. This can be solved efficiently
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using NIPALS [29] algorithm, which starts with random initialization of the X-space score
vector t and repeats a sequence of the following steps until convergence:

1) ck =
Ỹ
>
k t

t>t
, 2) ‖ck‖2 → 1, 3)u = Ỹ kck,

4)wk =
X̃
>
k u

u>u
, 5) ‖wk‖2 → 1, 6) t = X̃kwk.

(5)

In step 1 and 4, Yk and Xk are projected onto the X-space score vector t and the Y -space
score u to get the loading vectors ck and wk. The loading vectors are then unitized (step
2 and 5) and used to calculated the new scores u and t. Convergence of the algorithm is
guaranteed. A detailed description and proof of optimality of the O2PLS algorithm can
be found in [24, 9].

While standard cross-validation (CV) over a 3-dimensional grid is often used to de-
termine the optimal number of components K, Kx, and Ky, the procedure is not optimal
for O2PLS, since there is not a single optimization criterion for all three parameters. As
in [9], we use an alternative CV procedure that first performs a 2-dimensional grid search
of Kx and Ky, with a fixed K, to optimize prediction performance of T → U and U → T .
Then a sequential search of optimal K is conducted to minimize the sum of mean squared
errors (MSE) of prediction concerning X → Y and Y → X.

Group Sparse O2PLS (GO2PLS)

GO2PLS extends O2PLS by introducing a penalty in the NIPALS optimization on the
filtered data X̃ and Ỹ . This penalty encourages sparse, or group-sparse solutions for the
joint loading matrices W and C, leading to a subset of the original features corresponding
to non-zero loading values being selected in each joint component.

Briefly, we introduce an L1 penalty on each pair of joint loading vectors. The opti-
mization problem for the k-th pair of joint loadings ck, wk is:

max
‖ck‖2=1,‖wk‖2=1

c>k Ỹ
>
k X̃kwk + λc ‖ck‖1 + λw ‖wk‖1 , (6)

where λc, λw are penalization parameters that regulate the sparsity level. The optimiza-
tion problem (6) can be solved [28] by iterating over the k-th pair of joint loadings,

ck =
S(Ỹ

>
k t, λc)∥∥∥S(Ỹ
>
k t, λc)

∥∥∥
2

, wk =
S(X̃

>
k u, λw)∥∥∥S(X̃
>
k u, λw)

∥∥∥
2

, (7)

where t = X̃kwk and u = Ỹ kck. Here, S(·) is the soft thresholding operator: S(a, const) =
sgn(a)(|a| − const)+ (const ≥ 0 is a non-negative constant, (x)+ equals to x if x > 0 and
equals to 0 if x ≤ 0).

To perform group selection, we impose group-wise L2 penalty on the joint loading
vectors. Let X̃ and Ỹ be partitioned into J (J ≤ p) and M (M ≤ q) groups, respectively.

The submatrices X̃
(j)

and Ỹ
(m)

(j = 1, . . . , J ; m = 1, . . . ,M) contain the j-th and m-th
group of variables, with corresponding loading vectors w(j) (of size pj) and c(m) (of size qm).

The optimization problem for the k-th pair of loading vectors ck = (c
(1)
k

>
, . . . , c

(M)
k

>
)> and
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wk = (w
(1)
k

>
, . . . , w

(J)
k

>
)> can be written as follows:

min
c
(m)
k ,w

(j)
k

{
−

J∑
j=1

M∑
m=1

c
(m)
k

>
Ỹ

(m)
k

>
X̃

(j)
k w

(j)
k

+ λc

M∑
m=1

√
qm

∥∥∥c(m)
k

∥∥∥
2

+ λw

J∑
j=1

√
pj

∥∥∥w(j)
k

∥∥∥
2

+ φc

(
M∑
m=1

∥∥∥c(m)
k

∥∥∥2
2
− 1

)
+ φw

 J∑
j=1

∥∥∥w(j)
k

∥∥∥2
2
− 1

},
(8)

where the last two terms are reformulations of the unit norm constraints on ck and wk,
with φc and φw being the Lagrangian multipliers. The effective penalization parameters
on each group (λc, λw) are adjusted by the square root of the group size to correct for
the fact that larger groups are more likely to be selected. This optimization problem can
be solved using block coordinate descent (for details, see Additional file 1). The solution
takes the form:

c
(m)
k =

(∥∥∥∥Ỹ (m)
k

>
t

∥∥∥∥
2

−√qmλc
)

+

2φc

∥∥∥∥Ỹ (m)
k

>
t

∥∥∥∥
2

Ỹ
(m)
k

>
t,

w
(j)
k =

(∥∥∥∥X̃(j)
k

>
u

∥∥∥∥
2

−√pjλw
)

+

2φw

∥∥∥∥X̃(j)
k

>
u

∥∥∥∥
2

X̃
(j)
k

>
u.

