
THE PROBLEM OF INTEGRATION IN FINITE TERMS

BY

ROBERT H. RISCHF)

This paper deals with the problem of telling whether a given elementary function,

in the sense of analysis, has an elementary indefinite integral.

In §1 of this work, we give a precise definition of the elementary functions and

develop the theory of integration of functions of a single variai ¿. By using func-

tions of a complex, rather than a real variable, we can limit ourselves to exponentia-

tion, taking logs, and algebraic operations in defining the elementary functions,

since sin, tan"1, etc., can be expressed in terms of these three. Following Ostrowski

[9], we use the concept of a differential field. We strengthen the classical Liouville

theorem and derive a number of consequences.

§2 uses the terminology of mathematical logic to discuss formulations of the

problem of integration in finite terms.

§3 (the major part of this paper) uses the previously developed theory to give an

algorithm for determining the elementary integrability of those elementary func-

tions which can be built up (roughly speaking) using only the rational operations,

exponentiation and taking logarithms; however, if these exponentiations and

logarithms can be replaced by adjoining constants and performing algebraic

operations, the algorithm, as it is presented here, cannot be applied.

The man who established integration in finite terms as a mathematical discipline

was Joseph Liouville (1809-1882), whose work on this subject appeared in the

years 1833-1841. The Russian mathematician D. D. Mordoukhay-Boltovskoy

(1876-1952) wrote much on this and related matters. The present writer received

his introduction to this subject through the book [10] by the American J. F. Ritt

(1893-1951).
The reader need only be familiar with some standard facts from algebra and

complex analysis in order to understand this paper. Some basic results from differ-

ential algebra are used, but they are explicitly stated and references are given for

their proofs.

1. Liouville theory of elementary functions. A field 3> with a unary operation

d/dz is said to be a differential field iff for any a, b in S>:

(1) |(û+é)^a+|è

®_ íz^ = aíb+bTza-
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We will also write (d/dz)a as a'. We will always assume that the characteristic of

our field is 0. A differential field containing 3 is a differential extension of 3. An

isomorphism of the differential fields 3X and 32 which preserves the differentiation

operation is called a differential isomorphism. K={ae3 : (d/dz)a = 0) is a differ-

ential field and is called the constant field of 3.

Let F be a differential field extension of 3 having the property that for any

finitely generated differential extension ¿F of 3, there is a differential isomorphism

of J5" into U, leaving 3 fixed; then F is a universal extension of 3.

It is proved in [4, pp. 768-771], that every differential field has a universal

extension. There a stronger definition of universal extension is used. We will denote

the constant field of U by C.

It may be of help to think of 3 as a field of meromorphic functions, that is

finitely generated over the rational numbers, on some region A of the complex

plane or a Riemann surface, of U as consisting of all functions which are mero-

morphic on some subregion of A, and of C as the complex numbers.

For 6 e U, 6 and 3(6) are said to be simple elementary over 3 iff one of the

following conditions holds:

(1) 6 is algebraic over 3.

(2) There is an/in 3,f^0, such that f'=f6'.

This situation will be abbreviated as 0 = log/.

(3) There is an/in 3 such that 0' = 6f. Here we write 6 = expf

Note that 3(6) is, in an obvious way, a differential field. Also observe that any

CG Cis simple elementary over 3. If we have for 6, xb e U, 6 = log/and xb = log f or

0 = exp/and xb = e\pf then xb=6 + c, respectively xb = c6 for some ce C.

In cases (2) and (3), if the constant field of 3(6) = K and 6 is transcendental over

3, then 6 is said to be a monomial over 3. It is easy to show that if 6 = log/ or

0=exp/for/G 3 then 6 is not a monomial over 3 iff there is a c e 3(6) n C such

that 6 is algebraic over 3(c). A useful example here is 3=Q(z, ez), where Q =

rationals and z is the identity function on a region A. If 6 and xb are two different

logarithms of ez (say z and z + 27rz), then xb is not a monomial over 3(6).

Let & = 3(6i,..., 6n), each 0¡ being simple elementary over 3(6X,..., 6t_x),

i= 1,..., n. Then !F and any g e J5" is said to be elementary over ^. .^" and any

ge ¡F are regular elementary over ¿^ iff each 0¡ is a monomial or algebraic over

3(6x,...,6i_x).

We now turn to a proof and sharpening of the basic Liouville theorem on in-

tegration in finite terms. This result is usually proved by an analytic technique

which was introduced by Liouville in [7]. In Mordoukhay-Boltovskoy's book [8],

the technique of partial fractions in monomial extensions was first used to study

elementary integration. That the partial fraction method could be used to prove

Liouville's theorem itself was pointed out by Rosenlicht in [11].

First we study the differentiation of certain types of elements of monomial

extension fields. Let 3 be a differential field, 6 a monomial over 3.
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(a) LetPeS[8],   P = Andn + An.xdn-1+---+A0,   AteS,   An^0.

Case I. d = log f. Here P' = A'nen + (A'n_x+nAn(f'lf))e"-1+.--+(A'0 + Ax(f'/f)).

If A'n = 0, then A'n_x+nAn(f'//)^0; for if it were, then y4n_1 + «^„ö = constant and

8 would not be a monomial over S. Here we use the remark following the de-

finition of simple elementary above. Thus the derivative of a polynomial of degree

n in 0=log/ is a polynomial of degree «— 1 if its leading coefficient is a constant.

It is a polynomial of degree « if the leading coefficient is nonconstant.

Case 2. 0=exp/. Then

P' = (A'n + nf'An)d" + (A'n_x + (n-l)f'An_x)6"-1+ ■ ■ ■ +(A'x+f'Ax)6 + A'0.

A'n+nf'An^0, for if it were then 0~n = constantx^„ and 0 is not a monomial

over Si. Thus, the derivative of P is of the same degree as P.

(b) Let F, Q be the elements of S>[8], Q monic and irreducible in 0, p = degree F

<q = degree Q

tp/Qny = -nPQ'/Qn + 1A-P'/Q\

Case 1. 6 = log/. By (a), degree Q'=q-l. Thus, Q\-nPQ', for if it did, it

would have to divide F or Q'. Thus, the partial fraction decomposition of (P/Qn)'

is of the form R/Qn+1 + S/Qn, R¿0.

Case 2. 0=exp/. Suppose Q\ -nPQ'. Since Q\P we have that Q\ Q'. Q = 8"+---,

so Q'=qf'8q+-- -, so Q'=qf'Q. Therefore, Q=(e'y=8q. Since Q is irreducible,

q=l and PeS.

Thus, the partial fraction decomposition of (P/Qn)', unless Q = 8, is of the form

R/Qn + 1 + S/Qn, R¥=0. If ß = 0, then it is of the form (P'-nfP)/Qn, F'-«/'F/0.

(c) Let F e ££[0], F monic, degree P=p.

Case 1. 0 = log/. Then (log P)'=P'/P where degree P'=p-l.

Case 2. 0 = exp/. Then (logP)'=P'/P = N/P+pf where N=P'-pf'P. N=0 in

case F=0 and otherwise A is a polynomial of degree less than p.

