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2.4. Orthogonal Complements and Projection onto a Subspace

Definition 2.14. If U is a subspace of a unitary space V , the orthogonal comple-
ment of U is U⊥ = {x ∈ V

∣∣ 〈x,u〉 = 0 for all u ∈ U}.

Here are some basic properties of the orthogonal complement.

Theorem 2.15. Let V be a unitary space, and let U be a subspace of V. Then

(1) The orthogonal complement, U⊥, is a subspace of V.
(2) U ∩ U⊥ = {0}.
(3) If U ⊂ W, then W⊥ ⊂ U⊥.

(4) If V is finite dimensional, then dim(U)+dim(U⊥) = dim(V), and V = U⊕U⊥.

(5) If V is finite dimensional, then U⊥⊥ = U .

Proof. We leave (1) and (3) as exercises for the reader. For (2), note that if
x ∈ U ∩ U⊥, then 〈x,x〉 = 0, and hence x = 0.

Now suppose V is n-dimensional and U is k-dimensional. Let u1, . . . ,uk be a
basis for U . Then x ∈ U⊥ if an only if 〈x,ui〉 = 0 for i = 1, . . . , k. Let A be the
n×k matrix with columns u1, . . . ,uk. We know there is positive definite Hermitian
matrix P such that 〈x,y〉 = y∗Px, so 〈x,ui〉 = ui

∗Px. Hence, x ∈ U⊥ if and only if
A∗Px = 0, so U⊥ is the null space ofA∗P . Since A has rank k, and P is nonsingular,
the k×n matrix A∗P also has rank k, and thus the null space of A∗P has dimension
n− k. This, combined with (2), establishes (4). For (5), first note that U ⊆ U⊥⊥.
Then from (4), we have dim(U⊥⊥) = n− dim(U⊥) = n− (n− k) = k = dim(U), so
U⊥⊥ = U . �

For a one-dimensional subspace U of Cn, that is, a line through the origin,
the orthogonal complement U⊥ is an (n − 1)-dimensional subspace. An (n − 1)-
dimensional subspace of an n-dimensional space is called a hyperplane. If we fix a
nonzero vector a in an n-dimensional space, then the equation 〈a,x〉 = 0 defines a
hyperplane through the origin. Over the real numbers and using the dot product,
this equation takes the form a1x1 + a2x2 + · · ·+ anxn = 0.

Definition 2.8 gives the orthogonal projection of y onto the one-dimensional
subspace spanned by x. We now look at orthogonal projection onto a general
subspace. Let U be a subspace of an inner product space V , and let y ∈ V . There
are two approaches to the definition of orthogonal projection: we can seek p ∈ U
such that y−p ∈ U⊥, or we can seek p ∈ U such that ‖y−p‖ is minimized. Later
in this section, we will see these two characterizations are equivalent; for now we
take the first as the definition. There are several issues to consider: uniqueness,
existence, and computing p. We start with the uniqueness question.

Theorem 2.16. Let U be a subspace of an inner product space V, and let y ∈ V.
Then there is at most one vector p in U such that y − p ∈ U⊥.

Proof. Suppose we have p,q ∈ U with y − p ∈ U⊥ and y − q ∈ U⊥. Since U
and U⊥ are both subspaces, q− p ∈ U and (y − p)− (y − q) = q− p ∈ U⊥. But
U ∩ U⊥ = 0, so q− p = 0 and hence q = p. �
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Definition 2.17. Let U be a subspace of an inner product space V , and let y ∈ V .
If there exists a vector p ∈ U such that y−p ∈ U⊥, then p is called the orthogonal
projection of y onto U and denoted p = projUy.

Note that y = p+ (y− p) decomposes y into the sum of its projection onto V
and a vector orthogonal to V . We have ‖y‖2 = ‖p‖2+‖y−p‖2 and thus ‖p‖ ≤ ‖y‖,
with equality if and only if p = y.

The more subtle question is whether projUy always exists. For a one-dimen-
sional subspace U , we have seen the answer is yes; if x spans U , then formula (2.3)
tells us how to compute projUy. The next theorem generalizes this result to any
finite-dimensional subspace U , giving a formula for projUy in terms of an orthonor-
mal basis for U .
Theorem 2.18. Let U be a nonzero, finite-dimensional subspace of an inner prod-
uct space V. Let y ∈ V, and let u1, . . . ,uk be an orthogonal basis for U . Then

(2.6) projUy =
k∑

i=1

projui
y =

k∑
i=1

〈y,ui〉
〈ui,ui〉

ui.

Setting p = projUy, the following holds: for any x in U with x 	= p, we have
‖y − p‖ < ‖y − x‖.

Proof. Set p =
k∑

i=1

projui
y. We need to show that p = projUy. Since u1, . . . ,uk

is an orthogonal basis, 〈ui,uj〉 = 0 when i 	= j. Then for any basis vector uj ,

(2.7) 〈p,uj〉 =
k∑

i=1

〈y,ui〉
〈ui,ui〉

〈ui,uj〉 = 〈y,uj〉.

Let u ∈ U . Then u =
k∑

j=1

ajuj and

〈y,u〉 =
k∑

j=1

aj〈y,uj〉 =
k∑

j=1

aj〈p,uj〉 =
〈
p,

k∑
j=1

ajuj

〉
= 〈p,u〉.

So 〈y − p,u〉 = 0 for all u ∈ U , which means y − p ∈ U⊥. Hence, p = projUy.

Now suppose x ∈ U . Then p− x ∈ U and y − p ∈ U⊥, and so

‖(y − p)‖2 + ‖(p− x)‖2 = ‖y − x‖2.
So ‖(y − p)‖ ≤ ‖y − x‖ and equality holds only when x = p. �

When the basis u1, . . . ,uk is orthonormal, formula (2.6) simplifies to

p = projUy =

k∑
i=1

〈y,ui〉ui.

We now express this in matrix form for the standard inner product on Cn. Let B
be the n× k matrix with the vector uj in column j. The reader may check that

(2.8) p = projUy =
k∑

i=1

〈y,ui〉Iui = BB∗y.
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Earlier we said that an equivalent way to define the orthogonal projection of
y on a subspace U is to find the point in U which is closest to y (provided such a
point exists). Theorem 2.18 establishes this equivalence for a finite-dimensional U ;
we now use this to show the equivalence holds in general.

Theorem 2.19. Let U be a subspace of an inner product space V. Let y ∈ V. Then
for x ∈ U , the following are equivalent:

(1) y − x ∈ U⊥.

(2) For any u ∈ U with u 	= x, we have ‖y − x‖ < ‖y − u‖.

Proof. Suppose there exists x ∈ U such y − x ∈ U⊥. Let u ∈ U . Then y − u =
(y − x) + (x − u). Since y − x ∈ U⊥ and (x − u) ∈ U , the vectors (y − x) and
(x− u) are orthogonal. Hence,

(2.9) ‖y − u‖2 = ‖(y − x)‖2 + ‖(x− u)‖2 ≥ ‖(y − x)‖2.
Equality holds in equation (2.9) if and only if x = u, so ‖y − x‖ < ‖y − u‖ for
any u ∈ U with u 	= x. (Yes, we did just repeat the argument at the end of the
previous proof.)

Conversely, suppose x ∈ U satisfies the condition in statement (2). Let u ∈ U ,
and let P be the subspace spanned by x and u. Since P ⊆ U , we know that
‖y − x‖ < ‖y − v‖ for any v ∈ P with v 	= x. Since P is finite dimensional,
Theorem 2.18 tells us projPy = p must exist, and ‖y−p‖ < ‖y−v‖ for any v ∈ P
with v 	= p. But then we must have p = x. So y − x ∈ P⊥. Hence, (y − x) is
orthogonal to u. Since this holds for any u ∈ U , we have y − x ∈ U⊥. �

If U is infinite dimensional, we are not guaranteed the existence of projUy.

Example 2.20. Let l2 be the set of all square summable complex sequences, that

is, the space of all sequences {an}∞n=1 of complex numbers such that
∞∑
i=1

|ai|2 con-

verges. Using the Cauchy–Schwarz inequality, one can show that for sequences

{an}∞n=1, {bn}∞n=1 in l2, the series
∞∑
i=1

aibi converges. The set l
2 is an inner product

space with vector sum and scalar multiplication defined component-wise and the
inner product

〈{an}∞n=1, {bn}∞n=1〉 =
∞∑
i=1

aibi.

Let U be the subspace of all sequences which have only a finite number of nonzero
entries. The subspace U contains all of the unit coordinate sequences ej , where ej
denotes the sequence with a one in position j and zeroes elsewhere. Then U⊥ = {0}.
Let y = (1, 12 ,

1
3 ,

1
4 , . . .) be the sequence with 1

n in position n. Then y ∈ l2, but for

any x ∈ U the vector y − x has nonzero entries, so it cannot be in U⊥. Hence, U
contains no vector x such that y − x is in U⊥, and so projUy does not exist.

A Hilbert space is an inner product space which is a complete metric space with
respect to the metric induced by the inner product (that is, the distance from x

to y is ‖x − y‖ = 〈x − y,x − y〉 1
2 ). For any n, the space Cn is a Hilbert space.

The space l2 is an infinite-dimensional Hilbert space. In a Hilbert space one has
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the following “closest point property” for closed, convex subsets. See [Youn88, pp.
26–28] for a proof.

Theorem 2.21. Let S be a nonempty, closed, convex set in a Hilbert space H. For
any x ∈ H, there is a unique point y ∈ S such that ‖x−y‖ < ‖x−a‖ for all a 	= y
in S.

The problem with the subspace U in Example 2.20 is that it is not closed. The
vector y = (1, 1

2 ,
1
3 ,

1
4 , . . .) is not in U but is the limit of a sequence of points in U .

Although y is not in U , it is in the closure of U . However, any subspace is a convex
set, so when W is a closed subspace of a Hilbert space H, the closest point property
holds for W , and thus for any x ∈ H, the orthogonal projection projWx will exist.

Returning to the finite-dimensional world, formula (2.6) gives projUy if we have
an orthogonal basis for U . For the standard inner product on Cn, we now obtain
a formula for computing projUy from an arbitrary basis for U . First we need the
following fact about matrices.

Theorem 2.22. Let A be an n × k matrix. Then the four matrices A,A∗, AA∗,
and A∗A all have the same rank.

Proof. We first show that A and A∗A have the same null space. We clearly
have ker(A) ⊆ ker(A∗A). Now suppose A∗Ax = 0. Then x∗A∗Ax = 0. But
x∗A∗Ax = (Ax)∗(Ax) = ‖Ax‖2. So ‖Ax‖ = 0 and hence Ax = 0. So we have
ker(A∗A) ⊆ ker(A). Hence, ker(A) = ker(A∗A). Since A and A∗A also have the
same number of columns, k, the rank plus nullity theorem then tells us they must
have the same rank. Now, since the row and column space of a matrix have the same
dimension, we know A∗ has the same rank as A. Using A∗ in the first argument
then tells us that A∗ and A∗∗A∗ = AA∗ have the same rank. �

In particular, when k ≤ n and the n × k matrix A has linearly independent
columns, the k × k matrix A∗A has rank k and thus is invertible.

Let {a1, . . . , ak} be a basis for a k-dimensional subspace U of an n-dimensional
inner product space V . Let A be the n×k matrix with aj in column j. The columns
of A are linearly independent, and the k × k matrix A∗A is invertible. For y ∈ V ,
set p = projUy. Since p is a linear combination of the columns of A, we have
p = Ax for some x in Ck. In the proof of Theorem 2.18 we saw that 〈p,u〉 = 〈y,u〉
for any u ∈ U . Since the columns of A are vectors from U , and entry j of A∗y is
〈y, aj〉I , we have A∗y = A∗p = A∗Ax. Hence x = (A∗A)−1A∗y and

(2.10) p = projUy = Ax = A(A∗A)−1A∗y.

For k = 1, equation (2.10) reduces to (2.3). If the columns of A are orthogonal,
then A∗A is a diagonal matrix, and equation (2.10) reduces to (2.6). If the columns
of A are orthonormal, then A∗A = Ik, and (2.10) reduces to (2.8).

Formula (2.10) typically appears as the solution to finding the best least squares
fit. Consider a system of linear equations, Ax = b, where A is n× k. This system
has a solution if and only if b is in the column space of A. When the system has
no solution, we want to find the vector w in the column space of A which is as
close as possible to b. Thus, letting U be the subspace spanned by the columns
of A, we are looking for w = projUb. Equivalently, we want the vector w = Ax
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which minimizes ‖Ax− b‖, or we want to minimize ‖Ax− b‖2, which is the sum
of the squares of the differences between the coordinates of Ax and b; hence the
term “best least squares fit”. If the columns of A are linearly independent, then
x = (A∗A)−1A∗b and w = Ax = A(A∗A)−1A∗b.

We conclude this section with a fact needed in later chapters, both in the proof
of the Jordan canonical form and in the proof of the spectral theorem for normal
matrices.

Theorem 2.23. Let A be an n × n complex matrix. Then a subspace U of Cn is
invariant under A if and only if U⊥ is invariant under A∗.

Proof. First we note that we are working here with the standard inner product
in Cn (although one can formulate this theorem using the more general definition
of adjoint). Suppose U is an A-invariant subspace. Let y ∈ U⊥, and let u be
any vector in U . Then Au ∈ U and so 〈u, A∗y〉 = 〈Au,y〉 = 0, which shows
that A∗y ∈ U⊥; hence U⊥ is invariant under A∗. Conversely, if U⊥ is invariant
under A∗, then U⊥⊥ is invariant under A∗∗. But U⊥⊥ = U and A∗∗ = A, so U is
A-invariant. �

2.5. Hilbert Spaces and Fourier Series

The Hilbert space l2 appeared in Example 2.20. Recall that a Hilbert space is a
unitary space which is a complete metric space under the distance induced by the
inner product. (A metric space is complete if every Cauchy sequence of points in
the space converges to a point in the space.) We say an infinite sequence of vectors
x1,x2,x3, . . . converges to x if ‖x− xn‖ → 0 as n → ∞.

Suppose H is an infinite-dimensional Hilbert space and {en} = e1, e2, e3, . . . is
an infinite sequence of orthonormal vectors in H. For each positive integer k, let
Uk denote the k-dimensional subspace spanned by e1, . . . , ek. For each k and any
x in H, we put

pk = projUk
x =

k∑
i=1

〈x, ei〉ei.

Since ‖pk‖2 ≤ ‖x‖2, we have

(2.11)
k∑

i=1

‖〈x, ei〉‖2 ≤ ‖x‖2

for any positive integer k. The inequality (2.11) says that the partial sums of the

infinite series
∞∑
i=1

‖〈x, ei〉‖2 are bounded above by ‖x‖2. Hence, the series converges

and

(2.12)
∞∑
i=1

‖〈x, ei〉‖2 ≤ ‖x‖2;



Chapter 4

The Jordan and Weyr
Canonical Forms

Similarity is an equivalence relation on the set of n × n matrices over the field F,
and thus partitions Mn(F) into equivalence classes called similarity classes. By a
canonical form for matrices under similarity, we mean a rule for selecting exactly
one representative from each equivalence class. This is the canonical form for the
matrices in that class, and two matrices are similar if and only if they have the
same canonical form. We might want various things from this canonical form. We
might want it to be as “simple” as possible, or to display important information
about the matrix (such as rank, eigenvalues, etc.), or to be useful for some specific
computations. For example, consider computing the exponential of a matrix A,
defined via the Taylor series for the exponential function

exp(A) =
∞∑

n=0

Ak

k!
.

