MEROMORPHIC MULTIVALENT
CLOSE-TO-CONVEX FUNCTIONS

BY
A. E. LIVINGSTON(})

1. Introduction. Recently the author [5] has discussed some properties of the
class of p-valent regular close-to-convex functions, called £ (p). It is the purpose
of this paper to generalize some of these results to the meremorphic case.

Let f(z) be meromorphic for | z| < 1 with ¢ (1 £ g < p) poles at the origin and
f(z) # 0 for |z| < 1. We shall say that f(z) is in ST(p) if there existsa p (0 < p < 1)
such that for z = re’ (p <r < 1),

(1.1) Re [z}c((zz))] <0
and
(1.2) J:nd arg f(2) =J;2RRe [zf;(’i—;)] d0 = — 2pr.

We shall say that f(z) is in S3(p) if it is regular on |z| =1 and if (1.1) and (1.2)
hold for |z| = 1. If f(2) is in ST(p), there exists a 6 (0 < & < 1) such that f(rz) is
in S3(p) if 6<r<1.

We set S*(p) = ST(p) U S3(p) and say that a function in S*(p) is starlike of
order p.

Condition (1.2) along with the argument principle implies that a function in
S*(p) has exactly p poles in |zl < 1. It is easily seen that a function f(z), mero-
morphic in |z| < 1, is in S*(p) if and only if the function [f(z)] ~'is regular and
p-valently starlike in |z| < 1. Since the reciprocal of a p-valent function is p-
valent, a function in S*(p) is p-valent in |z| < 1. Also, using the fact that a regular
p-valent starlike function can be written as the pth power of a regular univalent
starlike function, it is easily seen that a function in S*(p) with p poles at the origin
can be written as the pth power of a meromorphic univalent starlike function.

Let F(z) be meromorphic in |zl < 1 with g (1 £ g £ p) poles at the origin and
with at most p poles in |z] < 1. We shall say that F(z) is in 2" ¥(p) if there exists a
function in S*(p) and a p (0 < p < 1) such that for z=re (p <r<1)

(1.3) Re [E%(ZZT)] > 0.
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We shall say that F(z) is in 2 3(p) if F(z) is regular on |z| =1 and if there exists
a function f(z) in S¥(p) such that (1.3) is satisfied for |z| =1. If F(z) is in
A ¥(p), there exists a 6 (0<& < 1) such that F(rz) is in A 3(p)if s <r < 1.

We set A *(p) = A %(p) U X %5(p) and say that a function in *(p) is close-
to-convex of order p.

The class o#*(1) was defined by Libera and Robertson [4] and Pommerenke [7].
It was shown in both papers that a function in 2*(1) need not be univalent.
To show that a function in 2 *(p) need not be p-valent, let F(z) be such that

zF'(z) 1+ z%P

e P (|z] <D.

Then
_ 1 2 2, 2 3
F(Z)— IE"‘;'Z +'§—p-2 + (0<|Z|<1)
If F(z) was p-valent, then
F(zl/")=—L+—2—z+~-- (O<|z|<1)

pz p

would be univalent, and so would
-—pF(z”")=%—22+~- (0<|z|<1).

But this is impossible, since the coefficient of z has modulus greater than 1. Thus
F(z) is at least 2p-valent.

Necessary and sufficient conditions for a function to be in J£*(1) have been
given in [4] and [7]. In §2 we obtain necessary conditions for a function F(z) to
be in A *(p) and show that these conditions with the added assumptions of
regularity on lzl =1 and F'(z)#0 in |z| =<1 are sufficient.

Recently, Royster [8] has shown that if

f(z)=_f: az"  (O<|z|<D)

is in S*(p) then la,,l = 0(1/n). In §3 we will extend this result to functions
in 2 ™*(p) with p poles at the origin. This result was obtained for 2#*(1) by Libera
and Robertson [4] and Pommerenke [7].

