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Abstract12

This study demonstrates a framework for temporal and genomic analysis of additive genetic13

variance in a breeding programme. Traditionally we used specific experimental designs to es-14

timate genetic variance for a specific group of individuals and a general pedigree-based model15

to estimate genetic variance for pedigree founders. However, with the pedigree-based model16

we can also analyse temporal changes in genetic variance by summarising sampled realisa-17

tions of genetic values from a fitted model. Here we extend this analysis to a marker-based18

model and build a framework for temporal and genomic analyses of genetic variance. The19

framework involves three steps: (i) fitting a marker-based model to data, (ii) sampling real-20

isations of marker effects from the fitted model and for each sample calculating realisations21

of genetic values, and (iii) calculating variance of the sampled genetic values by time and22

genome partitions. Genome partitions enable estimation of contributions from chromosomes23

and chromosome pairs and genic and linkage-disequilibrium variances. We demonstrate the24

framework by analysing data from a simulated breeding programme involving a complex25

trait with additive gene action. We use the full Bayesian and empirical Bayesian approaches26

to account for the uncertainty due to model fitting. We also evaluate the use of principal27

component approximation. Results show good concordance between the simulated and esti-28

mated variances for temporal and genomic analyses and give insight into genetic processes.29

For example, we observe reduction of genic variance due to selection and drift and buildup of30

negative linkage-disequilibrium (the Bulmer effect) due to directional selection. In this study31

the popular empirical Bayesian approach estimated the variances well but it underestimated32

uncertainty of the estimates. The principal components approximation biases estimates, in33

particular for the genic variance. This study gives breeders a framework to analyse genetic34

variance and its components in different stages of a programme and over time.35
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1 Introduction36

In this study we analyse temporal and genomic trends of additive genetic variance in different37

stages of a breeding programme. Genetic variance is one of the critical parameters in a38

breeding programme because it determines the potential for selection (Lush, 1937; Falconer39

and Mackay, 1996; Lynch and Walsh, 1998; Walsh and Lynch, 2018). Estimation of genetic40

variance has therefore received considerable attention in the literature (Lynch and Walsh,41

1998; Walsh and Lynch, 2018). Most of the attention in literature is on statistical models and42

approaches for estimation. Surprisingly, far less attention has been given to temporal trends43

in genetic variance, even though such trends indicate sustainability of a breeding programme.44

Recent ability to observe genomes at scale has renewed interest in analysing genetic variance.45

In this study we show that with a combination of established and new approaches we can46

use a simple framework to analyse temporal and genomic trends in genetic variance in a47

breeding programme.48

Estimation of genetic variance in breeding programmes has a long history and a recent49

revival with the advent of genomic information. Historically, genetic variance was estimated50

with an analysis of variance (ANOVA) methods in tailored experimental designs ranging51

from simple parent-offspring or sib groups to North Carolina and diallel designs (Falconer52

and Mackay, 1996; Lynch and Walsh, 1998; Bernardo, 2002; Awata et al., 2018). With53

these designs we partition phenotypic variance into variance between and within groups and54

“translate” these components into genetic variance based on expected genetic relationships55

within and between groups. Animal breeders have soon moved from experimental designs56

to a general pedigree-based model to analyse their observational data (Henderson, 1976).57

Plant breeders generally analyse experimental data and have only recently started to adopt58

the pedigree-based model (Oakey et al., 2006, 2007; Piepho et al., 2008). There are many59

logistical and conceptual reasons for this. One reason is that with the pedigree-based model60
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we estimate genetic variance between the founders of a pedigree (Sorensen and Kennedy,61

1984; Kennedy et al., 1988), while genetic variance between their descendants is arguably62

more relevant for breeding (Piepho et al., 2008). The advent of genomic information revived63

interest in the estimation of genetic variance and spurred active development of genome-64

based models (Bernardo, 1994, 1996; Meuwissen et al., 2001; VanRaden, 2008). The genome-65

based model replaces expected relationships from the experimental designs or pedigree with66

realised relationships measured by marker genotypes. The estimate of genetic variance from67

the genome-based model pertains to all genotyped individuals (Hayes et al., 2009) and can68

be obtained using either a genome-based model with genetic values or a genome-based model69

with marker effects (marker-based model) (Strandén and Garrick, 2009). We note though70

that the resulting “genomic variance” is at odds with the quantitative genetics definition of71

genetic variance (Gianola et al., 2009; de los Campos et al., 2015). Specifically, the genome-72

based model is defined with the (scaled) variance of marker effects and not with genetic73

variance. Further, markers are not necessarily quantitative trait loci affecting phenotype.74

Both of these points lead to model “misspecification” in a sense that model parameters do75

not represent quantitative genetic parameters (Gianola et al., 2009; de los Campos et al.,76

2015). We will come back to this note repeatedly.77

In parallel to the development of data sources and corresponding statistical models, there78

has been active development in statistical and computational approaches for the estimation79

of genetic variance. The three most used are method of moments, likelihood and Bayesian80

approach. The method of moments that is used with the ANOVA is computationally simple81

but can yield biased estimates outside of the parameter space. It also does not generalise to82

unbalanced data. The likelihood approach has better statistical properties than the method83

of moments (Sorensen and Gianola, 2007). With the likelihood approach we specify a prob-84

ability distribution for observed data and find the most likely value of model parameters85

that would give rise to the observed data. Use of this approach to estimate genetic vari-86
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ances is extensively described in Meyer (1985); Meyer and Hill (1997); Smith et al. (2005);87

Thompson et al. (2005); Thompson (2019). The Bayesian approach improves the likelihood88

approach in two ways. First, it incorporates prior knowledge (distribution) for all model pa-89

rameters (means and variances), which can improve estimation (Sorensen and Gianola, 2007;90

Hem et al., 2020). Second, it treats all model parameters in a probabilistically consistent91

manner such that estimation uncertainty is propagated to all estimated model parameters92

(Sorensen and Gianola, 2007). The full probabilistic treatment makes the Bayesian approach93

computationally more demanding than the likelihood approach. We commonly handle the94

computational demand by using an empirical Bayesian approach where we first estimate95

most likely values for variance parameters and conditional on these estimate other model96

parameters (Efron, 1996; Sorensen and Gianola, 2007). In the marker-based model, the em-97

pirical Bayesian approach estimates model variances from the data at hand and conditional98

on these estimates all marker effects jointly to account for uncertainty of estimating marker99

effects (uncertainty of estimating model variances is ignored). The full Bayesian approach100

accounts for uncertainty in estimating model variances and marker effects. The full Bayesian101

approach is commonly approached with computationally intensive sampling methods such102

as Monte Carlo Markov Chain (MCMC) (Gilks et al., 1995; Brooks et al., 2011). MCMC on103

genome-based models with many individuals or markers can be time-consuming. To this end104

various dimensionality-reduction approaches have been proposed, for example, singular value105

decomposition (SVD) of marker genotypes where we fit a small number of principal compo-106

nents that capture majority of variance in marker genotypes (Tusell et al., 2013; Ødegård107

et al., 2018).108

Variances from pedigree and genome-based models do not inform about temporal and109

genomic trends in genetic variance because they pertain to a specific group of individuals110

and encompass the whole genome (Sorensen and Kennedy, 1984; Kennedy et al., 1988; Hayes111

et al., 2009). However, these models can be used for temporal and genomic analyses of112
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genetic variance with some post-processing. Sorensen et al. (2001) showed how to analyse the113

temporal trend in genetic variance. They fitted a pedigree-based model and inferred genetic114

variance for several time partitions by sampling realisations of genetic values from the fitted115

model and calculating variance of the realisations partitioned in time groups. They used116

the Bayesian approach and MCMC, but their concept is general and can be used with other117

statistical and computational approaches. The important distinction here is between model118

fitting to estimate statistical/model parameters and post-processing to estimate quantitative119

genetics parameters. This distinction enables flexibility to fit a generic model, for example120