Direct calculation of Ak is impractical for large k, and then there is the issue of
summing the terms. However, we have

exp(S−1AS) =

∞∑
n=0

(S−1AS)k

k!
=

∞∑
n=0

S−1AkS

k!
= S−1(expA)S,

so if we can find S such that (S−1AS)k is easy to compute, we can use this to
compute expA. When S−1AS = D is diagonal, it is easy to compute Dk and show

(4.1) exp

⎛
⎜⎜⎝

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ed1 0 · · · 0
0 ed2 · · · 0
...

...
. . .

...
0 0 · · · edn

⎞
⎟⎟⎠ .

51



52 4. The Jordan and Weyr Canonical Forms

We then find expA from expA = exp(SDS−1) = S(expD)S−1. If A is not di-
agonable, we would like a canonical form which is close to being diagonal and for
which calculations like the one above are easily done.

The Jordan canonical form is probably the best known of various canonical
forms for matrices under similarity and is valid whenever the field F contains the
eigenvalues of the matrix. In this form, the eigenvalues of the matrix appear on
the main diagonal, the entries on the super-diagonal (i.e., the diagonal line directly
above the main diagonal) are either zeroes or ones, and all other entries of the
matrix are zero. Thus, it is close to being diagonal. Furthermore, it has a block
diagonal structure which dictates the positions of the super-diagonal ones and re-
flects important information about the matrix. Here is an example of a matrix in
Jordan form.

(4.2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 1 0
0 7 1
0 0 7

7 1
0 7

8 1 0 0
0 8 1 0
0 0 8 1
0 0 0 8

10
−4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This example has two diagonal blocks (of sizes 3 × 3 and 2 × 2) belonging to
eigenvalue 7, one 4 × 4 block belonging to eigenvalue 8, and 1 × 1 blocks for the
eigenvalues 10 and −4.

There are various approaches to the Jordan canonical form. In abstract algebra,
it comes as an application of the classification theorem for finitely generated mod-
ules over principal ideal domains; see [Rot88, Art11]. Another classical approach
is via the equivalence theory of matrices over polynomial rings, using elementary
divisors and invariant factors, as done, for example, in [Gan59, Mal63, HK71].
There are several ways to obtain the Jordan form using only techniques from linear
algebra, as is done in [Hal87, HJ85] and other texts. For a more combinatorial
approach, see Brualdi’s article [Bru87]. Our approach here is based on three key
steps: a theorem of Sylvester, the Schur triangularization theorem, and a final step
presented by Halmos in his 1993 lecture in Pensacola, Florida. (In that lecture,
Halmos said he had never been quite satisfied with the proof in his book [Hal87].)
Except for the last part, much of the development here is similar to that in Horn
and Johnson [HJ85].

We begin with a theorem of Sylvester, of significant interest in its own right.
This theorem enables us to use matrix methods to reach a block diagonal form,
where each diagonal block corresponds to an eigenvalue of the transformation. The
more standard way to achieve this is by decomposing the vector space into a direct
sum of generalized eigenspaces. In a sense, we are using the Sylvester theorem to
bypass that algebraic argument. Of course, one could argue that the decomposition
into generalized eigenspaces is essential to understanding the structure of the linear
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transformation, and thus should be approached directly; the reader may find that
method elsewhere, for example in [HK71].

4.1. A Theorem of Sylvester and Reduction to Block Diagonal Form

Let A be an m×m matrix, and let B be an n×n matrix. Let C be m×n. Consider
the matrix equation

(4.3) AX −XB = C,

where the unknown matrix X is m×n. Considered entry by entry, this is a system
of mn linear equations in the mn unknowns xij . Sylvester’s theorem is about
whether, for a given pair of matrices A,B, equation (4.3) has a solution for any
right-hand side C. We state two equivalent versions; the equivalence of these two
forms of the theorem follows from basic results about systems of linear equations
(specifically, the fact that for a square matrix M , the system Mx = b is consistent
for every vector b if and only if the homogeneous system Mx = 0 has no nontrivial
solutions.)

Theorem 4.1 (Sylvester [Syl84]). Let A be m×m, and let B be n×n. The matrix
equation AX −XB = 0 has nontrivial solutions if and only if spec(A)∩ spec(B) is
nonempty.

Theorem 4.2. Let A be m × m, and let B be n × n. Then the matrix equation
AX − XB = C is consistent for every choice of m × n matrix C if and only if
spec(A) ∩ spec(B) is empty.

We will obtain Sylvester’s theorem as a consequence of Theorem 4.3 below.
First, note that if V = M(m,n) is the mn-dimensional space of m × n matrices,
we can define a linear transformation on V by

(4.4) TA,B(X) = AX −XB

for any matrix X ∈ M(m,n). Suppose α ∈ spec(A) and β ∈ spec(B). Let y be
an eigenvector of A associated with α; thus, Ay = αy. Note that y is a nonzero
column vector with m coordinates. Let zT be a left eigenvector of B associated
with β; i.e., zT is a nonzero row vector with n coordinates such that zTB = βzT .
Put X = yzT ; note that X is m× n. Then

(4.5) TA,B(X) = AyzT − yzTB = αyzT − βyzT = (α− β)X.

So the m × n nonzero matrix X = yzT is an eigenvector of TA,B with associated
eigenvalue α− β. We claim that all of the eigenvalues of TA,B are obtained in this
way.

Theorem 4.3. Let A be m ×m, and let B be n × n with eigen(A) = α1, . . . , αm

and eigen(B) = β1, . . . , βn. Then the eigenvalues of the map TA,B, defined by
TA,B(X) = AX − XB for X ∈ M(m,n), are the mn numbers αi − βj, where
i = 1, . . . ,m and j = 1, . . . , n and repeated values are to be listed according to
multiplicities.

Remark 4.4. As an example of how to treat repeated eigenvalues, suppose A is
2 × 2 with eigen(A) = 5, 6 and B is 3 × 3 with eigen(B) = 2, 2, 3. Then we would
have eigen(TA,B) = 5− 2, 5− 2, 5− 3, 6− 2, 6− 2, 6− 3, or 3, 3, 2, 4, 4, 3.
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Proof. First, assume the m eigenvalues of A are distinct and the n eigenvalues of
B are distinct. Let y1, . . . ,ym be a basis of eigenvectors for A and zT1 , . . . , z

T
n be a

basis of left eigenvectors for B. So Ayi = αiyi for i = 1, . . . ,m and zTj B = βjz
T
j

for j = 1, . . . , n. From equation (4.5), we have TA,B(yiz
T
j ) = (αi − βj)yiz

T
j . Now,

the mn matrices yiz
T
j correspond to the mn vectors yi ⊗ zj . Since {y1, . . . ,ym}

and {zT1 , . . . , zTn} are each linearly independent sets, the set

{yi ⊗ zj | i = 1, . . . ,m; j = 1, . . . , n}
is linearly independent, and hence forms a basis of eigenvectors for the map TA,B .

We can now use a continuity argument to deal with repeated eigenvalues. Let
{Ap}∞p=1 be a sequence of matrices with distinct eigenvalues which converges to A,
and let {Bp}∞p=1 be a sequence of matrices with distinct eigenvalues which converges
to B. Then {TAp,Bp

}∞p=1 converges to TA,B , and the result follows from the fact
that the eigenvalues of a matrix are continuous functions of the matrix entries. �

As a consequence of Theorem 4.3, the map TA,B is nonsingular if and only if
spec(A) ∩ spec(B) is empty, giving Theorem 4.2.

Those who prefer to deal with the case of repeated eigenvalues with an algebraic
argument may prefer the following approach. We can rearrange the entries of X
into a column vector of length mn by stacking the columns of X, starting with the
first column on top, then placing column two below it, and so on. We denote this
column vector formed from X as Xstack. For example if

X =

⎛
⎝ 1 4

2 5
3 6

⎞
⎠ ,

then

Xstack =

⎛
⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎠ .

For a p× q matrix R and an m× n matrix S, we have the tensor product

R⊗ S =

⎛
⎜⎜⎝

Rs11 Rs12 · · · Rs1n
Rs21 Rs22 · · · Rs2n
...

...
. . .

...
Rsm1 Rsm2 · · · Rsmn

⎞
⎟⎟⎠ .

We then have (AX)
stack

= (A⊗ In)X
stack and (XB)

stack
= (Im ⊗BT )Xstack. We

leave the verification of these formulas to to the reader—reluctance to write out
the details is one reason we did the proof with the continuity argument. The first

equation, (AX)
stack

= (A⊗ In)X
stack is easy to check if you simply work with the

columns of X. The second one is a bit messier to deal with, but persevere and keep
your rows and columns straight, and it will work out.

Combining these equations gives

(4.6) (AX −XB)stack = (A⊗ In − Im ⊗BT )Xstack.
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This shows that the matrix for the linear transformation TA,B , considered as acting
on the column vectors, Xstack, is A⊗ In − Im ⊗ BT . By Schur’s triangularization
theorem, there are nonsingular matrices, P and Q, of sizes m×m and n×n, respec-
tively, such that P−1AP = triang(α1, . . . , αm) and Q−1BTQ = triang(β1, . . . , βn)
are upper triangular. Then,

(P ⊗Q)−1(A⊗ In − Im ⊗BT )(P ⊗Q) = P−1AP ⊗ In − Im ⊗Q−1BTQ.

Now P−1AP ⊗ In is block diagonal; each of the n diagonal blocks is a copy of
the triangular matrix P−1AP . From the tensor product formula, and the fact
that Q−1BTQ is triangular, we see Im ⊗ Q−1BTQ is triangular, and the main
diagonal consists of the scalar matrices β1Im, β2Im, . . . , βnIm in that order. So
P−1AP ⊗ In − Im ⊗ Q−1BTQ is upper triangular and the diagonal entries are
exactly the mn numbers αi − βj , where i = 1, . . . ,m and j = 1, . . . , n.

We need the following corollary of Theorem 4.2.

Corollary 4.5. Let A be k× k, let B be r× r, and assume spec(A)∩ spec(B) = ∅.
Then for any k×r matrix C, the block triangular matrix M =

(
A C
0 B

)
is similar

to the block diagonal matrix A⊕B =

(
A 0
0 B

)
.

Proof. Since spec(A) ∩ spec(B) = ∅, Sylvester’s theorem guarantees the existence

of a k × r matrix X such that AX − XB = −C. Put S =

(
Ik X
0 Ir

)
. Then

S−1 =

(
Ik −X
0 Ir

)
and

S−1MS =

(
Ik −X
0 Ir

)(
A C
0 B

)(
Ik X
0 Ir

)

=

(
A C −XB
0 B

)(
Ik X
0 Ir

)
=

(
A 0
0 B

)
. �

One can extend Corollary 4.5 to apply to any number of blocks by using an
induction argument. Thus, if

A =

⎛
⎜⎜⎝

A11 A12 · · · A1t

0 A22 · · · A2t
...

...
. . .

...
0 0 · · · Att

⎞
⎟⎟⎠,

and spec(Aii) ∩ spec(Ajj) = ∅ whenever i 	= j, then A is similar to the block
diagonal matrix A11 ⊕A22 ⊕ · · · ⊕Att .

Now consider an n × n matrix A over an algebraically closed field F, with
spec(A) = {λ1, . . . , λt}, where eigenvalue λi has multiplicity mi. From Theo-
rem 3.13, we know A is similar to a triangular matrix in which the eigenvalues
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appear in the order λ1, . . . , λ1, λ2, . . . , λ2, . . . , λt, . . . , λt. We then have

(4.7) S−1AS =

⎛
⎜⎜⎝

A11 A12 · · · A1t

0 A22 · · · A2t
...

...
. . .

...
0 0 · · · Att

⎞
⎟⎟⎠ ,

where each block Aij is mi×mj , and the diagonal block Aii is triangular of size mi

with λi along the main diagonal. Using Corollary 4.5 and abbreviating Aii as Ai,
we see that A is similar to the block diagonal matrix A1 ⊕ A2 ⊕ · · · ⊕ At. The
next step is to find a canonical form for a typical block Ai, i.e., for a matrix which
has a single eigenvalue. This takes some work. Note that if there are no repeated
eigenvalues, then t = n and the block diagonal matrix A1 ⊕A2 ⊕ · · · ⊕At is just an
ordinary diagonal matrix. All of the fuss in the next two sections is to deal with
repeated eigenvalues.

Sylvester’s theorem is also useful for simultaneously reducing a commuting pair
of matrices to triangular or block form.

Theorem 4.6. Suppose A,B are a pair of n× n matrices which commute and

(4.8) A =

⎛
⎜⎜⎝

A11 A12 · · · A1t

0 A22 · · · A2t
...

...
. . .

...
0 0 · · · Att

⎞
⎟⎟⎠ ,

where for i 	= j, we have spec(Ai) ∩ spec(Aj) = ∅. Then B must have the form

B =

⎛
⎜⎜⎝

B11 B12 · · · B1t

0 B22 · · · B2t
...

...
. . .

...
0 0 · · · Btt

⎞
⎟⎟⎠ ,

where Aii and Bii have the same size for each i = 1, . . . , t.

Proof. We do the proof for the case t = 2, and leave it as an exercise to the reader
to do the induction argument to extend to the general case. So, suppose we have

A =

(
A1 A12

0 A2

)
. Partition B conformally with A, and write B =

(
X Y
Z W

)
.

Then the (2, 1) block of AB is A2Z and the (2, 1) block of BA is ZA1. Since
AB = BA, we must have A2Z = ZA1. Since spec(A1) ∩ spec(A2) = ∅, Sylvester’s
theorem tells us Z = 0. �

Consequently, if AB = BA, and S is a similarity such that S−1AS has the
form (4.8), with spec(Ai) ∩ spec(Aj) = ∅ when i 	= j, then S−1BS must also be
in a conformal block triangular form. When the diagonal blocks, Aii, are all scalar
blocks, we can apply a further block diagonal similarity R = R1 ⊕R2 ⊕ · · · ⊕Rt to
both A and B so that each diagonal block of B is put in triangular form; observe
that R will preserve the scalar diagonal blocks of A.
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4.5. Weyr Normal Form

The Segre characteristic lists the sizes of the diagonal blocks in the Jordan normal
form of a matrix. We showed these block sizes are uniquely determined by the
matrix by using the Weyr characteristic, which comes from the dimensions of null
spaces of powers of a nilpotent matrix. For a nilpotent matrix, the Segre charac-
teristic is the conjugate partition of the Weyr characteristic. An alternative normal
form, due to Weyr, has block sizes given directly by the Weyr characteristic. One
could well argue that the Weyr form is more natural, as it comes directly from the
dimensions of the null spaces of the powers.

