

TM

BASIC Training Guide
F. Kampow

and
N. Szczepanowski

A Data Becker Book published by

Abacusmm Software

\

Third Printing, June 1988
Printed in U.S.A.

Copyright ©1985

Copyright ©1986,1987

Data Becker GmbH
Merowingerstr. 30
4000 Dusseldorf, West Germany
Abacus Software, Inc.
P.O. Box 7219
Grand Rapids, MI 49510

This book is copyrighted. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of Abacus Software, Inc. or Data Becker, GmbH.

ATARI, 520ST, ST, TOS, ST BASIC and ST LOGO are trademarks or
registered trademarks of Atari Corp.

GEM is a trademark of Digital Research Inc.

IBM is a registered trademark of International Business Machines.

ISBN 0-916439-57-7

u

Table of Contents

"oreword vu

Chapter 1 Fundamentals of programming 1

1.1 Loading ST BASIC 3

1.1.1 Getting familiar with BASIC 3

1.1.2 Entering your first BASIC program 4

1.2 Algorithms and programs 8

1.3 The BASIC language 8

1.4 Data flowcharts, program flowcharts, and
documentation 10

1.4.1 Data flowcharts 12

1.4.2 Program flowcharts 14

1.4.3 Documentation 17

1.5 ASCII codes 19

1.6 Number systems 19

1.6.1 The binary system 20

1.6.2 Bit and byte 21

1.6.3 The hexadecimal system 22

1.7 The logical operators 25

1.7.1 NOT 26

1.7.2 AND 27

1.7.3 OR 28

1.7.4 XOR 29

1.7.5 EQV 30

1.7.6 IMP 31

Problems 33

Chapter 2 Introduction to programming in BASIC 35

2.1 The first BASIC program 37

2. 1.1 Entering values with INPUT 40

2. 1.2 Value assignment with LET 41

2. 1.3 Output with PRINT 42

2. 1.3.1 PRINT USING 45

2.1.4 Comments with REM 50

2.2 Variables and their use 52

2.2.1 Calculations with variables 53

Problems 54

2.3 Numerical functions 55

2. 3.1 Functions with DEF FN 59

111

Chapter 2 fcontl
2.3.2 Random numbers 59
2.3.3 More commands for variables 61
2.3.4 ASC(X$) andCHR$ (x) 63
Problems 64
2.4 TAB and SPC 65
2.5 Strings 66
2.5.1 LEFT$ 67
2.5.2 right$ 68
2.5.3 MID$ 68
2.5.4 LEN(X$) 70
2.5.5 VAL(X$) 70
2.5.6 STR(X$) 71
2.5.7 INSTR 72
2.5.8 STRING$ 73
2.5.9 SPACE$ 73
Problems 74
2.6 Editing programs 75
2.7 The screen windows 79

Chapter 3 Extended program structures 81
3.1 Unconditional programjumps 83
3.2 Conditional program jumps 86
3.2.1 IF. . .THEN. . .ELSE 86
3.2.2 Labels 89
Problems 90
3.2.3 FOR. . .TO. . .NEXT 91
3.2.4 Loops with WHILE. . .WEND 97
3.3 Calculated jump commands 103
3.3.1 Example program MATH TUTOR 105
3.3.2 Program jumps with ON.. . ERROR 113
Problems 115
3.4 Reading the keyboard 116
3.5 FRE, POS, CALL, and WAIT 118
3.6 READ, DATA, and RESTORE 120

Chapter 4 Advanced BASIC applications 125
4.1 Arrays 127
4.1.1 One-dimensional arrays 127

IV

Chapter 4 (cont)
4.1.2 Examples of one-dimensional arrays
Problems
4.1.3 Multi-dimensional arrays

Subroutines

Menu techniques
Cursor positioning with GOTOXY
Using input routines in the menu
Sorting methods

4.2

4.3

4.3.1

4.3.2

4.4

Chapter 5
5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5
5.2

Chapter 6
6.1

6.1.1
6.2

6.2.1

6.2.2

6.2.3
6.2.4

Chapter 7
7.1

7.1.1

7.1.2
7.2

Working with the disk drive
Program management
Saving programs
Loading programs
Displaying the disk contents
Erasing files
Renaming files
Sequential file management

Music and graphics
Sound

The SOUND command
Graphics
Lines

Circle
Ellipses
Filled surfaces

GEM functions under BASIC

GEM fundamentals
GEMVDI

GEM AES
Passing parameters to GEM routines

133

140

141

149

168

171

172

177

181

183

183

184

184

185

186

187

191

193

194

196

197

197

198

199

201

203

203

204

205

Appendix 223

Appendix A: Overview of ST BASIC Commands 225
Appendix B: Reserved BASIC Words 297
Appendix C: Problem solutions 299
Appendix D: BASIC Error List 311

Index 313

VI

Foreword

The Atari ST is quite a capable computer. The purpose of this book is to
make you a capable BASIC programmer. We intend to present the
fundamentals of BASIC—from simple screen output with PRINT to
complex program algorithms such as sorting. In addition, this book points
out the idiosyncracies in the current version of BASIC.

Chapter 1 gives you the fundamentals of programming, such as good
programming style andprogram documentation. In addition, youwill learn
the theoretical and practical foundations of data processing.

In Chapter 2 and3 you begin youractual programming. First you will learn
how various BASIC commands are used and applied by means of
numerous examples. The example programs are also fairly transportable to
other computers, having the same or a similar BASIC command set. This is
why the programs do not use an excessive number of PEEK and POKE
commands.

At the conclusion of the individual sections you will find problems for you
to solve. This letsyoucheckyourcomprehension of thepreceding material.
The problem solutions are found in Appendix C. We suggest you work
through the solution to all the problems before proceeding, because the
problem solution contains a transition to thefollowing section.

Chapter 4 consists of more complex problems and hence more complex
programs. Again, the chapter contains many examples and problems—you
won't bejust reading, butwill get actual hands-on experience working with
BASIC on your ST.

Chapter 5 introduces you to the principles of file management and operation
of the disk drive.

Chapter 6 explains some of the sound and graphics commands of the Atari
ST, and includes many examples.

And in Chapter7, you'll learn how to use some powerful GEM functions
within BASIC programs, while example programs illustrate GEM's
versatility.

vu

Appendix A is a convenient alphabetical list of all ST BASIC commands
and instructions, with explanations and examples of their use. Appendix C
contains the solutions to all of the sample problems in the book.

This book is based on the initial version of ST BASIC. Deviations from any
subsequent versions are possible.

We'd like to wish you lots of fun and success while working with this book
and with your ST.

Sincerely,

Frank Kampow
Norbert Szczepanowski

vm

Chapter 1

r
FUNDAMENTALS OF PROGRAMMING)

1.1 Loading ST BASIC
1.2 Algorithms and programs
1.3 The BASIC language
1.4 Data flowcharts, program flowcharts, and

documentation

1.5 ASCII Codes
1.6 Number systems
1.7 Logical operators

Abacus Software Atari ST BASIC Training Guide

Fundamentals of programming

1.1 Loading ST BASIC

Before using ST BASIC, you must first load itinto memory. Here's how to
doit:

• With GEM Desktop displayed upon the screen, insert your ST
BASIC disk into drive A.

• Double-click on the picture of FLOPPY DISK A. This opens
up a window displaying the diskcontents.

• Now double-click on the program BASIC . PRG . This loads
BASIC into memory.

ST BASIC is now ready to use.

1.1.1 Getting familiar with BASIC

The following diagram shows four of the windows used by BASIC on the
ST. On the next page we'll explain them inmore detail.

Desk File Run Edit Debug

.,.,, • • ••

....... .-• - - --,

Ok|-

m

JSJ-

=n

COMMAND

OUTPUT

•Menu Bar

List

Window

Output
Window

Edit

Window

(hidden)

Command

' Window

• Cursor

Abacus Software Atari ST BASIC Tralning Guide

Menu Bar

You point with the mouse to the various words (Desk, File, etc.) and a
menu for that selection appears.

List Window

This is where your program is displayed when you type the command
LIST. It will show the current program that is in memory.

Output Window

All input from aprogram and all screen output appears in this window.

Edit Window

All program editing is done within this window. To enter this window,
type EDIT and your current program will appear in this window. From
there you can edit your program. While in the Edit window, point to
Edit on the Menu Bar and the various editing options will appear.

Command Window

This is the window where you type in your commands or enter your
BASIC program.

Cursor

This little box points to the next location where text typed in from the
keyboard will appear.

1.1.2 Entering your first BASIC program

We'll demonstrate how you enter and edit a program by typing the
following example.

First type the following:

20 print "hi, i'm your friendly atari computer"

To enter it into the ST's memory, press the <RETURN> key.

Abacus Software

(

Backspace

}
]

Delete

Return 1
\

Atari ST BASIC Training Guide

Help Undo

Insert t CIr

Home

<— I —>

The shaded key represents the <RETURN> key in the diagram above.

Now, to see if our little program works, type:

RUN

and press the <RETURN> key. After you type a command or a program
line you must press the <RETURN> key to tell the computer to interpret it.
In theOutput window, the STdisplays:

hi, i'm your friendly atari computer

The command RUN tells the STtoexecute whatever program is inmemory.
Let's explain the program that you just typed in.

20) print "hi, i'm your friendly atari computer"

line number

To enter aprogram into memory, the program must have anumber in front
of it (20 in our example). This number is appropriately called a line number.
The purpose of line numbers is to put the program lines into adesired order.
The ST stores the program in memory in ascending sequence according to
the line number.

As you enter program lines into the ST, BASIC places that line into correct
sequence as determined by the line number. Therefore, you can enter
program lines in any particular order and BASIC will put them into proper
order in memory. Type the following:

Abacus Software Atari ST BASIC Training Guide

10 print "this is the first line"
30 print "this is the third line"

To see the entire program in memory type:

LIST

Notice how the line numbers are displayed in sequence. LIST displays
your current program in the List window. To see the entire program click
the pointer somewhere inside the List window—this activates the window
Click the pointer in the little box in the upper right corner of the List
window. This action expands the List window to the size of the full screen
(this also works in the other windows as well). To return the window to its
normal size, click the pointer in the same upper right box.

To return to and activate the Command window so that you can enter more
tines, click the pointer in the Command window.

If you enter aprogram line with aduplicate line number, the new program
tine replaces the one in memory. To demonstrate, type the following:

20 print "hi, i'm replacing the second line"

Enter the command list and notice that what you just typed replaced the
second line.

If you enter just aline number followed by <RETURN>, the program line
with that line number is removed or deleted from memory. Type the
following to see this occur:

20

Notice that only tines 10 and 30 remain.

To change aline without having to type the whole thing over again, you are
able toeditit. Enter the following command:

EDIT

Remember to press the <RETURN> key after entering a command. The
bdit window is now activated. From here we can edit our program.

Abacus Software Atari ST BASIC Training Guide

To edit our program we will need to use the cursor keys.

1

Backspace

}
]

Delete

Return 1
\

Help Undo

Insert t CIr

Home

<— I -*

The shaded keys represent the cursor keys. The cursor is moved in the
direction indicated by the arrow on the key. Press the right-cursor key (the
key with the arrow pointing to the right) 15 times. The cursor should now
be on the i in the word is. Press the Fl key (the diamond-shaped key
above the 1key) to insert ablank space—F2 deletes the character under the
cursor. Notice how the text turned to grey. This means that a change has
occurred in that line. Now type:

wa

Press the <RETURN> key to enter it into the ST's memory. The line turns
black to indicate that itwas entered. The line should look as follows:

10 print "this was the first line"

Press the F10 key to exit the Edit window and return to the Command
window. Type RUN toexecute your edited program.

Abacus Software Atari ST BASIC Training Guide

1.2 Algorithms and programs

This chapter is about the fundamentals ofprogramming. In particular we're
gomg to learn about the the BASIC language onthe Atari ST.

But before we begin our BASIC programming, we must first clarify some
terminology. We'll be giving you a little theory ofprogramming—it may
sound a little dry at first, but will be necessary for solving more complex
problems later. *

Just what is programming?

Acomputer is a"dumb" machine, unable to do anything unless it's carefully
instructed. While some computers have aprogramming language built into
them, the Atari STrequires you tofirst load BASIC from diskette. But even
then, you can't just type in your request at the keyboard:

"Calculate the surface of a sphere."

To solve this problem with the ST, orany computer, you must first define a
plan outlining how to solve the problem in aclear and logical ordered set of
instructions. This plan is called an algorithm. Next you must convert this
plan into the commands ofthe computer language. This set ofcommands is
called a. program.

1.3 The BASIC language

The most widely used programming language is called BASIC. BASIC was
developed in 1961 atDartmouth College in New Hampshire. BASIC is an
acronym for:

Beginner's All-purpose Symbolic Instruction Code

BASIC has its roots in the FORTRAN programming language. Since its
inception, many different dialects of BASIC have been developed for
different computers. For the ST we refer to the specific version developed
for that computer, ST BASIC.

Abacus Software Atari ST BASIC Training Guide

This ST BASIC is an interpreted language and, while it retains most ofthe
language elements of BASIC from other computers, most programs from
other computers must be modified to run on the ST.

As with all interpreted languages, the ST cannot immediately understand a
BASIC command. A command must first beconverted to a form which the
computer can understand—machine language. The conversion is performed
by the BASIC interpreter. When you type in a BASIC command at the
keyboard and press the <RETURN> key, the interpreter converts the
command into machine code. Only after the ST has done this preliminary
work can it understand and execute the command.

To recap, an algorithm is an ordered set of instructions to solve aproblem.
Aprogram is atranslation of the algorithm into aprogramming language, in
our case ST BASIC.

Let's take a specific problem to further illustrate these two concepts.
Suppose you want to determine the volume of a sphere knowing only its
radius. Let's carry it a bit further, and say you want to do this for twenty
different radii. Remember, an algorithm is an ordered setof instructions to
solve aproblem. In this case you might proceed like this:

For each of 20 values do the following:

• input the radius
• calculate the volume of the sphere
• display that volume

Aprogram is the translation of the algorithm into aprogramming language.
Here's a programto solveour problem:

10 PI=3.14159265

20 FOR 1=1 TO 20
30 INPUT"RADIUS (IN CM)";R
40 v=4*PI*RA3/3
50 PRINT"THE VOLUME IS ";V;" ccm"
60 NEXT I

The program works perfectly and you have your answers. You decided
upon an algorithm and then translated it into BASIC. This all appears very
straightforward and easy. Because of the simplicity of your problem, you
were able to formulate a solution quickly.

Abacus Software Atari ST BASIC Training Guide

But this does not hold true as you tackle more complex problems. Even the
smallest logic or translation error may lead to incorrect results.

Amore general approach to computer problems is to divide the problem into
small subprograms. You can then think of these smaller pieces as smaller
problems having easier solutions.

One difficulty of this method is that you have to make sure that all of the
pieces fit together again afterwards. The next section describes two tools
that help usdo this—data flowcharts and program flowcharts

1.4 Data flowcharts, program flowcharts and
documentation

Dataflow and programflow are terms that describe aprogramming solution
to a complex problem. We'll describe both in detail.

Aflowchart is a pictorial representation of the programmed solution to a
problem. Flowcharts are made up ofdifferent geometrical symbols Each
symbol represents a specific type ofprogram element. Acalculation is one
program element; printing the result to the screen is another program
element. r b

10

Abacus Software
Atari ST BASIC Training Guide

va

^~\

Figure 1: Programming Template

11

Abacus Software Atari ST BASIC Training Guide

1.4.1 Data flowcharts

Adata flowchart is apictorial representation ofthe data elements involved in
the program. Again, various different symbols represent the flow ofthe data
within a program.

Adata flowchart describes the flow ofdata within a program. But more
precisely, it shows which data item is being used (value ofthe radius), how
it is entered into the computer (by keyboard input), what calculations are
performed with the data (finding the value of the sphere) and how the
results are output (to the screen).

Keyboard Input Processing
Figure 2

Screen Output

As you can see, we've created a data flowchart for a problem as small as
this one. You may think it unnecessary or trivial, but it helps you see the
overall program. Without such a tool, it might be impossible to write more
complex programs. For longer programs these charts may be several pages
long. In these cases, they make it easier to understand the flow of the data to
be processed. Ifyou become accustomed to creating data flowcharts, it will
make your programming task much easier.

Figure 3 illustrates the different symbols used in data flowcharts.

12

Abacus Software

Q

Process

Auxiliary
Operation

Manual

Operation

Manual

Input

Merge

Extract

Magnetic
Drum

Magnetic
Tape

Atari ST BASIC Training Guide

Display

Sort

Input/Output

Online Storage

Document

Punched Card

Punched Tape

Communication Link

Program Flow

Figure 3: Data Flowchart Symbols

13

Abacus Software Atari ST BASIC Training Guide

For practice, create a data flowchart for a program to convert miles to
kilometers and display the result on the screen. Compare your data
flowchart with the suggested solution in Figure 6.

In this section we have learned:

• data flowcharts clearly show how data is used in a
program—which data items are used by the program

• how the data is entered into the computer (source)
• how the data is used by the program (processed)
• how thedata is output (destination)

In the next section we'll talk about the program flowchart. The data
flowchart does not give information about how, for example, the radius
values are converted into the volume values. We need a second form of
symbolic representation that tells us the individual steps the computer uses
to solve aproblem. This is the purpose ofthe program flowchart.

1.4.2 Program flowcharts

In the data flowchart for the calculation of the volume of asphere, the only
item listed for "processing" was Program sphere volume R to
V. There is no information about what happens to the data . The problem
has not been divided into individual steps. You can do this with the help of
the program flowchart. It shows in clear, individual steps what to do in
order to solve a specific problem. The symbols on the programming
template are also used for the program flowchart. These are explained in
Figure 4.

We will use our previous example to create our first program flowchart
You should practice making program flowcharts for small examples so that
you don't run into difficulties when making flowcharts for larger programs
The adage "practice makes perfect" applies here.

Program flowcharts are always drawn from top to bottom. When you reach
the bottom of the page, you can use a connector symbol to indicate the
continuing page. The connector is placed at the lower end of the chart and
designated with anumber or letter. The second connector is designated with
the same letterandplaced at the start of the second section. Take a look at
the following example ofa program flowchart in Figure 5.

14

Abacus Software

CD

o

Atari ST BASIC Training Guide

Internal

Process

Input or
Output

Start

or End

Connector

Program
Decision

Branch

Subroutine

Comments

Flow

Line

Figure 4: ProgramFlowchartSymbols

(Start j

/Input J
Radius /

V=4*tiR /3

/Output /
Volume/

(End)
Figure 5: ProgramFlowchart

15

Abacus Software Atari ST BASIC Training Guide

The start/end symbol does not have to be translated into BASIC. The input
symbol "Input radius" can be translated into theBASIC command input
This can also beprovided with a prompt like:

ENTER RADIUS IN CM?

The formula for calculating the volume ofthe sphere can be placed directly
in the symbol for the internal processing. For the output symbol "Output
volume" we use the PRINT command, which is provided with the
appropriate text. In contrast to our short example program, a FOR...NEXT
loop is not used here. When a program flowchart has reached a given level
of refinement, the individual symbols need only be translated into the
corresponding language statements.

Once you have reached this point in programming, you can think about the
first test run ofyour program. This is done first on paper, that is you follow
the data by means ofthe data flowchart and check the program flow with the
program flowchart. If everything is to your satisfaction, you can start the
program by typing RUN.

Try to draw yourownflowchart for the following problem:

Write a program to convert temperatures from Celsius into Fahrenheit. The
formula for this is:

F=1.8*C+32

Compare your result with the suggested solution inFigure 7.

The advantages of program flowcharts will become clear with larger
programs. They are easy to read because of their graphic representation,
something that can't necessarily be said of a program listing. Another
advantage that's often overlooked is that flowcharts are independent of
specific computers. Theendresult of this is that your flowchart is usable on
any computer. Furthermore, it represents a useful tool for documenting
your programs.

Documentation is a narrative description of the program. The writer
describes the program's approach in plain English.

All too many programs lack documentation. But if a program has to be
modified some time after it's written, even the original programmer may not
beable to understand it. This is because you simply cannot remember all the

16

Abacus Software Atari ST BASIC Training Guide

details that were put into the program, perhaps a year ago. For this reason,
you should get into the habit of documenting your programs. This should
be done so that the programcan be understood several months later.

1.4.3 Documentation

Documentation is another tool to help with problem-solving by computer.
To be precise, programand data flowcharts are a type of documentation for
a program—but documentation alsoincludes a narrative of the program.

The narrative is an English language description of the program. It
describes:

• the problem being solved
• the approach being used
• any special or unique attributes of the problem
• results to be expected

Here's an example narrative:

"This is a generalized program to determine the volume of a
sphere. It calculates the spherical volume from the radius
entered at the keyboard, for up to twenty different radii. The
result is displayed on the screen. It is written in ST BASIC.
The formula for spherical volume is from Geometric
Encyclopedia. R. Chemedes, 1942."

Summarizing the steps required for good programming:

• Definition of the problem (acquire the problem statement, problem
analysis)

• Development of the algorithm for solution (data and program
flowcharts)

• Translation the algorithm into a programming language (creating the
program)

• Test run of the program
• Documentation

17

Abacus Software Atari ST BASIC Training Guide

Figure 6: Example solution

(Start)

Input
Degrees inj

Celcius

F=1.8*C+32

Output
Degrees in,
Fahrenheit

QD
Figure 7: Example solution

18

Abacus Software Atari ST BASIC Training Guide

1.5 ASCII Codes

As mentioned before, the Atari ST cannot directly process the characters
which you enter on the keyboard. These are translated into numerical codes.
The most widely used numerical code is called ASCII. ASCII stands for
American Standard £ode for Information Interchange. It was developed to
standardize theexchange of databetween different information carriers. For
example, the character "A" always has the ASCII value 65. If this number is
sent to a computer or printer that also works with ASCII, this value is
always interpreted as the letter "A". The circumstances of the transfer make
no difference. No matter whether you enter characters into the computer
with the keyboard or send your data across the country with a telephone
modem, as soon as the receiver gets the value 65 it will be translated into an
"A". The standard ASCII code uses the values from 0 to 127.

Mostcomputer manufacturers have decided to use an extended ASCII code
so that other characters can be represented as well. This code is also called
ASCII, although not all of the values agree with the standard ASCII.

In the standard ASCII the values 32-90 are used for uppercase letters and
the values 91-127 for lowercase letters and other characters. The ASCII
code of the ST is identical to the standard ASCII code for the upper- and
lowercase letters. For many of the other values, Atari included different
useful characters, such as foreign language symbols.

1.6 Number systems

The computer candistinguish only two conditions in its electronic circuits,
namely ON and OFF. These two conditions must be transformed into a
number system. The binary systemis used for this. In the binary system,
numbers arerepresented using only the digits 0 and 1. The 1 stands for the
condition ON and the 0 for the condition OFF. To explain the binary system
we will first start with the decimal system.

A decimal number can be converted into a number in any arbitrary number
system. Wecanalso write thedecimal number 5678 like this:

5678 = 5*1000 + 6*100 + 7*10 + 8*1

(or) 5678 = 5*103 + 6*102 + 7*101 + 8*10°

19

Abacus Software Atari ST BASIC Trainlng Guide

Note: In mathematics, anumber raised to the power of zero is always 1. In
the decimal system the numbers can be represented as a sum ofindividual
products ofbase 10. Each digit is assigned a specific power often.

power-> 103 102 101 10°
5 6 7 8

This number is often represented with the subscript 10 to distinguish itfrom
the other number systems in this section.

(567810)

1.6.1 The binary system

The binary system is based on the same principle ofindividual powers but
with the difference that the base is 2. The result is that only the digits 0 and
1are used. To convert the binary number 10112 into adecimal number, we
proceed as follows:

The places ofthe individual digits, as in the decimal system, correspond to
individual powers, in this case the powers of two. If we now want to
convert the binary number, we write each digit under its corresponding
power of 2. The whole thing is then simply added together and we have our
decimal number.

23 22 21 2°
10 11

Theresult is the following sumof products:

1*23 + 0*22 + 1*2* + 1*2° = 11

(or) 1*8 + 0*4 + 1*2 + 1*1 = 11

The result is the decimal number 11. To convert a decimal number into a
binary number, we proceed as follows:

20

Abacus Software Atari ST BASIC Training Guide

Say we want to convert the decimal number 167 into a binary number. First
determine the highest power of 2 in this number. In our case it's:

>7 . 128

This value is subtracted from the number to be converted. The same thing is
done for the remainder of 39. The highest power of 2 here is:

25 = 32

The highest power of 2 is then:

22 = 4 rem 3 etc.

Once we have found all of the powers of 2 in the number, write a 1 under
the powers of 2 which are in the number. A zero is written under all other
powers of 2. This then looks like this:

1 01001 11

If we then form the sum of the products of the powers of 2 under which a 1
stands, we get our decimal number back, namely 167.

1.6.2 Bit and byte

Above we used a decimal number less than 256. It required 8 digits in the
binary system, or 8 powers of base 2. The smallest unit of information
whicha computer processes is calleda bit(binary digit). A bit can have two
conditions or values:

A set bit has a value of 1. A cleared bit has a value of 0.
All eight bits together make up one byte.

A large number composed of only zeros andones is difficult for us to read.
For this reason, a numbersystemthat is easierfor us to read is usually used
when working with computers.

21

Abacus Software Atari ST BASIC Training Guide

1.6.3 The hexadecimal system

In the hexadecimal system the base is the number 16. For this you have 16
(including zero) different "digits." In order to be able to distinguish the
digits which are to representvalues greater than 9, the letters A-F are used.
The following sequence of decimal numbers:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 etc.

becomes the following in hexadecimal notation:

0123456789A B C D E F 10 11 12 etc.

We will practice working with this number system using examples. Wewill
first convert hexadecimal numbers into decimal numbers. The index 16 is
used to designate the hexadecimal numbers.

2 E 0 C16

= 2*163 + 14*162 + 0*161 + 12*16°

= 2*4096 + 14*256 + 0*16 + 12*1 = 1178810

You can see that here the digits 2E0C are assigned specific powers of 16.
Here is another example:

0 A B C16

= 0*163 + 10*162 + 11*161 + 12*16°

= 0*4096 + 10*256 + 11*16 + 12*1 = 274810

It is no problem to convertfrom binary numbers if we make a detourvia the
hexadecimal numbers. Thefollowing examples clarify this.

22

Abacus Software Atari ST BASIC Training Guide

Examples:

0101 10112 = 5B16 = 5*161 + 11*16° = 9110

1100 00112 = C316 = 12*16X + 3*16° = 19510

1010 10102 = AA16 = 10*161 + 10*16°= 17010

Notice that a string of eight binary digits (bits) is divided into two halves.
Each half is converted into one hexadecimal digit. In the first case the first
and third bits were set in the left half. This yields:

5l6

In theright halfthefirst, second, and fourth bits were set, which yields:

B16

So we get the hexadecimal value of 5B. The two-place hexadecimal number
can be easily converted to a decimal number.

Note: These halves of four bits each are also called nybbles or nibbles (both
spellings are currently in use).

In conclusion, we'll show you how to convert decimal numbers into
hexadecimal numbers. The method uses the same principle as that for
converting decimal numbers to binary numbers. Say you want to convert
the number 49153 into its hexadecimal equivalent. First find out the largest
power of 16contained in the number. In this case this is:

163 or 4096

The number 49153 is then divided by 163. This results in:

12 with a remainder of 1

Now we have almost reached our goal. The values of 16z and 16 are not
contained in the number. The only thing left is 16° which is present once.
Here is the notation in the number representation:

49153 = 12*163 + 0*162 + 0*161 + 1*16°

23

Abacus Software Atari ST BASIC Training Guide

12 •]_ 0 corresponds to hexadecimal C

1°10 corresponds to hexadecimal A
01 q corresponds to hexadecimal 0
1]_ o corresponds to hexadecimal 1

Now we have our hexadecimal number:

C001lg = 49153

Here's apartial listing ofa conversion table to help you see the relationship
between the different number systems:

Decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Hexa

decimal Binarv

00 000 0000

01 000 0001

02 000 0010

03 000 0011

04 000 0100

05 000 0101

06 000 0110

07 000 0111

08 000 1000

09 000 1001

0A 000 1010

0B 000 1011

OC 000 1100

0D 000 1101

0E 000 1110

OF 000 1111

10 001 0000

11 001 0001

24

Abacus Software Atari ST BASIC Training

1.7 The logical operators

The logical operators (also called boolean operators after English
mathematician George Boole) are encountered in almost every program.
Comparisons and bit manipulations are made possible by these operators.
The ST BASIC offers you three boolean operations:

NOT, AND, OR

These three operators are sufficient to attain the most complicated logical
combinations. The function XOR is simply a combination of these three
operators. Note: In digital electronics these three operators are found in
various combinations in integrated circuits (such as NAND, NOR, and XOR
gates).

As we already know, the computer can distinguish between just two states:
ON and OFF. Because of this, the computer has only a two-value predicate
logic. It can determine only if a statement is true or false. A statement is
something like:

2 < 3 (two is less than three)

This statement is a true statement. The computer does not tell us this
decision by outputting "true" or "false," but through a corresponding
number. If the statement is true, as in the previous example, the computer
outputs a value other than zero.

Enter the following sequence of commands into the computer:

PRINT 2<3 (<RETURN>)

Output: -1

The value is other than zero, the computer views the statement as true. In
most cases, a true statement results in a value of -1. Let's create a false
statement:

PRINT 3<2

Output: 0

25

Abacus Software Atari ST BASIC Training

The value is equal to zero. The computer indicates that thestatement is false.
A false statement has the value zero and only thevalue zero as theresult.

The two logical operators combine two values with each other, in which
they are compared bit by bit (remember the binary number?). Now we'll
discuss the operators individually.

1.7.1 NOT

The operator NOT has the result that a true statement returns a false result
and a false statement returns true. The following overview should clarify
this.

Operator Value Result

NOT -1 0

0 -1

Examples:

PRINT NOT 0

Output: -1

PRINT NOT -1

Output: 0

26

Abacus Software Atari ST BASIC Training

1.7.2 AND

The operator and returns a true resultonly if bothconditions are true.

Operator Value 1 Value 2 Result

AND 0 0 0

0 -1 0

-1 0 0

-1 -1 -1

Example:

PRINT 0 AND 0, 0 AND 1, 1 AND 0, 1 AND 1

Output: 0 0 0 1

Another example will clarify the function of AND.

Example:

PRINT 23 AND 12

Output: 4

In order to understand this result, we take a look at the bit patterns of the
values 12 and 23.

The bit pattern of 23 is:

00010111

The bit pattern of 12 is:

00001010

27

Abacus Software Atari ST BASIC Training

These two bit patterns are then combined with AND:

00010111

> AND

00001010

=00000010 = 4

Notice thatonly when both bits are true (1) is theresult true (1).

1.7.3 OR

The operator OR yields a true result if one or both of the two statements is
true.

Operator Value 1 Value 2 Result

OR 0 0 0

0 -1 -1

-1 0 -1

-1 -1 -1

Example:

PRINT 0 OR 0, 0 OR 1, 1 OR 0, 1 OR 1

Output: 0 111

Another example should clarify the function of OR.

Example:

PRINT 23 or 12

Output: 31

28

Abacus Software Atari ST BASIC Training

In order to understand this result, we will take another look at the bit
patterns of the values 12 and 23. The bit pattern of 23 is:

00010111

The bit pattern of 12 is:

00001010

These two bit patterns are then combined with OR:

00010111

> OR

00001010

= 00011111 = 31

Just like the mathematical operators, the logical operators also have a
priority. NOT has the highest priority, AND the second highest, and OR the
lowest priority. Concretely, this means that a negation is preformed first,
before AND or OR. Naturally, the order can be changed by parenthesizing
the logical expressions.

To complete this section on logical operators, we'll discuss the functions
XOR (exclusive OR), EQV (EQuiValence), and IMP (TMPlication), since
they are logical operators as well.

1.7.4 XOR

As already mentioned, this function is a combination of three operators.
Let's first take a look at the function of XOR.

Exclusive OR is something we generally mean when we use "or" in
every-day language. For example, when one friend says to another: "I'll
ride by bike or I'll take my car," these two options are exclusive becausehe
can't both ride his bicycle and drive his car. Either he drives the car, in
which case he doesn't ride his bike, or he rides his bike and he doesn't
drive his car. The result of a XOR function is true if only one of the two
statements is true, if the two statements have different truth values.

29

Abacus Software Atari ST BASIC Training

You can check that the XOR does indeed operate inthis manner by entering
the following tine into yourcomputer:

PRINT 0 XOR 0, 0 XOR 1, 1 XOR 0, 1 XOR 1

Output: 0 110

The table for the XORfunction looks like this:

Operator Valu?1 Va ue2 Result

XOR 0 0 0

0 -1 -1

-1 0 -1

-1 -1 0

As said before, the XOR functioncan be created using NOT, AND, and OR

Q = (X AND NOT Y) OR (NOT X AND Y)

Qis the result of the operation and X and Yare the two operators. This is
the equivalent of the statement Q = X XOR Y.

1.7.5 EQV

The logical operator EQV is the negation of the operator XOR. The table for
EQV looks like this:

•••
i

.

30

Abacus Software Atari ST BASIC Training

Operator Value 1 Valve 2 Result

EC>v 0 0 -1

0 -1 0

-1 0 0

-1 -1 -1

The function EQV returns a true value if the two statements have the same
truth value.

1.7.6 imp

The logical operator results in a true value in three cases and false in only
one, so that the table for this operator looks like this:

Operator

IMP

Value 1 Valve 2 Result

0 0 -1

0 -1 -1

-1 0 0

-1 -1 -1

On the following page we've placed all of these logical operators in a table,
in their order of precedence.

We've said enough for now—it's time for you to practice what you have
learned. Solve the problems on page 33. If you are unsure about what to do
at any point, refer back to the appropriate section in this chapter.

The solutions are found in Appendix C.

31

Abacus Software Atari ST BASIC Training

X NOTX

NOT -1

0
0

-1

X Y XANDY

AND 0

0

0

-1

0

0
-1 0 0
-1 -1 -1

X Y XORY

OR 0

0

0

-1

0

-1

-1 0 -1

-1 -1 -1

X Y XXORY

XOR 0

0

0

-1

0

-1

-1 0 -1

-1 -1 0

X Y XEQVY

EQV
0

0

0

-1

-1

0
-1 0 0
-1 -1 -1

X Y XIMPY

IMP
0

0

0

-1

-1

-1

-1 0 0

-1 -1 -1

Table of Logical Operators

32

Abacus Software Atari ST BASIC Training

Problems

1.Convert thefoUowing binary numbers intohexadecimal:

a) 01101100 b) 10010010

0 10111010 d) 11110000

e) 00001100 f) 11001001

2.Convert the following hexadecimal numbers into decimal:

a) F0CA b) 12 68
c) 35A0 d) 0255
e) F000 f) 0800

3. Convert the following binary numbers to decimal:

a) 10110111 b) 00110011

O 11111110 d) 00010101

e) 01010101 f) 10101010

4. Convert thefoUowing decimal numbers into hexadecimal:

a) 63280 b) 24576
c) 32769 d) 43981
e) 65534 f) 18193

33

r

Chapter 2

INTRODUCTION TO PROGRAMMING IN BASIC j

2.1 The first BASIC program
2.2 Variables and their use
2.3 Numerical functions
2.4 tab and SPC
2.5 Strings
2.6 Editing programs
2.7 The screen window

Abacus Software Atari ST BASIC Training Guide

Introduction to programming in BASIC

tii this chapter you will learn how to use simple BASIC commands. Later
you'll learn more complex commands by writing several BASIC programs.
You'll write the first program by following the five fundamental
prograrnming rules presented inChapter 1.

2.1 The first BASIC program

Let's assume that you want to calculate the surface of a sphere for 10
different radii. Since you already solved a similar problem in the previous
chapter, you should have agood feeling for the approach to asolution.

Firstyou'll have to define the problem.

1) Definition of the problem

Determine the surface area Sofa sphere from the given radius, specified in
centimeters. The formula for the spherical surface is:

S = 47tr2

2) Develop the algorithm

a) Start
b)Inputr
c) Calculate S = 4jtrz
d) Output S on the screen
e)End

On the following page are the data flowchart Figure 8 and the program
flowchart for a solution to the problem. This program flowchart Figure y is
a linear flowchart—that is, there are no branches in the form ofsubroutines
or loops Ifthe terms subroutine and loop are unfamiliar to you, itdoesn t
matter at the moment. They will be explained inthe next section.

37

Abacus Software Atari ST BASIC Training Guide

Figure 8
Data flowchart

c

Output
Surface

S

End

Figure 9
Program flowchart

38

Abacus Software Atari ST BASIC Training Guide

3) Creating the program

Enter the following program from thekeyboard:

10 INPUT"ENTER RADIUS IN CM";R
20 LET S=4*3.14159*RA2

30 PRINT S

4 0 END

4) Test run of the program

Next you must check the data flowchart and program flowchart to verify if
all details of the program were planned in a sound, logical manner. Then
you can start the program with RUN. Since our program can be checked at a
glance, we can enter RUN directly.

5) Documentation

The documentation of a program should be written so that other
programmers will be able to understand the program and be able to make
changes. For our short program, the data and program flowcharts and the
short description under 1) (definition of the problem) suffice for
documentation.

As you have seen, each command is written on a separate line in our
program. This greatly increases the readability of programs. Avoid putting
multiple statements on a line. With larger programs you won't be able to
understand your commands later on. If you become accustomed to using
line numbers in increments of ten, it will ease the insertion of new lines
when required.

You can first enter line 20 into the computer and then line 10 if you like.
The computer will sort out the line automatically according to the size of the
line numbers. The computer also executes them inthis order, provided other
BASIC commands do not change this order through program jumps.

Now to the discussion of the commands used in our program: input,
LET, PRINT and END.

39

Abacus Software Atari ST BASIC Training Guide

2.1.1 Entering values with input

The INPUT command is used in a program to read values from the
keyboard during a program run. By entering values the user can affect the
results of the program.

Ifastring of text within quotation marks follows the text input, then this
is displayed on the screen as a prompt. This prompt assists the user by
asking him to enter a particular value. The program waits until the user
enters the value or values and presses the <RETURN> key.

Here are a few examples.

a) INPUT S Type: 1

Here the variable Sis assigned the value 1. No prompt is displayed, only a
question mark (?). A question mark is automatically displayed when the
computeris waiting for data input.

b) INPUT"ENTER RADIUS" ;S Type: 3

The foUowing text appears on the screen as aprompt:

ENTER RADIUS?

Ifyou type 3 and <RETURN>, the value 3is assigned to the variable S.

c) INPUT A,B,C Type: 4.3, .5,4

In this case the variables A, B, Care assigned the values 4.3, . 5, 4 one
after the other. The comma serves to separate the values entered as well as
the variables. Notice that without a prompt it is sometimes difficult for the
user todetermine what value (or how many values) needs to be entered.

Another form of the INPUT command is the command LINE INPUT. It is
distinguished from the INPUT command by the fact that if a comma is
entered, it is passed to the variable.

This means that only one variable can be assigned a value with LINE
input, whereas a list of variables can follow input. Furthermore, line
INPUT can be used only with string variables.

»

40

Abacus Software
Atari ST BASIC Training Guide

2.1.2 Value assignment with LET

The LET command assigns a value toa specific variable. The expression to
the right of the =sign is evaluated, and the variable to the left of the =sign
receives the value of that expression. The LET command is also called
"value assignment." The keyword LET is often omitted from assignment
statements and is therefore considered optional. Some BASIC dialects do
require its use but in ST BASIC it is optional. The following examples
should clarify this:

a) LET A=10 or A=10

Assigns thevalue 10 to thevariable.

b) LET A=A+5 or A=A+5

Adds 5 to the variable A. The new value is again stored in A.

C) LET A=A*B-8 or A=A*B-8

The value ofAis multiplied by the value ofB. Eight is then subtracted from
theresult. This new result is again assigned to the variable A.

In assignment statements, any arbitrary mathematical expression may stand
to the right of the =sign. Only one variable may be on the left of the =sign.

Let's take another look at example b) above. Mathematically the expression
is incorrect. If the value Ais 4, then A=A+5 is false. How can we explain
this^ In BASIC, the expression is not considered an equality. Rather, it is
an assignment. You might think of variables as adresser full of drawers.
Each drawer has a label on it. Then the assignment A=A+5 means:

Take the contents ofdrawer A, addfive to the contents andput
the result into drawer A.

A+5

contents contents

41

Abacus Software Atari ST BASIC Training Guide

2.1.3 Output with print

The PRINT command is one ofthe first commands which the beginner uses
in programming. But at the same time it's one of the most versatile
commands of ST BASIC. You can use this command to output text or the
values of variables. You can combine the two and output the values of
variables and text.

Here's a few examples of the useof the print command. Thevariables to
be used have the foUowing values:

A=10 : B=20 : C=30

Examples:

Command Output
10

A

200

10 20

20 30
f) PRINT "B";B B 20
g) PRINT "A EQUALS"/A A EQUALS 20

You will learn more about the uses of the print command in later
programs. Before we discuss the examples above, we want to say
something about thenotation in theexamples.

In the first mode, the direct mode, you enter the statements from the
keyboard in the command window. They are immediately executed after
you press the <RETURN> key. If you enter:

PRINT A <RETURN>

then the value ofAis immediately displayed in the output window.

In the second mode, the program mode, the statements are prefixed with a
tine number. These statements are not executed atthis time. Instead they are
entered into the computer's memory as part of a program. The statement is
stored in memory in ascending order according to the statement line
number.

a) PRINT A

b) PRINT "A"

c) PRINT A*B

d) PRINT A,B

e) PRINT B;C

42

Abacus Software Atari ST BASIC Training Guide

If you enter:

10 PRINT A

BASIC will store this statement in memory. The statement is notexecuted
untU the program is later RUN.

Now we come to example a) above. This notation of PRINT is used to
output the value of avariable. The number 10 appears in the output window
since we previously set A=10.

When printing numbers note that a position is always reserved for the
number sign (+/-). If the number is positive, a space is placed before the
number. If the number is negative, a minus sign is placed before the
number. The numbers 10 and -10 always occupy the same number of
positions.

Since no characters foUow the variable Ain example a), a carriage return
and linefeed are performed automatically. This has the result that the next
output wtil appear at the beginning ofthe following tine.

To explain the terms carriage return and linefeed, we'll use the typewriter as
an example.

Imagine that you have typed the number 10 on the paper. You then move
the lever on the platen to the right. The roller moves the paper one line
forward through the machine, and the typewriter carriage is returned to the
startof the line. Youcan then start typing at the startof this newline.

The computer does the same sort ofthing when itperforms acarriage return
and linefeed, except that you don't have to move a lever and there is no
carriage to move to the right.

In example b) the character Aappears between quotation marks. This
causes the character Ato be printed and not the value of the variable A. All
characters enclosed in the quotation marks are printed verbatim except for
certain special characters such as the <ESC> or <TAB> key. If you use
these keys within the quotation marks, their symbols appear in the input
window as Es and 0. However, this character is not visible in the output
window when the string of characters is printed.

43

Abacus Software Atari ST BASIC Training Guide

Example c) shows you that calculations can also be performed within a
PRINT command. First the product of the variables A*B (10*20) is
evaluated and then it is printed. Here too, a carriage return and linefeed are
generated.

Example d) illustrates the ability of PRINT toprint several variable values
from one statement. The comma supresses the carriage return/linefeed after
printing the value of the first variable (A). It also affects the position at
which the values are displayed.

The ST divides each output line into 14-character-long TAB positions. Ifa
comma is placed between two variables, the second variable isprinted at the
start of the next tab, at the 15th column on the screen line. If several
variables areseparated by commas, they areprinted at the successive TAB
positions.

Enter the foUowing into thecomputer:

PRINT "1","2","3","4","5","6","7","8"

When you press the <RETURN> key the positions of the individual tabs
are displayed. If we had not put the numbers in quotation marks, they
would have been moved one position to the right because of the space
reserved for the sign.

Example e) iUustrates the effect ofthe semicolon. The semicolon supresses
both the carriage return and linefeed. It also supresses the tab function. The
characters are printed in succession in the order in which they appear in the
PRINT statement. This makes it possible to include descriptive text
following the value of a variable.

Example/) is similar and shows you how todisplay descriptive text before
the value of a variable. In this case the descriptive text is the name of the
variable whose value follows. Again, the semicolon separates the
descriptive text from the variable.

Example g) is similar to/) and merely shows you that the descriptive text
can be ofany arbitrary length. The text can be as detailed as you wish.

The end command in the last program line of our example program (on
page 39) designates the logical end of the program. This command is
usually found at the end of the program. It can also be placed elsewhere
within the program.

44

Abacus Software Atari ST BASIC Training Guide

Ifyou have written aprogram and do not place the END command in the last
line of the program, no harm is done. This is because the computer
automatically indicates the end of the program in memory (and not in the
program listing itself). Despite this, you should become accustomed to
using the END command for the sake ofgood, complete programming style.

Our next topic is the PRINT USING command, since it is very closely
related to the PRINT command.

