

An Imprint ${ }^{\circ}$
of the $\because:$ AMERICAN
$\because:$ MATHEMATICAL
SOCIETY

A Mathematician Comes of Age

(C) 2012 by the Mathematical Association of America, Inc.

Library of Congress Catalog Card Number 2011943144
Print edition ISBN: 978-0-88385-578-2
Electronic edition ISBN: 978-1-61444-511-1
Printed in the United States of America
Current Printing (last digit):
10987654321

A Mathematician Comes of Age

Steven G. Krantz
Washington University in St. Louis

Published and Distributed by
The Mathematical Association of America

Council on Publications and Communications

Frank Farris, Chair

Committee on Books
Gerald Bryce, Chair
Spectrum Editorial Board
Gerald L. Alexanderson, Editor
Robert E. Bradley
Richard K. Guy
Shawnee L. McMurran
Kenneth A. Ross
James J. Tattersall

Susanna S. Epp
Keith M. Kendig
Jeffrey L. Nunemacher
Franklin F. Sheehan
Robin Wilson

SPECTRUM SERIES

The Spectrum Series of the Mathematical Association of America was so named to reflect its purpose: to publish a broad range of books including biographies, accessible expositions of old or new mathematical ideas, reprints and revisions of excellent out-of-print books, popular works, and other monographs of high interest that will appeal to a broad range of readers, including students and teachers of mathematics, mathematical amateurs, and researchers.

777 Mathematical Conversation Starters, by John de Pillis
99 Points of Intersection: Examples—Pictures—Proofs, by Hans Walser. Translated from the original German by Peter Hilton and Jean Pedersen
Aha Gotcha and Aha Insight, by Martin Gardner
All the Math That's Fit to Print, by Keith Devlin
Beautiful Mathematics, by Martin Erickson
Calculus Gems: Brief Lives and Memorable Mathematics, by George F. Simmons
Carl Friedrich Gauss: Titan of Science, by G. Waldo Dunnington, with additional material by Jeremy Gray and Fritz-Egbert Dohse
The Changing Space of Geometry, edited by Chris Pritchard
Circles: A Mathematical View, by Dan Pedoe
Complex Numbers and Geometry, by Liang-shin Hahn
Cryptology, by Albrecht Beutelspacher
The Early Mathematics of Leonhard Euler, by C. Edward Sandifer
The Edge of the Universe: Celebrating 10 Years of Math Horizons, edited by Deanna Haunsperger and Stephen Kennedy
Euler and Modern Science, edited by N. N. Bogolyubov, G. K. Mikhailov, and A. P. Yushkevich. Translated from Russian by Robert Burns.
Euler at 300: An Appreciation, edited by Robert E. Bradley, Lawrence A. D'Antonio, and C. Edward Sandifer

Expeditions in Mathematics, edited by Tatiana Shubin, David F. Hayes, and Gerald L. Alexanderson