Let A be an n× n nilpotent matrix of index p, and let ω1, . . . , ωp be the Weyr
characteristic of A. So ω1(A) = ν(A) and ωk(A) = ν(Ak) − ν(Ak−1) for k ≥ 2.
Note that

p∑
i=1

ωi =

p∑
i=1

(ν(Ai)− ν(Ai−1)) = ν(Ap) = n.

We will show below that ω1 ≥ ω2 ≥ · · · ≥ ωp. For now, we assume this is true,
so as to describe the Weyr normal form of A. For r ≥ s, let Ir,s denote the r × s
matrix which has Is in the first s rows, and zeroes in the remaining r − s rows.
Let W be the n × n matrix, partitioned into blocks of sizes ωi × ωj , in which
all blocks are zero except the blocks directly above the diagonal blocks, and the
ωk ×ωk+1 block directly above the (k+1)-st diagonal block is the matrix Iωk,ωk+1

.
Note the diagonal blocks are zero blocks of sizes ωi × ωi. Direct calculation shows
ν(W ) = ω1, ν(W

2) = ω1+ω2, and in general, ν(W k) = ω1+ω2+ω3+ · · ·+ωk, for
k = 1, . . . , p. So the matrix W has the same Weyr characteristic as A, and hence
the nilpotent matrices W and A must have the same Segre characteristic and thus
the same Jordan form. Therefore, A and W are similar. We define W to be the
Weyr normal form of the nilpotent matrix A. Note that the numbers of the Weyr
characteristic give the sizes of the diagonal blocks of W (which are blocks of zeros).

Example 4.29. Suppose N = Jn(0). Then for k = 1, . . . , n, we have ν(Nk) = k
and so ωk = 1 for each k. So Jn(0) is already in Weyr canonical form.

Example 4.30. Suppose N = J3(0)⊕ J2(0). We have ν(N) = 2, ν(N2) = 4, and
ν(N3) = 5. The Weyr characteristic is ω1 = 2, ω1 = 2, and ω3 = 1. The Weyr
canonical form of N is ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 | 1 0 | 0
0 0

∣∣ 0 1
∣∣ 0

0 0
∣∣ 0 0

∣∣ 1
0 0

∣∣ 0 0
∣∣ 0

0 0
∣∣ 0 0

∣∣ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Example 4.31. Suppose N = J2(0) ⊕ J2(0) ⊕ J1(0). Then N2 = 0; we have
ν(N) = 3 and ν(N2) = 5. The Weyr characteristic is ω1 = 3 and ω2 = 2. The
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Weyr canonical form is ⎛
⎜⎜⎜⎜⎜⎝

0 0 0
∣∣ 1 0

0 0 0
∣∣ 0 1

0 0 0
∣∣ 0 0

0 0 0
∣∣ 0 0

0 0 0
∣∣ 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

One can then obtain a Weyr normal form for a general matrix A, with eigen-
values λ1, . . . , λt of multiplicities m1, . . . ,mt. As we did for the Jordan form, A
is similar to A1 ⊕ A2 ⊕ · · · ⊕ At, where Ai is mi × mi, and spec(Ai) = {λi}. So
Ni = Ai − λiI is nilpotent and has a Weyr normal form, Wi, as described above.
The Weyr normal form of Ai is then λiI + Wi, and the Weyr form of A is the
direct sum of the blocks λiI+Wi. In the Weyr form, the diagonal blocks are scalar
matrices, and the ones appear in the super-diagonal blocks.

It remains to show that ωk ≥ ωk+1 for 1 ≤ k ≤ p − 1. Let T : V → V be a
nilpotent linear transformation of index p on an n-dimensional vector space V . For
any positive integer k, the null space of T k is contained in the null space of T k+1.
Moreover, for k = 1, . . . , p, these null spaces form a strictly increasing sequence.
That is, using “⊂” to mean “strict subset of”, we have

(4.16) ker(T ) ⊂ ker(T 2) ⊂ ker(T 3) ⊂ · · · ⊂ ker(T p−1) ⊂ ker(T p) = V .
This follows from the following fact.

Lemma 4.32. Let T be a nilpotent linear transformation on a vector space V. If for
some positive integer k, we have ker(T k) = ker(T k+1), then ker(T k) = ker(T k+r)
for every positive integer r.

Proof. Suppose ker(T k) = ker(T k+1). Let v ∈ ker(T k+2). Then T k+2v = 0. But
T k+2v = T k+1(Tv), so Tv ∈ ker(T k+1). Hence Tv ∈ ker(T k) and so T k+1v = 0.
So ker(T k+2) ⊆ ker(T k+1). Since ker(T k+1) ⊆ ker(T k+2), we have ker(T k+2) =
ker(T k+1). Repeating the argument r times (or, more formally, doing an induction
argument) gives the result. �

Getting back to the Weyr characteristic, ω1, . . . , ωp, we have

dim(ker(T k)) = dim(ker(T k−1)) + ωk,

for k = 1, . . . , p We want to show ωk ≥ ωk+1 for each k ≤ p− 1. Before doing the
proof for general k, we illustrate the key idea of the argument with the case k = 1.
Let {x1, . . . ,xω1

} be a basis for ker(T ). Since the dimension of ker(T 2) is ω1 + ω2,
and ker(T ) ⊂ ker(T 2), we can choose ω2 linearly independent vectors y1, . . . ,yω2

in ker(T 2) such that

B = {x1, . . . ,xω1
} ∪ {y1, . . . ,yω2

}
is a basis for ker(T 2). Note the vectors y1, . . . ,yω2

are not in ker(T ). Hence,
the ω2 vectors T (y1), . . . , T (yω2

) are ω2 nonzero vectors in ker(T ); we now show
they are linearly independent. Since ω1 is the dimension of ker(T ), this will prove

ω1 ≥ ω2. Suppose then that
ω2∑
i=1

ciT (yi) = 0. Then
ω2∑
i=1

ciyi is in ker(T ), and so
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ω2∑
i=1

ciyi =
ω1∑
j=1

bjxj . But then, since B is linearly independent, all of the coefficients

must be zero. Hence, the vectors T (y1), . . . , T (yω2
) are linearly independent.

For k > 1, we use a similar argument, but work in the quotient spaces
ker(T k)/ker(T k−1) and ker(T k+1)/ker(T k). For a proof which does not use quotient
spaces, see [Sha99].

For the remainder of this section, we use Uk to denote ker(T k). Rewriting (4.16)
in this notation,

(4.17) U1 ⊂ U2 ⊂ U3 ⊂ · · · ⊂ Up−1 ⊂ Up = V .

The next result and its proof set the foundation for the rest of this section.

Theorem 4.33. Let T : V → V be a nilpotent linear transformation of index p on
an n-dimensional vector space V; let ω1, . . . , ωp be the Weyr characteristic of T .
Then ωk ≥ ωk+1 for k = 1, . . . , p− 1.

Proof. Let Uk denote the null space of T k. The space U0 is the zero space and
Up = V . For any 1 ≤ k ≤ p− 1, we have Uk−1 ⊂ Uk ⊂ Uk+1. The dimension of the
quotient space Uk/Uk−1 is ωk, and the dimension of the quotient space Uk+1/Uk

is ωk+1.

Choose ωk+1 vectors y1, . . . ,yωk+1
in Uk+1 such that the cosets{

yi + Uk

∣∣∣ 1 ≤ i ≤ ωk+1

}
are a basis for the quotient space Uk+1/Uk. Note that for each i, the vector yi is in
Uk+1 but not in Uk. Consequently, T (yi) is in Uk, but not in Uk−1. We claim that
the ωk+1 cosets

T (yi) + Uk−1, 1 ≤ i ≤ ωk+1,

are linearly independent in the quotient space Uk/Uk−1. For, suppose the sum
ωk+1∑
i=1

ai
(
T (yi) + Uk−1

)

is the zero vector in the quotient space Uk/Uk−1. Then T
(ωk+1∑

i=1

aiyi

)
is in Uk−1

and so T k
(ωk+1∑

i=1

aiyi

)
= 0. But then

ωk+1∑
i=1

aiyi ∈ Uk, which means that the linear

combination
ωk+1∑
i=1

ai
(
yi + Uk

)
is the zero vector in the quotient space Uk+1/Uk.

Since the cosets yi + Uk, for 1 ≤ i ≤ ωk+1, are linearly independent, we have

ai = 0 for all i, and thus
{
T (yi) + Uk−1

∣∣∣ 1 ≤ i ≤ ωk+1

}
is linearly independent in

the quotient space Uk/Uk−1. Since ωk is the dimension of Uk/Uk−1, we must have
ωk ≥ ωk+1. �

Our assertion that two n×n nilpotent matrices are similar if they have the same
Weyr characteristic was based on the fact that the Weyr characteristic determines
the Jordan canonical form. We now see how to show this directly with the Weyr
theory, without invoking Jordan canonical form. First, some preliminaries.
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Definition 4.34. We say a matrix has full column rank if it has linearly indepen-
dent columns.

Note that a matrix B has full column rank if and only if the only solution to
Bx = 0 is x = 0.

Lemma 4.35. If B and C are matrices of full column rank of sizes r×s and s× t,
respectively, then BC has full column rank.

Proof. Suppose (BC)x = 0. Then B(Cx) = 0. Since B has full column rank, this
gives Cx = 0. But C also has full column rank, so x = 0. Hence, the columns of
BC are linearly independent. �

Lemma 4.36. Suppose m1 ≥ m2 ≥ · · · ≥ mp. Suppose A is a block triangular
matrix, with block (i, j) of size mi × mj, where the diagonal blocks of A are all
blocks of zeroes, and each super-diagonal block Ak,(k+1) has full column rank. Thus,
A has the form

(4.18) A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0m1
A12 A13 A14 · · · A1p

0 0m2
A23 A24 · · · A2p

0 0 0m3
A34 · · · A3p

...
...

...
. . .

. . .
...

0 0 0 · · · 0mp−1
A(p−1),p

0 0 0 0 · · · 0mp

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the mk ×mk+1 block Ak,(k+1) has full column rank. Then m1, . . . ,mp is the
Weyr characteristic of A.

Proof. Since each block Ak,(k+1) has rank mk+1, the last n−m1 columns of A are

linearly independent, and dim(ker(A)) = m1. Squaring A, we see that A2 has blocks
of zeroes in both the diagonal and super-diagonal blocks, while the next diagonal
line (i.e., the diagonal line above the super-diagonal) contains the products

A12A23, A23A34, A34A45, . . . , A(p−2),(p−1)A(p−1),p.

From Lemma 4.35, each of these products has full column rank, and hence the
dimension of ker(A2) is m1 + m2. With each successive power of A, we get an
additional diagonal line of zero blocks. In Ak, each block in the first diagonal line
of nonzero blocks is a product of k consecutive Ai,(i+1) blocks, hence has linearly

independent columns. So the dimension of the null space of Ak ism1+m2+· · ·+mk

and m1, . . . ,mp is the Weyr characteristic of A. �

Now we show that any nilpotent linear transformation on a finite-dimensional
vector space has a matrix representation of the form (4.18). We again use quotient
spaces for this argument, but the result can be obtained in other ways [Sha99].

Theorem 4.37. Suppose T : V → V is a nilpotent linear transformation on an n-
dimensional vector space V. Let ω1, . . . , ωp be the Weyr characteristic of T . Then
there is a basis B for V such that [T ]B has the block triangular form of (4.18) with
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mk = ωk. That is,

(4.19) A = [T ]B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0ω1
A12 A13 A14 · · · A1p

0 0ω2
A23 A24 · · · A2p

0 0 0ω3
A34 · · · A3p

...
...

...
. . .

. . .
...

0 0 0 · · · 0ωp−1
A(p−1),p

0 0 0 0 · · · 0ωp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the ωk × ωk+1 block Ak,(k+1) has full column rank.

Proof. We use the method in the proof of Theorem 4.33 to construct B. For each
k = 0, . . . , (p− 1), choose ωk+1 vectors b(k+1),1, . . . ,b(k+1),ωk+1

in Uk+1 \ Uk such
that {b(k+1),i + Uk |1 ≤ i ≤ ωk+1} is a basis for the quotient space Uk+1/Uk. Set

Bk+1 = {b(k+1),1, . . .b(k+1),ωk+1
}. Then B =

p⋃
k=1

Bk is a basis for V .

Let A = [T ]B. For each k, the transformation T maps the vectors of Bk into
the space Uk−1, so, for each i, the vector T (bk,i) is a linear combination of vectors

in
k−1⋃
j=1

Bj . Consequently, A is block triangular with blocks of sizes ωi ×ωj , and the

diagonal blocks are zero. From the proof of Theorem 4.33, we know that{
T (b(k+1),i) + Uk−1

∣∣ i = 1, . . . , ωk+1

}
is linearly independent in the quotient space Uk/Uk−1, so each super-diagonal block
Ak,(k+1) has full column rank. �

The quotient space and coset notation in this argument may be obscuring the
essential idea, so let us describe it in a simpler way. The set B1 is a basis for ker(T )
and has ω1 vectors in it. The set B2 has ω2 vectors and is chosen so that B1 ∪ B2

is a basis for ker(T 2). Thus, we start with a basis for the null space of T , and then
extend it to get a basis for the null space of T 2. Then we adjoin the ω3 vectors of
B3 to get a basis for the null space of T 3, and so on. In general, at stage k, we have

a basis
k⋃

i=1

Bi for the null space of T k, and adjoin ωk+1 additional vectors to get a

basis for the null space of T k+1; the set Bk+1 is the set of these k + 1 additional
vectors. We used the quotient space language as a convenient tool to prove that
the blocks Ak,(k+1) have full column rank.

We now examine two particular ways of choosing the sets Bk. One yields
an orthonormal basis, B. The other will yield a basis such that [T ]B is in Weyr
canonical form.

Theorem 4.38. Let T : V → V be a nilpotent linear transformation on an
n-dimensional inner product space V. Let ω1, . . . , ωp be the Weyr characteristic
of T . Then there is an orthonormal basis B for V such that [T ]B has the block
triangular form of (4.19).

Proof. Select the set B1 so that it is an orthonormal basis for U1 = ker(T ). Since
U1 is an ω1-dimensional subspace of the (ω1 + ω2)-dimensional subspace U2, the
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subspace U⊥
1 ∩ U2 is an ω2-dimensional subspace of U2. Choose B2 to be an

orthonormal basis for U⊥
1 ∩ U2; then B1 ∪ B2 is an orthonormal basis for U2.

In general, Uk−1 is an (ω1 + ω2 + · · · + ωk−1)-dimensional subspace of the
subspace Uk, so U⊥

k−1∩ Uk is an ωk-dimensional subspace of Uk; choose Bk to be an

orthonormal basis for U⊥
k−1 ∩ Uk. Now, for i < k, we have Ui ⊂ Uk, so U⊥

k ⊂ U⊥
i .