LASSO (Tibshirani, 1996), and to estimate quantitative genetics parameters from post-121

processing results of the model. This gives a potential to (partially) address the issue of122

“misspecification” with genome-based models (Gianola et al., 2009; de los Campos et al.,123

2015). Partially, because we need enough markers to capture all variation at quantitative124

trait loci. Lehermeier et al. (2017) used the same approach with the marker-based model125

and analysed the contribution of linkage-disequilibrium to genetic variance. Recently, Allier126

et al. (2019) also used the marker-based model on data from a maize breeding programme127

to infer trends in genetic mean and genetic variance as well as the contribution of allele128

diversity (genic variance) and of linkage-disequilibrium to genetic variance (Bulmer, 1971;129

Lynch and Walsh, 1998; Walsh and Lynch, 2018).130

The aim of this work is to i) build and validate a flexible framework based on the work131

of Sorensen et al. (2001), Lehermeier et al. (2017) and Allier et al. (2019), ii) show how to132

evaluate temporal and genomic analysis of additive genetic variance in different stages of a133

breeding programme and iii) indicate genetic processes that change genome. We also show134

how different statistical approaches affect the results. To this end we have validated our work135

with a simulated breeding programme, used a marker-based model to estimate marker effects136

and based on these estimated temporal and genomic trends in additive genetic variance.137

The results show good concordance between the simulated and estimated variances and138
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give insight into genetic processes. In this study the popular empirical Bayesian approach139

estimated variances well but it underestimated uncertainty of the estimates. The principal140

components approximation biased estimates, in particular for the genic variance.141

2 Materials and Methods142

In this section we present study material and methods in five parts: (1) simulation of a143

breeding programme where we generate true values and observed data, (2) temporal and144

genomic analysis of genetic variance where we demonstrate the framework assuming we145

know the true quantitative trait locus genotypes and their effects, (3) statistical analysis of146

observed data where we describe marker-based model fitted to observed data, (4) statistical147

and computational approaches to estimate marker effects, genetic values and variances, and148

(5) software implementation.149

2.1 Breeding programme simulation150

We simulated an entire wheat breeding programme considering additive genetic architecture151

for a quantitative trait. We have performed one simulation replicate for most analyses to152

focus on one dataset, but we also evaluated consistency of estimates for a subset of analyses153

on 10 simulation replicates. We followed a breeding programme described by Gaynor et al.154

(2017) with 21 years of a conventional phenotypic selection for yield (Fig. 1). We started with155

the simulation of whole-genome sequences for 21 chromosome pairs and extracted random156

600 biallelic single nucleotide polymorphisms (SNP) as markers per chromosome and random157

100 SNP as quantitative trait loci (QTL) per chromosome. We assumed that the 2,100 QTL158

had an additive effect on yield and sampled their effects from a normal distribution. We159

coded genotypes as 0 for reference homozygote, 1 for heterozygote and 2 for alternative160

homozygote. From the simulated whole-genome sequences, we created 70 inbred lines and161
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crossed them to generate 100 biparental populations. Each population had 100 F1 that162

had their genome doubled and planted in headrows (altogether 10,000). In the headrows163

we visually evaluated the lines (trait heritability of 0.1) and advanced the best 500 into a164

preliminary yield trial. In the preliminary yield trial we evaluated the lines in an unreplicated165

trial (trait heritability of 0.2) and advanced the best 50 into an advanced yield trial. In the166

advanced yield trial we evaluated the lines in a small multi-location replicated trial (trait167

heritability of 0.5) and advanced the best 10 into an elite yield trial. In the elite yield trial we168

evaluated the lines for two consecutive years in a large multi-location replicated trial (trait169

heritability of 0.67) and released one variety. We used the best lines from the advanced and170

elite yield trials as parents to start a new breeding cycle.171

YearsStage

Parents

F1

HDRW

PYT

AYT

EYT

1 2 3 4 ...

P1 x P2

x100

Actions Number

70

100

10,000

500

50

10

1

Make bi-parental crosses

Full-sib families, 
produce DH lines

Visual selection for 5
lines per family

Yield trial, 1 location

Yield trial, 4 locations

2 consecutive years

Release variety

10Yield trial, 16 locations,

Figure 1: Simulated wheat breeding programme with parents, F1 progeny (F1), headrows
(HDRW), preliminary yield trial (PYT), advanced yield trial (AYT), elite yield trial (EYT)
and a released variety

Throughout the simulation we have saved phenotype and marker genotype data to gen-172

erate a training population for genomic modelling. We did not use the genomic data in the173

simulation of a breeding programme, but only saved it for the statistical analysis of tem-174

poral and genomic trends of genetic variance. To this end, we have constructed a training175

population that spanned the last 6 years of the simulation, from year 16 to 21. This training176
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population covered 3,070 lines with preliminary, advanced and elite yield trial phenotypes177

(altogether 3,420 phenotypes) and corresponding 10,500 marker genotypes.178

2.2 Temporal and genomic analysis of genetic variation179

Here we describe a flexible framework for temporal and genomic analysis of genetic variation,180

assuming that we know the QTL genotypes and their effects. In the following sub-sections,181

we estimate the temporal and genomic trends from observed phenotypes and marker geno-182

types and compare them to true values. The framework consists of four steps. First, we183

define whole-genome genetic values from QTL genotypes and their effects. Second, we par-184

tition individuals and their genetic values by time to calculate genetic variances over these185

time partitions for temporal analysis. Third, we partition whole-genome genetic values186

into chromosome and locus genetic values to calculate genetic variances and covariances187

over these genomic partitions for genomic analysis. This calculation involves three “layers”188

of variances: (a) total (whole-genome) genetic variance, (b) chromosome variances along-189

side linkage-disequilibrium covariances between chromosomes, and (c) locus genic variances190

alongside locus linkage-disequilibrium covariances within chromosomes and locus linkage-191

disequilibrium covariances between chromosomes. Fourth, we combine temporal and genomic192

analyses.193

First, let Q be ni × nq matrix of QTL genotypes for ni individuals at nq QTL and α be194

nq × 1 vector of QTL additive effects. Whole-genome genetic values of ni individuals are a195

linear combination of QTL genotypes and their effects, a = Qα. Variance of these values is196

genetic variance, V ar (a) =
∑n

i=1 (ai −
∑n

i=1 (a) /n)
2
/n. Note that this variance pertains to197

all ni individuals and might not be an informative measure if these individuals span multiple198

stages and years of a breeding programme. In fact, any genetic trend or population structure199

will likely inflate this variance measure and mislead breeders in overestimating the amount200

of genetic variance. This is why we need temporal analysis of genetic variance.201
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Second, for the temporal analysis of genetic variance we partition the vector of genetic202

values by time and calculate variance for each time partition. For example, assume that203

individuals and their genetic values are ordered by time and that we partition them into204

time groups as a[1 : k], a[(k+1) : l], a[(l+1) : m], . . . Then the temporal analysis of genetic205

variance is obtained by calculating variance for each time partition: σ2
a1

= V ar (a[1 : k]),206

σ2
a2

= V ar (a[(k + 1) : l]), σ2
a3

= V ar (a[(l + 1) : m]), . . .207

Third, for the genomic analysis of genetic variance we initially partition whole-genome208

genetic values a into an ni × nc matrix of nc chromosome genetic values Ac such that209

a =
∑nc

c=1Ac[:, c]. We obtain these chromosome genetic values by summing locus genetic210

values Aq on each chromosome, Ac[i, c] =
∑

l Q[i, l]α[l] for l running over nlc QTL on a211

chromosome c. Note that a =
∑nq

q=1Aq[:, q] and a =
∑nc

c=1

∑
l Aq[:, l] for l running over212

nlc QTL on a chromosome c. To calculate genetic variances over these genomic partitions213

we will use the variance sum rule V ar(x + y) = V ar(x) + V ar(y) + 2Cov(x, y) and the214

variance product rule V ar(xa) = V ar(x)a2. Partitioning of the genetic variance σ2
a by215

chromosomes gives the sum of nc chromosome variances
(
σ2
a,c

)
and nc ∗ (nc − 1) covariances216

between chromosomes
(
σ(a,c′)(a,c)