2.1.3.1 PRINT USING

The print USING command represents a modified form of the print
command. You will want to learn how to use this command to output
formatted numbers and strings, such as dollar amounts. The following
control characters are available for print USING:

For numerical output:

indicate position of digit

+ print + sign withpositive numbers

print- sign withnegative numbers
+ and - are mutually exclusive

designate positionof decimal point

* * fill with * instead of blanks

$ $ print $ as the first character

fill with * and print $ as first non-numeric character

place a , each 3places before decimal point

print values in scientific notation (e.g. 1.23 E+02)

Suppress control function of the next character, such as for #

* *

45

Abacus Software Atari ST BASIC Training Guide

For text output:

! print only the first character of string

\ \ print selected number ofcharacters as determined by number of
characters between \ \ + 2

& print the entire string variable

Let's further clarify the use ofthe print using with some examples.
First enter the following into the computer in the command window:

A = 12345.678 <RETURN>
B = 34.34555 <RETURN>
c = -52 0 <RETURN>
D$ = "Atari ST" <RETURN>

Enter the following statements in the command window. Press the
<RETURN> key after each one.

PRINT USING "#####.##";A

As output you get the value rounded to two decimal places, displayed in the
output window:

Output: 1234 5.68

Now input:
PRINT USING "#####.##"/B

Output: 34.35

Note that the decimal point is printed in the exact same position for both
values. This would not happen with the ordinary print command.

If the specified format is exceed by the value of the number, the number is
printed with a preceding percent sign. The specified format cannot be
followed in this case.

46

Abacus Software Atari ST BASIC Training Guide

The following print command:

print using "####.##";a

causes this output:

Output: %12345.60

The percent sign tells you that the value does not fit in the format field you
choose for the PRINT US ING command.

If you want to emphasize positive vs. negative results, the following
combinations wtil work:

PRINT USING "+#####.##";A

Output: +12345.68

PRINT USING "#####.##+";A

Output: 12345.68+

Output:

PRINT USING "#####. ##-;C

520.00-

Here the negative designation is printed following the number. Normally it
is placed in front of the number.

The next example shows you how tofill the output ofnumbers in the given
format with asterisks.

PRINT USING "**#####.##";A

Output: **12345.68

PRINT USING :**#####•##";B

Output: *****34.35

47

Abacus Software Atari ST BASIC Training Guide

The next form of the output places a dollar sign infront of the number.

PRINT USING "$$#####.##";A.

Output: $12345.68

PRINT USING "$$#####.##"/B

Output: $34.35

Naturally, the dollar sign and asterisk sign can be combined with each
other, as the following example shows.

PRINT USING "**$#####.##";B

Output: *****$34.35

Furthermore you can have commas automatically placed atevery third place
before the decimal point. Additional designations like "dollars" are also
possible.

PRINT USING "**##,###.## dollars";A

Output: **12,345.68 dollars

To output the number values inexponential notation, the following form of
the print US ING command is used:

PRINT USING "##.##AAAA";A

Output: 1.23E+04

You can also determine how many places appear before or after the decimal
point, as the following example shows.

PRINT USING "###.##AAAA";A

Output: 12.34E+03

48

Abacus Software Atari ST BASIC Training Guide

The character is used in order to output control character like #.

PRINT USING "FILE NUMBER _###";B

Output: FILE NUMBER #34

This concludes the explanations of the numerical output forms of PRINT
USING. Now let's take a look at the options for text output.

PRINT USING " !";D$

Output: A

By using the exclamation point, only the first character ofthe string variable
D$ is printed. Remember thatwe assigned the string Atari STtoD$.

The next form allows us to output an arbitrary number of characters of a
string.

PRINT USING "\ \";D$:REM THREE SPACES

Output: Atari

A total of five characters are given between the quotation marks (including
the two slashes). This causes the first five characters of D$ to be printed.
This use of the PRINT USING command is related to the LEFT$ function,
which wiU be discussed later.

The last option outputs the entire string.

PRINT USING "&";D$

Output: Atari ST

This could also be done with:

PRINT D$

You may need the &character within a PRINT USING instruction
sometime, though.

49

Abacus Software Atari ST BASIC Training Guide

For the sake of thoroughness weshould also mention thecommand:

WRITE

This command also has a close relationship to the PRINT command. Its
output is somewhat different, however. Enter the following command in the
command window:

WRITE "Atari ST"

Then press the <RETURN> key. "Atari ST" is displayed in the output
window. The quotation marks are not displayed by the PRINT command. If
numbers or variables separated by commas follow the WRITE command,
the comma does not have a tab function, but is also displayed.

WRITE 2,3,4

Output: 2,3,4

Now we have described all the commands that occurred in our example
program, including two close "relatives." You shouldn't have any great
difficulty using these commands.

In order to make programs understandable to others—and also for
yourself—we will take a look at the REM instruction.

2.1.4 Comments with rem

rem aUows you toplace comments in your program atany desired location.
Everything that follows a REM instruction will be ignored by the computer
including other BASIC commands.

We will now expand our example program and also make it more
understandable for others. This is part ofdocumenting the program, by the
way. Here is the modified program listing with descriptions of the
individual program lines:

50

Abacus Software Atari ST BASIC Training Guide

1 REM 2.1.4

10 REM CALCULATE SURFACE OF A SPHERE

20 REM INPUT RADIUS IN CM

30 INPUT "INPUT RADIUS (IN CM)";R

4 0 REM CALCULATE SURFACE

50 LET S=4.*3.14159527*RA2

60 REM OUTPUT SURFACE IN CMA2

7 0 PRINT" THE SURFACE IS ";S;"CMA2"

80 END

Lines 10-20 serve to tell the reader what the program does and what input is
required. In line 30 the input of the data is done with input, whereby a
prompt is also printed for the user. This could also have been done by
outputting the text with the PRINT command in a separate program line and
the INPUT command by itself in a program line. The comment in line 40
refers to the calculation in line 50.

In line 50 the variable S is assigned the value of the surface through the
computation of the mathematical expression. Line 60 makes references to
the output of the CM2 in line 70. The text and value of the variable are
printed in tine70.Line 80concludes theprogram with the END command.

51

Abacus Software Atari ST BASIC Training Guide

2.2 Variables and their use

Before we give you some sample problems to solve, we must discuss the
various types of variables.

In ST BASIC there are three types of variables, each designated in a
different way. The first type of variable is the integervariable. This variable
type can represent only whole numbers. The designation is made with the
percent sign, which is simply appended to the name of the variable (such as
A% or C4%). If this variable type is assigned a non-integer value, only the
places before the decimal point are taken into account. A further restriction
is placed on the values of variables of this type, in thatonly values between
-32767 and 32767 are aUowed.

The second variable type, the REAL variable, is used to represent decimal
numbers. The variable designation is an exclamation point placed after the
variable name, although this is not absolutely necessary. Examples of the
permitted designations are A! or B2 ! (A or B2).

The thirdvariable type is designated by the dollar sign. These are the string
variables. These variables can store arbitrary stringsof characters. No more
than 255 characters may be placed in a string variable or the following error
message wtil be printed:

Strings cannot be longer than 255 characters

Certain things must be taken into account when using variable designations.
Atari ST BASIC recognizes a variableonly by the first 31 characters of the
name. The variable name can be any length, but only the first 31 characters
are significant. Many computers cannot distinguish between such long
variable names. This makes programs easier to read and understand,
because variables can be assigned intelligent designations like payment,
exchange, or name. BASIC keywords may also be found within variable
names. The variable name land is legal, despite the fact that the keyword
AND is contained within it

Furthermore, digits may be used in the name with the limitation that the first
character must be a letter. Names like Amount 1, A9, and other are
allowed. It is not permitted to have a number in the first location. For
instance, a name like 9Amount is illegal.

52

Abacus Software Atari ST BASIC Training Guide

You must also be careful not try to use BASIC keywords as variable names,
like OR, FN, or ABS.

The Atari ST also uses the foUowing variable names for internal functions:

GB, AS, ALL

You may not use these within your programs.

2.2.1 Calculations with variables

If you want to perform calculations with the variables in your programs,
you must first become acquainted with the rules of the individual
computation operations. The order of execution of the operations is just like
it would be in algebra. The following listing gives more information.

Operator Precedence Meaning
A First Exponentiation

* Second Multiplication
/ Division

+ Third Addition
Subtraction

There is also a hierarchy for the logical operators, as we have seen.

You now have enough knowledge to solve the following problems. They
contain questions about specific sections as well as small programming
problems for you to solve on your own. First try to solve the problems on
your own without referring to the corresponding sections. It won't hurt if
you make mistakes, since we learn best from our own mistakes. And you
won't be graded here. If you are unsure, you can work through the
appropriate sections again.

Try your best to follow the five steps of programming when solving the
problems. Before each new program you type in, enter the command NEW
to clear the BASIC memory and erase the old program. In the following
section we'll learn some new commands and how they apply in programs.

53

Abacus Software Atari ST BASIC Training Guide

Problems

1. Test the foUowing variable names for validity and give reasons for
your decision.

a) XI b) WORLD$ c) AUTO
d) ORR% e) IF f) GB
g) 4NAME% h) 255 i) MONDAY

2. Write a program that reads the four values A, B, C, and D and
outputs the values A and B on a line followed by the values C and
D in the next line.

3. Write a program that calculates the surface of a right-angle triangle
in square inches and include appropriate text with the output
(Area=l/2 base*height).

4. Write a programthat calculates the idealweight(height in cm minus
100 minus 10 percent) of a person. The height input should be
required in cm and the output of the body weight should appear in
kilograms. (We're using metric figures to keep the calculations
simple here. Afteryou've written the program, try modifying it by
converting the measurements to US Customary: one inch = 2.54
cm, one pound = 2.2 kilograms).

5. Write a programthat calculates the numberof liters in an aquarium
after the programhas askedfor the length, height, and widthin cm.

6. Change problem 2 so that the program prints each value on a
separate line, together with the name of the variable.

54

Abacus Software Atari ST BASIC Training Guide

2.3 Numerical functions

Up to now we have concerned ourselves with assignments of values to
variables. The mathematical functions of the Atari ST were not used; only
the four basic computations were used.

In this section we'll talk about the built-in functions like COS (X) or
SIN (X). To do this we'll take a short excursion into mathematics. But
don't worry—we won't hit you with any long-winded mathematical proofs,
or beat you over the head with formulas. This is a BASIC book and will
remain such.

In many BASIC books and in the user's manual for the ST you'll note that
the arguments for trigonometric functions like SIN (X) , COS (X), or
TAN (X) are specified in radians. What are radians?

Most of us know that a circle can be divided into 360 degrees. One degree is
l/360th of a circle. Ninetydegrees is a quarterof the circle, 180degrees is a
half circle, and so on.

Radian measurement is based on the circumference of a circle. Recall that
the circumference of a circle is:

C=2rcr

If we use a circle with a unit radius (radius=l), the calculation is simplified
to:

U=27tl (or) U=27C

A circle therefore has 360 degrees, or 2k (6.2831...) radians. Ninety
degrees would be 2tc/4 or rc/2 radians. The advantage of radians is that you
can directly determine the length of the arc cut off by the angle. It takes
some getting used to the actual calculation with radians at the beginning
since you can more easily imagine 90 degrees than n/2 radians.

This short excursion into mathematics is enough for now. Let's write and
use a couple of example programs so that these ideas become clearerto you.

55

Abacus Software Atari ST BASIC Training Guide

Enter the following example program into yourcomputer:

10 INPUT "ENTER IN DEGREES";: DG
2 0 REM CALCULATE THE SINE
25 PI=3.1415927

30 SI=SIN(DG*PI/180)
40 PRINT USING "THE SINE OF ####.##"+CHR$(248);DG;
45 REM THE CHARACTER CODE FOR DEGREE IS 24 8
50 PRINT" IS =";SI
60 END

Start the program by typing run andenter the value 90 for the angle. You
should get the value 1 as the result. The programs expects the angle in
degrees and calculates the corresponding sine. Since the variable 7t is not
directly available on the ST, it must first bedefined in line 25. If you want
to enter the angle in degrees, you must use the conversion in line 30. For
calculating the cosine, simply replace SIN with COS. The variable Si can
stay the same.

In order to makeclear the difference from radians, enter theprogram in the
following version. But first enter NEW and press <RETURN>.

10 INPUT "ENTER IN RADIANS";RD
20 REM CALCULATE THE SINE
30 SI=SIN(RD)
40 PRINT"THE SINE OF";RD;"RAD ";
50 PRINT"IS =";SI
60 END

As you see, line 25 is omitted from our previous example and line 30 has
been changed a little. Start the program and enter the value 1.57079633
(which corresponds to 7t/2). Again, the result should be 1.

The use of the other functions is quite simple. As explained in the ST
BASIC manual, these numerical functions are passed just one variable,
which is then used to make a calculation. SQR (X) calculates the square root
of X and ATN (X) the arctangent of X. The functions EXP (X) and
LOG (X) calculate the xth power of e=2.71827183 and the natural logarithm
of X (base e), respectively. The one function is the inverse of the other.
Enter the foUowing commandin the direct modeand press <RETURN>:

PRINT EXP(1)

56

Abacus Software Atari ST BASIC Training Guide

As a result you get the number:

2.71828

Repeat the same process with the foUowing command:

PRINT LOG(2.71828183)

You again get the value 1. If you want to calculate the logarithm of base 10,
you need only replace LOG (X) with LOG10 (X).

The following example program calculates both the logarithm base 10 and
the natural logarithm.

10 INPUT "INPUT THE VALUE";N

20 REM CALCULATE NATURAL LOG

30 LN=LOG(N)
4 0 REM CALCULATE LOG BASE 10

50 LO=LOG10(N)
60 PRINT "ln(";N;") =";LN

80 PRINT

90 PRINT"log(";N;") =";LO
110 END

You see that it is relatively simple to make use of these functions in
programs. The only difficult part is the conversion of the values.

The function SGN (X) returns the sign of X. The result is 1 if X is positive,
0 if X=0, and -1 if Xis negative. Any number can be used in place of X. The
function INT (X) is another very useful function for rounding numbers.
With an appropriate routine, we can round to any number of places after the
decimal. The following program should clarify this.

10 INPUT" HOW MANY PLACES DECIMAL PLACES";X%

20 INPUT "WHICH NUMBER";N

30 REM ROUND OFF

40 N=INT(N * 10AX% + .5) / 10AX%
50 REM OUTPUT ROUNDED OFF NUMBER

60 PRINT N

7 0 END

57

Abacus Software Atari ST BASIC Training Guide

The program is quite simple, but we would like to explain the most
important tines. Line 10 asks for the number of places to which the decimal
number will be rounded. This value is assigned to the variable x%. This is
an integer variable, since only integers can be used as input.

Line 20 asks for the number to be rounded off. Enter a decimal number here
having more places after the decimal than the number to be rounded.

The actual rounding off is performed in tine 40. Nis first multiplied by 10 to
the x% power. This moves all of the places to be rounded out in front of the
decimal point. Then .5 is added in order to round off the final place, since
INT simply truncates the numberat the decimal point. The integervalueof
this number is then taken. This is divided by 10 to the X% power to move
the digits back behind the decimal point—but this time only the digits that
were moved out in front by the multiplication.

Start the program with RUN and the <RETURN> key. Enter some values in
order to see what results you get. Carefully look at line 40, the line in which
the number is rounded off. You can use such routines in your own
programs later.

You can also round off numbers with the function CINT. But here the
numbers may only be in the range from -32768 to +32767.

PRINT CINT(-35.6)

Output: -3 6

The function CSNG and CDBL convert double-precision variables (4 bytes)
to single precision (2 bytes) and back again.

With the function MOD you can calculate the remainder of a division. Enter:

PRINT 32 MOD 7

Output: 4 (32=4*7 rem 4).

58

Abacus Software Atari ST BASIC Training Guide

2.3.1 Functions with def FN

The DEF FN function is a practical way of saving space. With it you can
assign complex mathematical functions to the expression FN. This
expression is called when needed. At the same time, a parameter used as an
argument to the function is passed to it. The following example should
make this more clear.

10 REM DEFINITION FUNCTION

20 DEF FNF(X) =XA2 + 2*X+4

30 REM INPUT PARAMETER

4 0 INPUT"ENTER VALUE";X

50 REM OUTPUT

60 PRINT FNF(X)

7 0 END

In line 20 the mathematical function xA2 + 2X + 4 is assigned to the
expression FN F (X). The values of Xin FN F (X) determine the result of
the function. If other variables are used within the function, they are not
affected by X—they retain their current values.

This function gives you the ability to create your own functions within a
program. You can then call up your function with a parameter just like the
built-in functions. This saves typing and memory space, and also makes
formulas involving the custom function easier to read.

2.3.2 Random numbers

The BASIC of the ST has a built-in random number generator that can be
called with the function RND (X). This function is required in certain types
of simulation in which chance plays a role. This function is often used in
games in order to introduce random elements. The function is quite simple
to use. The assignment A=RND (1) returns a value between 0.0 and 1.0
(zero and one, exclusive) in A. The same sequence of random numbers is
always returnedfor negative values of X. The following example simulates
a die. Each time the program is starteda randomnumber between 1 and 6 is
chosen.

59

Abacus Software Atari ST BASIC Training Guide

10 REM GENERATE RANDOM NUMBER
15 RANDOMIZE 0

20 A = INT (6 * RND(l)) + 1
30 PRINT A

4 0 END

Start the program with RUN and <RETURN>. Execute the program several
times in a row and note the numbers printed. You will not be able to detect
any pattern in the order of output.

A combination of RND and INT was used in line 20 in order to output
numbers between 1 and 6, since we need integer numbers. The 1 is added
so that zero does not occur (lower bound) and the maximum value of 6 can
be reached.

With this type of random number generation you can create random
numbers in any range. The 6 represents the upper bound of the interval and
the +1 is the lower bound. If you want to create random numbers in the
range from 100 to 150, line 20 must look tike this:

20 A=INT((50+1)*RND(1))+100

or in general notation, in which U represents the upper bound and L the
lower bound:

A=INT((U+l-L)*RND(1))+L

In the simpler examples you don't always recognize this general form. The
following tine:

20 A=INT(6*RND(1))+1

should be written as:

20 A=INT((6+1-1)*RND(1))+1

in general form. But since the lower bound is one, the formula can be
simplified.

If you want to pass a new start value (seed) to the random number
generator, the command:

RANDOMIZE

60

Abacus Software Atari ST BASIC Training Guide

is available in ST BASIC. It's very simple to use, as the following example
shows.

RANDOMIZE 3

If you enter this command, the randomnumber generator will be assigned
the new seed value 3. Now we can assign a new random number to A with
the command:

A=RND(1)

2.3.3 More commands for variables

The comprehensive BASIC of the Atari ST has a set of commands that can
be used to affect variables or variable formats.

Recall the chapter on number systems. The ST offers two functions that
allowyou to convert decimal numbers intohexadecimal or octal.

The function:

HEX$(X)

converts decimal numbers into hexadecimal numbers. Here X stands for the
number to be converted, x may assume values between -32768 and
+32767.

Example:

Output:

PRINT HEX$(60)

3C

61

Abacus Software Atari ST BASIC Training Guide

The function:

OCT$(X)

converts decimal numbers to numbers in the octal system (base 8). Again, x
stands for the number to be converted. A value between -32768 and +32767
mustbe passed to the function. For example:

PRINT OCT$(16)

Output: 2 0

In both examples, variables can be used instead of constants. As already
mentioned, there are three different types of variables in ST BASIC. If you
wantto assign specific variable names with specific variable types within a
program, the foUowing commands are at your disposal:

DEFDBL, DEFINT, DEFSNG, DEFSTR

For example, if you define:

DEFSTR A-B

within a program, allvariables that start with AorBwiU be treated as string
variables. You need not append a dollar sign to these variables within a
program to use them as string variables. The instruction:

DEFSNG C-D

defines all variables starting with Cor Das real (single-precision) variables.
The other commands are used similarly.

If you want to output only the integer portion of a number, you can use:

FIX

Fix works similarly to the INT command, but FIX performs a strict
truncation of the number, int is actually the greatest-integer function of
mathematics (where one is added to a negative number).

PRINT FIX(-3.99)

Output: -3

62

Abacus Software Atari ST BASIC Training Guide

2.3.4 ASC(X$) andCHR$(X)

The ST can output numbers, letters, and certain special characters on its
screen when these symbols are placed between the quotation marks in a
PRINT command.

But not all characters can be printed with this method. The CHR$ function is
used here. With this function you have the ability to output any character of
the character set. Enter the following in the direct mode:

PRINT CHR$(65)

When you press the <RETURN> key, the character A appears on the
screen.

The function ASC represents the reverse of the CHR$ function. If, for
example, you want to know the ASCII value of the letter A, you would
enter the following command into the computer in the directmode:

PRINT ASC("A")

If you now press the <RETURN> key, the value 65 appears on the screen.
Youcan also lookup the corresponding ASCII values in the Atari ST user's
manual.

To give you a chance to use your newly-acquired knowledge, we want to
give you some problems to solve. Compare your results with the suggested
solutions and explanations in Appendix C. Then you can work through the
next chapter.

In these problems you will have to use commands that were discussed on
thepreceding pages. Also, remember to take the five rules of programming
into account here.

63

Abacus Software Atari ST BASIC Training Guide

Problems

1.Write a program that simulates throwing twodice. Theresults should
be printed, with appropriate spacing, on a single line.

2. Write aprogram that calculates the surface ofa triangle according to
the formula:

F=SQR(S*(S-A)*(S-B)*(S-C))

where S-l/2 (A+B+C) (and A, B, and C are the lengths of the
three sides). Note that the formula cannot be directly inserted into the
program in the form it stands. The program should ask for the
values of A, B, and c in inches. The result should be labeled
appropriately.

3. Write a program that asks for the input ofacharacter and then prints
the ASCII value of this character, together with the input character,
on the same line.

4. Write a program that calculates the height from the time an object
takes to fall from that height. The measured fall time should be
requested. Air resistance will not be taken into account. The formula
is D=l/2gt2 . The value of the constant g is 9.81. The result is to
be printed in meters/second.

5. Write a program that calculates the gasoline consumption per 100
mties using the following formula:

usage per 100 = total usage / miles travelled * 100

64

Abacus Software Atari ST BASIC Training Guide

2.4 tab and SPC

These two functions are used to output data or characters at specific
positions on a screen line. TAB and SPC are very similar in their uses, but
quite different in their effects. The tab function and the parameter in
parentheses always position the output relative to the start of the line. Enter
the following command sequence in the direct mode:

PRINT TAB(15) "TEST"

The output you get is the word TEST atposition 15 of the screen line. Now
write a new sequence of commands using the SPC function instead of TAB.
After pressing the <RETURN> key you get the same result. When using
the commands in this manner, they both have the same effect. In the next
example you wUl see the difference. Enter the following commands:

PRINT TAB(5)"TEST 1" TAB(20)"TEST 2"

After pressing the <RETURN> key the word TEST 1 will appear at the
fifth position and the word TEST 2 at the 20th position. Enter the
command sequence again and change the second TAB to SPC. Your line
should then look like this:

PRINT TAB(5)"TEST 1" SPC(20)"TEST 2"

Now when you press the <RETURN> key, you will see the difference in
the output on the screen. The second word TEST 2 is not printed at the
20th position from the start of the line, but at the 20th position from the last
character of TEST 1. This means that the TAB function always works with
the absolute position in the screen line, and the SPC function with the
relative position from the last character printed. The values passed to both
functions may not be larger than 255.

When using these functions in connection with output on the printer, TAB
has no real use. This is because, in conjunction with the PRINT#
command, it is either notinterpreted or interpreted as SPC. For this reason,
the TAB function should only be used with the normal PRINT command.

65

Abacus Software Atari ST BASIC Training Guide

2.5 Strings

A string refers to a string ofcharacters that can contain up to 255 of the
characters in the ST's character set. The string variable is designated with
the dollar sign. A$ would represent anormal designation of a string. The
assignmentof a character to a string variable is done in the same manneras
with the numeric variables. The sole difference is thecharacters are enclosed
in quotation marks. The following example shows avalid assignment: £)

A$="Atari ST"

Ifyou try to assign a numerical value to a string variable (e.g. A$=2), the
foUowing error message appears:

Types of values do not match

The same error message isprinted ifyou try to assign a string to anumerical
variable:

A="TEST"

When using strings, the plus sign is the only computation operator allowed.
This character chains two strings together. If we define A$="dISK " and
B$="DRIVE", the computation with + yields the string "DISK DRIVE" .
A short example program wiU make this more clear.

10 A$="DISK ":B$="DRIVE"
20 DL$=A$+B$
30 PRINT DL$
4 0 END

In line 10 the string variables A$ and B$ are first initialized. Line 20 assigns
the concatenation (linked series) of variables A$ and B$ to the variable dl$.
Line 30 then outputs the new string.

Not only can you combine strings with each other, but check for equality or
compare the number of characters. We will get to this, but not until the
compare commands are discussed (see IF . . .then. . .ELSE). When
comparing, only strings may be compared with strings. Comparing a string
variable to a numerical variable is not legal.

66

Abacus Software Atari ST BASIC Training Guide

2.5.1 LEFT$

ST BASIC has otherfunctions for manipulating strings. Thefirst command
we'll look at is left$. This function returns a portion of the designated
string. Enter thefoUowing program to make this more clear:

1 3 A$="COMPUTER"

20 B$=LEFT$(A$,l)
30 C$=LEFT$(A$,2)
40 D$=LEFT$(A$,3)
50 E$=LEFT$(A$,4)
60 F$=LEFT$(A$,5)
70 G$=LEFT$(A$, 6)
80 H$=LEFT$(A$,7)
90 I$=LEFT$(A$,8)
100 PRINT B$:PRINT C$:PRINT D$:PRINT E$

1 10 PRINT F$:PRINT G$:PRINT H$:PRINT 1$

1 2 0 END

Start the program with RUN. The result of the program is shown below.
This example clearly shows how LEFT$ works. In line 10 the character
string COMPUTER is assigned to the string variable A$. Line 20 forms a left
partial string ofA$ with one character and assigns it to B$. Line 30 then
forms a string containing the 2 leftmost characters ofA$. Lines 40 to90 are
interpreted in the same manner. This means that the statement
LEFT$ (A$, X) generates the leftmost x characters ofA$. Lines 100 to 110
output the results to the screen.

Here is the result of the program:

C

CO

COM

COMP

COMPU

COMPUT

COMPUTE

COMPUTER

As you see, we can have some fun with this command. But it's also
intended for serious applications as well, especiaUy in data processing.

67

Abacus Software Atari ST BASIC Training Guide

2.5.2 RIGHT$

The next function is similar to the left$ command in the way itworks. It
differs from LEFT$ only in that is takes the characters starting at the right
end of the string instead of the left. Let's change all references to left$ in
the previous example program to RIGHT$, starting in line 20 with
RIGHT$ (A$, l). Start the program again with run. You should get the
foUowing output on the screen:

R

ER

TER

UTER

PUTER

MPUTER

OMPUTER

COMPUTER

Now change the order ofthe numbers in the RIGHT$ statement. Starting
with eight and then counting backwards to one so that you get the reverse
result. You first get the expression COMPUTER, and last just the letter r.
These examples shouldclarify the use of thesefunctions.

2.5.3 MID$

One of the more interesting functions used in string processing is MID$.
With this function you can isolate one or more characters of a string. First
we want to look at the operation of this command by means of simple
examples.

Enter the foUowing program into your computer:

68

Abacus Software Atari ST BASIC Training Guide

10 A$="THIS IS A SAMPLE STRING"
20 B$=MID$(A$f1,4)
30 C$=MID$(A$,6,4)
40 D$=MID$(A$,ll, 6)
50 E$=MID$(A$,12,6)+MID$(A$,20,4)+MID$(A$,11,1)
60 PRINT A$
70 PRINT B$
80 PRINT C$
90 PRINT D$
100 PRINT E$
110 END

Run the program and take aclose look at the result. With the MID $ function
you can isolate aspecific number ofcharacters from aspecific position in a
string. These are then placed in anew string. The general syntax is:

MID$(M$,X,Y)

M$ is the name of the string, X designates the position atwhich character it
will begin, and Ydetermines the number of characters. The positions are
always counted from left to right. So line 20 assigns the substring to B$. A
new string is generated from A$ which is to contain four characters and
starts with the first character of A$.

The string C$ is formed in the same manner. Here we start with the sixth
character so thatthe string IS A is generated. Line 40 is selfexplanatory.
Line 50 is interesting. Here again we use a concatenation, or linked series,
to make a string not directly readable from the original string—namely
AMPLE RINGS.

You can see that the left$ and RIGHT$ functions can be replaced by the
MID$ function. In ourexamples theposition and number of characters were
designated by constants. It is also possible to specify these through
variables and arithmetic expressions. In addition, you can not only read
characters within a string with MID$, but also change or reassign them. For
example, write:

MID$(A$,3,2)="AT"

This changes the third and fourth characters to "A" and "T", respectively,
creating "THAT IS A SAMPLE STRING" .

69

Abacus Software Atari ST BASIC Training Guide

2.5.4 LEN(X$)

Before we look at the next function, try to figure out how many characters
(without quotation marks) are contained in the string in our last example
The answer? It's 23 characters. You've probably guessed that this has
something to do with the next function we want to discuss.

You can determine the length of a string with LEN (x$) . The result is
numerical and can be assigned to a corresponding variable. Ifyou have not
yet entered NEW (erasing the program and variables), and CLR (setting the
variables tozero) since the last example program, enter this indirect mode:

PRINT LEN(A$)

and press <RETURN>. The result should be 23. You have determined the
number of characters in A$. When using this function it doesn't matter what
characters the string is made up of. AU characters in the string are counted
including spaces.

2.5.5 VAL(X$)

The VAL (X$) function converts a string x$ into a numerical value. If the
string starts with acharacter that cannot be converted to anumber, such as a
letter, the result will be zero. If a letter or othercharacters which cannot be
converted to a number are found within the string, only the first part ofthe
string is converted to anumber. The following examples should clarify this:

a) 10 A$="343.45"
20 A=VAL(A$)
30 PRINT A

Output: 343.35

b) 10 B$="D38.47F"
20 B=VAL(B$)
30 PRINT B

Output: 0

70

Abacus Software Atari ST BASIC Training Guide

c) 10 C$="234FFC54"
20 C=VAL(C$)
30 PRINT C

Result: 234

d) 10 D$=33,221"
20 D=VAL(D$)
30 PRINT D

Result: 33

Enter these examples into your computer and try them out. Example a)
shows what happens when an entire string can be converted. The string in
example b) starts with acharacter which cannot be converted into anumber,
and is therefore interpreted as zero. Example c) shows a "mixed" string, in
which only the first group ofdigits is converted. Example d) is intended
only to show that the comma is simply seen as anon-convertable character,
andonly thefirstgroup of digits is converted.

2.5.6 STR(X$)

The STR$ (X) function has exactly the opposite effect of VAL$—it
converts a numerical expression into a string. Note that the string which is
produced may start with a space. If the number is positive, the first
character will be space. Two examples should clarify this:

a) 10 A=1234

20 A$=STR$(A)
30 PRINT A$

Output: 1234

b) 10 B=-1234

20 B$=STR$(B)
30 PRINT B$

Output: -1234

71

Abacus Software Atari ST BASIC Training Guide

Both of the strings contain five characters each. The values of the numbers
themselves could also be converted to strings instead of assigning them to
variables first. STR$ (1234) could be used in example a) instead of
S.TR$ (A) .

2.5.7 INSTR

ST BASIC offers us another useful function for working with strings:

INSTR

This allows you to search through a string for a desired substring of
characters. The syntax of the function looks like this:

INSTR(X,A$,B$)

Here the Xstands for the position at which the string A$ is to be searched.
B$ stands for the substring to be searched for. The result is the position of
the substring within the string. If the substring is not found within the target
string, the result is zero. The foUowing program should clarify the function.

10 A$="THIS IS A SAMPLE STRING"
20 B$="IS"

30 C=INSTR(A$,B$)
40 PRINT C

50 END

RUN the program. You'll get the value 6 as the result for variable C. Note
that this function searches for the exact string. This means that the substring
is would not have been found, since is contains lowercase letters.

72

Abacus Software Atari ST BASIC Training Guide

2.5.8 STRING$

This function creates a string which contains a sequence of the same
character. For example, enter the foUowing into thecomputer:

A$=STRING$(4 0,"*"): PRINT A$

This prints aline with 40 asterisks as the output. Here again, the upper limit
is 255.

2.5.9 SPACE$

The SPACE $ function is similar to the STRING$ function.

A$=SPACE$(40)

The command line above causes A$ to be filled with 40 spaces. This
statement can be used for exact positioning of output, as the following
example shows:

PRINT SPACE$(12)/"Atari ST"

This example prints 12 spaces followed by the string "Atari ST"

Before we move on to the next chapter, you should solve the following
problems sothat you learn touse the new commands.

73

Abacus Software Atari ST BASIC Training Guide

Problems

1. What difference is there in the output that the following two
command sequences produce? Don't enter them inthe computer but
try to answer the question.

PRINT SPC (5) "TEST 1" TAB(15) "TEST 2"

PRINT TAB(5)"TEST 1" TAB(15)"TEST 2"

a) The only difference is that the first command sequence will
cause the string "TEST 1" to be printed one more
character to the right.

b) For the first command sequence, five spaces will first be
printed followed by the output. After fifteen more
spaces the second output appears. For the second
command sequence five spaces are first printed but the
second output does not occur until 10 more spaces later
because the TAB command makes reference to the start of
the current tine.

c) For the first command sequence, five spaces are first
printed, then the second output follows 10 spaces
later. For the second command sequence, five spaces are
also printed, but the second output does not occur until 15
spaces later.

2. What expression do you get in B$ from the following command
sequence if the string A$="DRILL PRESS"?

B$=MID$(A$,1,3)+MID$(A$,7,1)+MID$(A$,10,1)

3. What expression does one get with the following command
sequence for A$ if A$="ROTOR" ?

A$=LEFT$(A$,3)+RIGHT$(A$, 2)

4. What must the command sequence look like ifone wants to get the
result B$= "MANY" if A$="ELEMENTARY"?

74

Abacus Software Atari ST BASIC Training Guide

2.6 Editing Programs

Before we continue to develop larger programs, we will first look at the
commands that make programming somewhat easier. The term editing
includes anything having to do with changing a program—whether its
deleting or inserting program lines, or correcting syntax errors. We assume
that you know how to work with the edit window, as well as insert or delete
lines. Ifyou still have difficulty with these, read the corresponding section
in the ST manual.

We already mentioned that the line numbering should be done in steps of
ten. A command that helps you do this is:

AUTO

If, for example, you enter AUTO 10,10 into the computer and press the
<RETURN> key, the computer will automatically provide you with line
numbers in increments of 10. The first value passed to the AUTO command
specifies the first program line. The second value determines the
iricrements, i.e. the distance between individual program lines.

If you want to turn the automatic line numbering off again, press the keys
<CONTROL> G.

Ifyou're writing aprogram, sooner or later you'll need:

RENUM

Lines almost always have to be inserted when developing programs. The
numbering couldsoonlook tike this:

10...

12...

19...

2 0...

21...

Now enter RENUM from the command window and all program lines wiU be
renumbered in steps of 10, so that the example above would have line
numbers from 10 to 60. This command also takes the destinations of
GOTO, GOSUB, etc. into account so that jumps still work correctly after the
command.

75

Abacus Software Atari ST BASIC Training Guide

You can also specify adifferent line increments as weU as arange of lines to
be numbered when you renumber your program by entering:

RENUM X,Y,Z

Here Xstands for the line number with which the new numbering is
supposed to begin. Ystands for the line number through which the lines
wiU be renumbered, and z determines the step width. The command:

RENUM 200,100,5

would renumber the program beginning at old line number 100 in steps of
five, starting with the new line number 200. The RENUM command writes a
file called basic wrk. Be sure that the disk in the drive is not
wnte-protected.

It may also occur that you want to delete only certain lines from aprogram
To do this you would enter:

DELETE 100-200

into the computer and all lines between 100 and 200 (inclusive) will be
erased. You can also vary this command by entering:

DELETE -200
or

DELETE 200-

You can also delete program lines up to a certain line number oratcertain
line numbers. Use this command carefully, however, because you won't
get a second chance. Once you press the <RETURN> key, the lines are
gone for good.

Ifyou are testing a program and want it to stop at a certain program line
perhaps to check to see if it had run correctly up to that point, you iust insert
the command:

STOP

at that point. If the interpreter encounters this command in a program it
stops with the message:

Stop at line (line number)

76

Abacus Software Atari ST BASIC Training Guide

With the command:

CONT

you can cause the program to continue at the same place, while retaining all
of the variable contents, til contrast, the command RUN sets all variables to
zero, even if you use RUN with a line number. This is an important
difference from the CONT command. You can't use CONT if your program
stopped because of an error.

Sometimes it is useful to follow the course of a program by means of the
line numbers, perhaps tomake comparisons to the program flowchart. After
entering the command:

TRON

(TRace ON) each line number is output in the command window in square
brackets before the tine is executed. The command:

TROFF

(TRace off) disables TROFF.

The command:

TRACE

shows each program tine which is currently being processed. By specifying
a line number you can also have only specific tines appear.

TRACE 40

causes only line 40 to be printed. You have the same combination
possibilites for TRACE as with DELETE and LIST.

This aid is disabled with the command:

UNTRACE

If you want to know the contents of variables in the individual program
tines, you can use:

FOLLOW

77

Abacus Software Atari ST BASIC Training Guide

follow A shows you the contents of the variable A with line number
throughout the execution of the program, for example.

By specifying:

UNFOLLOW

the follow command is turned off.

The command:

NEW

erases the program currently in memory. You have already used this
command in your problems—we mention it again only for the sake of
thoroughness. With the command:

LIST

you can display the program in the screen list window. You can vary this
command in the same manner as the DELETE command. You can output the
program to the printer with LLIST.

Two more commands are available for erasing variables. The command:

CLEAR

clears all variables and arrays. If you are not yet familiar with the term
array, don't worry. Itwtil be explained in detail in a later chapter.

If you want toerase only arrays orone array, you must use:

ERASE

For example, ERASE Acauses the array previously created with dim
A(20) to be erased. The arraycan then be redimensioned.

By entering:
EDIT

you switch directly to the EDIT window.

These editor commands offer you an easy-to-use means of creating and
correcting your programs.

78

Abacus Software Atari ST BASIC Training Guide

2.7 The screen windows

The individual screen windows (Edit, List, Output, and Command) canbe
closed, opened, and erased from BASIC. The individual commands to do
this are discussed briefly here. The individual windows are assigned the
foUowing numbers:

0 = Edit window
1 = List window
2 = Output window
3 = Command window

The command:

FULLW 2

sets the output window to the full screen size.

To erase the contents of a window, use the command:

CLEARW

CLEARW 3, for instance, erases the contents ofthe command window.

The command:

OPENW

opens a previously closed window.

CLOSEW

CLOSEW can close a window. The corresponding window disappears from
the desktop completely.

CAUTION! Ifyou close all windows, the computer will no longer accept
any input. You're then forced torestart the system.

This concludes the chapter. In the next chapter we wiU move on to extended
programming structures, and programming with loops.

79

Chapter 3

fEXTENDED PROGRAM STRUCTURES j

3.1 Unconditional program jumps
3.2 Conditional program jumps
3.3 Calculated jump commands
3.4 Reading the keyboard
3.5 fre, POS, CALL, and WAIT
3.6 READ, DATA, and RESTORE

Abacus Software Atari ST BASIC Training Guide

Extended program structures

Up to now we have limited ourselves to linear programs. Now we'll move
on to programming program jumps, or branches. Linear programs have the
disadvantage that theprogram runs once, and must then be restarted in order
to get a new result. No branches of any kind take place. If there were no
commands to perform such program branches, you would be limited to
writing only very simple programs in BASIC.

3.1 Unconditional program jumps

The first and simplest type of a program branch is the GOTO command. This
command allows theprogram to deviate from linear execution as determined
by the sequence of line numbers. It is called an unconditional program
branch because it is not tied to any condition—that is, the program performs
this jump under all circumstances.

The disadvantageof unconditional program branches is that you can create
only "infinite" loops with them. Once the program is started, it can be
stopped only with <CONTROL> G or clicking BREAK.

We will use this command with an example we've already discussed: the
problem where we had to calculate a person's idealweight.

Imagine you're giving a party and want to use this problem as a little gag.
Each of the guests will learn his or her ideal weight. Without the GOTO
command, the program would have to be restarted every time. Therefore we
place a GOTO command before the END command. This tells thecomputer
tojump to the start of the program. Our program would then look like this:

10 INPUT"ENTER HEIGHT IN CM";CM

2 0 REM CALCULATE IDEAL WEIGHT

30 IW=(CM-100)-(CM-100)/100*10
4 0 REM OUTPUT

50 PRINT"YOUR IDEAL WEIGHT IS";IW;"KG"
60 REM UNCONDITIONAL JUMP WITH GOTO

70 GOTO 10

80 END

83

Abacus Software Atari ST BASIC Training Guide

This program calculates a person's ideal weight in one line, line 30. After
outputting the result, the program encounters the GOTO command in line 70
and branches to tine 10. A new value for the calculation can then be entered.
Line 80does not have to be entered because the program never reaches this
line as aresult ofthe GOTO command. The data flowchart is not affected by
this command. The figure below shows how it would look.

CM—Value

Program
Calculate Ideal

weight
CM —KG

KG—Value

Data flow chart

Theprogram flowchart does change as a result of this command. A symbol
is added to it. This is the connector. It designates the location at which the
program is to continue when the jump connector is reached. The jump
connectors stand at the place where the GOTO command is found in the
program. The entry connector is locateddirectly after the start symbol. Both
connectors are designated with an A, because they form a connectorpair.
The programflowchart is shown in the following diagram.

ThefoUowing program lines can be added to convert from metric to English
units.

10 INPUT "ENTER YOUR HEIGHT IN INCHES";IN
15 CM=IN*2.54:REM CONVERT TO CM

45 IW=IW*2.2:REM CONVERT TO LBS

50 PRINT "YOUR IDEAL WEIGHT IS";IW;"LBS"

84

Abacus Software Atari ST BASIC Training Guide

(Start J

Input
CM

IW=(CM-100)-
(CM-100)/

100*10

Output IW
Value in

KG

(End)
Program flowchart

<3>

>@

The end symbol can be omitted, but was included here for the sake of
thoroughness. This example shows that only infinite loops can be created
with the GOTO command—the program can't end without a checking
condition. Conditional program jumps remedy this situation.

85

Abacus Software Atari ST BASIC Training Guide

3.2 Conditional program jumps

One of the strengths of a computer lies in its ability to make logical
decisions or comparisons. For example, it can test to see if a variable is
greater or less than zero, and then branch within the program depending on
whether the result is True or False. The IF...THEN...ELSE command is one
that performs a comparison.

3.2.1 IF...THEN...ELSE

If the computer encounters an IF...THEN...ELSE command when executing
a program, it checks the condition that follows the IF. If the condition is
True (fulfilled), it executes the instructions or commands that follow the
THEN. If the condition after IF is not fulfilled—if it is False—the computer
continues with the next program line, or the commands following the
ELSE. All instructions or commands following the THEN are ignored.
ELSE is optional; it need not foUow the IF...THEN.

Logical operators, strings, variables, comparisons, numbers, or their
combinations can follow IF. Usually a line number follows the then to
which the program is to branch. Assigning new values to a variable is also
possible. We will talk more about this in a later section. Let's first take a
look at a simple example of the use of the IF...THEN command.

10 INPUT"ENTER A NUMBER";N
20 IF N > 0 THEN 50

30 IF N < 0 THEN 70

40 IF N = 0 THEN 90

50 PRINT"THE NUMBER IS GREATER THAN ZERO"

60 GOTO 100

70 PRINT"THE NUMBER IS LESS THAN ZERO"
80 GOTO 100

90 PRINT"THE NUMBER IS EQUAL TO ZERO"
100 END

86

Abacus Software Atari ST BASIC Training Guide

With this program you can enter a number and the computer wiU tell you if
this number is greater than, less than, or equal to zero. While this is a trivial
program, this simple example will clarify the use of the IF...THEN
command in a program and the computer's reaction to it.

Suppose you enter a number less than zero. The computer comes to line
20—here a check is made to see if the number is greater than zero. This
condition is not fulfilled, so the computer continues with the execution of
the next program line. There a check is made to see if the number entered is
less than zero. This condition is true, so the computer jumps according to
the instruction following the THEN, to line 70. Line 70 outputs the message
on the screen that the number is less than zero. In line 80, the computer
encounters the unconditional jump command GOTO and jumps to line 100,
where the program ends. If you want the program to run continuously, you
need only replace the END command in line 100 with GOTO 10 .

Following this simple example, we want to turn to a more complicated
program. No doubt you're familiar with the game where someone thinks of
a number and someone else has to guess it. After each question the person
guessing is told if the number is larger, smaller, or equal to the number in
mind. We'll recreate this game on the computer. To do this, enter the
following program:

10 REM NUMBER GUESSING

20 CLEARW 2:PRINT:RANDOMIZE 0

30 PRINT"ENTER TWO NUMBERS FOR"

40 PRINT"THE UPPER AND LOWER BOUNDARIES"

50 PRINT"LOWER LIMIT";L

60 PRINT"UPPER LIMIT";U

70 N=INT((U+l-L)*RND)+L

80 INPUT"YOUR GUESS";NG

90 IF NG < N THEN 120

100 IF NG > N THEN 140

110 IF NG = N THEN 160

120 PRINT"THE NUMBER IS LARGER"

130 GOTO 80

14 0 PRINT"THE NUMBER IS SMALLER"

150 GOTO 80

160 CLEARW 2:PRINT"HURRAY! YOU GUESSED IT!"

170 PRINT"PLAY AGAIN (YES/NO)";

180 INPUT A$

190 IF A$="YES" THEN 20

200 END

87

Abacus Software Atari ST BASIC Training Guide

The first lines of this program consist of a remark and a randomizing
function. The interval for the number tobe guessed is prompted in lines 30
to 60. Line 70 determines the number sought with the entered range.