Hence, the fact that Bk ⊆ U⊥
k−1 tells us that vectors of Bk are orthogonal to the

vectors in Bi whenever i < k. Hence, B =
p⋃

i=1

Bk is an orthonormal basis for V . �

Theorem 4.38 is important for numerical computation where stability issues are
important. It is desirable to work with unitary similarity and stick with orthonor-
mal change of basis. See [Sha99] for references.

Finally, to show any nilpotent matrix is similar to one in Weyr normal form, we
need to show that there is a basis B such that the block triangular matrix of (4.19)
has Ak,(k+1) = Iωk,ωk+1

, with all the other blocks being zero. This will involve
starting with the set Bp and working backwards. Before plunging into the morass
of notation for the general case, let us see the argument for the case p = 2. Let
B2 = {y1, . . . ,yω2

} be a linearly independent set of ω2 vectors from U2 \ U1. Then,
as seen in the proof of Theorem 4.33, the vectors T (y1), T (y2), . . . , T (yω2

) are
linearly independent and are in U1. We extend the set {T (y1), T (y2), . . . , T (yω2

)}
to a basis for U1 by adjoining m = ω1 − ω2 additional vectors v1, . . . ,vm from U1.
(If m = 0, we do not need to adjoin any vectors.) We now have the following basis
B for V :

B = {T (y1), T (y2), . . . , T (yω2
), v1, . . . ,vm, y1, . . . ,yω2

}.

Remember that ω2 + m = ω1. Since T (T (yi)) = T 2(yi) = 0 and T (vi) = 0, we
see T maps the first ω1 vectors in this set to zero. (These first ω1 vectors are a
basis for U1.) And clearly, T maps the last ω2 vectors of this basis onto the first ω2

vectors, retaining the order. Hence,

[T ]B =

(
0ω1

Iω1,ω2

0 0ω2

)
.

This is the basic idea of the proof for the general case, but we need to repeat the
procedure p − 1 times, working backwards from Up to U1. Try to keep this main
idea in mind as the notation escalates.

Theorem 4.39. Let T : V → V be a nilpotent linear transformation on an
n-dimensional vector space V. Let ω1, . . . , ωp be the Weyr characteristic of T .
Then there is a basis, B, for V such that [T ]B is block triangular with blocks of sizes
ωi × ωj, with Ak,(k+1) = Iωk,ωk+1

and all other blocks are zero. Thus,

(4.20) A = [T ]B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0ω1
Iω1,ω2

0 0 · · · 0
0 0ω2

Iω2,ω3
0 · · · 0

0 0 0ω3
Iω3,ω4

· · · 0
...

...
...

. . .
. . .

...
0 0 0 · · · 0ωp−1

Iωp−1,ωp

0 0 0 0 · · · 0ωp

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Proof. First we set up some notation. If S is a set of vectors, write T (S) for
{T (x) | x ∈ S}. For a set of vectors, S = {y1, . . . ,ym} in Uk+1, we write

S = {yi + Uk | 1 ≤ i ≤ m}

for the corresponding cosets of Uk+1/Uk.

Let Bp be a set of ωp vectors in Up\Up−1 such that Bp is a basis for the quotient
space Up/Up−1. Then T (Bp) ⊆ Up−1, and from the proof of Theorem 4.33, we know

T (Bp) is linearly independent in the quotient space Up−1/Up−2. Hence, we can

extend T (Bp) to a basis for Up−1/Up−2 by adjoining mp = ω(p−1) − ωp additional
cosets from vectors in Up−1 \ Up−2. Label these additional vectors v1, . . . ,vmp

and
set

Bp−1 = T (Bp) ∪ {v1, . . . ,vmp
}.

Then Bp−1 is a basis for Up−1/Up−2.

Repeating the process, we have T (Bp−1) ⊆ Up−2 and T (Bp−1) is linearly inde-
pendent in the quotient space Up−2/Up−3. We adjoin mp−1 = ωp−2 − ωp−1 cosets
from vectors w1, . . . ,wmp−1

in Up−2 \ Up−3 and get

Bp−2 = T (Bp−1) ∪ {w1, . . . ,wmp−1
},

where Bp−2 is a basis for Up−2/Up−3.

So far, we have

Bp−2 ∪ Bp−1 ∪ Bp = {T (Bp−1), w1, . . . ,wmp−1
, T (Bp), v1, . . . ,vmp

,Bp}.

Continue in this fashion. For each k, with Bk a basis for Uk/Uk−1, the set T (Bk)
is linearly independent in the quotient space Uk−1/Uk−2 and thus can be extended
to a basis for Uk−1/Uk−2 by adjoining cosets from mk = ω(k−1) − ωk vectors from
Uk−1 \ Uk−2.

Here is the key point: for k ≥ 2, the transformation T sends the ωk vectors of
Bk to the first ωk vectors of Bk−1. The ω1 vectors of B1 are sent to zero. Hence, if

we use the basis B =
p⋃

i=1

Bi, the matrix [T ]B has the desired form. �

As a consequence of Theorem 4.39, we have now shown, directly from the
Weyr characteristic, that two nilpotent matrices are similar if and only if they
have the same Weyr characteristic. Note also that if we re-order the vectors of
the basis B, constructed in the proof of Theorem 4.39, we can recover the Jordan
canonical form. Specifically, for each of the ωp vectors x in Bp, the p vectors,
T p−1x, T p−2x, . . . , Tx,x, are in the basis B. The matrix representing the action of
T on these p vectors is the Jordan block Jp(0). If mp > 0, then for each of the mp =
ωp−1 − ωp vectors vi, we have a chain of p− 1 vectors, T p−2v, T p−3v, . . . , Tv, v
such that the action of T on these p− 1 vectors is represented by the Jordan block
Jp−1(0). Hence by re-ordering the vectors of B, starting with the chains generated
by vectors in Bp, then the chains generated by the vectors in Bp−1 \ T (Bp), next
the chains generated by the vectors in Bp−2 \ T (Bp−1), and so on, we get a matrix
representation for T which is in Jordan canonical form. Note that ωp gives the
number of Jordan blocks of size p, and then mp = ωp−1 − ωp gives the number of



Chapter 8

Some Matrix Factorizations

This chapter concerns some matrix factorizations. The singular value decomposi-
tion (SVD) was introduced in Section 6.8; we now examine the SVD in more detail.
Next, we look at Householder transformations (introduced in Chapter 2, Exercise 18
and Chapter 3, Exercise 10) and use them to achieve the QR factorization, and to
transform matrices to special forms, such as Hessenberg and tridiagonal forms, with
unitary transformations. To give some idea of why these techniques are useful in
computational matrix theory, we briefly describe the basics for a few classic meth-
ods for the numerical computation of eigenvalues. For serious discussion of these
methods with analysis of the error and the efficiency for each algorithm, see one of
the many texts on computational and numerical linear algebra, some classic, and
some more recent, for example [Hou64, Wilk65, LawHan74, GvL89, Stew73,
Parl80, StewSun90, Tref97, Demm97].

The chapter concludes with a brief review of the well-known LDU factorization,
which comes from the Gaussian elimination process.

Except for the section on the LDU factorization, matrices in this section are
over C, unless we specifically say that the matrix is real.

8.1. Singular Value Decomposition

Section 6.8 obtained the singular value decomposition for nonsingular square ma-
trices from the polar factorization. Here we approach the SVD directly for m × n
matrices.

Recall the following fact (Theorem 2.22) from Chapter 2: If A is a complex
matrix, then the four matrices A, A∗, AA∗, and A∗A all have the same rank. Let A
be an m× n matrix of rank r. Then A∗A and AA∗ are both positive semi-definite
matrices of rank r; each has r positive eigenvalues and then n− r and m − r zero
eigenvalues, respectively. Theorem 3.24 tells us that A∗A and AA∗ have the same
nonzero eigenvalues.

121
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Definition 8.1. Let A be an m× n matrix of rank r. Let σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
r be

the positive eigenvalues of A∗A (equivalently, of AA∗). The numbers σ1, . . . , σr are
called the singular values of A.

Remark 8.2. Since the n × n matrix A∗A has n eigenvalues, one may also put
σj = 0 for r + 1 ≤ j ≤ n and define the singular values of A to be σ1, . . . , σn.
Another option is use the m × m matrix AA∗, with the list σ1, . . . , σm, where
σj = 0 for r + 1 ≤ j ≤ m. We use all of these, depending on what is convenient.

Theorem 8.3. Let A be an m× n matrix of rank r; let σ1 ≥ σ2 ≥ · · · ≥ σr be the
singular values of A. Let ΣA be the m × n diagonal matrix with σ1, . . . , σr in the
first r diagonal entries and zeroes elsewhere. Then there exist unitary matrices U
and V , of sizes m×m and n× n, respectively, such that A = UΣAV .

Proof. Note that D = Σ∗
AΣA = ΣT

AΣA is a real n × n diagonal matrix with
σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
r in the first r diagonal entries and zeroes elsewhere. The n× n

matrix A∗A is Hermitian, with r positive eigenvalues σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
r and

(n − r) eigenvalues equal to zero. Hence, from the spectral theorem, there is an
n× n unitary matrix V such that

(8.1) V A∗AV ∗ = D = Σ∗
AΣA.

The ij entry of V A∗AV ∗ is the inner product of columns j and i of AV ∗, so
equation (8.1) tells us the columns of AV ∗ are pairwise orthogonal. Furthermore,
when 1 ≤ j ≤ r the length of column j is σj . For j > r, equation (8.1) tells us the
jth column of AV ∗ is a column of zeroes. For 1 ≤ j ≤ r, divide column j of AV ∗

by its length, σj , and let Ur denote the m× r matrix with 1
σj

(column j of AV ∗) as

its jth column. The r columns of Ur are then an orthonormal set. Now complete
Ur to an m ×m unitary matrix by using an orthonormal basis for the orthogonal
complement of the column space of Ur for the remaining m− r columns. We then
have AV ∗ = UΣA. Multiply both sides on the right by V to obtain A = UΣAV . �
Definition 8.4. Let A be m × n complex matrix of rank r, with singular values
σ1 ≥ σ2 ≥ · · · ≥ σr. A factorization of the form A = UΣAV , where ΣA is the
m × n diagonal matrix with σ1, . . . , σr in the first r diagonal entries and zeroes
elsewhere, and U and V are unitary matrices of sizes m×m and n×n, respectively,
is called a singular value decomposition for A. We write SVD for a singular value
decomposition.

Theorem 8.3 states that any complex matrix has an SVD. Note that while ΣA

is uniquely determined by A, the unitary matrices U, V are not. The equation
AV ∗ = UΣA tells us how the transformation A acts:

A (column j of V ∗) = σj(column j of U).

Thus, using the columns of V ∗ as an orthonormal basis for Cn and the columns of
U as an orthonormal basis for Cm, the effect of the transformation A is to map the
jth basis vector of Cn to a multiple of the jth basis vector of Cm; the multiplier
is the singular value σj . The basis vectors have length one, so the jth basis vector
in Cn is mapped to a vector of length σj in Cm. The largest singular value σ1 is
the largest factor by which the length of a basis vector is multiplied. We now show
that σ1 is the largest factor by which the length of any vector is multiplied.
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Theorem 8.5. Let A be an m×n matrix with singular values σ1 ≥ σ2 ≥ · · · ≥ σr.
Then max

‖x‖=1
‖Ax‖ = σ1.

Proof. We have already seen, from the equation AV ∗ = UΣA, that if x is the first
column of V ∗, then ‖x‖ = 1 and ‖Ax‖ = σ1.

Now suppose x is any vector in Cn of length one. From the singular value
decomposition A = UΣAV , we have Ax = UΣAV x. Set y = V x; since V is
unitary, ‖y‖ = 1. In the product ΣAy, coordinate i of y gets multiplied by σi;
hence ‖ΣAy‖ ≤ σ1‖y‖ = σ1. Since U is unitary,

‖Ax‖ = ‖UΣAV x‖ = ‖UΣAy‖ = ‖ΣAy‖ ≤ σ1. �

Definition 8.6. The spectral norm of an m× n matrix A is max
‖x‖=1

‖Ax‖ = σ1. We

denote the spectral norm of A as ‖A‖2.

The spectral norm is also called the operator norm; in Section 7.2 we saw it
is the norm induced by the 2-norm on Cn. We have ‖Ax‖ ≤ ‖A‖2‖x‖ for all x.
When A is square and v is an eigenvector of A, we have ‖Av‖ = ‖λv‖ = |λ|‖v‖,
so |λ| ≤ ‖A‖2 for any eigenvalue λ of A. Hence, ρ(A) ≤ ‖A‖2 = σ1.

Recall the Frobenius norm ‖A‖F =
(
trace(A∗A)

) 1
2 =
( m∑
i=1

n∑
j=1

|aij |2
) 1

2

. It is

often more convenient to work with ‖A‖2F = trace(A∗A). Since ‖A‖F = ‖UAV ‖F
for any unitary matrices U, V , we have

‖A‖2F = ‖ΣA‖2F = σ2
1 + σ2

2 + · · ·+ σ2
r .

There are other ways to write the factorization A = UΣAV . Since only the
first r diagonal entries of ΣA are nonzero, the last (m − r) columns of U and the

last (n − r) rows of V are superfluous. Let Σ̂A be the r × r diagonal matrix,
diag(σ1, . . . , σr). Replace the n × n unitary matrix V with the r × n matrix Vr

consisting of the first r rows of V ; these rows form an orthonormal set. And
instead of completing the m × r matrix Ur in the proof of Theorem 8.3 to get a
square unitary matrix U , simply use Ur, which has r orthonormal columns. We
then have

(8.2) A = UrΣ̂rVr,

where Ur is m× r with orthonormal columns, Σ̂r is an r × r diagonal matrix with
positive diagonal entries, and Vr is r × n with orthonormal rows. We may also
decompose (8.2) into a sum of r rank one matrices. Let ui denote column i of Ur,
and let vi be column i of V ∗

r . Then row i of Vr is v∗
i , and

(8.3) A =

r∑
i=1

σiuiv
∗
i = σ1u1v

∗
1 + σ2u2v

∗
2 + · · ·+ σrurv

∗
r .

Since σ1 ≥ σ2 ≥ · · · ≥ σr > 0, while all of the vectors ui and vi have the same
length (namely, one), the sum (8.3) shows that the earlier terms in the sum (that
is, the terms corresponding to larger σi’s) make larger contributions to A. This
suggests that to approximate A with a matrix of lower rank (i.e., one with fewer
terms in the sum), one should use the terms corresponding to larger singular values



124 8. Some Matrix Factorizations

and drop terms with smaller singular values. Let 1 ≤ k ≤ r. From A = UΣAV , let
Uk be the m × k matrix consisting of the first k columns of U , and let Vk be the
k × n matrix consisting of the first k rows of V . Set

Ak = Ukdiag(σ1, . . . , σk)Vk =

k∑
i=1

σiuiv
∗
i .

We shall see that of all matrices of rank k, the matrix Ak is the one which is “closest”
to A, where distance is measured by the Frobenius norm. Let Σk denote the m×n
matrix with σ1, . . . , σk in the first k diagonal positions and zeroes elsewhere. Then
Ak = UΣkV and

(8.4) ‖A−Ak‖2F = ‖U(ΣA − Σk)V ‖2F = ‖ΣA − Σk‖2F =

r∑
i=k+1

σ2
i .