)
:217

V ar (a) = σ2
a = V ar

(
nc∑
c

Ac[:, c]

)
=σ2

a,1 + σ2
a,2 + · · ·+ σ2

a,nc
+

2
[
σ(a,2)(a,1) + · · ·+ σ(a,nc)(a,nc−1)

]
,

with covariances between chromosomes being between-chromosome linkage-disequilibrium218

covariances (Fig. 2). Partitioning of a chromosome genetic variance σ2
a,c by loci gives the219

sum of nlc locus variances
(
σ2
a,c,l

)
and nl ∗ (nl − 1) covariances between loci

(
σ(a,c,l′)(a,c,l)

)
:220
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σ2
a,c = σ2

a,c,1 + σ2
a,c,2 + · · ·+ σ2

a,c,nlc
+ 2

[
σ(a,c,2)(a,c,1) + · · ·+ σ(a,c,nlc )(a,c,nlc−1)

]
,

with locus variances being genic variances and covariances between loci being within-chromosome221

linkage-disequilibrium covariances (Fig. 2) (Bulmer, 1971; Lynch and Walsh, 1998; Walsh222

and Lynch, 2018). Locus genic variance is a function of variance in locus genotypes and their223

allele substitution effect (using variance product rule):224

σ2
a,c,l = V ar (Aq[:, l]) = V ar (Q[:, l]α[l]) = V ar (Q[:, l])α[l]2,

where we emphasise that we do not use the common Hardy-Weinberg assumption of V ar (Q[:, l]) =225

2pl(1−pl) with pl being allele frequency. Instead, we advocate to calculate empirical variance226

in observed locus genotypes, V ar (Q[:, l]). We will return to this point in discussion. Locus227

linkage-disequilibrium covariance is a function of covariance between genotypes at two loci228

and their allele substitution effects:229

σ(a,c,l′)(a,c,l) = α[l′]Cov (Q[:, l′],Q[:, l])α[l].

We can now partition the whole-genome genetic variance over chromosomes and loci as a230

sum of genic variances, within-chromosome linkage-disequilibrium covariances, and between-231

chromosome linkage-disequilibrium covariances (Fig. 2):232
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σ2
a =

nc∑
c=1

nlc∑
l=1

σ2
a,c,l+ (=genic variance) (1)

2
nc∑
c=1

nlc−1∑
l=1

nlc∑
l′=l+1

σ(a,c,l′)(a,c,l)+ (=within-chromosome linkage-disequilibrium)

2
nc−1∑
c=1

nc∑
c′=c+1

nlc∑
l=1

nlc∑
l′=l

σ(a,c′,l′)(a,c,l). (=between-chromosome linkage-disequilibrium)
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Figure 2: Illustrative scheme of genomic partitioning of whole-genome genetic vari-
ance by chromosomes and loci into genic, and within- and between-chromosome linkage-
disequilibrium (LD) components

With nl = 2, 100 QTL spread evenly over nc = 21 chromosomes, the total number of233

locus combinations is nl ∗ nl = 4, 410, 000 and the total number of chromosome combi-234

nations is nc ∗ nc = 441. The framework partitions genetic variance into nl = 2, 100 lo-235

cus genic variances (nc = 21 chromosome genic variances), nc ∗ nlc ∗ (nlc − 1) = 207, 900236

locus within-chromosome linkage-disequilibrium covariances (nc = 21 chromosome within-237

chromosome linkage-disequilibrium covariances), and nl ∗ nl − nc ∗ nlc ∗ nlc = 4, 197, 900238
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locus between-chromosome linkage-disequilibrium covariances (nc ∗ nc − nc = 420 chromo-239

some between-chromosome linkage-disequilibrium covariances). We emphasise these num-240

bers because we often hear colleagues saying that there is no or limited between-chromosome241

linkage-disequilibrium (due to the lack of physical linkage). However, selection and other242

genetic processes generate within- and between-chromosome linkage-disequilibrium (Bulmer,243

1971; Lynch and Walsh, 1998; Walsh and Lynch, 2018). Even if the between-chromosome244

linkage-disequilibrium covariances are small, there is a very large number of them and they245

can collectively have a sizeable effect on genetic variance as we show in results.246

Fourth, for the joint temporal and genomic analysis, we perform genomic partitioning247

and variance calculations for individuals and their genetic values partitioned by time.248

2.3 Statistical analysis of observed data249

In the previous sub-section we assumed we know the QTL and their effects. In reality we250

observe phenotypes and marker genotypes and make inferences based on this information.251

To this end we fitted the marker-based model:252

y =Xb+ZWm+ e, (2)

m ∼N(0, Iσ2
m), (3)

e ∼N(0, Iσ2
e), (4)

where, y is an ny × 1 vector of ny phenotypic values, X is an ny × nb incidence matrix for253

nb intercept and year effects b, Z is an ny × ni incidence matrix for ni lines whose marker254

genotype data is in an ni×nm matrix W for nm marker effects m, and e is an ny × 1 vector255

of ny residuals. In this study ny was 3,420, nb was 6, ni was 3,070 and nm was 10,500. We256

assumed that marker effects are a priori uncorrelated and normally distributed with zero257
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mean and variance component describing variation between marker effects σ2
m (Eq. 3). We258

further assumed that residuals are uncorrelated and normally distributed with zero mean259

and residual variance σ2
e (Eq. 4). We ignored that different yield trials had different amount260

or replication and therefore different error variance.261

The model (Eq. 2-4) has location parameters (means) b and m and dispersion parame-262

ters (variances) σ2
m and σ2

e . We emphasise that σ2
m is variance between marker effects and263

note that the commonly used approximation for “genomic variance” σ2
m2
∑nm

m=1 pm(1− pm)264

(VanRaden, 2008; Hayes et al., 2009) is scaled variance between marker effects and not265

genetic variance (Gianola et al., 2009; de los Campos et al., 2015). The scaling factor266

is the sum of expected variances for marker genotypes assuming Hardy-Weinberg equilib-267

rium. Comparison of this approximation with (Eq. 1) shows that the approximation ignores268

linkage-disequilibrium and non-Hardy-Weinberg components of genetic variance as well as269

uses variance between marker effects instead of QTL effects. However, linkage-disequilibrium270

affects estimate of variance between marker effects. At any rate, this “misspecified” estimate271

of genetic variance is not useful for temporal or genomic analyses. We view variance be-272

tween marker effects simply as a statistical/model parameter that facilitates model fitting273

to observed data. We describe the model fitting and estimation of variances in the next274

sub-section.275

2.4 Statistical and computational approaches276

We used the empirical and full Bayesian approach to fit the model (Eq. 2-4) with marker277

genotypes or their leading principal components. To fit the model (Eq. 2-4) we note that this278

is the ridge regression applied to marker genotype data (Whittaker et al., 2000; Meuwissen279

et al., 2001; de los Campos et al., 2013). Given the variances σ2
m and σ2

e we can estimate280
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fixed effects b and marker effects m by solving the mixed model equations:281

 XTX XTZW

W TZTX ZTW TWZ + Iσ2
eσ

−2
m


 b̂

m̂

 =

 XTy

ZTW Ty

 . (5)

Specifically, the solution of (Eq. 5) is the conditional expectation (b̂, m̂) = E (b,m|y, σ2
m, σ