(9)

The X̃-variables within the j-th group will have non-zero weights if

∥∥∥∥X̃(j)
k

>
u

∥∥∥∥
2

(i.e., the

contribution of the whole group to the covariance) is larger than the size-adjusted penal-
ization parameter

√
pjλw. In the same way, the Ỹ -variables within the m-th group will

be assigned non-zero loading values if

∥∥∥∥Ỹ (m)
k

>
t

∥∥∥∥
2

>
√
qmλc.

Note that when all the groups have size 1, the summation of group-wise L2 penalties
is equivalent to an L1 penalty on the unpartitioned loading vector and individual features
will be selected (i.e., (8) reduces to (6)). In this specific case, to avoid confusion, we call
the method Sparse O2PLS (SO2PLS). When the penalization parameters λw = λc = 0,
GO2PLS becomes to O2PLS. If the number of orthogonal components Kx = Ky = 0,
GO2PLS, SO2PLS, O2PLS are equivalent to gPLS, sPLS, and PLS, respectively.

The k-th pair of joint loadings are orthogonalized with respect to the previous k − 1
loading vectors. Let π be an index set for selected variables in wk. The orthogonalization

is achieved by first projecting w
(π)
k onto span{w(π)

1 , . . . , w
(π)
k−1}, and then subtracting this

projection from w
(π)
k . When the previous k − 1 components do not select any variable in

π, span{w(π)
1 , . . . , w

(π)
k−1} is actually a zero subspace and no orthogonalization is needed.

To determine the optimal sparsity level, it is more convenient and intuitive to focus
on the number of selected X̃, Ỹ groups (donote hx, hy, respectively). If prior biological
knowledge does not already specify certain hx and hy, cross-validation can be used to
search for combinations of hx and hy that maximize the covariance between each pair of
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estimated joint components Cov(t̂, û). Similar to LASSO [22], the “one-standard-error-
rule” [12] can be applied to obtain a more stable CV result. The GO2PLS algorithm is
described below:

Algorithm: GO2PLS

1 Get X̃ and Ỹ by removing orthogonal variation from X and Y :

(I) Apply NIPALS on X and Y , get an initial estimate of score matrices T, U
and loading matrices W,C;

(II) E = X − TW>; F = Y − UC>;

(III) W⊥ = Kx left singular vectors of SVD (E>T );
C⊥ = Ky left singular vectors of SVD (F>U);
T⊥ = XW⊥; U⊥ = Y C⊥;

(IV) X̃ = (I − T⊥(T>⊥ T⊥)−1T>⊥ )X;
Ỹ = (I − U⊥(U>⊥U⊥)−1U>⊥ )Y .

2 Calculate joint loadings and joint scores sequentially:

(I) Let X̃1 = X̃; Ỹ 1 = Ỹ ;

(II) For k = 1, 2, . . . , K:

(a) Iterate between ck and wk until convergence, following Formula (9) (or
Formula (7) for SO2PLS);

(b) Orthogonalization of ck, wk with regard to the previous k − 1 loading
vectors;

(c) tk = X̃kwk; uk = Ỹ kck;

(d) pk = X̃
>
k tk/(t

>
k tk); qk = Ỹ

>
k uk/(u

>
k uk);

(e) X̃k+1 = X̃k − tkp>k ; Ỹ k+1 = Ỹ k − ukq>k ;

(III) T = [t1, . . . , tK ]; U = [u1, . . . , uK ];
W = [w1, . . . , wK ]; C = [c1, . . . , cK ].

Simulation Study

We evaluate the performance of GO2PLS in two scenarios. First, we investigate the ability
to select the relevant groups under various scenarios, focusing on the joint subspace, where
the group selection takes place. Second, we compare the performance of GO2PLS and
SO2PLS with other methods: O2PLS, PLS, sPLS, and gPLS. We investigate joint score
estimation, joint loading estimation, and feature selection performances.