The following theorem is usually attributed to Eckart and Young [EcYo36]. Stew-
art [Stew93] points out that the result is older and is contained in [Schm07].

Theorem 8.7 (Schmidt [Schm07]). Let A be an m × n matrix of rank r with

singular value decomposition A = UΣAV =
r∑

i=1

σiuiv
∗
i , where ui is column i of U

and v∗
i is row i of V . For 1 ≤ k ≤ r, set Ak =

k∑
i=1

σiuiv
∗
i . Then for any m × n

matrix B of rank at most k, we have ‖A−Ak‖2F =
r∑

i=k+1

σ2
i ≤ ‖A−B‖2F .

We give two proofs. The first, from [Stew73, pp. 322–323], has the advantage
of being direct and natural. The second proof, based on Schmidt’s argument as
presented in [Stew93], seems sneakier and more complicated, but we feel it has its
own charm.

First proof. Let B be anm×nmatrix of rank at most k, which gives the minimum
value of ‖A−X‖F for all matrices X of rank at most k. At this point, one must ask
how we are guaranteed the existence of such a B, and need to do a bit of analysis.
Define the real-valued function, f , on the space of m × n complex matrices by
f(X) = ‖A−X‖F . The function f is continuous. The set of matrices of rank at
most k is a closed set. Since we seek to minimize ‖A−X‖F , we may restrict our
attention to matrices X satisfying ‖A−X‖F ≤ ‖A‖F . The set

{X
∣∣ rank(X) ≤ k and ‖A−X‖F ≤ ‖A‖F }

is then a closed bounded set in a finite-dimensional normed space; hence, it is
compact and the continuous function f attains its minimum value for some B in
this set. Now let β1 ≥ β2 ≥ · · · ≥ βk ≥ 0 be the singular values of B, and let
UΣBV be the singular value decomposition of B. The Frobenius norm is invariant
under unitary transformations, so we may, without loss of generality, assume

B = ΣB =

(
Dk 0
0 0

)
,
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where Dk = diag(β1, . . . , βk). Partition A conformally with B, thus

A =

(
A11 A12

A21 A22

)
,

where A11 is k × k. Then

‖A−B‖2F = ‖A11 −Dk‖2F + ‖A12‖2F + ‖A21‖2F + ‖A22‖2F .

If A12 	= 0, then B1 =

(
Dk A12

0 0

)
is a matrix of rank at most k with

‖A−B1‖2F = ‖A11 −Dk‖2F + ‖A21‖2F + ‖A22‖2F < ‖A−B‖2F .
So, by the choice of B, we must have A12 = 0. The same argument shows A21 = 0

and Dk = A11. Hence, we have A =

(
Dk 0
0 A22

)
and the numbers β1, . . . , βk are

k of the singular values of A. Also, ‖A−B‖F = ‖A22‖F . Since ‖A22‖2F is the sum
of the squares of the remaining singular values of A, and since k ≤ r, it is clear

that the minimum value possible for ‖A22‖2F is
r∑

i=k+1

σ2
i . To achieve this value we

must have βi = σi for i = 1, . . . , k. �

Now for the second proof, based on the presentation of Schmidt’s argument
in [Stew93]. First, a lemma is needed in the proof, but it is of interest in its own
right.

Lemma 8.8. Let A be an m × n complex matrix of rank r with singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > 0. For k > r, put σk = 0. Suppose {x1, . . . ,xk} is a set of k

orthonormal vectors in Cn. Then
k∑

i=1

‖Axi‖2 ≤
k∑

i=1

σ2
i .

Remark 8.9. For k = 1 this gives Theorem 8.5.

Proof. Let X be the n × k matrix with column vectors x1, . . . ,xk. Since the
columns are orthonormal, X∗X = Ik. We have AX = (Ax1 Ax2 · · · Axk )
and

k∑
i=1

‖Axi‖2 = ‖AX‖2F = trace(X∗A∗AX).

Let A = UΣV be the singular value decomposition of A, where U, V are unitary
matrices of sizes m×m and n×n, respectively, and Σ is the m×n diagonal matrix
with the singular values on the diagonal. Put Vk = V X; the n × k matrix Vk has
orthonormal columns, and AX = UΣVk. Using U∗U = I, we have

X∗A∗AX = V ∗
k Σ

TU∗UΣVk = V ∗
k Σ

TΣVk.

Recall that trace(BC) = trace(CB); apply this with B = V ∗
k Σ

TΣ and C = Vk to
get trace(X∗A∗AX) = trace(VkV

∗
k Σ

TΣ). Let vi denote the ith row of Vk. The (i, i)
entry of VkV

∗
k is then ‖vi‖2 and so

(8.5)
k∑

i=1

‖Axi‖2 = trace(VkV
∗
k Σ

TΣ) =
r∑

i=1

σ2
i ‖vi‖2.
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Now
k∑

i=1

‖vi‖2 = trace(VkV
∗
k ) = trace(V ∗

k Vk) = k, because V ∗
k Vk = Ik. So the

last sum in (8.5) has the form
r∑

i=1

ciσ
2
i , where the coefficents ci = ‖vi‖2 satisfy

0 ≤ ci ≤ 1 and sum to k. Since σ1 ≥ σ2 ≥ · · · ≥ σr, a sum of this form is

maximized by setting ci = 1 for i = 1, . . . , k and thus
r∑

i=1

σ2
i ‖vi‖2 ≤

k∑
i=1

σ2
i . �

Now for the second proof of Theorem 8.7.

Second proof. Since ‖A−Ak‖2F =
r∑

i=k+1

σ2
i , we need to show that for any m× n

matrix B with rank(B) ≤ k, we have
r∑

i=k+1

σ2
i ≤ ‖A−B‖2F . Since rank(B) ≤ k,

we can factor B as B = XY ∗, where X is m × k and Y is k × n. Furthermore,
this can be done with an X which has orthonormal columns. (One way to get this
is from the SVD of B. We have B = UkΣVk where Uk is m× k with orthonormal
columns and Vk is k × n with orthonormal rows, and Σ is diagonal. We can then
put X = Uk and Y ∗ = ΣVk.)

Since X has orthonormal columns, X∗X = Ik and

(A−B)∗(A−B) = A∗A−A∗B −B∗A+B∗B

= A∗A−A∗XY ∗ − Y X∗A+ Y X∗XY ∗(8.6)

= A∗A−A∗XY ∗ − Y X∗A+ Y Y ∗.

Now the key trick:

(Y −A∗X)(Y −A∗X)∗ = Y Y ∗ −A∗XY ∗ − Y X∗A+A∗XX∗A.

Hence,

(8.7) −A∗XY ∗ − Y X∗A = (Y −A∗X)(Y −A∗X)∗ − Y Y ∗ −A∗XX∗A.

Substitute (8.7) in (8.6) to get

(8.8) (A−B)∗(A−B) = A∗A+ (Y −A∗X)(Y −A∗X)∗ −A∗XX∗A.

Since trace(Y − A∗X)(Y − A∗X)∗ ≥ 0 and trace(A∗XX∗A) = trace(X∗AA∗X),
we have

‖A−B‖2F ≥ trace(A∗A)− trace(X∗AA∗X).

Let xi denote column i of X; then the (i, i) entry of X∗AA∗X is ‖A∗xi‖2. Since

x1, . . . ,xk are orthonormal, Lemma 8.8 tells us trace(X∗AA∗X) ≤
k∑

i=1

σ2
i , and so

‖A−B‖2F ≥ trace(A∗A)−
k∑

i=1

σ2
i =

r∑
i=k+1

σ2
i . �

Theorem 8.7 is for the Frobenius norm. Mirsky [Mirs60] showed that the
result holds for any unitarily invariant norm. See also [StewSun90, Chapter IV].

In Section 6.8, we got the singular value decomposition for nonsingular square
matrices by starting with the square root of a positive definite Hermitian matrix and
then using the polar decomposition of a square matrix. We now reverse the process.
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Suppose A is a square n×n matrix with singular value decomposition A = UΣAV .
Insert I = V V ∗ after the factor U to get A = UΣAV = (UV )(V ∗ΣAV ). Then
U1 = UV is unitary and P = V ∗ΣAV is Hermitian, positive semi-definite, so we
obtain a polar factorization A = U1P. Recall that for a nonsingular A, the factors
of the polar decomposition are uniquely determined by A. If A is singular, then
A∗A = P 2 is positive semi-definite, and since A∗A has a unique positive semi-
definite square root, we see the P is uniquely determined by A. The U , however,
is not.

Finally, we mention an analogue of the Courant–Fischer minimax/maximin
characterization (Theorem 6.18) of the eigenvalues of a Hermitian matrix for sin-
gular values.

Theorem 8.10. Let A be an m×n matrix with singular values σ1 ≥ σ2 ≥ · · · ≥ σn.
Then

σk = max
Vk

min
x∈Vk
x�=0

‖Ax‖
‖x‖ ,

where the maximum is over all k-dimensional subspaces Vk of Cn. Also,

σk = min
Vn−k+1

max
x∈Vn−k+1

x�=0

‖Ax‖
‖x‖ ,

where the minimum is over all (n− k + 1)-dimensional subspaces Vn−k+1.

These may be used to obtain inequalities for singular values, such as the fol-
lowing analogue of Corollary 6.24.

Theorem 8.11. Let A,B be m × n matrices. Let the singular values of A and B
be σ1 ≥ σ2 ≥ · · · ≥ σn and τ1 ≥ τ2 ≥ · · · ≥ τn, respectively. Then |σk − τk| ≤
‖A−B‖2.

We have focused on proving the existence of the SVD. For numerical com-
putation, one must consider the efficiency and stability of the algorithms used
to compute the factorization A = UΣAV . It is generally not a good strategy
to compute A∗A and then try to find the eigenvalues. We refer the reader else-
where [LawHan74, GvL89, Tref97, Demm97, Hou64] for discussion of the
issues involved and descriptions of algorithms. However, we will discuss one basic
tool: using Householder transformations to obtain a QR factorization and to put a
matrix in Hessenberg or tridiagonal form.

8.2. Householder Transformations

Householder transformations [Hou64] are orthogonal reflections across hyper-
planes. Given two linearly independent vectors in Rn of the same length, there
is a simple formula for constructing a Householder transformation which sends
one to the other. These transformations provide another way to compute the QR
factorization, presented in Chapter 2 as a byproduct of the Gram–Schmidt orthog-
onalization process. They are also useful for transforming matrices to special forms
via unitary change of basis.
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Those familiar with Lie algebras will recall that Mn with the product [A,B] is
a Lie algebra. This product is not associative, but does satisfy the Jacobi identity

[[A,B], C] + [[C,A], B] + [[B,C], A] = 0.

If a set of matrices S has Property P, then all of the eigenvalues of [A,B] are zero
for any A,B ∈ S. So [A,B] is nilpotent. Furthermore, for any matrices C1, . . . , Ct

in S and any polynomial p(X1, . . . , Xt) in the noncommuting variables X1, . . . , Xt,
the matrix p(C1, . . . , Ct)[A,B] is nilpotent.

10.4. McCoy’s Theorem

We now come to the main result of this chapter.

Theorem 10.20 (McCoy [McCoy36]). Let S be a nonempty set of n×n matrices
over an algebraically closed field F . Then the following are equivalent.

(1) The set S is simultaneously triangularizable.

(2) The set S has Property P .

(3) For any matrices A,B,C1, . . . , Ct in S and any polynomial p(X1, . . . , Xt)
in the noncommuting variables X1, . . . , Xt, the matrix p(C1, . . . , Ct)[A,B] is
nilpotent.

We have already observed that (1) implies (2) and that (2) implies (3); the
hard part of the proof is showing that (3) implies (1). This can be done in several
ways. Again, we follow the approach in [Flan56]. We first need the following.

Theorem 10.21. Let F be an algebraically closed field, let V be a vector space over
F with dim(V) > 1, and let A be an algebra of linear transformations of V. Suppose
there is a nil ideal B of A such that A/B is commutative. Then V has a proper
A-invariant subspace.

Proof. If B = 0, then A is commutative, and the result follows from Theorem 10.1.
If B 	= 0, then, as shown in the proof of Theorem 10.15, there exists a vector v
such that U = Bv is a proper B-invariant subspace of V . Since B is an ideal of A,
we have AB ⊆ B, and so AU = ABv ⊆ Bv = U . Hence the proper subspace U is
A-invariant. �

Proof of Theorem 10.20. We now complete the proof of McCoy’s theorem by
showing that (3) implies (1). We do this with Theorem 10.21, using condition (3)
to obtain the nil ideal B.

First, note that if S ′ = S ∪ {I}, then each of the properties (1), (2), (3) holds
for S if and only if it holds for S ′. So, without loss of generality, we may assume S
includes the identity I. Let A = A(S) be the algebra generated by S. Assume S
satisfies property (3). Note that for any pair of n×n matrices R,S, the matrix RS
is nilpotent if and only if SR is nilpotent. Hence, [A,B]p(C1, . . . , Ct) is nilpotent
for any matrices A,B,C1, . . . , Ct in S. If we replace the elements C1, . . . , Ct of S
by elements D1, . . . , Dt of A, the resulting expression p(D1, . . . , Dt) is still some
polynomial in elements of S. Therefore, every element of the ideal generated by
[A,B] in A is nilpotent. So I([A,B]) is a nil ideal, and hence, by Corollary 10.17, is
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nilpotent. Now letR be a maximal nilpotent ideal ofA. Then the sumR+I([A,B])
is also a nilpotent ideal; since R is maximal, we have R + I([A,B]) ⊆ R, and so
I([A,B]) ⊆ R. Hence, [A,B] ∈ R. Consider the quotient A/R. Since [A,B] ∈ R
for all A,B ∈ S, the elements A+R and B+R commute in A/R. Since S generates
A, this means that A/R is commutative. Hence, by Theorem 10.21, there is a
proper A-invariant subspace. We now proceed as in the proof of Theorem 10.7.
Use the A-invariant subspace to put the algebra A into block triangular form. The
algebras formed by the diagonal blocks will satisfy condition (3), so one can use
an induction argument and assume the blocks can be triangularized. Thus A has
property (1). �

Those familiar with Lie algebras will recognize that this result is closely related
to the theorems of Lie and Engel.

10.5. Property L

We now consider a weaker property, called Property L.

Definition 10.22. The n×n matrices A and B are said to have Property L if there
is an ordering of the eigenvalues α1, . . . , αn of A and β1, . . . , βn of B such that for
any scalars x and y, the eigenvalues of xA+ yB are xαi + yβi for i = 1, . . . , n.

The set of all matrices of the form xA + yB is called the pencil of A and B.
Matrices which have Property P certainly have Property L, but in general, the
converse is not true.

Example 10.23. This example comes from [MT52], the first of two papers on

Property L by Motzkin and Taussky. Let A=

⎛
⎝ 0 1 0

0 0 −1
0 0 0

⎞
⎠ and B=

⎛
⎝ 0 0 0

1 0 0
0 1 0

⎞
⎠.

