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Definitions
Frontogenesis:		The	formation	of	a	frontal	boundary.	

Frontolysis:		The	decay	of	a	frontal	boundary.

Mathematically,	it	describes	the	Lagrangian rate	of	
change	of	the	magnitude	of	the	horizontal	temperature	
gradient	(Bergeron	1928;	Petterssen 1936):

ℱ = #
#$
𝛻&𝜃
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Polar	Front	Theory	in	the	U.S.

Meisinger (1920):	Applied	polar	front	theory	concepts	to	
a	strong	cyclogenesis	event	in	the	lee	of	the	Rockies.

Beck	(1922):	Appealed	the	U.S.	Weather	Bureau	to	adopt	
polar	front	theory	concepts	and	increase	observational	
capabilities.



Observations	of	Fronts
Polar	Front	Theory	in	the	U.S.

Rossby and	
Weightman
(1926):	

Investigated	a	case	
of	lee	cyclogenesis	

that	featured	
interactions	
between	four	
different	air	
masses.



Observations	of	Fronts
Bjerknes and	Palmén (1937)

Coordinated	
“swarm	ascents”	
at	18	different	
locations	across	
Europe.
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Observations	of	Fronts
Bjerknes and	Palmén (1937)

• The	front	is	a	transition	zone	across	which	the	temperature	gradient	is	
discontinuous.

• The	tropopause abruptly	lowers	at	the	location	where	the	polar	front	
intersects	the	tropopause.

• The	meridional temperature	gradient	reverses directly	above	the	
tropopause break.

COLDWARM

WARMCOLD



Observations	of	Fronts
Sanders	(1955)

“Fred	[Sanders]	and	I	were	kindred	spirits	who	fed	each	other’s	discontent	with	
what	we	regarded	as	the	nearly	blind	acceptance	by	many	meteorologists	of	the	

[Norwegian	Cyclone	Model]”	– Reed	(2003)
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Observations	of	Fronts
Revisions	to	Polar	Front	Theory

Upper-level	fronts	are	distinct	from	surface	fronts

Reed	(1955)
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Observations	of	Fronts
Revisions	to	Polar	Front	Theory

The	Shapiro–Keyser	Cyclone	Model	(1990)

Schultz	et	al.	(1998)



Observations	of	Fronts
Revisions	to	Polar	Front	Theory

Airstream	models	of	midlatitude cyclones	

Increased	observations	
from	multiple	platforms,	
including	satellites,	
resulted	in	further	
revisions	to	polar	front	
theory.

The	position	of	fronts	are	
identified	at	the	
boundaries	of	the	
different	airstreams.

Carlson	(1980)



Observations	of	Fronts
Revisions	to	Polar	Front	Theory

Additional	structures	that	did	not	conform	to	Polar	Front	Theory
Katafronts/Anafronts:		Katafronts (Anafronts)	feature	a	forward	
(backward)	sloping	frontal	boundary	and	pre- (post-)frontal	cloud	
bands	(Bergeron	1937;	Sansom 1951).
Split	Fronts/Cold	Fronts	Aloft:		Conforms	well	with	the	concept	of	a	
katafront,	with	a	dry	airstream	overrunning	the	warm	conveyor	belt	
near	a	cold	front	(Browning	and	Monk	1982;	Browning	1990;	Hobbs	et	al.	1990;	Mass	and	

Schultz	1993).

Anafront

Katafront

Browning	(1990)



Observations	of	Fronts
Revisions	to	Polar	Front	Theory

Additional	structures	that	did	not	conform	to	Polar	Front	Theory

Warm/Cold	Occlusions:		Occurs	as	a	result	of	the	“wrap-up”	and	
lengthening	of	the	warm-air	tongue	within	a	cyclone	as	it	
experiences	deformation	and	rotation	around	the	cyclone	center	
(Bjerknes and	Solberg	1922;	Schultz	and	Vaughan	2011;	Schultz	et	al.	2014).