Five HundredMathematical Challenges, by Edward J. Barbeau, Murray S. Klamkin, and William O. J. Moser
The Genius of Euler: Reflections on his Life and Work, edited by William Dunham
The Golden Section, by Hans Walser. Translated from the original German by Peter Hilton, with the assistance of Jean Pedersen.
The Harmony of the World: 75 Years of Mathematics Magazine, edited by Gerald L. Alexanderson with the assistance of Peter Ross
A Historian Looks Back: The Calculus as Algebra and Selected Writings, by Judith Grabiner
History of Mathematics: Highways and Byways, by Amy Dahan-Dalmédico and Jeanne Peiffer, translated by Sanford Segal
How Euler Did It, by C. Edward Sandifer
Is Mathematics Inevitable? A Miscellany, edited by Underwood Dudley
I Want to Be a Mathematician, by Paul R. Halmos
Journey into Geometries, by Marta Sved
JULIA: a life in mathematics, by Constance Reid
The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics \& Its History, edited by Richard K. Guy and Robert E. Woodrow
Lure of the Integers, by Joe Roberts
Magic Numbers of the Professor, by Owen O'Shea and Underwood Dudley
Magic Tricks, Card Shuffling, and Dynamic Computer Memories: The Mathematics of the Perfect Shuffle, by S. Brent Morris
Martin Gardner's Mathematical Games: The entire collection of his Scientific American columns
The Math Chat Book, by Frank Morgan
Mathematical Adventures for Students and Amateurs, edited by David Hayes and Tatiana Shubin. With the assistance of Gerald L. Alexanderson and Peter Ross
Mathematical Apocrypha, by Steven G. Krantz
Mathematical Apocrypha Redux, by Steven G. Krantz
Mathematical Carnival, by Martin Gardner
Mathematical Circles Vol I: In Mathematical Circles Quadrants I, II, III, IV, by Howard W. Eves
Mathematical Circles Vol II: Mathematical Circles Revisited and Mathematical Circles Squared, by Howard W. Eves
Mathematical Circles Vol III: Mathematical Circles Adieu and Return to Mathematical Circles, by Howard W. Eves
Mathematical Circus, by Martin Gardner
Mathematical Cranks, by Underwood Dudley
Mathematical Evolutions, edited by Abe Shenitzer and John Stillwell
Mathematical Fallacies, Flaws, and Flimflam, by Edward J. Barbeau
Mathematical Magic Show, by Martin Gardner

Mathematical Reminiscences, by Howard Eves
Mathematical Treks: From Surreal Numbers to Magic Circles, by Ivars Peterson
A Mathematician Comes of Age, by Steven G. Krantz
Mathematics: Queen and Servant of Science, by E.T. Bell
Mathematics in Historical Context,, by Jeff Suzuki
Memorabilia Mathematica, by Robert Edouard Moritz
Musings of the Masters: An Anthology of Mathematical Reflections, edited by Raymond G. Ayoub
New Mathematical Diversions, by Martin Gardner
Non-Euclidean Geometry, by H. S. M. Coxeter
Numerical Methods That Work, by Forman Acton
Numerology or What Pythagoras Wrought, by Underwood Dudley
Out of the Mouths of Mathematicians, by Rosemary Schmalz
Penrose Tiles to Trapdoor Ciphers ... and the Return of Dr. Matrix, by Martin Gardner
Polyominoes, by George Martin
Power Play, by Edward J. Barbeau
Proof and Other Dilemmas: Mathematics and Philosophy, edited by Bonnie Gold and Roger Simons
The Random Walks of George Pólya, by Gerald L. Alexanderson
Remarkable Mathematicians, from Euler to von Neumann, by Ioan James
The Search for E.T. Bell, also known as John Taine, by Constance Reid
Shaping Space, edited by Marjorie Senechal and George Fleck
Sherlock Holmes in Babylon and Other Tales of Mathematical History, edited by Marlow Anderson, Victor Katz, and Robin Wilson
Student Research Projects in Calculus, by Marcus Cohen, Arthur Knoebel, Edward D. Gaughan, Douglas S. Kurtz, and David Pengelley

Symmetry, by Hans Walser. Translated from the original German by Peter Hilton, with the assistance of Jean Pedersen.
The Trisectors, by Underwood Dudley
Twenty Years Before the Blackboard, by Michael Stueben with Diane Sandford
Who Gave You the Epsilon? and Other Tales of Mathematical History, edited by Marlow Anderson, Victor Katz, and Robin Wilson
The Words of Mathematics, by Steven Schwartzman

> For Charles Paine,
> a good friend and a great teacher.
> He was the first to give me a glimpse of mathematical maturity.