If tine 70 gives you difficulty, refer back to the section on random numbers.
Line 80 asks you to enter a number. This number is compared with the
random number, stored in the variable N, in lines 90 to 110. According to
whether the number is greater, less than, or equal to the intended number,
the computer branches to the corresponding line. Thereit continues with the
program. If you guessed thenumber, the program jumps to tine 160. In line
170 you are asked if you want to play again. If you enter YES, the condition
in line 190 is fulfilled. The program starts aU over again.

In lines 90 to 110 the IF...THEN command is used to make comparisons
between thenumber the player guesses (NG) andthe random number (N). In
line 190, the IF...THEN command is used to make a comparison to a string
variable. Note that in order forthecondition tobe true, both strings must be
exactly the same. You could enter Yin line 180, but the program will end
because the branch to line 20 is made only if the characters Y, E, and s
are entered—the string YES.

With the IF...THEN command we now have the ability to program
controlled loops. Controlled means that the loop will not be executed
continuously, but will be executed only as long as a specified condition is
fulfilled. The following program shows you how such a controlled loop is
programmed. If you want to output the times table for three, for instance,
you would write a program like this:

10 A=3

20 PRINT A

30 A=A+3

4 0 IF A > 30 THEN 60

50 GOTO 20

•60 END

Inline 10, the variable Ais first initialized with the value 3. Line 20 outputs
the current value ofAon the screen. In line 30, acounter is used. It always
adds the value 3 to the current contents of variable A. In line 40 a check is
made to see if A has exceeded the value 30. As long as A is less than or
equal to 30, the program continues with the GOTO command in line 50. We
have created a loop that is executedexactly 10 times. We have now learned
a way to create loops that are executed a certain number of times.

88

Abacus Software Atari ST BASIC Training Guide

The above example is well-suited to using ELSE. We can then get rid of tine
50. Here is the modified program with ELSE:

10 A=3

2 0 PRINT A

30 A=A+3

40 IF A > 30 THEN 60 ELSE 20

60 END

When you start this program, you will see that you get the same results as
with the previous example. Since in the first 10 comparisons variable Ais
not greater than 30, the condition is not fulfilled, the command behind the
ELSE is executed. The program then branches to line 20. As soon as Ahas
the value 33, the program is ended at line 60. We retained the line number
60 to emphasize the fact than tine 50 is missing.

3.2.2 Labels

In ST BASIC you have the ability to assign labels to jump destinations.
These labels can then be jumped to with GOTO or GOSUB. You don't have
to remember the numbers of the lines at which routines in program start.
Instead of:

50 GOTO 2 50

you could simply use:

50 GOTO (Label)

The corresponding line 250 must then look like:

250 (Label):

The label must be terminated with a colon.

You can name individual sections of the program by assigning labels,
making your program easier to read and understand. For example, if you
want to call a sort routine in your program you need not search for the line
number, but simply enter:

89

Abacus Software Atari ST BASIC Training Guide

GOTO Sort

or

GOSUB Sort

Labels may not begin with a number. The first character of a label must
always be a letter.

Here are a few exercises to help you become familiar with the new
commands.

Problems

1. Write a program that calculates an income tax of 33 or 51 percent
based on the annual income. The border should be at an annual
income of $50,000. All amounts larger than $50,000 must be taxed
at 51 precent. The output of the result should be done with
accompanying text.

2. Write a program that calculates the sum of the numbers from 1 to
100.

3. Write a program that outputs 6 random numbers in the range 1 to 49.

4. Which numbers are printed by the following program? Solve the
problem without entering the program.

10 A=7

20 A=A+5:Z=Z+1

30 IF Z < 9 THEN 2 0

40 PRINT A,Z
50 END

5. Write a program that searches for a given substring in a given string.
As a test use the string A$="INFORMATION" and search for and
output the substring B$="FORMAT" . The difficulty of this problem
is that you may not use the INSTR function. Now write a program
in BASIC that replaces the INSTR function.

90

Abacus Software Atari ST BASIC Training Guide

3.2.3 FOR...TO...NEXT

Up to now we have created loops with the IF...THEN command. Here a
counter is used and its value is incremented or decremented. The value of
the counter is checked at certain points in the program, and the program
jumps to another line depending on the result of the test (true or false).
Creating a loop like this is rather complicated, since the counter and the test
are extra programming statements. You probably suspect that BASIC offers
a simple solution. It does, in the form of FOR...NEXT loops.

Look at an example program introducing this method of creating loops:

10 REM OUTPUT THE FIRST 10 PERFECT SQUARES
2 0 CLEARW 2:PRINT

30 PRINT "THE FIRST 10 PERFECT SQUARES"

40 FOR 1=1 TO 10

50 PRINT "SQUARE OF";I;"=";1*1

60 NEXT I

7 0 PRINT "DONE"

Enter the program into your computer and RUN it. It works similar to that of
the IF...THEN command. Programming loops with FOR...NEXT is simply
more elegant and also saves memory space.

The index variable is called I, and it is assigned an intiial value. In our case
this is 1. The initial value is then incremented by 1 until the end value is
exceeded. Every command appearing between FOR and NEXT will be
repeated as often as the loop is executed. The initial and end values can be
numbers, variables, or arithmetic expressions.

Some examples:

10 A=10:B=20

2 0 FOR N=A TO B

30 PRINT N;

4 0 NEXT N

50 END

In this example the variables A and B are first initialized. Line 20 begins the
loop using these variables. Line 30 outputs the values of N until the index
variable is greater than 20. This is comparable to the IF...THEN command.

91

Abacus Software Atari ST BASIC Training Guide

It might look like:

IF N > 20 THEN 50

The FOR...NEXT loop in ourcase is executed until Nis greater than 20. You
can check this by entering the command:

PRINT N

in thedirect mode after the program is done. As the result for Nyou get the
value 21! The next example will show that arithmetic expressions can also
be used.

10 A=10:B=15:C=5

20 FOR N=l TO A+B-C

30 PRINT Z;

4 0 NEXT X

50 END

The only difference from our first example is that the end value is calculated
from the expression a+b-c .

If you want to use an incrementother than 1, the step size must be specified
with STEP. The following example outputs the even numbers between 2
and 20, using steps of 2.

10 REM EVEN NUMBERS FROM 2 TO 20
20 FOR 1=2 TO 20 STEP 2

30 PRINT I

4 0 NEXT I

50 END

The starting and ending values may also be negative or fractional numbers,
as may be the step width. As an example we will program a countdown.

10 REM COUNTDOWN

20 FOR 1=20 TO 0 STEP -1

30 PRINT I

4 0 NEXT I

50 END

92

Abacus Software Atari ST BASIC Training Guide

After you start the program, the output quickly flashes before your eyes.
Normally a countdown counts down in increments of thousandths of a
second. There is a solution for this hitch. We can "nest" FOR...NEXT within
each other. The next example shows what this means.

10 REM COUNTDOWN

2 0 FOR 1=2 0 TO 0 STEP -1

30 PRINT I

40 FOR Z=0 TO 1000

50 REM DELAY LOOP

60 NEXT Z "

7 0 NEXT I

8 0 END

RIGHT!

Enter the program and run it, noting that it now counts down in increments
of almost exactly one second. This is taken care of by a delay loop in lines
40 to 60. Such delay loops often used to display text on the screen for
specific periods of time.

The delay loop in our program is intended only to clarify the nesting of
FOR...NEXT loops. Naturally other BASIC commands could be in this
nested loop.

What happens in this program? In line 20 the first loop starts with 1=20 .
Line 20 outputs the current value of I. In line 40 the second loop starts—its
NEXT is found in line 50. This second loop is processed completely before
the first loop starts through its second pass. The second loop is completed
as often as I is printed.

You must make sure that your nesting of FOR...NEXT loops is legal. You
may not "cross" loops. That is, the first loop opened must be the last
closed, and the last loop opened must be closed first. The program above
shows correct nesting of loops. The following example is intended to show
how loops may not be nested.

93

Abacus Software Atari ST BASIC Training Guide

10 FOR 1=1 TO 20
20 PRINT I

30 FOR Z=l TO 10

4 0 PRINT Z

50 NEXT I

60 PRINT I,Z
7 0 NEXT Z

WRONG!

If you have several loops nested within each other and want to close them
all at once, you don't need a special NEXT for each FOR. One next
suffices. To this NEXT are appended the individual index variables in the
proper order. The variables mustbe separated from each otherby commas.
The foUowing example wiUclarify this.

10 FOR 1=1 TO 10

20 FOR Z=l TO 10

30 PRINT I;Z
40 NEXT Z,I
50 END

Enter this program into the computer and RUN it. Only one NEXT is used in
line 40 to close both loops. Here again, the loop last opened must be the
first closed. This is why the variable Zfollows the NEXT first, and then I.

One mistake beginners often make is jumping into a loop. That means a
jump is not made to the FOR...TO instruction, but somewhere in between
FOR and NEXT. Since a loop usually contains several program lines,
sometimes you jump to a line in the loop where everything turns out all
right. The error is usually gone unnoticed until the program is run for the
first time. The result is the termination of the program with the following
error message:

You're trying to jump to a loop at line (line #)

If you had first made a detailed flowchart, such an error probably wouldn't
have occurred. Further, if the starting value is larger than the ending value,
the step value must be negative. If you forget to specify the step value, the
loop wiU be exited immediately, as the following example shows:

94

Abacus Software Atari ST BASIC Training Guide

10 FOR A=5 TO 1

2 0 PRINT A

30 NEXT A

4 0 END

In line 10 there is no specification of the step width, such as step -1.
Hence, no output is given. Ending a loop prematurely is done by setting the
index variable to an ending value. This can be done independently on certain
variables, or other conditions that can be tested within the program.
Normally the start and end values are placed in variables. If the values of
these variables change within the program, different loop lengths are
possible.

In conclusion, we'd like to show you a program that interrupts the loop
prematurely by setting the index variable to the end value. Then we'll
present a program that determines the different loop lengths through
variables. The values of the variables are determined with the string
functions. Such applications are frequently found in database programs
—when searching for character combinations, for instance.

10 REM PREMATURE LOOP END

20 FOR A=0 TO 20

30 PRINT A

40 IF A=12 THEN A=20

50 NEXT A

60 END

The program doesn't make a whole lot of sense, since it's so short. It is
intended only to show how a loop can be prematurely ended. Normally the
loop would count to 20. However, in line 40, once A reaches 12 it is set to
20. This causes only values up to 12 to be printed. This method of changing
the value of the index variable within the loop is seldom used.

More often the start and end values of a loop are placed in variables. This
allows the loop to be controlled more easily. The following example
iUustrates this:

95

Abacus Software Atari ST BASIC Training Guide

10 INPUT"ENTER A WORD";A$
20 FOR A=l TO LEN(A$)
30 PRINT LEFT$(A$,A)
4 0 NEXT A

50 FOR A=LEN(A$) TO 1 STEP -1
60 PRINT RIGHT$(A$,A)
7 0 NEXT A

80 END

Start the program, enter your name, and press the <RETURN> key. You
see that you get the same results as we got from the program in the section
on string functions. But here we used the FOR...NEXT loop and made it
dependent on the length of the string entered. This means that the passes
through the loop are controlled by the length of the string. Take a closelook
at the example and try to understand all of it.

Let's summarize the most important points of working with FOR...NEXT
loops.

1. Exactly one NEXT instruction belongs to each FOR
instruction. A NEXT instruction can close several nested loops
if the index variables follow this NEXT instruction in the
proper order, separated by commas.

2. You may not jump into a loop, because the program will
terminate with an error message.

3. The starting value may not be larger than the ending value if
the step width is positive, or the loop will not be executed.
The same applies for negative step widths.

4. GeneraUy, a FOR...NEXT loop is executed until the value of the
index variable is greater than the end value.

These rules apply only to ST BASIC, and shouldn't be generalized to other
computers. There are some differences in the use of FOR...NEXT loops
among the different BASIC dialects.

96

Abacus Software Atari ST BASIC Training Guide

3.2.4 Loops with WHILE...WEND

The command combination WHILE...WEND offers you another option for
constructing loops within a program. This form of loop control is more
flexible than the FOR...NEXT loops. You don't have to specify a set
increment for WHILE...END.

The start of the loop is indicated with WHILE, and the end with WEND. The
logical expression following while is tested before each pass through the
loop. As long as the expression is true, the loop is executed up to WEND. If
the condition behind WHILE is no longer fulfilled, the execution of the
program is continued after the WEND. You terminate a loop with this
command combination quite randomly, as the following example shows:

5 RANDOMIZE 0

10 WHILE A < 100

20 A=INT(101*RND)

30 Z=Z+ 1

40 IF A=100 THEN EXIT

50 WEND

60 PRINT A,Z

7 0 END

Here the WHILE...WEND loop is executed until the value of Areaches the
value 100 by chance. If the statement in line 40 is true, the next command
that follows the WEND is executed. In our case this is program line 60. Here
Aand the counter z are printed. The counter tells you how many times the
loop was executed. This example should make the operation of the
WHILE...WEND loop clearer.

We can make the foUowing general rules for the use of loops:

a) If the number of repetitions of the loop is known from the
beginning, we use the FOR...NEXT loop.

b) If the number of repetitions of the loop is unknown, we
construct the loop with IF...THEN or WHILE...WEND.

We have already seen an exception to these rules, in the last example
program of Section 3.2.3. These rules are only intended to be guidelines.

97

Abacus Software Atari ST BASIC Training Guide

So far we have learned about the use of conditional and unconditional
program jumps in our programming. We also know about program loops
especially the FOR...NEXT loop.

What is still missing is a way to represent these structures in the program
flowchart. The symbol for representing a logical branch in a program
flowchart is the diamond. It looks like this:

Logical Branch Symbol

First we'll look at a program flowchart for the program that calculates
income tax. On the next two pages you'll see the program flowchart and its
explanation.

98

Abacus Software Atari ST BASIC Training Guide

(Start j

TX=IC*33/100

®+

TX=IC*51/100

5
Output

TX

*©
YES

End J
Program flowchart for calculating income tax

99

Abacus Software Atari ST BASIC Training Guide

We recognize the start and end symbols in our program flowchart. The
diamond, as we said before, is the symbol for a logical branch. It has a YES
branch and a NO branch. If the condition is fulfilled, a branch is made via
the jump connector A to the corresponding entry connector A. In our
example the branch wouldtakeplacevia the YES branch. This couldalso be
the NO branch, depending on the type of program. The calculation of the tax
of51 percent and output of the value follow the entry connector A.

If the condition is not fulfilled, the 33 percent is calculated. After the
calculation comes jump connector B. Itdesignates an unconditional jump to
entry connector B. It should be noted that the jump connector B comes
before the entry connector A, or the flowchart would contain a logical error.

This program flowchart showed how the if...then command is
represented in a flowchart. What we now need to know is how a
FOR...NEXT loop is represented.

For this we'll use the program on page 96 that asks you to input your name,
and write a flowchart for it. The next two pages contain the program
flowchart and its explanation.

100

Abacus Software Atari ST BASIC Training Guide

(Start J

k

Input
A$

X_

A=1

I
Output

EFT$(A$,

I

Ouput
falGHT$(A$,>

Program flowchart for the program on page 96

101

Abacus Software Atari ST BASIC Training Guide

The symbols in this flowchart should be familiar to you. In the first
rectangle, the starting value of the loop is set to one. Next we isolate the
substring with left$ <a$, A). The counter is then incremented by one. In
the diamond the counter is tested to see if it is greater than the number of
characters in a$. If this is not the case, a branch is made to entry connector
A via jump connector A. The loop is thereby created in the program
flowchart.

If the counter is greater than LEN (A$), the second loop comes into action.
The second loop has the same arrangement of symbols as the first loop. The
connectors have the different designations in order to avoid confusion.
However, the course is the same as the one described above.

With this information you should be in a position to create program
flowcharts for any program on your own. Remember, practice makes
perfect.

102

Abacus Software Atari ST BASIC Training Guide

3.3 Calculated jump commands

The calculated jump commands have the advantage of making the actual
program more flexible. Up to now we have seen only jump commands that
jump to aspecific program line. The line numbers in the GOTO command
cannot be changed—GOTO 100 always continues execution at line 100.

But itwould be nice ifyou could enter a value at the start ofaprogram and
the program would then branch based on the value. This could be achieved
with some IF . . . THEN comparisons, of course. But this would require a
jump command for each program line, for every comparison. Asimple
example wiU clarify this:

10 REM JUMP TO CERTAIN LINES
20 PRINT "ENTER A NUMBER BETWEEN"
30 PRINT "1 AND 4"

40 PRINT

50 INPUT "WHAT NUMBER";Z
60 IF Z = 1 THEN 100
70 IF Z = 2 THEN 200
80 IF Z = 3 THEN 300
90 IF Z = 4 THEN 400
100 PRINT "JUMPED TO LINE 100"
110 GOTO 410
200 PRINT "JUMPED TO LINE 200"
210 GOTO 410
300 PRINT "JUMPED TO LINE 300"
310 GOTO 410
400 PRINT "JUMPED TO LINE 400"
410 END

In this program, a branch is made to program line 100, 200, 300, or 400
depending on the input of anumber 1to 4. Programming these tests with
IF THEN is rather complicated in such applications, and is relatively
slow in execution speed. BASIC offers a more flexible solution for such
cases. The command has the following syntax:

ON (variable) GOTO (line number or label)

This extended GOTO command with ON allows the program to branch to one
or several line numbers or labels following the GOTO. The range of the

103

Abacus Software Atari ST BASIC Training Guide

variables extends from zero to the number of line numbers give. If the
variable does not have an integer value, the non-integer portion is ignored
Negative values are also ignored.

If the variable has a value that is larger than the number of line number
available following the GOTO, the command following the ON . . . GOTO
command isexecuted. Here are some simple examples:

a) 10 ON Z GOTO 100,200,250,300
20 PRINT

Ifthe variable z in this example has the value 1, the program jumps to line
100. IfZruns through the values 2to 4in aloop, for instance, the program
jumps to lines 200, 250, and 300 in succession, z designates the positions
of the individual line numbers that follow the GOTO. If z assumes values
larger or smaller than the number of line numbers behind the GOTO, the
program continues with the nextcommand following the GOTO. This is the
PRINT command in our example. The ON. . . GOTO command is simply
skipped.

b) 10 ON Z+3/4 GOTO 100,200,300
20 PRINT

You see thatan arithmetic expression canbe used instead of a variable. The
advantage of this ON. . . GOTO command is that it can replace several
IF. . .THEN commands. This saves programming time, as well as memory
space. Our previous short program could have the following form:

104

Abacus Software Atari ST BASIC Training Guide

10 REM JUMP TO CERTAIN LINES
20 PRINT "ENTER A NUMBER BETWEEN"
30 PRINT "1 AND 4"

4 0 PRINT

50 INPUT "WHAT NUMBER";Z
60 ON Z GOTO 100,200,300,400
100 PRINT "JUMP TO LINE 100"
110 GOTO 410
200 PRINT "JUMP TO LINE 200"
210 GOTO 410
300 PRINT "JUMP TO LINE 300"
310 GOTO 410
400 PRINT "JUMP TO LINE 400"
410 END

We saved three program lines in this short program. With larger programs
in which comparisons with IF . . .THEN can occur, you can save even
more lines.

This program uses a programming technique that can be very helpful,
especially with large programs. Ifyou create aprogram flowchart for this
program, the jumps to the various lines are symbolized with horizontal
branches. Since wedon't know yetwhat line numbers these tines will have,
we choose extra-large numbers. This is how to make room within the
program for other program segments.

The destination line numbers of ON. . . GOTO represent certain program
segments within the program in which special tasks are generally
performed. Ithelps to designate these with "smooth" line numbers. This can
be done insteps ofone hundred, as inour example program. This improves
the readability of the individual program segments.

3.3.1 Example program—math tutor

We have now learned a relatively large number of BASIC commands. This
is a goodexcuseto try a largerproject.

Suppose you want to write a math drill program for your kids that features
the four basic operators on the ST. The driU has the following properties:

105

Abacus Software Atari ST BASIC Training Guide

1. One of the four operators is selected or the program is ended.

2. Agiven problem must be solved in amaximum of 3attempts.

3. After the third failed attempt, the correct result is displayed.

4. After each problem, a prompt asks if more problems of the
same calculation type are to be solved.

Take alook at the math lesson program listing starting below. Don't worry
if individual lines are not always separated from each other by steps of
exactly ten. Since the program is relatively long, we'll now give you the
commands for saving a program, even though we haven't discussed them
yet.

Insert a formatted disk in the drive. Enter the following command into the
computer:

SAVE MATH

The program wtil now automatically be saved on the diskette. Ifyou want it
again, you need only call it up from the appropriate disk. This is done with
the LOAD or OLD command. Simply replace SAVE with LOAD at the
appropriate time and the program will be loaded into the computer.

Here is the program listing:

5 REM **** MENU ****

10 FULLW 2:CLEARW 2: F=0
20 PRINT

30 PRINT TAB(12)"MATH TUTOR"
4 0 PRINT:PRINT

50 PRINT TAB(12)"YOUR CHOICES:"
60 PRINT

70 PRINT TAB(12)"[1] - ADDITION"
7 7 ER=A1-A2

80 PRINT

90 PRINT TAB(12)"[2] - SUBTRACTION"
100 PRINT

110 PRINT TAB(12)"[3] - DIVISION"
120 PRINT

130 PRINT TAB(12)"[4] - MULTIPLICATION"
140 PRINT

106

Abacus Software Atari ST BASIC Training Guide

145 PRINT TAB(12)"[5] - END"
148 PRINT
150 PRINT TAB(12);:INPUT"WHICH NUMBER";Z
160 IF Z < 1 OR Z > 5 THEN 10
170 ON Z GOTO 200,600,1000,1300,1600
200 REM ********
210 REM ADDITION
22 0 REM ********

230 CLEARW 2
240 PRINT TAB(10)"INPUT THE LARGEST NUMBER"
250 PRINT
260 PRINT TAB(10)"FOR ADDITION"
27 0 PRINT
280 PRINT TAB(10);:INPUT"LARGEST";GR

2 99 REM

300 REM CREATE RANDOM NUMBERS
301 RANDOMIZE 0
310 Al = INT (GR*RND)+1
320 A2 = INT(GR*RND)+1

32 9 REM
330 REM COMPUTE RESULT

340 ER = Al + A2
350 CLEARW 2

3 60 PRINT
370 PRINT "HOW MUCH IS "Al"+" A2 " = ";
380 INPUT ES
390 IF ES=ER THEN PRINT:PRINT TAB(10)"CORRECT!"

:F=0:GOTO 470
400 PRINT:PRINT TAB(10)"WRONG!"
410 FOR I = 1 TO 2000:NEXT I

420 F=F+1

430 IF F<= 2 THEN 350
440 PRINT

450 FOR I = 0 TO 2000:NEXT I
460 PRINT"THE ANSWER IS "ER
470 FOR I = 0 TO 3000:NEXT I
480 PRINT TAB(5)"ANOTHER PROBLEM? (Y/N)";
490 INPUT A$
500 IF A$="Y" THEN F=0:GOTO 300
510 GOTO 10
600 REM ***********
610 REM SUBTRACTION
62 0 REM ***********

107

Abacus Software Atari ST BASIC Training Guide

630 CLEARW 2

640 PRINT TAB(10)"INPUT THE LARGEST NUMBER"
650 PRINT

660 PRINT TAB(10)"FOR SUBTRACTION"
670 PRINT

690 PRINT TAB(IO);:INPUT"LARGEST";GR
699 REM

700 REM CREATE RANDOM NUMBERS
701 RANDOMIZE 0
710 Al = INT (GR*RND)+1
720 A2 = INT(GR*RND)+1
72 9 REM

730 REM COMPUTE RESULT

740 IF Al < A2 THEN I = Al:A1=A2:A2=I
7 50 CLEARW 2

7 60 PRINT

77 0 ER=A1-A2

780 PRINT "HOW MUCH IS "Al"-" A2 " = ";
7 90 INPUT ES

800 IF ES=ER THEN PRINT:PRINT TAB(10)"CORRECT'
:F=0:GOTO 880

810 PRINT:PRINT TAB(10)"WRONG!"
820 FOR I = 1 TO 2000:NEXT I
830 F=F+1

840 IF F<= 2 THEN 750
850 PRINT

860 FOR I = 0 TO 2000:NEXT I
870 PRINT"THE ANSWER IS "ER
880 FOR I = 0 TO 3000:NEXT I
890 PRINT TAB(5)"ANOTHER PROBLEM? (Y/N)";
900 INPUT A$

910 IF A$="Y" THEN F=0:GOTO 710
920 GOTO 10
1000 REM ********

1001 REM DIVISION
1002 REM ********

1010 CLEARW 2

1020 PRINT TAB(10)"INPUT THE LARGEST NUMBER"
1030 PRINT

1040 PRINT TAB(10)"FOR DIVISION"
1050 PRINT

1060 PRINT TAB(10);:INPUT"LARGEST";GR
1070 REM

108

Abacus Software Atari ST BASIC Training Guide

1080 REM CALCULATE RANDOM NUMBER
1081 REM

1085 RANDOMIZE 0
1090 A1=INT(GR*RND)+1
1100 A2 = INT(GR*RND)+1

1109 REM
1110 REM CALCULATE DIVISION

1111 REM

112 0 ER =Al*A2

1130 CLEARW 2

1140 PRINT

1150 PRINT "WHAT IS "ER" / " Al "= ";
1160 INPUT ES
1170 IF ES=A2 THEN PRINT:PRINT TAB(10)"CORRECT !"

:F=0:GOTO 12 60
1180 PRINT :PRINT TAB(10)"WRONG!"
1190 FOR I = 0 TO 2000:NEXT

1200 F=F+1

1210 IF F<=2 THEN 1130
1220 PRINT

1230 FOR I = 0 TO 2000: NEXT
1240 PRINT TAB(5)" THE ANSWER IS "A2
1250 FOR 1= 0 TO 3000:NEXT
1260 PRINT TAB(5)"ANOTHER PROBLEM Y/N";
12 7 0 INPUT A$
1280 IF A$="Y" THEN F=0: GOTO 1090
1290 GOTO 10
1300 REM **************

1301 REM MULTIPLICATION
1302 REM **************

1310 CLEARW 2
1320 PRINT TAB(10)"INPUT THE LARGEST NUMBER"
1330 PRINT
1340 PRINT TAB(10)"FOR MULTIPLICATION"
1350 PRINT
1360 PRINT TAB(10);:INPUT"LARGEST";GR
1370 REM

1380 REM CALCULATE RANDOM NUMBER

1381 REM

1385 RANDOMIZE 0
1390 A1=INT(GR*RND)+1

1400 A2 = INT(GR*RND)+1

1409 REM

109

Abacus Software Atari ST BASIC Training Guide

1410 REM CALCULATE MULTIPLICATION
1411 REM

1420 ER =A1*A2

1430 CLEARW 2

1440 PRINT

1450 PRINT "WHAT IS "Al" * " A2 " =";
1460 INPUT ES

1470 IF ES=ER THEN PRINT:PRINT TAB(10)"CORRECT '"
:F=0:GOTO 1550

1480 PRINT :PRINT TAB(10)"WRONG!"
1490 FOR I = 0 TO 2000:NEXT
1500 F=F+1

1510 IF F<=2 THEN 1430
1520 PRINT

1530 FOR I = 0 TO 2000: NEXT
1540 PRINT TAB(5)" THE ANSWER IS "ER
1550 FOR 1= 0 TO 3000:NEXT
1560 PRINT TAB(5)"ANOTHER PROBLEM Y/N";
157 0 INPUT A$

1580 IF A$="Y" THEN F=0: GOTO 1390
1590 GOTO 10

1600 CLEARW 2

1610 END

We will now discuss the most important lines of this program listing. The
menu is displayed by lines 10to 150. The menu allows you to select from
various choices.

Line 150 requests you enter a number, which represents a menu selection.
Line 160 checks to see if a valid number was entered. This line is a good
example of the use of a logical operator. If a number is either less than 1 or
greater than 5, a branch is made to line 10. Only one of these conditions
needs to be fulfilled, so the operator OR is used.

Line 170 illustrates the use of the ON. . . GOTO command. If z has the
value 1, a branch is made to line 200. If z has the value 2, the program
branches to line 600, and so on. The individual computation operators are
selected by entering a number. Here, with the ON . . . GOTO command we
saved 5 IF . . . then comparisons.

Lines 200 to 220 visually separate the program segment for addition. It is
also a memory aid for the programmer.

110

Abacus Software Atari ST BASIC Training Guide

In larger programs you learn to appreciate such REM statements, because
they make the program much easier to read. You don't have to search
through the entire program when the program needs tobechanged.

Line 230 clears the screen. The next lines request a number to set the upper
limit of the sums for addition. After this, two random numbers Al and A2
are generated, from which the addition problem is formed. The problem is
printed onthe screen inline 370. The semicolons between text and variables
are not necessary, as you can see in this example. In line 380the result is
taken from the user. Line 390 checks to see if the value entered matches the
value calculated in line 340. If the value entered is false, a blank line is first
created on the screen by line 400. Following this, the message WRONG! is
printed on the screen. In line 410 a delay loop is processed so that the user
can read the message.

Line 420 sets a counter that checks how many wrong answers the user has
already given for this problem. Remember, the program displays the result
after three incorrect answers. Line 430 checks to see if three wrong answers
have been given. If this is not the case, the program branches to line 350
and redisplays the question again. If three incorrect answers were given, the
program continues with theexecution of line440.

If the right answer was given in the meantime, the program jumps from line
390 to line 450. After the delay loop in line 450 runs out, the result is
printed in line 460. After another delay loop, line 480 queries if another
problem is to beasked. If the user enters Yhere, the counter F is first set to
zero and then a branch is made to line 300. There the two new random
numbers required for the new problem are generated. If the user presses a
key other than the Ykey, the program jumps back to line 10, where the
menu is reconstructed. The counter F must therefore be set back to zero,
because the user must be allowed three attempts for the new problem. If we
forget this, the old value of F is carried along. Accordingly, the result may
be printed after one or two wrong answers. Remember this if you use
counters in your own programs.

The other sections of the program—Subtraction, Division, and
Multiplication—are constructed on the same principle. They differ only
slightly in the creation of their respective problems. Let's take a look at
subtraction.

Line 740 is special in its calculation of the result. This line ensures that we
get only positive results by subtracting only smaller numbers from larger. If
Al is larger than A2, the problem statement in line 780 is correct. But if the

111

Abacus Software Atari ST BASIC Training Guide

reverse is true, the values in the variables must be exchanged or a larger
number will be subtracted from a smaller in line 780. This is the purpose of
line 740.

IfA1 is smaller than A2, the value ofAl is stored temporarily in I. If we
did the foUowing:

A1=A2 : A2=A1 < WRONG

the value ofAl would be lost. Since Al is first set equal to A2, variable Al
now contains the value of A2. After this we try to set A2 equal to Al, but
Al already has the value of A2. We don't exchange two variables in this
way. First we must "save" one value—that is, store it in another variable.

First the variable I receives the value of Al:

I=A1

After this the variable Al is assigned thevalueof A2:

A1=A2

Now we need:

A2=I

since I has the value ofAl, and the exchange is complete. This temporary
storage technique is very important. Make sure you understand this
principle, so you can use it later in your own programs.

The ST has another simple solution for this problem—but it's not an
instruction found on all computers. (Ifyou adapt your programs to non-ST
BASICs, you may have to use the previous solution). The instruction:

SWAP (X, Y)

exchanges the contents of the variables Xand Y. You can replace the
corresponding lines in the program with this instruction.

This point was the important one in the subtraction section. In the division
segment a little trick was also used in order to get only integer results. In
line 1120, as with the multiplication, the result of Al and A2 is formed.

112

Abacus Software Atari ST BASIC Training Guide

Then in the problem statement the result ER is divided by the value of Al.
The result can only be an integer number since the result is generated from
two whole numbers, namely Al and A2.

The section dealing with multiplication has no special features. In
construction, it is identical to the program segment for addition.

Before moving on to the self-test problems, here are some guidelines for
using ON. . . GOTO:

1. The value that follows ON (which can be a number, a
variable, or an arithmetic expression) determines the position
of the line number in the list that follows the GOTO. The first
line number is the branch destination for a value of 1, the
second line number the branch destination for the value of
two, and so on.

2. If this value is greater or less than the number of line
numbers in the list, the next command, the one following the
GOTO is executed.

3. Several IF . . . THEN comparisons can be grouped together
with ON . . . GOTO.

3.3.2 Program jumps with ON. . . ERROR

This special type of the ON. . . GOTO command is used to automatically
manage errors that occur in a program—in the program itself. A typical
program line could look like this:

100 ON ERROR GOTO 1000

A small error-handling routine can be located at line 1000 to react to the
error accordingly. But how do we know what error has occurred, and in
which line number?

ST BASIC has two variables called system variables that are tested to tell us
this information. These are the variables:

ERR andERL

113

Abacus Software Atari ST BASIC Training Guide

With ERR, you can determine the error code of the error, erl is the line
number in which the error occurred. The termination ofa error-handling
routine is designated by the command:

RESUME (line number)

With this RESUME command, you determine the program line at which the
program is to continue execution after the error message, resume next
causes execution to continue with the command following the one that
caused the error.

You also have the ability to let the ST error messages be printed from within
the program. You must use the following command:

ON ERROR GOTO 0

Unfortunately, the ON ERROR GOTO command does not catch every error.
You can check this on your STwith the following program:

10 ON ERROR GOTO 100
2 0 GOTO 4 0

30 FOR 1=1 TO 20
4 0 PRINT I

50 NEXT

60 END

100 PRINT ERL, ERR
110 RESUME NEXT

When you RUN the program, it terminates with the error message:

You are trying to jump into a loop at line 20

despite linenumber 10. Theerrornumber as well as thenumber of the line
containing the error are passed in the two variables ERL and ERR.

To see the values of these variables, enterin the command window:

PRINT "ERROR LINE"ERL;"ERROR LINE" ERR

and you'll see their values in the outputwindow.

On the next page are some problems for your to solve. Remember to keep
the five programming rules in mind when working with these problems.

114

Abacus Software Atari ST BASIC Training Guide

Problems

1. Write a program that adds up the "harmonic series" (1 + 1/2 +
1/3 + 1/4 + 1/5 + ... + 1/n) up to a given number.
After each 50 additions the number of additions should be printed.
In conclusion, the number of required sums should be printed.

2. Write a program thatcalculates the real zeros of a quadratic equation
of the form:

AX2+BX+C=0

The solutions can be obtained from the following formula:

xl = (-B + SQR(B2+4AC))/2A
x2 = (-B - SQR(B2+4AC))/2A

There is no real solution for B2 -4AC < 0. Take this into account
in your program.

3. What happens in the foUowing program if the value 4 is entered for
Z? Solve the problem without entering the program into the
computer.

10 REM TEST OUTPUT WITH ON...GOTO

20 INPUT"ENTER A NUMBER";Z

30 ON Z GOTO 100,150,400:CLEARW 2
4 0 PRINT"ILLEGAL VALUE"

50 END

100 PRINT"LINE 100"

110 END

150 PRINT"LINE 150"

160 END

400 PRINT"LINE 400"

410 END

115

Abacus Software Atari ST BASIC Training Guide

3.4 Reading the keyboard

ST BASIC has various options for reading the keyboard. You are already
familiar with the simplest option: reading data using input and assigning it
to a variable.

The INKEY$ function is also provided, butdoes not work correctly in the
current version of BASIC. If, for example, youenter the foUowing program
line:

10 A$=INKEY$: IF A$="" THEN 10

and start this little program, you will note that it does not end even if you
press a key. Your only option is to break out of the program with
<CONTROL>C.

Another option for selecting keys involves the use of INPUT$.

10 INPUT$(1)
20 A=ASC(A$)
30 PRINT A

The parameter in parentheses specifies how many characters you want to
read in. In our example a character is read and its ASCII value determined.
The advantage of this function is that the <RETURN> key need not be
pressed.

All of the functions discussed so far have one disadvantage: they cannot
readall of the keys on the keyboard. Thecursor keys and the function keys
do not transmit a value when these functions are used.

The function:

INP (2)

can help us here. The parameter 2 is a device number, and represents the
keyboard. Valid parameters for INP are as follows:

116

Abacus Software Atari ST BASIC Training Guide

0 = Printer

1 = RS-232

2 = Console (keyboard and screen)
3 = MIDI interface

4 = Keyboard processor

The following program shows you the codes of all the keys. You can exit
the program by pressing the <ESC> key.

10 A=INP(2)

20 PRINT A,CHR$(A)
30 IF A=2 7 THEN END

40 GOTO 20

This covers all of the major functions for inputting characters from the
keyboard. Now let's take a look at some commands and functions not used
very often in programs. You should know whatyou're dealing with when
you encounter such a command in a program.

117

Abacus Software Atari ST BASIC Training Guide

3.5 fre, pos, call, and WAIT

The above commands and functions are, as already mentioned, seldom used
inBASIC programs. This has little to do with their importance. Let's take a
look at them in order:

FRE

The fre function is required to determine the amount of free memory
space. The syntax of the function looks like this:

FRE(X)

Ifyouwant to know the free memory space in the computer, you can enter:

PRINT FRE(X)

in the direct mode. If there is noprogram in memory, you get the maximum
free space as the value.

POS

You will seldom encounter this command within a program. It is used to
determine the current cursor position on the screen. The following examples
should explain more about the function. Enter into the computer in the direct
mode:

PRINT "TEST" POS(X); "TEST A" POS(X)

and press the <RETURN> key. As output you get:

TEST 4 TEST A 13

The number 4 indicates the position of the cursor after the first execution of
the print command. Correspondingly, the number 13 shows the cursor
position after the second execution of the print command. You can check
this by entering the line again without the first POS command. You will
then see that TEST A is printeddirectly after TEST, that the first character
begins at the fourth position on the line. With POS you can determine the
position in the line at that the next output with print will take place.

118

Abacus Software Atari ST BASIC Training Guide

CALL

This instruction lets you jump to an address in the computer at which a
machine language program of your own or a system routine begins. The
microprocessor is then no longer controlled by the BASIC commands via
the interpreter. It is now controlled directly by machine code. In principle,
you canaddress any memory location in the computer with CALL. There are
many addresses that will cause the system to "crash," however. This
instructionpresumes a sound knowledgeof the ST's operating system.

WAIT

Through the WAIT command you can cause a program to wait until a given
memory location reaches a certain value. More specifically, the program
waits with wait for a specific bit pattern in the memory location. This
command is also seldom used.

119

Abacus Software Atari ST BASIC Training Guide

3.6 READ, DATA, and RESTORE

Up until now we have discussed reading data from the keyboard. The data
is stored in variables and thenprocessed further.

Ifa program requires a large number ofdata, numerical values orstrings, it
is very tedious to have to enter these values each time the program is started.
To get around this, you can use the READ and DATA statements.

The DATA statement is composed of a list of data items, where the
individual values are separated by commas. The type of data that can be
placed in a DATA statement can be either numerical or character.

With READ you can assign the individual data items in the DATA statements
to variables. The variable type that follows the READ must correspond to the
type ofdata contained in the DATA statement. You may not read a string into
a numerical variable.

The DATA lines arenot required to appear at any specific location within the
program. They can be at the beginning, in the middle, or at the end. When
the program encounters a READ command, it automatically searches for the
DATA statement. Let's take a look at a simple example. First enter NEW
—this command should always be used before you start a new program.
Then enter the foUowing program:

10 READ X

20 PRINT X

30 DATA 50

4 0 END

The program displays the the value 50. In line 10 the numerical variable Xis
assigned thevalue 50 with a READ commmand. If the program encounters
the READ command, it searches for thecorresponding DATA lineandreads
the first value. This value is assigned to the variable that follows the READ.
In line 20 the contents of the variable Xare printed. Line 30 has no further
influence on the program. Change the program in the following manner:

10 READ X,Y,Z
20 PRINT X,Y,Z
30 DATA 10,20,30
4 0 END

120

Abacus Software Atari ST BASIC Training Guide

After you have started the program you get the following output:

10 20 30

READ first assigned the first value in the DATA line to the variable X. Then it
assigned the second value read to the variable Y, and then the third value to
the variable Z.

Upon each READ access to the data in the DATA lines, the next value is
always read. A pointer is maintained inside the computer that is always
advanced each time an item read. This pointer always points to the next
element to be read. At the start of a program this pointer points to the first
element in the DATA line. The next lines should clarify this. The pointer is

represented by the Tcharacter.

30 DATA 10,20,30

t

When the program encounters a READ, the pointer is incremented by one,
and so points to the second element.

30 DATA 10,20,30

T

When this element is read, the pointer is again incremented by one. When
the pointer reaches the end of a list of DATA instructions, it is not
automatically set back to the first element, but points after the last element.
If you then try to access the list again with READ, the computer outputs the
error message:

READ statement ran out of data at line (line #)

What if you want to access the data more than once? There is a solution for
this. It's called:

RESTORE

The RESTORE command sets the pointer back to the very first element of
DATA. This gives you the ability to read the data in the data lines as often
as you like. Enter the following program in order to see what happens when
the program tries to read more data than is available.

121

Abacus Software Atari ST BASIC Training Guide

10 READ A,B,C
20 PRINT A,B,C
30 DATA 10,20,30
40 READ D,E,F
50 PRINT D,E,F
60 END

After the values 10, 20, 30 are printed, the error message:

READ statement ran out of data at line 4 0

appears. In line 40 an attempt was made to read the fourth element of DATA,
an element that does not exist. To eliminate this error, you can either append
three more values to the data statement or reset the pointer with
RESTORE. Try this out once. Enter the following line in the computer and
press the <RETURN> key.

35 RESTORE

Now enter the LIST command. Your program should look like this:

10 READ A,B,C
20 PRINT A,B,C
35 RESTORE

30 DATA 10,20,30
40 READ D,E,F
50 PRINT D,E,F
60 END

If you start the program now, the error message does not appear and you
get the foUowing output:

10 20 30

10 20 30

The pointer was again set to the first data element with the command
RESTORE. Therefore the numerical variables D, E, and F were assigned the
values 10, 20, and 30. The command:

READ A,B,C

causes three values to be read from the DATA line simultaneously. The
values can also be read one at a time, of course, as the next example shows.

122

Abacus Software Atari ST BASIC Training Guide

10 FOR 1=1 TO 3

2 0 READ X

30 PRINT X

4 0 NEXT I

50 DATA 10,20,30
60 END

In this example, the commands READ X and PRINT X are placed in a
FOR . . . NEXT loop that is executed a total of three times. On each pass
through the loop, a new value is read from the DATA line, assigned to X,
and printed.

As already mentioned, you can also put strings in the DATA lines. Normally
these strings do not have to be placed in quotation marks.

As usual, there are exceptions here too. Any string with a comma must be
placed in quotes. Remember that a string cannot be assigned to a numerical
variable.

If you have a long list of mixed data, a wrong assignment can occur quite
quickly. The foUowing example should make tiie problem clear:

10 FOR 1=1 TO 3

20 READ A,B,C$
30 PRINT A,B,C$
4 0 NEXT I

50 DATA 10,20,TEST 1,30,40,TEST 2,50,TEST 3,OK
60 END

The program runs correctly through the second pass of the loop. Up to that
point, the assigment of data values the variables that follow the read
command. According to READ, two numerical variables and then one string
variable are to be read. The order of the data in line 50 corresponds to the
variable assignment behind READ, but only up to the seventh item—to the
value 50. After this the program tries to read the string "TEST 3 " into the
numerical variable B. Since this is not possible, the program stops after two
passes through the loop with the error message:

Function call not allowed at line 20

Be extremely careful when combining different variable types in a READ
command.

123

Abacus Software Atari ST BASIC Training Guide

We've learned a lot about how we can get data into the computer or
program. We've also learned how to read in data from the keyboard with
INPUT, INPUT$, and INP. The second method of inputting data is by
statements so that they do not have to be manually input all the time. In this
way, the data value contained in the DATA statements are saved as part of
the program. To save data entered with input, these values must be saved
separately on a disk file.

One common use of this combination of READ and DATA is when a
program in machine language is to begenerated by BASIC. This is usually
done by placing the numerical values of the machine codes in DATA
statements, then reading them with a FOR. . .NEXT loop and writing them
into memory with the POKE command. The machine language program is
then started with the CALL command.

In the next chapter you will learn about how you write more complex
programs in BASIC. The generation of arrays plays an important role in
these programs. You will see that the commands READ and DATA will also
have important applications.

124

Chapter 4

ADVANCED BASIC APPLICATIONS

4.1 Arrays
4.2 Subroutines

4.3 Menu techniques
4.4 Sorting methods

D

Abacus Software Atari ST BASIC Training Guide

Advanced BASIC applications

4.1 Arrays

The programming and management of arrays is one of the most difficult
concepts for the beginning BASIC programmer. The more complex the
arrays, the more difficult it is to work with them. Even advanced
programmers have problems with array management.

