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1. Introduction. The problem we wish to study is that of deciding whether

two given square matrices A and 73 over the field of complex numbers are

unitarily equivalent, i.e., whether there exists a unitary matrix U such that

73 = U~lA U. This decision can be made easily if a computable set of canonical

forms for all matrices is obtained, that is, if there exists an algorithm which

associates with any given matrix A another matrix C(A) such that if A and

73 are two matrices and C(A) and C(73) their respective forms obtained by the

algorithm, then C(^4) is equal to C(73) if and only if A and 73 are unitarily

equivalent. The solution of this problem for the set of normal matrices is

well known; the canonical set consists of all diagonal matrices with complex

entries arranged in some order agreed on. We shall make use of facts concern-

ing the diagonalization of normal matrices.

The analog of the present problem, where similarity is considered instead

of unitary equivalence is much simpler (Jordan canonical forms). We cannot

expect as simple a canonical set in the case of unitary equivalence. The fol-

lowing example shows how much vaster the set of canonical forms in this

case can be as compared to the set of Jordan canonical forms:

Let re>2. Take all reXre matrices of the form

A =

au

1

3

0

au lis

au au

1 035

4 1

• «In

• a2n

• ain

■  04n

.0        0        0        0        0    • • • re

where the a¿y are complex numbers. Under similarity all of these matrices

are equivalent and their common Jordan form is

Diag(l, 2, 3, •• -, re);

but under unitary transformations two matrices of the above type are equiv-

Received by the editors July 17, 1961.

(') Acknowledgment. This paper is a condensation of a Master's Thesis at the University

of Minnesota. The author wishes to acknowledge his indebtedness to Professor G. K. Kalisch

for his encouragement in the preparation of this dissertation and to the National Science

Foundation (Grant G 14137) for financial support.

363



364 HEYDAR RADJAVI [August

aient if and only if they are equal. This means that to just one Jordan ca-

nonical form there corresponds an uncountable number of canonical forms

under unitary equivalence ; in fact each A of the above-mentioned form is its

own canonical form if we require that canonical forms be triangular with

eigenvalues arranged in ascending order, and the (i, i4-1)-elements be posi-

tive.

The present problem was considered by J. Brenner [l]. On the basis of

Brenner's work, D. E. Littlewood made further remarks [2]. A special case

was considered by B. E. Mitchell [3]. Another attack on this problem is con-

tained in a dissertaion by Vincent V. McRae [5]. The method which we shall

use in this paper will enable us to find canonical forms for matrices A not

only under the full group of unitary transformations \U\, but also under

certain subgroups of this group which we call "direct groups." It is the reduc-

tion of equivalence under the full unitary group to that under such direct

subgroups which provides the fundamental idea involved in Brenner's work

[l] and also in the present paper. This reduction is carried out in a stepwise

manner to successively "finer" direct groups. Our work differs from Brenner's

[l] in that he sketches a double induction based on diagonalizing a block B

of the matrix A by multiplying it by unitary blocks U and V on the left

and on the right respectively and considering commutators, while in con-

sidering a block B of A, we separate out the effect of multiplying B on the left

by U from that of multiplying by V on the right. This avoids a great deal of

manipulation and permits us to describe more tightly how decisions on

unitary equivalence of two matrices can be made in a finite number of steps,

and also how to establish canonical forms. In addition, the method used in

this paper yields some intermediate results interesting in themselves (such as

Theorem 1), and also considers simultaneous unitary equivalence of ordered

sets of matrices.

2. Preliminary remarks and definitions. By the norm of a column vector

or a row vector X with components (ai, a2, ■ • • , a„) will be meant the non-

negative square root of the quantity |ai|2 + ] «212-f- • • • 4-|an|2; it will be

denoted by \\X\\. By a vector we shall always mean a column vector. The

symbol A* will denote the conjugate transpose of the matrix A, so that if X

is a vector, then ||^T|[2 = X*X. If a matrix A is partitioned into blocks ^4¿y,

we shall refer to the arrangement

A11, An, Au, ■ • • ; A2i, A22, Au, • • ■ ; A31, A32, A33, • • • ;   • • •

of the A a as the natural ordering of the blocks.