2
e).282

With these estimates we can obtain estimates of genetic values as â = Wm̂. These estimates283

have some error and ignoring it in the framework will underestimate genetic variance. To284

see this, imagine we have very little phenotypic information such that marker estimates will285

effectively follow the prior (Eq. 3). In that case, marker estimates will effectively all equal286

zero and any variance calculation will return zero. As shown by Sorensen et al. (2001) and287

Lehermeier et al. (2017) we can account for this uncertainty by estimating genetic variances288

from posterior samples of genetic values or marker effects. For the model (Eq. 2-4, 5) we289

can obtain posterior samples from the multivariate normal distribution:290

N
(
E
(
b,m|y, σ2

m, σ
2
e

)
, V ar

(
b,m|y, σ2

m, σ
2
e

))
, (6)

where conditional variance V ar(b,m|y, σ2
m, σ

2
e) can be obtained by solving the left-hand-side291

of the system of equations (Eq. 5) (Sorensen and Gianola, 2007).292

Once we obtained samples of marker effects from (Eq. 6) we have treated marker geno-293

types and marker effects respectively as QTL genotypes and QTL effects and analysed tem-294

poral and genomic trends in genetic variance as described above. Specifically, for each295

sample of marker effects we have estimated genetic values and their variance for each group296

of individuals in the breeding programme (parents, F1 progeny, headrows, . . . ) across years297

for the temporal analysis and further partitioned across genome for the genomic analysis.298

This procedure gave us posterior distribution for all these variances. In results we compare299

how these posterior distributions match the true variances from simulation. In addition, we300
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also calculated the continuous ranked probability score (CRPS) to compare whole posterior301

distributions to true values to asses both accuracy and precision and with this quantify ac-302

counting for the uncertainty of estimation. For an intuitive description of CRPS see Selle303

et al. (2019).304

When variances are unknown, we can use the empirical Bayesian approach (Efron,305

1996; Sorensen and Gianola, 2007) and estimate most likely variances given the data and306

use them to calculate conditional expectation and variance as well as draw samples from307

(Eq. 6). Alternatively, we can use the full Bayesian approach by specifying prior dis-308

tribution for all model parameters and obtain posterior distribution p(b,m, σ2
m, σ

2
e |y) ∝309

p(y|b,m, σ2
e)p(b|σ2

b )p(m|σ2
m)p(σ

2
b )p(σ

2
m)p(σ

2
e) (Sorensen and Gianola, 2007).310

We fitted the model (Eq. 2-4) both with the full and the empirical Bayesian approach.311

We first used MCMC for a full Bayesian approach and used one chain with 100,000 samples,312

10,000 burn-in and saved every 100th sample to obtain 900 samples of all model parameters.313

For the empirical Bayesian approach, we also obtained 900 samples, but used posterior mean314

for the marker effect and residual variances estimated from the full Bayesian approach when315

sampling from (Eq. 6).316

Since genomic analyses can be time-consuming we have also analysed use of approxima-317

tion for marker genotypes with their leading principal components. We changed the model318

(Eq. 2-4) into:319

y =Xb+ZTs+ e, (7)

s ∼N(0, Iσ2
s), (8)

e ∼N(0, Iσ2
e), (9)

where T is an ni×np score matrix obtained from a truncated singular value decomposition of320
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genotypes with the np leading principal components such that T (ni×np) = U (ni×np)S(np×np) =321

U (ni×np)S(np×np)V
T
(nm×np)V (nm×np) = W (ni×nm)V (nm×np), s is an np × 1 vector of np princi-322

pal component effects and σ2
s is variance between principal component effects (Hastie and323

Tibshirani, 2004; Tusell et al., 2013; Ødegård et al., 2018). This model is structurally the324

same as the model (Eq. 2-4) and we fitted it in the same way. We approximated marker325

effect samples by mi = V si, where si is the i-th sample of principal component effects. Once326

we approximated marker effect samples we used the same approach as described above. We327

investigated different number of principal components (10, 50, 100, 500, 1000, 2000, and328

3420). In our simulation these numbers of principal components respectively explained 14%,329

38%, 52%, 84%, 94%, 99%, and 100% of marker genotype variation.330

2.5 Software implementation331

We have simulated the wheat breeding programme with the AlphaSimR R package (https://cran.r-332

project.org/web/packages/AlphaSimR/index.html) (Gaynor et al., 2020). We have fitted the333

model with the AlphaBayes software (https://www.alphagenes.roslin.ed.ac.uk/alphabayes)334

(Gorjanc and Hickey, 2019). We used R (R Core Team, 2019) for post-processing the Al-335

phaBayes marker effect samples and further analyses. We used the scoringRules R package336

to calculate the continuous ranked probability score (CRPS) (Jordan et al., 2019).337

3 Results338

Overall the results show that estimates from the data following the framework were in339

concordance with the true values for temporal and genomic analysis. We separate the result340

section into three areas to facilitate presentation: (1) temporal analysis, (2) genomic analysis,341

and (3) computational analysis.342
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3.1 Temporal analysis343

The genetic and genic variance changed through the breeding cycle. We show this in figure 3344

with the true and estimated genetic and genic variances for different stages of one breeding345

cycle. As expected, genetic variation in F1 progeny across multiple crosses was lower than in346

the parents as this variance indicates variance in parent averages between crosses. When we347

generated doubled haploids for these full-sib families (HDRW stage), genetic variation was348

regenerated to the level in parents due to recombination and complete inbreeding. Genetic349

variation gradually reduced through the breeding cycle due to the selection from headrows to350

elite yield trial. This change was particularly evident for genetic variance, but less for genic351

variance. Also, genetic variance was consistently smaller than genic variance. The estimates352

of genetic and genic variance matched the true values well across all breeding stages. There353

was a larger uncertainty in the estimate of genetic variance in elite yield trial than in other354

stages.355
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Figure 3: Genetic (A) and genic (B) variance estimated with the full Bayesian approach for
parents in year 16, F1 progeny (F1) in year 17, headrows (HDRW) in year 18, preliminary
yield trial (PYT) in year 19, advanced yield trial (AYT) in year 20, and elite yield trial (EYT)
in year 21; black lines denote the true values and densities depict posterior distributions
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Genetic variation decreased over years and genetic variance was consistently smaller as356

well as more variable than genic variance across years. We show this in figure 4 with the true357

and estimated temporal trends of genetic and genic variances for different breeding stages.358

Variances between the breeding stages differed as mentioned before, but in this figure we359

also see a consistent decrease over the years. This decrease was variable for genetic variance,360

but not for genic variance. This variability increased from early to late breeding stages as361

there was less and less individuals in a stage. The estimates of genetic and genic variance362

matched the true values very well across all breeding stages and years.363
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Figure 4: Temporal trends in genetic (A) and genic (B) variance estimated with the full
Bayesian approach for parents, F1 progeny (F1), headrows (HDRW), preliminary yield trial
(PYT), advanced yield trial (AYT), and elite yield trial (EYT); solid lines denote the true
value, dashed lines denote posterior means and polygons depict 95% posterior quantiles

3.2 Genomic analysis364

Genomic analysis enabled accurate partitioning of whole-genome genetic variance into whole-365

genome genic variance and whole-genome linkage-disequilibrium covariances. We show this366
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in figure 5 with true and estimated variances and covariances for headrows and elite yield367

trial from one breeding cycle. The figure shows previously described differences in genetic368

and genic variances as well as a substantial change in the between-chromosome linkage-369

disequilibrium covariance, which was the main driver of change in genetic variance between370

headrows and the elite yield trial. Specifically, genetic variance decreased from 0.0754 in371

headrows in year 18 to 0.0307 in the elite yield trial in year 21, with a change of 0.0447372