Theorem of Liouville—First Statement. Let S be a differential field, ¡F

elementary over S. Suppose S and I? have the same constant field K. Let ge3F,

fie S with g' =fi Then g = v0 + 2?= i c¡ log zz¡ where v0, v¡ are els of S and ct els of K.

Proof. J5" is regular elementary over S; &' = S(8X,..., 8n), each 8t being a

monomial or algebraic over S(8X,..., 8t_x). We use induction on «. Suppose « = 0,

then &' = S and g = v0 where v0 e S. Assume we have proven the theorem for «— 1.

Then g = w0 + Jik=x d, log wh where w0, w¡ els S(8X), and di els K.

Case 1. 0! is a monomial over S. Then

+ |i(& + Û2l0gÔ2

j=iy\¿r) (=1
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where F. Pif. Q¡ are in 3[6X\; a¡, A¡ els K, h¡els3; degree F¡;<degree Q,; the

Q¡ are monic and irreducible.

We use the discussion preceding this theorem to conclude first that each Pu = 0,

for otherwise, using part (b) of that discussion, the right-hand side would have,

after differentiation, a term Ä/({?,)fc<+1. Thus g=P+Tj=i a¡ log ß, + 2P=1 AjlogAj.

Now by part (c), each a¡ = 0; for otherwise the partial fraction decomposition of/

would have a term S/Q¡. Now if ô1=exp/1, then F must be of degree 0 in 6X and

g=F+2f=i A¡ log A¡ as required. If ö1 = log/1, then P=c logfx + v where v e 3 and

ceA". Then g = t;-t-c log/i + 2P=i A¡ log A¡ which is again in our desired form.

Case 2. 6X is algebraic over 3.

f=(w0)'+Íd^;

Adding conjugates over 3 we get:

,-n \,    v j (Norm w¡)'
mf = (Trace w0)'-l- >  d¡ ̂ -%J-

(z*x      Norm w¡

where zw is a positive integer. Thus here too, g is of the desired form and our proof

is complete.

A question that arises is: Are any constants, not in 3, necessary for the inte-

gration of elements of 31 The example

hdz        \/2 ,     z — a/2
2^2 = ^logzT72

seems to indicate that one must adjoin a/2 to Q(z) in order to perform the inte-

gration. We now show this rigorously.

Proposition 1.1. Let & be elementary over K(z), where K is afield of constants

and z is transcendental over K with z' = l. Suppose feF andf'=l/(z2 — 2), then

V2e#r.

Proof. Without loss of generality, we may assume that K is the constant field

of ¡F. Thus, by the first statement of Liouville's theorem, we get that/=z;o +

1a=i A log v¡ where v0, vt are in K(z) and the c¡ are in K. We may assume that the v¡,

for z>0, are irreducible elements of K[z]. Note that if a/2<£F, then z2-2 is

irreducible over K.

We decompose v0 into partial fractions over K and then differentiate the ex-

pression v0 + 2?= x c¡ log v¡. Now reasoning as in the proof of the first statement of

Liouville's theorem, we see that í;0 must be in K[z], for otherwise l/(z2-2) would

have to have an irreducible factor of degree greater than 1 in its denominator.

Also, the only summand in the second term is c log (z2-2). Furthermore, v0 = az

+ b. Thus, /= az + A + c log (z2 - 2), a, bände els K. Then 1 /(z2 - 2) = a + 2cz/(z2 - 2)

which is impossible, by the uniqueness of a partial fraction decomposition. Thus

a/2g¿F.
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It would seem that the new constants needed in integrating an element of 3

should all be algebraic over K. This is indeed the case.

Theorem of Liouville—Second Statement (Strong Liouville Theorem).

Let 3 be a differential field with constant field K. Suppose fe 3 and there is a g

elementary over 3 such that g' =/. Then there are a v0e3, cte K (K= algebraic

closure of K), v¡ e K3 such that f= v'0 + 2f= i e#iM where every automorphism of

K3 over 3 permutes the terms of the sum.

Lemma. (For the proof, see [3,p. 33].) Let xx,..., xn be indeterminates over 3,

p(xx,..., xn) andq(xx,..., xn) are in 3[xx,..., xn]. Suppose that there are cx,..., cn

in C (=constant field of a universal extension of 3) such that p(cx,..., cn) = 0 azza"

qx(ci,..., cn)==0. Then there are kx,...,kn in K such that p(kx,..., kn)=0 while

q(kx,...,kn)¿0.

Proof of second statement. By adjoining constants cx,..., cn in C to 3 we can

apply the First Statement to the present situation with 3(cx,..., cn) replacing 3.

Thus we have that

= P0(ci,...,cn)    f Pi(ci,...,cn)

q0(ci, ...,cn)   ,tl qfai, ■ ■ ■, cn)

where each pt, qt is a polynomial with coefficients in 3.

pt(cx,...,cn) ^ 0,       i = l,...,k,

qfci,•••»Cn) 7e 0,       i = 0,.. .,k.

By differentiating, we get

Palo-qoPo , v „ P'ili-ltPi

ft      ai     Piii

wherep, and qt arept and qK evaluated at (cx,..., cn).

Thus, cit..., en satisfy the polynomial conditions P(xu ..., xn)=0 and

k

Q(xu ...,xn)= q2(xu ...,xn)YJ pi(xi,..., xn)qt(xi,..., xn) # 0,
i

F being obtained from (*) by a simple transformation. Thus, by the lemma,

P(ki,..., kn) = 0 and Q(ku ..., zcn)^0 where (ku ...,kn)e Kn.

By backtracking from these conditions we get /= v'0 + 2?=i kfil/Vi where v{ are

els of K3, viz. P, =pt(kx,..., kn)/q,(kx,..., kn), i=0,...,k.

Taking traces we get lf= (Trace v0)' + 2f= i Trace kfil/Vi, I a positive integer.

Taking v0 = (l/l) Trace v0, we get our desired result.

Open Problem. In the preceding theorem, if g e ^ where J*" is elementary over

3, can v0, vu ku and log vt, z'= 1,..., k, be chosen so as also to be in !?'?
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Proposition 1.2. Let S be a differential field, fe S.

(a) Suppose f^O and 8 = log/is not a monomial over S. Then 8=g + c, geS,

ceC.

(b) Suppose 6 = er is not a monomial over S. Then 8n = dh where neZ, deC, and

heS.

Proof, (a) /'//= 0' where 0 is algebraic over S(k), ke C.

Then after adding conjugates, using the argument of the Strong Liouville Theorem

which is based on the lemma and adding conjugates again we get thatf'/f=g' for

geS. Thus 8=g + c, ceC.

(b) Here 8'/8=f with 0 algebraic over S(k), keC.

Reasoning as in (a) we get that «'/« = «/', where ne Z and he S. Thus 8n = dh,

heC.

The following easy consequence of 1.2 will be useful to us in formulating the

integration problem.

Proposition 1.3. Let 8 be a monomial over S. 0 = exp/ or 0 = log/ feS.

Suppose </( = exp/ or t/j = logf(i.e., ¡/> satisfies the same defining equation as 8), then

4> is also a monomial over S and S(8) is differentially isomorphic to S(t/i) with

8 ->i/r.