Definition. If 77 is a subgroup of the group of nXn unitary matrices,

we say two matrices A and B are equivalent under 77 if B = U*A U for some

member U of 77.

Definition. Consider the set G of all nXn unitary matrices of the form

U = T>iag(Ui, U2, ■ ■ ■ , Um),
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where £/¿ is any r.Xr, unitary matrix and where ri+r2+ • • • +rm = n. Then

G is a subgroup of the group of wXre unitary matrices and will be called an

unrestricted direct group. The sequence of integers {r,} is called the size

sequence of G, or, for brevity, the size of G.

Definition. We shall make use of subgroups of unitary matrices which

are more restricted than those given in the preceding definition : We consider

the unrestricted direct group G and let

Ei, Ei, • • • , E,

be a partition of the set of integers {l, 2, • • • , m} into 5 disjoint subsets.

Let 77 be the set of all members

U = Diagid, Ui, ■ ■ ■ , Um)

of G with the property that £/,• = U¡ whenever i and j belong to the same sub-

set Ek. Then 77 is a subgroup of G and will be called a direct group ; the se-

quences {r<} and JTiy} will be called the size and the partition of H. (If the

integers i and j belong to the same set Ek, then r< and t¡ are necessarily equal.)

Definition. If U=Diag(Ui, Ui, ■ ■ ■ , Um), then U¡ will be called the

jth component of U.

Definition. Let 77 be a direct group of size {r<} and partition {7ty}.

Then a typical member of 77 is of the form

(1) U = Diag(E7i, Ui, ■ ■ ■ , Uk, ■ ■ ■ , Um).

Let Et be that member of {E¡} which contains the integer k. Let Go be an

unrestricted direct group of rkXrk unitary matrices with size {pi}, pi+pi

+ ■ • • -\-pc — rk. In the expansion (1) of U replace Uk and all other Ui with

* in Et by

F = Diag(7i, Vi, ■ ■ ■ , Ve),

a typical member of G0. The set of all unitary matrices U thus obtained from

the members of 77 forms a subgroup K of 77 which is itself a direct group; it

is called the refinement of H by Go in the kth place. The direct group K is

uniquely determined by 77, Go, and the integer k.

Note. Unrestricted direct groups are direct groups whose corresponding

partitions consist of subsets £,- each of which has only one element. We shall

omit the adjective "unrestricted" when no confusion is caused by doing so.

Definition. Let 77 be a direct group with size {r<} and partition {73y},

i= 1, 2, • • • , m;j= 1, 2, •• -, re. Let the integers e and/be in Ep and in Et

respectively and assume that re = r/. Consider the new partition of the set of

integers {1, 2, • • • , m} which is obtained from the partition {£y} by uniting

EP and Et. Call this new partition {7^}—after relabelling the sets. The direct

group K with size {r,} and partition { Fk} will be called a restriction of H, or

more precisely an (e, f)-restriction of 77.
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We now present Propositions 1,2, and 3 which are the key to the method

used in this paper.

3. Three propositions.

Proposition 1. Let B be an rXs matrix. Then there exists an rXr unitary

matrix U such that UB has mutually orthogonal row vectors Xi, X2, • • • , XT

with \\Xi\\ ^U-X^ll =S • • • è[|^r||. Furthermore, there exists a unique direct group

77 of rXr unitary matrices, completely determined by B, such that the set of all

unitary matrices U which have the above-stated property is precisely the coset

77i/o, where U0 is any unitary matrix having the property.

Proof. Consider BB* which is an rXr nonnegative-definite Hermitian

matrix. There exists a unitary matrix U which transforms BB* into its di-

agonal form

U(BB*)U* = Diag(ci, c2, ■ ■ ■ , cr)

with Ci^c2^ • • • ^c-^0. In general, the c< are not all distinct. Let the first

r¿ of the Ci be equal, then the next r2 of them equal but distinct from the first

r\, and so on. This gives rise to integers {r,} with ri4-r24- • • • -\-rm = r. Let

J7 be the unrestricted direct group with size {r¿|. 77 is uniquely determined

by BB* and, furthermore, the set of all unitary matrices that diagonalize

BB* with diagonal elements in descending order, is precisely the coset 77Z7.