(59% reduction). This overall change was due to 0.01 change in genic variance (22% of373

the initial genetic variance), 0.0036 change in within-chromosome linkage-disequilibrium co-374

variance (8% of the initial genetic variance) and 0.0311 change in between-chromosome375

linkage-disequilibrium covariance (70% of the initial genetic variance). We again note that376

the estimates matched the true values well.377

0.10

Genetic

HDRW

0.05

0.00

-0.05

Genic Within-LD Between-LD

EYT

Figure 5: Whole-genome genetic and genic variances, and within- and between-chromosome
linkage disequilibrium (LD) covariances with the full Bayesian approach for headrows
(HDRW, year 18) and elite yield trial (EYT, year 21); genetic variance is the sum of genic
variance, within- and between-chromosome LD (see Fig. 2); black lines denote true values
and violins depict posterior distributions

Genomic analysis enabled also accurate partitioning of whole-genome genetic variance378
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for specific chromosomes. We show this in the supplementary material with a series of tables379

(S1-S4) and one figure (S1). The tables show genetic variance and its components (genic380

variance, within-chromosome linkage-disequilibrium covariance and between-chromosome381

linkage-disequilibrium covariance) by 21 chromosomes as well as how these values add up382

to the whole-genome variance. We show this partitioning for QTL genotypes (Table S1),383

marker genotypes (Table S2), true genetic values (Table S3), and estimated genetic values384

(Table S4). The figure S1 compares the true and estimated genetic values directly. The385

aim of this supplementary material is to demonstrate how we estimate variation in true ge-386

netic values, which is driven by unknown QTL and unknown QTL effects, by using marker387

genotypes and estimated marker effects. We make five observations. First, the analysis388

of QTL genotypes showed that whole-genome and chromosome genetic variance in unse-389

lected headrows is largely driven by genic variance, but there are some chromosomes with390

a substantial within-chromosome or between-chromosome linkage-disequilibrium covariance.391

Second, the magnitude of linkage-disequilibrium covariances increased in the elite yield trial,392

which reduced the whole-genome genetic variance. However, between-chromosome linkage-393

disequilibrium was larger than within-chromosome linkage-disequilibrium. Third, the anal-394

ysis of marker genotypes followed the same trends, but the values were sustainability larger395

due to larger number of markers than QTL. Fourth, the analysis of true genetic values re-396

sulted in much smaller values for variances than the analysis of QTL genotypes because397

most QTL have small effects, but the relative magnitude of variation and its partitioning398

was similar. Fifth, the analysis of estimated genetic values followed closely the analysis of399

true genetic values - most deviations were observed for the elite yield trial, but all posterior400

distributions encompassed the true value. This analysis pertains to one single dataset to401

show that estimates are reasonable for a specific dataset.402
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3.3 Computational analysis403

Full and empirical Bayesian approaches had similar posterior mean estimates of variances,404

but empirical Bayesian approach had smaller posterior standard deviation. We show this in405

figure 6 with a comparison of posterior means and posterior standard deviations for genetic406

and genic variance between the two approaches. The posterior means matched well for407

both types of variances. The posterior standard deviation was smaller with the empirical408

Bayesian approach, in particular for the genic variance. Comparison with the true values409

however showed good concordance with the empirical Bayesian posterior means (Fig. S2410

and S3).411
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Figure 6: The empirical Bayesian approach versus the full Bayesian approach for posterior
mean of genetic variance (A), posterior mean of genic variance (B), posterior standard devi-
ation of genetic variance (C), and posterior standard deviation of genic variance (D); equal
value is represented by the dashed red line

Additional evaluation with multiple replicates showed that the full and empirical Bayesian412

results were consistently estimated for genetic and genic variance estimates. We show this413

in table 1 with continuous ranked probability score (CRPS) of genetic and genic variances414
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for full and empirical Bayesian approaches by breeding stage. Note that CRPS is negatively415

oriented - lower values indicate better estimate compared to the true value in terms of416

accuracy and precision. CRPS for genetic variance matched closely between the full and417

empirical Bayesian approaches. On the other hand, they differ more for genic variance, with418

better (lower) values for the full Bayesian approach, albeit there was large variability across419

years and replicates. CRPS was larger (worse) for genic variance than for genetic variance.420

Table 1: Continuous ranked probability score (CRPS × 1000 - lower is better: mean ±
standard deviation over six years and ten replicates) for genetic and genic variance estimated
by the full Bayesian and the empirical Bayesian for parents, F1 progeny, headrows (HDRW),
preliminary yield trial (PYT), advanced yield trial (AYT), and elite yield trial (EYT)

Stage Genetic Genic
Full Empirical Full Empirical

Parents 59 ± 40 60 ± 41 300 ± 93 351 ± 97
F1 42 ± 39 42 ± 40 40 ± 44 48 ± 52

HDRW 45 ± 32 46 ± 37 297 ± 94 348 ± 99
PYT 63 ± 57 64 ± 64 296 ± 94 348 ± 98
AYT 66 ± 63 66 ± 64 294 ± 92 344 ± 97
EYT 79 ± 45 80 ± 46 70 ± 75 84 ± 90

Approximation with leading principal components accurately estimated genetic variance421

when we used sufficient number of principal components, but this was never the case for422

genic variance. We show this in figure 7 with estimation error, defined as the difference423

between the true and estimated value, for genetic and genic variance as a function of the424

number of leading principal components. The estimation error decreased as we increased425

the number of leading principal components. It decreased quickly for the genetic variance426

- there was no error once we captured about 80% of variation in marker genotypes. In our427

simulated dataset we achieved this with 500 leading principal components. On the other428

hand, the estimation error decreased slowly for the genic variance and we never recovered429

the true estimate, even if we used all the principal components. The estimation error was430

smallest in the F1 pogeny, followed by the elite yield trial, while the largest estimation error431
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were in headrows.432
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Figure 7: Estimation error in genetic and genic variances as a function of the number of
principal components in parents in year 16, F1 progeny (F1) in year 17, headrows (HDRW)
in year 18, preliminary yield trial (PYT) in year 19, advanced yield trial (AYT) in year 20,
and elite yield trial (EYT) in year 21; horizontal dashed line represents no estimation error

4 Discussion433

The results show that the framework for temporal and genomic analysis of genetic variation434

is flexible, accurate and enables assessing the sustainability of a breeding programme as well435

as processes that change genetic variance. These results highlights four topics for discussion436

in line with the structure of results: (1) temporal analysis of genetic variance, (2) genomic437

analysis of genetic variance, (3) computational aspects and (4) assumptions of this study.438
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4.1 Temporal analysis439

This study will help breeders to assess the amount of genetic variance in their programmes440

and with this better management of its utilization for future genetic gains. Genetic vari-441

ance (specifically its square root) is key component of the breeders equation for predicting442

response to selection (Lush, 1937; Falconer and Mackay, 1996). While breeding programmes443

routinely estimate genetic variance for traits under selection, most estimates pertain to a444

group of individuals that is arguably not the most relevant for routine breeding (Piepho et al.,445

2008). Specifically, with the pedigree-based model the estimate of genetic variance pertains446

to pedigree founders, which can be several generations removed from currently interesting447

individuals. Further, pedigree founders often span multiple generations due to incomplete448

pedigrees and as such the corresponding estimate of genetic variance does not have a clearly449

defined time point. Estimates of genetic variance from genome-based models pertains to all450

genotyped individuals, which again does not have a clearly defined time point. In addition,451

the “genomic variance” is plagued with model “misspecification” (Gianola et al., 2009; de los452