Contents

Preface xiii
Acknowledgements xvii
1 Introductory Thoughts 1
1.0 Chapter Overview 1
1.1 Back Story 2
1.2 First Principles 4
1.3 Next Steps 6
1.4 The Mathematically Naive View 8
1.5 How Does Mathematics Differ from Other Fields? 8
1.6 A Little History 10
1.7 Examples of Mathematical Maturity 11
1.8 Mathematical Maturity and Fear of Failure 14
1.9 Levels of Mathematical Maturity 16
1.10 The Changing Nature of Mathematical Maturity 18
1.11 On Proof and Progress in Mathematics 19
1.12 More on Brahe, Kepler, and Napier 23
2 Math Concepts 27
2.0 Chapter Overview 28
2.1 Problems that Can Exhibit Mathematical Maturity 28
2.2 Approximate Solutions 31
2.3 Computers and Calculators 33
2.4 Proving Little Theorems, Proving Big Theorems 35
2.5 Mistakes 37
2.6 Mathematical Beauty 39
2.7 Modeling 39
3 Teaching Techniques 41
3.0 Chapter Overview 41
3.1 Teaching Reform 42
3.2 Math Maturity and Math Teachers 45
3.3 Uri Treisman's Teaching Techniques 46
3.4 How Can We Improve the Education of Math Students? 48
3.5 The Development of the Mathematics Curriculum 50
3.6 Learning on the Internet 52
3.7 Capstone Experiences 53
3.8 Challenging Your Students 54
3.9 The Sports Analogy 55
3.10 Pacing 56
3.11 Problems for Students 57
3.12 Student Research Problems 60
3.13 The Ph.D. Advisor 61
4 Social Issues 63
4.1 Chapter Overview 63
4.2 Math Anxiety 64
4.3 Mathematics and Diversions from Mathematics 66
4.4 National Standards 67
4.5 The Myers-Briggs Index 69
4.6 Intelligence Tests 71
4.7 Asperger's Syndrome 73
4.8 The ABD 74
4.9 Men and Women 75
5 Cognitive Issues 77
5.0 Chapter Overview 77
5.1 Nature vs. Nurture 78
5.2 Maturity vs. Immaturity 78
5.3 Rote Learning vs. Learning for Understanding 79
5.4 How Do Students Learn? How Do Students Think? 80
5.5 How Do Students Become Motivated? 82
5.6 Learning to Recover from Mistakes 84
5.7 Will These Ideas Travel Well? 85
5.8 Mathematical Maturity vs. Mathematical Inquisitiveness 86
5.9 Mathematical Maturity is Not the Same as Knowledge 89
5.10 Critical Thinking Skills 90
5.11 Ideas of Piaget 93
5.12 Reading and Thinking 95
5.13 The Role of Writing 96
5.14 Tenacity and Delayed Gratification 97
5.15 Types of Intelligence 100
5.16 Psychological Conditions 101
5.17 What are Our Students' Values? What are Our Students' Goals? 102
5.18 Intuition vs. Rigor 104
6 What is a Mathematician? 107
6.0 Chapter Overview 107
6.1 The Life of the Mathematician 108
6.2 Key Attributes of Mathematical Maturity 108
6.3 A Mathematician's Miscellany 110
7 Is Mathematical Maturity for Everyone? 115
7.0 Chapter Overview 115
7.1 Who Needs Mathematical Maturity? 116
7.2 The Role of Mathematical Maturity in Our World 117
The Tree of Mathematical Maturity 119
Etymology of the Word "Maturity" 121
Bibliography 123
Index 129
About the Author 137

Preface

The process of learning mathematics, more precisely of learning to be a mathematician, is a long and exacting one. It requires special discipline, and peculiar determination. It also requires a certain level of intelligence, but we will see in the discussions of the present book that intelligence is not the primary or determining factor.

As with any serious task, one should not embark on it unless one fully realizes what one is getting into. The purpose of this book is to explore what the task entails, who should engage in it, and what the rewards are.

The centerpiece of the mathematical education of any student is the intellectual development of that student. In grade school the child learns arithmetic and other basic mathematical operations. In middle school and high school there begins an exposure to algebra and other more abstract mathematical ideas. Geometry, trigonometry, and the theory of functions (that is, what is a function, and what does it do, and how do we manipulate functions?) follow in good order.

In today's world, however, the American $\mathrm{K}-12$ student passing through this standard curriculum gets little or no exposure to rigor or to the concept of proof. Sophisticated problem-solving and analytical skills are not developed. As a result, the students that we have in our freshman calculus classes do not know what a proof is or what serious problem-solving is. Their problem-solving skills are nascent at best. They have rarely seen a proof, and are not equipped to create one.