Next observe that the (i, j)-element of UBB*U=(UB)(UB)* is X{X*,

where the Xf are the row vectors of UB. It is now easily verified that the

matrix U and the direct group 77 have the properties required in the state-

ment of the proposition.

Definition. If the row vectors of an rXs matrix B are mutually orthog-

onal and all have the same norm, then B is called a row-orthogonal matrix. A

matrix B is row-orthogonal if and only if BB* is a nonnegative multiple of

the identity matrix. For future purposes we also define column-orthogonal

matrices in an analogous manner. A matrix B is column-orthogonal if and

only if B*B is a nonnegative multiple of the identity.

Proposition 2. Let B be an rXs matrix and V any sXs unitary matrix.

Then B and B V give rise to the same direct group 77 and the same coset HUo as

occurred in Proposition 1.

The proof follows from the equation (BV)(BV)* = BB*.

Considering B*B instead of BB* we can prove

Proposition 3. Let B be an rXs matrix. Then there exists an sXs unitary

matrix U such that B U has mutually orthogonal column vectors Xi, X2, ■ ■ • , Xr

with ||Xi|| k||X2|| ^ • • • ^||Xr||. Furthermore, there exists a unique direct

group H of sXs unitary matrices, completely determined by B, such that the set

of all unitary matrices having the above property is precisely the coset UH.
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The column analog of Proposition 2 also holds.

Definition. The matrix U of Proposition 1 is called a row-fixer of 73 and

the direct group 77, the row-fixed group of 73. A column-fixer of 73 and the

column-fixed group of 73 are defined similarly in connection with Proposition 3.

4. A series of algorithms.

Algorithm 1. Let 77 be a direct group of reXre matrices with size {r¿}

and partition {Ey} and let A be an reXre matrix. Partition A into blocks An

conforming with 77, i.e., such that A a is an r<Xr, matrix. Assume that at

least one of the ^4¿y is not row-orthogonal, and let Ar, be the first A a in the

natural order which is not row-orthogonal. Apply Proposition 1 to Ar, and

let Ui be a row-fixer and G the row-fixed group of A„. Let Ek he that mem-

ber of {Ej} which contains r. Let U be that member of H whose tth com-

ponent is U* whenever i is in Ek and whose remaining components are all

identity matrices. We shall call Ai= U*A U a transform of A under Algorithm

1. The refinement 77i of 77 by G in the rth place will be called the refinement

of 77 induced by Algorithm 1 on A.

Proposition 4. Two matrices A and B are equivalent under a direct group

H if and only if they give rise to the same refinement Hi of 77 under Algorithm 1

and their transforms Ai and 73i are equivalent under H\.

Proof. Assume A and 73 are equivalent under 77. Partition A and 73 into

blocks A a and 73 ¿y conforming with 77. Then 73,y = V*AijVj, where the Vk

are fixed unitary matrices and F¿= V¡ if i and/ belong to the same set in the

partition of 77. Since the row-orthogonality of one of the two matrices An

and 73y implies that of the other, the first non-row-orthogonal blocks of A

and 73 occur at the same position (r, s). It follows from the above propositions

that Ar, and 73ra have the same fixed group G and hence A and 73 give rise

to the same refinement 77i of 77. Next let Ui and Wi be any row-fixers of A „

and 73rs respectively; then, by Proposition 2, there exists a member F of G

such that WiV? = VUi. Let Ai and Bx be the transforms of A and 73 under

Algorithm 1 obtained by making use of Ui and W\. Then the (i, /)-blocks A't]

and 73y of A i and 73x are given below in all possible cases. Letting Ep denote

the set containing the integer r in the partition of H, then :

(1) if iEEP andjEEP, then A'{j = An and 73^ = 73,,= V?AtJVi** VfA^Vfi
(2) if iEEp and jEEp, then A^UiA« and B,v=WiBii=WiVífAtiV,

= VUiAijVj=VA'1iVj;

(3) ii iEEp and jEEp, then A^A^U? and B'^BijWt^VPAqVrWt
= V?Aii(WiV*)*= VfA'i}V*; and

(4) if i E Ep and j E Ep, then A'v = l/iAyU? and B'(j = WiBuWf
= Wi. V*A n Vr Wt = F UíA a U?V=VA'tíV*.