2. The class X *(p).

THEOREM 1. If F(2) is in A ™*(p), then there exists p (0 <p <1) such that
forz=re®(p<r<1)
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2n 2n

.1 dargd F(z) = —‘;ie- arg [re“’F ’(re”)] df = —2pn
0 0

and for any 0, and 0, with 060, <0, <2rn

02
.2 dargd Fz)<m.
01
Proof. Suppose F(z) is in A#F(p). Then there exists f(z) in S*(p) and p
(0 <p <1) such that (1.1), (1.2) and (1.3) hold for p <|z| < 1.
Since Re [zF'(z)/f(2)] >0 for |z|=r (p <r <1), we may define

arg [zF'(2) [ f(2)]
to be single valued and continuous for |z| = r and such that

2.3) I zF'(2) T

al'g—m)— <? (|z|=r)

Furthermore, since zF'(z) # 0 for |z | = r, we may define arg [zF’(z)] to be single
valued and continuous for |z| = r. Since f(z) = [f(2)/ zF'(z)] [2F'(2)], we may
define arg [ f(z)] = arg [zF'(z)] — arg [zF'(z)/f(z)] to be a single valued and
continuous determination of arg [f(z)] for |z| =r. Then

24 |arg zF’(z)—-argf(z)l = i arg%)—! < % (Izl =r).

It is easily seen that (2.4) implies
02 02 02
2.5) -7+ d arg f(2) <f dargd F(z)<m + d arg f(z)
04 04 0
for §; <0, and |z| =r. Since f(2) is in S*(p),

fozd arg f(z) <0 (|z|=n).
01

Thus we obtain (2.2) for |z| =r from the right side of (2.5). Letting 6, = 0 and
0, =2r in (2.5) and noting that
2n
d arg f(z) = — 2p=n
(1]
we obtain

2n
(2.6) —@p+rn < | dargd Fz)< —(2p - Dr.
0

However, the integral appearing in (2.6) is an integral multiple of 2zn. Thus (2.1)
holds for |z|=r. Since r was arbitrary (p <r<1) (2.1) and (2.2) hold for
p< |z| <1.
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If F(z) is in o "3(p), then the preceding argument with » = 1 shows that (2.1) and
(2.2) hold for |z| = 1. But since F(z) is regular near |z| =1, we can show the
existence of a p (0 < p < 1) such that (2.1) and (2.2) hold for p < |z| £ 1.

Using (2.1) and the argument principle we immediately obtain the following
corollary.

COROLLARY 1. If F(z) is in A *(p), then F’'(z) has at least (p + 1) poles in
<1 and if F'(z) #0 for |z| <1, then F'(z) has exactly (p+ 1) poles in
< 1.

z
z

THEOREM 2. Let F(z) be meromorphic in lzl <1 with g (1 £q =< p) poles
at the origin. If F'(z) #0 for 0 < |z| =<1 and F(z) is regular on |z| =1and if
(2.1) and (2.2) hold for |z| =1, then F(z) is in A 5(p).

Proof. Consider the function G(z), regular for |z|=1, given by

z dz a
G(Z) —J; m— qu + ...
Since zF'(z) # 0 for |z| = 1 we may define arg [zF'(z)] to be single valued and
continuous for |z|=1. Since zG'(z) =[2F'()] !, we may define arg zG'(z)
= — arg zF’'(z). Thus, for lzl =1

2n

d arg d G(z) =2pn
(V]

and

02
dargd G(z)> —n (0, <8,).
01
The author has shown (Theorem 3 [5]) that under these conditions G(z) is in
A'(p). That is, there exists g(z), regular for |z| =<1 such that

28'(2) -
Re _g(z)] >0  (z|]=0

and
[2G'(2)

Re | g(2)

]>o (z]=1.

The function f(z) = [g(z)]"' is in S*(p) and

zG'(z) _ ., _ S
@ O ey

Thus
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zZF'(2) ] _ g(2) _
Re W]—Re[m]>0 (z]=D.

Therefore F(z) is in o %(p).

Using the same procedure as above and by appealing to Theorem 2 [5], we
may remove the condition of regularity on |z| =1, if g = p. We thus have the
following theorem.

THEOREM 3. Let
F@)= X az" (0<|z|<D)
be meromorphic for |z| <1 and F'(2) #O0. If there exists a p (0 < p < 1)such
that (2.1) and (2.2) hold for p <|z| <1, then F(z) is in H*(p).
We will have need of the next lemma in what follows.
LEMMA 1. Let F(z) be in %(p). Then, there exists a function

f@= 3 bz"  (0<|z|<1) (|b_,|=1),

n=-p

in S3(p), such that

Re ZF'(Z)] >0  (z|=0.

f(@)

Proof. There exists a function g(z) in S¥(p) with s poles (1 <s < p) at the
origin such that,

zF'(2) _
Re[ 20 ]>o (z]=D.