If a student is to be a mathematics major and to become a practicing mathematician, then that student must become familiar with the traditional notions of mathematical rigor. This demand means that the tyro must learn about logic, set theory, axiomatics, the construction of the number systems, and proofs. The student must be able to read and evaluate proofs, but also must move on to being able to create proofs.

It is a considerable leap to develop from the textbook problem-solving state of mind so typical of lower-division mathematics courses to the theo-
retical, analytical, definition-theorem-proof state of mind that is typical of real analysis and abstract algebra (and beyond). Many colleges and universities now have a transitions course to help effect this intellectual change (see [DAW] for one of the most innovative books for such a course, and [KRA3] for another). Teaching such a course is both a pleasure and a challenge; for one must determine how to get students over this hump. How does one teach a student to put down the old iPhone and think hard about a nontrivial mathematical proof?

The milieu described in the last paragraph raises the question of mathematical maturity. Every mathematician grows up hearing, at least in conversation, about mathematical maturity. It does not appear in the dictionary, or in a standard reference work. But it exists. It is an idea that most mathematicians accept and profess to understand. We frequently make statements like, "My course on elliptic functions requires a certain degree of mathematical maturity." or "The goal of our mathematics major is to develop students who have some mathematical maturity." We know what we mean when we say these things, but we would be hard put to define our terms precisely.

It is curious that other disciplines do not speak of "maturity" as we do. One does not hear of "English literature maturity," or "chemistry maturity," or even of "physics maturity". Other disciplines do not have the strict vertical structure of mathematics (perhaps "tree-like structure" would be more accurate), so their values and their vocabulary are bound to be different. In history, literature, and philosophy there is nothing to prove. In chemistry, physics, and biology, the exernal world is the arbiter of truth. In mathematics we must rely on our own minds to determine the truth. There is no other judge. That is what sets mathematics apart.

Mathematical maturity consists of the ability to:

- handle increasingly abstract ideas
- generalize from specific examples to broad concepts
- work out concrete examples
- master mathematical notation
- communicate mathematical concepts
- formulate problems and reduce difficult problems to simpler ones
- analyze what is required to solve a problem
- recognize a valid proof and detect incorrect reasoning
- recognize mathematical patterns
- work with analytical, algebraic, and geometrical concepts
- move from the intuitive to the rigorous
- learn from mistakes
- construct proofs, often by pursuing incorrect paths and adjusting the plan of attack accordingly
- use approximate truths to find a path to a genuine truth

It requires a talented teacher, and also a good deal of drive and discipline on the part of the student, to achieve the goal of attaining mathematical maturity. How can we inspire our students to follow this path (the path that, presumably, we have all successfully followed)? How can we write texts and construct courses that will facilitate this transition?

These are the questions that we intend to tackle in the present book: What is mathematical maturity? How does the idea of mathematical maturity set us apart from other intellectual disciplines? How can we identify students who have mathematical maturity, or who are achieving mathematical maturity? How can we aid in the process?

You cannot succeed at anything in life unless you know what it is you are trying to achieve. In the case of being a successful and effective mathematics instructor, the nub of the matter is to help your students to achieve mathematical maturity. Any college teacher who takes the task seriously must address this issue, and find answers that work-consistent with that teacher's style of teaching.

This brief text will explore all aspects of the mathematical maturity question and endeavor to present some answers. A novice teacher will want to give careful thought to the issues presented here, and will want to internalize those issues as part of becoming an effective mathematics instructor. Senior faculty will also find ideas of interest here. Our presentation should cause even seasoned veterans to rethink what they do, and how they approach the teaching game. Resetting and adjusting our goals is part of development as a scholar.

A lot has been said about mathematical maturity in the context of informal coffee-table discussions. Not enough has been said about it in a rigorous, scholarly fashion. This book will be a first attempt to fill that void.