In the first scenario, we set the number of variables in X and Y to be p = 5000
and q = 20, respectively. There are 10 groups of variables in X with non-zero loading
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values. The first 5 groups have group sizes of 100, 50, 20, 5, and 1, respectively, in which
all the variables have loading values equal to 1. The remaining 5 groups are of size 10,
with loading values of variables equal to 5. Note that large loading values are assigned
to the latter 5 groups to make the detection of the first 5 groups more difficult. The
remaining variables have zero loading values and are divided into groups of size 10. All
the Y -variables have the same loading values and are not grouped. The sample size N
is set to 30. We simulate both data matrices with 1 joint component (T and U from
Equation 1 are both standard normally distributed and have correlation 1). We perform
1000 simulation runs and record the number of the runs GO2PLS selected relevant groups;
we compute the proportion of each truly relevant group (with non-zero loadings) being
selected across the simulation runs (number of times being selected divided by 1000).

The group importance measurement
∥∥∥X(j)>U

∥∥∥
2
/
√
pj , that determines whether a group is

selected or not is recorded for the first 5 groups (with loading value 1) to investigate the
stability of the selection procedure.

In the second scenario, we vary the sample size N from 30 to 600, and set p = 20000
and q = 10000, mimicking the dimensionality of the CVON-DOSIS datasets. Both X- and
Y - variables are evenly divided into 1000 groups. For each joint component, we select 50
relevant groups and assign non-zero loadings to the variables contained in them. Within
each group, variables have the same loading values: 1 for the first group, 2 for the second,...,
and 50 for the last relevant group. We set the number of joint components K = 2 and the
number of orthogonal components Kx = Ky = 1. The scores T, T⊥, U, U⊥ from Equation 1
are generated from normal distributions with zero mean. The relationship between the
joint scores is represented by U = T + H, where H accounts for 20% of the variation in
U . The noise matrices E, F are generated from normal distributions with zero mean and
variance such that the variance of the noise matrix accounts for a proportion α (0 < α < 1)
of the variance of the data matrix (i.e., α = Var(E)/Var(X) = Var(F )/Var(Y )). The ratio
of the variance of the orthogonal components to the variance of the joint components
(σ2T⊥/σ

2
T ), and noise level α are varied. For evaluating the accuracy of the joint score

estimation, we computed R2
T̂ T

= 1−
∑

(T̂ −T )2/
∑
T 2 and R2

T̂ Û
= 1−

∑
(Û − T̂ )2/

∑
Û2,

which quantify how well the true parameter T and the estimated Y -joint component Û
can be explained by the estimated X-joint component T̂ . The performance of feature
selection and the accuracy of estimated loadings are evaluated by true positive rate (TPR

= TP/(TP+FN), where TP = True Positive, FN = False Negative) and W>Ŵ , which
represents the cosine of the angle between the estimated loading vector and the true one.
The performances of all methods are evaluated on an independent test dataset of size
1000. For each setting, 500 replications are generated.

An overview of scenario settings is presented in Table 1, 2. To make a clearer com-
parison of the behavior across all the methods, we use the optimum values for the tuning
parameters (number of components and number of relevant variables or groups).

Results of simulation study

Scenario 1

Fig 1 shows the selection proportion for each relevant group under each noise level. Com-
pared to smaller groups, the proportion for larger groups is higher at low to moderate
(α < 0.7) noise levels, and shows robustness against increasing noise. When the noise
level is very high (α > 0.8), the method loses power to detect relevant group of any size,
particularly, of larger size. Fig 2 shows the density of the group importance measurement
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Table 1: Settings of Scenario 1 to study the performance of selecting relevant groups

Measure Selection proportion;

∥∥∥X(j)>U
∥∥∥
2√

pj

p; q 5000; 20
relevant group sizes 100; 50; 20; 5; 1

N 30
noise level α [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

The selection proportion is the number of times a relevant group being selected divided

by the number of simulation runs. The
∥∥∥X(j)>U

∥∥∥
2
/
√
pj is a measurement of group im-

portance. It provides more information on the stability of the group selection procedure.
We simulate groups with varying sizes to investigate the influence of group size on the
group selection performance of GO2PLS.