It follows that Bi = S*AiS, where S is obtained from Diag(F¿) by replac-

ing Fy by V whenever jEEp, but, since V belongs to G, this means that Ai
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and Bi are equivalent under 77i, the refinement of 77 by G in the rth place.

This completes the proof of Proposition 4 in one direction. The proof of the

converse is trivial.

Algorithm 2. Let 77 be a direct group and A a matrix partitioned into

blocks conforming with 77, A„ be the first A^ in the natural order which is not

column-orthogonal. Apply Proposition 3 to Ar, and let Ui be a column-fixer

and G the column-fixed group of A„. Let Ek be that member of 77 whose ith

component is Z7i whenever i is in Ek and whose other components are all

identity matrices. The refinement 77i of 77 by G in the sth place will be

called the refinement of 77 induced by Algorithm 2 on A, and Ai= U*AU a

transform of A under Algorithm 2. The analog of Proposition 4 holds.

We now state a theorem which we consider to be of some interest in it-

self.

Theorem 1. Let H be a direct group of nXn unitary matrices. There exists

an algorithm, called Algorithm 4 in the sequel, which, when applied to any nXn

matrix A, associates with it a unique direct subgroup H(A) of 77 and a matrix

A o equivalent to A under H such that

(1) Ao when partitioned into blocks conforming with H(A) has the form

Cil Un      Ci2 Un  •   •   ' Cim Ulm

c2i Uii   c22 U22 • ■ ■ c2m U2m

- CmlUml     Cm2Uml *   *   ' Cmm^mm-

where the Cy are nonnegative real numbers and the Uy unitary matrices^) and

ii) a matrix B is equivalent to A under H if and only if HiA) = 77(73) and

Bo is equivalent to A o under HiA).

The proof will follow the description of Algorithm 4.

Algorithm 3. Let An be the blocks of A conforming with 77. If every

An is row-orthogonal, put

A™ = A,       H™ = 77;

otherwise apply Algorithm 1 to A ; let A i be the transform of A under Algo-

rithm 1 and 77i the corresponding refinement of 77. Repeat the process, i.e.,

if every block of Ai when partitioned into blocks conforming with Hi is row-

orthogonal, put

AW = Ai,       H^ = 77i;

otherwise apply Algorithm 1 with the new group 77i, let ^42 be the transform

of Hi, etc. Thus we obtain a sequence of direct groups {77¿}, where 77¿+i is

a refinement of 77j. Each time that Algorithm 1 is applicable, a proper refine-

(2) The ctj corresponding to nonsquare blocks are, therefore, necessarily zero.
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ment of the preceding direct group is obtained, so that after a finite number

of steps we find a direct group 77m and a matrix Am, where in the partition of

Am conforming with 77m every block is row-orthogonal. Then let

A<» = Am   and   T?«1' = 77m.

Clearly 77(1) is uniquely determined by this process, and furthermore A and

B are equivalent under 77 if and only if they give rise to the same 77(1) and

A(1> and 73(1) are equivalent under 77(1>. (This follows from repeated applica-

tions of Proposition 4).

Next consider Aw and 77(1) and repeat the process described above with

Algorithm 2 instead of Algorithm 1. This will, after a finite number of steps,

give rise to a matrix Am and a unique direct group 77(2) such that ^4(2),

when partitioned into blocks conforming with 77(2), has only column-

orthogonal blocks. Again, two matrices A and B are equivalent under H if

and only if they give rise to the same direct group 77(2) and A(2) is equivalent

to 73(2) under 77(2>. We will call 77(2) the subgroup of H induced by Algorithm 3

on A. The matrix A(2) will be called the transform of A under Algorithm 3.