- SGK

St. Louis, Missouri

Acknowledgements

I would like to thank Harold Boas, John P. D'Angelo, Deborah K. Nelson, Robert Palais, Hung-Hsi Wu, and Doron Zeilberger for sharing their thoughts on mathematical maturity. Robert Burckel, David Collins, Roger Cooke, Jerry Folland, Jeremy Gray, Marvin J. Greenberg, Mark Saul, and James Walker read the entire manuscript with particular care, and contributed many incisive remarks.

As always, Don Albers was a supportive and vigorous editor who helped to bring the project along. He engaged an especially talented copy editor who helped me to sharpen and polish the prose. It is always a pleasure to work with Carol Baxter, Beverly Joy Ruedi and the other MAA book people. My thanks to all.

The Tree of Mathematical Maturity

Etymology of the Word "Maturity"

The word "maturity" is derived from the Old French word maturite and from the Latin words maturitas (ripeness) and maturus (early, speedy, ripe) Cognate words are the Dutch matse, English matzo, French maturité, German Matura, Italian maturità, Yiddish matse.

Bibliography

[AND] D. Anderluh, Proposed math standards divide state's educators, The Sacramento Bee, October 26, 1997, p. A23.
[ASH] N. Ashby, Relativity and the global positioning system, Physics Today 55(2002), 41-47.
[ALA] D. Albers and G. Alexanderson, Mathematical People, Random House/Birkhäuser, Boston, 1985.
[BLS] F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy 81(1973), 637-654.
[BOA] R. P. Boas, When is a C^{∞} function real analytic?, The Mathematical Intelligencer 11(1989), 34-37.
[CAR] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116(1966), 135-157.
[DAW] J. P. D'Angelo and D. B. West, Mathematical Thinking: ProblemSolving and Proofs, $2^{\text {nd }}$ ed., Prentice-Hall, Upper Saddle River, NJ, 1999.
[DEV] K. Devlin, The Math Gene: How Mathematical Thinking Evolved And Why Numbers Are Like Gossip, Basic Books, New York, 2001.
[DOU] R. G. Douglas, Toward a Lean and Lively Calculus, Mathematical Association of America, Washington, D.C., 1986.
[DUB 1] E. Dubinsky, ISETL: A programming language for learning mathematics, Comm. Pure and Appl. Math. 48(1995), 1027-1051.
[DUB2] E. Dubinsky, J. Dautermann, U. Leron, and R. Zazkis, On learning fundamental concepts of group theory, Educational Studies in Mathematics 27(1994), 267-305.
[DUB3] E. Dubinsky and W. Fenton, Introduction to Discrete Mathematics with ISETL, New York, Springer, 1996.
[DUB4] E. Dubinsky and U. Leron, Learning Abstract Algebra with ISETL, Springer Verlag, New York, 1994.
[DUB5] E. Dubinsky, K. Schwingendorf, and D. Mathews, Applied Calculus, Concepts, and Computers, $2^{\text {nd }} e d ., ~ M c G r a w-H i l l, ~ N e w ~$ York, 1995.
[EC] Everybody Counts, www.nap.edu/openbook.php?isbn=0309039770.
[FED] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
[FEF] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1-65.
[GKM] E. A. Gavosto, S. G. Krantz, and W. McCallum, Contemporary Issues in Mathematics Education, MSRI Publications, vol. 36, Cambridge University Press, Cambridge, 1999.
[GAW] Atul Gawande, Complications: A Surgeon's Notes on an Imperfect Science, Picador Press, New York, 2003.
[GLA] M. Gladwell, Outliers: The Story of Success, Little, Brown, \& Co., New York, 2008.
[GRA] J. Gray, Plato's Ghost: The Modernist Transformation of Mathematics, Princeton University Press, Princeton, NJ, 2008.
[HAD] M. Haddon, The Curious Incident of the Dog in the Night-Time, Vintage Books, New York, 2003.
[HAR] G. H. Hardy, A Mathematicians's Apology, Cambridge University Press, Cambridge, 1940.
[HARR] J. R. Harris, The Nurture Assumption: Why Children Turn Out the Way They Do, Free Press, New York, 2009.
[HER] I. Herstein, Topics in Algebra, Xerox, Lexington, 1975.
[HAL] D. Hughes Hallett, et al, Calculus, John Wiley and Sons, New York, 1992.
[JAC1] A. Jackson, The math wars: California battles it out over math education reform (Part I), Notices of the AMS 44(1997), 695702.
[JAC2] A. Jackson, The math wars: California battles it out over math education reform (Part II), Notices of the AMS 44(1997), 817823.
[KLR] D. Klein and J. Rosen, Calculus reform-for the \$millions, Notices of the AMS 44(1997), 1324-1325.
