

Maximize ... Optimize ...

Protect ...

Realize the Value in modern Copper Optic Infrastructure

> Rikard Momme, Distribution Account Manager Denmark, Poland, Finland, Greece and Romania rikard.momme@flukenetworks.com

+46 730 30 3512

FLUKE networks

FORTIVE

Who We Are

Fluke Networks is the worldwide leader in certification, troubleshooting, and installation tools for professionals who install and maintain critical network cabling

infrastructure. From installing the most advanced data centers to restoring service in the worst weather, our combination of legendary reliability and unmatched performance ensure jobs are done efficiently.

Datacom Contractors

Datacenter / Network Managers

Communications rs Service Technicians

Customer Segments

- Electrical/Datacom Contractors
- Datacenter Operators
- Service Providers
- Private Network Owners
- Structured Cabling System Manufacturers

Technologies

- Twisted Pair Copper
- Single- / Multi-Mode Fiber
- Coaxial Copper
- POTS (Telephony)
- Database Management
- Cloud (LinkWare Live)

Applications

- Installation Certification / Qualification
- Troubleshooting

Products

Our History of Innovation

Trusted in the Field Since 1992

- Defining the scope of the project
 - VOC from 800+ customers
 - ProjX the tool for concurrent projects
 - LinkWare Live
- Basic Test Regime
 - Test Interfaces
 - Test Adapters with a "centered" Test Plug
 - Fundamentals: IL, RL, NEXT, FEXT,
- Driving forces for an extended Test Regime
 - Resistance Unbalance: (POE, Intermittent Contact, CCA)
 - Mode Conversion and Balance (TCL, ELTCTL)
 - Screen Integrity
- Project Monitoring and Reporting
 - Linkware Live
 - LinkWare PC

Copper Testing Best Practices

© Fluke Networks 2015 Ver. 1.2

Copper Testing Best Practices

...Optional / Conditional Testing

Step 1: Project Defintion

800+ Installers VOCs: Top eight problems (hours wasted)

Average amongst all respondents in the previous 30 days

Top eight problems: Wrong Configuration (Limit, IDs, Standard,)

Average amongst all respondents in the previous 30 days

Project Definition

 Limits, Cable Types, Cable ID are best known by planner/projectmanager

ID List Import (NEW Since Dec.2015)

Step 1A: Basic (Minimum) Test Regime

Copper Testing: Basic Parameters

Measured

- Length
- Insertion Loss
- NEXT
- FEXT

Calculated from measured

- PS NEXT
- ACR-N
- PS ACR-N
- ACR-F
- PS ACR-F

Length

- Tap Length to see:
 - Length, Propagation Delay & Delay Skew
- Length
 - Only the shortest pair is evaluated
 - No PASS/FAIL for ISO/IEC standards
- Propagation Delay
 - Time it takes to send a 10 MHz signal down
- Delay Skew
 - Difference in delay between the pairs
- Go back to the summary screen

Insertion Loss

• Tap Insertion Loss:

- In dB, the signal loss down the cable

- Causes of failure
 - Over length
 - Incorrect test limit / category of cable
 - Pulling lubricant

NEXT (Near-end Xtalk)

• Tap **NEXT**:

In dB, the disturbed signal on an adjacent pair

Causes of failure

- Badly made / damaged cable
- Not maintaining the twist of the pair in the connector
- Incorrect test limit / category of cable

PS ACR-N (Power Sum Attenuation Crosstalk Ratio Near-end)

• PS ACR-N:

- In dB, shows how the amplitude of signals received from
 - a far-end transmitter compares to the combined
 - amplitudes of crosstalk produced by near-end transmissions on the other wire pairs
- Not required in TIA, so you will/would see an
- Causes of failure
 - Over length
 - Badly made / damaged cable
 - Not maintaining the twist of the pair in the connector
 - Incorrect test limit / category of cable

Test Interfaces & Reference Planes

What Limits The Bandwidth more ... Connectors or Cable ?