Campos et al., 2015), see also Schreck et al. (2019).453

The proposed framework that builds on the work of Sorensen et al. (2001), Lehermeier454

et al. (2017) and Allier et al. (2019) enables straightforward temporal analysis both in terms455

of years and stages of a breeding programme. The framework uses all the available data456

spanning multiple years (generations) to estimate model parameters, which are in turn used457

to infer genetic values and their variances. Such flexibility of using all data but producing458

estimates for any group of individuals is crucial to inform breeders how much genetic vari-459

ance they have at hand so that they can react accordingly. For example, temporal trends in460

genetic and genic variance enable straightforward trait specific estimation of effective popu-461

lation size (Gorjanc et al., 2018). Using this approach in this study we estimated effective462

population size for the parents at 111. This estimate suggests that the simulated breed-463

ing programme is sustainable (Falconer and Mackay, 1996; Hill, 2016; Lynch and Walsh,464
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1998; Walsh and Lynch, 2018) as indicated by small changes in genetic variance between465

years. Possible reactions to a temporal analysis by a breeder could be keeping the current466

breeding programme as it is, implementing active management of genetic variance using467

techniques such as optimal contribution selection (e.g., Woolliams et al., 2015; Akdemir and468

Sánchez, 2016; Gorjanc et al., 2018; Akdemir et al., 2019), germplasm exchange with other469

programmes or in the extreme introgressing landrace germplasm (e.g., Gorjanc et al., 2016).470

There are also other approaches to temporal analysis of genetic variance. Tsuruta et al.471

(2004) used the random regression model to model genetic values and their variance over472

years and Hidalgo et al. (2020) used sliding time intervals in the same fashion. Both methods473

have some drawbacks - random regression can be computationally expensive, while time474

intervals must be sufficiently large to obtain accurate estimates. These two approaches475

respectively enrich the model or slice the data to estimate genetic variances over time, while476

the proposed framework treats model variance parameters and genetic variances over time as477

two separate sets. We will address these differences at the end of discussion. Hidalgo et al.478

(2020) used sliding time intervals to investigate changes in genetic (co)variances for a breeding479

programme that recently implemented genomic selection. They observed rapid changes in480

genetic (co)variances with the implementation of genomic selection. Their results clearly481

highlight a need for breeder’s reaction and further investigation. One such investigation482

should be on which components of genetic variance changed with the implementation of483

genomic selection.484

4.2 Genomic analysis485

The proposed framework can estimate size and trends for genomic components of genetic486

variance. We have followed a standard quantitative genetics decomposition of genetic vari-487

ance (Bulmer, 1971; Lynch and Walsh, 1998; Gianola et al., 2009; Walsh and Lynch, 2018),488

which involves a component due to variance of genotypes and their allele substitution ef-489
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fects at every quantitative trait locus (genic variance) and a component due to covariance490

between genotypes and their allele substitution effects between loci on one chromosome491

(within-chromosome linkage-disequilibrium covariance) and between chromosomes (between-492

chromosome linkage-disequilibrium covariance). Our results show promising utility of the493

proposed framework. We showed this decomposition for quantitative trait locus genotypes,494

marker genotypes, true genetic values and estimated values, all at the whole-genome and495

chromosome level. These results confirmed the prediction of Bulmer (1971) that directional496

selection on total genetic values or their functions (phenotype) induces negative linkage-497

disequilibrium and that this component can cause rapid and major changes in genetic vari-498

ance (Lynch and Walsh, 1998; Walsh and Lynch, 2018). We note that this negative linkage-499

disequilibrium is a function of genotype combinations between loci as well as their allele500

substitution effects. Therefore, we have to distinguish between linkage-disequilibrium be-501

tween genotypes, which is trait agnostic, and linkage-disequilibrium between locus genetic502

values (see Tables S1-S4).503

The importance of linkage-disequilibrium in estimating genetic variance with genomic504

data is growing (de los Campos et al., 2015; Lehermeier et al., 2017; Allier et al., 2019).505

Our study added to this literature with a simulation study and demonstrating temporal506

changes in linkage-disequilibrium under selection both within one breeding cycle (headrows507

to elite yield trial) and between breeding cycles over years. We observed larger changes508

within breeding cycles than between, which can be explained by strong selection within cy-509

cles and recombinations among initial parent genomes between cycles. Interestingly, we ob-510

served large between-chromosome linkage-disequilibrium covariance in comparison to within-511

chromosome. This is at odds with physical linkage between loci within a chromosome and no512

such linkage between loci on separate chromosomes. Our explanation for this is that there is513

a larger number of combinations between loci on separate chromosomes than within chromo-514

somes. Further, limited recombination constrains selection to induce linkage-disequilibrium515
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within chromosomes compared to between chromosomes. To put this into perspective, in516

the analysed example we observed a 59% change in genetic variance within a breeding cycle517

(headrows to elite yield trial) of which 22% was due to the change in genic variance, 8%518

was due to the change in within-chromosome linkage-disequilibrium covariance and 70% was519

due to the change in between-chromosome linkage-disequilibrium covariance. These overall520

values varied considerably between chromosomes, where we emphasise that our simulation521

randomly placed loci and randomly allocated effects from one common distribution. These522

assumptions are likely too simple and indeed Allier et al. (2019) observed strong variation523

between chromosomes in maize. All in all, these results indicate that linkage-disequilibrium524

is an important component of the genetic variance in line with the theoretical work of Bulmer525

(1971) and Mather and Jinks (2013).526

We expected that we will underestimate genic variance in this breeding study, but have527

not observed this. We have simulated breeding programme with directional selection, which528

induces negative linkage-disequilibrium (Bulmer, 1971) due to repulsion linkage (Mather529

and Jinks, 2013). We expected that repulsion linkage will “hide” variation in some genome530

regions due to a lack of variation in haplotypes and that we will therefore underestimate531

genic variance. This did not happen either because effective population was reasonably large532

(111), selection was not too strong or there were sufficient number of markers. However,533

across multiple replicates the continuous ranked probability score was worse for genic than534

genetic variance, which could indicate this systematic underestimation.535

The presented framework for genomic analysis of genetic variance will pave the way for536

analysing processes that change the variance. While selection induces linkage-disequilibrium537

between loci it also changes allele frequencies (Bulmer, 1971; Lynch and Walsh, 1998; Gorjanc538

et al., 2015; Walsh and Lynch, 2018). Another important process is drift, which is always539

present in breeding programmes due to small effective population sizes. Distinguishing be-540

tween selection and drift in such populations is difficult (Lynch and Walsh, 1998; Gorjanc541
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et al., 2015; Walsh and Lynch, 2018) and further work is required. Similarly, population542

structure and admixture between populations can influence genetic variance and should be543

addressed in the future. One way to treat population structure would be to partition in-544

dividuals by sub-population and calculate separate genetic variances as well as covariances545

between sub-populations. This approach breaks down with admixture. Admixture could546

be approached by using whole population genome trees with recombination (Kelleher et al.,547

2019) and label individuals and genome segments with originating sub-populations and ex-548

pand the framework into population analysis of genetic variance.549

A final note on genomic analysis is that the proposed framework does not depend on the550

assumption of Hardy-Weinberg and linkage equilibrium. It is common to see expressions for551

genetic variance at a locus of the form 2p(1 − p)α2, which assumes independent binomial552

sampling of alleles with probability p (Hardy-Weinberg equilibrium). In some breeding553

programmes there is an excess of homozygotes over heterozygotes, particularly in plant554

breeding programmes that use selfing. In this case we have a clear deviation from the Hardy-555

Weinberg equilibrium and the expression 2p(1 − p)α2 will underestimate genetic variance.556

To see this consider p = 0.5 and α = 1, which gives 2p(1 − p)α2 = 0.5, but if we only557

have reference and alternative homozygotes (50% each) the actual variance is doubled due558

to complete inbreeding (Wright, 1931). While there are expressions that involve inbreeding559

2p(1 − p)(1 + F )α2, where 2p(1 − p)(1 + F ) is variance of genotypes under non-random560

mating, we suggest a simpler straightforward calculation of sample variance of genotypes at561

a locus and multiplying that variance with α2. Bulmer (1976) was aware of these differences562

and partitioned genic variance into the value expected under Hardy-Weinberg equilibrium563