Then xA+yB =

⎛
⎝ 0 x 0

y 0 −x
0 y 0

⎞
⎠ and (xA+yB)3 = 0. Hence, for every x and y, all

of the eigenvalues of xA+ yB are zero, so the pair A,B has Property L. However,

the product AB =

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠ has eigenvalues 1,−1, and 0, so A and B do not

have Property P.

In [MT52, MT55], Motzkin and Taussky establish significant results about
the pair A,B, the pencil xA+yB, and Property L, and they use algebraic geometry
to study the characteristic curve associated with the polynomial det(zI−xA−yB).
Here are a few of the main results.

Theorem 10.24. Let A and B be n×n matrices over an algebraically closed field F

of characteristic p. Assume all the matrices in the pencil xA+yB are diagonalizable,
and, for p 	= 0, assume that n ≤ p or that A and B have Property L. Then A and
B commute.
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The proof of Theorem 10.24 uses methods from algebraic geometry and is
beyond our scope here. However, the next two results are proven with matrix
theory tools.

Theorem 10.25 (Motzkin and Taussky [MT52]). Let A and B be n×n matrices
with Property L, and assume A is diagonalizable. Let α1, . . . , αn be the eigenvalues
of A, listed so that repeated eigenvalues appear together; assume there are t distinct
eigenvalues of multiplicities m1, . . . ,mt. Let β1, β2, . . . , βn be the corresponding
eigenvalues of B. Let A′ = P−1AP be in Jordan form, and let B′ = P−1BP .
Write

B′ =

⎛
⎜⎜⎝

B11 B12 · · · B1t

B21 B22 · · · B2t
...

...
. . .

...
Bt1 Bt2 · · · Btt

⎞
⎟⎟⎠ ,

where Bij is size mi×mj. Then det(zI−B′) =
t∏

i=1

det(zI−Bii) and
∑

b′ikb
′
ki = 0,

where the sum is over all i < k for which the entry b′ik lies outside every diagonal
block Bjj.

Proof. Property L is not affected by a translation, so we may assume α1 = 0.

The matrix A′ is diagonal, and we write A′ =

(
0 0
0 A22

)
and B′ =

(
B11 C12

C21 C22

)
,

where A22 has size (n−m1)× (n−m1), the zeros indicate blocks of zeros, and B′

is partitioned conformally with A. Note that A22 will be nonsingular. Consider the
polynomial

det(zI − xA′ −B′) = det

(
zI −B11 −C12

−C21 zI − xA22 − C22

)
in x and z, and note that the coefficient of xn−m1 is det(zI − B11) det(−A22).
However, since A and B have Property L, we also have

det(zI − xA′ −B′) =
m1∏
i=1

(z − βi)
n∏

i=m1+1

(z − xαi − βi).

From this we see the coefficient of xn−m1 is
m1∏
i=1

(z−βi)
n∏

i=m1+1

(−αi). Equating these

two expressions for the coefficient of xn−m1 gives

det(zI −B11) det(−A22) =

m1∏
i=1

(z − βi)
n∏

i=m1+1

(−αi).

But det(−A22) =
n∏

i=m1+1

(−αi), and this is nonzero, so det(zI −B11) =
m1∏
i=1

(z−βi).

Applying this argument to each of the eigenvalues of A yields

(10.3) det(zI −B′) =
t∏

i=1

det(zI −Bii).

The second part of the theorem comes from examining the coefficient of zn−2

on both sides of (10.3). In each case, the coefficient of zn−2 is the sum of the
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determinants of all 2 × 2 principal submatrices. The diagonal entries of these
submatrices are the same for both sides, but for the off-diagonal entries, the left-
hand side gives the sum of all products b′ikb

′
ki, where i 	= k, while on the right-hand

side we have the sum of all such products where b′ik is inside one of the diagonal
blocks. So the sum of all such products where b′ik comes from outside the diagonal
blocks must be zero. �

One can think of the theorem as telling us that when A and B have Property
L they retain some of the behavior of a pair of matrices which have Property P.
We now use Theorem 10.25 to show that Hermitian matrices with Property L must
commute.

Theorem 10.26 (Motzkin and Taussky). If A and B are Hermitian matrices with
Property L, then AB = BA.

Proof. Since A is Hermitian, we can reduce it to Jordan form with a unitary
similarity P , so A′ = P−1AP is diagonal and B′ = P−1AP is still Hermitian.
Hence, b′ikb

′
ki = |b′ik|2, and the second part of Theorem 10.25 tells us all of the

off-diagonal blocks of B′ are zero. Since the diagonal blocks of B′ pair up with
scalar blocks in A′, we see that A′ and B′ commute, and hence so do A and B. �

Wielandt [Wiel53] generalized Theorem 10.26 to pairs of normal matrices. We
prove this generalization using Theorem 5.12, which we restate and prove below.

Theorem 10.27. Let A be a normal matrix with eigenvalues λ1, . . . , λn. Partition
A into t2 blocks, where the diagonal blocks A11, . . . , Att are square. Suppose the
direct sum of the diagonal blocks A11 ⊕A22 ⊕ · · · ⊕Att has eigenvalues λ1, . . . , λn.
Then Aij = 0 when i 	= j, and so A = A11 ⊕A22 ⊕ · · · ⊕Att.

Proof. Since A is normal, we have

(10.4) ‖A‖2F =
n∑

i=1

n∑
j=1

|aij |2 =
n∑

i=1

|λi|2.

Let S denote the sum of the squares, |aij |2, of the entries aij which are in the
diagonal blocks, A11, . . . , Att. Since A11⊕A22⊕· · ·⊕Att has eigenvalues λ1, . . . , λn,

we have S ≥
n∑

i=1

|λi|2. But clearly, ‖A‖2F ≥ S. Combine this with (10.4) to get

n∑
i=1

|λi|2 = ‖A‖2F ≥ S ≥
n∑

i=1

|λi|2.

Hence, we must have ‖A‖2F = S. This means all of the entries of A which are
outside the diagonal blocks must be zeros, and hence Aij = 0 when i 	= j. �
Theorem 10.28 (Wielandt [Wiel53]). If A and B are n×n normal matrices with
Property L, then AB = BA.

Proof. Since A is normal, we can reduce it to Jordan form with a unitary similarity
U , so A′ = U∗AU is diagonal and B′ = U∗BU is still normal. From Theorem 10.25,

we have det(zI − B′) =
t∏

i=1

det(zI − Bii), and so B′ has the same eigenvalues as
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B11 ⊕ B22 ⊕ · · · ⊕ Btt. Theorem 10.27 then tells us the off-diagonal blocks of B′

are zero. The diagonal blocks of B′ pair up with scalar blocks in A′. So A′ and B′

commute, and hence so do A and B. �

Exercises

1. Let A be a nonempty set of linear transformations of an n-dimensional vector
space V over a field F, and let U be an A-invariant subspace of V . For T ∈ A,
show that we can define an action of T on the quotient space V/U by defining
T (v+U) = Tv+U . (The main thing you need to show here is that this is well
defined.)

2. Find a pair of upper-triangular matrices which do not commute.

3. For an n × n matrix A, let C(A) denote the set of matrices which commute
with A. Thus, C(A) = {B ∈ Mn

∣∣AB = BA}.
(a) What is C(I) ?
(b) Show that C(A) is a subspace of Mn.
(c) Show that if p(x) is any polynomial, then p(A) ∈ C(A).
(d) Revisit part (a) to see that there can be matrices in C(A) which are not

polynomials in A.
(e) Show that if the matrix A is a single Jordan block A = Jp(λ), then every

matrix in C(A) is a polynomial in A. In this case, what is the dimension
of C(A)?
Hint: Note that B commutes with Jp(λ) if and only if B commutes with
the nilpotent matrix N = Jp(0), so it suffices to find C(N).

(f) Find a matrix which commutes with A = J2(0) ⊕ J1(0) which is not a
polynomial in A.

4. Give the details of the proof of Theorem 10.16.

5. Show that if B and C are two nilpotent ideals of A, then the sum B + C is also
a nilpotent ideal.

6. Let A be an associative algebra. For x, y ∈ A, define [x, y] = xy − yx. Show
this Lie bracket product satisfies the Jacobi identity

[[x, y], z] + [[z, x], y] + [[y, z], x] = 0.
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have r choices for B. Now, B has k points, one of which is p, leaving (k−1) choices
for the point y. So, the number of 2-flags of the form (p, y,B) must be r(k − 1).

Hence, λ(v − 1) = r(k − 1). Note that this argument shows that r = λ(v−1)
(k−1) , and

hence, the number r does not depend on the choice of the point p. �

We now generalize the process to prove Theorem 13.5.

Proof. Let 0 ≤ s ≤ t, and let Rs be a fixed set of s points. Let m denote the
number of blocks B which contain Rs. We will show that m depends only on s
and not on the choice of the set Rs by showing m

(
k−s
t−s

)
= λ
(
v−s
t−s

)
. This will prove

Theorem 13.5 with m = λs.

Define an admissible pair (T , B) to be a t-set T and a block B such that
Rs ⊆ T ⊆ B. We count the number of admissible pairs in two different ways.

First, the number of ways to choose (t−s) points out of the (v−s) points which
are not in Rs is

(
v−s
t−s

)
, so this gives the number of t-sets T such that Rs ⊆ T . There

are then exactly λ blocks B which contain T . So, the number of admissible pairs
is λ
(
v−s
t−s

)
.

On the other hand, there are m blocks B such that Rs ⊆ B. For each such
block B there are

(
k−s
t−s

)
ways to choose (t − s) points of B which are not in Rs,

which gives
(
k−s
t−s

)
subsets T of size t such that Rs ⊆ T ⊆ B. So, the number of

admissible pairs is m
(
k−s
t−s

)
. Hence, m

(
k−s
t−s

)
= λ
(
v−s
t−s

)
, and the number m = λs

depends only on s and not on the particular set Rs. �

Corollary 13.9. Let D be a t-(v, k, λ) design. Let b = λ0 be the number of blocks,
and let λ1 = r be the number of blocks which contain a point x. Then

(1) b = λ0 = λ
v(v − 1)(v − 2) · · · (v − t+ 1)

k(k − 1)(k − 2) · · · (k − t+ 1)
.

(2) bk = rv.

(3) If t > 1, then r(k − 1) = λ2(v − 1).

Example 13.10. Suppose D is a k-(v, k, 1) design. Then

b =
v(v − 1)(v − 2) · · · (v − k + 1)

k(k − 1)(k − 2) · · · (k − k + 1)

=
v(v − 1)(v − 2) · · · (v − k + 1)

k!
=

(
v

k

)
.

So D is the “trivial” design of all k-subsets of the v-set.

13.2. Incidence Matrices for 2-Designs

The term block design is often used for 2-designs. The design consisting of all
k-subsets of a v-set is the trivial 2-design; we are interested in the case where not
every k-subset is a block. These are called balanced incomplete block designs or
BIBDs.

Let A be the incidence matrix of a 2-(v, k, λ) design having b blocks and λ1 = r.
The matrix A is size b × v. Each row of A corresponds to a block of the design
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and contains exactly k ones. Each column corresponds to a point; since each point
belongs to exactly r blocks, each column of A has r ones. Furthermore, the inner
product of columns i and j of A counts the number of rows which have ones in both
positions i and j, and hence gives the number of blocks which contain both of the
points xi and xj . So the inner product of columns i and j of A is λ when i 	= j,
and it is r when i = j. These facts can be stated as the following three matrix
equations:

AJv = kJb×v,

JbA = rJb×v,

ATA = (r − λ)I + λJv.

These equations will be the key in proving several important results about 2-designs.
We will need the following facts, which appeared in earlier chapters.

• The determinant of the matrix aI + bJn is (a+ nb)an−1 (see Section 11.1).

• For any matrix A, the matrices A, AT , AAT , and ATA all have the same rank.

Consider a 2-(v, k, λ) design with b blocks and λ1 = r. The case k = v simply gives
b repeated copies of the full v-set {x1, . . . , xv}, which is of little interest. Hence, we
shall assume k ≤ v − 1. Recall the equations

bk = vr,

r(k − 1) = λ(v − 1).

Since k − 1 < v − 1, the second equation gives r > λ. We now prove Fischer’s
inequality, b ≥ v.

Theorem 13.11 (Fischer’s inequality). Let b be the number of blocks in a
2-(v, k, λ) design D. If k ≤ v − 1, then b ≥ v.

Proof. Let A be the incidence matrix for the design. Then A is b× v and satisfies
ATA = (r − λ)I + λJv. Now,

det
(
(r − λ)I + λJv

)
= (r − λ)v−1(r − λ+ vλ).

But r − λ+ vλ = r + λ(v − 1) = r + r(k − 1) = rk. So, det(ATA) = (r − λ)v−1rk.
Since k ≤ v − 1, we know r > λ, and hence det(ATA) 	= 0. Therefore, the rank of
ATA is v, and so A also has rank v. Since A has b rows, we must have b ≥ v. �

Definition 13.12. A 2-(v, k, λ) design with k ≤ v− 1 is called symmetric if b = v.

In a symmetric BIBD, the number of blocks equals the number of points. The
projective plane of order two, Example 13.3, is a symmetric block design.

Theorem 13.13. In a 2-(v, k, λ) design with k ≤ v−1, the following are equivalent:

(1) b = v.

(2) r = k.

(3) Any pair of blocks have exactly λ points in common.
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Proof. The equation bk = vr shows the equivalence of (1) and (2).

Now suppose b = v. Then the incidence matrix A of the design is square. Since
we also have r = k, we get AJ = kJ = rJ = JA. (Note both A and J are v × v.)
So, A commutes with J . But then A commutes with (r − λ)I + λJ = ATA, and
so A(ATA) = (ATA)A. From the proof of Fisher’s inequality we know A has rank
v and hence is invertible. Multiply both sides of A(ATA) = (ATA)A on the right
by A−1 to get AAT = ATA = (r − λ)I + λJ . Since entry i, j of AAT is the dot
product of rows i and j of A, the number of points in the intersection of blocks i
and j is λ when i 	= j.

Conversely, suppose any pair of blocks intersect in exactly λ points. Then, since
each block has k points, AAT = (k − λ)I + λJ . If (k − λ) = 0, then AAT = λJ ,
and so A has rank one. But we know A has rank v and v > 1. So (k − λ) 	= 0 and

det(AAT ) = (k − λ)b−1(k − λ+ λb) 	= 0.

So AAT has rank b, and hence b = v. �

In summary, in a symmetric block design, the number of blocks equals the
number of points. Each pair of points belongs to exactly λ blocks, and each pair of
blocks intersects in exactly λ points. Each block has k points, and each point is in
exactly k blocks. We then have

(13.2) ATA = AAT = (k − λ)I + λJ.

Theorem 13.13 enables us to set up a dual design by reversing the roles of points
and blocks. The points of the dual design correspond to the blocks of the original
design. If x is a point in the original design, the set of blocks which contain x
becomes a block in the dual design. If A is the incidence matrix of the original
design, then AT is the incidence matrix of the dual design.

