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Definitions

Front: “Atmospheric fronts may be defined as sloping
zones of pronounced transition in the thermal and wind
fields.” (Keyser 1986)
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F1G. 1. Mean temperature and zonal component of geostrophic wind, computed from twelve cases in December 1946. The cross A
section lies along the meridian 80°W. Heavy lines indicate mean positions of frontal boundaries. Thin dashed lines are isotherms (de- Palmen and NeWton
grees Centigrade, slanting numbers) and solid lines are isolines of westerly component of wind (meters per second, upright numbers).
Means were computed with respect to the polar front in this and in the following figures. (1948)
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Means were computed with respect to the polar front in this and in the following figures.
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zones of pronounced transition in the thermal and wind
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Definitions

Frontogenesis: The formation of a frontal boundary.
Frontolysis: The decay of a frontal boundary.
Mathematically, it describes the Lagrangian rate of

change of the magnitude of the horizontal temperature
gradient (Bergeron 1928; Petterssen 1936)Z
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Fronts and Frontogenesis

Shapiro et al. (1999)

“The principal task of any
meteorological institution of
education and research must be to
bridge the gap between the
mathematician and practical man,
that is to make the weather man
realize the value of a modest
theoretical education and to induce
the theoretical man to take an
occasional glance at the weather
map. The polar front theory, beyond
a doubt, represents the most
successful effort yet to bridge the gulf
that separates meteorological
camps”’

C.-G. Rossby (1934)
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Observations of Fronts

Polar Front Theory
Bjerknes (1919); Bjerknes and Solberg (1921, 1922)
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Polar Front Theory in the U.S.

Meisinger (1920): Applied polar front theory concepts to
a strong cyclogenesis event in the lee of the Rockies.
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Observations of Fronts

Polar Front Theory in the U.S.

Meisinger (1920): Applied polar front theory concepts to
a strong cyclogenesis event in the lee of the Rockies.

Beck (1922): Appealed the U.S. Weather Bureau to adopt
polar front theory concepts and increase observational
capabilities.



Observations of Fronts

Polar Front Theory in the U.S.

Rossby and
Weightman
(1926):

Investigated a case
of lee cyclogenesis
that featured
interactions
between four
different air
masses.

C.-G.R. & R. H

February 17, 8 p. m.

2v—138  December, 1926. M.W. R,
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EXPLANATORY NOTES

Tsobars, weather, wind arrows, and figures showing 12-hour precipitation given
in black.

Area over which it is raining or snowing at the time of observation is shown by
black stipple.

Cold fronts sre in double solid red lines, warm fronta in single solid red lines,
and occluded fronts in broken red lines; temperatures and barometric tendencies
in red figures (temperatures to left of station).

Barbs on arrows give wind force in Beaufort scale, long barbs indicating two
units of force and short barbs one unit.

Weather symbols used as follows: O clear, @ partly cloudy, @ cloudy, =fog,

1 raining, % snowing, [ (in black) thunderstorm at observation, [% (in red)
thunderstorm during last 12 hours.
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Observations of Fronts

Bjerknes and Palmén (1937)
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Observations of Fronts

Bjerknes and Palmén (1937)
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 The front is a transition zone across which the temperature gradient is
discontinuous.




Observations of Fronts

Bjerknes and Palmén (1937)
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 The front is a transition zone across which the temperature gradient is
discontinuous.

 The tropopause abruptly lowers at the location where the polar front
intersects the tropopause.




Observations of Fronts

Bjerknes and Palmén (1937)
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 The front is a transition zone across which the temperature gradient is
discontinuous.

 The tropopause abruptly lowers at the location where the polar front
intersects the tropopause.

 The meridional temperature gradient reverses directly above the
tropopause break.