In the example on page 168 where 8 = z and </i=z+2ttí, S(8)=Q(z, ez) while

S(i/i)=Q(2ttí, z, ez) and these fields are not isomorphic.

Proposition 1.4. Let S be a differential field, fie S. Suppose that there is a g,

elementary over S such that g' =fi. Then there is an h, regular elementary over S such

that h' =fi

Proof. By the Strong Liouville Theorem, there is aj in S(o-, log vx,..., log vk),

where a is algebraic over the constant field of S and vx,..., vk are in S(a), such that

j=v0 + ~2k=x c¡ log Vi, v0 e S, ct e S(o), and /=/ By 1.2, each log zz¡ differs by an

additive constant from an element of S(a, log vx,..., log fj.j) or else is a mon-

omial over the latter field. Thus, by subtracting a constant from /, we get an

h, regular elementary over S, such that «' =/.

2. Formulation of the problem of integration in finite terms. We begin with a

few remarks on recursive functions. For complete details, see [1].

A function on and to the natural numbers is called recursive iff there is an

algorithm for computing /(«) for each «. There are also precise mathematical

definitions of recursive functions which have all been shown to be equivalent to

each other. The hypothesis that they all are equivalent to the definition we have

given is called "Church's thesis."

A set of natural numbers is recursively enumerable iff it is the range of a recursive

function. If a set of numbers has a recursive characteristic function, then the set is

called recursive. This means that it and its complement are recursively enumerable
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or that there is an algorithm for deciding whether or not a given natural number is

in the set.

Suppose there is a one to one correspondence between a countable set of mutually

distinguishable objects 3~ and the natural numbers such that given an a in J

one can compute the associated natural number, and vice versa. Then 3~ is said

to have been given a Gödel numbering. We define recursively enumerable and

recursive subsets of 3~ as sets whose associated Gödel numbers form a recursively

enumerable or recursive set of natural numbers.

The !F we will deal with will be our symbols for the elementary functions. We

will describe a language fragment which comes very close to the way a mathe-

matician customarily denotes these functions. Our functions lie in differential

fields of meromorphic functions on a region of the complex plane or a Riemann

surface which are finitely generated over the rational numbers, e.g.,

S = Q(ax, ...,an,b, z, exp z2, log (z + exp z2), VOog (z + exp z2)))

where au ..., an are constants, algebraically independent over Q, b is algebraic

over Q(au ..., an), z is the identity function, etc. We can represent all members of

S if we have one symbol for each of the generators of S and binary operation

symbols for +, -, —, and +.

It is easy enough to invent symbols for logarithms and exponentials of functions

already described—just write log or exp in front of the previously defined symbol.

However, algebraic operations cause a problem. Not all of them can be expressed

by means of radical signs. Thus, we have invented "y symbols" to denote them.

We consider sequences of symbols :

e = <le, TTe, «i,..., ak, y[(((yl + eßx-eyl~1) +e- ■ • +eßi))l ze, Bx,..., 8m>

(k, «j^O, /> 1, TTe and the symbol following ak possibly missing), which we call

elementary field descriptions (efd's). Along with e, we will consider the nested

sequence : D.Xe, Q„e, £2ai,..., £l6m = Qe. An Í2CT is the smallest set of terms containing

le,..., a and closed under the binary operation symbols +e, —e, -e, -r-e.

We divide the symbols of e into two sorts—the y symbols and the non-y symbols.

A y symbol is of the form : y[(((yn + A • eyn " *) + e ■ ■ ■ + eAn))] where « > 1, y'

means (((yey)ey • ■)) j times,/'^ 1, and the A¡ are in Qa, where a is the symbol

directly preceding, in the sequence e, the y symbol we are discussing. Besides the

y symbol explicitly indicated in the e above, some of the 8¡ may be y symbols.

However, le, ire, ax,...,ak and ze are non-y symbols.

Each o; satisfies one of the following three conditions:

(1) 3y is a y symbol.

(2) There is a i in 12^,^0^ = Í2ae), such that 8^ is the symbol expe I.

(3) There is a £ in ùôj _ v such that 8¡ is the symbol logc £.

Definition. We call (SA, V) an e-model, where SA is a differential field of
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meromorphic fonctions on a region A and Kis a mapping whose domain is a subset

<b(e, V) of Q.e and whose range is 3A, iff

(D *tu-i.
(2) K(7Te), K^),..., V(ak) are complex numbers which are algebraically

independent over Q with V(tt¿)=tt.

(3) For the y symbol following ak we have V(y[—]) is a complex number and

^iy[— })l+V(ßi)V(v[—])'"1+--- + K(j3/) = 0 and this is the monic irreducible

equation satisfied by V(y[—]) over Q(tt, V(ax),..., V(ak)).

(4) V(ze)=I where / is the identity function on A.

(5) If 8y = y[(((y" + eA1.ey"-1) + e...+eAn))], then V(8jy+V(Xx)V(8jy-i+■ ■ ■

+ K(An) = 0.

(6) If Sy=expe £ then K(8;) = eVK), where e is the exponential function.

(7) IfS; = logez;then V(Q=enô<K

(8) If a, ß are in 0(e, K) then so are a + eß, —ea and ce-e^. If furthermore

K(j8)^0 then a+eß is also in 0(e, V) and we have

V(a + eß) =  V(a)+ V(ß), V(-ea) =  - K(«),

V(a-eß) =  K(«)K(jS), K(a-eß) =  V(a)/V(ß).

It is clear that 3=Q(n, V(*x),..., V(ak), V(y[-]), I, V(SX),..., V(hm)). The

only reason we use fields of meromorphic functions in defining an e model instead

of abstract differential fields is because of the properties used in Proposition 2.2.

In the meromorphic case expe £ does not refer to any solution of 6' — £6=0 but a

special one. Similarly, logc i refers to a member of a certain countable set of

solutions of l'-6'l=0.

We note that while, on a region A of the complex plane, there is an uncountable

number of elementary functions, we have invented only a countable number of

symbols to denote them. The paradox is explained by the fact that an efd may have

an uncountable number of e models, all on the same region. E.g., <1„, ax,..., ak, z„>

has c distinct e models which are obtained by letting ax,..., ak vary over all sets

of k algebraically independent elements of C. All these e models are differentially

isomorphic. For our purposes, we may treat them as identical. For example,

J e"2 log (-\/ttz) dz and J e" log Wez) dz are either both elementary or both

nonelementary.

Definition. We say that an efd e is regular if there is an e model (3A, V) such

that:

(1) For each 8, of the form y[(((yn +. Xx • eyn-*) + e ■ ■ ■ + e Xn))],

w+ ww-h ■ • • + nK) = 0
is the monic irreducible equation satisfied by K(8j) over Q(tt, V(ax),..., K(8(_!)).

(2) For each S¡ of the form expe { or loge £, V(8¡) is a monomial over

Q(TT,V(ax),...,V(hi_x)).

Thus, 3A is regular elementary over Q(n, V(ax),...,/).
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Proposition 2.1. Let S be (regular) elementary over K(z) where K is a subfield

of the complex numbers which is finitely generated over the rationals and z is a solution

ofz'=l. For any region B of the complex plane, there is a subregion A, a field SA of

functions meromorphic on A which is differentially isomorphic to S, a (regular)

efid e, and a mapping V such that (SA, V) is an e model.