Table 2: Settings of Scenario 2 to compare the performances regarding joint score
estimation, joint loading estimation, and feature selection

Methods GO2PLS; SO2PLS; O2PLS; gPLS; sPLS; PLS

Measure R2
T̂ T

, R2
T̂ Û

, TPR, W>Ŵ

p; q 20, 000; 10, 000
relevant p; q 1000; 500

N [30, 100, 200, 300, 600]
σ2
t⊥
/σ2

t [1/5, 1/3, 1/2, 1, 2, 3, 5]
noise level α [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

R2
T̂ T

and R2
T̂ Û

quantify the joint score estimation performance; TPR measures the feature

selection performance; W>Ŵ quantifies the joint loading estimation performance. The
dimensions and number of relevant features are set based on the CVON-DOSIS study.
Sample size N , the relative strength of orthogonal signal (σ2

T⊥
/σ2

T ), and noise level α are
varied.∥∥∥X(j)>U

∥∥∥
2
/
√
pj for the first 5 relevant groups with different group sizes under 3 different

noise levels. The vertical dotted lines indicate the average threshold given the correct
number of relevant groups. Since a group will be selected if exceeds the threshold, the
total area on the right side of the threshold under each density curve equals the selection
proportion for the corresponding group. The measurement for larger relevant group shows
higher precision at all noise levels. The threshold increases along with the noise.

Scenario 2

The performance of the joint score estimation is compared focusing on the difference be-
tween methods with orthogonal parts (GO2PLS, SO2PLS, O2PLS) and their counterparts
without the “O2” filtering (gPLS, sPLS, PLS). The top row of Fig 3 shows the perfor-
mance measured by R2

T̂ T
& R2

T̂ Û
under N = 30, α = 0.1 and varying relative orthogonal

signal strength from one fifth to five times of the joint signal. In the left panel, R2
T̂ T

of

the various methods is depicted, representing how well the joint component T̂ captured
the true underlying T . Overall, penalized methods performed better than non-penalized
ones, especially when the orthogonal variation is relatively small. PLS performed poorly
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Figure 1: Simulation Scenario 1: Selection proportion of relevant groups
with different sizes under varying noise. The proportion for larger groups
is higher at low to moderate (α < 0.7) noise levels, and shows robustness against
increasing noise.

compared to O2PLS, when the orthogonal variation exceeds the joint variation. As the
orthogonal variation further increases, performances of sPLS and gPLS deteriorated, while
SO2PLS and GO2PLS were less affected. In the right panel, R2

T̂ Û
is presented, an estimate

of the true parameters R2
TU , capturing correlation of T and U . Across different settings,

O2PLS-based methods performed better, especially when the orthogonal variation is large.
The bottom row of Fig 3 shows the score estimation performance under fixed relative

orthogonal signal strength of 1, α = 0.1, and varying sample size N from 30 to 600. Penal-
ized methods performed better compared to non-penalized methods in general, when the
sample size is small. Regardless of the sample size, O2PLS-based methods outperformed
PLS-based methods.

Lastly, we present the results of GO2PLS, SO2PLS, and O2PLS with regard to feature
selection and estimation of joint loadings. Results of PLS-based methods are not included
since the performances of gPLS, sPLS, and PLS in this regard are very similar to GO2PLS,
SO2PLS, and O2PLS, respectively. In Fig 4, the top row shows the TPR and W>Ŵ under
N = 30 and varying noise levels α from low to high. At all noise levels, GO2PLS had
higher TPR than SO2PLS and O2PLS, and performed robustly against increasing noise.
Regarding W>Ŵ , GO2PLS outperformed the other two as well. In the bottom row, when
increasing sample size at a fixed noise level of 0.5, the variance appeared to decrease and
the performances of all the methods converged. Overall, GO2PLS outperformed others.
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Figure 2: Simulation Scenario 1: Density plot of estimated group impor-

tance measurement
∥∥∥X(j)>U

∥∥∥
2
/
√
pj for each group size under 3 different

noise levels. The vertical dotted red line is the average threshold. When the
measurement of a group is larger than the threshold, the group is selected. The
total area on the right side of the threshold under each density curve equals to the
selection proportion for the corresponding group. The less the density curve spreads
out, the more stable is the estimate.