Observations of Fronts

Sanders (1955)

“Fred [Sanders] and | were kindred spirits who fed each other’s discontent with
what we regarded as the nearly blind acceptance by many meteorologists of the
[Norwegian Cyclone Model]” — Reed (2003)

400 P (mb) P (mb) 4400

Sanders (1955)



Observations of Fronts

Revisions to Polar Front Theory
Upper-level fronts are distinct from surface fronts
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Observations of Fronts

Revisions to Polar Front Theory
The Shapiro—Keyser Cyclone Model (1990)

(@) Norwegian Model ) Shapiro-Keyser Model

2559 2pe®
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Schultz et al. (1998)
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Observations of Fronts

Revisions to Polar Front Theory
Airstream models of midlatitude cyclones

Increased observations
from multiple platforms,
including satellites,
resulted in further
revisions to polar front
theory.

The position of fronts are

P % | —20°N
/ L L] .
_4/ / T identified at the
REL .
\, e OV boundaries of the
N, . .
~T Lsw o different airstreams.
S

AIRFLOW THROUGH MID-LATITUDE WAVE CYCLONE Carlson (1980)



Observations of Fronts

Revisions to Polar Front Theory
Additional structures that did not conform to Polar Front Theory

Katafronts/Anafronts: Katafronts (Anafronts) feature a forward
(backward) sloping frontal boundary and pre- (post-)frontal cloud
bands (Bergeron 1937; Sansom 1951).

Split Fronts/Cold Fronts Aloft: Conforms well with the concept of a
katafront, with a dry airstream overrunning the warm conveyor belt
near a cold front (Browning and Monk 1982; Browning 1990; Hobbs et al. 1990; Mass and

Schultz 1993).

] 1 “rowens Katafront
T -
29 BL
J. I
[ —T
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Anafrot Browning (1990)



Observations of Fronts

Revisions to Polar Front Theory
Additional structures that did not conform to Polar Front Theory

Warm/Cold Occlusions: Occurs as a result of the “wrap-up” and
lengthening of the warm-air tongue within a cyclone as it
experiences deformation and rotation around the cyclone center
(Bjerknes and Solberg 1922; Schultz and Vaughan 2011; Schultz et al. 2014).

Cold Occlusion Warm Occlusion

Fig. 4. ’I‘he\\two kinds of occlusions seen in vertical section.

Bjerknes and Solberg (1922)



Observations of Fronts

Revisions to Polar Front Theory
Additional structures that did not conform to Polar Front Theory

Warm/Cold Occlusions: Occurs as a result of the “wrap-up” and
lengthening of the warm-air tongue within a cyclone as it
experiences deformation and rotation around the cyclone center
(Bjerknes and Solberg 1922; Schultz and Vaughan 2011; Schultz et al. 2014).

Backdoor Fronts: Cold-air damming along the eastern slopes of
topography can aid in the formation of backdoor cold fronts (carr
1951).

Coastal Fronts: Most favorable in areas of topography that lock in
cold air over the continent. Surface latent and sensible heat fluxes
can also result in warming over the ocean and a strong land/sea
temperature contrast (Bosart et al. 1972; Bosart 1975, 1981).



Fronts and Frontogenesis

Shapiro et al. (1999)

“The principal task of any
meteorological institution of
education and research must be to
bridge the gap between the
mathematician and practical man,
that is to make the weather man
realize the value of a modest
theoretical education and to induce
the theoretical man to take an
occasional glance at the weather
map. The polar front theory, beyond
a doubt, represents the most
successful effort yet to bridge the gulf
that separates meteorological
camps”’
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Theory of Fronts

Theory as a Bridge to Observations
Replicating Sanders (1955) and Reed (1955)

Quasi-geostrophic theory
(Stone 1966; Williams and Plotkin 1968; Williams
1968,1972; Mudrick 1974)

1) Frontogenesis is slow near
the ground.

The frontal zone does not tilt
with height.

3) The relative vorticity field
contains large areas of
anticyclonic vorticity too.

4) Regions of static instability

— Stone (1966) are produced.
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Theory of Fronts

Theory as a Bridge to Observations
Replicating Sanders (1955) and Reed (1955)

Arnt Eliassen Semi-geostrophic theory
(Sawyer 1956; Eliassen 1962; Hoskins 1971;
Hoskins and Bretherton 1972; Hoskins 1972)

1) Retains across-front
advections of temperature
and momentum by the
ageostrophic wind.

2) The Sawyer (1956)-
Eliassen (1962) Circulation
Equation.