But a beginner can learn how to work with arrays. It's all a matter of
practice. We'U begin with very simple examples.

4.1.1 One-dimensional arrays

Imagine that you want to write a program that calculates your average
monthly salary. We start with 12 monthly totals. In this first example a loop
is used to read in the amounts for the monthly totals. We can write a
program as foUows:

5 CLEARW 2:FULLW 2

10 REM AVERAGE MONTHLY INCOME

20 REM CALCULATE FOR 12 MONTHS

30 FOR I = 1 TO 12

4 0 PRINT "INCOME FOR MONTH" I;

4 5 INPUT M

50 S=S+M

60 NEXT I

70 D=S/12
80 D=INT(D*100)/100
90 PRINT "AVERAGE INCOME IS ";

100 PRINT "$ ";D

110 END

After you have entered this program into the computer, RUN it and enter
12 values. As the results you get the average monthly income, rounded off
to two places after the decimal. In this program the individual monthly

127

Abacus Software Atari ST BASIC Training Guide

salaries are read in a FOR. . . NEXT loop with INPUT. The sum of the
salaries is also formed within the loop (line 50). Line 70 calculates the
average monthly income and the amount is rounded to 2 places in line 80.
The program should be understandable to you.

We've now calculated the average monthly income. But what if we want to
know later exactly how much money we made in May? In the last example
the individual monthly values are lost.

There's no problem in solving that, you say. We'll use 12 variables instead
of one and assign a monthly total to each one. Let's change theprogram:

5

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

CLEARW 2:FULLW 2

REM AVERAGE MONTHLY INCOME

REM SAVE INDIVUDAL MONTHS

INPUT "INCOME FOR MONTH 1";M1
INPUT "INCOME FOR MONTH 2";M2

INPUT "INCOME FOR MONTH 3";M3
INPUT "INCOME FOR MONTH

INPUT "INCOME FOR MONTH

INPUT "INCOME FOR MONTH

INPUT "INCOME FOR MONTH

INPUT "INCOME FOR MONTH

INPUT "INCOME FOR MONTH

INPUT "INCOME FOR MONTH

INPUT "INCOME FOR MONTH

INPUT "INCOME FOR MONTH

S=M1+M2+M3+M4+M5+M6+M7+M8+M9+M10+M11+M12
D=S/12

D=INT(D*100)/100
PRINT "AVERAGE INCOME IS

PRINT "$ ";D
END

4"

5"

6"

7"

8"

9"

M4

M5

M6

M7

M8

M9

10";M10
11"/Ml1

12";M12

With these changes you have already moved a good deal closer to
programming with arrays. If you now want to add to the program, you can
refer back to the individual month values at any time. If, for example, you
want to know your total incomefor the month of May, you need only read
variable M5 and you have your answer—assuming that the month numbers
correspond to the numbers behind the variable name.

128

Abacus Software Atari ST BASIC Training Guide

We now have the month value available in our program, but at the cost of
additional program lines. And you've got to admit that it's rather
cumbersome having to work with 12 variables. If we had to output these
values again, we couldn't do it in a loop since it involves 12 different
variables. You would have to use a PRINT command for each individual
variable or one PRINT command followed by all 12 variables. It would
look like this:

100 PRINT Ml,M2,M3,M4,M5,M6,M7,M8,M9fM10,Mll,M12

This is hard to read and inelegant—a Quick-n-Dirty job, as we say in the
business. It would be nice if we had a variable with a running index,
something like this:

A(l)

This would make itpossible to output the monthly values in a loop, and also
access them through the specification of I. As you probably guessed, this
arrangement is known as an array.

What do we mean by the term array1)

Earlier in the book we compared a variable to a drawer that could hold
numerical values or strings, depending on the type of variable. Imagine an
array as achest of drawers, with the drawers stacked on top of each other.
Each drawer is designated with a number. This number has nothing to do
with the actual contents of this drawer.

This number is called an index. This index is placed in parentheses and
thereby is separated from the actual variable. We'll show you the notation
again:

A(l)

129

Abacus Software Atari ST BASIC Training Guide

Such a variable is called an array variable or indexed variable, since it is
more accurately specified through the index. The index is the value in the
parentheses.

Do not confuse this notation with the variable Al! There is a great difference
between the two. The following picture should clarify the structure of such
an array.

A(1) 2334

A(2) 2333

A(3) 2345.65

A(4) 2344.34

• •

•

•

, ,

A(12) 3433.20

You see that such an array is very similar to a table (as in table of contents),
in that the individual values are written under each other. Our array has 12
individual "drawers," each of which is assigned a value. If we want to
know the contents of the third elements, we need only use the index 3.This
could look like this:

PRINT A(3)

In our case we would get:
2345.65

as the output. If we want to use such arrays in ourprograms, we must first
tell the computer how large ourarray is to be, i.e. how many elements it is
to contain. This is the purpose of the DIM instruction in BASIC. It has the
foUowing syntax:

DIM array name(numberofelements)

130

Abacus Software Atari ST BASIC Training Guide

Forour array we would have to use the following syntax:

DIM A(12)

Ais the name ofthe array and 12 is the maximum number ofelements. The
dim instruction is usually located at the beginning of a program. Once an
array is dimensioned, it may not be redimensioned again in the program
with DIM. Otherwise the computerwtil output the error message:

?You defined an array more than once

til our example, an array offloating-point variables was defined. You can
also use arrays of string or integer variables. Take a look at the following
examples:

DIM DE$(15)

DIM GZ%(20)
DIM AB(12)

These instructions create arrays of string, integer, and floating-point
variables. You can also dimension several arrays at once with one DIM
instruction. It looks like this:

DIM A(12),B$(16),S%(20)

The foUowing facts about arrays must be noted.

1. If you need no more than 10 elements in an array, you don't
have to use a DIM instruction. When you access an element,
such as A (4), the computer automatically executes a DIM
A (10) instruction.

2. DIM A(10) dimensions 11 elements in the array A(). The
indices start with zero, not one, and consequently you have to
count A (0) in the total as well.

The graphic representation of our array has to be expanded by the element
A(0). Wewillnot use this 0thelement in ourprogram, however.

Fact 1) states that dimensioning need not take place when 11 or fewer
elements are used. If you know that you will need only 6 elements, for
instance, omit the instructionDIM X(5) or DIM X(6) to save memory.

131

Abacus Software Atari ST BASIC Training Guide

Let's take a look at the program that calculates the average monthly income
using an array.

5 CLEARW 2:FULLW 2

10 REM AVERAGE MONTHLY INCOME
2 0 REM WITH ONE ARRAY
30 DIM M(12)
4 0 FOR I = 1 TO 12

50 PRINT "INCOME FOR MONTH";I;
55 INPUT M(I)
60 S=S+M(I)
7 0 NEXT I

80 D=S/12

90 D=INT(D*100)/100
100 PRINT "AVERAGE INCOME IS ";
110 PRINT "$ ";D
120 END

Using an array adds only one additional program line when compared to the
original example. By adding one additional line, the monthly values are
available in the restof the program. Forexample, if you want to output the
monthly values once more before the output of the average monthly income,
you could change the program as follows:

90 D=INT(D*100)/100
100 FOR I = 1 TO 12

110 PRINT "INCOME FOR MONTH";I;" $";M(I)
120 NEXT I

130 PRINT "AVERAGE INCOME IS ";
140 PRINT " $";D
150 END

By using an array we have made the monthly incomes available throughout
the rest of the program—but we haven't made the program more
complicated.

Arrays which have the foUowing general syntax:

A(X)

arecaUed one-dimensional arrays.This is because they have only one index.

132

Abacus Software Atari ST BASIC Training Guide

The index does not have to be a constant. It can be a variable or a numerical
expression. Imagine that you want to change our example program so that it
wtil work with a variable number of months. The following modification to
the program would be possible:

30 INPUT"HOW MANY MONTHS";N

35 DIM M(N)

40 FOR 1=1 TO N

The number of months input will determine the size of the array. Use this
little trick, you can adapt the program exactly to current requirements, as
well as make optimal use of the memory of the computer.

Ifyou try to access an element that lies outside the array dimensioned with
DIM (X), the computerdisplays the foUowing error message:

Subscript refers to elements outside of array

If you have defined an array with DIM A(15) and try to access the
element A(16), this error message would be printed.

We now want to practice working with some examples. We'll use the
arrays X and Y$ with 6 elements each. We won't use the 0th element.

4.1.2 Examples of one-dimensional arrays

Normally you can assume that after the DIM statement the individual
elements of the array are empty. But within a program you may have to
clear an entire array. With numerical arrays you can do this by assigning the
individual elements with a zero value. The following program shows how
this is done.

ARRAY10 REM CLEAR A NUMERICAL

20 DIM X(6)

30 FOR 1=1 TO 6

40 X(I) =0

50 NEXT I

60 END

133

Abacus Software Atari ST BASIC Training Guide

We have assumed we are working with an array containing 6 (or 7)
elements. The FOR. . .next loop has the starting value 1and the ending
value equal to the maximum number of elements in the array—6 in our
example. By running through this loop I takes the value 1, 2, 3, 4,-5, and 6
in succession. This causes all elements of the array to be set to zero, since
the index of Xis incremented each time. Written out this would look like
this:

X(1)=0
X(2)=0
X(3)=0
X(4)=0

X(5)=0
X(6)=0

When you clear a variable containing a string, you must remember not to fill
the strings with zeros. This is because the zero is treated as a character. You
may beable to assign a space toeach array element. But ifyou concatenate
strings in your program, the space is included as one of the characters in the
string. This can lead to errors in your program, such as when you use the
LEN function, for example. Therefore, you should assign the elements of a
string with "nuU strings."

It would look tike this:

A STRING ARRAY10 REM CLEAR .

20 DIM Y$(6)
30 FOR 1=1 TO

40 Y$ (1)=""
50 NEXT I

60 END

The method is the same as for clearing a numerical array. Note that the
individual elements are assigned nullstrings in line 40. Make sure that there
are no spaces between the two quotation marks.

Now we come to examples using the index in connection with
FOR. . .NEXT loops. We assume three arrays with 6 elements each. The
elements have the following contents:

134

Abacus Software Atari ST BASIC Training Guide

a) b) c)

10

8

8

16 16

25 32

36 64

Howcan thesethree arrays be usedin a FOR. . .next loop?

Alittle study will show that the elements ofexample a) exactly match the
squares of the indices. The program could look like this:

10 DIM X(6)
20 FOR 1=1 TO 6

30 X(I)=I*I

4 0 NEXT I

50 END

The function of this loop will become more familiar if we write down the
individual steps:

DIM X(6)

1 = 1 X(l) = 1*1 = 1 1

1 = 2 : X(2) = 2*2 = 4 4

1 = 3 : X(3) = 3*3 = 9 9

1 = 4 : X(4) = 4*4 = 16 16

1 = 5 : x(5) = 5*5 = 25 25

1 = 6 : x(6) = 6*6 = 36 36

I is incremented by one each pass through the loop. I is multiplied by
itself and the result is assigned to the element whose index is I. This fills
the array with the squares ofeach value from 1to 6.

135

Abacus Software Atari ST BASIC Training Guide

The same principle of using the loop variable for calculation is used in
example b) as well.

With example b) we decrease the values of the array elements by 2with
every increase of the index. The starting value of the first array is 10. To
create this effect, we cannot change the FOR. . .next loop. This is because
the elements are accessed via the loop index. We must work out an
assignment rule that decreases the value ofthe elements in steps oftwo with
every increase of the index. The solution to this problem might look like
this:

10 DIM X(6)
2 0 FOR 1=1 TO 6

30 X(I)=12-2*I
4 0 NEXT I

50 END

In line 30 we have our assignment rule. Again, we've incorporated the
index into the calculation. Ifyou run I from 1to 6 in your mind, you see
that it produces exactly the sequence ofnumbers in example b). You can
check this by expanding the program with the following lines. The program
wiU thenoutputthe entirearray.

50 FOR 1=1 TO 6

60 PRINT X(I)
7 0 NEXT I

80 END

If you have difficulty understanding these programming solutions, use the
method in example a). Try writing the course of the program down on
paper.

Now to example c). You probably recognized a pattern here as well. The
numbers are, of course, the powers of two. You probably remember these
numbers from the section on number systems.

Itshouldn't be any problem to find an assignment rule for this example. We
use the 2 as a constant and the loop variable or index as the power. The
program then looks like this:

136

Abacus Software Atari ST BASIC Training Guide

10 DIM X(6)

2 0 FOR 1=1 TO 6

30 X(I)=2AI
4 0 NEXT I

50 END

Check the accuracy of this assignment by appending the program lines from
example b). You can also work the process out on paper to make itclearer.
With practice the principle of this technique wUl become quite familiar. And
when you encounter such techniques or applications in more complex
programs, you should be able to figure them out.

Up to now we have looked only at numerical arrays. Now we want to turn
to string arrays. There is usually no pattern to the layout ofthe individual
elements in string arrays. Assignments for the string arrays are often made
by the user via the keyboard. But another possibility is using the commands
read and DATA to initialize an array.

String arrays can be used to store such data as names, addresses, or
numbers that existas strings. Firstwe'll create an array in which we store
our friends' first names in the computer.

Because we often don't know the total number of friends, the size of the
array is unspecified. We'll have to specify the size of the array. But, if the
capacity of the array is reached, the program will output a message on its
own, instead of an error message. Our example will show how such a
program is created:

5 FULLW 2:CLEARW 2
10 REM LIST OF FIRST NAMES

20 DIM Y$(6)

30 Z=Z+1
40 INPUT "FIRST NAME";Y$(Z)
50 PRINT "MORE INPUT Y/N ?"
60 A$=CHR$(INP(2))
70 IF A$ <> "Y" THEN 100
80 IF Z < 6 THEN 30
90 PRINT "LIST IS FULL!"

100 END

To make the program easier to read, an array of only 6 (or 7) elements is
used here (line 20). Line 30 contains the counter. This counter is
incremented by one for each input. Since we don't know the exact number

137

Abacus Software Atari ST BASIC Training Guide

of names, we cannot use aFOR. . .NEXT loop. Line 40 asks for the entry
ofa name with input and assigns this to the element with the index of z
In line 50 you're asked if additional input is yet to be made. The function
line 60 should be familiar to us. Line 70 compares the character entered to
Y. If the character is not equal to Ythe program is ended atline 100. If more
mput is to take place, line 80 compares the counter to 6 to see if it is smaller.
If the counter already has the value 6, the message LIST is FULL ' is
printed in tine 90, and the program is ended. Ifwe had not incorporated this
check, the program would have terminated on a value greater than 6 with the
error message:

Subscript refers to element outside the array in
line 40

If z reaches the value 7, line 40 attempts to access the element y$ (7) .
Because of the DIM statement, this element does not exist. Unwanted
program interruptions such as this should be avoided whenever possible.
The same effect could be achieved with ON error GOTO and a
corresponding error-handling routine.

The program still doesn't do a whole lot, but the principle should become
clear. We could now add aquestion to see if the user wants to output the
whole list. You can make this enhancement yourself by incorporating the
appropriate IF . . . then test into the program. You can then display the
contents of the array with a FOR. . .NEXT loop.

Dimensioning an array with DIM D$ (200) can probably handle most
requirements. But a one-dimensional array isprobably sufficient for all your
programming needs.

First we come to an example where an array is fUled with read and data
commands. And imagine that you need the days of the week in your
program. It would require a lot of work to enter this information each time
the program was started. Why not put this data in data lines, then read
them into an array at the program's start with READ? Take a look at the
following example program:

138

Abacus Software Atari ST BASIC Training Guide

5 FULLW 2:CLEARW 2
10 REM DAYS OF THE WEEK

2 0 DIM WD$(7)
30 FOR 1= 1 TO 7

40 READ WD$(I)
50 NEXT I
60 DATA MONDAY,TUESDAY,WEDNESDAY,THURSDAY,FRIDAY,

SATURDAY,SUNDAY

70 REM OUTPUT YES/NO
80 PRINT "OUTPUT THE ARRAY Y/N"
90 A$=CHR$(INP(2))
100 IF A$<>"Y" THEN 140
110 FOR I = 1 TO 7

120 PRINT WD$(I)
130 NEXT I

140 END

This program is very similar to the one for the name list. The major
difference is found in line 40, where the data is read with READ instead of
INPUT. The DATA line is self-explanatory. At the conclusion of the
program is an option tooutput the entire array.

You've now learned how to transfer data to an array with the read and
DATA commands. Before we turn to two-dimensional arrays, brush up on
your knowlege of one-dimensional arrays with the problems on the
following page.

139

Abacus Software Atari ST BASIC Training Guide

Problems

1) Write a program that reads six names and places them in an array.
Furthermore, the program should output the name that would come
first in an alphabetical listing. Test the program with the names
Thomas, James, Russell, Julie, Arnie, and Janet. Remember that
strings can be compared with each other to see if they are equal, less
than, or greater. The result wiU be the name "Arnie."

2) Write a program that creates 6 random numbers and places these
numbers in an array. The largest of these numbers should be
printed. The random numbers should occur in the range 50 to 150.

3) Start with the foUowing array X(6):

X(D X(2) X(3) X(4) X(5) X(6)

0 2 6 12 20 30

Write a program and develop an assignment rule that creates this
array. Output the array as a check. Don't worry that we listed the
array elements horizontally this time. This isn't important when
you're working with one-dimensional arrays.

140

Abacus Software Atari ST BASIC Training Guide

4.1.3 Multi-dimensional arrays

Up to now we have used only one-dimensional arrays. We compared these
arrays to a drawer in which the data elements were stacked one above the
other. These drawers or lists usually don't consist of horizonal or vertical
data, but a combination of the two. They are composed of rows and
columns. Imagine that you wanted to expand the program that read a
person's first name into an array, so that the last names and the birthdates
were also available under the same index.

One way to do this is create three arrays in which the data can be stored.
Array A$ (X) can hold the first names, array B$ (X) the last names, and
array C$ (X) the birthdates. You have created three arrays with different
names. These arrays can be easily filled with data, but working with them
within the program is rather complicated. We therefore have the same
problem we had at the introduction toone-dimensional arrays.

Why shouldn't it be possible to use just one array instead of three? The
solution to ourproblem is called a multi-dimensional array.

In this particular case, we need a two-dimensional array. That's because we
want to store the individual first names in the same row as the data for the
last name and birthdate. Therefore, our array requires rows and columns.
The structure of such an array looks like this:

Column 1 Column 2 Column 3

Row 1

Row 2

Row 3

Row 4

Row 5

141

Abacus Software Atari ST BASIC Training Guide

The DIM statement for this array is:

DIM A$(5,3)

This reserves an array with 5 lines and 3 columns. (This dim statement
actually genetrates an array of 6 lines and 4 columns. However, we will not
use the Oth elements).

If you do not execute the DIM statement and use one of the elements from
this array, the computer automatically creates an array of size (10,10). It's
wise to use the DIM statement for multi-dimensional arrays, because you
can save quite a bit of memory space.

How is such an array used? Imagine that you want to fill the first three
columns of the first line ofthis array with data. You could use the following
program line:

40 INPUT"FIRST NAME, LAST NAME, BIRTHDATE";A$(1,1),
A$(l,2),A$(1,3)

This requires the input of three elements (first name, lastname, birthdate),
separated from each other by commas. However, this command is rather
hard to read within a program. Instead, we should use a total of three
INPUT commands written on three separate program lines. These lines look
like this:

40 INPUT"FIRST NAME";A$(1,1)
50 INPUT"LAST NAME";A$(1,2)
60 INPUT"BIRTHDATE";A$(1,3)

This assignment is easier to read. It also helps to avoid input errors, because
there is a prompt for the input of each element.

142

Abacus Software Atari ST BASIC Training Guide

Why isn't the input made in a loop—where the first name, last name, and
birthdate are read in succession with just one INPUT command? In our
example, each INPUT command has its own prompt describing the value to
beentered. This is why the three INPUT commands cannot bereplaced by a
single INPUT, so a loop cannot be used.

We wantto readexactly six first names, lastnames, andbirthdates. We can
use a FOR. . .NEXT loopfor this, as the following example shows:

10 REM READ 6 FIRST & LAST NAMES
20 REM AND BIRTHDATES

30 DIM A$(6,3)
4 0 FOR 1=1 TO 6
50 PRINT"FIRST NAME OF #";I;
55 INPUT A$(I,1)
60 INPUT"LAST NAME";A$(1,2)
70 INPUT"BIRTHDATE";A$(1,3)

80 NEXT I: END

Youcanfindprogram segments siirtilar to this in all small data management
programs.

Datafor multi-dimensional arrays is notinput from thekeyboard only. Data
from data statements read with the READ command can furnish data for a
program as well. You are familiar with this technique from the
one-dimensional arrays. We can use nested FOR. . .NEXT loops in
programs of this type. The following example shows how a
two-dimensional array of size (3,4) would be filled with data from data
statements:

10 REM LOAD ARRAY WITH DATA LINES
20 DIM X(3,4)

30 FOR R=l TO 3

4 0 FOR C=l TO 4

50 READ X(R,C)
60 NEXT C,R
70 DATA 11,12,13,14,21,22,23,24,31,32,33,34
80 REM ARRAY OUTPUT
90 PRINT"DISPLAY ARRAY (Y/N)?"
100 A$=CHR$(INP(2))
110 IF A$ <> "Y" THEN 170

143

Abacus Software Atari ST BASIC Training Guide

120 FOR R=l TO 3

130 PRINT X(R,1);X(R,2);X(R,3);X(R,4)
140 NEXT R

170 END

This example has an array with 3 rows and 4 columns which will be filled
by two nested FOR. . .NEXT loops. The inner loop (4 0 FOR C=l TO 4)
causes all elements in a row to be filled. Once this loop is completed the
outer loop (30 FOR r=i TO 3) fills all three rows in succession. The
following figure shows how the array is filled withdata.

ARRAY X(3.4)

11 * * * 11 12 * * 11 12 13 * 11 12 13 14
**** **** **** * * * *

**** **** * * * * *

11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14
21 * * * 21 22 * * 21 22 23 * 21 22 23 24
**** **** * * * * * * * *

11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14
21 22 23 24 21 22 23 24 21 22 23 24 21 22 23 24
31 * * * 31 32 * * 31 32 33 * 31 32 33 34

If you want to output the array, you need only press the Ykey. The array
will be printed in the form you see above. This output is accomplished with
tine 130. All four columns are printed on one line simultaneously. Only the
output of the three rows is accomplished by the FOR. . .NEXT loop.

The next example shows you another way ofoutputting the array with this
technique (the first lines of the program are omitted):

80 REM ARRAY OUTPUT

90 PRINT"DISPLAY ARRAY (Y/N)?"
100 A$=CHR$(INP(2))
110 IF A$ <> "Y" THEN 170
12 0 FOR R=l TO 3

130 FOR C-l TO 4

140 PRINT X(R,C);:ZZ=ZZ+1
150 IF ZZ=4 THEN ZZ=0:PRINT

144

Abacus Software Atari ST BASIC Training Guide

150 IF ZZ=4 THEN ZZ=0:PRINT

160 NEXT C,R

170 END

You can use two nested FOR. . . NEXT loops if you modify your program
this way. The semicolon in line 140 causes the values of the individual
elements to be printed one after the other. In order to construct the structure
of the array on the screen, a new line must be started after each four
elements are printed. This is the reason for the additional counter zz. This
counter registers how often an output has been made with print. Line 150
tests to see if this counter has the value 4. If this is the case, the counter is
set back to zero and another PRINT command is executed, causing the next
element to appear at the start of the next screen line. You can make the
output easier to read by using two PRINT commands, as in ourexample.

We now come back to the first example. We said that similar program
segments were found in data management programs. In this example, we
assumed that we would record the data of only 6 people. But the total
number of people is rarely known ahead of time. Usually weknow only the
number of data elements for each person to be recorded—the last name, first
name, and telephone number, for instance.

Say you want to write a program to replace your telephone directory. In
most cases, you don't know the number of persons, only the number of
data elements. So you can only approximate your dimensions. Let's assume
that you want to record about 100 telephone numbers. The DIM statement
X$ (12 0, 3) should be sufficient in this case. Here's an example:

10 REM READ IN DATA

20 DIM X$(50,3)
30 FULLW 2 :CLEARW 2

40 Z=Z+1

50 INPUT "FIRST NAME";X$(Z,1)
60 PRINT

70 INPUT "LAST NAME";X$(Z,2)
80 PRINT

90 INPUT "PHONE NUMBER";X$(Z,3)
100 PRINT

110 PRINT "DO YOU WANT TO"

120 PRINT "INPUT MORE DATA (Y/N)?"

130 A$=CHR$(INP(2))
140 IF A$="Y" THEN 30

150 END

145

Abacus Software Atari ST BASIC Training Guide

The preceding program could be solved more elegantly, ofcourse. We just
want you to understand the principle used here.

Since we don't use a FOR. . . NEXT loop, the counter in line 40 must be
inserted to increment the index by 1 for each new input. The data is then
read with INPUT commands that assign the data to the appropriate
elements. If additional data is to be entered, the program branches to line
30. Otherwise the program is ended. This is where a jump to a main menu
in a datamanagement program might occur—the place where the usercould
then select additional options.

A comparison is made in line 130 with IF . . . THENto see if more data is to
be entered. This is different from the first program, where this task was
assumed by a FOR. . . next loop.

Remember: We use IF . . . THEN when the exact number of data is not
known ahead of time.

These examples show how to use multi-dimensional arrays. The ST can
create arrays with up to 15 indices. This means that not only two-, three-, or
four-dimensional arrays can be created, but arrays with as many as fifteen
dimensions. Arrays beyond three dimensions become more difficult to
picture graphicaUy, but this does not mean that they can'tbe used in solving
certain problems.

Let's take a look at an example of a three-dimensional array. We will define
the indices as follows:

X = Row

Y = Column

Z = Depth

We will now create a three-dimensional array that we'll represent with 3
stackedplanes. This three-dimensional array can best be imagined as three
two-dimensional arrays, one after the other. The following illustration
should clarify this concept:

146

Abacus Software

(1.13) 1111 (1.3,3)

Plane
3

(2,1,3)

(3.1,3)

Plane

2

(1.1.2)

(2,1,2;

(3,1,2

(1.2.2)

(1,1,1)

(2.1,1)

(3,1,1)

Atari ST BASIC Training Guide

(1,3,2)

(1,2,1)

(2,2,1)

(3,2,1)

A(X,Y,Z)

X = row

Y = column

Z = plane

(1,3,1)

(2,3,1)

(3,3,1)

To create this array, the dim statementlooks like this:

DIM C(X,Y,Z)

or, as in our example:

DIM A(3,3,3)

This array has a total of 27 individual elements (3*3*3=27). Actually, this
array has 64 elements if we count the zero elements (4*4*4=64).

Your problem now is writing a program to fill this array with data. The
number of data is known. Assume that, in this 3D array, first the column
values of a row will be filled, then the rows themselves (as for a
two-dimensional array), and finally the individual "planes". Write the

147

Abacus Software Atari ST BASIC Training Guide

program to create the array shown in the illustration above. The value
assignments of the individual planes is intended. You don't have to create
the spatial effect in the output.

Our solution follows directly this time. Your program should look
something tike this:

10 REM 3-D ARRAY

20 DIM W(3,3,3)
30 FOR Z=l TO 3

4 0 FOR Y=l TO 3

50 FOR X=l TO 3

60 READ W(X,Y,Z)
70 NEXT X,Y,Z

80 DATA 1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,

90 REM ARRAY OUTPUT

100 FOR Z=l TO 3

110 FOR Y=l TO 3

120 FOR X=l TO 3

130 PRINT W(X,Y,Z);:ZZ=ZZ+1
140 IF ZZ=3 THEN ZZ=0:PRINT
150 NEXT X,Y,Z
160 END

You've got to remember the initial DIM statement, as in line 20. What
applies to a two-dimensional array also holds true for a three-dimensional
array. If you forget the DIM statement, the computer wiU create an array of
10*10*10=1000 elements, or 11*11*11=1331 elements! That would be an
enormous waste of memory space—you only need 27 elements.

Take a look at the three FOR. . .NEXT loops, opened in lines 30 through
50. The outer loop causes the individual planes of the cube to be filled. The
other two loops fill a two-dimensional sliceof the array. Line 70 closes all
three loops at once. Make sure that the loop variables are placed after the
NEXT in the proper order. The array is not printed in a spatial
representation, but the "planes" should be recognizable.

This concludes the section on multi-dimensional arrays. You should now be
able to use either one-dimensional or multi-dimensional arrays in your
programs. One and two-dimensional arrays are the ones most often used in
programs. The predominant application of arrays is data management.

148

Abacus Software Atari ST BASIC Training Guide

4.2 Subroutines

A subroutine is a programsegment that replaces several often-used, similar
program sections. A subroutine is an independent segment of a program,
and is usually located at the start or end of the the main program. Using a
subroutine is made with the command:

GOSUB (line number)

GOSUB is a an abbreviation for GOto SUBroutine. The tine number indicates
the location where the subroutine begins. When the computer encounters
this program command, it makes note of the line number from where it's
branching. Then it branches to the line number of the subroutine. The
computer continues with program execution there until it encounters the
return command:

RETURN

Program execution then returns to and continues with the statements
following the GOSUB command. If the program encounters the return
command without first having received the GOSUB command, the program
stops with the error message:

RETURN statement needs matching GOSUB at line
(line #)

Whenever you call a subroutine you must use the GOSUB command. A
common error is branching to a subroutine with the GOTO command. This
is often done with IF . . . THEN, as in the following:

110 IF A < 1 THEN GOTO 130 <!! ERROR !!
120 GOTO 90

130 REM SUBROUTINE

140 A=A+1

150 RETURN

In this example, a branch is made to a subroutine with a GOTO in line 110
(if A is less than 1). When GOTO is improperly used in such a subroutine,
the program would terminate with the error message:

RETURN statement needs matching GOSUB at line 150

149

Abacus Software Atari ST BASIC Training Guide

The proper syntax of line 110 must be:

110 IF A < 1 THEN GOSUB 130 < CORRECT

The following example shows another error. This error is difficult to
recognize in larger programs using subroutines:

10 REM ERROR IN SUBROUTINE
20 PRINT

30 PRINT Z

4 0 GOSUB 7 0

50 Z=Z+l:GOTO 20

60 END

7 0 REM SUBROUTINE

80 FOR 1=1 TO 25

90 PRINT I;

100 IF I>=15 THEN 50
110 NEXT I

120 RETURN

Enter this program and start it. After the 15th or 16th execution of the
subroutine, theprogram will terminate with theerror message:

?You've nested subroutine calls too deep at line 40

Theerror lies in the call to the subroutine. The program creates a blankline
after the start (line 20). Then the current value of the variable is printed—Z
serves as a counter for the number of times the subroutine is executed.

Line 40 makes the call to the subroutine with GOSUB 70. The program
jumps to the subroutine in line 70, and starts execution of the
FOR. . . NEXT loop. Line 90 outputs the value of the loop variable I.

Line 100 breaks two rules at once. First, you should never exit a
FOR. . . NEXT loop with GOTO. This can lead to problems with the internal
management of this loop. The second error is the more serious error of the
two: you cannot exit a subroutine without using the RETURN command.
Line 100 requires a jump out of the subroutine, for the case in which I is
greater than or equal to 15. Instead of THEN 50, we should write THEN
RETURN.

150

Abacus Software Atari ST BASIC Training Guide

You can branch back and forth within a subroutine with GOTO as with
normal programs. However, you cannot simply exit a subroutine with
GOTO. In our example, the program stops after the 16th execution of the
subroutine.

If you makean error like this in any of yourprograms, it may appear to run
correctly at first. Then, undercertain conditions it suddenly will crash. For
this reason you should always check your subroutines for this error. A
program carefully thought out and well planned will help you avoid such
errors.

Now we come to a practical application of subroutines. You mightrecall the
program MATH TUTOR. Look through this program listing for program
segments that are repeated in the program. Youwtil probably discover that
someprogramsegments could be combined into subroutines. The lines that
are often repeated are listed again here:

10 REM THIS LINE IS NEEDED TO BE ABLE TO RUN

230 CLEARW 2

240 PRINT TAB(10)"INPUT THE LARGEST"

250 PRINT

260 PRINT TAB(10)"NUMBER FOR ADDITION."

270 PRINT

290 PRINT TAB(10);:INPUT"LARGEST";GR

2 99 REM

300 REM RANDOM NUMBERS

301 REM

310 A1=INT(GR*RND(1))+1

320 A2=INT(GR*RND(1))+1

32 9 REM

330 REM COMPUTE RESULT

331 REM

34 0 ER=A1+A2

350 CLEARW 2

3 60 PRINT

370 PRINT "HOW MUCH IS" Al "+" A2 "= ";

380 INPUT ES

390 IF ES=ER THEN PRINT:PRINT TAB(10)"CORRECT!"

:F=0:GOTO 470

400 PRINT:PRINT TAB(10)"WRONG."

410 FOR 1=0 TO 2000:NEXT I

420 F=F+1

430 IF F<=2 THEN 350

151

Abacus Software Atari ST BASIC Training Guide

440 PRINT

450 FOR 1=0 TO 2000:NEXT I

460 PRINT TAB(5)"THE CORRECT ANSWER IS" ER
470 FOR 1=0 TO 3000:NEXT I

480 PRINT TAB(5)"ANOTHER PROBLEM Y/N";
4 90 INPUT A$

500 IF A$="Y" THEN F=0:GOTO 300
510 GOTO 10

These repeated program lines can begrouped into specific blocks. The first
block is the lines from 230 to 290, which requires the input of the largest
number for thecalculation type. Theproblem with this segment is that each
calculation type for which the largest number is read must be named. The
output:

ENTER THE LARGEST NUMBER FOR ADDITION

must be made more flexible in the subroutine, specificaUy regarding the type
of calculation.

We access the individual program segments such as addition, subtraction,
etc. with ON x GOTO in the menu. Therefore, it's advisable to use X as an
index. We'll see why we do this shortly.

At the start of the program we can create an array that contains the terms
addition, subtraction, division, and multiplication in the order in which
these terms appear in the menu. We can also output the menu itself with the
contentsof this array. Let's look at the modified programstart:

10 REM *****************

2 0 REM * PROGRAM START *
30 REM *****************

50 DIM RA$(4),BE$(4)
60 FOR 1=1 TO 4

70 READ RA$(I),BE$(I)
80 NEXT I

90 DATA ADDITION,+,SUBTRACTION,-,DIVISION,/,
MULTIPLICATION,*

100 GOTO 580

152

Abacus Software Atari ST BASIC Training Guide

til line 50 the two arrays RA$ and BE$ are generated. The two arrays are
loaded with the FOR. . .NEXT loop in line 60. The array RA$ is initialized
with the terms addition, subtraction, etc. The array BE$ is initialized with
the corresponding characters of the calculation types. After the program is
started, the arrays are fiUed with this data.

Let's take a look at tines 570 to 790 of the modified program to see how the
array RA$ is used to construct the menu.

57 0 REM **********

580 REM * MENU *

5 90 REM **********

600 CLEARW 2:F=0

610 PRINT

620 PRINT TAB(12)"MATH TUTOR"

630 PRINT:PRINT

640 PRINT TAB(12)"CHOOSE:"

650 PRINT

660 PRINT TAB(12)"1 FOR "RA$(1)
670 PRINT

680 PRINT TAB(12)"2 FOR "RA$(2)
690 PRINT

700 PRINT TAB(12)"3 FOR "RA$(3)
710 PRINT

720 PRINT TAB(12)"4 FOR "RA$(4)
730 PRINT

740 PRINT TAB(12)"5 TO END"

750 PRINT

760 PRINT TAB(12)"WHICH NUMBER?"

770 E$=CHR$(INP(2))
780 P=VAL(E$):IF P < 1 OR P > 5 THEN 770
790 ON P GOTO 800,890,990,1090,1180

In contrast to the previous version of the program, the menu selections
addition, subtraction, etc. are not mentioned individually, but are read from
the array RA$ in lines 660 to 720. The array elements were accessed
individually here for the sake of readability. You could also achieve this
with a FOR. . .NEXT loop. The following example illustrates this:

153

Abacus Software Atari ST BASIC Training Guide

660 FOR 1=1 TO 4

670 PRINT TAB(12)I" FOR "RA$(I)
680 PRINT

6 90 NEXT I

700 REM *** DELETE LINES 700 - 730 ***

When a character is read in line 770, it is first checked in line 780 to see if it
is a valid character (a digit between 1 and 5). If this is the case, the
numerical value is determined with VAL (E$) and assigned to the variable
P. Branches are made to the appropriate lines based on P. If addition is
selected, P has the value 1. This causes a branch to line 800. There begins
the program segment for addition. Let's take a look at the program lines for
this:

800 REM ************

810 REM * ADDITION *
82 0 REM ************

830 GOSUB 110

840 GOSUB 310

850 ER=A1+A2

860 GOSUB 390

870 IF A$="Y" THEN 840
880 GOTO 580

In line 830 the first subroutine is called. This is the segment in which the
highest number to be used in the calculations is entered. The next lines
constitute this first subroutine:

154

Abacus Software Atari ST BASIC Training Guide

110 REM **************

120 REM * SUBROUTINE *

130 REM **************

14 0 REM ************************

150 REM * INPUT LARGEST NUMBER *
160 REM ************************

17 0 CLEARW 2:A$="":B$=""
180 PRINT TAB(IO)"INPUT THE LARGEST NUMBER FOR"
190 PRINT

200 PRINT TAB(10)"FOR "RA$(P)M."
210 PRINT

220 PRINT TAB (10)"LARGEST NUMBER?"

230 FOR 1=1 TO 3

240 A$=CHR$(INP(2))
250 IF ASC(A$)<48 OR ASC(A$)>57 THEN 240
2 60 B$=B$+A$:PRINT A$;

270 NEXT I

280 GR=VAL(B$)

2 90 RETURN

The first part of line 170 should be familiar. But why are the variables A$
and B$ set to null in the second half? Since B$ is combined with A$ in line
260, it always "drags" its contents along. If the calculation type was
changed and this subroutine called again, the old contents of the variable
would be appended to the newly-read values. This would give a six-digit
number for the calculation of the random numbers. This is why the two
variables are set to null at the start of the subroutine.

The input of the three digits is done with INP (see the section on data input
with INP). In our current example, a couple of changes are necessary. For
one, only digits between 0 and 9 can be entered (line 250). The digits
entered are displayed in line 260 with PRINT A$. If you want to use just a
two-digit number, you mustfirst enter a zeroand then the remaining digits.

Line 200 is quite interesting. Here the value of P is used as an index. This
index enables the computer to read the suitable calculation type from the
array RA$. Youcan see thatit makes a lotof sense to use indexed variables.

155

Abacus Software Atari ST BASIC Training Guide

We assume that the data was placed in the array in the proper order. If we
selected addition, P has the value of 1. The term "addition" is located in
RA$ (1). For this reason, the character for calculation type is also placed in
a different array with the same index. With this little trick we have made our
subroutine match each of the four calculation types.

The next program line for addition, line 840, calls the subroutine for the
creation of the random numbers. This is the smallest and simplest
subroutine:

300 REM *************************

310 REM * CREATE RANDOM NUMBERS *
320 REM *************************

330 A1=INT(GR*RND(1))+1

340 A2=INT(GR*RND(1))+1
350 RETURN

No further explanation should be needed for this subroutine.

More important is the next subroutine, PROBLEM SET-UP. Here are the
tines for the following subroutine:

3 60 REM ******************

370 REM * PROBLEM SET-UP *

380 REM ******************

3 90 CLEARW 2

400 PRINT

410 PRINT "HOW MUCH IS";Al;BE$(P);A2;"= ";
420 INPUT ES

430 IF ES=ER THEN PRINT:PRINT TAB(10)"RIGHT!
:F=0:GOTO 500

440 PRINT:PRINT TAB(10)"WRONG!!"
450 FOR 1=1 TO 2000: NEXT I

460 F=F+1

470 IF F<==2 THEN 390

480 PRINT

490 FOR 1=1 TO 2000: NEXT I

156

Abacus Software Atari ST BASIC Training Guide

500 PRINT:PRINT TAB(5)"THE ANSWER IS"ER

510 F=0

520 FOR 1=1 TO 3000:NEXT I

530 PRINT

540 PRINT TAB(5)"ANOTHER PROBLEM Y/N";
550 INPUT A$

5 60 RETURN

Lines 390 and 400 need no explanation. Line 410 of this subroutine is
interesting. Here the statement of the problem is formulated. First the three
words:

HOW MUCH IS

are printed. Then the values of the variables Al, BE$ (P) , and A2 are
printed. These variables are followed by an equal (=) sign. We could
formulate the general form of this screen output like this:

HOW MUCH IS Al + (or-,*,/) A2 = ?

The proper calculation character BE$ (P) is printed, depending on the
calculation type selected via the index P.

We must ensure that Al and A2 always contain the correct values
independent of the calculation type. By correct values we mean than the
answer is always a positive whole number. We must prepare the values of
the variables Al and A2 in the individual program selections of addition,
subtraction, etc., so that our subroutine remains valid for all calculation
types.

The remaining program lines to line 540 should be familiar to you from the
original MATH TUTOR program. In line 550, A$ accepts the answer from
the question in line 540. Line 560 ends the subroutine with the RETURN
command. The contents of variable A$ are processed in the program
segments corresponding to the individual calculation types.

This concludes the program segment containing the subroutines. You've no
doubt noticed that we placed the subroutines at the start of the program.
Many books advise you to place the subroutines at the end of the main
program. Our decision was made in consideration of a program library.

157

Abacus Software Atari ST BASIC Training Guide

This example sorts subroutines according to line numbers. This is so the
subroutine for rounding a number is a line 50000, and so on. If you write a
new program, you can load these routines with a special command and
append them to the program. This MERGE instruction is usually offered as a
BASIC extension.

Why is it advantageous to give the subroutines low line numbers, thereby
placing them at the start of the program? It doesn't matter whether a
subroutine is appended to a program or the program is appended to the
subroutines. The results are equivalent.

A subroutine causes the computer to branch to the start of a program. There
it begins searching for the line number at which the subroutine starts. If the
subroutines are located at the start of the program, the execution time of the
program is reduced. For small programs this will hardly be noticeable, if at
all. But once the program has reached a moderate length, this trick will
make the program several seconds faster.

We said that the variables Al and A2 for the subroutine PROBLEM SETUP
must be prepared in the individual program segments for the calculation
type. This applies only to subtraction and division, since the values for the
variables from addition ER=A1+A2 and multiplication ER=A1 *A2 can be
passed directly to the subroutine.

For subtraction, you must make sure that Al is always larger than A2, to
ensure that no negative values arise. This is accomplished with the program
line 940. If Al is smaller than A2, the two values are exchanged in
temporary storage.

When division takes place, we want only integer results. For this reason the
result ER is first calculated by multiplying the variables Al and A2. In the
original program MATH TUTOR, we could state the problem as follows:

HOW MUCH IS ER / Al = ?

The previously-calculated result ERis divided by the variable Al. This must
lead to an integer value, namely the variable A2.

Our subroutine cannot use this method directly, since it is generalized for all
four arithmetical computations. This must be done in the Division program
section. The following program lines are used:

158

Abacus Software Atari ST BASIC Training Guide

1040 ER=A1*A2

1050 I=ER:ER=A1:A1=I

Here too the result is first calculated with the multiplication. Line 1050
assigns the correct values for the subroutine PROBLEM SETUP. Since we
can't switch the variable designations when the variable is output, we must
reassign the values of the variables.

To accomplish this, the technique of temporary storage is used. The variable
I initially contains the value of the variable ER. ER is then assigned the
value of Al. Finally, Al contains the value of I—that is, the old content of
ER. The contents of the two variables are exchanged in this manner. This is
how we get the proper assignments in the problem statement subroutine.