Application to data

We demonstrate SO2PLS and GO2PLS on datasets from two distinct studies. In the
TwinsUK study, our aim is to integrate methylation and glycomics data and identify
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Figure 3: Simulation Scenario 2: comparison of joint score estimation
performance, under varying relative orthogonal signal strength (top row), and
varying sample size (bottom row). On the Y-axis, R2

T̂ T
(left) and R2

T̂ Û
(right) are

the coefficient of determination of regressing T on T̂ , and Û on T̂ , respectively,
quantifying the joint score estimation performances. Boxes show the results of 500
repetition.

important groups of CpG sites underlying glycosylation. In the CVON-DOSIS study, we
integrate regulomics and transcriptomics data and select a subset of genes and regions
that drive their relationship.

TwinsUK study

We performed GO2PLS on the data with 1 joint, no methylation-orthogonal, and 3
glycomics-orthogonal components based on 5-fold cross-validation. We set the sparsity
parameters to select the top 100 groups in the methylation and kept all the 22 glycan
variables. The selected CpG groups from GO2PLS were mapped to their targeted genes
for interpretation.

We performed gene set enrichment analyses on the selected genes using the ToppGene
Suite [6]. The results appeared to be related to immune response. We listed the most
significant molecular function, biological process, and pathway in Table 3 (the full list of
significant results can be found in Additional file 2).

CVON-DOSIS study

We applied SO2PLS on the regulomics and transcriptomics datasets, with 2 joint and 1
orthogonal components for each omics dataset. In each pair of the joint components, 1000
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Figure 4: Simulation Scenario 2: comparison of feature selection and joint
loading estimation performance, under varying noise level (top row), and vary-
ing sample size (bottom row). On the Y-axis are the True Positive Rate (left) and
W>Ŵ (right), which is the cosine of the angle between the estimated loading vector
Ŵ and the true one W . Boxes show the results of 500 repetition.

regulomics and 500 transcriptomics variables were selected. We then further identified the
genes corresponding to the promoter regions where the selected 1000 histone modification
locates (using ± 10K window from the transcription start site of the gene). These genes are
of interest since they are likely to be related to epigenetic regulation of gene expression.
Genes corresponding to the selected transcripts were also identified. These gene sets
identified from each joint component of the two omics data were investigated separately
using gene set enrichment analysis. The top results were listed in Table 2. The GO
analysis of the selected genes and regions showed terms related to HCM that were also
found previously [11]. Due to the presence of the case-control status in both omics levels,
we expect the joint components related to the disease. Plotting the joint scores of the two
datasets showed a separation between HCM cases and controls (Fig 5). For a comparison
of score plots of PCA, PLS, O2PLS, and SO2PLS, please see Additional file 3.

Discussion and conclusion

Statistical integration of two omics datasets is becoming increasingly popular to gain
insight into underlying biological systems. O2PLS is a method that integrates two het-
erogeneous datasets and takes into account omic-specific variation. The resulting joint
and specific components are linear combinations of all variables, making interpretation
difficult. To introduce sparsity and identify relevant groups, GO2PLS incorporates bio-
logical information on group structures to perform group selection in the joint subspace.
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Table 3: TwinsUK study: top results of gene set enrichment analysis

GO2PLS Name pValue FDR B&H
GO: Molecular
Function

peptide antigen binding 1.42E-06 5.45E-04

homophilic cell adhesion via plasma
membrane adhesion molecules

1.82E-10 4.20E-07

GO: Biological Pro-
cess

cell-cell adhesion via plasma-
membrane adhesion molecules

5.46E-10 6.28E-07

cell-cell adhesion 3.43E-07 2.63E-04
interferon-gamma-mediated signal-
ing pathway

1.01E-05 5.83E-03

Viral myocarditis 8.00E-08 9.60E-06
Staphylococcus aureus infection 1.32E-06 7.92E-05
Allograft rejection 3.77E-06 1.51E-04

Pathway (Source:
KEGG)

Graft-versus-host disease 5.54E-06 1.66E-04

Type I diabetes mellitus 7.05E-06 1.69E-04
Autoimmune thyroid disease 2.00E-05 3.66E-04
Rheumatoid arthritis 2.14E-05 3.66E-04

The “pValue” column shows the p-value of each annotation derived by random sampling
of the whole genome; the “FDR B&H” column provides the false discovery rate (FDR)
analog of the p-value after correcting for multiple hypothesis testing [3, 20]. Complete
list can be found in Additional file 2.