Cold	Occlusion Warm	Occlusion

Bjerknes and	Solberg	(1922)
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Additional	structures	that	did	not	conform	to	Polar	Front	Theory

Warm/Cold	Occlusions:		Occurs	as	a	result	of	the	“wrap-up”	and	
lengthening	of	the	warm-air	tongue	within	a	cyclone	as	it	
experiences	deformation	and	rotation	around	the	cyclone	center	
(Bjerknes and	Solberg	1922;	Schultz	and	Vaughan	2011;	Schultz	et	al.	2014).

Backdoor	Fronts:		Cold-air	damming	along	the	eastern	slopes	of	
topography	can	aid	in	the	formation	of	backdoor	cold	fronts	(Carr
1951).

Coastal	Fronts:		Most	favorable	in	areas	of	topography	that	lock	in	
cold	air	over	the	continent.	Surface	latent	and	sensible	heat	fluxes	
can	also	result	in	warming	over	the	ocean	and	a	strong	land/sea	
temperature	contrast	(Bosart et	al.	1972;	Bosart 1975,	1981).
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Theory	of	Fronts
Theory	as	a	Bridge	to	Observations
Replicating	Sanders	(1955)	and	Reed	(1955)

Quasi-geostrophic	theory
(Stone	1966;	Williams	and	Plotkin 1968;	Williams	

1968,1972;	Mudrick 1974)

1) Frontogenesis	is	slow	near	
the	ground.

2) The	frontal	zone	does	not	tilt	
with	height.

3) The	relative	vorticity	field	
contains	large	areas	of	
anticyclonic	vorticity	too.

4) Regions	of	static	instability	
are	produced.

Bluestein	(1986)

Stone	(1966)



Theory	of	Fronts

Semi-geostrophic	theory
(Sawyer	1956;	Eliassen 1962;	Hoskins	1971;	
Hoskins	and	Bretherton	1972;	Hoskins	1972)

1) Retains	across-front	
advections	of	temperature	
and	momentum	by	the	
ageostrophic wind.

2) The	Sawyer	(1956)–
Eliassen (1962)	Circulation	
Equation.

Arnt Eliassen

Norwegian	Encyclopedia

Theory	as	a	Bridge	to	Observations
Replicating	Sanders	(1955)	and	Reed	(1955)
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Theory	of	Fronts

Semi-geostrophic	theory
(Sawyer	1956;	Eliassen 1962;	Hoskins	1971;	
Hoskins	and	Bretherton	1972;	Hoskins	1972)

3) Simulates	surface	and	
upper-level	fronts	that	are	
similar	to	those	observed	
by	Sanders	(1955)	and	
Reed	(1955).

Bluestein	(1986)	à
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Semi-geostrophic	theory
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3) Simulates	surface	and	
upper-level	fronts	that	are	
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by	Sanders	(1955)	and	
Reed	(1955).

Theory	as	a	Bridge	to	Observations
Replicating	Sanders	(1955)	and	Reed	(1955)

Hoskins	(1972)

4) Inclusion	of	frictional	(e.g.,	Keyser	and	Anthes 1982)	and	
diabatic effects	(e.g.,	Thorpe	and	Emanuel	1985)	further	
reconciled	modelled	versus	observed	frontal	structures.



Theory	of	Fronts
Theory	as	a	Bridge	to	Observations
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Thorncroft et	al.	(1993)
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background	barotropic
shear.
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Thorncroft et	al.	(1993)
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Theory	of	Fronts

Primitive	Equation	Models
(Snyder	et	al.	1991;	Thorncroft et	al.	1993;	
Rotunno et	al.	1994;	Muraki et	al.	1999;	

Rotunno et	al.	2000)

1) Cyclone	lifecycles	differ	
considerably	based	on	the	
background	barotropic
shear.

2) Numerically-simulated	
cyclones	can	be	affected	
significantly	by	the	semi-
geostrophic	approximation.