Proof. This can be easily derived from some well-known results in elementary

complex analysis. The existence of SA is also a consequence of Seidenberg's

theorem that any differential field that is finitely generated over the rationals

is differentially isomorphic to a field of meromorphic functions. See [12].

Definition. Let e be an efd. Then Se={aeûe : 3 an e model (SA, V) and an/,

regular elementary over SA such that a e 3>(e, V) and V(a) = (d/dz)fi}.

Note that if we substitute, in the above definition, "elementary" for "regular

elementary" the new set is the same as the old (Proposition 1.4). Proposition 2.1

tells us that/can be realized as a meromorphic function on some subregion of A.

The Problem of Integration in Finite Terms. Is X« a recursive subset of Cle ?

This problem can be intuitively stated as: Given an arbitrary symbol for an

elementary function, is there some way of choosing the branches for the logarithmic

and algebraic operations involved so that the resulting function exists and has an

elementary indefinite integral? For example, the answer for f (log ez—z) exp z2 dz

is yes since we can choose log ez = z. Note that the efd

<le, ze, expe ze, loge expe ze, expe (ze-eze)>

is not regular. Cf. the example on page 172.

Proposition 2.2. There is an e such that Se is not a recursive subset of Q.e, i.e.,

for which the above problem is undecidable.

Proof. It follows from [2, p. 430] and [1, p. 103] that there is a polynomial

P(w, xx,..., xk, yx,..., yk) with integer coefficients such that the set of natural

numbers S, defined below is not recursive.

seS<r-> integers Xx,...,Xk such that P(s, Xx,..., Xk, 2*i,..., 2X")

= G(s,Xx,...,Xk) = 0.

Let F^O^Trz'Xlogexpz'-z'), j=l,...,k. It is clear that for each s, H(s)

= G(s, Fx,..., Fk) is a symbol for an elementary function and that J" H(s) exp z2 dz

is elementary for some choice of the branches of the logarithms iff s e S.

Thus, for any e such that Í2e contains a symbol H(s) exp z2, 2e is not a recursive

subset of Í2e.

It would be nice to have a proof of the above proposition without having -n play

its special role.

We will get around the difficulties indicated in Proposition 2.2 by choosing our

symbols so that no matter what branches of functions, which are built up using
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logarithmic or algebraic operations, are chosen or what region A we use, in

defining our e model, the integrability of a function represented by a symbol

depends only on the symbol. This is achieved by restricting ourselves to regular

efd's. The next proposition which can be derived from 1.3 summarizes the prop-

erties of these efd's.

Proposition 2.3. Let e be a regular efd, (3A, VA) and (3B, VB) e models. Then

$>(e, VA) = $>(e, VB) and we now write this set as <5e. FAe correspondence Vx(a)

<-> V2(a), for a e í>e, is a differential isomorphism of 3A and 3B. Let ¿Ze(3A, VA¡e)

= {n6$(: 3 an f which is regular elementary over 3A such that (d/dz)f= VA¡e(a)}.

Thenz:e(3A, VAJ=zZe(3B, Ks,e)=Se.

Also note that for a regular efd e, Q>e is a recursive subset of Q.e and the relation

= e, defined by a = eß if V(a) = V(8) for some e model (3A, V) is well defined and

recursive. Thus we can tell whether or not two elementary functions are equal when

they are both in a common model of a regular efd.

For a regular efd e, Se is a recursively enumerable subset of 3>e. This follows

from the Strong Liouville Theorem.

It should be pointed out that if e is regular and has e models 3A and 3B, then

it is not necessarily true that the functions of 3A can be continued analytically

into the corresponding functions of 3B. E.g., log x2 represents two distinct mono-

genic analytic functions. Thus, the existence of the differential isomorphism of

Proposition 2.3 could not be proved by analytic continuation.

3. Integration of elements of pure monomial extensions. We saw, in §2, how to

rigorously formulate the problem of integration in finite terms. We intend now to

solve a portion of it with the theorems :

(1) Let ê be the set of those elementary field descriptions e in which each S¡ is

either of the form expe £ or loge r¡ (i.e., no S¡ is a y symbol). Then the subset of regular

efd's of S is recursive.

(2) Let e be a regular efd of S, then 2e is recursive.

Roughly, this means that we can handle any elementary function which involves

just the rational operations, exponentials and logarithms, providing these latter

two cannot be replaced by adjoining constants and performing algebraic operations.

E.g., we can look at

Jexp(^~~F7logZife

but not at _[ exp (1 +i log (z3- 1)) dz with our algorithm (as it is given here).

In his book [8], Mordoukhay-Boltovskoy makes a pretense of showing that

"given an integral of a rational transcendental function, then it is always possible,

by means of a finite number of algebraic operations, to express it in a finite number

of terms or assert its inexpressibility in finite terms" [8, pp. 244-245]. What he

means is our theorem (2) above.

Using the concepts and terminology which we have developed, his method is as
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follows: Suppose we are given a function P(8)/Q(8) where F(0), Q(8) are els of

S[8], S=K(z, 8X,. .., 0n_j), 0 = 0n, 0¡ a monomial over K(z, 8X,..., 8^x). One

can show that if elementary,

[P(8)       f F(0)}Q(8)       J(0-«1)fci---(0-«B)fc»

p(Q\ <n

= i8-axyi-1.'.(0-^-^2 «W-«)+s>

where one factors the denominator of Q over the algebraic closure of S, R(8)

e S[8}, C( e K, and 5=2^ log 8¡, a\ e K, S, e ÂÏ0. After differentiating and clearing

denominators, one gets AR'+BR + ]>?=i c¡Ci + S'D=0, where A, B, C¡, D are

known polynomials in 0, the c¡ are unknown constants and S' is an unknown

element of S. A bound k can be found for the degree of the polynomial R. Thus,

substituting R=ak8k+ ■ ■ ■ +a0 into the preceding equation, one gets a simul-

taneous system of first order linear differential equations for the at's. These equa-

tions have the parameters ct and S'. One must determine if these equations have a

solution a0,..., ak with a¡ e S, c¡ e K, S' e S.

At this point, Mordoukhay-Boltovskoy waves his hand. (This is not to imply that

he is clear and convincing in getting this far.) He refers to Liouville [6] and Sintzov

[13] for methods of solving linear systems. However, these writers only discuss the

problem when the coefficients are rational functions of z, and the results do not

generalize in any obvious way. Besides, Sintzov's method of solution (§23, begin-

ning on p. 146 of the August issue) is erroneous. We will show that the testing of the

systems, which arise in the integration of elements of S(8), for solutions in their

coefficient field can always be reduced to the testing of a succession of single first

order linear equations. Mordoukhay-Boltovskoy does not seem to have been

aware of this important fact. For example, in [8, p. 160] he reduces a system of

two first order equations to a second order equation.

Also very troublesome in this method are the parameters c¡ and S'—especially

the S'. It is not clear how to handle them. In the trivial examples Mordoukhay-

Boltovskoy works out, no difficulties arise. But there is no certainty that this will

always be so. The problem of handling S' becomes manageable if we first decompose

both our integrand and the functions occurring in the integral into partial fractions

over S and then find the conditions on these unknown functions. This idea is found

for the logarithmic case in Ostrowski's paper [9].