[KOW] S. Kogelman and J. Warren, Mind over Math: Put Yourself on the road to Success by Freeing Yourselffrom Math Anxiety, McGrawHill, New York, 1979.
[KRA1] S. G. Krantz, How to Teach Mathematics, $2^{\text {nd }}$ ed., American Mathematical Society, Providence, RI, 1999.
[KRA2] S. G. Krantz, The Proof is in the Pudding: A Look at the Changing Nature of Mathematical Proof, Springer, New York, 2011, to appear.
[KRA3] S. G. Krantz, The Elements of Advanced Mathematics, $2^{\text {nd }}$ ed., CRC Press, Boca Raton, FL, 2002.
[KRA4] S. G. Krantz, What is several complex variables?, Amer. Math. Monthly 94(1987), 236-256.
[LET] J. R. C. Leitzel and A. C. Tucker, Eds., Assessing Calculus Reform Efforts, Mathematical Association of America, Washington, D.C., 1994.
[LIT] J. E. Littlewood, Littlewood's Miscellany, B. Bollobás ed., Cambridge University Press, Cambridge, 1986.
[LYE] K. Lyen, Beautiful minds: Is there a link between genius and madness?, SMA News 34(2002), 3-7.
[MAZB] B. Mazur, Mathematical Platonism and its opposites, www.math.harvard.edu/~mazur/.
[MAZE] E. Mazur, Peer Instruction: A User's Manual, Benjamin Cummings, New York, 1996.
[MIL] J. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. 64(1956), 399-405.
[MOU] D. Moursund, Math maturity, iae-pedia.org/Math_Maturity.
[NAS] S. Nasar, A Beautiful Mind, $9^{\text {th }}$ ed., Touchstone Books, New York, 2001.
[NCE] National Commission on Excellence in Education, A Nation at Risk: The Imperative for Educational Reform, U. S. Government Printing Office, Washington, D.C., 1983.
[NOL] William Nolen, The Making of a Surgeon, Mid List Press, Minneapolis, MN, 1999.
[PET] Henry Petrowski, To Engineer is Human: The Role of Failure in Successful Design, Vintage Press, New York, 1992.
[RIC] K. Richards, Life, Little, Brown \& Co., New York, 2010.
[RIT] J. F. Ritt, Integration in Finite Terms, Columbia University Press, New York, 1948.
[ROB] A. W. Roberts, Calculus: The Dynamics of Change, Mathematical Association of America, Washington, D.C., 1995.
[ROI] J. Roitman, Beyond the math wars, Contemporary Issues in Mathematics Education, MSRI Publications, vol. 36, Cambridge University Press, Cambridge, 1999, 123-134.
[ROS1] M. Rosenlicht, Liouville's theorem on functions with elementary integrals, Pacific J. Math. 24(1968), 153-161.
[ROS2] M. Rosenlicht, Integration in finite terms, Amer. Math. Monthly 79(1972), 963-972.
[ROSG] A. Rosenberg, et al, Suggestions on the Teaching of College Mathematics, Report of the Committee on the Undergraduate Program in Mathematics, Mathematical Association of America, Washington, D.C., 1972.
[RUD] W. Rudin, Principles of Mathematical Analysis, $3^{\text {rd }}$ ed., McGraw-Hill, New York, 1976.
[SCH] D. Schattschneider, The mathematical side of M. C. Escher, Notices of the AMS 57(2010), 706-717.
[SIS] J. Simons and D. Sullivan, Structured vector bundles define differential K-theory, Quanta of maths, Clay Math. Proc. 11(2010), Amer. Math. Soc., Providence, RI, 579-599.
[SPI] M. Spivak, Calculus, $4^{\text {th }}$ ed., Publish or Perish Press, Houston, TX, 2008.
[STK] G. M. A. Stanic and J. Kilpatrick, Mathematics curriculum reform in the United States: A historical perspective, Int. J. Educ. Res. 17(1992), 407-417.
[STE1] L. Steen, Calculus for a New Century: A Pump, Not a Filter, Mathematical Association of America, Washington, D.C., 1987.
[THU] W. P. Thurston, On proof and progress in mathematics, Bull. AMS 30(1994), 161-177.
[TOB] S. Tobias, Overcoming Math Anxiety, Norton, New York, 1978.
[TRE] U. Treisman, Studying students studying calculus: a look at the lives of minority mathematics students in college, The College Mathematics Journal, 1992, 362-372.
[TUC] T. W. Tucker, ed., Priming the Calculus Pump: Innovations and Resources, CPUM Subcommittee on Calculus Reform and the First Two Years, Mathematical Association of America, Washington, D.C., 1990.
[VER] Abraham Verghese, My Own Country: A Doctor's Story, Vintage Press, New York, 1995.
[WIL] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141(1995), 443-551.
[WU1] H. H. Wu, The mathematician and the mathematics education reform, Notices of the AMS 43(1996), 1531-1537.
[WU2] H. H. Wu, The mathematics education reform: Why you should be concerned and what you can do, Amer. Math. Monthly 104(1997), 946-954.