(binomial sampling of alleles) 2p(1− p)α2 and deviation due to non-random mating Fα2.564
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4.3 Computational aspects565

The proposed framework is based on Sorensen et al. (2001), Lehermeier et al. (2017), and566

Allier et al. (2019) that used the full Bayesian approach and MCMC sampling. We performed567

our analyses with the full and empirical Bayesian approach and found a good concordance568

between the two approaches and true values. However, there was tendency of the empirical569

Bayesian approach to underestimate uncertainty of inferred genetic variances, due to ignoring570

uncertainty in estimating model variance parameters. This is expected, but it seems that571

the difference is not large, though this will vary between datasets. The full Bayesian analysis572

with marker-based models is not too computationally demanding if the number of markers573

is not too large (10-50K markers can be handled with ease). The full Bayesian analysis can574

be quite demanding with genome-based model on individuals if the number of individuals is575

large, but equivalence with the marker-based model means we can fit one or another model576

and back-solve desired effects (Strandén and Garrick, 2009). There are also frequentist577

approaches that account for uncertainty of estimating variance components (e.g. Kenward578

and Roger, 1997). For the genomic analysis there is an advantage (in terms of flexibility) in579

working with marker effects and marker genotypes.580

The observation that leading principal components underestimate genic variance require581

further studies. We expected that increasing the number of leading principal components582

will reduce the estimation error, which we observed for genetic variance, while we observed583

consistent underestimation for genic variance - even with all principal components. Since we584

had more markers than individuals this is likely due to the fact that “null” components would585

still have some uncertainty in estimation, which we ignored and therefore underestimated586

genic variance. Methods presented in the supplementary of Listgarten et al. (2012) could be587

used to correct for this.588
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4.4 Assumptions589

In this study we made two related assumptions and one unrelated assumption. First, we590

assumed that allele effects are constant over time and across groups of individuals. This is a591

reasonable assumption in a sense that we used all the available data to accurately estimate592

marker effects. Time- or background-specific estimation could better reflect reality, because593

linkage-disequilibrium is changing over time, but getting accurate estimates from less data is594

challenging and so is defining time intervals or backgrounds. The random regression and time595

interval approaches (Tsuruta et al., 2004; Hidalgo et al., 2020) have an advantage with this596

aspect, but a limitation in terms of flexibility for the genomic analysis of genetic variance.597

This aspect of variable effects will likely be more important with breeding programmes that598

introgress germplasm from other populations, but there will also likely be too little data599

to estimate separate effects. Estimation of background-specific effects is an active research600

area in genetics with growing datasets across various populations (e.g., Peterson et al., 2019;601

van den Berg et al., 2020). Second, we assumed fully additive genetic architecture under602

which allele effects are constant across time and groups of individuals. While both theory603

and data indicate that average effect of an allele substitution capture majority of genetic604

variance (Hill et al., 2008), recognition of dominance and epistasis is growing (e.g., Varona605

et al., 2018). Recognition of genotype interactions with environment is also growing (e.g.,606

Tolhurst et al., 2019). The proposed framework can be expanded to these settings, but607

the success of inferring various variances, potentially in different environments, will critically608

depend on volume of data to estimate much larger number of parameters. Third, we assumed609

a sufficiently dense panel of markers that collectively closely track quantitative trait loci.610

Insufficient number of markers will deteriorate the ability of the proposed framework to611

capture genetic variance at and between quantitative trait loci.612
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Supplementary Material776

Table S1: Genetic variance partitioned into genic variance and within- and between-
chromosome linkage-disequilibrium (LD) covariances by chromosome for QTL genotypes
in headrows (HDRW, year 18) and elite yield trial (EYT, year 21); the genetic variance is
the sum of genic variance, within-LD and between-LD (see Fig. 2)

Chr HDRW EYT
Genetic Genic Within-LD Between-LD Genetic Genic Within-LD Between-LD

1 98.2 61.9 36.3 -5.1 91.6 55.4 36.2 40.6
2 49.9 55.3 -5.4 -7.4 65.0 44.5 20.5 -39.2
3 50.5 55.8 -5.3 -15.5 52.6 47.4 5.2 -97.4
4 48.0 52.5 -4.5 -7.9 20.6 51.4 -30.8 14.2
5 49.8 55.6 -5.8 -17.4 41.6 43.0 -1.4 -51.6
6 55.1 60.4 -5.3 1.8 45.2 57.2 -12.0 -58.6
7 53.2 61.9 -8.6 0.1 32.2 54.0 -21.8 40.4
8 84.6 47.7 36.9 7.5 153.0 43.0 110.0 153.2
9 73.8 65.7 8.2 -52.4 47.8 58.3 -10.5 -38.6
10 65.1 57.5 7.6 8.0 104.6 57.2 47.4 -281.4
11 49.6 61.5 -11.9 -1.0 25.6 58.8 -33.1 -14.6
12 40.9 62.4 -21.5 4.4 89.8 51.2 38.6 -82.4
13 48.2 63.4 -15.2 14.0 39.4 49.2 -9.8 9.8
14 68.4 59.2 9.3 14.6 34.6 48.4 -13.8 -1.6
15 50.2 56.8 -6.6 -2.2 55.2 48.2 7.0 69.6
16 86.6 61.6 24.9 -48.8 73.2 50.6 22.6 -35.0
17 65.0 58.5 6.6 29.5 74.0 55.8 18.2 134.6
18 57.0 60.0 -3.0 -10.5 53.0 49.9 3.0 -24.2
19 54.9 60.7 -5.8 4.7 37.4 50.0 -12.6 7.0
20 29.6 58.2 -28.6 8.9 36.4 47.0 -10.6 19.0
21 34.3 58.7 -24.4 -1.5 28.0 53.9 -25.9 -13.2

Sum 1213.1 1235.11 -22.02 -76.23 1200.8 1074.41 126.32 -249.43

Whole-genome1+2+3 1136.9 951.4
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Table S2: Genetic variance partitioned into genic variance and within- and between-
chromosome linkage-disequilibrium (LD) covariances by chromosome for marker geno-
types in headrows (HDRW, year 18) and elite yield trial (EYT, year 21); the genetic variance
is the sum of genic variance, within-LD and between-LD (see Fig. 2)

Chr HDRW EYT
Genetic Genic Within-LD Between-LD Genetic Genic Within-LD Between-LD

1 286.9 310.2 -23.3 -156.1 151.2 278.7 -127.4 619.1
2 383.6 288.6 95.0 -151.0 450.4 246.4 204.0 18.8
3 270.1 289.9 -19.8 44.2 435.2 257.4 177.8 829.2
4 371.8 288.4 83.4 125.8 268.0 267.0 1.0 507.2
5 317.5 286.2 31.3 20.6 117.4 211.1 -93.7 -24.0
6 347.0 290.8 56.2 59.1 395.4 278.9 116.5 848.3
7 337.1 311.9 25.2 -172.7 692.8 289.4 403.4 -1021.2
8 340.5 274.2 66.4 -243.9 263.8 221.6 42.2 -1231.2
9 290.1 302.8 -12.6 11.7 133.6 285.6 -151.9 242.4
10 403.9 317.0 86.9 -16.6 473.0 305.2 167.8 816.6
11 192.7 304.2 -111.4 45.9 48.6 290.2 -241.6 -129.7
12 316.0 300.9 15.1 -43.6 230.6 243.5 -13.0 -180.2
13 303.6 294.8 8.8 -175.6 114.6 245.9 -131.4 416.7
14 285.6 315.7 -30.1 34.5 95.6 277.6 -182.0 -346.5
15 221.1 292.8 -71.8 -32.2 319.2 256.8 62.5 25.1
16 396.9 298.3 98.6 -0.2 215.4 248.4 -33.0 213.4
17 322.9 301.3 21.7 -24.8 467.4 283.0 184.3 -1384.9
18 229.8 290.1 -60.3 -32.3 105.2 245.6 -140.5 532.7
19 225.4 307.3 -81.9 48.6 88.2 273.5 -185.4 -16.1
20 404.2 296.3 107.9 -58.4 234.4 245.7 -11.3 175.2
21 205.9 286.7 -80.8 -119.4 146.8 255.4 -108.6 3.1