13.3. Finite Projective Planes

The last section concluded with a comment on duality. This concept is more typi-
cally encountered in projective geometry.

Definition 13.14. A finite projective plane is a symmetric 2-(v, k, 1) design. The
points of the plane are the elements of the v-set, and the lines of the plane are the
blocks of the design.

In a finite projective plane, we have λ = 1, b = v, and r = k. Each pair of
points is contained in exactly one line, and each pair of lines intersects in exactly
one point. The equation r(k− 1) = λ(v − 1) then becomes k(k − 1) = (v − 1), and
so v = k2 − k + 1. We also have v = (k − 1)2 + (k − 1) + 1; the number (k − 1)
is called the order of the projective plane. Example 13.3 is a projective plane of
order two; it is, in fact, the only projective plane of order two, so we may call it
“the” projective plane of order two.

A major question in this area is, For which numbers n = k − 1 do there exist
projective planes of order n? There is a method for constructing a projective plane
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Hence, the sequence {pk}∞k=1 has a convergence subsequence, pν1
,pν2

,pν3
, . . . .

Let p = lim
i→∞

pνi
. We have p ≥ 0 and eTp = 1, so p 	= 0. Then,

Ap = lim
i→∞

Aνi
pνi

= lim
i→∞

ρνi
pνi

= μp.

So μ is an eigenvalue of A. Hence, μ ≤ ρ. But we already had μ ≥ ρ, so μ = ρ.
Therefore, ρ is an eigenvalue of A and the nonnegative vector p is an associated
eigenvalue.

Part (3) follows by noting that AT ≥ 0 and ρ(A) = ρ(AT ). �

17.5. Irreducible Matrices

In the last section, we saw that only some parts of Perron’s theorem for positive
matrices hold for general nonnegative matrices. We now see that parts (2) and (3)
of Theorem 17.16 hold for irreducible matrices.

Recall the following Definition 16.3 from Chapter 16.

Definition 17.20. An n × n matrix A is said to be reducible if there exists a

permutation matrix P such that PTAP =

(
A11 A12

0 A22

)
, where A11 is k × k, A22

is (n−k)× (n−k), and 1 ≤ k ≤ n−1. If A is not reducible, we say A is irreducible.

Note that reducibility is determined by the location of the zero and nonzero
entries of the matrix. In Chapter 16, we saw that A is irreducible if and only if the
directed graph D(A) is strongly connected (Theorem 16.4). We then used graphs
to prove the following result (Theorem 16.5).

Theorem 17.21. Let A be an n× n nonnegative matrix. Then A is irreducible if
and only if (I + A)n−1 > 0.

Remark 17.22. For a matrix with negative entries, note that A is irreducible if
and only if |A| is irreducible. So this theorem is equivalent to the statement that A
is irreducible if and only if (I+ |A|)n−1 > 0. Theorem 17.21 can also be proven with
matrix methods, rather than by using the directed graph D(A). See Exercise 9 for
this matrix approach.

When a nonnegative matrix is irreducible, the Perron root is a simple root and
the Perron eigenvector is positive.

Theorem 17.23 (Frobenius [Frob12]). If A is an n× n, nonnegative, irreducible
matrix, then the following hold.

(1) The spectral radius ρ = ρ(A) of A is positive and is an eigenvalue of A.

(2) The eigenvalue ρ is a simple root of the characteristic polynomial pA(x) of A.

(3) There is a positive vector p such that Ap = ρp. Furthermore, Ax = ρx if and
only if x is a scalar multiple of p.

(4) There is a positive vector q such that qTA = ρqT , and yTA = ρyT if and
only if y is a scalar multiple of q.
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Proof. Since A ≥ 0, we know there exists a nonzero, nonnegative vector p such
that Ap = ρp. Let B = (I + A)n−1. Since A is irreducible, B > 0. Also,
Bp = (I + A)n−1p = (1 + ρ)n−1p. Part (5) of Theorem 17.16 then tells us that
p > 0. But then Ap 	= 0, and so ρ cannot be zero. So ρ > 0.

Now, let λ1 = ρ, λ2, . . . , λn be the eigenvalues of A. The eigenvalues of B
are (1 + ρ)n−1, (1 + λ2)

n−1, . . . , (1 + λn)
n−1, with (1 + ρ)n−1 = ρ(B). If ρ were a

multiple root of pA(x), then (1+ ρ)n−1 would be a multiple root of pB(x), which is
not possible by Perron’s Theorem 17.16 for positive matrices. Hence, ρ is a simple
root of pA(x). So, we have established the first three parts. Part (4) follows from
the fact that AT is irreducible if and only if A is irreducible. (This may not be
obvious directly from the definition, but it follows easily from Theorem 17.21.) �

Theorem 17.23 says nothing about lim
k→∞

Ak. Observe that the n-cycle matrix

in Example 17.18 is an irreducible, nonnegative matrix with spectral radius 1 for
which this limit does not exist.

17.6. Primitive and Imprimitive Matrices

We now obtain more information about the eigenvalues of irreducible, nonnegative
matrices. The structure of the set of eigenvalues depends on the zero-nonzero
structure of the matrix, i.e., on the directed graph associated with the matrix. If
A is a nonnegative, irreducible matrix, then the associated directed graph D(A)
is strongly connnected. In Chapter 16, we defined the terms primitive and index
of imprimitivity for strongly connected directed graphs (Definition 16.10). We
extend these definitions to nonnegative, irreducible matrices by using the associated
digraph. There is also another way to define the index of imprimitivity of a matrix;
we discuss this alternative definition later and will see it is equivalent to the graph
definition.

Definition 17.24. Let A be an n× n, irreducible, nonnegative matrix. We say k
is the index of imprimitivity of A if k is the index of imprimitivity of the associated
directed graph D(A). If k = 1, we say A is primitive.

Let λ1, . . . , λn be the eigenvalues of an n × n matrix A where repeated eigen-
values are listed according to their multiplicities. For any positive integer k, the
eigenvalues of Ak are λ1

k, λ2
k, . . . , λn

k and ρ(Ak) = [ρ(A)]k.

Theorem 17.25. Let A be a nonnegative, irreducible, primitive matrix. Then the
eigenvalue ρ = ρ(A) is a simple eigenvalue, and is the only eigenvalue of modulus ρ.

Proof. From Theorem 17.23, we know ρ is a simple eigenvalue. SinceA is primitive,
Theorem 16.16 tells us there is a positive integer M such that AM > 0. By Perron’s
theorem for positive matrices, ρM is a simple eigenvalue of AM , and every other
eigenvalue of AM has modulus less than ρM . Hence, if λ is an eigenvalue of A and
λ 	= ρ, we must have |λ|M < ρM and so |λ| < ρ. �

We now reap the benefits of the work done in Chapter 16 on the structure of
imprimitive graphs, and in Section 11.3 on the eigenvalues of block cycle matrices.



Chapter 18

Error-Correcting Codes

When information is transmitted over a communications channel, errors may be
introduced. The purpose of error-correcting codes is to enable the recipient to detect
and correct errors. The theory of error-correcting codes involves linear algebra,
finite field theory, block designs, and other areas of combinatorics and graph theory.
This chapter is a brief introduction to give some idea of how linear algebra is used
to construct binary linear codes. We consider a message to be a string of zeros
and ones, and work in a vector space over the binary field Z2. More generally,
one can work with an alphabet of q distinct symbols. If q = pr is a power of
a prime number p, then the set of alphabet symbols can be the elements of the
finite field GF (q) We refer the reader to books on error correcting codes, such
as [Berle68, MacSlo77, Hamming80, CVL80, VanLi82], for comprehensive
accounts.

18.1. Introduction

Consider a message given in the form of a string of zeros and ones. When the
message is sent via a communications channel, errors may occur, either from random
noise or other sorts of error. It is possible that you send a zero, but your recipient
receives a one, or vice versa. A simple way to protect against error is by using
repetition. You could send a block of two zeroes (0 0) for each zero, and a block of
two ones (1 1) for each one. Should noise distort one of the bits, so that the receiver
gets (1 0) or (0 1), she knows an error has occurred and can ask you to resend
the message. Of course, if both bits get changed by errors, the receiver cannot
detect this. Thus, this scheme allows the receiver to detect one error but not two.
Increasing the number of repetitions will increase the number of detectable errors
and also enable some error correction. For example, sending (000) for each zero
and (111) for each one enables the receiver to detect and correct a single error—for
example if the string (010) arrives, the receiver would assume the middle digit was
wrong and decode the message as zero. However, if two digits are changed by error,
then the message will be incorrectly decoded. More generally, if you send a block of

265
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k zeroes, (000 · · · 0), for each zero in the message, and a block of k ones, (111 · · · 1),
for each one in the message, and the decoding algorithm is “majority rule”, then up

to (k−1)
2 errors can be corrected when k is odd. If k is even, then up to (k−2)

2 errors

can be corrected, while k
2 errors can be detected but not corrected. Increasing the

block length enables correction of more errors. The cost is transmission rate; you
are using k bits for each bit of the message.

Now consider the string of zeros and ones as separated into words with k bits in
each; thus, each message word is a block of k digits; each digit is either zero or one.
We can view each block as a vector with k coordinates over the binary field Z2. We
write the k-digit block as a vector, x = (x1, . . . , xk). The number of possible words
of this type is 2k. We now adjoin an extra bit xk+1 defined by

(18.1) xk+1 =
k∑

i=1

xi.

Since we are working in the binary field Z2, the sum is 0 when (x1, . . . , xk) has
an even number of ones and is 1 when there are an odd number of ones; hence
this additional bit xk+1 is called a “parity check”. We adjoin the digit xk+1 to
the original block (x1, . . . , xk) and transmit the codeword (x1, . . . , xk, xk+1). Since
equation (18.1) is equivalent to the equation

x1 + · · ·+ xk + xk+1 = 0,

the code words are those vectors in Zk+1
2 which satisfy the linear equation

k+1∑
i=1

xi = 0.

The set of code words is then a k-dimensional subspace of Zk+1
2 ; it is, in fact, the

null space of the 1 × (k + 1) matrix A = ( 1 1 · · · 1 ). This is an example of
a linear code. The receiver checks each block of (k + 1) digits by summing the
digits. If they sum to zero, it is assumed no errors were made; if they sum to one
it is assumed one error was made. This code can detect a single error, but we will
not know which coordinate of the block has the error. However, only one extra
bit is needed to get this error detection capability. We are going to generalize this
procedure to construct codes which can detect more errors, and also correct errors.
The idea is to use more linear equations as checks.

18.2. The Hamming Code

Our story begins in the late 1940s when Richard Hamming created a family of
single error-correcting codes, (published in [Hamming50]). (These codes also
appeared in papers by Shannon (1948) and Golay (1949). See [Berle68, page 8]).
Frustrated by the shut-down of long computer programs running on weekends (when
no operators were present to restart a program shut-down due to a detected error),
Hamming wanted a system which could not only detect an error, but correct it. The
[7, 4] Hamming code has four message bits and three parity check bits. Denoting
the message word as (x1, x2, x3, x4), we adjoin three additional check bits x5, x6, x7
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defined by the equations

(18.2)
x5 = x1 + x2 + x4

x6 = x1 + x3 + x4

x7 = x2 + x3 + x4.

Since +1 and −1 are the same in Z2, we may rewrite the system (18.2) as

x1 + x2 + x4 + x5 = 0
x1 + x3 + x4 + x6 = 0

x2 + x3 + x4 + x7 = 0.

Rewriting this system of three linear equations in seven unknowns in matrix form,
we see that the codewords are the solutions to

(18.3)

⎛
⎝ 1 1 0 1 1 0 0

1 0 1 1 0 1 0
0 1 1 1 0 0 1

⎞
⎠x = 0.

Now put

C =

⎛
⎝ 1 1 0 1

1 0 1 1
0 1 1 1

⎞
⎠

and

A = (C I3 ) .

Equation (18.3) then becomes Ax = 0. The 3 × 7 matrix A has rank 3, so it
has a four-dimensional nullspace. The 16 codewords, formed from the 16 possible
messages using equations (18.2), are exactly the vectors in this nullspace. The set
of codewords forms a four-dimensional subspace of Z7

2.

How does the decoding work? Suppose we send the codeword x, but, due to
error, the receiver gets y. Put e = y − x; equivalently, y = x + e. The vector
e is the error vector. A 1 in entry j of e means that the jth-received entry is
wrong. Since x is a codeword, Ax = 0, and Ay = Ax+ Ae = Ae. When no errors
occur, y = x and Ay = 0. Now, suppose exactly one error occurs, and that it is in
entry j. Then Ae will be the jth column of the matrix A. Here is the key point:
the seven columns of A are all different; in fact they are the seven nonzero binary
vectors with three coordinates. If only one error occurs, computing Ay will tell
us exactly where the error was—find the column of A which matches Ay = Ae,
and the position of that column is the position of the error. Hence, this code can
detect and correct a single error in any position. It uses a 7-bit code word for a
4-bit message. To achieve this error correction by simply repeating each message
bit three times would require 12 bits for the 4-bit message.

18.3. Linear Codes: Parity Check and Generator Matrices

With this famous example under our belt, we move on to some general definitions.
We start with linear equations and matrices and will see that this leads to a more
abstract definition of a linear code as a subspace of Zn

2 . For the remainder of this
chapter we use the term length of a vector x to mean the number of coordinates
of x. So, vectors in Zn

2 have length n.
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Clearly, a nonnegative matrix A and a nonnegative vector b will yield a non-
negative system. Happily, it turns out that this is the only way we can have a
nonnegative system.

Theorem 19.14. The system x(k + 1) = Ax(k) + b is nonnegative if and only if
A ≥ 0 and b ≥ 0.

Proof. As already noted, if A and b are both nonnegative, then the system is
clearly nonnegative. We need to prove the converse. So, suppose x(k + 1) =
Ax(k) + b is nonnegative. If we choose x(0) = 0, then x(1) = b, so we must have
b ≥ 0. Now, suppose the matrix A has a negative entry in position i, j. Let c
be a positive constant large enough that c|aij | > bi. Since aij < 0, we then have
c(aij) + bi < 0. Choose x(0) = c(ej) where ej is the jth unit coordinate vector.
Then x(1) = Ax(0)+b = c(column j of A)+b, so x(1) has a negative entry in the
ith coordinate. This contradicts the fact that the system is nonnegative. Hence,
every entry of A must be nonnegative. �

For nonnegative systems, we are interested in knowing if there is a nonnegative
equilibrium point. It turns out that the criterion for a nonnegative equilibrium
point is the same as that for stability.

Theorem 19.15. Suppose x(k + 1) = Ax(k) + b is a nonnegative system and
b > 0. Then there is a nonnegative equilibrium point if and only if ρ(A) < 1.

Proof. Suppose ρ(A) < 1. Theorem 19.8 then tells us there is a stable equilibrium
point; furthermore, the equilibrium point x̄ is unique and given by the formula

x̄ = (I−A)−1b. Since ρ(A) < 1, the geometric series
∞∑
j=0

Aj converges to (I−A)−1

and x̄ =
∞∑
j=0

Ajb. Since A ≥ 0 and b ≥ 0, it is clear that x̄ ≥ 0.