Now we'U list the complete program:

REM *****************

REM * PROGRAM START *

REM *****************

DIM RA$ (4) ,BE$ (4)
FOR 1=1 TO 4

READ RA$(I) ,BE$ (I)
NEXT I

DATA ADDITION,+,SUBTRACTION,-,DIVISION,/,
MULTIPLICATION,*

GOTO 580

REM **************

REM * SUBROUTINE *

REM **************

REM ************************

REM * INPUT LARGEST NUMBER *

REM ************************

CLEARW 2:A$="":B$=""
PRINT TAB(10)"INPUT THE LARGEST NUMBER FOR"

PRINT

200 PRINT TAB(10)"FOR "RA$(P)"."
210 PRINT

220 PRINT TAB (10)"LARGEST NUMBER?"

230 FOR 1=1 TO 3

159

10

20

30

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

Abacus Software Atari ST BASIC Training Guide

240 A$=CHR$(INP (2))
250 IF ASC(A$)<48 OR ASC(A$)>57 THEN 240
260 B$=B$+A$:PRINT A$;
270 NEXT I

2 80 GR=VAL(B$)
2 90 RETURN
300 REM *************************

310 REM * CREATE RANDOM NUMBERS *
32 0 REM *************************

330 A1=INT(GR*RND(1))+1
340 A2=INT(GR*RND(1))+1
350 RETURN

3 60 REM ******************

37 0 REM * PROBLEM SET-UP *

380 REM ******************

3 90 CLEARW 2

400 PRINT

410 PRINT "HOW MUCH IS";Al;BE$(P);A2;"= ";
420 INPUT ES

430 IF ES=ER THEN PRINT:PRINT TAB(10)"RIGHT!"
:F=0:GOTO 500

440 PRINT:PRINT TAB(10)"WRONG!!"
450 FOR 1=1 TO 2000: NEXT I

460 F=F+ 1

470 IF F<=2 THEN 390

480 PRINT

4 90 FOR 1=1 TO 2000: NEXT I

500 PRINT:PRINT TAB(5)"THE ANSWER IS"ER
510 F=0

520 FOR 1=1 TO 3000:NEXT I

530 PRINT

540 PRINT TAB(5)"ANOTHER PROBLEM Y/N";
550 INPUT A$

5 60 RETURN

57 0 REM **********

580 REM * MENU *
5 90 REM **********

600 CLEARW 2:F=0

610 PRINT

620 PRINT TAB(12)"MATH TUTOR"
630 PRINT:PRINT

64 0 PRINT TAB(12)"CHOOSE:"
650 PRINT

160

Abacus Software Atari ST BASIC Training Guide

660 FOR 1=1 TO 4
670 PRINT TAB(11)I" FOR "RA$(I)
680 PRINT

690 NEXT I

740 PRINT TAB(12)"5 TO END"

750 PRINT

760 PRINT TAB(12)"WHICH NUMBER?"

770 E$=CHR$(INP(2))
780 P=VAL(E$):IF P < 1 OR P > 5 THEN 770
790 ON P GOTO 800,890,990,1180
8 00 REM ************

810 REM * ADDITION *
82 0 REM ************

830 GOSUB 110

840 GOSUB 310
850 ER=A1+A2

8 60 GOSUB 3 90
870 IF A$="Y" THEN 840
880 GOTO 580
8 90 REM ***************
900 REM * SUBTRACTION *
910 REM ***************

920 GOSUB 110

930 GOSUB 310
940 IF Al < A2 THEN I=A1:Al=A2:A2=I
950 ER=A1-A2

960 GOSUB 390
970 IF A$="Y" THEN 930

980 GOTO 580
990 REM ************

1000 REM * DIVISION *
1010 REM ************

1020 GOSUB 110

1030 GOSUB 310

104 0 ER=A1*A2
1050 I=ER:ER=A1:A1=I

1060 GOSUB 390

1070 IF A$="Y" THEN 1030
1080 GOTO 580
1190 REM ******************
1100 REM * MULTIPLICATION *
1110 REM ******************

1120 GOSUB 110

161

Abacus Software 7T BASIC Training Guide

1130 GOSUB 310

1140 ER=A1*A2

1150 GOSUB 390

1160 IF A$="Y" THEN 1130
1170 GOTO 580
1180 REM *******

1190 REM * END *

1200 REM *******

1210 CLEARW 2

1220 END

By using three subroutines we saved 43 program lines—despite our using
more REM statements! You can see that it's not only easier to use
subroutines, but it also helps save memory space. Also, you've no doubt
recognized the purpose of line 100. The subroutines are skipped and a
branch is made directly to the menu.

Not only is it possible to call the subroutines from the main program, it is
also possible to call them from a subroutine. Graphically this would look as
follows:

Main Program

30 GOSUB 100

900 END

Subroutine 1

100

110

GOSUB 200

RETURN

When the program is run, this routine works as foUows:

162

Subroutine 2

Abacus Software Atari ST BASIC Training Guide

The program encounters the GOSUB command in line 30. It then jumps to
Subroutine 1 at line 100. While in Subroutine 1, a GOSUB 200 calls
Subroutine 2. Subroutine 2 is executed until the RETURN command.

The RETURN jumps the program back to Subroutine 1, where it continues
execution with the instruction following the GOSUB. The Subroutine 1 is
then executed through the RETURN command. From there, execution
returns to the main program, i.e. the instruction following the GOSUB (line
40).

Remember: You can "nest" subroutines in much the sameway as you nest
FOR. . .NEXT loops.

Furthermore, we have already learned the ON X GOTO command. This
command sequence also works with GOSUB. Here is an example of the
notation:

ON P GOSUB 800,890,990

Remember that after the jump tothe subroutine, the program continues on at
the tine after this statement.

We hope that the examples given have clarified the technique of using
subroutines. To see how well you have understood all this, try sovmg the
following:

There's another way of using subroutines in the new version of MATH
TUTOR-the ON GOSUB command. Your goal is to modify the program in
this form. You don't have to rewrite the program for this. First consider
which program segments must be changed. You don't have to place the new
subroutines at the beginning ofthe main program this time. Again we have
placed the solution to this problem following so that we can discuss the
solution now.

163

Abacus Software Atari ST BASIC Training Guide

Solution

10 REM *****************

20 REM * PROGRAM START *
30 REM *****************

50 DIM RA$(4),BE$(4)
60 FOR 1=1 TO 4

70 READ RA$(I),BE$(I)
80 NEXT I

90 DATA ADDITION,+,SUBTRACTION,-,DIVISION,/,
MULTIPLICATION,*

100 GOTO 580
110 REM **************

120 REM * SUBROUTINE *
130 REM **************

14 0 REM ************************

150 REM * INPUT LARGEST NUMBER *
160 REM ************************

170 CLEARW 2:A$="":B$=""

180 PRINT TAB(10)"INPUT THE LARGEST NUMBER FOR"
190 PRINT

200 PRINT TAB(10)"FOR "RA$(P)"."
210 PRINT

220 PRINT TAB (10)"LARGEST NUMBER? ";
230 FOR 1=1 TO 3
240 A$=CHR$(INP(2))
250 IF ASC(A$)<48 OR ASC(A$)>57 THEN 240
260 B$=B$+A$:PRINT A$;
270 NEXT I

280 GR=VAL(B$)
2 90 RETURN

300 REM *************************

310 REM * CREATE RANDOM NUMBERS *
32 0 REM *************************

330 A1=INT(GR*RND(1))+1
340 A2=INT(GR*RND(1))+1
35 0 RETURN

3 60 REM ******************

370 REM * PROBLEM SET-UP *
380 REM ******************

3 90 CLEARW 2

400 PRINT

164

Abacus Software Atari ST BASIC Training Guide

410 PRINT "HOW MUCH IS";Al;BE$(P);A2;"= ";
420 INPUT ES
430 IF ES=ER THEN PRINT-.PRINT TAB (10) "RIGHT !"

:F=0:GOTO 510

440 PRINT:PRINT TAB(10)"WRONG!!"
450 FOR 1=1 TO 2000: NEXT I

460 F=F+1

470 IF F<=2 THEN 390
480 PRINT

490 FOR 1=1 TO 2000: NEXT I
500 PRINT:PRINT TAB(5)"THE ANSWER IS"ER
510 F=0
520 FOR 1=1 TO 3000:NEXT I

530 PRINT
540 PRINT TAB(5)"ANOTHER PROBLEM Y/N";
550 INPUT A$

5 60 RETURN

57 0 REM **********

580 REM * MENU *
5 90 REM **********

600 FULLW 2:CLEARW 2:F=0
610 PRINT

620 PRINT TAB(12)"MATH TUTOR"
630 PRINT:PRINT

64 0 PRINT TAB(12)"CHOOSE:"

650 PRINT

6 60 FOR 1=1 TO 4
670 PRINT TAB(11)I" FOR "RA$(I)
680 PRINT

690 NEXT I

740 PRINT TAB(12)"5 TO END"
750 PRINT
760 PRINT TAB(12)"WHICH NUMBER?"
770 E$=CHR$(INP(2))

780 P=VAL(E$)
790 IF P < 1 OR P > 5 THEN 770
800 IF P=5 THEN 1100
810 GOSUB 110

820 GOSUB 310
830 ON P GOSUB 880,930,990,1050
840 GOSUB 390
850 IF A$="Y" THEN 820
860 GOTO 580

165

Abacus Software Atari ST BASIC Training Guide

87 0 REM ************

880 REM * ADDITION *
8 90 REM ************

900 ER=A1+A2
910 RETURN

92 0 REM ***************

930 REM * SUBTRACTION *
94 0 REM ***************

950 IF Al < A2 THEN I=A1:A1=A2:A2=I
960 ER=A1-A2

97 0 RETURN

980 REM ************

990 REM * DIVISION *
1000 REM ************

1010 ER=A1*A2

1020 I=ER:ER=A1:A1=I
1030 RETURN

104 0 REM ******************

1050 REM * MULTIPLICATION *
10 60 REM ******************

107 0 ER=A1*A2

1080 RETURN

1090 REM *******

1100 REM * END *
1110 REM *******

1120 CLEARW 2

1130 END

You probably found the solution quickly. A total of five program lines
always appear in the program lines listing the four calculation types. For
example, the foUowing lines are for addition:

830 GOSUB 110

840 GOSUB 310

860 GOSUB 390

870 IFA$="Y" THEN 840
880 GOTO 580

Theonly difference in the individual program sections lies in the calculation
itself. This is why lines 830, 840, 860, 870, and 880 are placed after the
menu. The test of P=5 is made separately, since the end of the program
does not involve a subroutine.

166

Abacus Software Atari ST BASIC Training Guide

This way we can write the calculations for addition, subtraction, etc. as
subroutines and caUthem with the command:

ON P GOSUB

We save nine program lines in this manner.

This solution concludes the section on subroutines. Here is a summary of
the most important things to remember when working with subroutines:

1. Subroutines combine several repetitive sections of a
program.

2. Subroutines are called with GOSUB and terminated with
return. They may never be called orexited with GOTO.
The GOTO command may be used within the subroutine,
however.

3. Subroutines may be "nested," in the sense that one
subroutine may call another. Since thereturn addresses are
stored in the computer, the total number of nested
subroutines is limited. Be sure that each GOSUB command
has a corresponding RETURN.

4. Subroutines may also be called with ON x GOSUB.

In thenext section we wiU take a look at the structure and use of menus.

167

Abacus Software Atari ST BASIC Training Guide

4.3 Menu techniques

Once you have become proficient in BASIC programming, you will
probably want to write larger programs on your own. You may want to
write sizable programs for fun—or even profit. Ifyou do write aprogram
intended for sale in the highly competitive software market, it's a real
advantage ifyour program is user-friendly. What do we mean by this?

A program is written to perform certain tasks, like calculate formulas or
draw charts. But the user must know exactly how to use the
program—what keys to press to, say, recalculate a column of numbers or
change a bar graph's fill pattern. User-friendly means that someone who
isn t familiar with the program will still be able to use itwithout agreat deal
of explanation or training. Naturally, no large program is complete without
a user s manual. But good programmers try to write programs so that the
user won't have torefer to the manual for every minor function.

Don't worry. We don't expect you to write any instruction manuals For
now its sufficicient for you to master the principles of menu techniques.

We've already mentioned the term menu in connection with the program
math tutor; in fact, you worked with a menu in that program. For our
purposes, we'll define the term menu as foUows:

Menu: a list of the individual points in the program that the
user can choose from by pressing a letter ornumber key on the
keyboard.

What amenu looks like is up to you. But amenu should always be as clear
and readable as possible. Separating the different program functions should
be as concise and easy to understand as possible, not overwhelming And
you should always try to make your menus aesthetically pleasing.

We'll next show you how to construct amenu step-by-step. As aworking
example we'll create amathematical table of commonly-used computations.

We first clearly determine the purpose of the program. Our mathematical
table wiU require the following computational functions:

168

Abacus Software Atari ST BASIC Training Guide

Square root

Sine

Cosine
Natural logarithm
Base 10 logarithm

The user wiU select one of these five functions to beperformed.

This initial menu lacks something—the program end option. You should
write your programs so that they can be ended with such an option, not just
with <Control>C or the on/off switch. This gives our menu six options.

We also need a statement in ourprogram that will prompt the user to enter a
number or a letter, something like:

ENTER YOUR SELECTION (1-6)

The planning for our menu is now almost complete. We want to add a
heading and aborder as aesthetic improvements. We will wnte the program
so thetitlewtilbe on thescreen during execution of each program segment.
Asubroutine is a good way to create a title. This illustrates how the menu
wiU later appear on the screen.

**
*

*

* MATHEMATICAL TABLE *
*

**

1 SQUARE ROOT
2 SINE

3 COSINE

4 NATURAL LOGARITHM

5 LOGARITHM BASE 10
6 END PROGRAM

INPUT THE NUMBER OF YOUR CHOICE (1-6)

We'll need to read the number in the last line, as well. At first we'll use the
INPUT command for the input. Later we'll see how to use the INP
command in this position. Here's alisting of aprogram to create this menu:

169

Abacus Software Atari ST BASIC Training Guide

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

390

400

410

420

430

450

460

REM *****************

REM * PROGRAM START *
REM *****************

REM

CLEARW 2:FULLW 2

DIM M$ (6)
FOR 1=1 TO 6

READ M$(I):NEXT I
DATA "

DATA "

DATA "

DATA "

DATA "

DATA "

GOTO 330

REM

REM

REM

REM

REM

REM

REM

1 SQUARE ROOT"
2 SINE"

3 COSINE"

4 NATURAL LOGARITHM"
5 LOGARITHM BASE 10"
6 END PROGRAM"

* SUBROUTINES *

* HEADLINE *

CLEARW 2

FOR 1=1 TO 40:PRINT"*";
PRINT "*(38 blankspaces)* "
PRINT "*(70s/?aces)MATHEMATICAL TABLE(70 spaces)*"
PRINT "*(38 blank spaces)* "
FOR 1=1 TO 40:PRINT"*";
RETURN

REM ********

REM * MENU *

REM ********

GOSUB 230

FOR 1=1 TO 2:PRINT:NEXT I
FOR 1=1 TO 6

PRINT M$(I)
NEXT I

PRINT

PRINT "INPUT THE NUMBER OF YOUR CHOICE (1-6)
W$=CHR$(INP (2))

170

:NEXT I:PRINT

:NEXT I:PRINT

Abacus Software Atar: ST BASIC Training Guide

First we wiU explain the individual program lines. Line 50 clears the screen.
In lines 60 through 80, the array M$ is initialized with the data from the
DATA statements from lines 90to 140. The program then branches past the
subroutines and continues execution with tine 330. Fromthere the program
branches to line 230, where the menu heading is created. After leaving the
subroutine, program execution continues with line 340. Line 390 outputs
three blank lines so that the menu options don't appear right below the
heading. Lines 400 to 420 display the array with the individual menu
options. Line 450 displays the prompt for the user to enter a value. Since
thePRINT command in this line is terminated with a semicolon, the input is
expected directly behind the parentheses (1-6).

These areall fundamentals of creating a menu. We'll skip the variable input
and program branch, as we have already covered these subjects in previous
sections. The principle is the same as for MATH TUTOR. Since we are
working with INP, remember to check the entered values for validity.

Note the subroutine HEADER. You can call this subroutine whenever you
want to reconstruct the screen. When you branch to the program segment
for square root calculation, the first call there should be:

GOSUB 230

Youcan thenaskfor the inputof thevalue to be calculated.

Finish writing this program for the practice—but first we want to explain
about cursor positioning.

4.3.1 Cursor positioning with GOTOXY

GOTOXY sets the cursor to a specific position on the screen.

The notation of GOTOXY is:
GOTOXY X,Y

The parameters are:

X = column number (0-39)
Y = line number (0-24)

171

Abacus Software Atari ST BASIC Training Guide

The positioning is usually followed by output with print. The following
example should clarify this:

10 CLEARW 2

20 GOTOXY 19,12
30 PRINT "OUTPUT WITH GOTOXY"
4 0 END

This gives us an easy-to-use method for outputting text at arbitrary locations
on the screen. This can prove quite useful as used in the following section.

4.3.2 Using input routines in the menu

The input operations we previously used with INP were very primitive. If
you entered three characters ornumbers, they were automatically accepted
without discrimination. Also, three characters of input were always
required, forcing the user to enter the digit sequence 054for the number 54.
Furthermore, it wasn't possible toenter a number larger than 999. We had
to resort to the INPUT command.

We should mention again that the INPUT command is usually sufficient for
your own applications. But if you want to eliminate error conditions in
your program, eventually you'll have to use the INP instruction.

Now we'll deal with the development of our own input routine. Once
completed, it can be adapted for use in your own programs. The first line
should look familiar:

10 A$=CHR$(INP(2))

With this you can read any character from the keyboard and assign it to A$.
In this example we want to read numbers only. Therefore, input other than
numbers must be disregarded. We accomplish this with an if . . . then
test:

10 A$=CHR$(INP(2))
20 IF ASC(A$) < 48 OR ASC(A$) > 57 THEN 10

The ASCH values 48 through 57 represent the numbers from 0 to 9. If the
ASCII value entered is less than 48 or greater than 57, the input is ignored

172

Abacus Software Atari ST BASIC Training Guide

and the program branches back to line 10. To limit the number to a certain
number ofdigits, we must count valid characters. If the largest number is to
be 4 digits, we must test the counter to see if it's larger than 4. We need two
additional tines—one in which the counter is incremented, and one in which
the counter is checked for the value 4.

10 A$=CHR$(INP(2))
20 IF ASC(A$) < 48 OR ASC(A$) > 57 THEN 10
30 Z=Z+1

4 0 IF Z>4 THEN 10

The counter z in line 30 is incrementedonly when a valid value is entered.
If z already has a value of 4, no more values are accepted and the program
jumps back to line 10.

We now tell our routine that the entered value is acceptable. As with the
INPUT command, we will use the <RETURN> key. What ASCII code
does the <RETURN> key have? From the table we learn it has the value 13.
We need only test ASC (A$) for the value 13. But where do we put this
test? Since 13 is less than 48, we can't put this test after line 20. Otherwise
the <RETURN> key will be ignored. This test must have a line number less
than 20. Let's use the number 15.

Where should the routine branch when the <RETURN> key is pressed? We
reaUy don't know yet. However, we can see that the routine probably won't
get very large, so we'll branch to line 100.

10 A$=CHR$(INP(2))
15 IF ASC(A$) = 13 THEN 100
20 IF ASC(A$) < 48 OR ASC(A$) > 57 THEN 10
30 Z=Z+1

40 IF Z>4 THEN 10

Whatwe neednow is a line thatchains the entered characters together into a
string. This is done in line 50. Furthermore, we want to be able to see our
input on the screen. Line 60 prints the characters at the current cursor
position, one after the other (as a result ofthe semicolon):

10 A$=CHR$(INP(2))
15 IF ASC(A$) - 13 THEN 100
20 IF ASC(A$) < 48 OR ASC(A$) > 57 THEN 10
30 Z=Z+1

40 IF Z>4 THEN 10

173

Abacus Software Atari ST BASIC Training Guide

50 B$=B$+A$
60 PRINT A$;
70 GOTO 10

Now we only need to convert the string we have assembled in B$ into a
numeric value, and assign it to a numeric variable. This can be done after
the <RETURN> key is pressed. Also, we must remember to set counter z
back to zero after the <RETURN> key. Otherwise the old value will be
retained the next time the routine is called, andyou won't be able to entera
four-digit number.

If the routine is to be a subroutine, the last line must contain a RETURN
command. First we'll take a look at the complete routine. After you have
entered it, you can experiment with it a little. Maybe, in the last line, you
want to output the numerical value assigned to the variable:

10 A$=CHR$(INP(2))
15 IF ASC(A$) = 13 THEN 100
20 IF ASC(A$) < 48 OR ASC(A$) > 57 THEN 10
30 Z=Z+1

40 IF Z>4 THEN 10

50 B$=B$+A$
60 PRINT A$;
70 GOTO 10

100 B=VAL(B$):Z=0
110 PRINT B

120 END

Now we have a GET routine that wiU read anumber ofup to four digits and
display it. If you want to be able to enter larger numbers, change the value
in tine 40.

This routine is already easier to use than the one in MATH TUTOR. We are
still missing the function that allows us to delete values already entered.
This function is oneof the more complicated features of such a GET routine.
The foUowing routine listing contains this function:

174

Abacus Software Atari ST BASIC Training Guide

10 REM GET-ROUTINE

12 LN=16 : REM LINE NUMBER LOCATION
15 GOTOXY 0,LN
20 A$=CHR$(INP(2))
30 IF ASC(A$) = 13 THEN 130
40 IF ASC(A$) <> 8 THEN 70
50 IF LEN(B$) < 1 THEN 20
55 GOTOXY 0,LN:FOR 1=1 TO LEN(B$):?" ";:NEXT
60 B$=LEFT$(B$,LEN(B$)-1):Z=Z-1:GOTOXY 0,LN
65 PRINT B$; -.GOTO 20
70 IF ASC(A$) < 48 OR ASC(A$) > 57 THEN 20
80 Z=Z+1

90 IF Z > 4 THEN Z=4:GOTO 20
100 B$=B$+A$

110 PRINT A$;

12 0 GOTO 20

130 B=VAL(B$):Z=0
140 PRINT B

150 END

We'll discuss the program's new lines. Line 40 checks to see if the
<BACKSPACE> key was pressed. The ASCII value of this key is 8. If this
key was not pressed, the program branches to line 70. If <BACKSPACE>
key was pressed, line 50 checks to see if the string B$ still contains
characters.

If the string is empty, the<BACKSPACE> key is ignored and the program
branches back to tine 20.

Line 55sets the cursor position tozero on our input line—designated in line
12. Then it erases the input by replacing it with spaces.

Deleting the character takes place in line 60. The string in B$ is shortened
by one character by the command sequence:

B$=LEFT$(B$,LEN(B$)-1)

The function LEFT$ (B$, X) creates a string consisting of the Xleftmost
characters of B$. In most cases, a number takes the place of X. Here we use
the LEN function instead of X. The calculation LEN (B$) -1 is first
executed.This means a value exactly one less than the current length of B$
is used. Substring of B$ is assigned this new value. This substring is
exactly once character shorter than the original string B$.

175

Abacus Software Atari ST BASIC Training Guide

This substring is then assigned to B$. This process is something similar to
the foUowing operation for numerical variables:

A=A-1

Here the value 1 is subtracted from the variable Aand the result is again
assigned to A. This command sequence deletes the last character of the
string B$.

In addition, the counter z must be decremented by 1 in line 60 since the
number of digits in the entire number has been decreased. We want to enter
a maximum number of four digits. Therefore, z is used as a counter to
count valid characters already entered. If we delete a character, not only
must the string B$ be shortened by one character, but 1 must also be
subtracted from the value of z. If you forget to decrement the counter, it
would no longer be possible to enter anything after four valid characters.
The string B$ would be shortened by one character each time the
<BACKSPACE> key was pressed, but since the counter had reached the
value four, theprogram would branch in tine90 back to line20 again.

The last command in line 60 sets the cursor back to the beginning of the
line. Line 60 prints the new contents of B$—shortened a character. Then it
branches to the character input.

We nowhavea routine that lets us inputshort or long strings, depending on
the setting of the variable Z. The routine is quite similar to the INPUT
command, but we can edit characters and limit the length.

You are now in the position to adapt this routine to your programs. That is,
you can determine yourself which keys will be allowed through the
corresponding IF . . . THEN tests.

176

Abacus Software Atari ST BASIC Training Guide

4.4 Sorting procedures

Many programs require data sorted according to various ordering criteria:
size, alphabetical order, etc. There are a variety ofdifferent procedures for
sorting. All differ from each other inperformance and degree ofdifficulty.
We wiU become familiar with a simple procedure that will at least give you
an introduction into this subject. The more complicated sorting techniques
can be more frightening than exciting to a beginner. However, if you're
interested in advanced sorting procedures, there are many books available
on the subject.

We'll use what's known as the bubble sort. Bubble sorts are so named
because individual elements to be sorted "bubble up" to the top according to
size. The principle of the bubble sort procedure involves comparing two
neighboring elements. Ifone element is larger than the other, an exchange is
made. AU elements arecompared with eachother in succession.

To demonstrate the bubble sort, we'll fill an array with random numbers,
and then sort and print it. We will use an array of 6 elements. The first
program lines dimension the array and fill it with values:

10 REM GENERATE ARRAY

20 DIM F(6):RANDOMIZE 0:CLEARW 2
30 FOR 1=1 TO 6
40 A=INT(50*RND)+1

50 F(I)=A

60 NEXT I

The comparisons and exchanges will be accomplished with IF . . . THEN
tests. This could also be done with a FOR. . .NEXT loop, but the procedure
wouldn't be so clear. Once you understand the procedure, you'll be able to
perform it with a FOR. . . NEXT loop.

177

Abacus Software Atari ST BASIC Training Guide

Now the program lines for the sort procedure:

100 REM BUBLE SORT
110 Z=0

120 IF F(6) >= F(5) THEN 140
130 F(0)=F(6) :F(6)=F(5) :F(5)=F(0) :Z=l
140 IF F(5) >= F(4) THEN 160
150 F(0)=F(5) :F(5)=F(4) :F(4)=F(0) :Z=l
160 IF F(4) >= F(3) THEN 180
170 F(0)=F(4) :F(4)=F(3) :F(3)=F(0) :Z=l
180 IF F(3) >= F(2) THEN 200
190 F(0)=F(3) :F(3)=F(2) :F(2)=F(0) :Z=l
200 IF F(2) >= F(l) THEN 220
210 F(0)=F(2) :F(2)=F(1) :F(1)=F(0) :Z=l
220 IF Z=l THEN 110
230 FOR 1=1 TO 6
240 PRINT F(I);
250 NEXT I

260 PRINT

270 END

Line 110 first sets z to zero. You will see why this is done later on in the
program. Line 120 performs the first comparison. If the contents of the
element F(6) are already greater than or equal to F(5),no exchange need
be made and a branch is made directly to line 140. IfF (6) is smaller than
F (5), an exchange is performed in line 130.

The principle ofthe exchange should already be familiar to you. We use the
element F (0) for temporary storage ofa variable value. Next the value of
the element F(5) is assigned to element F(6). Finally, f (5) is assigned
the value of F(0) —that is, the old value of F(6). This principle is used in
the other program lines as well.

Zis then set to one because an exchange does occur. We can learn from z
whether or not an exchange took place. If z has the value 1, an exchange
was made. Conversely, if z has the value 0, no exchanges were made This
is common programming technique to check if specific processes occurred
or not. Variables like z areknown as flags.

178

Abacus Software Atari ST BASIC Training Guide

If the flag Zretains the value of zero throughout a pass, we know that no
exchanges taken place. Therefore the array is sorted. The advantage flags
have under theseconditions is that they terminate sorting afterone pass—if
the elements of the array happen to be in the right order already. This
procedure is also called a bubble sort with switch. Its difference from a
standard bubble sort is that it terminates the sorting process as soon as the
array is sorted.

The last lines of the sort routine output the sorted array. If you want to see
how the sorting takes place in the individual steps, change the last program
lines as foUows:

2 20 FOR 1=1 TO 6

2 30 PRINT F(I);

2 40 NEXT I

2 50 PRINT

2 60 IF Z=l THEN 110

2 70 END

The bubble sort procedure works well for use with up to about 100
elements. Try to gain a solid understanding of bubble sorts. This
knowledge wiU come in handy when youlaterwork with more complicated,
efficient sort procedures. This concludes our discussion of the subject.

179

Chapter 5

WORKING WITH THE DISK DRIVE

5.1 Program management
5.2 Sequential file management

D

Abacus Software Atari ST BASIC Training Guide

5.1 Program management

Few computer users turn their computers off and then back on again and
still expect their entered program lines to remain in the computer's memory.
The internal memory of the ST, like the memory of all computers, is only
temporary. If it isn't supplied with electrical current, its contents are lost.
For this reason it's necessary to store programs on an external storage
medium. For this purpose, Atari ST is equipped with floppy disk drive.

This disk drive allows you to store up to 360 Kbytes or 720 Kbytes of your
data, either programs or other files, and retrieve your data at any time. As
with many other commands, the BASIC menu bar has all the commands
needed to save and load programs. In this section we will take a look at the
commands avatiable for program management.

5.1.1 Saving programs

The ST has two ways of a savinga program. The first command for saving
programs is the command SAVE . The SAVE command stores a program on
the diskette, provided there's no other file on the disk by that name:

SAVE (name, line range)

Parameter name determines the name of the program. This name is
constructed as follows:

xxxxxxxx.yyy

The actual filename may consist of a maximum of 8 characters. An
extension may be entered following the period, andcan contain a maximum
of 3 characters. Files are classified and easily identified with an extension.
If no extension is entered, . BAS is automatically appended. Note that the
program name is no! placed in quotation marks.

The line range corresponds to the parameter of the LIST or delete
command. If no line range is given, the entire program is saved.

183

Abacus Software Atari ST BASIC Training Guide

The SAVE command creates an error message ifthe program already exists
under the given name on the diskette.

Here's the second way to save a program:

REPLACE name, line range

As the name implies, this command replaces a program by the same name
already on the disk. This command erases the old data with that name, and
stores the new. The parameters correspond to thoseof the SAVE command.

5.1.2 Loading programs

ST BASIC also has two commands available for loading a program. They
are identical in the way they work:

OLD name

(or)

LOAD name

If no filename extension is entered, the extension .BAS is automatically
supplied. If the specified program is not found, the following error message
wUl be printed:

File not found on disk drive specified

5.1.3 Displaying the disk contents

The ST BASIC command to display the contents of the diskette is dir.
dir is an abbreviation for directory. The syntax is as follows:

DIR drive: mask

184

Abacus Software Atari ST BASIC Training Guide

If the command is entered without a mask, the entire contents of the
directory are displayed. A mask allows you to display specific groups of
files by modifying a DIR command. An asterisk signifies that all characters
normally in place should be ignored. In other words, the asterisk substitutes
for groups of characters. Some examples:

DIR A: * . BAS shows all BASIC programs on drive A.

DIR B:TEST.* lists aU files with name TEST. Extension is ignored.

DIR A:A*.B* lists aU files with names beginning with A and
extensions beginning with B.

Another character used with DIR command masks is the question mark (?).
A question mark designates the individual characters that will be ignored in
the listed filenames. For example, the mask ?FILE . BAS would list the
files AFILE . BAS, BFILE . BAS, CFILE . BAS, etc.

5.1.4 Erasing files

Once a disk gets so full that no more programs can be saved on it, you may
want to do some "cleaning up". Usually the disk contains old versions of
programs that are no longer required.

The foUowing command is used to erase files:

ERA drive:name

The command ERA A: TEST . BAS deletes the program TEST. BAS from
the diskette in drive A, for instance. A mask can also be given instead of the
filename, as described with the DIR command.

ERA A: * . * (deletes aU files from drive A)

Again, there is an equivalent ST command:

KILL "drive:name"

185

Abacus Software Atari ST BASIC Training Guide

The only difference between the two commands is that the latter specifies
the filename in the quotation marks. The advantage of this should not be
overlooked: the parameter is a string. The following command sequence is
therefore possible in connection with the KILL command:

B$="PROGl.BAS"
KILL B$

The advantage of this "parameterized" deletion is that a filename can be read
from the keyboard within a program, and can then be deleted. This doesn't
work with the command ERA.

5.1.5 Renaming files

ST BASIC also has the ability to perform DOS (Disk Operating System)
functions. One elementary DOS function is the renaming of files. The
corresponding BASIC command for this is:

NAME oldfile AS new file

The parameters are fairly self-explanatory. For example, if we want to
change the name of the program TEXT05 . BAS to TEXTPRO . BAS, the
following command wiU do it:

NAME TEST05.BAS AS TEXTPRO.BAS '

186

Abacus Software Atari ST BASIC Training Guide

5.2 Sequential file management

In previous sections, you've learned to handle different types of data, like
names, numbers, and equations. This data has always been an integral part
of the program, in the form of DATA statements. However, it should be
clear that this is an awkward way of handling data. You can't expect the
user of your program to modify the program lines when entering or editing
data. Doing so in programming languages other than BASIC would require
complete program recompilation. Obviously, we have to find a different
means of managing data.

The most common way to manage the data is to form an independent file on
the disk, reserved for data only. In this section we'll learn to use the
best-known form of file organization for data management—sequential
files.

In a sequential file, the data records are organized one after the other,
separated from each other by the ASCII character <RETURN>. This
<RETURN> is required because the corresponding command to read an
entry in the sequential file reads up to this <RETURN>. The ASCII value
for <RETURN> is CHR$ (13) .

We wiU explain sequential file management with a few example programs.

Let's assume that we want to store an address list in the ST's memory as a
two-dimensional table on diskette. Each address record consists of three
fields:

A$(n,1) Last name
A$ (n, 2) First name
A$ (n, 3) Telephone number

The whole list will have 200 entries. Managing such a file requires a
continuous record counter. The record counter, or RC, always points to the
last record. This RC is required for the new name entry, since the next free
table location can be determined from RC+1.

We could use a subroutine like the following one to print this address table
on the screen:

187

Abacus Software Atari ST BASIC Training Guide

1000 REM LIST PHONE

1010 LSTPHONE:

1020 FOR X=l TO RC

1030 PRINT "ENTRY #";X
1040 PRINT "NAME: ";A$(X,1)
1050 PRINT "NAME: ";A$(X,2)
10 60 PRINT "NAME: ";A$(X,3)
1070 PRINT

1080 PRINT "HIT RETURN TO CONTINUE"

1090 IF INP(2)<>13 THEN 1090
1100 NEXT X

1110 RETURN

This subroutine is fairly easy to read and understand, so we won't explain it
any further. It's more important that we should learn how to write these data
records on the diskette.

A subroutine to store the data records must first open a file in which the
addresses wiU be written. The commandto open a sequential fUe for writing
is the following:

OPEN "O", tifile number,"filename"

If the address file is to be caUed ADDRESS . DAT, the OPEN command is:

OPEN "O",#1,"ADDRESS.DAT"

The file number is required to distinguish between several open files. Here
is a subroutine for writing the addresses:

2000 REM SAVE PHONE

2010 SAVPHONE:

2020 OPEN "0",#1,"PHONE.DAT"
2030 PRINT #1,RC
2040 FOR X=l TO RC

2050 FOR Y=l TO 3

2060 PRINT #1,A$(X,Y)
2070 NEXT Y,X
2080 CLOSE #1

2090 PRINT "PHONE NUMBERS STORED."
2100 PRINT "CONTINUE WITH RETURN"

2110 IF INP(2)<>13 THEN 2110
212 0 RETURN

188

Abacus Software Atari ST BASIC Training Guide

After opening the file, first the record counter is saved. It will be required
later for loading the address records. The individual elements of the table are
stored in a nested loop, in the following order: last name, first name, and
telephone number of the first entry; then the last name, first name, and
phone number of second entry; and so on. The PRINT #1 command has a
file number and is used for writing to the sequential file. Here is the
subroutine for entering data into this file:

3000 REM LOAD PHONE

3010 LDPHONE:

3020 OPEN "I",#1,"PHONE.DAT"

3030 INPUT #1,RC
3040 FOR X=l TO RC

3050 FOR Y=l TO 3

3060 INPUT #1,A$(X,Y)
3070 NEXT Y,X
3080 CLOSE #1

30 90 PRINT "FILE IS LOADED."

3100 PRINT "CONTINUE WITH RETURN"

3110 IF INP(2)<>13 THEN 3110

3120 RETURN

The mode in the OPEN command is I (input) when reading a file. After the
record counter is read, it is used as the argument for the outer loop. The
subroutine "knows" by the record counter how far it must read.

The following subroutine allows you to enter the data.

4000

4010

4020

4025

4030

4040

4050

4060

4070

4080

4090

REM ENTER RECORD

ENTRPHONE:

RC=RC+1

PRINT "ENTRY #";RC

";A$(RC,1)
";A$(RC,2)
";A$(RC,3)

INPUT

INPUT

INPUT

PRINT

PRINT "CONTINUE WITH RETURN"

IF INP(2)<>13 THEN 4080
RETURN

"LAST NAME

"FIRST NAME

"TELEPHONE

And finaUy, our main program that pulls it aU together:

189

Abacus Software Atari ST BASIC Training Guide

100 REM MAIN PROGRAM

110 FULLW 2 :DIM A$(100,3)
120 MENU: CLEARW 2

130 PRINT "***********************»

140 PRINT "* TELEPHONE DIRECTORY *"
150 PRINT "***********************"

160 PRINT

17 0 PRINT " 1 ENTER DATA"

180 PRINT " 2 LIST DATA"

190 PRINT " 3 SAVE DATA"

200 PRINT " 4 LOAD DATA"

210 PRINT " 5 END"

220 PRINT

230 PRINT "SELECT ITEM ";
240 A$=CHR$(INP(2)):PRINT A$: A=VAL(A$)
250 ON A GOSUB ENTRPHONE,LSTPHONE,SAVPHONE,

LDPHONE,FINISH

2 60 GOTO MENU

300 FINISH:

310 END

One command that we should mention when using subroutines is:

MERGE filename

By using this command, you can save all your subroutines individually and
then later merge them together to create one total program. This way you
can keep your much needed subroutines in a library on disk and later
incorporate them into your programs.

These subroutines can be easily adapted to your own requirements. Using
sequential files, you're now ready to create your own data management
programs.

190

Chapter 6

c SOUND AND GRAPHICS

6.1 Sound

6.2 Graphics

D

Abacus Software Atari ST BASIC Training Guide

Sound and Graphics

6.1 Sound

Computers are excellent tools for creating sound. The processor, the heart
of the computer, is controtied by a clock generator. This generator creates 1
to 8 MHz (million cycles per second) depending on the computer.

The simplest method to create sound from this generator is to send it an
audio speaker. But since the sound frequency produced in such a manner is
much too high to be heard by humans, the clock frequency must be lowered
considerably. The computers "divided" this frequency to a low enough level
that it can be output to a speaker. The resulting frequencies produced
audible sounds.

This was the first attempt at computer sound synthesis. The resulting
sounds are rather unpleasant, comparable to a digital wristwatch's alarm.
But the sound quality ofpersonal computers is continually being improved.
Theresult is thatmost home computers are now equipped with synthesizers
on achip. The sounds they create are deceptively sintilar to those of"real"
(acoustic) musical instruments.

The sound chip in the ST cannot honestly be called a synthesizer. Important
features like several different waveforms (sine, square wave, etc.) and a
tone-modifying filter are missing.

But the sound generator in the ST has three voices available. It can produce
three tones at once, making it polyphonic. Everything produced by the
sound chip is played the speaker built into the ST's monitor. The volume
can be adjusted on the monitor.

The following section will acquaint you with the BASIC commands for
creating sound on the ST. For a complete discussion of the ST's sound
capabilities, please refer to the reference books Atari ST Internals and Atari
ST Graphics & Sound from Abacus.

193

Abacus Software Atari ST BASIC Training Guide

6.1.1 The sound command

The sound generator of the ST is controlled by the command SOUND This
is the syntax of the command:

SOUND channel, volume, note, octave, duration

The parameters are:

•channel sound channel (1 to 3)

•volume from 0 to 15 (0=silent, 15=loud)

•note from 1 to 12 (1=C, 2=C#, ... 12=B)

•octave from 1 to 8 (l=low, 8 high)

•duration duration of the sound in steps of l/60th second

The musical scale consists of 12 tones, as you've probably seen the 12
different keys on a piano keyboard.

tone parameter Tone in the musical scale

1 C
2 C#
3 D
4 D#
5 E
6 F
7 F#
8 G
9 G#
10 A
11 A#
12 B

Akeyboard consists of several such groupings of 12 notes. Each grouping
calledan octave. The first octave comprises the low notes, the last octave
the highest.

The foUowing programconverts your ST into a musical instrument:

194

Abacus Software Atari ST BASIC Training Guide

10 REM ST MUSIC

20 DIM TON(256)

30 TON$= 'Q2W3ER5T6Y7UI9O0P"
40 FOR I = 1 TO 17
50 INDEX = ASC(MID$(TON$,I,l))
60 TON(INDEX)=1

7 0 NEXT I

80 CLEARW 2:FULLW 2
90 PRINT " ST MUSIC"

95 PRINT

100 PRINT

110 PRINT "23 567 90"

115 PRINT

120 PRINT "Q W E R T Y U I O P"
140 A=INP(2)
145 IF A=13 THEN END

150 ON=TON(A)

160 OCT=3
170 IF TON>12 THEN TON=TON-12:OCT=4
180 SOUND 1,15,TON,OCT,20
190 SOUND 1,0,0,0,0
200 GOTO 140

Now RUN it. As you can hear for yourself, this small program has some big
effects! Once you understand its operation, you may want to improve on it.

195

Abacus Software Atari ST BASIC Training Guide

6.2 Graphics

For many home computer buyers, acomputer's color display and graphics
capabilities are deciding purchase factors. The SToffers excellent color and
graphic features far surpassing other machines in its price range The ST
has 512 colors that can be mixed from the basic colors red, green, and blue.
The resolution of the graphics in monochrome mode is 640 x 400
points—sensational for a microcomputer with its price tag.

The ST lets you select from three different graphic resolutions with different
numbers of colors. The high-resolution mode consists of 640 x400 points
in black and white. So that each point can be accessed, the screen is
constructed as a coordinate system. Similar to the command GOTOXY,
which puts the cursor at a specific location on the screen, a position is
determined with graphic commands having two values. The first value
determines the position on the horizontal axis (X axis) of the screen, from
left to right. The second value corresponds to the position on the vertical
axis (Y axis), from top to bottom. The four corner points have the following
coordinates:

-*• 639

0 0,0 639,0

399 1,0,399 639,399

Once you have become familiar with this system, you can start using the
commands for creating graphics.

196

Abacus Software Atari ST BASIC Training Guide

6.2.1 Lines

LINEF startingx,y, endingx,y

The parameters are self-explanatory. For example, the following command
draws a line from the top left to the bottom rightcorner of the screen :

LINEF 0,0,639,399 (0,0,639,199 Color)

Drawing lines becomes interesting when used in conjuction with loops. Try
the foUowing example:

10 FULLW 2:CLEARW 2

2 0 FOR 1=0 TO 199 STEP 5
30 LINEF 199,1,0,199-1

4 0 NEXT I

This simple program produces an interesting effect. Let's try another one:

10 FULLW 2:CLEARW 2

20 FOR 1=0 TO 199 STEP 10
30 LINEF I,0,199, I
40 LINEF 199,1,199-1,199
50 LINEF 199-1,199,0,199-1
60 LINEF 0,199-1,1,0
7 0 NEXT I

You may want to have some fun creating graphics of your own. The
difficult part is converting your intended figure into points in the coordinate
system—i.e., constructing an algorithm.

6.2.2 Circles

To draw a circle, both the origin of the circle and the radius must be
specified. In addition, we can create arcs by specifying of the starting and
ending angles as well. The command has thefollowing syntax:

CIRCLE x origin,y origin,radius,start angle,end angle

The angles are specified in tenths ofa degree (0-3600).

197

Abacus Software Atari ST BASIC Training Guide

The following example draws acircle with the radius of 50 points in the
center of the screen:

CIRCLE 320,200,50 (320,100,50 Color)

Here is aprogram that demonstrates the drawing ofarcs:

10 FOR 1=10 TO 100 STEP 5
20 CIRCLE 320,100,1,0,900
30 NEXT I

6.2.3 Ellipses

The command for drawing ellipses corresponds to CIRCLE, but includes a
distinction of the X and Y radii.

ELLIPSE x origin, y origin, x radius, y radius, start angle, end angle

An ellipse drawn at the center of the screen with the X radius of 100 and the
Y radius of 50 is drawn as follows:

ELLIPSE 320,200,100,50 (320,100,100,50 Color)

Here is a short demonstration program for this command:

10 FOR X=50 TO 200 STEP 10
20 FOR Y=50 TO 100 STEP 5
30 ELLIPSE 320,100,X,Y
40 NEXT Y,X

198

Abacus Software Atari ST BASIC Training Guide

6.2.4 Filled surfaces

Circles and ellipses can be filled with colors and/or patterns. The two
commands are:

PCIRCLE andPELLIPSE

The parameters match those of the commands already described. Before the
fill commands can be executed, certain attributes must be set. This is done
with the command COLOR. Its syntax is given here:

COLOR text color,fill color, line color, style, index

Here is the description of the parameters:

• text color Color of the text output

• fiU color Color of the fill pattern

• line color Color of the lines, circles, and ellipses

• style Fill pattern

• index FiU type (2=dotted pattern, shaded pattern)

The first three parameters are always 1 (black) or 0 (white) on a
monochrome monitor. To draw the graphic, the line color is set to black
(COLOR 1,1,1), or white to erase it (COLOR 1,1,0).

The fill pattern can be set with the parameters style and index. The
following program demonstrates the 24 different dotted patterns:

10 CLEARW 2:FULLW 2

20 FOR 1=1 TO 24
30 COLOR 1,1,1,1,2
40 PCIRCLE 25* (I-D+15, 100,20
50 NEXT I

199

Abacus Software Atari ST BASIC Training Guide

Here are the 12 shadedpatterns:

10 CLEARW 2:FULLW 2
2 0 FOR 1=1 TO 12

30 COLOR 1,1,1,1,3
40 PCIRCLE 50*(I-1)+15,100,20
50 NEXT I

Independent of the style parameter, the ftil type 0 creates surfaces filled with
white. Type 1 surfaces are filled with black. Fill type 4 contains the Atari
logo.