The function g(z) has (p —s) nonzero poles in |z| < 1. Let a;,05, -,
these poles and let

be

pP—s

h(z)=z""" ﬁs (z—o) (1 —&2)
i=1
and
f@D=h@e@ = 2 ¢z (0<|z]<D).
n=-p

Since [zh'(z)/h(z)] is purely imaginary on |z|=1 and Re [zg'(z)/g(2)] <O
for | z| =1, then Re [2f'(2) /()] <O for | z| = 1. Furthermore, since f(z) has p
poles in | z| < 1, all of them at the origin, and since f(z) # 0 in |z| £ 1,

2n el'Of/(eiO) _
J; Re I-—f(-e—w)—] do = 2p1t.
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Thus, f(z) in S¥(p). Furthermore,

zF'(z) ZPT52F'(2)
f@ I — ) (- az)e(z)

But 2 [[[P2i{(z — )(1 — &2)]"" is real and positive on |z| = 1. Therefore

zF'(2) _
Re [—m] >0 (z|=0.

Replacing f(z) by 1 /lc_ pl f(2), the proof of the lemma is completed.

THEOREM 4. If F(z) is in A™*(p) and has all its poles at the origin, then
necessarily it has p poles there and F'(z) # 0 for |z| <L

Proof. Suppose

F(z) = ) a:" 0<|z|<1) (129=p).

There exists a p (0 < p < 1) such that F(rz) isin #%(p)if p <r < 1. By Lemma 1,
there exists

f@= % bz <]z <

n=-=p

in S%(p) such that

rzF'(rz) _
Re [ 7 ]>0 (z]=1.

Since f(z) # 0 for |z| <1,
rzF'(rz) f n
— " = 2z
f(Z) n=p—q
is regular for |z| < 1. Thus,
rzF’(rz)]
Re | ———=| >0 z| D).
76 (z]=D

Therefore, we must necessarily have ¢ = p and F'(rz) # 0 for |z| =< 1. Thus,
F'(z) # 0 for lzl =<r. Since r was arbitrary (p <r <1), F'(z) # 0 for |z| <1

If F(z) has all its poles at the origin we may improve Lemma 1 by removing
the condition of regularity on |z| =1.

LEMMA 2. Let

F(z) = )3 az"  (0<]|z|<D)

n=-=p
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be in A *(p). Then there exists

f@= X bz (0<|z|<1) (b_,|=1)
n=-p
in S*(p) such that
ZE @)
(@)
Proof. There exists a p (0 < p < 1) such that the function F(z) = F(rz) is in
A5(p) if p <r < 1. Then by Lemma 1 there exists

R >0  (|z] <.

)= X ¢z O<|z|<D(ec,|=D

n=-p

in S%(p), such that

zF)(z
Re [ f,'((z)) ]>0 (z]=D.
Let r, (p <r;<1) be an increasing sequence tending to 1. The functions
[£,(2)] " are regular and p-valently starlike and have the moduli of their first p
coefficients fixed. The class of regular and p-valently starlike functions with the
moduli of their first p coefficients fixed forms a normal family of functions [1].
Thus, we can obtain a subsequence [ f,‘k(z)]'ltending uniformly in every closed
subset of |z| <1 to a function f(z) regular and p-valently starlike and such that

f(z)=)°§ dz"  (z|<D (4,|=1.

Since F,,k(z) tends to F(z) as r;, tends to 1 and since
Re[zF, (D[f,. (2]7']1>0 for |z| <1
we have
Re [zF'(2)f(2)] >0  for |z| <1.
But

(@ =[@] " = 2 bz ©<|z]<D) (b,|=1)

is in S*(p) and

zF ’(Z)] ,
Re | ———| =Re [zF'(2)f(2)] > 0 for |z| <1.
|| = Re [P 1@ 2]
3. The coefficients of a function in ¢ *(p). We will make use of the following
lemma, proven by Royster [8] and the author [6].
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LEMMA 3. Let

fz)= f bz  (0<|z|<1) (|b_,|=D

n=-p

be in S*(p), then for n>1

b I‘(n+2p)\/p( 2 lkllb"') N

The following lemma was proven for p =1 by Pommerenke [7].