© Fluke Networks 2015 Ver. 1.2

Permanent Link Adapter for the "Heavy Duty Field Use"

Permanent Link Adapter for the "Heavy Duty Field Use" – Strain Relieve

Permanent Link Adapter for the "Heavy Duty Field Use" – Cable

Step 1B: Extended Test Regime

Why EXTENDED Testing ?

FC		
EC	Copper Certification	n to ISO/IEC 11801
	Reference Conformance Testing	Installation Conformance Testing
Wire Map	\checkmark	\checkmark
Length	✓	
Propagation Delay	✓	✓
Delay Skew	✓	✓
DC Loop Resistance	✓	✓
DC Resistance Unbalance	✓	
Insertion Loss	✓	✓
NEXT, PS NEXT	✓	✓
Return Loss	✓	✓
ACR-N, PS ACR-N	✓	✓
ACR-F, PS ACR-F	\checkmark	\checkmark
TCL, ELTCTL	\checkmark	
PS ANEXT, PS AACR-F ¹⁾	\checkmark	✓

1) Class E_A only

Why EXTENDED Testing ?

		Copper Certification						
ADVANCING GLOBAL COM	NUNICATIONS	ANSI/TIA-568-C.2 (Cabling System)	ANSI/TIA-1152 (Minimum Field Test)					
	Wire Map	✓	✓					
	Length	✓	✓					
	Propagation Delay	✓	✓					
	Delay Skew	\checkmark	✓					
	DC Loop Resistance	\checkmark						
	DC Resistance Unbalance	\checkmark						
	Insertion Loss	\checkmark	✓					
	NEXT, PS NEXT	\checkmark	\checkmark					
	Return Loss	\checkmark	✓					
	ACR-F, PS ACR-F	\checkmark	\checkmark					
	TCL, ELTCTL	\checkmark						
	PS ANEXT, PS AACR-F ¹⁾	\checkmark	✓					

1) Category 6A only

TCL / ELTCTL is not compliant

Example 2: GOOD vs. **BAD** Drum of Cable

- 18km cable of identical type was installed
- 30% of the links don't carry 1000BASE-T

	Tests	
		J
Ins	Insertion Loss	38.6 dB 🔨 🔨
NE	NEXT	6.9 dB 📄
PS	PS NEXT	7.5 dB
AC	ACR-N	23.3 dB
PS	PS ACR-N	23.1 dB
AC	ACR-F	17.3 dB
PS	PS ACR-F	19.4 dB
RL	RL 🔨	9.1 dB 📃
Ler	TCL	(5.7 dB)
Pro	CMRL	
De	CDNEXT	
Re	ELTCTL	21.9 dB
Wi	Length	22.2 m
	Prop. Delay	102 ns 📃
	Delay Skew	2 ns
	Resistance	3.4 ohms 🛛 🤍
	B 11 11 1	0.00
	<	>

M Con

TCL (Transverse Conversion Loss)

Transverse Conversion Loss is the ratio (in dB) of a common-mode voltage measured on a wire pair relative to a differential-mode voltage applied to the same end of the pair. The TCL value shows you how well the impedances of the pair's conductors are balanced.

Differential Signal Applied

Common Mode Voltage Measured

WHAT IF

TCL / ELTCTL is not compliant

Even a legacy application like 1000Base-T may not work on an otherwise compliant Cat.6/6A system !

Resistive Unbalance is not compliant

Shield Integrity is not given

Power Over Ethernet

- New WLAN Standards IEEE 802.11n (450Mb/s) and IEEE 802.11ac (300, 450, 867 and 1.333 Mb/s) demand a 1000Base-T or better link
- 1000Base-T uses 4 Duplex wire pairs / POE shares 4 pairs with data
- Phantom Power Feeding in IEEE 802.3af (15Watt) & IEEE 802.3at (25.5/51Watt) defines more demanding requirements for the DC balance in the channel

1GB/s / POE demands Balance

- Unbalance in the DC resistance causes the transformers to saturate
- Balance was was no requirement for 10/100Mb/s POE
 - 2 pairs used for data and 2 for power

Resistance Unbalance

Difference in Resistance between wires in the pair

	120		
	Result not save	ed	PASS
	✓ RESISTANCE	RESIS UNBA	TANCE LANCE
	VALUE Ω	VALUE Ω	LIMIT Ω
1,2	3.7	0.02	0.15
3,6	3.7	0.02	0.15
4,5	3.7	0.01	0.15
7,8	3.6	0.01	0.15
LIMIT	21.0		

WHAT IF

TCL / ELTCTL is not compliant

Resistive Unbalance is not compliant Even a legacy application like 1000Base-T may not work on an otherwise compliant Cat.6/6A system !