This section should serve as a primer for your own graphic experiments.
For advanced graphic and sound programming techniques, please refer to
Atari ST Graphics & Sound from Abacus.

i

Desk Pile Run Edit Debug

ii
tog-::*'

y'~ "%

i
i

\

200

f
~!\f \\

y i i
•, i j .//

Chapter 7

USING GEM WITH ST BASICD
7.1 GEM fundamentals
7.2 Passing parameters to GEM routines
7.3 VDI examples
7.4 AES examples

Abacus Software Atar' ST BASIC Training Guide

Using GEM with ST BASIC

7.1 GEM fundamentals

Before we discuss the functions of GEM—the Graphics Environment
Manager—you should know how it is structured. GEM consists ofthe two
major parts:

VDI (Virtual Device Interface)

AES (Application Environment System)

The VDI and AES are collections of subroutines. These functions are
integrated into your apptication written in assembly language or Clanguage
during the assembly orcompilation. It is not recommended you write entire
GEM applications in BASIC, but various functions can be used effectively.

7.1.1 GEM VDI

The VDI contains allbasic graphic functions, such as drawing lines, circles,
etc. The functions which createGEM applications like windows and boxes
are contained in the AES. For example, if the function to open a window is
used, the AES is responsible. AES is in turn supported by the VDI routines.
For example, the VDI creates the border of the window. VDI finally uses
DOS functions. The hierarchy of GEM is therefore:

DOS (Disk Operating System)

VDI (Virtual Device Interface)

AES (Application Environment System)

The VDI's task is to facilitate creating graphic applications through graphic
functions This makes the functions independent of the graphics output
device. The device drivers, also part of the VDI, take care of the
device-specific control.

203

Abacus Software Atari ST BASIC Training Guide

7.1.2 GEM AES

To clarify the purpose ofAES, we should begin with its name: Application
Environment Manager. This "environment" is graphic-oriented in GEM.
This means graphic elements (like windows and icons) are used as the
interface, orcommunication link, between the computer and the user.

The graphic environment of the AES is a particularly powerful operating
system composed of several components.

The routine libraries offer functions with which all the elements of the AES
system can be controlled and used. Multitasking makes it possible to let
AES appear to be running several programs at the same time. The Shell
represents the connection to the actual operating system: TOS. To manage
several different screen elements, the AES uses buffers, which serve to
temporarily store screen parts.

204

Abacus Software Atari ST BASIC Training Guide

7.2 Passing parameters to GEM routines

The GEM routine are so complex that they require not just individual
variables but whole tables (arrays) of inputand outputparameters. The VDI
functions to open an output device comprise nofewer than 14 input and 60
output parameters! But don't worry, we will demonstrate only a few of the
many GEM functions. The principle of passing and accepting the
parameters should be explained first.

The VDI functions are controlled via 5 input/output arrays:

c o n t r 1 input/output array

i n t i n input array

i n t o u t output array

ptsin input array

pt s out output array

Instead of the arrays ptsin and ptsout, the AES uses the arrays
addrin and addrout. The AES also uses another array named global.

7.2.1 VDI calls

The starting addresses of the VDI arrays are found in the reserved variables
contrl, intin, intout, ptsin, and ptsout. The input paramaters
are placed into the array with the POKE command. Note that the arrays
contrl, intin, and intout contain 2-byte values (words). Therefore,
the parameter int in (3) is set with the command:

POKE INTIN+6,va/we

in BASIC. This must be taken into account!

The VDI functions are numbered. This function number is stored in
contrl (0) with the command:

205

Abacus Software Atari ST BASIC Training Guide

POKE CONTRL,function number

VDI is called with the command:

VDISYS

After calling the function, any parameters returned can be read. If the VDI
function returns a value in intout (2), for example, itcan be assigned to
a variable with the command:

variable=PEEK (INOUT)

7.2.2 AES calls

AES calls are not as easy to work with as VDI calls. Here not all of the
array addresses are avaUable in reserved variables. There is only the variable
GB—it contains the address of the address list of the AES array. This
sounds complicated, but will be thoroughly explained. Take a look at the
following diagram:

GB -.-> [] [] [] [] -—> contrl

[][][][]--> global

D D D [] --> intin

D D [] D —> intout

D D D [] --> addrin

[] [] [] D —> addrout

The address of GB points to an area of 6 by 4 bytes. This area contains 6
addresses. Theseare the addresses of the AES arrays.

Important:The arrays intin and intout are not identical to the VDI
arrays of the same names!

206

Abacus Software Atari ST BASIC Training Guide

For this reason, different designations are used in the following AES
initialization.

1000

1010

1020

1030

1040

1050

1060

1070

1080

REM AES

A#=GB

GCONTRL

GLOBAL

GINTIN

GINTOUT

ADDRIN

ADDROUT

RETURN

INITIALIZATION

= PEEK(A#)
= PEEK(A#+4)
= PEEK(A#+8)
= PEEK(A#+12)
= PEEK(A#+16)

= PEEK(A#+20)

After calling this subroutine, the addresses of all of the arrays are available
in the variables.

Note that the arrays addrin and addrout are4-byte (long word) arrays.
addr in (3), for example, is set with the command:

POKE ADDRIN+12,va/we

The AES is called with:

GEMSYS (function number)

Different from the VDI, the function number is not placed in contrl (0)
for the AES but is passed along with the AES call. It is therefore
unnecessary to set the function number in the control array for an AES call.

After calling the AES, return parameters are read as described for the VDI.

207

Abacus Software Atari ST BASIC Training Guide

7.3 VDI examples

The following program draws a rectangle with rounded coiners. This
graphics operation is not avaUable in BASIC.

1 GOSUB 10:END

10 REM ROUNDED RECTANGLE
20 COLOR 1,1,1,1,1
30 FULLW 2

40 POKE CONTRL,11 :REM
50 POKE CONTRL+2,2 :REM
60 POKE CONTRL+6,8 :REM
70 POKE CONTRL+10,8 :REM
80 POKE PTSIN,50 :REM
90 POKE PTSIN+2,20 :REM
100 POKE PTSIN+4,150 :REM
110 POKE PTSIN+6,100 :REM
120 VDISYS

130 RETURN

FUNCT # FOR GRAPHIC OPS

OF COORDINATES IN PTSIN
NUMBER OF INTIN ENTRIES

FUNCT # FOR ROUNDED RECT
X-COORD TOP LEFT CORNER

Y-COORD TOP LEFT CORNER

X-COORD LOWER RT CORNER

Y-COORD LOWER RT CORNER

The next example program outputs different text styles on the screen. The
foUowing type styles are possible:

1 boldface

4 italic

16 opllime
8 underlined

32 normal

Combinations of type styles are also allowed. You simply add the numbers
of the type styles. Bold/italics are achieved with the style number 5, for
example.

Inportant: RUN this program only in command mode. If your using the
Edit window, it will change the type style back to normal before you get the
chance to see the change. Here's the listing:

208

Abacus Software Atari ST BASIC Training Guide

10 REM TYPE FORMATION

20 REM FULLW 2

30 INPUT"TYPE STYLE NUMBER:";A

40 IF A<1 OR A>63 THEN 30

5 J POKE CONTRL,10 6
60 POKE CONTRL+2,0
70 POKE CONTRL+6,1
7 5 POKE INTIN,A

80 VDISYS

90 END

REM FUNCTION NUMBER

REM NUMBER OF PTSIN ENTRIES

REM NUMBER OF INTIN ENTRIES

Desk File Run Edit Debug
niiTPiiT

s | r ohm hh n--=fJ? j- •"bUIIIInnU:-™™--:!::

Sk rm
M rm tMs is Em st&le 45
8k rm mike mtersttfrlm is tmiterlja&F

<Ji

TYPE STYLE NUMBER? 45

209

Abacus Software Atari ST BASIC Training Guide

7.4 AES examples

The following demo program uses the AES routines 73 and 74 to enlarge
and shrink abox. The function is often used in GEM programs to startling
effect. You get the impression that the box "zooms" out ofthe background.

10 REM ENLARGE AND SHRINK A BOX
20 GOSUB 1000

30 FOR 1=0 TO 7

40 READ A:POKE GINTIN+2*I,A
50 NEXT I

55 REM FOR MED-RESOLUTION
60 DATA 315,100,5,5,0,0,640,200
62 REM FOR HI-RESOLUTION
65 REM DATA 315,200,5,5,0,0,640,400
70 GEMSYS (73): GEMSYS (74)
80 IF INP(2)<>13 THEN 70
90 END

1000 REM AES INITIALIZATION
1010 A#=GB

1020 GCONTRL = PEEK(A#)
1030 GLOBAL = PEEK(A#+4)
1040 GINTIN = PEEK(A#+8)
1050 GINTOUT = PEEK(A#+12)
1060 ADDRIN = PEEK(A#+16)
1070 ADDROUT = PEEK(A#+20)
1080 RETURN

The GINTIN array consists of8entries. The first four entries specify the
X- coordinate of the upper left corner, the corresponding Y-coordinate, and
the width and height of the starting (small) rectangle. The second four
entries specify the dimensions ofthe resulting rectangle the same form. The
program repeats itself with each keypress and terminates with <RETURN>.

210

Abacus Software Atari ST BASIC Training Guide

The second example program changes the shape of the mouse cursor. The
following forms may be entered:

0 arrow

1 cursor

2 busy bee
3 hand with index finger
4 flat hand

5 thin crosshair

6 thick crosshair
7 outline crosshair

Here's the program:

10 REM SET MOUSE CURSOR SHAPE

20 FULLW 2

30 INPUT "CURSOR

40 IF F<0 OR F>7

50 GOSUB 1000

60 POKE GINTIN,F

70 GEMSYS (78)

80 END

1000 REM AES

1010 A#=GB

102 0 GCONTRL

1030 GLOBAL

1040 GINTIN

1050 GINTOUT

1060 ADDRIN

107 0 ADDROUT

1080 RETURN

SHAPE:";F

THEN 30

INITIALIZATION

= PEEK(A#)

= PEEK(A#+4)
- PEEK(A#+8)

= PEEK(A#+12)
= PEEK(A#+16)

= PEEK(A#+20)

211

Abacus Software Atari ST BASIC Training Guide

7.5 Using GEM Functions in Applications—Example Program

This example gives you afeel for what you can do when you integrate GEM
functions into BASIC programming. We've tried to come up with asensible
example to demonstrate this. The result of this was re-vamping a BASIC
program without windows or menus intended for programmers.

The ST already has a huge command set, but these are oriented toward
output windows. Graphic functions, for example, only work within these
windows, so screen-absolute input and output are impossible. Try it
yourself—try drawing a diagonal across the entire screen!

This section gives you a BASIC listing with subroutines for direct screen
input and output. The program takes advantage of GEMfunctions that tell
BASIC to ignore aU windows. The first assignment from GEMBAS is to turn
the screen white; now you can address any area of the screen. Exiting a
GEMBAS program re-activates all windows. The menu line, which was
cleared with the windows, is also re-enabled.

The following example is not a complete program. It is just an example to
demonstrate how to create an input mask for a database. It also
demonstrates how flexible BASIC can be when utilizing VDI calls.

GEMBAS programs should follow this format:

0 - 999 Program-specific initialization
1000 - 1999 GEMBAS initialization
2000 - 4999 GEMBAS routines
5000- 9999 Program-specific routines
10000 - Main program

Lines 10000 to the end contain a GEMBAS demo program.

212

Abacus Software Atari ST BASIC Training Guide

All routines with CALL conventions:

Routine: INITWORK

Line range: 2000-2080

Assignment: Establish working range:
lines 1-2 program name
tines 2-23 input/output
tines 23-25 message tine

Input parameters: none

Output parameters: none

Routine: SETPRGNAME

Line range: 2100-2197

Assignment: Set program name in line 1

Input parameters: NAME $ - program name
Output parameters: none

Routine: RECTANGLE

Line range: 2200-2320

Assignment: Draw a rectangle
Input parameters: XI - Upper left-hand corner (0-639)

Yl - Upper left-hand corner (0-399)
X2 - Lower right-hand comer (0-639)
Y2 - Lower right-hand comer (0-399)

Output parameters: none

Routine: MESSAGE

Line range: 2400-2520

Assignment: Output message in line 25
Input parameters: MESGE$ - message
Output parameters: none

213

Abacus Software Atari ST BASIC Training Guide

Routine:
Line range:
Assignment:
Input parameters:

STRINGOUT

2600-2740
Output string variable
TEXT$ - string
TEXTSTYLE - typestyle

0 normal
Ibold

2 bright
4 cursive
8 underlined
16 outlined
32 shaded

ROW - line position (1-22)
COLUMN - column position (1-80)

Output parameters: none

Routine:
Line range:
Assignment:
Input parameters:
Output parameters:

CLEARSCREEN

2800-2850
Clear input/output
none

none

Routine:
Line range:
Assignment:
Input parameters:

Output parameters:

CHAROUT

2900-2995
Output a character
CHARS $ - character (ASCII)
ROW - line position (1-22)
COLUMN - column position (1-80)
none

214

Abacus Software

Routine:
Line range:
Assignment.
Input parameters:

Output parameters:

Now the program listing:

Atari ST BASIC Training Guide

STRINGIN

3000-3210
Input routine
TEXT1$ - prompt string
TEXT2 $ - default string
STYLE 1 - typestyle prompt
STYLE2 - typestyle default

0 normal

lbold

2 light
4 cursive
8 underlined
16 outlined

32 shaded

ROW-

COLUMN

TEXT2$

BACK-

0-

1-

-1-

line position (1-22)
column position (1-80)

given string
end key

<RETURN>

cursor down
cursor up

215

Abacus Software Atari ST BASIC Training Guide

100 rem ***********************

105 rem * Data Initialization *
110 rem ***********************

120 rem ++ Input routine ++
130 dim char(255)
132 for i=0 to 255:char(i)=0:next
135 char(27)= 1: rem Escape
140 char(13)= 2: rem RETURN
145 char(200)=3: rem CRSR UP
150 char(208)=4: rem CRSR DOWN
155 char(8) =5: rem Backspace
160 char(127)=5: rem Delete
165 for i=32 to 165 : rem possible characters
170 char(i)=6
175 next

1000 rem ++ aes-initialization ++
1010 A#=gb
1020 gcontrl=peek(a#)
1030 global=peek(a#+4)
1040 gintin=peek(a#+8)
1050 gintout=peek(a#+12)
1060 addrin=peek(a#+16)
1070 addrout=peek(a#+20)
1999 goto prgstart
2000 rem *****************************

2005 rem * Work space initialization *
2008 rem *****************************

2010 initwork:

2020 xl=0:yl=0:x2=639:y2=639
2030 findex=0:fstyle=0
2040 gosub rect
2045 seterrorarea:

2050 xl=0:yl=380:x2=639:y2=399
2060 findex=l:fstyle=l
2070 gosub rect
2080 return

216

Abacus Software Atari ST BASIC Training Guide

2100

2105

2110

2115

2116

2120

2130

2140

2150

2160

2170

2180

2190

2195

2196

2197

2200

2205

2210

2220

2230

2240

2245

2248

2250

2260

2270

2280

2290

2300

2310

2320

2400

2405

2406

2408

2410

2420

2430

2440

2450

rem ************************

rem * Set program name *
rem * name$ = program name *
rQTT\ ************************

setprgname:

xl=0:yl=2:x2=63 9:y2=19
findex=2:fstyle=l
gosub rect
poke contrl,8:poke contrl+2,1:poke
contrl+6,len(name$)
poke ptsin,(640-len(name$)*8)/2
poke ptsin+2,16
for i=0 to len(name$)-l

poke intin+i*2,asc(mid$(name$,i+1,1))
next i

vdisys
return

* Solid rectangle *
* xl,yl =upper left *
* x2,y2 = lower right *
* fstyle,findex=pattern *

rem

rem

rem

rem

rem

rem *************************

rect :

color 1,1,1,fstyle,findex
poke contrl,9:poke contrl+2,5:poke contrl+6,0
poke ptsin+0,xl:poke ptsin+2,yl
poke ptsin+4,x2:poke ptsin+6,yl
poke ptsin+8,x2:poke ptsin+10,y2
poke ptsin+12,xl:poke ptsin+14,y2
poke ptsin+16,xl:poke ptsin+18,yl
vdisys
return

rem *******************

rem * Messages
rem * mess$ = message
rem *******************

message:

mess$="Message: "+mess$
poke contrl,8:poke contrl+2,1:poke
contrl+6,len(mess$)

poke ptsin,0:poke ptsin+2,398
for i=0 to len(mess$)-l

*

*

217

Abacus Software Atari ST BASIC Training Guide

2460 poke intin+i*2,asc(mid$(mess$, i+1, 1))
2470 next i

2480 vdisys
2490 sound 1,15,12,4,10:sound 1,0,0,0,0
2500 if inp(2)<>27 then 2500
2510 gosub seterrorarea
2520 return

2600 rem **************************

2605 rem * String output *
2606 rem * text$ =string *
2607 rem * textstyle = type style *
2609 rem * row =1-22 *

2610 rem * column = 1-80 *
2611 rem **************************

2612 strout :

2620 rem set type style
2630 poke contrl,106:poke contrl+2,0:poke

contrl+6,1
2640 poke intin,textstyle
2650 vdisys
2660 rem string output
2 665 if row<l or row>22 or column<l or column>80

then return

2666 if column+len(text$)>80 then
text$=left$(text$,81-column)

2670 poke contrl,8:poke contrl+2,1:poke
contrl+6,len(text$)

2680 poke ptsin,(column-1)*8
2690 poke ptsin+2,row*16+19
2700 for i=0 to len(text$)-l

2710 poke intin+i*2,asc(mid$(text$,i+l,1))
2720 next i

2730 vdisys
2740 return

2800 rem ****************

2805 rem * Clear screen *

2 808 rem ****************

2810 clearscreen:

2820 xl=0:yl=20:x2=639:y2=679
2830 findex=0:fstyle=0
2840 gosub rect
2850 return

218

Abacus Software Atari ST BASIC Training Guide

2900 rem ************************

2 910 rem * Ouput character *
2920 rem ************************

2 930 rem * letter=char sent out *

2935 rem * row=l-22 *

2940 rem * column=l-80 *

2945 rem ************************

2950 chrout:

2955 poke contrl,8:poke contrl+2,1:poke contrl+6,1
2960 poke ptsin,(column-1)*8
2970 poke ptsin+2,row*16+19
2980 poke intin,letter
2990 vdisys
2995 return

3000 rem ***************************

3003 rem * Input routine *
3004 rem * length = string length
3005 rem * textl$ = prompt string
3006 rem * text2$ = default string *
3007 rem * stylel = style prompt *
3008 rem * style2 = style default *
3009 rem * /output string *
3010 rem * row/column = position *
3011 rem * back = repeat *
3012 rem * 0=RET,l=down,-l=up *
3013 rem ***************************

3015 string:
3016 if column<l or column>80 or row<l or row>22

then return

3020 text$=textl$

3030 textstyle=stylel
3040 gosub strout
3050 if len(text2$)>length then

text2$=left$(text2$,length)
3055 text$=text2$+string$(length-len(text2$),"_")
3060 textstyle=style2
3070 column=column+len(textl$)
3080 gosub strout
3090 column=column+len(text2$)
3092 nxtchar:

3095 letter=95:gosub chrout
3100 letter=inp(2)

219

*

*

Abacus Software Atari ST BASIC Training Guide

3110 on char(letter) goto
3115,3120,3130,3140,3150,3170

3111 goto nxtchar
3115 remEscape. ...
3116 column=column-len(text2$):text2$=""
3117 text$=string$(length,"_"):gosub strout
3118 goto nxtchar
3120 rem ++ Return ++

3125 back=0:goto jmpback
3130 rem ++ Cursor up ++
3135 back=-l:goto jmpback
3140 rem ++ Cursor down ++
3145 back=l:goto jmpback
3150 rem ++ Delete/backspace ++
3155 if len(text2$)=0 then goto nxtchar
3160 text2$=left$(text2$,len (text2$)-1)
3165 column=column-l:goto nxtchar
3170 rem ++ legal characters ++
3175 if len(text2$)=length then goto nxtchar
3180 text2$=text2$+chr$(letter)
3185 gosub chrout

3190 column=column+l:goto nxtchar
3200 jmpback:
3210 return

220

Abacus Software Atari ST BASIC Training Guide

10000 rem *****************

10005 rem * Program start *
10008 rem *****************

10010 prgstart:
10020 gosub initwork
10030 name$="Address program":gosub setprgnane
10040 mess$="Start program (ESC)":gosub message
10090 text$="Input an address:"
10095 column=20:row=4:textstyle=8:gosub strout
10100 xl=l9*8:yl=6*l6+17:x2=5 9*8:y2=16*16+17
10110 fstyle=7:findex=2:gosub rect
10120 stylel=l:style2=0:length=20
10125 for i=l to 5:adr$(i)="":next
10130 row=7:column=21

10135 textl$="First name ":

text2$=adr$(1):gosub string
10140 adr$(l)=text2$

10150 if back=-l then 10130

10160 row=9:column=21

10165 textl$="Last name: ":
text2$=adr$(2):gosub string

10170 adr$(2)=text2$
10180 if back=-l then 10130

10190 row=ll:column=21

10195 textl$="Street address: ":

text2$=adr$(3):gosub string
10200 adr$(3)=text2$
10210 if back=-l then 10160

10220 row=13:column=21

10225 textl$="City/State: ":
text2$=adr$(4):gosub string

10230 adr$(4)=text2$
10240 if back=-l then 10190

10250 row=15:column=21

10255 textl$="Telephone: ":
text2$=adr$(5):gosub string

10260 adr$(5)=text2$
10270 if back =-1 then 10220

10280 end

221

APPENDIX D
Appendix A: Overview of ST BASIC Commands
Appendix B: Reserved BASIC Words
Appendix C: Problem Solutions
Appendix D: BASIC Error List

Abacus Software Atari ST BASIC Training Guide

Appendix A:

Overview of ST BASIC Commands

ABS

Category: Numerical Function

Use:

Function:

AND

Category:

Use:

Function:

ASC

Category:

Use:

Function:

ABS(X)

Returns the absolute value of the input value X (that is with no
leading sign). The absolute value of a negative number is
achieved by multiplying it by a negative one.

Logical Operator

<expression> AND <expression>

The logical AND is used in Boolean algebra to test the truth of
two expressions. Result is true only if both expressions are
true.

String function

ASC(X)

This returns the ASCII value of the character X. If the input
string is composed of more than one character, then only the
first character of the string has its ASCII value returned.

225

Abacus Software Atari ST BASIC Training Guide

ATN

Category: Numerical function

Use: ATN(X)

Function: Returns the arctangent ofthe value X. The result is in the range
of -7C/2 through +7t/2

AUTO

Category: Command

Use: AUTO (line number),(increment)

Function: This command invokes the automatic line numbering. As soon
as a program line is entered after a <RETURN>, the computer
displays the next line number. If we start with line 20, then the
next line number will be 30. This can be changed be entering
an increment after the line number in the command. The
increment determines the amount of space between line
numbers.

Examples: AUTO ,10: automatic line numbers with increments of 10.

AUTO 20,100: automatic line numbering with an increment
of 100, starting at line 20.

The AUTO command is exited by entering a <CONTROL> G.

226

Abacus Software Atari ST BASIC Training Guide

BLOAD

Category: Instruction

Use: BLOAD "data",address

Function: The command BLOAD loads data that was previously stored
with a BSAVE into main memory. This can be used, for
example, to load a picture into graphic memory. The data is
loaded into main memory byte by byte, starting at the given
address. If no address is given, the data is loaded into the same
location from where it was BSAVE ' d. You should be familiar
with memory organization before using BLOAD or BSAVE.

Example: 10BLOAD "dwm/?7M,5000

BREAK

Category: Command

Use: BREAK (line number)

Function: After the input of a BREAK, a running program is stopped after
each line of the program. The next line of the program is run
after a <CONT> or <RETURN> is pressed. If a line numberis
entered after the command, then the program is stopped only
after that line number. The command UNBREAK disables the
BREAK command.

Examples: BREAK : Aprogram is stopped after each line.

BREAK 50, 75 : A program is stopped after tines 50 and 75.

227

Abacus Software Atari ST BASIC Training Guide

BSAVE

Category: Instruction

Use:

Function:

CALL

BSAVE "data",address,length

The command BSAVE saves a block ofmain memory in a file
on a diskette. The data is retrieved starting at the location
address, through the region ending at address+length. You
should be familiar with the organization of memory before
using BSAVE or BLOAD.

Example: BSAVE "dump",5000,256

Category: Instruction

Use:

Function:

Example:

CALL ADDRESS(X,Y)

CALL calls a machine language subroutine. The variable
ADDRESS contains the entry point address of the machine
language routine in the memory of the computer. The
parameters in the CALL can be changed as needed.

100 ADDRESS = 100000

110 CALL ADDRESS

In this example the machine routine must start at address
100000. In tine 110 this routine is called.

228

Abacus Software Atari ST BASIC Training Guide

CDBL

Category:

Use:

Function:

CHAIN

Function

CDBL(X)

CDBL changes Xfrom a single precision variable to a double
precision variable. This variable will now use more space and
have greater precision.

Category: Instruction

Use: CHAIN "data",line,ALL
CHAIN MERGE "data",line,DELETE lines

Function: The CHAIN command without MERGE will load the data and
automatically start the program. This enters the program in
memory. A program loaded in this manner is also known as an
overlay.

When a line number is entered with the command, the program
is loaded starting at the entered line number. The parameter
ALL retains the variables from the "old" program, so that the
newprogram can make useof the same data.

The CHAIN MERGE command loads the "new" program after
the last line of the "old" program. The parameter DELETE
clears the lines listed after the parameter before merging the
"new" program with the "old". The line region parameter
deletes ranges of lines to be deleted (for example:
100,200-300).

CHAIN allows a running program to use overlay techniques.
Therefore a main program canloadandstarta subroutine.

Examples: 1000 CHAIN "PRINT"

The program PRINT is loaded andstarted.

229

Abacus Software Atari ST BASIC Training Guide

1000 CHAIN "PRINT",100,ALL

The program print is loaded starting at line 100. When the
program is started, the variables from the "old" routine are used
by PRINT.

CHAIN MERGE "LISTOUT"

The program LISTOUT is loaded immediately after the resident
program; the programs arechained together and started.

CHR$

Category: String function

Use: chr$ (X)

Function: After calling this function the number X is converted to the
appropriate character in the ASCII code table. The number x
must be between 0 and 255.

CINT

Category: Function

Use: cint (X)

Function: cint rounds off Xto the next higher or lower whole number.
X must be in the range from -32768 and +32767.

Example: PRINT CINT (45 . 69) , CINT (-4 . 88)

Output: 4 6 -5

230

Abacus Software Atari ST BASIC Training Guide

CIRCLE

Category: Instruction

Use: CIRCLE X,Y,rad,begW,end¥l

Function: Draws a circle with a centerpoint at x and y, with a radius of
rad. You can draw a portion of a circle (like a slice of pie)
using a beginning and ending degree (begW & encM). These are
measured in l/10ths of a degree.

Examples: 10 clearw 2
20 CIRCLE 200,100,50

Draws a circle with a center at 2 00,10 0 with a radius of 50.

10 CLEARW 2

20 CIRCLE 200,100,50,900,1800

This draws a quarter circle (90 degrees) starting at the 90
degree location of the circle.

CLEAR

Category:

Use:

Function:

Instruction

CLEAR

This instruction clears all variables and fields, such as user
defined functions.

231

Abacus Software Atari ST BASIC Training Guide

CLEARW

Category: Instruction

Use: CLEARW window#

Function: Clears a screen window. The windowtt parameter can assume a
value from 0 to 3.

0 - Edit window
1 - List window
2 - Output window
3 - Command window

CLOSE

Category: Instruction

Use: CLOSE ^number

Function: The CLOSE instruction closes an open data line. The data
buffer in memory is written to the disk drive and the line is
opened. The data number is the same as the identity number
used in the OPEN command.

The character # can be omitted. You can close more than one
data line with the CLOSE command by entering the data lines'
numbers, separated by commas. CLOSE without a data number
closes everything.

END, LOAD, NEW, OLD, QUIT, RUN, and SYSTEM close all
open data tines.

Example: 820 CLOSE 1,2

This closes data lines 1 and 2 which were opened previously
with an OPEN instruction.

232

Abacus Software Atari ST BASIC Training Guide

CLOSEW

Category:

Use:

Function:

Instruction

CLOSEW window #

Closes a screen window. The window # has values from 0
through 3, with these meanings:

0 - Edit window
1 - List window

2 - Output window
3 - Command window

Warning: If you close all windows, thecomputer can no longer
acceptany input. The onlyway out is to restart the computer.

233

Abacus Software Atari ST BASIC Training Guide

COLOR

Category: Instruction

Use:

Function:

Example:

COLOR txtfill,line,index,style

The COLOR instruction sets the instructions for all graphic
commands that follow. This sets the text, fill and line colors.
The fill pattern is set with the parameters index and style.

The color values 0 through 15 are only for the low resolution
colors. In the middle resolution then the values are only from 0
- 4. High resolution is only possible in monochrome; therefore
you can only have the values 0 and 1.

The fill style 0 is a completely filled region. The style 1fills it
with all black. Style 2 allows the use of up to 24 patterns with
the parameter index, where style 3 has 12 hatched patterns.

10 CLEARW 2:FULLW 2

20 FOR 1=1 to 24

30 COLOR 1,1,1,1,2
40 PCIRCLE 25M1-D+15,100,20
50 NEXT I

The program demonstrates all 24 fill patterns ofstyle 2:

10 COLOR 2,0,1:PRINT "RED SCRIPT"

234

Abacus Software Atnri ST BASIC Training Guide

COMMON

Category:

Use:

Function:

Example:

CONT

Category:

Use:

Function:

Instruction

COMMON varl,var,...

The variables defined in a COMMON statement can be used in
programs that are CHAINed together later. If all variables are to
be passed to later programs, then the COMMON statement does
not need to be used. The same result can be obtained using the
ALL parameter to the CHAIN command. A program can have
more COMMON statements than were defined in the initial
program.

700 COMMON addresses(), character^
710 CHAIN "PRINTADR"

The program PRINTADR, which is loaded after the initial
program, will have the array addresses and the variable
character# available to it just as they were in the originating
routine.

Command

CONT

A program which has been halted with a STOP, break, or
CTRL-G can be resumed with the CONT command. The
program continues from the point where it was stopped. You
cannot use this command if the program was stopped due to an
error in the program.

235

Abacus Software Atari ST BASIC Training Guide

COS

Category:

Use:

Function:

Numerical function

COS(X)

This command returns the cosine of the number X. Xis the
measureof curvature of an angle.

CSNG

Category: Function

Use: csng(x)

Function: The CSNG function returns a truncated (more simple)
representation of x.

Example: A=45 6 . 456789 :PRINT CSNG (A)

Output:

456.456

CVD, CVI, CVS

Category: Function

Use: CVD (8-byte string)
CVI(2-byte string)
CVS(4-byte string)

Function: These functions convert numerical values from their random
access file format into a format usable in a BASIC program.
Note: Data stored in a random access file is stored in a format
different from the format used for calculations. Therefore,
when a value is read in from such a file, it must be converted
back to a usable format.

236

Abacus Software Atari ST BASIC Training Guide

Example: 100 OPEN "R", #1, "NUMDAT"
110 FIELD #1,2 AS A$,4 AS
120 GET #1, SENTENCE%
130 I%=CVI(A$)
140 S!=CVS(B$)
150 D#=CVD(C$)
160 PRINT "INTEGER:";I%

17 0 PRINT "REAL: ";S!
180 PRINT "D-REAL: ";D#
190 CLOSE #1

B$, 8 AS C$

DATA

Category:

Use:

Function:

Instruction

DATA X,Y,Z

This instruction allows you to save information in a program
which can be read later using the READ command. The data can
be either a number or a character. Character data must be in
quotes if it contains a comma, null character, or a colon. The
data is read in from left to right.

DEF FN

Category: Instruction

Use: DEF FN F(X)=X*Y

Function: You can define mathematical functions with this instruction.
The functions can be used later by invoking the name of the
function. Here F is the function name. (X) is a variable, x* Y
is the function. The function can contain other mathematical
functions.

237

Abacus Software

DEF SEG

Category: Instruction

Use: DEF SEG

Atari ST BASIC Training Guide

Function: def SEG affects the operation of the PEEK and POKE
command. If the instruction is used with a value which is
greater than zero, then peek and POKE are only valid with
single precision values. If the value is zero, then both
commands are valid with double precision values.

DEFDBL

Category: Instruction

Use: DEFDBL X-Y

Function: This defines a single variable or a whole range of variables as
being double precision. For these variables all variables in the
definition are automatically determined tobedouble precision.

Example: DEFDBL a-b

This example defines all variables thatbegin with an Aor Bas
being double precision.

DEFINT

Category: Instruction

Use: DEF INT X-Y

Function: This defines a variable or aregion ofvariables as being integer
variables. This means all variables defined by this instruction
will be automatically determined to beinteger variables.

Example: DEF INT D-E

Defines allvariables starting with D or E as integer variables.

238

Abacus Software Atari ST BASIC Training Guide

DEFSNG

Category: Instruction

Use: DEFSNG X-Y

Function: This defines a character or range of characters as a real
variable. All variables that lie in this range are automatically
determined to be real variables.

Example: DEFSNG F-G

This example defines all variables beginning with the characters
F or Gas a single precision real variable.

DEFSTR

Category: Instruction

Use:

Function:

DEFSTR X-Y

This instruction defines a character or range of characters as
string variables. Any variable in this range will automatically be
determined as string variables.

Example: DEFSTR H-l

This example interprets all variables beginning with an Ft or I
as string variables.

239

Abacus Software Atari ST BASIC Training Guide

DELETE

Category: Command

Use: DELETE line#-line#

Function: This command clears one or more program lines from a
program. This is especially useful if you want to write over or
replace only a segment of an existing program. The syntax of
this command is similar to the LIST command.

Examples: delete 10 clears tine number 10
DELETE -100 clears all lines up to 100
DELETE 200-500 clears lines from 200 to 500.
DELETE 500- clears all lines from 500 to the program end.

DIM

Category:

Use:

Function:

Instruction

DIM A(X)

This instruction dimensions a field (for arrays) or for a matrix
(more than one dimension). (X) is the index into the matrix;
you may also have heard of an indexed variable, in this case
A(X). A(X) is called a one-dimensional matrix and A(X,Y) is
called a multi-dimensional matrix.

240

Abacus Software Atari ST BASIC Training Guide

DIR

Category:

Use:

Function:

Example:

EDIT

Command

DIR drive:mask

The dir command gets a listing of the contents of a disk in the
specified disk drive. If the command is given without a mask,
the entire contents of the disk are displayed. The mask specifies
certain groups of data from the disk to be displayed.

DIR A:

DIR A:*.BAS

DIR B:A*.*

Lists all data from drive A.

Lists everything with a .BAS extension.
Lists everything on disk drive B that
begins with an A.

DIR A: ?TEST . BAS Lists all programs having the characters
TEST in positions 2-5
(ATEST.BAS, BTEST . BAS...)

Category: Command

Use: EDIT (line#)

Function: EDIT turns on the BASIC editor. You enter all input in the
EDIT window. Here you can change line numbers or remove
them. You can exit the editor with the command EXIT.

241

Abacus Software Atari ST BASIC Training Guide

ELLIPSE

Category: Instruction

Use:

Function:

Example:

END

Category:

Use:

Function:

ELLIPSE X,Y,Xrad,Yrad,begW,endW

This command is the same as the CIRCLE command, except
that there are two radii (one for the X-axis and one for the
Y-axis). A section of an ellipse can be done by setting the
beginning and ending angles of the ellipse (in l/10th degree
increments).

10 CLEARW 2

20 ELLIPSE 200,100,50,40
30 ELLIPSE 210,110,50,40,450,1350

This draws an ellipse with a center at 2 00,100 with a
horizontal radius of 50 and a vertical radius of 40. The second
ellipse is only 90 degrees beginning at 45 degrees.

Command

END

When a running program comes across this command the
program will immediately halt, and the cursor will show in the
Command window. An END can show up at the very end of a
program or in the middle, if subroutines follow.

242

Abacus Software Atari ST BASIC Training Guide

EOF

Category:

Use:

Function:

Example:

EQV

Function

X=EOF (number)

This function determines whether or not the end of a sequential
or random file has been reached. If the end of the file has been
reached, the function returns the value -1. This lets us read a
file of any length without knowing the length beforehand. The
parameter is the number of the opened file.

100 OPEN "I",1,"FILE"

110 WHILE NOT EOF(l)

120 LINE INPUT #1,DAT$
130 PRINT DAT$

14 0 WEND

150 CLOSE 1

This example reads the contents of a line and then outputs it
until the end of the file FILE has been reached.

Category: Logical Operator

Use: x EQV Y

Function: This compares the variables X and Y (bitwise) in a negated
exclusive OR, according to boolean algebra theory (see Chapter
1.6).

Example: print 1 EQV 1

Output: -1

243

Abacus Software Atari ST BASIC Training Guide

ERA

Category: Command

Use: ERA drive#: name

Function: Thiscommand erases a file on the given drive.

Example: era a: testi .BAS

This erases a file TESTI. BAS on disk drive A.

ERASE

Category: Instruction

Use: ERASE x$

Function: Clears the fields of a previously dimensioned array. After this
command the array can be redimensioned. ERASE X$ clears
the array x$.

244

Abacus Software Atari ST BASIC Training Guide

ERL,ERR

Category: Function

Use: a=err or b=erl

Function: ERL and ERR are system variables—you cannot use these two
variables for your own use. You can only use the contents of
the variables as the computer sets them. You are not allowed to
change the contents (as in IF ERR=9 6 THEN . . .). These
variables are usually used after error trapping has been enabled
with ON ERROR GOTO. If an error occurs during a program,
the line where the error occurred is in the variable erl and the
error number is in ERR.

ERROR

Category:

Use:

Function:

Instruction

ERROR X

ERROR simulates an error like NUMBER TOO LARGE (error
code 6). This instruction you will override the ERR and ERL.
You can still use the ON ERROR GOTO error trapping routine
to handle any errors.

EXP

Category: Numerical function

Use: exp (X)

Function: This gives the xth power of the constant e (2.7182818823)
where X cannot be greater than 43.6682.

245

Abacus Software Atari 3T BASIC Training Guide

FIELD

Category:

Use:

Function:

Examples:

Instruction

FIELD # length AS string,...

This instruction is used in conjunction with a random-access
file. FIELD defines the structure of each record of a random
access file. Next to the file number (#) are the field length(s)
and the associated variable with each field. The FIELD
instruction doesn't read any data from the file and doesn't
effect the random access file bufferin any way.

The string variables associated with a field cannot be used like
other string variables. These are managed in the string
memory, rather than the random access data buffer. To put the
data into a usable form, use the commands LSET and RSET.
You can use a single variable (let's say A$) to encompass more
than one other variables (tike C$ and D$).

10 OPEN "R",#l,"CHARACTERS", 122
20 FIELD #1,2 AS KNUMBER$,30 AS KNAME$,
30 AS KFIRST$, 30 AS KSTREET$,
30 AS KPLACE$

30 INPUT "Character #:"/A :
LSET KNUMBER$=MKI$(A)

40 INPUT "Name: ";A$:
LSET KNAME$=A$

50 INPUT "First Name: ";B$:
LSET KFIRST$=B$

60 INPUT "Street: ";C$:
LSET KSTREET$=C$

70 INPUT "Place: ";D$:
LSET KPLACE$=D$

80 PUT #1,1
90 GET #1,1

100 KNUM%=CVI(KNUMBER$)
110 PRINT KNUM%,KNAME$,KFIRST$,

KSTREET$,KPLACE$

246

Abacus Software Atari ST BASIC Training Guide

FILL

Category:

Use:

Function:

Example:

The previous example demonstrates not only how to use the
FIELD instruction, but also other instructions used with
random access files. This field statement is for a random access
file with a record length of 122 characters. After the description
of the fields in the file is the output statement PUT #1,1
which writes the record 1 to file #1. The last few lines are to
input the information from the file and print out the contents.

20 FIELD #1,4 AS PLZ$, 20 AS PLACE$

30 FIELD #1,24 AS PLZPLACE$

In this example the field instructions are for input from a
file. The second instruction is equivalent to the first, except for
that PLZPLACE$ contains both of the previous string variables
in a single variable.

Instruction

FILL X, Y

The FILL command fills the area where the coordinate point
X,Y is located. The region is filled with the colors and attributes
of a previously defined COLOR statement.

10 COLOR 1,2,1

20 ELLIPSE 200,100,50,40

30 FILL 200,100

This program draws an ellipse filled with solid red.

247

Abacus Software Atari ST BASIC Training Guide

FIX

Category:

Use:

Function:

Functions

FI

Fix truncates the decimal portion of the variable A. The
variable is not rounded.

Example: PRINT FIX (45 . 9) ,FIX (45 . 3)

Output: 4 5 4 5

FLOAT

Category: Functions

Use: A=FLOAT (X)

Function: FLOAT converts an integer number (X) into a floating point
number (A). X must be in the range -32768 through +32767.

FOLLOW

Category: Command

Use: FOLLOW(variable)

Function: This command allows the contents of the variable in the
parenthesis to be observed through the program. Every time the
variable changes it is printed out with the line number where
the change occurred. This command is turned off with the
command UNFOLLOW.

248

Abacus Software Atari ST BASIC Training Guide

FOR...TO...(STEP)

Category: Instruction

Use: FOR X=l TO 10 STEP 2

Function:

FRE

Category:

Use:

Function:

FULLW

Category:

Use:

Function:

This instruction allows you to use a variable (in this case X) as
a counter. You have to specify the starting value (in this case 1)
and the ending value (10) and the step size (2). If you don't
have a step in the instruction, you will automatically have a step
size of 1. The step size can be any floating point number.

Numerical function

FRE(X)

This function outputs the number of free bytes left for you to
use for your program, x can take on any value you want since
it is not used in the calculation of the amount of free space.

Instruction

FULLW windowft

FULLW sets a screen window to the full size of the screen. The

values 0 through 3 determine which window:

0 = Edit window
1 = List window
2 = Output window
3 = Command window

249

Abacus Software Atari ST BASIC Training Guide

GEMSYS

Category: Function

Use: GEMSYS(function#)

Function: GEMSYS calls a specific GEM-AES function with a function
number. The communication with the AES functions is a result
of a lot of pointer arrays whose address is a pointer array with
the address in GB, a reservedvariable (see Chapter7).

GET

Category:

Use:

Function:

Example:

Instruction

GET #numberfile line

GET reads a line of data from the Random Access buffer,
which had been defined in a FIELD statement. Next to the file
number there must exist a record number. This number must be
in the range of 1 to 32767. If the record number is not given,
then the record following the last GET record number is read.

10 OPEN "R",#l,"CHARACTER",122

20 FIELD #1,2 AS KNUMBER$,30 AS KNAME$,
30 AS KFIRST$,30 AS KSTREET$,
30 AS KPLACE$

30 GET #1,15

This example reads the fifteenth record of the random access
file CHARACTER from the buffer.

250

Abacus Software Atari ST BASIC Training Guide

GOSUB

Category:

Use:

Function:

GOTO

Category:

Use:

Function:

Instruction

GOSUB XX or GOSUB label

This command allows you to jump to a subroutine within the
program (at line number xx or at a jump marker label). When
the program reaches a RETURN statement in the subroutine, it
will automatically return to the calling procedure at the line
following the call.

Instruction

GOTO XX or GOTO label

This command allows you to jump to a specific line number XX
or to a jump marker label. Using this you can jump to (or over)
any line in a program you wish.

GOTOXY

Category: Instruction

Use: GOTOXY line,cloumn

Function: This instruction positions the cursor at the specified line and
column.

Example: 10 GOTOXY 2 0,10
2 0 PRINT "TEXT AT COLUMN 20, LINE 10"

This function doesn't work all of the time in the present version
of BASIC. The screen columns are misinterpreted.

251

Abacus Software AtariST BASIC Training Guide

HEX$

Category: Function

Use: hex$ (X)

Function: This function changes the decimal value of X into its
hexadecimal equivalent.

Example: print hex$(255)

Output: ff

IF...THEN...ELSE

Category: Instruction

Use: if. . .then. . .else

Function: This command tests a statement, and if the statement is true
react to it accordingly. If the result of the test is true, then the
portion of code after the then is performed. If the test is false
then the code after the ELSE is performed.

Examples: 110 IF A$="J" THEN A=5 ELSE GOSUB 1000

If the variable A$ was not equal to J then the program would
call the subroutine starting at line 1000. If the test were true
then the variable A is set to 5.

10 INPUT A$

20 IF ASC(A$) >47 AND ASC(A$)<58 THEN
30 ELSE IF ASC(A$)=69 THEN
30 ELSE 10

30 PRINT A$;

This code only accepts input of 0 through 9 and the letter E.

252

Abacus Software Atari ST BASIC Training Guide

IMP

Category: Logical Operator

Use: x imp Y

Function: This performs a bitwise comparison of the variables x and Y
according to the rules of implication (see Section 1.6).

Example: PRINT -1 imp 0

Output: 0

INKEY$

Category: Function

Use: A$=INKEY$

Function: The INKEY$ function reads the next character from the
keyboard buffer and puts it into the variable (in this case A$).

INKEY$ doesn't work in the current version of BASIC.

In place of this we can use INP(2) to poll the keyboard buffer
(see Section 3.4).

253

Abacus Software Atari ST BASIC Training Guide

INP

Category:

Use:

Function:

Example:

INPUT

Category:

Use:

Function:

Function

X=INP (port)

Reads a character from the port which is given as a parameter.