Figure 5: CVON-DOSIS study: SO2PLS joint score plots of regulomics (left)
and transcriptomics (right). HCM patients and controls were plotted in different
colors. Ellipses are the 95% confidence regions of each group.

Depending on the group size, such an approach may also lead to a higher selection proba-
bility of relevant features. We performed an extensive simulation study and showed that
O2PLS-based methods generally outperformed PLS-based methods regarding joint score
estimation when orthogonal variation was present in the data. Since PLS does not take
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into account orthogonal parts, the joint components also include part of the orthogonal
variation. Further, when the sample size was small or the noise level was high, penal-
ized methods appeared to be much less prone to overfitting than non-penalized methods.
This suggests that results based on GO2PLS are likely to be generalizable when applied
to new datasets. Concerning feature selection, adding external group information led to
higher TPR, and larger groups of relevant features had a higher proportion of being de-
tected under a moderate noise level. We then applied GO2PLS to the TwinsUK study,
where we selected 100 target genes comprising of CpG sites that are most related to
IgG glycosylation. The results of the enrichment analysis on the selected genes showed
GO-terms involving the immune system in which the IgG glycans play important roles.
In the CVON-DOSIS study, we integrated regulomics and transcriptomics and identified
1000 regulatory regions and 500 transcripts, and mapped them to genes. Further analysis
of the selected gene sets showed enrichment for terms related to heart muscle diseases.
Moreover, the implementation of GO2PLS is computationally fast and memory efficient.
It relies on an algorithm based on NIPALS that does not store large matrices of size p× q
when performing the group-penalized optimization. A regular laptop (8G RAM, quad-core
2.6 GHz) was able to run GO2PLS on omics data from both case studies.

The group information should be chosen together with domain experts based on the
research question and biological knowledge. For example, in our TwinsUK data applica-
tion, we aimed to identify the genes comprising of CpG sites, rather than the individual
CpG sites. Therefore, we grouped CpG sites in the same genetic region. Furthermore,
the biological knowledge that close-by CpG sites tend to function together supported the
choice of grouping. Different grouping information leads to a changed definition of groups,
consequently the selected groups will have a different interpretation. An extra analysis in
the TwinsUK study was performed using another grouping strategy. We grouped 55531
CpG sites that map to the promoter region (0-1500 bases upstream of the transcriptional
start site (TSS)) of a gene to 14491 groups based on their targeted genes. We applied
GO2PLS and selected 100 groups. Note that the size of these groups was smaller, and
many CpG sites in gene bodies are excluded. Enrichment analysis did not result in signif-
icant results, supposedly due to weaker aggregated group effects. When the research goal
is to identify individual features (e.g., in our CVON-DOSIS data application), or group
information is not available, SO2PLS can be used.

In the CVON-DOSIS study, Plotting the first two joint components showed two dis-
tinct classes corresponding to the case-control status. This might be expected since the
analysis was conditional on case-control status, yielding a correlation between the two
omics datasets. This phenomenon is well known in regression analysis of secondary phe-
notypes [23], but not well studied in PLS type of methods. This is a topic of future
research. Often omics data are collected to study their relationship with an outcome vari-
able or to predict an outcome variable. To this end, our approach has to be extended to
incorporate the outcome variable. Such an approach might also lead to a more sparse so-
lution since the selected features have to be correlated among the three datasets. Further
extensions of GO2PLS are to incorporate more than two omics datasets to represent the
actual biological system even better.

Finally, it is possible to extend the GO2PLS algorithm to a probabilistic model. Ex-
tending latent variable methods to probabilistic models is not new. PCA was extended to
Probabilistic PCA in [4], and PPLS [10] was proposed to provide a probabilistic frame-
work for PLS. It has been shown that the probabilistic counterpart has a lower bias in
estimation and is robust to non-normally distributed variables [10]. More importantly,
the probabilistic model will allow statistical inference, making it possible to interpret the
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relevance and importance of features in the population, and facilitating follow-up studies.
These extensions of GO2PLS will be suited for various studies with more complicated
designs.