Norwegian Encyclopedia



Theory of Fronts
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Theory of Fronts
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Theory of Fronts
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Static Stability
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Horizontal Absolute Vorticity

Frontal
Characteristics

Where: Alzl' Aiz' Ai; Ai“'
o < (4" L%
Jy 1 1T
1 1l
LW Y 1 o1l
age Or)p I I
| | | |




Theory of Fronts
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Theory of Fronts
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Theory of Fronts
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Eliassen (1990)

Shearlng Confluence

Eliassen (1962)



Theory of Fronts
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Theory of Fronts

Theory as a Bridge to Observations
Replicating Sanders (1955) and Reed (1955)

Hoskins (1971) Semi-geostrophic theory

200 km

- (Sawyer 1956; Eliassen 1962; Hoskins 1971;

\ Hoskins and Bretherton 1972; Hoskins 1972)

~ 3) Simulates surface and

l ‘ upper-level fronts that are
similar to those observed
by Sanders (1955) and
Reed (1955).
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Theory of Fronts

Theory as a Bridge to Observations
Replicating Sanders (1955) and Reed (1955)

Hoskins (1972) Semi-geostrophic theory
C ' (Sawyer 1956; Eliassen 1962; Hoskins 1971;

Hoskins and Bretherton 1972; Hoskins 1972)

3) Simulates surface and
upper-level fronts that are
similar to those observed
by Sanders (1955) and
Reed (1955).

mb

500 km S ) <« -
—_

4) Inclusion of frictional (e.g., Keyser and Anthes 1982) and
diabatic effects (e.g., Thorpe and Emanuel 1985) further
reconciled modelled versus observed frontal structures.



Theory of Fronts

Theory as a Bridge to Observations
Replicating Sanders (1955) and Reed (1955)

Thorncroft et al. (1993) Primitive Equation Models

(Snyder et al. 1991; Thorncroft et al. 1993;
Rotunno et al. 1994; Muraki et al. 1999;

Rotunno et al. 2000)

1) Cyclone lifecycles differ
considerably based on the
background barotropic
shear.
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Theory as a Bridge to Observations
Replicating Sanders (1955) and Reed (1955)
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Theory of Fronts

Theory as a Bridge to Observations
Replicating Sanders (1955) and Reed (1955)
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1) Cyclone lifecycles differ
considerably based on the
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Theory of Fronts

Theory as a Bridge to Observations
Replicating Sanders (1955) and Reed (1955)

Thorncroft et al. (1993) Primitive Equation Models

(Snyder et al. 1991; Thorncroft et al. 1993;
Rotunno et al. 1994; Muraki et al. 1999;

Rotunno et al. 2000)

LC2

1) Cyclone lifecycles differ
considerably based on the
background barotropic
shear.

2) Numerically-simulated
cyclones can be affected
significantly by the semi-
geostrophic approximation.




Theory of Fronts

Theory as a Bridge to Observations
Replicating Sanders (1955) and Reed (1955)

Wandishin et al. (2000)

(b) (c)

PV Frontogenesis
(Davies and Rossa 1998; Wandishin et al.
2000; Pyle et al. 2004)

1) Processes that contribute
to an increase in the
magnitude of the
temperature gradient on
the tropopause can be

1)

2)

Differential vertical motions can vertically
steepen the tropopause.

Convergence or a vertical shear can produce
a differential horizontal advection of the
tropopause surface.

used to diagnhose
tropopause folding.




Fronts and Frontogenesis

Shapiro et al. (1999)

“The principal task of any
meteorological institution of
education and research must be to
bridge the gap between the
mathematician and practical man,
that is to make the weather man
realize the value of a modest
theoretical education and to induce
the theoretical man to take an
occasional glance at the weather
map. The polar front theory, beyond
a doubt, represents the most
successful effort yet to bridge the gulf
that separates meteorological
camps”’

C.-G. Rossby (1934)



Diagnosis of Fronts

Frontogenesis: The formation of a frontal boundary.