Port numbers:
0 - Printer (parallel port)
1 - RS-232 (serial port)
2 - Consol (monitor)
3 - MIDI interface
4 - keyboard

10 A=INP(2):IF A=0 THEN 10
20 A$=CHR$(A)

This short routine reads a character from the keyboard and then
places it in the variable A$. You can use these lines as a
replacement for the INKEY$.

Command

INPUT X or INPUT "comment" ; X

This command allows the user to enter data into a program in
an interactive mode. When a program reaches this command
the program halts, prints a ? and displays the cursor. After
this the user can enter the needed data. The program continues
after the user hits the <RETURN> key. You can either use
INPUT as described, or you can have a comment printed out
describing the type of data required, followed by a semicolon
and the variable. This disables the printing of the ? prompt.

254

Abacus Software Atari ST BASIC Training Guide

INPUT #

Category: Instruction

Use: INPUT #number,variable,...

Function:

Example:

INPUT$

Category:

Use:

Function:

Example:

This instruction works similarly to the INPUT command
preceding. In this instruction, the data doesn't come from the
keyboard, but from a sequential file. The end of a line in the
file is marked by a <RETURN> (ASCII 13) , LINEFEED
(ASCII 10), Comma, or a maximum of 255 characters.

10 OPEN "I",#1,"BOOKS"
20 INPUT #l,ACCOUNT%,GACCT%,AMT%,TEXT$

This reads the fields of the file BOOK. Numeric and string
fields can exist in the same file.

Function

INPUT $(length,# number)

INPUT $ reads a string of a given length from the file attached
to the file number in the parameter list. If no file number is
given, the INPUTS gets its information from the keyboard
without printing the characters on the screen.

10 PRINT "CODEWORD"[";

20 CODE$=INPUT$(6)
30 IF CODE$="JOSHUA" THEN 100 ELSE END

100 PRINT "Welcome!!"

255

Abacus Software Atari ST BASIC Training Guide

INSTR

Category:

Use:

Function:

Example:

INT

Category:

Use:

Function:

Function

INSTR (stnr, strl, str2)

This function gives the position of the substring (str2) inside of
the string (strl). If the substring is not found, then the return
value is set to 0. The parameter stnr specifies a position after
which the search will start.

10 A$="Atari ST":B$="ST":C$="ari"
20 P1=INSTR(A$,B$)
30 P2=INSTR(2,A$,C$)
40 PRINT P1,P2

Output: 7 3

Line 20 searches for variable A$ starting at the first character
for the substring B$. The result is placed in variable P1. P1 is
set to 7, which means that the substring B$ was found starting
at the seventh character from the beginning. Line 30 searched
the string A4 starting at the second character for the substring
C$. The result is 3.

Numerical function

INT(X)

This function returns the whole number portion of the variable
X. No rounding off takes place. The result is always smaller or
equal to the original contents of X.

256

Abacus Software
Atari ST BASIC Training Guide

KILL

Category: Instruction

Use: KILL "name"

Function: Erases the file "name" from the diskette in the default disk
drive. This instruction is different than the ERA command in
that you have to input a string with this instruction.

Example: 10 INPUT "FILENAME : ";D$
20 KILL B$

LEFT$

Category:

Use:

Function:

LEN

Category:

Use:

Function:

String Function

LEFT$(X$,A)

This function returns a substring of characters from x$ starting
at the leftmost character and finishing up after Acharacters. The
function left$ (X$, 4) returns the leftmost 4 characters of
X$. Acan have any valuebetween 0 and 255.

Numerical function

LEN(X$)

This function returns the number of characters in the string x$.
It counts all characters, including spaces.

257

Abacus Software Atari ST BASIC Training Guide

LET

Category:

Use:

Function:

LINEF

Category:

Use:

Function:

Example:

Command

LET X=5

This command allows a value to beplaced intovariable. In this
case the variable X gets the value 5. The word LET can be
omitted in this command (forexample, X=5).

Instruction

LINEF X1,Y1,X2,Y2

This draws a line from the coordinate point XI, Yl to the point
X2, Y2. If you want to only draw a single point, then XI, Yl
should be the same point as X2, Y2.

10 CLEARW 2

20 LINEF 0,0,639,199

This program draws a diagonal line across the color screen.

LINE INPUT

Category: Instruction

Use: LINE INPUT "comment" ;A$

Function: This instruction is almost identical to the INPUT instruction.
The difference between the two is that LINE INPUT returns a
full line (255 characters) as the answer. This instruction
doesn't have a question mark like the INPUT command. This
instruction requires a comment be included.

258

Abacus Software Atari ST BASIC Training Guide

LINE INPUT #

Category: Instruction

Use: LINE INPUT #number,string

Function: This instruction is the same as the previous, except that it reads
information from a file. The maximum length of input is 254
characters followed by a <RETURN> (ASCII 13). Therefore,
this instruction can also read commas as part of the data, unlike
other input methods.

Example: 10 OPEN "0", #1, "TEXT"
20 PRINT "Input text (**=end)";
30 LINE INPUT TEXT$

40 IF TEXT$="**" THEN 60
50 PRINT #l,TEXT$:GOTO #0
60 CLOSE #1

100 OPEN "I",#1,"TEXT"
110 WHILE NOT EOF(l)

120 LINE INPUT #1,TEXT$
130 PRINT TEXT$

14 0 WEND

150 CLOSE #1

This routine writes the text input from the keyboard to the file
TEXT$. After all of the text has been entered, the file is closed,
reopened and printed out.

259

Abacus Software Atari ST BASIC Training Guide

LIST

Category:

Use:

Function:

LLIST

Category:

Use:

Function:

LOAD

Category:

Use:

Function:

Example

Command

LIST linett -line#

The LIST command allows you to view a single line number
or a range of line numbers. If only the command LIST is
entered, then the entire program is listed.

list Shows the entire program
LIST 10 Shows program line 10
LIST -100 Shows all lines up to 100
LIST 100- Shows all lines after 100
LIST 10-2 0 Shows lines from 10 to 20

Command

LLIST line#-line#

This command is exactly like the LIST command except the
output is printed to a printer rather than the screen.

Command

LOAD name

This command loads a program from diskette and overwrites
whatever is currently in memory. Ifno extension is given (for
example, . DAT), then the command will automatically search
for a file with extension . BAS.

LOAD TEST

This command loads the program TEST. BAS.

260

Abacus Software Atari ST BASIC Training Guide

LOF

Category:

Use:

Function:

Example:

LOG

Category:

Use:

Function:

LOG10

Category:

Use:

Function:

Function

X=LOF (#number)

This function returns the length of the file associated with the
file number in the parameter list. This file must have been
previously opened.

10 OPEN "I",#l,"TEXT"
20 IF LOF(#5)>32000THEN PRIN.T"FILE FULL"

Numeric Function

LOG(X)

This function returns the natural logarithm (base e) of X,
where Xmust be greater than 0.

Numeric Function

LOG10(X)

This function returns the decimal logarithm (base 10) of X,
where Xmust be greater than 0.

261

Abacus Software Atari ST BASIC Training Guide

LPOS

Category: Function

Use: LPOS (X)

Function: This function returns the position of the printhead in the print
buffer. The value is the number of characters from the last
carriage return. Due to the special print characters that the
printer can handle, this function is not always completely
accurate.

LPRINT

Category: Instruction

Use: LPRINT (variable) ; "text"

Function: This instruction is similar to the PRINT or PRINT USING
instructions. The result is printedon the printer.

262

Abacus Software Atari ST BASIC Training Guide

LSET

Category:

Use:

Function:

Instruction

LSET stringvar = string

This instruction converts data to be used later in a PUT
statement. If the string to be put in the file is less than the
maximum size, the string is left justified andfilled with spaces
on its right. If the string is longer than the maximum, the
rightmost characters are truncated to fit.

The following program writes a record to the random access
file CHARACTER: Example:

10 OPEN "R",#l,"CHARACTER",12 2
20 FIELD #1,2 AS KNUMBER$,30 AS KNAME$,

AS KFIRST$,30 AS KSTREET$,
AS KPLACE$

30 LSET KNUMBER$=MKI$(1250)
40 LSET KNAME$="JONESMAM"
50 LSET KFIRST$="HENRYSIR"
60 LSET KSTREET$="PICCADILLY 10"
70 LSET KPLACE$ = " 212 CANDYCURREN"A
80 PUT #1,1
90 CLOSE #1

263

Abacus Software Atari ST BASIC Training Guide

MERGE

Category:

Use:

Function:

Command

MERGE name

This command brings in the program name from diskette into
memory with the current program. Any duplicate line numbers
results in the "old" line numbers being overwritten by the
"new" line number. This command can be very helpful during
program development.

Example: Programin memory:

10 PRINT "Line 10

20 PRINT "Line 20
30 PRINT "Line 30

of the old program"
of the old program"
of the old program"

The PROG2 .BAS on diskette:

15 PRINT "Line 15 of the new program"
20 PRINT "Line 20 of the new program"
MERGE PROG2

Result:

10 PRINT "Line 10 of the old program"
15 PRINT "Line 15 of the new program"
20 PRINT "Line 20 of the new program"
30 PRINT "Line 30 of the old program"

264

Abacus Software Atari ST BASIC Training Guide

MID$

Category:

Use:

Function:

Example:

Instruction/Function

MID$(X$,A,B)

This function returns the characters from character position A
for B characters from the string x$. A and B can both have
values between 0 and 255.

10 A$="Atari ST XXX"

20 MID$(A$,10,3)="520"
30 PRINT A$

4 0 END

Output: Atari ST 520

MKD$, MKI$, MKS$

Category: Function

Use: x$=MKD$ (num)
X$=MKI$ (int)
X$=MKS$(num)

Function: This function changes the number in the parameter list to the
format needed for a random access file. This is used before the
LSET command. The function is for 2-byte (MKI$), 4-byte
(MKS$), and 8-byte (MKD$)

Example: 10 OPEN "R", #1, "NUMBERS", 14
20 FIELD #1,2 AS INTEGER$,4 AS SINGLE$,

8 AS DOUBLE$
30 LSET INTEGER$=MKI$(1%)
40 LSET SINGLE$=MKS$(S!)
50 LSET DOUBLE$=MKD$(D#)

60 PUT #1

70 CLOSE #1

265

Abacus Software Atari ST BASIC Training Guide

MOD

Category:

Use:

Function:

Example:

NAME

Category:

Use:

Function:

Arithmetic Operator

X MOD Y

This returns the remainder of the division ofX by Y.

PRINT 64 MOD 6

Output: 4

Instruction

NAME "oldname" AS "newname"

This instruction renames a file with the name oldname to a file
with the name newname.

Example: NAME "TEST1.BAS" AS "TEST2.BAS"

NEW

Category: Command

Use: new

Function: This command deletes the current program in memory, and
clears all the variables in RAM. Use this command with
caution, it will completely delete the program currently in
memory. As a general rule, the NEW command should be given
at the beginning of each new program to insure that all
variables are initialized properly.

266

Abacus Software A'ari ST BASIC Training Guide

NEXT

Category:

Use:

Function:

NOT

Category:

Use:

Function:

OCT$

Category:

Use:

Function:

Instruction

NEXT X

This instruction indicates the end of a loop that was started with
a statement like FOR X=0 TO 10. When the program reaches
this instruction, the variable Xis increased by the step size.
Then thevariable Xis compared against theexitcondition—in
this case, 10. If x>10 then the loop is finished. Otherwise the
program returns to the top ofthe loop. Asingle instruction can
be used to close more than one loop. For example:
NEXT X,Y,Z.

Logical Operator

NOT X

The NOT operator reverses the result of a comparison that is
usually true. For example, TRUE=-1/FALSE=0 is actually
reversed to true=0/false=-1.

Function

OCT$(X)

This function converts the decimal value X into its octal
equivalent. X must be in the range from -32768 through
+32767.

Example: PRINT OCT$(8)

Output: 10

267

Abacus Software Atari ST BASIC Training Guide

OLD

Category: Command

Use: OLDfile

Function: This is identical to the load command.

Example: OLD mine

This loads the program MINE. BAS

ON

Category:

Use:

Function:

Instruction

ON X GOTO 10,MARK
ON X GOSUB 10,20

This command lets you jump to different line numbers or
markers for different values of X. If x has the value 1, then the
program jumps to line 10 for the GOTO or as a subroutine for
GOSUB. You get the same results if you use different
IF. . THEN. . commands for each value.

ON ERROR GOTO

Category:

Use:

Function:

Instruction

ON ERROR GOTO line number

The ON ERROR GOTO instruction automatically jumps to the
line number in the parameter list whenever an error occurs in
the program. Using a line number of 0 with the
ON ERROR GOTO returns error handliing to ST BASIC.

Example: 10 ON ERROR GOTO 100

The program automatically jumps to line 100if an erroroccurs.

268

Abacus Software Atari ST BASIC Training Guide

OPEN

Category:

Use:

Function:

Instruction

OPEN "mode", %number, "name", length

The OPEN command opens a sequential or random access file.
The parameter len is for the length of a record. The length
must be given for a random access file.

The following modes are available (Capital letters only; must be
enclosed in quotation marks):

"O"
tl T II

13

sequential file, output
sequential file, input

R" - random access, input & output

Records for a random access file begin with record 1 and must
be consecutively numbered thereafter.

Example: 10 OPEN "O", #1, "ADDRESSES"

This sequentialfile ADDRESSES is opened for output.

2 0 OPEN "I",#1,"ADDRESSES"

The sequential file ADDRESSES is opened for input.

30 OPEN "R",#l,"CHARACTERS",122

The random access file CHARACTERS is opened with a record
length of 122.

269

Abacus Software Atari ST BASIC Training Guide

OPENW

Category:

Use:

Function:

Instruction

OPENW window#

Opens a screen window previously closed with a CLOSEW
command. The window# parameter has values from 0 to 3:

0 = Edit window

1 = List window

2 = Output window
3 = Command window

OPTION BASE

Category: Instruction

Use: OPTION BASE x

Function:

OR

Category:

Use:

Function:

This instruction allows you to define whether the base address
of an array should be 1 or 0. Xcan be assigned the values 1 or
0 only. Zero is the default for an array. If you enter OPTION
BASE 1, the lowest element of the array is A(1), rather than
A(0).

Logical Operator

(expr) OR (expr)

The logical operator can take more than two expressions as
input for comparison. The OR operator only requires a single
TRUE result out of the entire list of expressions in order for the
entire expression to be TRUE.

270

Abacus Software Atari ST BASIC Training Guide

OUT

Category:

Use:

Function:

Instruction

OUT channel,int

The integer version of a character (0-255) is output to the port
defined by channel. There are 5 possible ports:

0 - Printer (2 parallel ports)
1 - RS-232 (serial port)
2 - Console (monitor screen)
3 - MIDI interface

Example: 110 OUT 0,13

This prints a <RETURN> to a parallel printer. It's the same as
an LPRINT CHR$ (13), except that the LPRINT command
automatically issues a line feed afterwards. That is why
LPRINT cannot be used with graphics.

PCIRCLE

Category:

Use:

Function:

Example:

Instruction

PCIRCLE X,Y,rad,beg¥lrendW

This instruction draws a circle with a center at X, Y and with a
radius of rod. You can draw a portion of a circle by entering the
location of the starting angle and the ending angle. The partial
circle angles are entered in l/10ths of a degree. This instruction
draws a circle with the color and pattern defined by the COLOR
command.

10 CLEARW 2

20 COLOR 1,2,1
30 PCIRCLE 200,100,50

This draws a whole circle in red with a center point at
2 00,100 and a radius of 50.

271

Abacus Software Atari ST BASIC Training Guide

10 CLEARW 2

20 COLOR 1,1,1,2,3
30 PCIRCLE 200,100,50,900,1800

This draws a black segment of a circle, starting at 90 degrees
and ending at 180 degrees.

PEEK

Category: Function

Use: A==PEEK (address)

Function: peek reads the contents of the address in the parameter list.
peek is dependent upon the last DEF SEG instruction (see
DEF SEG).

PELLIPSE

Category: Instruction

Use: PELLIPSE XfY,Xrad,Yrad,beg^,enM

Function: This is the same as the instruction PCIRCLE, except that a
radius for both the XandY axes mustbe specified, rather than
a single constant radius.

Example: 10 CLEARW 2
20 COLOR 1,2,1
30 PELLIPSE 200,100,50,40
40 COLOR 1,1,1,2,3
50 PELLIPSE 210,110,50,40,450,1350

This draws a red ellipse at 200, 10 0 with an X radius of 5 0
and a Yradius of 40. Then the program draws a 90 degree
segment of a black ellipse at 2 10,110, from 45 to 135
degrees.

272

Abacus Software Atari ST BASIC Training Guide

POKE

Category:

Use:

Function:

POS

Category:

Use:

Function:

PRINT

Category:

Use:

Function:

Instruction

POKE X,A

This instruction is the opposite of PEEK. It writes the contents
of A to memory address X. The A parameter can have the
values from 0 to 255 only. As with PEEK, the POKE
instruction is dependent upon the last DEFSEG command
given.

Function

POS(A)

POS (A) returns the cursor position where the next PRINT will
start on the current line on the screen. The value in A is
meaningless, much like in the function FRE (A).

Instruction

PRINTvar

PRINT "TEXT"

The PRINT command is probably the most commonly used in
BASIC. If a variable follows the PRINT command, the
contents of the variable are printed. If a string follows the
PRINT command, the string is printed.

273

Abacus Software Atari ST BASIC Training Guide

PRINT USING

Category:

Use:

Function:

Instruction

PRINT USING "format",-A

This instruction is used to format the output of a PRINT
command. The format of the output is defined in the string
immediately following the USING.

For numeric data output:

#

+

**

**$

number of characters to be printed
print a + in front of pos. numbers.
print a - in front of neg. numbers.
give the location of the decimalpt.
fill blanks with *'s.
every third position with a comma.
combine a $ with *'s.
numbers are printed in scientific notation.
underline the next char.

For text output:

i

**

print only the first character,
print more characters.

& print the complete string.

Example: Print the following values:

10 A=3 4.57:B=1234:C=54 21.23 6:D=54 632 0
20 PRINT USING " ####.##»;A,B
30 PRINT USING " ####.##»;C,D

Output: 34.57

5421.24

1234.00

%546320.00

274

Abacus Software

PRINT #

Category:

Use:

Function:

Atari ST BASIC Training Guide

Instruction

PRINT #number,output...

This instruction is like the normal PRINT, except that instead
of writing the output to the screen, the output is sent to a
specifiedsequential file. The sequentialfile is specifiedwith the
^numberof an OPEN command. If you want to print more than
a single item of data, you must seperate the data with commas
or semicolons.

Example: 10 OPEN "O", #1, "TELEPHONE"
20 N$="REAGAN"
30 V$="RONALD"
40 T$="001/202-4561414"
50 PRINT #1,N$;",";V$;",";T$
60 CLOSE 1

This example saves names for a telephone file. The data can be
read back in with an INPUT # instruction, with the same three
fields seperated by commas.The commas in the quotes are also
written to the file on the diskette. The record in the file would
look like:

REAGAN,RONALD,001/202-4561414

275

Abacus Software Atari ST BASIC Training Guide

PUT

Category:

Use:

Function:

Example:

QUIT

Category:

Use:

Function:

Instruction

PUT #number,record number

This instruction is used to read data from a random access file
into the random access data buffer. The buffer is organized
with a field instruction and the data is formatted with an
LSET instruction.

10 OPEN "R",#l,"CHARACTERS",122
20 FIELD #1,2 AS KNUM$,30 AS KNAME$,
30 AS KFIRST$,30 AS KSTREET$,
30 AS KPLACE$

30 LSET KNUM$=MKI$(12 50)
40 LSET KNAME$="JONESMAM"

50 LSET KFIRST$="HENRYSIR"
60 LSET KSTREET$="PICCADILLY 10"
70 LSET KPLACE$=" 212 CANDYCURREN"
80 PUT #1,1
90 CLOSE #1

This example stores the data in the quotes into the random
access file CHARACTERS.

Command

QUIT

The QUIT command corresponds to the SYSTEM command. It
is used to exit from BASIC. A QUIT command closes all open
files, and returns you to the GEM desktop.

276

Abacus Software Atari ST BASIC Training Guide

RANDOMIZE

Category: Instruction

Use: RANDOMIZE X

Function: The RANDOMIZE instruction gives the random number
generator a new initialization value. X must be in the range
from -32768 through +32767.

READ

Category:

Use:

Function:

Example:

REM

Category:

Use:

Function:

Instruction

READ X

This instruction reads an element from a DATA line and assigns
the value to the variable X. The type of the element in the DATA
line must be the same as the variable type in the instruction.

10 FOR 1=1 TO 4

20 READ A

30 DATA 10,20,30,40
40 PRINT A:NEXT

50 END

Instruction

KEMtext

A REM instruction is a remark about a segment of a program,
within the program itself. It's like a notepad to leave notes to
yourself about the program segment's purpose. All text
immediately following a REM is ignored by the computer
during program execution.

277

Abacus Software Atari ST BASIC Training Guide

RENUM

Category:

Use:

Function:

Command

RENUM new start line,old start line,increment

This command renumbers the program line numbers in the
current program. The increments are determined by the
difference between two lines. The default is 10.

Example: renum

Renumbers the program starting at 10 and incrementing line
numbers by 10.

RENUM 1000,1,20

The new first line is 1000, the 1 is the first line of the old
program, and the increment is 20.

REPLACE

Category:

Use:

Function:

Example:

Instruction

REPLACE file,line range

This instruction works in much the same manner as the SAVE
command. The REPLACE command saves a program on disk.
If a file already exists with the same name, that file is
overwritten. If a line range is given, only those specified lines
are replaced. If no filename is specified, then the last filename
used in a LOAD or OLD command is used in its place.

LOAD FIRSTDAT

1000 A=X+2*Y/4

5 REM *** VERSION 2.0 ***

REPLACE

The preceding lines load the program FIRSTDAT, and change
tines 1000 and 5. Finally the changes are saved in the same file
by simply typing the command REPLACE.

278

Abacus Software Atari ST BASIC Training Guide

RESET

Category:

Use:

Function:

Example:

Instruction

RESET

This instruction copies the output window to the graphic
memory region, where it can be saved on diskette if necessary
(if the BUF GRAPHICS menu is activated). After clearing the
window, you can return the graphic area back to the output
window with an OPENW 2.

If you don't use this option, you can turn off the BUF
GRAPHICS. This will increase the size of BASIC memory by
32K.

10 COLOR 1,1,1,1,1

2 0 FULLW 2:CLEARW 2

30 CIRCLE 200,100,50
4 0 RESET

50 FOR 1=1 TO1000:NEXT

60 CLEARW 2

70 PCIRCLE 200,100,50
80 FOR 1=1 TO 1000: NEXT

90 OPENW 2

RESTORE

Category: Instruction

Use: RESTORE line number

Function: This instruction sets the pointer for the DATA lines back to the
first element. Therefore it is possible to READ the same value
more than once from the same DATAline. You can specify the
DATA line of one line number only be RESTOREd.

279

Abacus Software Atari ST BASIC Training Guide

RESUME

Category:

Use:

Function:

Instruction

RESUME (line number)/NEXT

RESUME is used much like the RETURN statement at the end of
a subroutine, except that RESUME is used at the end of an error
trapping routine. Therefore, you have to use the ON error
GOTO statement. If you enter RESUME alone, the program will
return to the line where the error occurred. If you use the next
option, the program returns to the next line after the error. You
can alsospecify a line number that the program is to return to at
the end of the error routine.

RETURN

Category: Command

Use: RETURN

Function: This command marks the end ofa subroutine. When a program
reaches this command, control is returned to the tine following
the GOSUB command. The program continues execution there.

RIGHT$

Category: String Function

Use: RIGHT$(X$,A)

Function: This function returns the substring of X$ (to the right of X$)
through the first A characters. A can contain values ranging
from 0 to 255. If the value is greater than the length of the
string, then the entire string is returned.

280

Abacus Software Atari ST BASIC Training Guide

RND

Category:

Use:

Function:

RSET

Category:

Use:

Function:

Example:

Numerical function

RND(X)

This function returns a random number between 0.0 and 1.0. A

positive value of X gets the next random number, a value of 0
gets the last random number generated (without regeneration).
A negative value resets the random number generator and
returns the first value of the new sequence.

Instruction

RSET stringvar=string

This instruction prepares data for the PUT instruction, where
the data goes to the random access file. This instruction is
necessary because a buffer string variable (FIELD) cannot be
used with a let statement. If the string variable has fewer
characters than defined in the FIELD statement, then the data is
right-justified. The remaining left characters are filled with
blank spaces. If the string variable is longer than the defined
region, then the variable is truncated.

10 OPEN "R",#l,"CHARACTERS", 122

20 FIELD #1,2 AS KNUM$,30 AS KNAME$,
30 AS KFIRST$,30 AS KSTREET$,
30 AS KPLACE$

30 RSET KNUM$=MKI$(1250)
40 LSET KNAME$="JONESMAM"

50 LSET KFIRST$="HENRYSIR"
60 LSET KSTREET$="PICCADILLY 10"

7 0 LSET KPLACE$="212 CANDYCURREN"

80 PUT #1,1
90 CLOSE #1

This writes a record to the random access file CHARACTERS.
The numeric field is right-justified, the others are left-justified.

281

Abacus Software Atari ST BASIC Training Guide

RUN

Category:

Use:

Function:

SAVE

Category:

Use:

Function:

Example:

SGN

Category:

Use:

Function:

Command

RUN line number

RUN starts program execution. You can specify the line number
you want the program to start execution. Doing so
automatically resets all variables to zero. If you want the
variables to stay as they are, use a GOTO statement with the
appropriate line number.

Command

SAVE file,line range

This command saves a program to diskette. The name of the
program is specified by the file parameter (see REPLACE). You
don't have to specify the . BAS extension.

SAVE MYPROG

This saves MYPROG to diskette.

Numeric Function

SGN(X)

This returns a value that is dependent on the sign of the input
value X. For X>0, the return value is 1. For X=0, the return
value is 0. If X<0, then the return value is -1.

282

Abacus Software Atari ST BASIC Training Guide

SIN

Category:

Use:

Function:

SOUND

Category:

Use:

Function:

Example:

Numeric Function

SIN(X)

This function returns the trigonometric Sine value of the
variable x.

Instruction

SOUND voice,vol,note,oct,len

Controls the sound generator chip. You can produce a tone of
any volume, frequency, and length with this instruction. You
have a choice of 3 voices, (1-3), to be played at the same time
(polyphonic). The volume can be any value from between 0
and 15. The individual notes of a given octave are given in the
note parameter. The ocrave of the tone must be between 1 and
8. The last parameter gives the length of the tone in l/50th of a
second intervals.

10 FOR OCTAVE=l TO 8

20 FOR NOTE=l TO 12

30 SOUND 1,15,NOTE,OCTAVE,1
40 NEXT NOTE,OCTAVE
50 SOUND 1,0,0,0,0

This is a test program that plays all 96 tones very quickly. After
the loops are finished, line 50 silences voice 1.

283

Abacus Software Atari ST BASIC Training Guide

SPACE$

Category: String Function

Use: space$ (X)

Function: Returns a string of X spaces. X must be between 0 and 255.
PRINT SPACE$ (10) prints out 10 spaces.

SPC

Category:

Use:

Function:

SQR

Category:

Use:

Function:

STEP

Category:

Use:

Function:

Function

SPC(X)

This function allows you to jump over Xcharacters on a given
line before printing starts. X must be between 0 and 255.

Numeric Function

SQR(X)

Returns the square root of the value in variable X.

Command

STEP

After issuing the STEP command, the program stops after
executing each line. The next line is executed after you hit the
<RETURN> key. This continues until the program encounters
the CONT command.

284

Abacus Software Atari ST BASIC Training Guide

STOP

Category:

Use:

Function:

STR$

Category:

Use:

Function:

Instruction

STOP

This instruction is used within a program to stop the execution
for your specified reason. When STOP is executed, the
computer will display the statement Stop at Line X,
where X is the number of the line containing the STOP
instruction. You can restart the program using the CONT
command.

String Function

STR$(X)

You can convert a numeric value in X to its character string
representation. If Xis positive or zero, the first character is a
blankspace. If the value is negative, then the first character is a
hyphen (-).

STRING$

Category: Function

Use: STRING$ (X,B$)

Function: This function returns the string in B$ repeated X times. Xmust
be between 0 and 255.

Example: PRINT STRING$ (5, " * ")

Output: *****

285

Abacus Software Atari ST BASIC Training Guide

SWAP

Category:

Use:

Function:

Example:

Instruction

SWAP A,B

The SWAP instruction switches the contents of the two input
variables. The two variables mustbe of the same type.

10 X=10:Y=30

20 SWAP X,Y
30 PRINT X;Y

Output: 30 10

SYSTAB

Category: Variable

Use: X=PEEK (SYSTAB+of f set)

Function: This variable is an array of system parameters and pointers.
The following shows the organization of this table.

Contents Offset Function

READ

READ/

WRITE

READ

0

2

Graphic resolution
(l=hi,2=mid,4=low)
Type of character in Editor

0-normal
1-bold
2-light
4-itatic

8-underlined
16-reverse video

To get combinations of the above typestyles,
simply add the numbers of the needed
options.

AES-HANDLE of the Edit window.

286

Abacus Software Atari ST BASIC Training Guide

Contents Offset Function Cont'd)

READ 6

READ 8

READ 10

READ 12

READ 14

READ 16

READ 18

READ 20

READ 24

AES-HANDLE of the List window.
AES-HANDLE of the Output window.
AES-HANDLE of the Command window.
EDIT flag (O=close,l=open)
LIST flag (O=close,l=open)
OUTPUT flag (O=close,l=open)
COMMAND flag (O=close,l=open)
Address to graphic memory (4-bytes)
GEMFLAG (O=normal,l=out)
Disabling the GEM activities can
cause problems with file activities.

Example: POKE SYSTAB+2,8

Sets the characters to underlined in the edit window.

10 RESET

20 A#=PEEK(SYSTAB+20)

30 BSAVE DUMP.DAT,A#,32768

This saves the contents of the OUTPUT window in the graphic
memory and saves it under the name DUMP .DAT.

S"irSTEM

Category: Command

Use: SYSTEM

Function: c YSTEM is the same as the QUIT command. It closes all files
and returns you back to the GEM desktop.

287

Abacus Software Atari ST BASIC Training Guide

TAB

Category:

Use:

Function:

Function

TAB (X)

This function places the cursor at any location on the ST
screen, x must be in the range between -32768 and +32767.
The locations begin at the upper left corner of the screen.

Example: PRINT TAB (5) ; "Test"

Output: Test

TAN

Category:

Use:

Function:

TRACE

Category:

Use:

Function:

Numeric Function

TAN(X)

Returns the trigonometric function Tangent of value X.

Command

TRACE line#-line#

When you run your program, TRACE prints each line number
on the screen as it is executed. You can specify a range of line
numbers if you only want to check on a portion of your
program.

Example: TRACE 4 0

Line 40 is printed out each time it is executed.

288

Abacus Software Atari ST BASIC Training Guide

TROFF

Category:

Use:

Function:

TRON

Category:

Use:

Function:

Command

TROFF line#-line#

This disables the line number trace turned on by the TRON
command.

Command

TRON Une#-line#

This command is very similarto the TRACE command, except
that TRON only prints the number of the executed line, rather
than printing out the actual line itself.

These commands allow you to see how your program is
running, line by line. They can be quite helpful during program
development.

UNBREAK

Category: Command

Use: UNBREAK line#-line#

Function: This command disables the BREAK command. The unbreak
command also allows you to specify certain lines.

289

Abacus Software Atari ST BASIC Training Guide

UNFOLLOW

Category: Command

Use: UNFOLLOW X,Y

Function: This command disables the FOLLOW command. If only the
command is given, then the entire FOLLOW command is
disabled. Listed variables let you stop following the altering of
any variable you wish.

UNTRACE

Category: Command

Use: UNTRACE line#-line#

Function: This command undoes the TRACE command. If this command
is given without line numbers, then TRACE is completely
disabled. Otherwise, the TRACE is only stopped for the
specified range of line numbers.

VAL

Category:

Use:

Function:

Numeric Function

VAL(X$)

This function turns the character representation of a number
into an actual number. If the function comes across a character
which cannot be turned into a number (ex: A), then only the
characters up to this character are converted. If the first
character is not a number, minus sign or plus sign, then the
returned value is 0.

290

Abacus Software Atari ST BASIC Training Guide

VARPTR

Category: Function

Use: X=VARPTR(var)

X=VARPTR(#/z/e)

Function: This function returns the location of the variable into X. The
address is the first location of the variable. The second version
of the function returns the first location of the input/output
buffer of the file associated with tifile.

Example: x=varp tr (ST$)

Returns the location in memory where the string variable ST$
begins.

VDISYS

Category: Function

Use:

Function:

WAIT

Category:

Use:

Function:

VDISYS

VDISYS enables the GEM-VDI interface and calls a VDI
function. Parameters to the VDI function are passed in the
contrl, intin, and ptsin arrays (see Chapter 7).

Instruction

WAIT x,y

This instruction halts program execution until the contents of X
and the value Y are the same (bitwise).

291

Abacus Software Atari ST BASIC Training Guide

WAVE

Category:

Use:

Function:

WEND

Category:

Use:

Function:

Example:

Instruction

WAVE ,enable,env,shape,per,del

This instruction controls the waveform of the tones created by
SOUND.

enable

env

shape
period
delay

mix register of the tone generator. A zero in bits
0 through 2 activates the voice (1-3), a 0 in the
bits 3-5 of the voice, t can activate more voices
than one.

curve register. A 1 in the bits 0-2 activates the
curve for voice (1-3). A curve can be used for
more than one voice.
curve form

frequency of the wave
how long to wait before activating the wave.
(in l/50th of a second intervals).

Instruction

WEND

This instruction marks the end of a WHILE

WEND is similar to NEXT in a FOR/NEXT loop.

10 WHILE A<10

2 0 A=A+1

30 PRINT a;
4 0 WEND

50 END

WEND loop.

292

Abacus Software Atari ST BASIC Training Guide

WHILE

Category:

Use:

Function:

Example:

WIDTH

Category:

Use:

Function:

Example:

Instruction

WHILE expression

This is the instruction which starts off a WHILE...WEND loop.
Commands inside of this loop are executed only if a specified
condition is true. As soon as the condition is false, then
execution jumps outside the loop.

10 WHILE X<100

20 X=INT(101*RND(1))

30 PRINT X;

4 0 WEND

50 END

Loop continues until the value Xis greater than or equal to 100.

Instruction

WIDTH width

WIDTH LPRINT width

The WIDTH instruction can change the width of the screen or
the print width of the printer. Widths between 14 and 255 are
allowed. If this instruction is used, the ST will automatically
append a <RETURN> at the end of the new line width. No
<RETURN> is given if the value is 255.

10 WIDTH 15

20 PRINT '<**************************"

This example outputs a line of 15 asterisks and a second line of
5 asterisks.

293

Abacus Software Atari ST BASIC Training Guide

WRITE

Category:

Use:

Function:

Example:

Instruction

WRITE output,output...

This instruction is very similar to a PRINT statement, except
that any string variable is output with quotation marks on both
sides of the result. Also, commas are output.

10 X$="TEST"

20 WRITE X$,"A","B"

Output: "TEST", "A", "B"

WRITE #

Category:

Use:

Function:

Instruction

WRITE #number,output,

This instruction is similar to PRINT # and WRITE.

However, the output from WRITE # goes to the file specified
by the file number #number.

write # and input # are the easiest ways to output data to
a sequential output file.

Example: 10 OPEN "0",#1, "TELEPHONE"
20 N$="MOORE "

30 V$="ROGER "

40 T$="00441-9302312"

50 WRITE #1,N$,V$,T$
60 CLOSE #1

100 OPEN "I",#1,"TELEPHONE"
110 INPUT #1,N$,V$,T$
120 PRINT V$;N$/T$
130 CLOSE #1

294

Abacus Software Atari ST BASIC Training Guide

XOR

Category:

Use:

Function:

Function (Logical operator)

X XOR Y

The logical operator XOR states that two parameters Xand Yare
exclusive of each other. This means that if only one of the
parameters is true, the statement is true. However, if neither or
both parameters are true, the statement is false.

Example: PRINT 0 XOR 0,0 XOR 1,1 XOR 0,1 XOR 1

Output: 0 110

295

Abacus Software Atari ST BASIC Training Guide

Appendix B: Reserved BASIC Words

ABS

ALL

AND

AS

ASC

ATN

AUTO

BASE

BLOAD

BREAK

BSAVE

CALL

CDBL

CHAIN

CHR$
CINT

CIRCLE

CLEAR

CLEARW

CLOSE

CLOSEW

COLOR

COMMON

CONT

CONTRL

COS

CSNG

CVD

CVI

CVS

DATA

DEF

DEF FN

DEFDBL

DEFINT

DEFSEG

DEFSNG

DEFSTR

DELETE

DIM

DIR

DO INT

EDIT INTIN

ELLIPSE INTOUT

ELSE KILL

END LEFT$
EOF LEN

ERA LET

ERASE LINE

ERL LINEF

ERR LIST

ERROR LLIST

EQV LOAD

EXP LOC

FIELD LOF

FIELD# LOG

FILL LOG10

FIX LPOS

FLOAT LPRINT

FOLLOW LSET

FOR MERGE

FRE MID$
FOR MKD$
FRE MKI$
FULLW MKS$
GB MOD

GEMSYS NAME

GET NEW

GET# NEXT

GO NOT

GOSUB OCT$
GOTO OLD

GOTOXY ON

HEX$ OPEN

IF OPENW

IMP OPTION

INKEY$ OR

INP OUT

INPUT PCIRCLE

INPUT# PEEK

INPUT$ PELLIPSE
INSTR POKE

297

Abacus Software Atari ST BASIC Training Guide

POS UNBREAK

PRINT UNFOLLOW

PRINT# UNTRACE

PTSIN USING

PTSOUT USR

PUT USRO

QUIT USR1

RANDOMIZE USR2

READ USR3

REM USR4

RENUM USR5

REPLACE USR6

RESET USR7

RESTORE USR8

RESUME USR9

RETURN VAL

RIGHT$ VARPTR

RND VDISYS

RSET WAIT

RUN WAVE

SAVE WEND

SEG WHILE

SGN WIDTH

SIN WRITE

SOUND WRITE#

SPACE$ XOR

SPC

SQR
STEP

STOP

STR$
STRING$
SWAP

SYSDBG

SYSTAB

SYSTEM

TAB

TAN

THEN

TO

TRACE

TROFF

TRON

298

Abacus Software Atari ST BASIC Training Guide

Appendix C: Problem Solutions

Chapter One

Solutions to page 33

1.

a) 6C b) 92

c) BA d) F0

e) C f) C9

2.

a) 61642 b) 4712

c) 13728 d) 597

e) 61440 f) 2048

3.

a) 183 b) 51

c) 254 d) 21

e) 85 0 170

4.

a) F730 b) 6000

c) 8001 d) ABCD

e) FFFE f) 4711

Chapter Two

Solutions to page 54

1. a) legal
b) legal
c) AUTO is illegal (Atari ST command)
d) legal
e) IF is illegal; see c)
f) GB is illegal (system variable)
g) 4name %is illegal since it starts with a digit
h) 255 is illegal; see g)
i) legal

299

Abacus Software

2. 10 INPUT A,B,C,D
2 0 PRINT A;B

30 PRINT C;D
4 0 END

Atari ST BASIC Training Guide

10 REM ENTER HEIGHT H AND

20 REM AND BASE B IN INCHES

30 INPUT"ENTER H,B";H,B
4 0 A=.5*B*H

50 PRINT"THE AREA IS"A"SQUARE INCHES"
60 END

10 INPUT"ENTER HEIGHT IN CM";CM

2 0 REM CALCULATE IDEAL WEIGHT

30 IW=CM-100

4 0 REM CALCULATE 10 PERCENT

50 PR=IW/100*10

60 IW=IW-PR

70 PRINT"YOUR IDEAL WEIGHT IS";IW;"KG"
80 END

This problem could also be solved with a shorter program. Lines
30, 50, and 60 could be gathered into one line, as the following
example shows:

30 IW=(CM-100)-(CM-100)/100*10

This line is harder to read since you can't tell right away what
calculation is being performed. Some readers will no doubt point
out that this style of programming helps to save memory space.
That's right, of course—but as a programmer, you must make
some compromise between readability and length of the program. If
you don't have to worry about memory space, you should write
your program so that it can be understood easily. This will also
help you understand your own programs later if you have to make
changes.

300

Abacus Software Atari ST BASIC Training Guide

10 INPUT"HEIGHT, LENGTH, DEPTH IN CM";H,L,D
20 REM CALCULATE VOLUME

30 V=H*L*D

4 0 REM CALCULATE LITERS

50 V=V/1000

60 PRINT"AQUARIUM CONTAINS";V;"LITERS"
7 0 END

In this program the variables for the height, length, and depth (H,
L, and D) are first assigned values in cm. Then in line 30 the
volume is calculated in ccm. In line 50 the calculated volume is
divided by 1000 and we have the volume of our aquarium in liters.

10 INPUT A,B,C,D

20 PRINT"A";A

30 PRINT"B";B

40 PRINT"C";C

50 PRINT"D";D

60 END

If these problems gave you any trouble, read through the
appropriate sections again. Then you should be able to understand
and solve them.

Solutions to page 64

1. 10 REM CLEAR THE SCREEN

2 0 CLEARW 2

30 REM CREATE RANDOM NUMBERS

40 R1=INT(6*RND(1))+1
50 R2=INT(6*RND(1))+1
60 REM OUTPUT RESULT

70 PRINT"ROLL 1:";R1,"ROLL 2:";R2
80 END

Your program should look something like this. Obviously, the
solutions we present here are only suggested solutions. There are
many ways of solving any problem. If you repeat the program with
RUN / <RETURN> you will see the difference in the numbers
printed. In line 20 the output window is cleared with the command
CLEARW 2.

301

Abacus Software Atari ST BASIC Training Guide

Lines 40 and 50 assign newly-created random numbers to the
variables Rl and R2. If you had problems with the upper and lower
bounds, read the section on random numbers again.

2. 10 REM ENTER VALUES OF TRIANGLE SIDES
20 INPUT"ENTER A,B,C IN CM";A,B,C
30 REM CALCULATION OF S

40 S=.5*(A+B+C)

50 REM CALCULATE SURFACE AREA

60 A=SQR(S*(S-A)*(S-B)*(S-C))
7 0 REM OUTPUT AREA

80 PRINT"THE AREA OF THIS TRIANGLE

90 PRINT"IS";F;"SQUARE INCHES"

100 END

With this program you must note that S must be calculated first
because it is used in the calculation of the area. The conversion of

the formula into BASIC should not have presented any difficulties.
Nevertheless, be sure that you don't lapse into using the
mathematical notation of the formulas. This happens all too easily.

10 INPUT"TYPE A KEY FOLLOWED BY RETURN";A$

20 A=ASC(A$)
30 PRINT"THE ASCII VALUE OF ";A$;"=";A
4 0 END

If you have already tried this program out, you may have tried to
enter a comma or just a <RETURN> to find out the ASCII value of
one of these "characters." But the computer printed an error
message. This is one of the disadvantages of the INPUT command,
since it uses the comma to separate variables, for instance. If you
press just <RETURN>, nothing is assigned to the string
variable—that is, this variable is empty. Since the computer
naturally cannot determine the ASCII value of nothing, an error
message is printed. A way of getting around this problem is
explained in a later section (see INP).

302

Abacus Software Atari ST BASIC Training Guide

4. 10 G=9.81

2 0 INPUT"HOW MANY SECONDS";T
30 S=.5*G*TA2

4 0 PRINT"THE OBJECT FELL FROM ";

50 PRINT"A DISTANCE OF";S;"METERS"

60 END

Line 10 is interesting here. The variable G is assigned the value
9.81 at the start of the program. This procedure is called variable
initialization. This means that you assigned certain values to various
variables at the start of the program. Its advantage is that only the
variable has to be called up in the program and not the entire
number, which can be quite long under certain circumstances. This
can, in turn, save memory space in large programs with more
variables.

5. 10 INPUT"HOW MANY GALLONS USED";G
20 INPUT"HOW MANY MILES TRAVELLED";MI

30 V=G/MI*100
40 PRINT"CONSUMPTION PER 100 MI IS"

;V;"GALLONS"

50 END

This program is self-explanatory.

If you solved all of these problems to your own satisfaction, you
can now go on to the next section. If you are uncertain about
anything, go through the appropriate passages again.

Chapter Three

Solutions to page 74

1. a) is correct

2. You get the expression B$ = "DRIPS"

3. You get the expression ROTOR back again.

303

Abacus Software Atari ST BASIC Training Guide

4. B$=MID$(A$,4,1)+MID$(A$,8,1)+MID$(A$,6,1)+
MID$(A$,10,1)

This is one possible solution.

Solutions to page 90

1. 10 REM ENTER ANNUAL INCOME

20 INPUT"ANNUAL INCOME IN $";IC
30 IF IC > 50000 THEN 70

4 0 REM CALCULATE 33 PERCENT

50 TX=IC*33/100

60 GOTO 90

7 0 REM CALCULATE 51 PERCENT

80 TX=IC*51/100

90 PRINT"TAX TO BE PAID:";

100 PRINT " $"/TX
110 END

In line 20 the annual income is read. The value entered is assigned
to the variable IC. In line 30 the income is checked to see if it is

over $50,000. If this is not the case, 33 percent of the income is
calculated and printed. If the income is greater than $50,000, 51
percent is calculated in line 80 and displayed.