Theory	as	a	Bridge	to	Observations
Replicating	Sanders	(1955)	and	Reed	(1955)

Thorncroft et	al.	(1993)
LC2



Theory	of	Fronts

PV	Frontogenesis
(Davies	and	Rossa 1998;	Wandishin et	al.	

2000;	Pyle	et	al.	2004)

1) Processes	that	contribute	
to	an	increase	in	the	
magnitude	of	the	
temperature	gradient	on	
the	tropopause	can	be	
used	to	diagnose	
tropopause	folding.

Theory	as	a	Bridge	to	Observations
Replicating	Sanders	(1955)	and	Reed	(1955)

Wandishin et	al.	(2000)

1) Differential	vertical	motions can	vertically	
steepen the	tropopause.

2) Convergence or	a	vertical	shear can	produce	
a	differential	horizontal	advection of	the	
tropopause	surface.
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Diagnosis	of	Fronts
Frontogenesis:		The	formation	of	a	frontal	boundary.	

Frontolysis:		The	decay	of	a	frontal	boundary.

Mathematically,	it	describes	the	Lagrangian rate	of	
change	of	the	magnitude	of	the	horizontal	temperature	
gradient	(Bergeron	1928;	Petterssen 1936):

ℱ = (
)
𝛻&𝜃 𝛿 − 𝐸𝑐𝑜𝑠2𝛽



Diagnosis	of	Fronts

E N

Kinematics	of	Frontogenesis
(Miller	1948;	Sanders	1955)



Diagnosis	of	Fronts
Application	of	the	Sawyer–Eliassen Circulation	Equation

Diagnosis	of	Ageostrophic Transverse	Circulations

Todsen (1964) Shapiro	(1981)
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Diagnosis	of	Ageostrophic Transverse	Circulations

Lang	and	Martin	(2012)
Shapiro	(1981)



Diagnosis	of	Fronts
Application	of	the	Sawyer–Eliassen Circulation	Equation

Diagnosis	of	Ageostrophic Transverse	Circulations

Hakim	and	Keyser	(2001)
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Diagnosis	of	Ageostrophic Transverse	Circulations

Hakim	and	Keyser	(2001)
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Diagnosis	of	Fronts

The	Sawyer–Eliassen Circulation	Equation	has	been	
generalized	to	three-dimensions,	but	its	application	has	
been	limited	(Hoskins	and	Draghici 1977;	Bosart and	Lin	1984;	Xu	1990).

Frontal	Circulations	in	Three-Dimensions
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Diagnosis	of	Fronts

The	Sawyer–Eliassen Circulation	Equation	has	been	
generalized	to	three-dimensions,	but	its	application	has	
been	limited	(Hoskins	and	Draghici 1977;	Bosart and	Lin	1984;	Xu	1990).

The	Q-vector	can	be	used	to	diagnose	frontogenesis	
(Hoskins	et	al.	1978;	Hoskins	and	Pedder	1980;	Keyser	et	al.	1992;	Morgan	1999;	Martin	

2006).

𝑄 = 𝑓𝛾 #
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Frontal	Circulations	in	Three-Dimensions



The	Sawyer–Eliassen
Circulation	Equation	neglects	
the	along-flow	component	of	
the	ageostrophic wind.

A	majority	of	the	vertical	
motion	is	of	the	transverse	
variety.

There	are	non-negligible	
contributions	to	the	vertical	
motion	field	in	the	along-flow	
direction.

Keyser	et	al.	(1989)

Diagnosis	of	Fronts
Frontal	Circulations	in	Three-Dimensions	– The	Psi	Vector

Full	omega Transverse	omega

Shearwise omega



1. New	observational	and	modelling	capabilities	permit	
reexaminations	of	frontal	characteristics.

2. Research	is	required	to	better	understand	the	
interaction	between	diabatic,	frictional,	and	frontal	
dynamics.

3. An	influx	of	reanalysis	and	reforecast	datasets	permits	
novel	evaluations	of	frontal-cyclone	structure	and	the	
variability	inherent	in	those	structures.	

Future	of	Frontal	Research
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