Frontolysis: The decay of a frontal boundary.
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Frontogenesis: The formation of a frontal boundary.
Frontolysis: The decay of a frontal boundary.
Mathematically, it describes the Lagrangian rate of

change of the magnitude of the horizontal temperature
gradient (Bergeron 1928; Petterssen 1936)Z
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Diagnosis of Fronts

Frontogenesis: The formation of a frontal boundary.
Frontolysis: The decay of a frontal boundary.
Mathematically, it describes the Lagrangian rate of

change of the magnitude of the horizontal temperature
gradient (Bergeron 1928; Petterssen 1936)Z

F = % |V,,0|(6 — Ecos2f3)




Diagnosis of Fronts

Kinematics of Frontogenesis o iy
(Miller 1948; Sanders 1955)

section E-N. Units expressed as 3-hr changes in horizontal tem-
perature gradient in (deg C) (100 km)~2. Positive values indicate
frontogenesis in temperature field.

500+ 500
P (mb) P (mb)
700 L 700
600 600
800~ ~1800
700
700 900 —%00
800 800 1000~ —1000

F16. 12. Frontogenetical effect (dw/ay) (ae/az) for part of cross
960 section E-N. Units as in fig. 1

P(mb} . Pimb)

700~ -700

d [ 36 d [de dv 3¢ Jw 38

+ o nl SRR 1000 . ~000
dt \ dy dy \ dt dy dy 9y 9z '

F16. 13. Net frontogenetical eﬂ’ect, (0w/ay)(90/82) + (av/ay)-
(68/8y), for part of cross section E-N, Units as in fig. 12




Diagnosis of Fronts

Application of the Sawyer—Eliassen Circulation Equation
Diagnosis of Ageostrophic Transverse Circulations

= Todsen (1964) Shapiro (1981)



Diagnosis of Fronts

Application of the Sawyer—Eliassen Circulation Equation
Diagnosis of Ageostrophic Transverse Circulations

Upper Troposphere

(a)

Shapiro (1981)

Lang and Martin (2012)



Diagnosis of Fronts

Application of the Sawyer—Eliassen Circulation Equation
Diagnosis of Ageostrophic Transverse Circulations

PRESSURE {mbd)

Hakim and Keyser (2001)



Diagnosis of Fronts

Application of the Sawyer—Eliassen Circulation Equation
Diagnosis of Ageostrophic Transverse Circulations

11
PRESSURE (mb)

B B’
Hakim and Keyser (2001)




Diagnosis of Fronts

Frontal Circulations in Three-Dimensions

The Sawyer—Eliassen Circulation Equation has been
generalized to three-dimensions, but its application has
been limited (Hoskins and Draghici 1977; Bosart and Lin 1984; Xu 1990).



Diagnosis of Fronts

Frontal Circulations in Three-Dimensions

The Sawyer—Eliassen Circulation Equation has been
generalized to three-dimensions, but its application has
been limited (Hoskins and Draghici 1977; Bosart and Lin 1984; Xu 1990).

The Q-vector can be used to diagnose frontogenesis
(Hoskins et al. 1978; Hoskins and Pedder 1980; Keyser et al. 1992; Morgan 1999; Martin
2006).
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Diagnosis of Fronts

Frontal Circulations in Three-Dimensions

The Sawyer—Eliassen Circulation Equation has been
generalized to three-dimensions, but its application has
been limited (Hoskins and Draghici 1977; Bosart and Lin 1984; Xu 1990).

The Q-vector can be used to diagnose frontogenesis
(Hoskins et al. 1978; Hoskins and Pedder 1980; Keyser et al. 1992; Morgan 1999; Martin

> d
Q =1y Vn

2006).




Diagnosis of Fronts

Frontal Circulations in Three-Dimensions — The Psi Vector

\a/ \vJ

Full omega Transverse omega

The Sawyer—Eliassen
Circulation Equation neglects
the along-flow component of
the ageostrophic wind.
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Fic. 16. Cross sections showing total vertical velocity partitioned int
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Future of Frontal Research

1. New observational and modelling capabilities permit
reexaminations of frontal characteristics.

2. Research is required to better understand the
interaction between diabatic, frictional, and frontal

dynamics.

3. Aninflux of reanalysis and reforecast datasets permits
novel evaluations of frontal-cyclone structure and the
variability inherent in those structures.
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