POE operation is at risk during maximum load Poor contacts may further degrade over time

Shield Integrity is not given

Shield Integrity ... Opinions

Opinion A:

Even when the shield is open at the both ends the requiremens for 10GBASE-T are met 1.) Experiments prove it (both opinions)

2.) The EMI gets significantly worse

Opinion B:

Requirements for 10GBASE-T are not met if the shield is open (floating)

Grounding Bar

FLLIKE

In The Past:

- Field testers could only verify that there is DC Continuity
- DC Continuity is given by grounding and earth
- Any open shields/ends could not be detected

works

Let's test a UTP cable between shielded patch panels...

- Only DSX will detect the lack of a shield
- NOTE: In special applications it may be essential to verify that the shield is open on a defined end
 - e.g: Building to Building and non-perfect grounding

Shield Test – Re-Engineered

• Example:

15m Link ... the shield is not connected at he left end

 For this high end cable the Alien
Crosstalk is below
the testers
significance level

- The same cable show a > 20dB worse Alien Crosstalk
- A major portion of the EMI (Electromagnetic Immunity) was lost © Fluke Networks 2015 Ver. 1.2

WHAT IF

TCL / ELTCTL is not compliant

Even a legacy application like 1000Base-T may not work on an otherwise compliant Cat.6/6A system !

Resistive Unbalance is not compliant POE operation is at risk during maximum load Poor contacts may further degrade over time

Shield Integrity is not given

10 or 20 dB of electromagnetic immunity (EMI) is lost. Alien Crosstalk may become noncompliant

Step 3: Trouble Shooting

800+ Installers VOCs: Top eight problems (hours wasted)

WRONG COPPER LIMIT	4.3	NEGATIVE LOSS				2	2.8					
INCORRECT CABLE IDS	3.2	TF	ROI	JBI	ES	SHC	001	C	OPF	PER	2	2.7
CONSOLIDATING RESULTS	3.1	•	•	•	•	•	•	•	•	•	•	•
SETTING UP COPPER TEST	2.9	•	•	•	•	•	•	•	•	•	•	•
EVALUATING OTDR TRACE	2.9	•	•	•	•	•	•	•	:	•	•	•
WRONG FIBER LIMIT	2.8	•	•	•	•	•	•	•	•	•	•	•

Average amongst all respondents in the previous 30 days

Trouble diagnosing Cat 6A/Class E_A links?

No more guessing why the link failed

Reliably detect connectors...

 DSX uses patent pending technology to reliably detect connectors

DSX empowers you to make better decisions in the field

(C)

uke Networks 2015 Ver. 1.2

networks.

FLLIKE

DSX's built in Expert

 DSX uses our experience of the last 10 years to better diagnose links and suggest corrective actions

Example shows a high resistance make RL fail

Water in the CP to TO cable

Not many experts will be able to recognize the problem and the cause

Step 6: Project Monitoring & Documentation

Password: Versisv4u

Try it...

user:

www.linkwarelive.com

Monitoring &

Documenation

ġ.

EXT. no Tests yes

FLUKE networks.

Coper Testing Best Practices ... The VERSIV Family covers it!

...Optional / Conditional Testing

Conclusion

Qualified instruments and personnel paired with an efficient work flow ensures ...

- ... "Next Generation Readiness" by extending the certification to all parameters specified for a cabling system
- ... a profitable certification of twister pair cabling systems

THANK YOU FOR YOUR ATTENTION !

Questions?

Rikard.Momme@FlukeNetworks.com

Back Up Slides