Algorithm 4. Let 77 be a direct group. Find the transform A(2) of A

under Algorithm 3 and the corresponding induced subgroup 77(2) of 77. Having

found Ai2i) and 77(2i) apply Algorithm 3 with the new direct group 77(2i) and

let A(2i+2) be the transform of A(2i> and 77(2i+2) the corresponding induced

subgroup of 77(2i). Each time that 77(2i+2) is not equal to 77(2i), it has at least

one more component than 77(2i+2) ; hence alter a finite number of steps we will

have ^(2m+2)=^(2OT)  and  H(2m+2)=H(2m)-  Let Ao = A(-2m'>  and  770 = 77(^)

= 77(2m). The subgroup 77(2m) of 77 is uniquely determined by Algorithm 4

and A is equivalent to B under 77 if and only if 770 = 77(.4) =77(73) and A0 is

equivalent to 730 under 770.

Proof of Theorem 1. Observe that if A 0 and 770 are the matrix and direct

group obtained by Algorithm 4, then in the partition of A o into blocks con-

forming with 77o, the blocks are both row-orthogonal and column-orthogonal

and, therefore, nonnegative multiples of unitary matrices.

Algorithm 5. Let 77 be a direct group of nXn unitary matrices with size

{r,} and partition \Ej). Let A be an «X« matrix whose blocks in the par-

tition conforming with 77 are nonnegative multiples C,yC/<yof unitary matrices

Un. If for each nonzero c,y the integers i and j belong to the same set Ek, let

77* = 77 and A* = A; otherwise let c„ be the first nonzero e¿y in the natural order

for which i and j do not belong to the same set. Let r be in Ef and s in E0.

Let U be that member of 77 whose ith component is U„ for all i in E¡ and

whose remaining components are identity matrices. Put A*= U*A U and let

77* be the if, g) -restriction of 77.

Proposition 5. If the matrix A* is obtained from A by Algorithm 5 and if

77* is the corresponding restriction of 77 as in Algorithm 5, then the (r, s)-block

of U*A*U in the partition conforming with 77* is crJ, where I is the identity
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matrix, for all U in 77*; furthermore, two matrices A and B are equivalent under

H if and only if they give rise to the same direct group 77* under Algorithm 5 and

A* is equivalent to 73* under 77*.

Proof. That the (r, s)-block of U*A*U is equal to crJ for all U in 77* is

easy to see. If A and 73 are equivalent under 77, they have the same ordered

set of en, so that the integers r and s are the same for A and 73; hence they

give rise to the same restriction 77* of 77. The (r, s)-block of 73* is also crtI

and it follows at once that A* and 73* are equivalent under 77*. The proof of

the converse is trivial.

Algorithm 6. Let 77 be a direct group of «Xre matrices. Let A be an

reXre matrix whose blocks in the partition conforming with 77 are nonnega-

tive multiples of unitary matrices. Apply Algorithm 5 to A with the group 77

and obtain .4* and 77*; next apply Algorithm 5 to A* with the new group 77*

and obtain A** = A(2) and 77** = 77(2). Continue this process, i.e., having found

A&) and 77^), apply Algorithm 5 to A<#), with the direct group 77^) and ob-

tain A(k+i) and Hik+i). Each time that Algorithm 5 is applicable nontrivially,

the number of sets in the partition {Ek} of the direct group decreases by 1;

hence after a finite number of steps we obtain A (m+D = A (m) and 7f(m+D = 77(m).

We shall call A (m) a transform of A under Algorithm 6 and 77(m) the subgroup of

77 induced by Algorithm ó on A. The following proposition is an immediate

consequence of the construction of A(m) and 77(OT).

Proposition 6. Assume A, when partitioned to conform with H, has blocks

which are nonnegative multiples of unitary matrices. Let A' be a transform of A

under Algorithm 6, and 77' the corresponding induced subgroup of 77. Let

{Ek} be the partition of H'. Let A'tJ be the blocks of A' when partitioned accord-

ing to H'. Then the A'tí are nonnegative multiples CnUa of unitary matrices Un

and Cu = 0 whenever i and j belong to distinct sets of the partition {Ek}.