This problem could be solved in at least two ways. First the
solution which uses the command IF. . . then .

10 REM SUM 1 TO 100

2 0 A=A+1

30 S=S+A

40 IF A < 100 THEN 20

50 PRINT"SUM OF 1 TO 100 ="/S
60 END

In line 20 we have our counter for the individual summands from 1
to 100. Line 30 calculates the sum of the values of A so far,
1+2+3+4 and so on. Line 40 performs the comparison and the sum
S of the individual summands from 1 to 100 is finally printed in
line 50.

304

Abacus Software Atari ST BASIC Training Guide

The second solution results from the fact that we are dealing with
an arithmetic series here—that is, the difference between successive
terms is a constant. The sum can be calculated from the formula,

Sn=n/2(Al+An)

n is the number of terms in the series, Al the first term, and An is
the last term. According to this, the second solution offers a
solution in general. The program could look something like this:

10 INPUT"NUMBER OF TERMS";N

20 INPUT"FIRST TERM";A1

30 INPUT"LAST TERM";AN

4 0 REM CALCULATION

50 SN=N/2*(Al+AN)
60 REM OUTPUT

7 0 PRINT"THE SUM IS";SN

80 END

10 REM 6 OUT OF 4 9

20 Z=Z+1

30 L=INT(49*RND(1))+1

4 0 IF Z > 6 THEN END

50 PRINT L;

60 GOTO 20

In this program the END command is not placed at the end of the
program. There is no need to place the END command in the last
line of the program. The program should otherwise be easily
understood.

4. For this problem you must note that only the last values of A and Z
are printed. The PRINT command stands outside the actual loop.

305

Abacus Software Atari ST BASIC Training Guide

Your solution therefore must be:

52 9

If you got an 8 as the second value, remember that the program
jumps to line 20 as long as z is less than 9. Not until Z equals 9 is
the condition no longer fulfilled and the output in line 40 is
performed.

5. 10 REM ENTER STRING AND SUBSTRING

20 INPUT"ENTER STRING";A$

30 INPUT"ENTER SUBSTRING";B$
40 1=1+1

50 C$=MID$(A$,I,LEN(B$))
60 IF C$=B$ THEN PRINT"FOUND":END

70 IF I > LEN(A$) THEN PRINT"NOT FOUND":END

80 GOTO 40

This problem was rather difficult. Your program need not match the
one above to the last detail. But it should contain something similar
to the formation of the comparison string in line 50, since this is the
real problem. The statement of the problem makes reference to an
arbitrary string—that is, independent of which and how many
characters are searched for. The MID$ function must be informed
as to the length of the string to be found via the len function. The
counter in line 40 takes care of always moving the position of C$
one place to the right in A$. The comparison to see if the string to
be found (B$) matches the current string in C$ takes place in line
60. Line 70 asks if the entire length of A$ has already been
searched and B$ was not found. The following example will help
clarify the function of the program:

String A$ = " INFORMATION" is to be searched for the string B$
= "FORMAT".

Number of characters in B$=6, so the following substrings are
generated:

1. INFORM

2. NFORMA

3. FORMAT

306

Abacus Software Atari ST BASIC Training Guide

String 3 is the string we are looking for.

That was a tough nut to crack. Make sure that you have understood
all the details of thisprogram. If you are still unsure, workthrough
the program step-by-step once.

Chapter Four

Solutions to page 115

1. 10 REM HARMONIC SERIES

2 0 CLEARW 2

3 0 PRINT"ADD UP

40 PRINT

50 PRINT

60 INPUT S

70 Z=l

80 SH=SH+1/Z

90 Z=Z+1

100 IF Z = 50

"ADDITIONS"

110 IF SH < S THEN 80

120 PRINT"AFTER"Z"TERMS,

TO WHAT SUM?"

* INT(Z/50) THEN PRINT Z;

THE SUM IS"SH

In lines 20 to 60 the screen is cleared and then the user is requested
to enter the sum to be generated. Line 70 sets the counter to 1 and
in line 80 the sum is formed from the individual terms. After this
the counter is incremented by one in line 90. Line 100 checks to see
if the counter has reached 50 or a multiple of 50. An appropriate
output is to be made after every 50 terms. Other multiples can also
be tested with this technique. The value 50 need only be replaced
by the number to be tested for. If the counter is a multiple of 50, the
command after the THEN is executed. Line 110 checks if the
entered sum has already been reached. Line 120 outputs the passes
required after the sum is reached, as well as the sumitself.

307

Abacus Software Atari ST BASIC Training Guide

10 REM QUADRATIC EQUATION
20 CLEARW 2

30 PRINT"ENTER THE COEFFICIENTS A,B,C"
40 PRINT

50 INPUT A,B,C
60 IF A=0 THEN 20:REM A MUST BE <> 0
70 D=B*B-4*A*C

80 IF D < 0 THEN 140

90 X1=(-B+SQR(D))/(2*A)
100 X2=(-B-SQR(D))/(2*A)
110 PRINT"SOLUTION FOR XI =";X1
120 PRINT"SOLUTION FOR X2 =";X2
130 GOTO 150

14 0 PRINT"NO REAL SOLUTIONS!"
150 END

The conversion of the problem into a program should not have
presented any difficulties. Note the case in which A is zero.
According to the formula, a division mustbe made by 2*A. Since
division by zero is not allowed, we must exclude this case from the
beginning.

First the screen is cleared and then comes the output ILLEGAL
VALUE. The important thing here is that you must recognize that
the command directly following the GOTO command was executed.

Solutions to page 140

1. 10 REM READ NAMES

20 DIM Y$ (6)
30 FOR 1=1 TO 6

40 INPUT"NAME";Y$(I)
50 NEXT I

60 REM 1ST ALPHABETICAL NAME
70 Y$(0)=Y$(1)
80 FOR 1=2 TO 6

90 IF Y$(0) <= Y$(I) THEN 110
100 Y$(0) = Y$(I)
110 NEXT I

120 PRINT"1ST NAME ";Y$(0)
130 END

308

Abacus Software Atari ST BASIC Training Guide

Thefirstpartof the program should be pretty straightforward, since
it was presented previously in some examples. Since you know that
a total of 6 names are to be read, a FOR... NEXT loop can be used.

The second part of the program was, admittedly, somewhat
trickier. If you solved this problem yourself, you may now pat
yourself on the back. We talked about the temporary storage of
values in an earlier section. It is precisely this technique which you
must use again here. Which string variable you used for this is
actually notso important. The array element Y$ (0) is ideal for this
purpose since it has no other use in the program. So in line 70 the
contents of element Y$ (1) are stored in Y$ (0) . In line 80 the
FOR. . .NEXT loop begins with the start value 2. We can skip the
value 1 since we don't need to compare the first element with itself.
In line 90 the individual names are compared with each other in
order. If the name in Y$ (0) is "less than" the one currently in
Y$ (1) , a branch is made to line 110 and the loop variable is
incremented by 1. If the string in Y$ (0) is "greater than" that in
Y$ (I), then Y$ (0) is assigned the name in Y$ (I). Once the
loop variable has reached the value 6, the desired name is in
Y$ (0). It is then printed in line 120.

A word about comparing strings: If two strings are compared for
greater or less than, each letterof the two strings are compared with
each other. The deciding factor is the ASCII values of the
individual characters. The string WIND is less than the string WINS
because the ASCII value of D=68, and S=83.

10 REM READ NUMBERS

20 DIM X(6)

30 FOR 1=1 TO 6

40 X(I)=INT(100*RND(1))+50

50 NEXT I

60 REM FIND LARGEST NUMBER

70 X(0)=X(1)

80 FOR 1=2 TO 6

90 IF X(0) >= X(I) THEN 110
100 X(0)=X(I)

110 NEXT I

12 0 PRINT"LARGEST NUMBER ";X(0)

130 END

309

Abacus Software Atari ST BASIC Training Guide

This program has the same structure as theprogram from problem
1. If you got the solution to problem 1,you then have the solution
to problem 2. The difference is only in the type of array (numerical)
and therandom number generation in line 40. The comparisons for
finding the largest number are based on the same principle as in
problem 1. In line 90 we test only for greater than/equal to, since
we want to find the largest number.

In problem 3, where you had to find the assignment rule for the
array:

10 REM ASSIGNMENT RULE FOR SEQUENCE

20 DIM X(6)

30 FOR 1=1 TO 6

40 X(I)=I*I-I
50 NEXT I

60 REM OUTPUT ARRAY

70 FOR 1=1 TO 6

80 PRINT X(I)

90 NEXT I

100 END

The values in this problem are created by the multiplying the loop
variable I with itself and then subtracting I from that total. This
solution is intended only to be a suggestion. If you got the same
results in a different manner, naturally your solution is right as
well.

310

Abacus Software Atari ST Basic Training Guide

Appendix D: BASIC Error List

This book was originally written using BASIC Version 7/18/85, with a
total size of 138944 bytes. This version contains a number of errors.
You may want to check these errors against later versions you might
have.

Arrays

Before putting arrays into a program, the entire setof arrays must be
first cleared with 0 or a null string, or else a number will be received
(ERASE command).

Accuracy

The accuracy of the present version is inconsistent. For example,
division such as 53/100 results in 0.529999 rather than 0.53. Extremely
simple commands like PRINT 8.4 won't execute accurately.

Variable Declaration

This is a strange one: Declaring values between 77312 (e.g. x=77312)
and 77823 results in the Function not yet done error message.
Some values (e.g. x=77500) lock up the entire system!

GOTOXY

This divides the column position by two (e.g. column 10=column 5).
This is only the case in high-res mode.

INP

This command can only be interrupted by pressing <CONTROL>C and
moving the mouse simultaneously.

LINE INPUT#

This command doesn't recognize the EOF (n) function.

311

Abacus Software Atari ST Basic Training Guide

ON ERROR GOTO

When this command is used, an EOF (end-of-file) results in a system
crash.

OPTION BASE

This command doesn't work at all.

VAL

The VAL function gives a nullstring with the last VAL value. This
would be right if the output were a zero.

312

f INDEX J

Abacus Software

AES (GEM), 204, 206, 210
algorithms, 8
arrays, 127-148

index, 129
indexed variables, 130
one-dimensional, 127
multi-dimensional, 141

ASC(X$) ,63
ASCH, 19, 187

BASIC, 8
loading, 3

binary numbers, 20
bit, 21
boolean operators, 25, 32
branches, 83

(see program jumps)
bubble sorting, 177

with switch, 179
byte, 21

CALL, 118
carriage return, 43
CHR$(X$)
CIRCLE, 197
command window, 6, 79
cursor (positioning), 171

keys, 7

DATA, 120
data flow, 10
DEF FN, 59
device number, 116
DIM, 130
DIR, 184
direct mode (ST), 42
directory, 184
disk drive, 183
disks, 183

displaying contents, 184
erasing, 185
renaming, 186

Atari ST BASIC Training Guide

315

documentation, 16-17
DOS (VDI), 203

edit window, 6, 79
editing programs, 75
ELLIPSE, 198
error handling, 113
extension, 183

file management, 183
flowcharts, 10

data, 12
program, 14
logical branches, 97

FOR...TO...NEXT, 91
FORTRAN, 8
FRE, 118

GEM, 3, 203
GOTOXY, 171
graphics, 196

circle, 197
ellipses, 198
fill, 199
lines, 197

hexadecimal, 22

IF...THEN...ELSE, 86
INPUT, 40
input routines, menu, 172
INSTR, 72

keyboard, 116
keys, 5-7

labels, 89
LEFT$,67
LEN(X$),70
LET, 41
LINEF, 197
linefeed, 43

Abacus Software

line numbers, 5
list window, 6, 79
loading, 184

ST BASIC, 3
logical branches, 83-98
logical operators, 25

AND, 27
EQV, 30
IMP, 31
NOT, 26
OR, 28
XOR, 29

loops, 83, 85, 91, 93

MATH TUTOR, 105
menu bar, 4
menus, 168

input routines, 172
MERGE, 190
MID$, 70

nibble, 23
number systems, 19

binary, 20
hexadecimal, 22

numerical functions, 55

ON...ERROR, 113
output window, 6, 79

PCIRCLE, 199
PELLIPSE, 199
POKE, 124
POS, 118
PRINT, 42
PRINT USING, 45
problem solutions, 213
program flow, 10
program jumps, 83-114

commands, 103
conditional, 86
unconditional, 83

316

Atari ST BASIC Training Guide

programming (intro), 8

radians, 55
random numbers, 59
READ, 120
record counter, 187
REM, 50
renaming, files, 186
RESTORE, 120
RIGHT$, 68

saving programs, 183
screen positioning, 65
screen resolution, 196
screen windows, 79
sequential files, 187
sorting, 177
sound, (ST), 193
SOUND, 194
SPACE, 73
SPC, 65
strings, 66-73
STRING$, 73
STR (X$),71
subroutines, 149-167

nesting, 163
system variables, 113

TAB, 65
trigonometry functions, 56

value assignment, 41
VAL(X$),70
variables, 52-61
VDI (GEM), 203, 205, 210

WAIT, 118
WHILE...WEND, 97
windows, 79

Optional Diskette

For your convenience, the program listings contained in this book are

available on an SF354 formatted floppy disk. You should order the diskette

if you want to use the programs, but don't want to type them in from the

listings in the book.

All programs on the diskette have been fully tested. You can change the
programs for your particular needs. The diskette is available for $14.95 plus
$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a
check, money order or credit card information. Mail your order to:

Abacus Software
5370 52nd, Street SE

Grand Rapids, MI 49508

Or for fast service, call 1- 616 / 698-0330.

AssemPro
Machine language development system

for the Atari ST

".../ wish I had (AssemPro) a year and a half ago... it
could have saved me hows and hows and hows."

—Kurt Madden

ST World

"The whole system is welldesigned andmakes therapid
development of 68000 assembler programs very easy."

—Jeff Lewis

Input

AssemPro is a completemachine language development
package for the Atari ST. It offers the user a single,
comprehensive package for writing high speed ST
programs in machine language, all at a very reasonable
price.

AssemPro is completely GEM-based—this makes it
easy to use. The powerful integrated editor is a breeze to
use and even has helpful search, replace, block,
upper/lower case conversion functions and user definable
function keys. AssemPro's extensive help menus
summarizes hundreds of pages of reference material.

The fast macro assembler assembles object code to
either disk or memory. If it finds an error, it lets you
correct it (if possible) and continue. This feature alone
can save the programmer countless hours of debugging.

The debugger is a pleasure to work with. It features
single-step, breakpoint, disassembly, reassembly and
68020 emulation. It lets users thoroughly and
conveniently test their programs immediately after
assembly.

AssemPro Features:

• Full screen editor with dozens of powerful features
• Fast 68000 macro assembler assembles to disk or

memory

• Powerful debugger with single-step, breakpoint,
68020 emulator, more

• Helpful tools such as disassembler and reassembler
• Includes comprehensive 175-page manual

AssemPro Suggested retail price: $59.95

Desk File Nimbler Debuos tr Editor Se«r h Slock Hele

irTiinrBinlf'n*Tli'jiflflf"' 'I' Assembler IW«?
Si B , Rest : 6UB1Brtt : 6BBB8 . TEXT : 6 . DRTR : 0 . 6

R

*

Editor UIojJm lEitnblir UUdM

I
Bssenblcr Debugger Editor StTch Block T»ble

|J)ebuaBer_l _

BBB6Z BIBB

BBBBI GOFC
BBQBS BB7B6BB4
SB8BH B1BRBBB4

BBBBE BIDE
BBB1I 88B48RDB
BBB14 8SB4B07C
IBBB1S B084BBJ8
DD01C B0B4BB44
IBBBZB BBB4BB5S

BBB74 88841451
BBBZB BBFC
BBBZfl 5C4B
BBBZC BB8BCBC4

BBBJI BCFC

Output !

£i!.!Mij&^l*r-

BISI 0D,I)I1
DC.U SFC
Ofll.fl «4,-£flfl)
HOvEP.U 4<H7),D4
BSET D4, (HO)♦

ORI.B «-5ZB,D4
DRI.B »S7C,D4
ORI.B «$J8,D4
DRI.B s$44,D4
DRI.B aS5fl,D4
ORI.B "$5Z,D4
OCU SFC
SUfl.U RB.DG
ORI.B "-S3CDB

_pC.U_Sr.Fj;

?uwbdlk

!•;:

Selected Abacus Products for the ^^[fJkr£)lF

Chartpak ST
Professional-quality charts and graphs

on the Atari ST

In the past few years, Roy Wainwright has earned a
deserved reputation as a topnotch software author.
Chartpak ST may well be his best work yet Chartpak
ST combines the features of his Chartpak programs for
Coj'iunodore computers with the efficiency and power of
GEM on the Atari ST.

Chartpak ST is a versatile package for the ST that lets
the user make professional quality charts and graphs
fa_. Since it takes advantage of the STs GEM
functions, Chartpak ST combines speed and ease of use
that was unimaginable til now.

The user first inputs, saves and recalls his data using
•Chartpak ST's menus, then defines the data positioning,
scaling and labels. Chartpak ST also has routines for
standard deviation, least squares and averaging if they are
needed. Then, with a single command, your chart is
drawn instantly in any of 8 different formats—and the
user can change the format or resize it immediately to
draw a different type of chart

In addition to direct data input, Chartpak ST interfaces
with ST spreadsheet programs spreadsheet programs
(such as PowerLedger ST). Artwork can be imported
from PaintPro ST or DEGAS. Hardcopy of the finshed
graphic can be sent most dot-matrix printers.The results
on both screen and paper are documents of truly
professional quality.

Your customers will be amazed by the versatile,
powerfulgraphingand charting capabilities of Chartpak
ST.

Chartpak ST works with Atari ST systems with one or
more single- or double-sided disk drives. Works with
either monochrome or color ST monitors. PWorks with
most popular dot-matrix printers (optional).

Chartpak ST Suggested Retail Price: $49.95

SSSiSSK*^

III)

!II

(It

' 711

; in

;. hi

i "•

HI

;n

in

fllKlOilllllill
Mil mitt KlfllES II III ILLIB!

-Hvl 11 li ggg g
11ft 1 _j?i^•PH •
•K 11 HUH) £ s

_M

%iffif £

is » r ii ii > is t; v it i! ii i

— TO! —

H v ii ii m

mm)

flUri Slock Perforutdfice
25

r

S.lii Hi. Ii IiiiI hum i!|i

hlMliiit m 1 ill d,vi,i;

• WVIli

• liul

t ?e

__..--
J-V-~~~

ist^0^^^
jiiiljiililiHjiyjHiljIliiJHiillt ii! jiiiiiii
'••••• „•„.,..•.,..,.• • ' win ici

Ml WlltS III! Ill
rt stntatr. ili-llti

imi

frJl7>

STSIEII ^^V^^S^^^
is jFj5£&S%/-

Viinniui!
Itlil- IMI.lt

vwv

i hn-n

Selected Abacus Products for the /WfrASD1

DataRetrieve
(formerly FilePro ST)

Database management package
for the Atari ST

"DataRetrieve is the most versatile, and yet simple,
data base manageravailablefor the Atari520ST/1040ST
on the market to date."

—Bruce Mittleman

Atari Journal

DataRetrieve is one of Abacus' best-selling software
packages for the Atari ST computers—it's received
highest ratings from many leading computer magazines.
DataRetrieve is perfect for your customers who need a
powerful, yet easy to use database system at a moderate
price of $49.95.

DataRetrieve's drop-down menus let the user quickly and
easily define a file and enter information through screen
templates. But even though it's easy to use,
DataRetrieve is also powerful. DataRetrieve has fast
search and sorting capabilities, a capacity of up to
64,000 records, and allows numeric values with up to
15 significant digits. DataRetrieve lets the user access
data from up to four files simultaneously, indexes up to
20 different fields per file, supports multiple files, and
has an integral editor for complete reporting capabilities.

DataRetrieve's screen templates are paintable for
enhanced appearance on the screen and when printed, and
data items may be displayed in multiple type styles and
font sizes.

The package includes six predefined databases for
mailing list, record/video albums, stamp and coin
collection, recipes, home inventory and auto
maintenance that users can customize to their own

requirements. The templates may be printed on Rolodex
cards, as well as 3 x 5 and 4x5 index cards.
DataRetrieve's built-in RAM disks support lightning-
fast operation on the 1040ST. DataRetrieve interfaces to
TextPro files, features easy printer control, many help
screens, and a complete manual.

DataRetrieve works with Atari ST systems with one or
more single- or double-sided disk drives. Works with
either monochrome or color monitors. Printer optional.

DataRetrieve Suggested Retail Price: $49.95

DataRetrieve
The electronic

filing system
for the ST

desk file Change nations Inpm/Outpijt help
_ j >•'-::: ^

Seirch node. Oitl records : 18 Inge* : Ho aLtlve Index

batllrie'

Nunber of Pages

DataRetrieve Features:

Easily define your files using drop-down menus
Design screen mask size to 5000 by 5000 pixels
Choose from six font sizes and six text styles
Add circles, boxes and lines to screen masks
Fast search and sort capabilities
Handles records up to 64,000 characters in length
Organize files with up to 20 indexes
Access up to four files simultaneously
Cut, past and copy data to other files
Change file definitions and format
Create subsets of files

Interfaces with TextPro files

Complete built-in reporting capabilities
Change setup to support virtually any printer
Add header, footer and page number to reports
Define printer masks for all reporting needs
Send output to screen, printer, disk or modem
Includes and supports RAM disk for high-speed
1040ST operation
Capacities: max. 2 billion characters per file

max. 64,000 records per file
max. 64,000 characters per record
max. fields: limited only by record size
max. 32,000 text characters per field
max. 20 index fields per file

Index precision: 3 to 20 characters
Numeric precision: to 15 digits
Numeric range ±10"308 ti±10308

p
Selected Abacus Products for the ^jW^fJLr^lf*

Forth/MT
Powerful Multi-tasking Language

for the Atari ST

Forth is not only a programming language, but also an
operating environment—the user can program, assemble
and edit. Since Forth is fast, compact, flexible and
efficient., it's particularly well-suited to the solution of
real time problems. In use for more than fifteen years in
industrial and scientific applications, Forth dramatically
reduces programdevelopmenttimecompared toprogram
ming in assembly language or other higher-level
languages.

The powerful multi-tasking Forth/MT package was
designed to make the fullest use of the ST's features for
Forth programming.

Forth/MT features include:

• Over 750 words in the Kernal

• Complete TOS and LINE-A commands available
• Over 1500 words (disk accessible)
• Complete 32-bit implementation based on

Forth-83 standard

• Machine language sections added for speed
• Many utilities: full screen editor, monitor,

disk monitor and Forth macro assembler

• Utility descriptions stored on disk-you can change
them to suit your needs

• Multitasking capability
• Machine language sections added for

high-speed operation

Forth programmers will love the ease of use of this
excellent package. Forth/MT the perfect tool for
unleashing the power of the Forth programming
language on the Atari ST line of computers.

Forth/MT Suggested retail price: $49.95

•GST"

Multi-Tasking
Full-Featured

POINTER NEW-MOUSE <CR> (DEFINE BUFFER HEADER

0 W, (MASK COLOR) 1 W, (MOUSE COLOR) <CR>

BIN 0000000000000000 W, <CR>

0000000000000000 W, <CR>

0001111001111000 W, <CR>

0001111001111000 W, <CR>

0001001001001000 W, <CR>

0001001001001000 W, <CR>

0001001001001000 W, <CR>

0000001000001000 W, <CR>

0000000000000000 W, <CR>

0000101010100000 W, <CR>

0000011111100000 W, <CR>

0000001001000000 W, <CR>

0000000000000000 W, <CR>

0000000000000000 W, <CR>

0000000000000000 W, <CR>

0000000000000000 W, <CR>

0000000000000000 W, <CR>

0001111001111000 K, <CR>

0010000110000100 W, <CR>

1010000110000101 W, <CR>

1110110110110111 W, <CR>

1110110110110111 W, <CR>

1110110110110111 W, <CR>

0111110111110110 W, <CR>

0111111111111110 W, <CR>

0011010101011100 W, <CR>

0001100000011000 W, <CR>

0001110110111000 W, <CR>

0000111111110000 W, <CR>

0000001111000000 W, <CR>

0000001111000000 W, <CR>

0000000000000000 W, <CR>

NEW-MOUSE TRANSFORM <CR>

SHOW <CR>

1ST MASK LINE)

2ND MASK LINE)

3RD MASK LINE)

4TH MASK LINE)

5TH MASK LINE)

6TH MASK LINE)

7TH MASK LINE)

8TH MASK LINE)

9TH MASK LINE I

10TH MASK LINE)

11TH MASK LINE)

12TH MASK LINE)

13TH MASK LINE)

14TH MASK LINE)

15TH MASK LINE)

16TH MASK LINE)

1ST MOUSE LINE)

2ND MOUSE LINE)

3RD MOUSE LINE)

4TH MOUSE LINE)

5TH MOUSE LINE)

6TH MOUSE LINE)

7TH MOUSE LINE)

8TH MOUSE LINE)

9TH MOUSE LINE)

10TH MOUSE LINE)

11TH MOUSE LINE)

12TH MOUSE LINE)

13TH MOUSE LINE)

14TH MOUSE LINE)

15TH MOUSE LINE)

16TH MOUSE LINE)

(SET NEW MOUSE)

(AND DISPLAY)

PaintPro
Design and graphics software for the ST

PaintPro is a very friendly and very powerful package
for drawing and design on the Atari ST computers that
has many features other ST graphic programs don't
have. Based on GEM™, PaintPro supports up to three
active windows in all three resolutions—up to 640x400
or 640x800 (full page) on monochrome monitor, and
320 x 200 or 320 x 400 on a color monitor.

PaintPro's complete toolkit of functions includes text,
fonts, brushes, spraypaint, pattern fills, boxes, circles
and ellipses, copy, paste and zoom and others. Text can
be typed in one of four directions—even upside down—
and in one of six GEM fonts and eight sizes. PaintPro
can even load pictures from "foreign" formats (ST
LOGO, DEGAS, Neochrome and Doodle) for
enhancement using PaintPro's double-sized picture
format. Hardcopy can be sent to most popular dot-
matrix printers.

PaintPro Features :

• Works in all 3 resolutions (mono, low and medium)
• Four character modes (replace, transparent, inverse

XOR)
• Four line thicknesses and user-definable line pattern
• Uses all standard ST fill patterns and user definable

fill patterns
• Max. three windows (dependng on available memory)
• Resolution to 640 x400 or 640x800 pixels

(mono version only)
• Up to six GDOS type fonts, in 8-, 9-, 10-, 14-, 16-,

18-, 24- and 36-point sizes
• Text can be printed in four directions
• Handles other GDOS compatible fonts, such as those

in PaintPro Library # 1
• Blocks can be cut and pasted; mirrored horizontally

and vertically; marked, saved in LOGO format, and
recalled in LOGO

• Accepts ST LOGO, DEGAS, Doodle & Neochrome
graphics

• Features help menus, full-screen display, and UNDO
using the right mouse button

• Most dot-matrix printers can be easily adapted

PaintPro works with Atari ST systems with one or
more single- or double-sided disk drives. Works with
either monochrome or color ST monitors. Printer

optional.

PaintPro Suggested Retail Price: $49.95

PaintPro
Create double-

sized pictures

Q PaintPro

8 file Block \mmt Pittern Color Help
APflIHTPU).S\PflT-EOIT,Cfi!

ii ODOS tain. PaiiiPiq tfcui-y 1 cavim F\n Ii

font! Smplt!

tit susten

smIsi
computer
chintil
Blind

S^TOslk

O rile BlDcK Options Pitttrn Cnlor Help
H:\PaiHTPRO.PIC

PaintPro
Lolcr Uerstcn

and uvi u.i* tJCO-S fonla

InaluiltiH pattatrt udliar

Koafa ¥«infPr».

Tpicturear-

bold

Italic

light
underlined

W$h\\
Zl .U n n

I

Selected Abacus Products for the ^|^[R|f JLSTP

PCBoard

Designer
Interactive CAD Package

for printed circuit board layout
on the Atari ST

PCBoard Designer is an interactive, computer-aided
design package for creating electronic printed circuit
boards. It drastically reduces the cost, time and tedium of
making one or two-sided pc boards. The advanced
features of PCBoard Designer can improve a designer's
productivity ten-fold.

PCBoard Designer is easy to use. Design parameters are
conveniently entered and modified at the computer. The
user can position the components interactively by
moving them on the screen using the mouse. This lets
the user compare alternative component placement with
no extra effort.

As the user position the components on the screen
using the mouse, PCBoard Designer displays the new
connections! Automatic routing is fast and precise.

The most powerful feature of PCBoard Designer is its
fast automatic routing capability. Traces are
automatically and precisely drawn on the screen. If the
user changes the design, the traces can be immediately
redrawn—this feature alone can save an enormous

amount of time and money. In addition, the user has
options of 45° or 90° angle traces, different trace widths,
routing from pin to pin, pin to BUS, BUS to BUS, as
well as two-sided boards. The rubberbanding feature lets
you see the user-defined components during
placement—and the user can reposition your
components at any time during the design process.

PCBoard Designer prints the completed layout to any
Epson/compatible dot matrix printer and Hewlett-
Packard plotters at 2:1. The high-quality printout is
camera-ready for final photo-etching. PCBoard Designer
also prints the component layout, and lists every
component and connection as well.

In conjuction with the Atari ST computer, PCBoard
Designer is the most affordable PC board CAD package
available. It boasts features that not available on

systems costing thousands of dollars.

....

PCBoard
Designer

Create printed circuit board layouts

Features: Auto-routing, component
list, pinout list, net list

How PCBoard Designer works

There are basically four steps in creating a working
pc board:

• Specify the components: For example, IC4 is an
integrated circuit that fits in a 14-pin dual-in-line
socket. You can also define custom component
types, for example a 99-pin circular IC.

• Specify the connections: For example, pin 2 of
integrated circuit IC4 is connected to lead 1 of
transistor Q7. You can change the connections at
any time.

• Position the components: Move the components
to their desired position on the screen by using
the Atari STs mouse. You can reposition them at
any time. PCBoard Designer automatically routes
the connections when you're done.

• Output the design: The finished board can be
printed on any Epson/compatible printer or
Hewlett-Packard plotter. The printout is suitable
for photoetching. You can also print the
component layout (for silkscreening), the
component list, and the list of connections.

Selected Abacus Products for the m

Itrt rut InfH laaom WmiUi Haaaal lattat

"/ way thoroughly impressed... a powerful, multi-
featured design tool that can be easily learned and
used."

—Bill Marquardt
Input magazine

"What makes this program especially easy to use
is that the components are drawn to scale on the
screen. This comes in handy when it's time for
the user to position the components.

"The author invested a lot of blood, sweat and
tears writing this portion of the program. PCBoard
Designer has a wide selection of options here that
allow for flexible design. Either all of the
connections or an individual connection can be

routed at the click of the mouse button.

"One thing is clear, though: author Florian
Sachse has produced afirst-class softwarepackage.
This program will undoubtedly be a godsend to the
engineer and electronic hobbyist alike.

—DATA WELT Magazine
APRIL 1986

Abacus Software, Inc.
5370 52nd St. S.E.

Grand Rapids, MI 49508

(616) 698-0330

PCBoard Designer (continued)

PCBoard Designer Features:

• PC boards may be one-sided or two-sided
• Components are drawn to scale on the screen
• Custom components may be used
• Component positioning is flexible and interactive
• Components may be roatated in 90° increments
• Traces are drawn using sophisticated and fast

automatic routing techniques—the user has the ability
to make 45° and 90° angle traces, variable trace
widths, pin to pin, pin to bus and bus to bus routing

• "Blockades" may be inserted onto the board to handle
special cases

• Printout is high quality and suitable for photo-
reproduction

• Features are clearly displayed and are selectable from
the drop-down menus

Hardware Requirements:

Computer: Atari 520ST or 1040ST computer and
monochrome monitor with one or more single-sided,
double-sided, or hard disk drives.

Printers/Plotters: PCBoard Designer prints your
completed layout to any Epson or Epson-compatible dot
matrix printer at 2:1. Epson FX-80, FX-100, Toshiba,
NEC P6 and P7 or compatible printersrequired for photo-
ready traces. Also works on Hewlett/Packard plotters.

Package: Includes 100 page manual in 3-ring slipcase
binder and program diskette.

Free phone support to registered users.

PCBoard Designer can dramatically improve design
productivity by eliminating many redundant steps and
time-consuming alterations. With all of its advanced
time-saving capabilities, PCBoard Designer pays for
itself after the first successfully designed board.

PCBoard Designer
Suggested Retail Price:

$195.00

Selected Abacus Products for the M0« If A^f

PowerLedger ST
(formerly PowerPlan ST)

Spreadsheet/Graphics package
for the Atari ST

"A superior spreadsheet program for weekend
bookeeping to the heavyweight job costing appli
cations, (Powerledger ST) is a definite winner."

—Judi Lambert

ST World

Ever since VisiCalc and Lotus 1-2-3 stormed the

personal computer market, the computer has become an
important planning tool. PowerLedger ST brings the
power of electronic spreadsheets to the Atari ST line of
computers—it lets the user quickly perform hundreds of
calculations and "what-if analyses for business
applications, and crunch raw data into meaningful,
comprehensible information, to keep track of budgets,
expenses and statistics.

PowerLedger ST is a powerful analysis package that
features a large spreadsheet (65,536 X 65,536
cells—over 4 billion data items). It also contains a
built-in calculator, online notepad, and integrated
graphics.

PowerLedger ST is also very easy to learn, since it uses
the familiar GEM features built into the ST. And
PowerLedger ST can use multiple windows—up to
seven. Data from the spreadsheet can be graphically
summarized in in pie charts, bar graphs and line charts,
and displayed simultaneously with the spreadsheet. For
example, one window can display part of the
spreadsheet; a second window a different part; and a third
window, a pie or bar chart of the data.

PowerLedger ST works hand-in-hand with our
DataTrieve data management package and our TextPro
wordprocessing package.

PowerLedger ST's extraordinary combination of data and
graphic power, ease of use and low price makes it a
perfect tool for every ST owner's financial planning
needs.

PowerLedger ST works with Atari ST systems with one
or more single- or double-sided disk drives. Works with
either monochrome or color ST monitors. Works with

most popular dot-matrix printers (optional).

Desk File Edit Input [omit Options firaphs
•I : ••••' :;HmIM P-r».,sT E5d:.!*$:.<!<•! .VL-: "..:.h

ipanuary feburary March
_m.is| 224.aa -
_125,2* 125.2* 125,2*,

121.51. 221, SJ 221.51)'
7

Graphics-
t>rl2d 1 r!2c!4

11.83*1
4.3>I>^gyi0.25I

H.7S7*^7.5I*

J»pr(i„. Kay
IT not :224.B8| 224jj 224,B:

JttJH, ?"'
i,2* 125.2* 125.2

HttlJll izTil ia.l;
125.2* _125.2
mai lit,!

brltnlci

t 1 13Product 2 BProduct 1

1 1InrJi 11
B Mflfl flPfl rW JUM JUL AL16 SEP DC

h

PowerLedger ST Features:

• Familiar drop-down menus make PowerPlan easy to
learn and use

• Large capacity spreadsheet serves all the user's
analysis needs

• Convenient built-in notepad documents your
important memos

• Flexible online calculator gives you access to quick
computations

• Powerful options such as cut, copy and paste
operations speeds the user'swork

• Integrated graphics summarize hundreds of data items
• Draws pie, bar, 3D bar, line and area charts

automatically (7 chart types)
• Multiple windows emphasize the user's analyses
• Accepts information from DataTrieve, our database

management software
• Passes data to TextPro wordprocessing package
• Capacities: maximum of 65,535 rows

maximum of 65,535 columns
variable column width

numeric precision of 14 digits
maximum value 1.797693 x 10308
minimum value 2.2 x 10"3^°
37 built-in functions

PowerLedger ST Suggested Retail Price: $79.95

Selected Abacus Products for the ^j]^|fJfLST?"

TextPro
Wordprocessing package

for the Atari ST

'TextPro seems to be well thought out, easy, flexible
anffast. The program makes excellent use of the GEM
interface and provides lots of small enhancements to
make your work go more easily... if you have an ST
and haven't moved up to a GEM word processor, pick
up this one and become a text pro."

—John Kintz

ANTIC

"TextProis the best wordprocessor available for the ST'
—Randy McSorley

Pacus Report

TextPro is a first-class word processor for the Atari ST
that boasts dozens of features for the writer. It was

designed by three writers to incorporate features that
they wanted in a wordprocessor—the result is a superior
package that suits the needs of all ST owners.

TextPro combines its "extra" features with easy
operation, flexibility, and speed—but at a very
reasonable price. The two-fingered typist will find
TextPro to be a friendly, user-oriented program, with all
the capabilities needed for fine writing and good-looking
printouts. Textpro offers full-screen editing with mouse
or keyboard shortcuts, as well as high-speed input,
scrolling and editing. TextPro includes a number of easy
to use formatting commands, fast and practical cursor
positioning and multiple text styles.

Two of TextPro's advanced features are automatic table

of contents generation and index generation
—capabilities usually found only on wordprocessing
packages costing hundreds of dollars. TextPro can also
print text horizontally (normal typewriter mode) or
vertically (sideways). For that professional newsletter
look, TextPro can print the text in columns—up to six
columns per page in sideways mode.

The user can write form letters using the convenient
Mail Merge option. TextPro also supports GEM-
oriented fonts and type styles—text can be bold,
underlined, italic, superscript outlined, etc., and in a
number of point sizes. TextPro even has advanced
features for the programmer for development with its
Non-document and C-sourcecode modes.

TextPro Suggested Retail Price: $49.95

»lt iflc firmtHii

lisni cuu l lilt.
I Wfw

Ttltf if M MMPII If tjoa
Clival arlallaa. Sta famati
Kidir tha ttnalttlla MM,
Cham thill Httinfi ti

tiara's lur lltltt catalog coo- flhtlll wills ntultt, Mil
tainloi all If Mr litist pro- dim initial it evallaala

Daar CMautlr Entbusllit,

lasts.

Bflrram ts Ml If tht laront
lot nail rillahla Hitlllhtri
In the ultra Industry Ml
Hl'wl aarnao Mr solid muta
tion by taMni cart it lich
cistMir llki poo.

In nlH t»t WTFin.PM M
•rlittit harlmtalll

:;:

:

::

TextPro ST Features:

• Full screen editing with either mouse or keyboard
• Automatic index generation
• Automatic table of contents generation
• Up to 30 user-defined function keys, max. 160

characters per key
• Lines up to 180characters using horizontal scrolling
• Automatic hyphenation
• Automatic wordwrap
• Variable number of tab stops
• Multiple-columnoutput (maximum 5 columns)
• Sideways printing on Epson FX and compatibles
• Performs mail merge and document chaining
• Flexible and adaptable printer driver
• Supports RS-232 file transfer (computer-to-computer

transfer possible)
• Detailed 65+ page manual

TextPro works with Atari ST systems with one or more
single- or double-sided disk drives. Works with either
monochrome or color ST monitors.

TexPro allows for flexible printer configurations with
most popular dot-matrix printers.

'ASU
REFERENCE UBRARY
im"ERNALS

Essential guide to learning
the inside information on the

ATARI ST. Written for the

user who wants thorough
and complete descriptions of
the inner workings of the ST.
Detailed descriptions of the
sound and graphics chips,
the internal hardware, the
Centronics and RS-232

ports, GEM, important system
addresses and plenty more.
Also included is a complete
documented BIOS assembly
listing. This indispensible
reference is a required
addition to your ATARI ST
library. 450 pages. $19.95

GEM Programmers'Reference
A complete guide to
programming tha ST<
using tha Graphics

Environment

Manager

For the serious programmer
in need of detailed inform

ation on the GEM operating
system. Written especially for
the Atari ST with an easy-to-
understand format that even

beginners will be able to
follow. All GEM routines and

examples are written in C
and 68000 assembly
language. Covers working
with the mouse, icons, Virtual
Device Interface (VDI),
Application Environment
Services (AES) and the
Graphics Device Operating
System. Required reading for
the serious programmer
intrested in understanding
the ST. 450 pages. $19.95

MACHINE LANGUAGE
Program in the fastest
language for your Atari
ST. Learn the 68000

assembly language, its
numbering system, use
of registers, the structure
S important details of the
instruction set, and use of
the internal system
routines. 280pp $19.95

TRICKS & TIPS
Treasure trove of fascin
ating tips and tricks
allows you to make full
use of your ATARI ST.
Fantastic graphics, refin
ing programs in BASIC,
assembler, and C.
includes program listings
for RAM disk, printer
spooler and more. $19.95

GRAPHICS & SOUND
A comprehensive hand
book showing you how to-
create fascinating graph
ics and suprising music
and sound from the

ATARI ST. See and hear

what sights and sounas
(hat you're capable of
producing from your
ATARI ST. $19.95

jmmmm?

j.yiyiyi^jiJi".ynfiW-H
i-i-VM-vy,,'! rn-yr

Abacus mm HI Software

LOGO

Take control of your
ATARI ST by~Jearning
LOGO-the easy-to-use,
yet powerful language.
Topics covered include
structured programming,
graphic movement, file
handling and more. An
excellent book for kids as
well as adults. $19.95

PEEKS & POKES
Enhance your programs
with the examples found
within this book. Explores
using the different lang
uages BASIC, C, LOGO
and machine language,
using various interlaces,
memory usage, reading
and saving from and to
disk, more. $16.95

PRESENTING THE ST
Gives you an in-depth
look at this sensational

new computer. Discusses
the architecture of the
ST, working with GEM,
the mouse, operating
system, all the various
interfaces, the 68000
chip and its instructions,
LOGO. $16.95

AbacusMM Software
5370 52nd Street SE Grand Rapids, Ml 49508 Phone (616) 698-0330

Optional diskettes are available for all book titles at $14.95
Call now for the name of your nearest dealer. Or order directly from ABACUS with your MasterCard, VISA, or
Amex card. Add $4.00 per order for postage and handling. Foreign add $10.00 per book. Other software and
books coming soon. Call or write for free catalog. Dealer inquiries welcome-over 1200 dealers nationwide.

S
u
S

•o

5

t-

3
©

•a
c
<u

to

How to Order
5370 52nd Street SE Grand Rapids, Ml 49508

CO
o

to 3

CO s-

•o
o -o "a.

re r^ ra
-Q co *-

§

B

•O

s.
a.

All of our ST products—applications and language software, and our
acclaimed 14 volume Atari ST Reference Library—are available at
more than 2000 dealers in the U.S. and Canada. To find out the
location of the Abacus dealer nearest to you, call:

(616) 698-0330
8:30 am-8:00 pm Eastern Standard Time

Or order from Abacus directly by phone with your credit card. We
accept Mastercard, Visa and American Express.

Everyone of our software packages is backed by the Abacus 30-Day
Guarantee-if for any reason you're not satisified by the software
purchased directly from us, simply return theprooduct fora full refund
of the purchase price.

Order Blank

Name:

Address,.

Cily_ State Zip Country

H en

t- U

° U

Phone: /

PriceQtv Name of product

Mich, residents add 4% sales tax

Shipping/Handling charge

(Foreign Orders $12 per item)

Check/Money order TOTAL enclosed

$4.00

Credit Card*

u
Expirationdate CardholderSignature

^ 6!

ft K>

g sr

2 *

3-1-
n

	Front Cover
	Title
	Copyright
	Contents
	Contents 2
	Contents 3
	Contents 4

	Foreword
	1: Fundamentals of Programming
	Fundamentals of programming
	1.1: Loading ST BASIC
	1.2: Algorithms and programs
	1.3: The BASIC language
	1.4: Data flowcharts, program flowcharts and documentation
	1.5: ASCII Codes
	1.6: Number systems
	1.7: The logical operators

	2: Introduction to Programming in BASIC
	Introduction to programming in BASIC
	2.1: The first BASIC program
	2.2: Variables and their use
	2.3: Numerical functions
	2.4: TAB and SPC
	2.5: Strings
	2.6: Editing Programs
	2.7: The screen windows

	3: Extended Program Structures
	Extended program structures
	3.1: Unconditional program jumps
	3.2: Conditional program jumps
	3.3: Calculated jump commands
	3.4: Reading the keyboard
	3.5: FRE, POS, CALL, and WAIT
	3.6: READ, DATA, and RESTORE

	4: Advanced BASIC Applications
	Advanced BASIC applications
	4.1: Arrays
	4.2: Subroutines
	4.3: Menu techniques
	4.4: Sorting procedures

	5: Working with the Disk Drive
	5.1: Program management
	5.2: Sequential file management

	6: Sound and Graphics
	Sound and Graphics
	6.1: Sound
	6.2: Graphics

	7: Using GEM with ST BASIC
	Using GEM with ST BASIC
	7.1: GEM fundamentals
	7.2: Passing parameters to GEM routines
	7.3: VDI examples
	7.4: AES examples
	7.5: Using GEM Functions in Applications - Example Program

	Appendix
	A: Overview of ST BASIC Commands
	B: Reserved BASIC Words
	C: Problem Solutions
	D: BASIC Error List

	Index
	A-L
	L-W

	Disk
	Adverts
	Back Cover