We will not be as formal as we were in §2—e.g., we will usually not make a

distinction between the terms of a language and the functions they represent. Also,

we will not use the language of recursive function theory. In §3, we work exclusively

with fields K(z, 8X,..., 8n), A'a field of constants which is finitely generated over Q,

z a solution of z' = l and each 0¡ a monomial over K(z, 8X,..., 8{_x). Proposition

2.1 tells us that we have a regular efd for this field and so are able to decide if two

elements of it are equal.
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We first dispose of the problem of factoring a polynomial in 6n over

K(z, 0i,..., 0„_i),

K= alg. closure of K.

Problem. Let K be finitely generated over Q. Let xx,..., xn be algebraically

independent over K. To factor a polynomial P(xx,..., xn) e K[xx,..., xn] into

irreducible factorsqx,.. .,qk over K. To find an equation,p(b)=0, which is minimal

for A over K, such that qx, ..., qk are in K(b)[xi,..., xn].

Solution. We refer to results proved on field theoretic algorithms in [5, §19] and

[14, §42].
By the Kronecker trick [14, p. 135], we transform P(xx,..., xn) into P*(t), a

polynomial in a single indeterminate with coefficients in K. Since K is finitely

generated over Q, we can factor a polynomial over it in the manner described in [ 14].

Thus, we can factor P*(t) over K to see if it has multiple factors or not. If it has,

we replace it by a polynomial without multiple factors, P*(t), having the same

irreducible factors as P*(t). Next we find a primitive element A for the splitting field

of P*(t) over K [5, p. 66, Satz 1]. Then we factor P*(t) over F(A) [5, p. 68, Satz 3],

or [14, p. 136]. Then we convert back to a factorization of P(xx,..., xn) using the

Kronecker device.

Corollary. We may factor a polynomial P(xn) e K(xx,..., xn-x)[xn] over

K(xx,..., x„-i).

In our integration algorithm, the polynomial P(6„) to be factored over

K(z, 0i,..., 6n_x)

is a factor, irreducible over K(z, 6X,..., 6n_x), of the denominator of the

M(6n)/N(6n)eK(z, 6x,...,6n)

which we wish to integrate. To use the language of §2, if we start with a regular

efde = <le, <xx,.. .,ak, y[—], ze, 8X,..., 8n> which describes K(z, 6X,..., 9n)

(V(8i) = 6i), we now work with the sequence e' = <le,..., 8n, ybl[—]> where

V(Yt,i[~]) = bx

is the primitive element obtained according to the preceding discussion for F.

In the course of applying the algorithm to a particular function, we may make

further extensions to our original efd e by y symbols ybT—],..., ybk[—] in order to

obtain symbols for the factorization of other polynomials which come up.

Lemma. Let Px=0,..., Pm = 0 be a set of simultaneous linear algebraic equations

with coefficients in K(z, 6X,..., 6n). Then one can find, in a finite number of steps, a sys-

tem ¥ of simultaneous linear equations with coefficients in K such that a (kx,..., kr)

g Kr satisfies Px=0,...,Pm = 0if(kx,...,kr) satisfies ¿f.
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Proof. It suffices to show this for a single equation F=0.

For « = 0  our field  is K(z).  Then P=(Rx(z)/Sx(z))xx+ ■ ■ ■ +(Rr(z)/Sr(z))xr,

S¡,Ri, els K(z). (kx,..., kr) satisfies Piff(kx,..., kr) satisfiesÄ^z) fL * i St(z)xx H-

+ i?r(X) n¡#r St(z)xr.

By collecting like powers of z we get our desired system £f.

Assume the result is true for «— 1. Then

F = (Rx(8n)ISx(8n))xx+. ■ ■ +(Rr(en)ISr(8n))xr.

We clear denominators and collect coefficients of like powers of 0n. We get a set

of equations Qx=0,..., Qm=0 with coefficients in K(z, 8X,..., 8n_x) which

are satisfied by a (kx,..., kr) in Kr iff (kx,..., kr) satisfies P. By the induction

assumption, we replace each Qt by its equivalent system ¿f¡. Then Sf= \Jf= x ̂  is our

desired system.

We can now state the

Main Theorem. Let IF=K(z, 8X,..., 8n), K is a field of constants which is

finitely generated over Q, z is transcendental over K and a solution ofz' = 1, each 8¡ a

monomial over K(z, 8X,..., 8¡_x).

(a) Let fie ^. Then one can determine in a finite number of steps whether there are

v0e^,VielsofiKiF, i=l,...,mandcx,.. .,cmin Ksuch thatf= [v0 + 2F= xctlogot]'.

If they do exist we can find them.

(b) Letfi g,i=l,.. .,mbe elsofi^. Then one can find, in a finite number of steps,

«!,..., «r in & and a simultaneous set ¡f of linear algebraic equations in m + r

variables, with coefficients in K, such that y' +fy = 2í"= i Cig, holds for ye!F and c¡

els ofK iffy=2U i yA where y, els K and cx,..., cm, yu...,yr satisfy £r°.

Part (b), while not of particular interest in itself, serves to facilitate the proof,

which is by induction on n :

« = 0       F = K(z).

(a) Using the Strong Liouville Theorem, we may write, if f y (i.e., a g such that

g' =/) is elementary :

/ =

Akzk+---+A0

+ ^ +
Pi1

+ ^ +

■ +

+

^i.i

Fi

As,k.

-ßfc+l
L+

= /Z*!"*

+-
B.

+

■+••• +

+ Bxz + B0   "

Fi      J  Fi   ,

Bs.l   .    fRs.O

Ps        J    Ps     .

where the A?s and Äj's are in K: the Ait, BtJ and /z¡'s are in K[z], the /»¡'s being

monic and irreducible; degree Aitj and degree BUi are both less than degree p¡;

Bi,o/Pi = 1ï=i Cuq'ijqu i=l,...,s where pi = \~\Tjl=x qtJ is the factorization of /z,

into monic, irreducible (and therefore linear) factors over K.
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We obtain the following conditions on the F's:

Ak = (k + l)Bk+x

A0 = BX

0 = B'o

{ } k pi    [¿i M   J Pii
giving AXikl=—(kx — l)p'xBXikl_x(px). By [14, p. 88], we can uniquely solve for

R and 5 when they are subjected to the conditions ; Rp + Sp' = Ax¡kl, R, S els K[z],

degree F<degree/»!, degree 5<degree/»!. Thus, setting

-(ki-l)Bi.kl-x = 5,

we determine Bx¡kl.x. We substitute Bx¡kl_x into (+) and obtain a new relation:

Yi£= \klyëia+Ç?M\'
¿i  p{    ' L/rl Pi    J Pii'

Continuing in this manner, we determine F1>kl_2,.. -, Bx,x. Next Ax*x*- ■) = BX¡0

which yields

A(**..) Ii, „i Ik   r
^i.i   = y c — = y —

and we uniquely determine the eu's by breaking up Ax*x* ■ • }/px into partial

fractions over K.