Proposition 7. If two matrices A and B have nonnegative multiples of uni-

tary matrices as blocks conforming with a direct group 77, then they are equivalent

under 77 if and only if they give rise to the same induced subgroup 77' of H under

Algorithm 6 and their transforms A' and 73' under the algorithm are equivalent

under 77'.

Proof. Apply Proposition 5 repeatedly.

Algorithm 7. Let 77 be a direct group of re Xre unitary matrices with

partition {Ek}. Let A be an «X« matrix whose blocks in the partition con-

forming with H are nonnegative multiples djUa of unitary matrices Un,

and such that e¿y = 0 whenever i and j belong to two distinct sets in {Ek}.

Then a member

U = T>iag(Ui, ■■■ ,Um)

of H transforms A into U*A U whose blocks are c,y(7f ¿7<yi7y, and by assump-
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tion Ui= Uj if CijT^O. If for each nonzero Cn, the matrix í/¿y is the identity

matrix, put

A' = A,       77' = 77.

Otherwise let crs be the first nonzero number among the C;y, in the natural

order, for which Un is not the identity matrix. Then there exists a unitary

matrix V\ such that V*UrsVi is diagonal; furthermore, if m is the size of U,„

there exists a unique direct group G of mXm unitary matrices such that the

set of unitary matrices that diagonalize UT, is precisely the coset F¿G. Let

U be that member of 77 whose ith component is Vi whenever i belongs to the

set Ek containing r, and whose remaining components are all identity ma-

trices. Put A ' = U*A U and let 77' be the refinement of 77 by G in the rth place.

Proposition 8. If H is a direct group and if A and B are two matrices of the

form described in Algorithm 7, then A and B are equivalent under 77 if and only

if they give rise to the same refinement 77' of 77 under Algorithm 7 and their trans-

forms A' and B' are equivalent under 77'.

The proof is similar to the proof of Proposition 4.

Definition. Let 77 be a given direct group of nXn unitary matrices.

Let A be any nXn matrix. Apply Theorem 1 to A with the direct group 77

and let 77i be the resulting subgroup of 77 and Ai the resulting matrix. Next

apply Algorithm 6 to Ai with the group 77i and obtain -42 and 772. Then

apply Algorithm 7 to A2 with the group 772 and let 773 and A3 be the resulting

direct group and matrix respectively. We shall call A3 a first reduced form of

A under 77, and 773 the first reduced subgroup of 77 with respect to A.

Proposition 9. A ny first reduced form of A is equivalent to A under 77, and

if B is another matrix, then B is equivalent to A under 77 if and only if A and B

give rise to the same first reduced subgroup 77' of 77 and their first reduced forms

under 77 are equivalent under 77'.

The proof follows from Theorem 1 and the earlier propositions.

Algorithm 8. Let 77 be a direct group of nXn unitary matrices. Given

an nXn matrix A, find a first reduced form Aw of A under 77and the first

reduced subgroup 77(1) of 77 with respect to A. Repeat the process, i.e., having

found A(i) and 77()>, let Au+1) be a first reduced form of AU) under 77(i) and

let 77(i+1) be the first reduced subgroup of 77(i) with respect to A(i). Each

time that 77()+1)5¡í770), either 77(î+1) has at least one more component than

77(j) or the number of sets in the partition of 77(î+1) is at least one less than

that in the partition of 77(î). Hence after a finite number of steps we obtain

7í(*+1) = 7í(*). We shall call H(k) the reduced subgroup of 77 with respect to A,

and A(m) the reduced form of A. By this method the reduced subgroup 77(m)

of 77 with respect to A is uniquely determined and we have

Theorem 2. Let H be a direct group of nXn unitary matrices and A an
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re Xre matrix. Let Ho and A o be, respectively, the reduced subgroup of H with

respect to A and the reduced form of A under 77. Then A 0 is invariant under Ho,

i.e., U*AoU=Aofor all members U of Ho. Furthermore, two matrices A and B

are equivalent under 77 if and only if they give rise to the same reduced subgroup

Ho of H and their reduced forms under H are equal.