Sum 6452.6 6248.31 204.32 -836.73 5446.8 5507.01 -60.22 914.13

Whole-genome1+2+3 5615.9 6360.8

41

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.29.273250doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.273250
http://creativecommons.org/licenses/by-nc/4.0/


Table S3: Genetic variance partitioned into genic variance and within- and between-
chromosome linkage-disequilibrium (LD) covariances by chromosome for true genetic val-
ues in headrows (HDRW, year 18) and elite yield trial (EYT, year 21); the genetic variance
is the sum of genic variance, within-LD and between-LD (see Fig. 2)

Chr HDRW EYT
Genetic Genic Within-LD Between-LD Genetic Genic Within-LD Between-LD

1 0.0036 0.0039 -0.0003 -0.0010 0.0014 0.0031 -0.0017 -0.0056
2 0.0047 0.0046 0.0001 -0.0020 0.0030 0.0033 -0.0003 -0.0021
3 0.0035 0.0042 -0.0007 0.0011 0.0014 0.0040 -0.0027 0.0028
4 0.0029 0.0039 -0.0010 -0.0002 0.0030 0.0036 -0.0005 0.0017
5 0.0050 0.0037 0.0013 -0.0008 0.0040 0.0027 0.0013 0.0004
6 0.0030 0.0026 0.0004 -0.0017 0.0016 0.0025 -0.0009 0.0004
7 0.0041 0.0041 0.0000 0.0002 0.0042 0.0035 0.0008 -0.0002
8 0.0023 0.0035 -0.0012 -0.0006 0.0031 0.0036 -0.0005 0.0021
9 0.0044 0.0043 0.0001 -0.0002 0.0042 0.0038 0.0004 -0.0040
10 0.0025 0.0033 -0.0008 -0.0003 0.0045 0.0033 0.0013 -0.0075
11 0.0023 0.0037 -0.0014 0.0004 0.0016 0.0035 -0.0019 -0.0052
12 0.0054 0.0043 0.0010 0.0000 0.0048 0.0036 0.0012 -0.0031
13 0.0056 0.0037 0.0019 -0.0005 0.0076 0.0028 0.0048 -0.0087
14 0.0026 0.0045 -0.0019 -0.0004 0.0037 0.0039 -0.0002 -0.0084
15 0.0044 0.0034 0.0010 -0.0004 0.0035 0.0034 0.0001 0.0001
16 0.0058 0.0053 0.0005 -0.0027 0.0082 0.0042 0.0040 -0.0075
17 0.0060 0.0051 0.0009 -0.0019 0.0075 0.0052 0.0022 0.0008
18 0.0038 0.0042 -0.0004 0.0010 0.0034 0.0032 0.0002 0.0003
19 0.0039 0.0038 0.0001 -0.0020 0.0022 0.0030 -0.0007 0.0038
20 0.0033 0.0036 -0.0003 0.0002 0.0009 0.0026 -0.0017 -0.0007
21 0.0030 0.0037 -0.0007 -0.0006 0.0017 0.0033 -0.0016 0.0019

Sum 0.0820 0.08331 -0.00132 -0.01243 0.0756 0.07211 0.00352 -0.03873

Whole-genome1+2+3 0.0696 0.0369
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Table S4: Genetic variance partitioned into genic variance and within- and between-
chromosome linkage-disequilibrium (LD) covariances by chromosome for estimated genetic
values (with the full Bayesian approach) in headrows (HDRW, year 18) and elite yield trial
(EYT, year 21); the genetic variance is the sum of genic variance, within-LD and between-LD
(see Fig. 2)

Chr HDRW EYT
Genetic Genic Within-LD Between-LD Genetic Genic Within-LD Between-LD

1 0.0037 0.0041 -0.0004 0.0003 0.0041 0.0037 0.0004 -0.0029
2 0.0034 0.0038 -0.0004 0.0005 0.0031 0.0033 -0.0002 -0.0009
3 0.0044 0.0039 0.0005 0.0012 0.0040 0.0035 0.0005 -0.0006
4 0.0033 0.0038 -0.0005 -0.0007 0.0035 0.0035 -0.0001 -0.0029
5 0.0044 0.0039 0.0005 -0.0004 0.0030 0.0028 0.0001 -0.0024
6 0.0037 0.0039 -0.0002 -0.0011 0.0027 0.0037 -0.0010 -0.0009
7 0.0037 0.0042 -0.0005 -0.0005 0.0027 0.0039 -0.0011 -0.0016
8 0.0031 0.0037 -0.0006 -0.0004 0.0023 0.0030 -0.0007 -0.0011
9 0.0039 0.0040 -0.0001 0.0004 0.0038 0.0038 0.0000 -0.0021
10 0.0037 0.0042 -0.0005 0.0000 0.0030 0.0041 -0.0011 -0.0018
11 0.0037 0.0040 -0.0003 0.0001 0.0040 0.0039 0.0002 -0.0031
12 0.0041 0.0041 0.0000 -0.0005 0.0038 0.0033 0.0004 -0.0025
13 0.0045 0.0040 0.0005 0.0008 0.0028 0.0033 -0.0005 -0.0011
14 0.0033 0.0042 -0.0009 -0.0005 0.0024 0.0037 -0.0012 -0.0011
15 0.0037 0.0039 -0.0002 -0.0010 0.0023 0.0034 -0.0011 -0.0008
16 0.0040 0.0040 0.0000 -0.0012 0.0031 0.0033 -0.0002 -0.0027
17 0.0040 0.0041 -0.0001 0.0003 0.0034 0.0038 -0.0004 -0.0017
18 0.0035 0.0039 -0.0003 -0.0004 0.0025 0.0033 -0.0008 -0.0007
19 0.0038 0.0041 -0.0003 -0.0004 0.0030 0.0037 -0.0007 -0.0006
20 0.0038 0.0040 -0.0002 0.0005 0.0031 0.0033 -0.0002 -0.0022
21 0.0034 0.0038 -0.0004 -0.0006 0.0030 0.0034 -0.0004 -0.0010

Sum 0.0791 0.08361 -0.00452 -0.00373 0.0655 0.07361 -0.00812 -0.03483

Whole-genome1+2+3 0.0754 0.0307
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Figure S1: Genetic and genic variances, and within- and between-chromosome linkage dis-
equilibrium (LD) covariances by chromosome with the full Bayesian approach for headrows
(HDRW, year 18) and elite yield trial (EYT, year 21) (see Fig. 2); black lines denote true
values and violins depict posterior distributions
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Figure S2: Genetic (A) and genic (B) variance estimated with the empirical Bayesian ap-
proach for parents in year 16, F1 progeny (F1) in year 17, headrows (HDRW) in year 18,
preliminary yield trial (PYT) in year 19, advanced yield trial (AYT) in year 20, and elite
yield trial (EYT) in year 21; black lines denote the true values and densities depict posterior
distributions
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Figure S3: Temporal trend in genetic (A) and genic (B) variance estimated with the empirical
Bayesian approach for parents, F1 progeny (F1), headrows (HDRW), preliminary yield trial
(PYT), advanced yield trial (AYT), and elite yield trial (EYT); solid lines denote the true
value, dashed lines denote posterior means and polygons depict 95% posterior quantiles
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