The other F¡,/s are determined in the same manner. We note that the conditions

put on the F's are always satisfiable so J/is always elementary—as is well known.

Note that no polynomial need be factored over K until the last moment. This is

important in practical considerations^).

It should be noted that we can use the above conditions to tell whether the inte-

gral is in a certain definite form. E.g., to see whether there is a v0 e J5" such that

v'o=f, we set F1>0=0,..., Fs>0=0 and obtain the necessary and sufficient con-

ditions Ax*x*■ •> = 0,..., Al*x*■ ■ > = 0.

To determine for a given vx e ÍF whether there is a v0 e & and ace K such that

(2) Professor George Collins of the University of Wisconsin has pointed out to us that

we can refine the integration algorithm so as to avoid factoring into irreducibles until the logs

are to be determined. Using the Euclidean algorithm we can factor any polynomial in K{z)

as follows: P(z)=q-iq\- ■ -q\ where the^ are relatively prime and each is a product of irreducible

polynomials. Everything goes through when we replace the irreducible p¡'s used above with the

9i's. It is an interesting open question to determine whether we can prove the main theorem,

sans the last sentence of (a), with the added stipulation that only the rational operations need

to be applied to elements of & in performing the decision method. Proposition l.l indicates that

we cannot actually find the vt, i>0 without factoring over K.
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(v0 + c log vx)' =fi we write vx = a U!= i Pi', aeK, j\ e Z. Then log vx = 2¡7i | (pl/PÙ-

v¡ can have no other irreducible factors besides the /z¡ in the denominator off.

We plug in cjiPi for each Bi0 and see if we can satisfy A\*x* ■ A = cjip'i, i=l,..., s.

(b) We set

A B y C

y    &■■■&     J    pî*---pS*      &*'    PV---PI«

where pt is a monic, irreducible element of K[z], -a¡ = ordPi y, —ßi = ordVifi

-y¡ = Min; ordp¡ g¡; A, B, C els K[z].

The ßi and y, are given to us. We will show that a¡ > 0 implies that ß, > 0 or y¡ > 0

and find a bound, which is independent of the choice of the c¡, for each a¡>0.

The /zradic expansion of y begins: AaJpp+

The/zradic expansion of/begins: BeJpf< +

The /zradic expansion of 2*-1 c¡gj begins : Cy(//z(yi -I-where the first nonzero

term, in this last expansion, depends on the choice of the c¡.

Thus, by plugging these expansions into y'+/y=2 ciSi we get

-ccip'(AaJpf< + 1+ ■ ■ ■ +BBiAaJpfi + ̂+ ■■■= CJph+ ■■■.

Note that p¡ \ —aip'lAa¡ and /z¡ \ BßiAai. Looking at the highest power of l//z( we

must have either

a-i+lSYi, at + ßtSVi, or        at+l = «j + ^j > y,.

In the third case -atp'tAai+B$lAai = 0 (pt), -«,/?;+ _Bfll=0.

Thus, we set, a(* = Max (yi-1, yt—ßt, BeJp[ if this is an integer). Then y=

Y/pi'- ■ -pakl= Y/P where Fand F are in K[z].

Substituting this expression for y into y'+/j=2i"=i Cigi and clearing denomina-

tors we find R, S, F¡ in K[z], which do not depend on the c¡, such that y' +fy

= IT= i clgl iff (*) : R Y' + S Y= 2¡1 x ctTt. Let

F= y^ + y^^^+.-.+yo,

R = rßzB+---+r0,

S   =   SyZy+   ■   ■   ■   +S0,

m

2 c,Fy = í¿za+...+ío,
z=i

where rB, sY^0, and 8 = Max"=i (degree F,), ij is a linear homogeneous element of

K[cx,..., cm].

By substituting in (*) we get :

(f)      (rßz*+ ■ ■ OÍW-H .. .)+(SyZr+ ■ ■ ■)(yaz"+ • ■ •) = (t6z6+ ■ ■ ■).

When definite values in K are chosen for cx,..., cm we must have

a + ß-l S 8, a + y S 8, or a + z3-l = a + y > 8.



182 R. H. RISCH [May

If the third case holds, then ayarß+yasy=0. Let a=r=Max (8-ß+l, S-y,

—Sy/re if this is an integer). Take hi=zi/P, i=0,..., r. By multiplying (f) out and

equating powers of z, we get our simultaneous system if which satisfies the con-

ditions of part (b) of this theorem.

Induction step. We assume that both (a) and (b) of our theorem hold for

3=K(z, 0i,...,Bn-i) and prove it for ^=3(6), 6=6n. Besides (a) as stated, we

assume that the simpler variants, which occur when some of the c¡ and v¡ are given,

have been established—see the discussion at the end of the proof of (a) for the

K(z) case.

(a) Case 1. 6=logr¡. We again apply the Strong Liouville Theorem and the

breaking up of/and the v¡s into partial fractions to obtain:

Ak6k+-   -+A0   ) (   Ffc+1^+1+-..+F0+2^1ogAy

/"<
+ ̂ P +

PÏ1
+

Pi >-<
+

Bx fei-i

+
1s.k,

+ •••+•

/»Ï1-1
+

+ -
Bs -+

Pi     J Pi

Fs.i     fFSt0

Ps        J    PsPP Ps       J   Ps

where the ^,'s, F¡'s and F/s are in 3; the Al}\ Bt/s and p('s are in 3[6], the p¡'s

being monic and irreducible; degree A^ and degree FfJ are both less than the degree

of/»(; Fii0//»i = 2?=i Cijqlj/qtj, i= I,..., s wherep¡ = Ylr¡Lx qu is the factorization of

/», into monic, irreducible factors over K3; d¡ els K.

The discussion (page 169) preceding Liouville's Theorem tells us precisely what

terms on the right-hand side will differentiate into each of the ^'s. Thus, we obtain

the following relations for the F's :

SoFfc+1GF.0 = B'k+X.

Ak = (k+l)Bk+iT]'lrl + B'k. Thus ¡Ak = Bk + (k + l)Bk+ilogrl.

By the induction assumption, we can determine whether there is a Bke 3 and

Bk+X in F such that the last relation holds. Bk+X will be uniquely determined since

log r) = 6 is a monomial over 3. Bk is determined up to an additive constant. We set

Bk = Bk + bk where Bk is fixed.

Ak.x = kBkrj'/r¡ + Bk_x.

Thus l (Ak_x — kBkri'/r¡) = Bk-x + kbklogr¡. As before we determine bkeK and

Ffc_j up to an additive constant, etc.

Thus

A0 = BXT,'/r, + B'0 + 2d1(logDj)'.

j(A0-Bxv'h) - B0 + bx log r]+ Jtdj log Dj.

This last condition is simply that J (A0-Bxri'/r¡) is elementary over 3.
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We determine the 7iM's as in the K(z) case. Then A\*x*- •)=Bl0 giving Affi-^/p,

= 2z=i ci,ÑiJli.i- The cu are uniquely determined, if they exist, from the partial

fraction decomposition of ^í**"7f¡.

We note that if in the course of this investigation we find that one of these

conditions is not satisfied, then / does not have an elementary indefinite integral

and we can terminate the proceedings, right there.