Proof. If for some member U of 770 we had U*AoU^Ao, then at least one

of the Algorithms 4, 6, and 7 would be further applicable to A0, which would

contradict the construction of ^lo and 770; hence U*A0U=A0 for all U in 770.

Repeated applications of Proposition 9 show that A and 73 are equivalent

under 77 if and only if they give rise to the same reduced subgroup Tío of 77

and their reduced forms A0 and 730 are equivalent under 770, but it follows

from the first part of this theorem that 730= U*A0U for some U in 770 if and

only if 730 = ^4o.

Thus we have, by Theorem 2, established canonical forms A0 for all «X«

matrices A under ciray given direct group 77 of «Xre unitary matrices. These

canonical forms are found by Algorithm 8.

5. A related result. Theorem 2 also solves the problem of simultaneous

unitary equivalence of two finite sets of matrices: Given two ordered sets of

reXre matrices {Ai} and (Si), i= 1, 2, • • • , m we are to decide whether or

not there exists an «X« unitary matrix U such that 73¿= U*AiU for all i.

This problem is the same as that of deciding whether or not two mnXmn

matrices

A = Diag(vli, Ai, ■ ■ ■ , Am)

and

B = DiagCBi, Bt, • • • , 73m)

are equivalent under the direct group 77 of mnXmn unitary matrices whose

size is {ri} with r, = «, i=\, 2, • • ■ , m and whose partition consists of just

one set containing all the integers \, 2, ■ ■ ■ , m. (The components of each

member U of 77 are all equal.)

6. Triangular canonical forms under the full unitary group. The direct

group H of Theorem 2 can be taken to be the full group of re Xre unitary

matrices, and we may desire the canonical forms of matrices under unitary

equivalence (i.e., under the full group of unitary matrices) to be triangular.

This suggests the following procedure:

Triangularization. Let A be an reXre matrix acting on an re-dimensional

unitary space V and let eu e2, ■ ■ ■ , e,% be the eigenvalues of A arranged in

some order agreed on, where each eigenvalue is repeated as many times as

its algebraic multiplicity requires. (By this is meant the multiplicity of the

eigenvalue as a zero of the characteristic polynomial of A.) Consider the

following subspaces of 7f:
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Vi= iA- e2I)(A - e3I) ■ ■ ■ i A - eJ)V,

V2=iA- e3I)ia - ej) ■ ■ ■ iA - eJ)V,

F„_i = iA- enI)V,

Vn    = F.

Each Vi is contained in Fi+1 for i= 1, 2, • • ■ , » — 1. Furthermore, (A —eil) Vi

= 0 and (A — e¿7)F,+i= F,- for i=í, 2, • • • , n — í. Let m¿ be the dimension

of Vi. Choose an orthonormal basis {^"l, X2, ■ ■ ■ , Xn] lor V in which the

first m{ vectors lie in F< for i= 1, 2, • • • , ». Letting £/= [JTi, X2, • • • , X„],

the matrix ^4 will take on the triangular form Ao= U*A U with respect to the

new basis.

Let ri = Wi and r< = iw,- — jw,_i for * = 2, 3, • ■ • , n. Then r¿^0 for all i.

Take the nonzero r< and relabel them to form the sequence {s<}, where

Si = ri, s2 is the next nonzero r,-, and so on. Let 77 be the unrestricted direct

group of nXn unitary matrices with size {s,}. We shall call 77 the triangular-

izer of A. The eigenvalues, the numbers m¿ and therefore the s,-, are invariant

under all unitary transformations. Hence, if two matrices A and 73 are tri-

angularized by the above method giving rise to corresponding triangularizers

Ha and 77b, and to triangular forms Ao and 730, then A is unitarily equivalent

to 73 if and only if 77¿ = 77B and A 0 is equivalent to 730 under HA. Thus we have

the following

Corollary to Theorem 2. Let Ao be a triangular form of the matrix A

and let 77 be its corresponding triangularizer. Let C(A) be the reduced form of Ao

under 77. Then the matrix C(A) is the triangular canonical form of A : Two ma-

trices A and B are unitarily equivalent if and only if C(A) = C(B).
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