To conclude, GO2PLS estimates joint latent components that represent underlying
systems by integrating two omics data while taking into account the heterogeneity between
different omics levels. It incorporates external information on group structures to perform
group selection, leading to better interpretation.
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Additional Files

Additional file 1

The details of solving the optimization problem (8).
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Additional file 2

The full lists of significant results of gene set enrichment analyses in the TwinsUK study
and the CVON-DOSIS study.

Additional file 3

Additional analysis of the CVON-DOSIS datasets, where score plots of PCA, PLS, O2PLS,
SO2PLS are shown and compared.
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Table 4: CVON-DOSIS study: Gene set enrichment analysis results

Joint component
1 - Regulomics

Name pValue FDR B&H

muscle structure development 3.42E-08 2.09E-04
muscle tissue development 1.43E-07 4.37E-04
actin cytoskeleton organization 3.35E-07 6.70E-04
cytoskeleton organization 4.40E-07 6.70E-04

GO: Biological Pro-
cess

regulation of cellular response to
stress

8.14E-07 9.93E-04

striated muscle tissue development 1.20E-06 1.19E-03
actin filament-based process 1.36E-06 1.19E-03
organ growth 4.31E-06 3.28E-03
heart development 5.85E-06 3.96E-03
contractile fiber 2.19E-07 1.17E-04

GO: Cellular myofibril 3.33E-07 1.17E-04
Component I band 1.54E-06 3.60E-04

Z disc 2.42E-06 4.25E-04
sarcomere 4.82E-06 6.77E-04

Joint component
1 - Transcript-
omics

Name pValue FDR B&H

blood circulation 1.88E-08 4.19E-05
circulatory system process 2.64E-08 4.19E-05
regulation of system process 2.76E-08 4.19E-05

GO: Biological Pro-
cess

ion transport 3.28E-08 4.19E-05

positive regulation of developmental
process

2.58E-07 2.63E-04

neurogenesis 3.66E-07 2.70E-04
heart contraction 3.71E-07 2.70E-04
Myocardial Failure 6.57E-09 1.20E-06

Disease (Source: Congestive heart failure 6.57E-09 1.20E-06
DisGeNET Cu-
rated)

Heart failure 6.57E-09 1.20E-06

Left-Sided Heart Failure 6.57E-09 1.20E-06
Heart Failure, Right-Sided 6.57E-09 1.20E-06

Joint component
2 - Regulomics

Name pValue FDR B&H

RNA binding 1.91E-19 2.63E-16
GO: Molecular
Function

unfolded protein binding 4.03E-09 2.17E-06

catalytic activity, acting on DNA 4.74E-09 2.17E-06
catalytic activity, acting on a tRNA 2.20E-08 7.57E-06

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.08.31.274175doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.274175
http://creativecommons.org/licenses/by-nc-nd/4.0/


cellular protein-containing complex
assembly

2.67E-24 1.74E-20

RNA processing 1.03E-15 3.36E-12
GO: Biological Pro-
cess

ribonucleoprotein complex biogene-
sis

2.49E-15 5.41E-12

amide biosynthetic process 9.83E-14 1.60E-10
translational elongation 2.98E-13 3.24E-10
translation 2.98E-13 3.24E-10

Pathway (BioSys-
tems REAC-
TOME)

Gene Expression 4.96E-14 6.31E-11

Joint component
2 - Transcript-
omics

Name pValue FDR B&H

receptor antagonist activity 9.72E-09 7.44E-06
GO: Molecular
Function

receptor inhibitor activity 7.44E-08 2.85E-05

signaling receptor activity 5.11E-05 1.06E-02
negative regulation of execution
phase of apoptosis

7.40E-10 2.75E-06

vascular endothelial growth factor
production

1.24E-09 2.75E-06

GO: Biological Pro-
cess

regulation of vascular endothelial
growth factor production

1.83E-08 2.02E-05

cell-cell adhesion via plasma-
membrane adhesion molecules

7.23E-08 6.40E-05

positive regulation of cytokine
biosynthetic process

8.79E-08 6.49E-05

Results from the gene set enrichment analysis using ToppGene on the se-
lected genes and regions. In the upper two tables, the first joint regulomics and
transcriptomics component is shown, respectively. The lower two tables are about the
second joint components. Complete list can be found in Additional file 2.
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