Case 2. 0 = expc.

BJ«+---+Bxe

+ B-mB-'"+ ■ ■ ■ +B-16-1 + B0 + ^di log D,

i fli.fci-i , ,-Bi.i . f-Bi.o

p\i   J Pi      i  Pi

Ps'    1 Ps        J   P,

Here, as usual, Bi¡0/pi = Jirjt=x c^q^/q^. The conditions obtained are

Ak = B'k + kVBk

Ai=B'i + l'Bi

A-i = BLi-UB-i

A.m = B'.m-ml'B.m.

By our induction assumption for (b) of our theorem, we can write Bt = 2,- Vy¡Fyi,

Tn e S where the yñ satisfy a linear system S?. This must determine each Bt uniquely

since two solutions would yield that the homogeneous equation B[ + z'F/ij = 0 has

solutions in S. This yields a contradiction, as is well known to the reader.

We determine B1M.U ..., Bxy, B2ik2.x,..., B2A;. ■.. ■ ; BStkt.i,..., 5S>1 in the

same manner as previously. Then we obtain :

I ^+a0 = i B^+B'o+i2djiogDjy.
i=l Pi i=l    Pi

From this, A\*x*- •> = 5i>0(/zi)- Let degree ofqu = ni. Then

AW~>+n¿'lTÍ cap.      B n       _,
-   —   -  —    /    Cu-

Pi Pi      ¡=i     fw

We determine whether such cu exist, and find them if they do, from consideration

of the partial fraction decomposition of the functions in this equation.

Then A0-C Jiiijniciij = (B0 + '2djlog D,)' and our problem is reduced to

telling whether J" iA0 — £' 2m wtci,z) is elementary over S.

(h) Here the general method is the same as that for the K{z) case. The problem of

determining bounds is more difficult.

f={

AkV*-\-|-/!itf

+A-me-m+---+A-1e-1+A0

AU1

Pi } = <
+ ^ +

¡Hi

vk.»

••+-

As.!
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Case 1. 0=logr¡. For y = A/pxx- ■ -pk" we determine the bounds a¡*, i—l,...,k

in the same way as in the K(z) case. So we have y= Y/px* ■ ■ ■pk"= Y/P, Y, Pels of

3[6]. As before we reduce to the equation:

m

(i) ry'+sy= 2c,r,.
i = l

We set

Y = yJa+ya-i6a-1+---+y0,

R = red><+---+r0,

S = sye*+ ■ ■ ■ +s0,

> CjT¡ = tó6ó+ ■ ■ ■ -Ho,   ya, rB, sv + 0, S = Max (degree F¡).
fii <=i

Each j3, Tj, Sj is in ^, t¡ is a linear homogeneous element of 3[cx,..., cm].

Substitution in (1) yields

(rte> + rt_i0»-i+- ■ ■)(y'a6" + (y'a_x + a(rl'/rl)ya)6"-'+. • •)

+(sy6y+sy-x6y-^+ • • OCM^+jv^ö«-^ • • •) = h6'+ ■ ■ ■ +t0.

For definite values of cx,..., cm chosen in K, we get

when y'a ¿ 0,   a+ß S 8+1,

a + y ¿ 8+1,

or cc + jS = a + y >  8+L

and when já = 0,   a+ß— 1    S 8,

a+y      ^ 8,

; or a+ß— 1 = a+y > 8_

When >>á#0 the third condition occurs when rBy'a + syya = 0 and rBy'a_x+syya_x

+ rß- Xy'a + («(v'h)rß + sr - l) y « = °-

Letting ja _ i = zyv, v e 3 v/e have that

rí>'y + (''^á + 'S'yJ;a> + ''A-lTá + (5y-i + a('»77'?K)j'a = 0,

v' -rB-iSylr2 + Sy-.ilrB + a(r)'¡r¡) = 0,

CrB_iSy-resr.x=v + a]ogri

J rs

If ja=0, the third case occurs when rB(y'a_x + a(ri'/ri)ya)+syya=0.

fsy     -ya-x     , „
— = —-alOgi?.

J rB ya

In both instances the induction assumption for part (a) of our Main Theorem

tells us we can determine the constant a so that the integral is of this form. We let

p.= Max (8+1 -ß; 8+1 -y; the a's determined in the third case, if they are

integers).
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We now rewrite (2) in the form :

(fi^+r*-!*-1* • • ■)(y:e»+(y'll-i+Kri'h)yuW-1+ ■ • •)

(3) +M*+jA_1zF-1+ • • ■)(yu6"+yu-xd«-i+ ■ ■ •)

= zA+(I0A+«+---+zo

so that at least one of rA, sh, and ZA+H is not equal to zero.

We complete the proof of Case 1 by showing, by induction on p., that there is a

simultaneous system of linear algebraic equations, if, in m+p+q variables, with

coefficients in K, and hi,..., hp,jx,.. .,jq in 3[6], all of which are of degree ^p,,

such that (yu6"+---) satisfies (3) iff (j„6»»+ • • -) = 2f=i ¿¡Ai + 2?=i ejt where

d¡, et are in K and cx,..., cm, du ..., dv, eu ..., e„ satisfy if. The functions in the

statement of (b) of the Main Theorem will be hJP,..., jJP.

In this induction we assume rA or iA^0. If rK = sK= ■ ■ ■ = z-A_,+ 1=.sA_l + 1=0

while rA_, or sA_,/0, then the system

ZA = 0

tx-i-i =0

is equivalent, by the lemma, to a linear system in the c¡ with coefficients in K. Then

we proceed as below with rA_¡, sA_¡ taking the place of rA and sA.

p=0. Here (3) takes the form

(4) (rA0*+ • • -)y'o + (s^+ ■ ■ -)y0 = (tK6*+ ■ ■ ■).

Looking at the coefficient of 0\ we get

(5) rÁy'0+sÁy0 = ZA.

By the induction assumption for zz—1 for (b) we get that (5) is equivalent to

y0 = 2í= i dfii, ht els 3, and a linear system if" with coefficients in K. Plugging this

expression for yQ into the remaining A equations for y0 which can be obtained from

(4), yields a simultaneous set of linear algebraic equations in dx,..., dv, cx,...,cm

with coefficients in 3, which by the lemma to this theorem is equivalent to a linear

system if" with coefficients in K, in the same variables. Take if = if'\j if" and

ji=0, i= 1,..., q and we have our result for p.=0.

Assume the result is true for p. — 1. Then the leading coefficient yu satisfies

(6) z-aj;+5Ajh = zA+M.

By the induction assumption for n -1 for part (b) we have that (6) is equivalent

to yu = 2f= i djAj, Aj els 3 and a linear algebraic system if' in cx,..., cm, dx,..., d„.