Conversely, suppose there is a nonnegative equilibrium point, that is, a nonneg-
ative vector x̄ such that x̄ = Ax̄+ b. Since A ≥ 0, the Perron–Frobenius theorem
tells us that ρ = ρ(A) is an eigenvalue of A; furthermore, there is a corresponding
nonnegative left eigenvector vT . We then have

vT x̄ = vTAx̄+ vTb = ρ(vT x̄) + vTb.

Rearrange this to get

(19.34) (1− ρ)vT x̄ = vTb.

Since v is nonnegative and is not the zero vector and b > 0, we must have vTb > 0.
Since we also have x̄ ≥ 0, equation (19.34) tells us 1−ρ > 0, hence ρ = ρ(A) < 1. �

Now consider a continuous time system, x′(t) = Ax(t) + b. We first want to
find the conditions on A and b which guarantee that the system preserves non-
negativity of the state vector. We clearly must have b ≥ 0, because if the initial
state x(0) is the zero vector, then x′(0) = b must be nonnegative to preserve non-
negativity. However, it turns out that it is not necessary that all of the entries of
A be nonnegative, but only the off-diagonal entries.

Definition 19.16. A square matrix A is a Metzler matrix if aij ≥ 0 for all i 	= j.
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Theorem 19.17. The continuous time system x′(t) = Ax(t) + b preserves non-
negativity if and only if A is a Metzler matrix and b ≥ 0.

Proof. Suppose the system preserves nonnegativity. Then when a nonnegative
state vector x(t) has a zero in the ith coordinate, we must have x′

i(t) ≥ 0 in order
for that coordinate to remain nonnegative. If we start at x(0) = 0, then x′(0) = b,
so we must have b ≥ 0. Next, consider the i, j entry of A, where i 	= j. Suppose aij
is negative. Choose a positive constant c such that caij + bi < 0. Let x(0) = cej .
Entry i of x(0) is then 0, while entry i of x′(0) is caij + bi < 0, which contradicts
the assumption that the system preserves nonnegativity. Therefore, for i 	= j, we
have aij ≥ 0, and A is a Metzler matrix.

Conversely, suppose A is a Metzler matrix and b ≥ 0. If we start at a nonneg-
ative vector x(0), then the trajectory, x(t) will stay in the nonnegative region of
Rn unless there is some value of t and some coordinate i such that xi(t) = 0 but
x′
i(t) < 0; that is, unless the trajectory reaches a boundary point of the region and

the derivative of the boundary coordinate is negative. So, suppose x(t) ≥ 0 with
xi(t) = 0 for some t and some coordinate i. Since A is a Metzler matrix, the ith
coordinate of Ax(t) will then be nonnegative, because the zero in the ith coordinate
of x(t) will pair up with the ith diagonal entry of A and thus x′

i(t) ≥ 0. Hence,
Ax(t) + b ≥ 0 and the system preserves nonnegativity. �

There is a close relationship between Metzler matrices and nonnegative matri-
ces. If A is a Metzler matrix, then for a sufficiently large positive constant c the
matrix P = cI + A is nonnegative. Therefore, P has a Perron–Frobenius eigen-
value λ0 = ρ(P ) with a corresponding nonnegative eigenvector v0. We then have
Av0 = (λ0 − c)v0, so v0 is an eigenvector of A corresponding to the eigenvalue
λ0 − c. Set μ0 = λ0 − c = ρ(P )− c. Then μ0 is real. Since the eigenvalues of A are
obtained from those of P by shifting them distance c to the left, we can take the
circle of radius ρ(P ) centered at the origin, and shift it c units to the left to obtain
a circle centered at −c with radius ρ(P ) which contains the eigenvalues of A. This
shifted circle is then tangent to the vertical line x = μ0, which tells us that μ0 is
the eigenvalue of A with largest real part.

Theorem 19.18. Let A be a Metzler matrix. Then A has a real eigenvalue μ0

which satisfies the following.

(1) There is a nonnegative eigenvector v0 corresponding to μ0.

(2) If μ 	= μ0 is any other eigenvalue of A, then �(μ) < μ0.

The next result is the analogue of Theorem 19.15 for continuous systems.

Theorem 19.19. Let A be a Metzler matrix, and let b > 0. Then the system
x′(t) = Ax(t) + b has a nonnegative equilibrium point x̄ if and only if all of the
eigenvalues of A are strictly in the left half of the complex plane (that is, �(λ) < 0
for every eigenvalue λ of A).

Proof. If �(λ) < 0 for every eigenvalue λ of A, Theorem 19.11 tells us the system
has an asymptotically stable equilibrium point x̄. For any trajectory x(t) we then
have lim

t→∞
x(t) → x̄. However, since the system is nonnegative, we know that for any
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nonnegative starting point x(0), every point of the trajectory x(t) is nonnegative.
Therefore, x̄ ≥ 0.

Conversely, suppose the system has a nonnegative equilibrium point x̄. Then
x̄ ≥ 0 and Ax̄ + b = 0. Since b > 0, we must have Ax̄ < 0. Let μ0 be
the eigenvalue of A with largest real part. Since A is a Metzler matrix, we
know that μ0 is a real number and that there is a corresponding left nonnegative
eigenvector w0. We then have wT

0 Ax̄ < 0 and wT
0 Ax̄ = μ0w

T
0 x̄. Since wT

0 x̄ > 0,
this tells us μ0 < 0. Hence, every eigenvalue of A has a negative real part. �

19.7. Markov Chains

Suppose we have a set of n states and a process (also called a chain) which moves
successively from state to state in discrete time periods. Each move is called a step.
If the chain is currently in state i, we let pij denote the probability that it will move

to state j at the next step. Note that 0 ≤ pij ≤ 1 and
n∑

j=1

pij = 1. Let P be the n×n

matrix with pij in entry i, j. The probabilities pij are called transition probabilities

and the matrix P is called the transition matrix. The condition
n∑

j=1

pij = 1 says

that in each row of P , the entries sum to one.

Definition 19.20. We say an n× n matrix P is row stochastic if the entries of P
are all nonnegative real numbers and all of the row sums of P are one.

Observe that P is row stochastic if and only if P ≥ 0 and Pe = e, where e
denotes the all-one vector.

Definition 19.21. We say a vector x is a probability vector if all of the entries of
x are nonnegative and the sum of the coordinates of x is 1. Equivalently, x ≥ 0,
and if e denotes the all-one vector, then xTe = 1.

We interpret the coordinates of a probability vector x as representing the prob-
abilities of being in each of the n states; thus xj represents the probability the
chain is in state j. A matrix P is row stochastic if and only if each row of P is a
probability vector.

Proposition 19.22. If x is a probability vector and P is row stochastic, then xTP
is a probability vector. If P and Q are n × n row stochastic matrices, then PQ is
row stochastic.

Proof. Suppose x is a probability vector and P is row stochastic. Then xTP is
clearly nonnegative, and (xTP )e = xT (Pe) = xTe = 1, so xTP is a probability
vector.

Now suppose P and Q are n× n row stochastic matrices. Then PQ is clearly
nonnegative, and (PQ)e = P (Qe) = Pe = e, so PQ is row stochastic. �

Now suppose x(k) is the probability vector in which xj(k) gives the probability
the chain is in state j at step (or time) k. Then pijxi(k) gives the probability that
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the chain is in state i at time k and in state j at time k+1. If we sum the quantities
pijxi(k) over i, we get the probability the chain is in state j at time k + 1. Thus,

(19.35) xj(k + 1) =

n∑
i=1

pijxi(k), j = 1, . . . , n.

Writing the probability vectors as row vectors, the matrix form of (19.35) is

(19.36) xT (k + 1) = xT (k)P.

Our apologies for this notational change to row vectors and placing the matrix
transformation on the right; however, this seems to be the usual notation for Markov
chains.

As we have seen before, equation (19.36) leads to the formula

(19.37) xT (k) = xT (0)P k.

We now use the fact that P is row stochastic to study the behavior of x(k) as
k → ∞. Since P ≥ 0, the Perron–Frobenius theorem applies. From Pe = e, we
see λ = 1 is an eigenvalue of P and e is an associated eigenvector. The Geršgorin
Circle Theorem (more specifically, Theorem 3.16) tells us ρ(P ) ≤ 1. Since 1 is an
eigenvalue, ρ(P ) = 1, and we have the positive eigenvector e. Of critical importance
to analyzing the behavior of x(k) as k → ∞ is whether there are other eigenvalues
of modulus one—i.e., whether the matrix P is irreducible or not, and, in the case
of an irreducible P , whether P is primitive or not.

Theorem 19.23. Suppose A is an n×n row stochastic matrix which is irreducible
and primitive. Then there exists a unique, positive probability vector q such that

(1) qTA = qT .

(2) lim
k→∞

Ak = e qT .

Proof. Since A is row stochastic, we know ρ(A) = 1; since A is irreducible, we
know λ = 1 is a simple eigenvalue of A. Also, we know that A has a positive left
eigenvector x corresponding to the eigenvalue 1. Since 1 is a simple eigenvalue, the

corresponding eigenspace is one dimensional. Divide x by
n∑

i=1

xi to get the unique

probability vector, q = 1∑n
i=1 xi

x, which satisfies qTA = qT .

For the second part, consider the Jordan canonical form of A. Since A is
primitive, we know that for any eigenvalue λ 	= 1, we have |λ| < 1. Hence, the
Jordan canonical form of A may be written as J = 1 ⊕ J̄ , where J̄ is a sum of
Jordan blocks corresponding to eigenvalues of modulus less than one. We then
have lim

k→∞
J̄k = 0 and lim

k→∞
Jk = 1 ⊕ 0n−1. This tells us lim

k→∞
Ak exists and is a

matrix of rank 1. Let B = lim
k→∞

Ak; then B is row stochastic and has rank 1. Also,

BA = B, so every row of B must be a left eigenvector of A corresponding to the
eigenvalue 1. Since every row of B is also a probability vector, we see every row of
B is the vector qT . Hence, B = lim

k→∞
Ak = eqT . �

Theorem 19.23 tells us the following. If the transition matrix P of a Markov
chain is irreducible and primitive, then in the long run, the probability distribution
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for the chain is given by the left eigenvector corresponding to the eigenvalue 1. In
particular, note that if P > 0, then P is irreducible and primitive.

Example 19.24. Let us return to Hesh’s bakery and consider a group of regular
customers, each of whom buys exactly one of the following items each week: the
French babka, the chocolate chip pound cake (referred to as the CCC), or the sticky
buns. Suppose that if a customer buys a babka one week, there is a probability
of .30 that she buys the babka the following week, a probability of .50 she buys
the CCC the following week, and then a .20 probability she buys the sticky buns.
Of those who buy the sticky buns one week, 60% will buy the babka the following
week, and 30% will buy the CCC, while 10% stick with the buns. Finally, of the
CCC buyers, half will buy the CCC the following week, while 30% switch to sticky
buns, and the remaining 20% buy babka the following week. If our three states are

(1) State 1: French babka,

(2) State 2: Sticky buns,

(3) State 3: CCC,

then the transition matrix for this Markov chain is

P =

⎛
⎝ .3 .2 .5

.6 .1 .3

.2 .3 .5

⎞
⎠ .

In the long run, what proportion of sales will be babka, sticky buns, and CCC?
This corresponds to the left eigenvector for P ; thus, we want to find the probability
vector q satisfying qTP = qT . A straightforward calculation gives

q =
1

112

⎛
⎝ 36

25
51

⎞
⎠ =

⎛
⎝ .32

.22

.46

⎞
⎠

rounded off to two decimal places. Thus, over a long period of time, we may expect
32% of customers to buy babka, 22% to buy sticky buns, and 46% to buy chocolate
chip cake.

Things are more complicated if P is reducible or imprimitive. We refer the
reader elsewhere for more complete treatments of the general case. Here, we con-
sider one more special situation: the absorbing Markov chain.

Definition 19.25. We say a state of a Markov chain is an absorbing state if once
the process is in that state, it remains in that state.

When state i is an absorbing state, the ith row of the transition matrix P has
a 1 in the ith entry and zeroes elsewhere.

Definition 19.26. We say a Markov chain is an absorbing chain if it has at least one
absorbing state, and, from any nonabsorbing state, there is a positive probability
of reaching an absorbing state in a finite number of steps. In this case we call the
nonabsorbing states transient states.

The definition of absorbing chain can also be stated in terms of the directed
graph of the matrix P : there are no edges coming out of any absorbing state, while
from any nonabsorbing state, there is a path to some absorbing state.
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Suppose that we have an absorbing n-state Markov chain with t transient states
and r absorbing states; so t+r = n. We order the states so that states 1, 2, . . . t are
the transient states and states t + 1, t + 1, . . . , t + r = n are the absorbing states.
The transition matrix P then takes the form

(19.38) P =

(
Q R
0 Ir

)
,

where Q is t× t, while R is t×r and the block of zeros in the lower left-hand corner
is r × t. Then P k has the form

P k =

(
Qk Rk

0 Ir

)
,

where Rk is t× r; we now find a formula for Rk in terms of Q and R. From

P 2 =

(
Q2 QR+R
0 Ir

)
,

we see

R2 = QR+R = (Q+ I)R.

Computing P 3, we have

P 3 =

(
Q3 Q2R +QR+R
0 Ir

)
,

so R3 = Q2R+QR+R = (Q2+Q+I)R. One may now guess the following formula,
which may be proven by induction:

(19.39) Rk = (I +Q+Q2 + · · ·+Qk−1)R.

From (19.39), we see that Rm ≥ Rk when m ≥ k. In particular, note that if Rk

has a nonzero entry in position i, j, then for any m > k, the matrix Rm will also
have a nonzero entry in position i, j.

Theorem 19.27. Suppose P =

(
Q R
0 Ir

)
is the transition matrix for an absorbing

Markov chain with r absorbing states and t transient states, with Q being t×t. Then

ρ(Q) < 1 and limk→∞ P k =

(
0t (I −Q)−1R
0 Ir

)
.

Proof. Let 1 ≤ i ≤ t; then state i is nonabsorbing. Hence, starting from state i,
there is a positive integer ki such that the process has positive probability of being
in one of the absorbing states after ki steps. This means that the ith row of P ki

will have a positive entry in at least one of the last r columns. So for any m ≥ ki,
the matrix Rm has a positive entry in row i. Choose m = max{k1, k2, . . . , kt}.
Then every row of Rm must have a positive entry. Now P is row stochastic; hence

any power of P is also row stochastic. So Pm =

(
Qm Rm

0 Ir

)
is row stochastic

and every row of Rm has a positive entry. This tells us that each row sum of the
nonnegative matrix Qm is less than one, and hence ρ(Qm) < 1. Since ρ(Qm) =
(ρ(Q))m, we have ρ(Q) < 1.

Now ρ(Q) < 1 tells us lim
k→∞

Qk = 0 and the infinite series

I +Q+Q2 +Q3 + · · ·
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