LEMMA 4. Let
1 0 eiﬁ ©
F@)=—+ X a2"and f)==+ X bz (0<|z|<D)
O R ) 2P a=--1)

and let U(z) = Re [zF'(2)/f(2)], then for r <1

1 2= e—ln
@3.1) na,= — pe b, + — J. [U(re"’) "9]
T Jo r

X [f(re“’)— OZO‘, by(re' "]d@.
k=n

Proof. Let

zF'(z - >
f(z()) —pe ™ + k)=31 Czt (z|<D).
Then
_ @© 0 ip [
P, ¥ naz= [— pe 4+ X C,,z"] [i— + X b,,z"]
2P a=-0-1 k=1 e (at))

0

—P _ pei [ z b,,z"] + ¥ [Z C,‘z""’]
k=1

= zF n=-(p—1)

+ § [”)5—1 Cib,—x J z"

n=-—(p—2) k=1
Thus, for n=1

n+p—1

3.2) na,=—pe b, +e*C,., + X Cib,_s
k=1

Now

1 2= -
C,‘ = -r—k;t A U(re‘ e ‘kode.
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Substituting into (3.2), we obtain

na,= — pe "*b, + 1 - U(re®) i—
n p n n o "

eip n+p-1
x [ + X r""‘e“""‘”b,,_,,] de
r‘PeiPo k=1

" 1 2z ” e—in
= —pe *b, +7f0 [U(re) r"?]

X [f(re“’)-— f: b,,(rew)"] de.
k=n

THEOREM 5. Let

F(z) = f a,z" (0<|z|<1) (a_,#0)

n=-p
be in A*(p), then |a,| = O0(n™?).
Proof. We may assume without loss of generality that a_, = 1. There exists,
by Lemma 2,
el’p 3
f@)=—+ Y b (0<]z|<D)

n=-(p—1)

in S*(p) such that

zF'(z)
[Re f(z)]>o (|z] <.

Let U(z) = Re[zF'(2)/f(z)], then by a well-known result on harmonic
functions,

2n
-7?1 f U(re®®) d0 =2U(0) = — 2p cos B < 2p.
(V]

By Lemma 4, we have for n =1

IIA

2= 0
f U@re®) e™™ X by(re) d0|
(1] k=n

n|a,| < p|ba| +

nr"

(3.3) N 1”
nr

f e f(re®) e d0|
(V]

IIA

« 2p o
plbnl+ r ’E”Ibklrk-'-"rn

f ” U(re®)|f(re)| ao.
0
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The Area Theorems of Golusin [2] and Kobori [3] give for n 2 1
© 0 =1
T klbPs Z k|b)P s T k| |bef?.
k=n k=1 k=-p
We thus have,

2p © © 1/2 o r2k 1/2
r" kgn lbkl rk = r [k=n klbklz] [k2=n T]

IA
()
N

IA

-1 1/2 0
(3.4) 2 [ > |k |bk|2] 13 r"]
k=-p N g=p

-1 1/2
2 Lzz_ || |bk|2] [n(1 — )] 2.

Also for n= p, by Lemma 3

2p 12
1005 Gy [ 2, 14 1]

1 —21 L1
< — k| |b
S 77 L2, 1np

Since [f(z)] ! is p-valently star like we have

(3.5)

FeeIN™ 2 105
or
lf(rew)l (1 + r)

Therefore, for n=p
1 2z " ;
— J; U(re®) | f(re")| a6

2
(3.6) < L7 1 f U(re®) do

2p(1 +1)*? _2p4°

rp+n = y2n "

I\

From (3.3), (3.4), (3.5) and (3.6) we have for n = pand any r<1

1/2

[July

rlanl s[Ve+2p 0 =1 [ 21K 7]+ 20
k=-p



1965 MEROMORPHIC MULTIVALENT CLOSE-TO-CONVEX FUNCTIONS 177

Let r2=(1—1/n), then for n=p+1

-1 1/2
n|a,| £ (JVp+2p) LZ | k| |b,‘[2] +2p 471+ 1/(n—1)"
==r

IIA

-1 1/2

(\/p+2p)[k2 |k| |bk|2] +2p4v(—”-—+p-13e.
==p

Thus, |a,,|=0(n'1).
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