Substituting the expression for yß into (3) we get

MA+ • ■ ■)[y'u-i6u-1+(y'u-2+(p- i)(r)'h)yli-iW-2+ ■■■]

(7) +(s^+s,_x6*-i+- ■ •)[^-i^-1 + v„-2ö"-2+ • • •]

= (Wa+,_1^+"-1+...)

where the u¡s are linear homogeneous elements of K[cx,..., cm,dx,..., dp].
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By our induction assumption for p— 1, we have that there are/,.. .,jq in S[8],

with degree/ Sp-l such that (7) is equivalent to (yw_X8U~1 + ■ ■ ■ ) = 2?= i e¡/ and a

linear algebraic system 9" in cx,..., cm, dx,..., dp, ex,..., eQ. We take if = 9"\j 9"

and by writing (yu0"+ ■ • -) = 2f=i dihK8li + ^J=x efK we have found conditions

equivalent to (3). This completes our induction on p.

Case 2. 0 = exp £. Here, in distinction to the A^(z) case and Case 1, degree p\

= degree p, so things are slightly different. We set

_A_ . B ^ C
y   pl1- ■ Pi*      J~pi^--pf     ,èiCi8i   Pï---pf

and show that ai > 0 implies that either ßt > 0, yf > 0, or /z¡ = 0 and we find a bound

for each a¡.

Looking at the /zradic expansion of the terms involved in v'+/y=2*=i c¡gj,

we get if pt\pi:

- wWfÍ' + 1+ • • • +BßiAaJpfi^>+ ■■■= CJph.

Since pi \ -a¡/z¡'/4ai, we have that either

«i+1 ú y¡,       «¡+ft S y„       or      «,+ 1 = «¡+ft > y(.

In the latter case

-<*iP'iAat + BßiAat = 0(/z¡),

-aiP'i + Bßi = 0(/z¡),

— aip'i+Bßi = —afliCpi   where «¡ = degree/zf.

So we set here

a* = Max (yf —1, yi—ßi, Bgjip't—ntí'pi) if this is an integer).

pt\p'i iff/Zj = 0 (see page 169). Thus, here, the/zradic expansion runs

Aat — ají Aa¡ BBiAa¡ _ Cy¡

Ff'        + '"+/zí' + í< p\i

Then

a-i S y¡,        «i + ft á Vi,        or oc, = a¡ + ft > y¡.

In the third case (A'aJAa¡) — a¡£' + B0 = 0 and by our induction hypothesis (for (a))

we determine if there isanaeF and an Aai in S such that | 2?0 = <*(£ — log Aa¡.

We take here

af = Max (y¡, y(—j8(, the a¡ determined in the third case if it is an integer).

Setting y=Y/pax'---p%%=Y/P as before, we obtain the equation RY' + SY

= 2?-1 CjTj. Equation (2) of Case 1 is replaced by

(r,V+ ■ ■ ■)l(y« + «Vya)8a+ ■ • •] + (sy0"+ • • -)(ya8a+ ■■■) = tô8*+ ■ ■ ■ +t0.
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For definite values of cx,..., cm chosen in K, we get,

a + ß á S, a + y ¿ 8, or a + ß = a + y > 8.

In the third case rBy'a + (at.'rB+sy)ytt=0. Then j sy/rB= -a£-log ya. By our

induction hypothesis (for (a)) we determine if there is an a e K and aya\n3 such

that the above holds.

Thus, let jii = Max (8-jS; 8-y; the a determined in the third case, if it is an

integer).

With this bound for the degree of F determined, we proceed in the same manner

as in Case 1 to find the desired functions and linear system.

This completes the proof of the Main Theorem.

From this result it is easy to see how to complete the proof of the two theorems

given at the beginning of §3. For (1) we must show how to decide whether a given

efd in $, e = (le, ax,..., t)x,..., 8n>, has an e model (3, V) in which K(S¡) is a

monomial over Q(V(ax),..., V(8i-X)). By Proposition 1.2, it suffices to be able to

decide for a given fe 3, is J" (/'//) in 3 and is jf' = (l/m) log A for some meZ

and he 3 These are simple variants of (a) of the Main Theorem.

E.g., for the problem of telling if for a given fe K(z, 6X,..., 6n), where #n = exp £,

is ¡f' = (I/m) log A, A gF(z, 6x,..., 6n), meZ, we write h = 6n°pxi- ■ Pr'D, p¡ a

monic and irreducible member of K(z, 6X,..., 6n_x)[6n], degree Pi = nt,

DeK(z,6x,...,6n_x).

Then /' =AQ + Ax/px+ ■ ■ ■ +Ar/pr=[q0l, + (l/m) log D+qx logpx+ ■ ■ ■ +qrlogpr]'

where q^kdm.

For z>0, qip'i^Ai (/»() determines each qt.

A0 =qoí' + --Fr+ 2 W'£'-
m u     j=1

Thus, the problem is reduced to "is J" (A0 — 2¡=i Cinií')=q0í + (l/n) log D where

qQeQl", etc.

The proof of the second theorem given at the beginning of §3 is clear from (a) of

the Main Theorem.

We now turn to some simple examples of the algorithm.

Investigate. § exp z2. We show first that <1„, ze, expe ze-eze} is regular. J 2z

= (l/zz) log D, for D e Q(z), is clearly impossible. Thus exp z2 is a monomial over

Ô00-

exp z2 = Bi exp z2+B0,   Bx, B0 els Q(z).

B'0 = 0   so F0 = constant.

B'i + 2zBx = 1,       Bx must be in K[z] and thus Bx = yaza-\-+y0.

a* = Max (1, — 1, third case impossible).

Bi = yiz+y0-
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Vi + 2z(j1z+y0) = 1.

2vi = 01
„     _ n I    This system can not be satisfied so the integral is not

° _ r f   elementary.

Investigate.

f[2zexpz2logz+g^-2+    l0gZ~2    +(2/^)log^+l/^+ll.
jLizexpz logz+    z    +t(logz)2+z]2+      (iogz)2 + z      J

First we must show that log z is a monomial over Q(z, exp z2). If not, then J (1/z)

must be in Q(z, exp z2). Then J" (l/z)=^40, A0 e Q(z). But this is clearly impossible,

as we see from looking at the partial fraction decomposition of A0.

Our integral must equal

B2(log z)2 + Bx log z + Bo+zZdi log A + (1   *^ + z + Ci log [(log z)2 + z),

B2=0 so B2 is a constant. (2/z)B2 + B'x=2z exp z2. Thus,

Bx = I I 2zexpz2)— 2B2 logz = exp z2 + bx — 2B2 logz,

bx a constant. B2=0 since Bx must be in Q(z, exp z2). Thus, /ii = exp z2 + bx.

^l+h+B>H^ogDX = ̂ .
z        z z

50+24 log Di + bx logz =      constant
Jo

so bx can be taken to be 0.

-Bx,xß log z+ l) = log z-2       ((log z)2+z).

We must solve A [(2/z) log z +1 ] + B[(log z)2+z] = log z - 2, degree A < 2, degree

5=0.

By the Euclidean algorithm, ,4 = logz, B=—2/z. Thus 51>1=-logz. Sub-

stituting this into

log z-2       (2/z)logz+l/z+l _ [     Bi.i loeraoez)2+zll',
[(log z)2 + z]2+      (log z)2+z       - [(log z)2 + z+Cl l0g [(l0g Z) +Z\

we get Ci((2/z) log z+ l) = (2/z) log z+1. Therefore, Ci = l. So our integral is

l02 Z
exp z2 log z-(logz)2+z+log [(log z)2+z\.
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