Index

ABD, 74

Abel, Niels Hendrik, 36, 56
Abel, Niels Henrik, 59
all but dissertation, 74
answers
approximate, 31
anxiety, 38
anxiety and mathematics, 64
AP tests, 6
apartheid, 92
Appolonius, 10
approximate mathematics, 32
Archimedes, 74
argument, teaching to students, 43
Asperger, Hans, 73
syndrome, 64, 73, 102
Astronomia Nova, 24
athletic talent, 55
attrition vs. content vs. self-esteem, 44
audience
who is my?, 97
autism, 73

Bank of England, 44
Bartók, Béla, 73
Big Blue, 8
Binet, Alfred, 72
Binet-Simon test, 72
Binford, Neal, 4
biologists
and proof, 92
black despair, 99
Black/Scholes theory, 4
Boas, Ralph, 89
Bott, Raoul, 52, 56
Brahe, Tycho, 10, 23
British
educational system, 43

British educational system, discourse in, 43
calculators, 33
and teaching, 33
calculus, 86
and intuition, 105
as a filter, 82
attrition rate, 42
dropout rate, 42
failure rate, 42
have them take, 51
reform, 42
taught in high schools, 5
without proofs, 105
Cambridge University, 38, 43
capstone
experience, 42,53
Cartan, Henri, 52, 56
Cartwright, Mary, 111
Casals, Pablo, 17
Cauchy, Augustin, 84
Châu, Ngô Bao, 56
chemistry maturity, 9
chess, 8
collaboration
axioms for, 110
collaborators
at a distance, 111
Common Core State Standards, 68
computer science, 98
computer-aided design, 32
confidence, 62
Connors, Jimmy, 55
content vs. self-esteem vs. empowerment vs. attrition, 44
corona problem, 59
courses
prioritizing, 6
creating new mathematics, 74,75
critical thinking, 81, 90
teaching to students, 43
curriculum
change sponsored by NSF, 50
connections in, 54
Dahlberg, Bjorn, 118
Dales, Garth, 13
delayed gratification, 97, 99
derivative, 20
definitions of, 20
Descartes, René, 96
Diaconis, Persi, 43
Dickinson, Emily, 73
differential equations, 87
differential forms, 52, 94
Digital Library of Mathematical Functions, 34
dilletantism, 75
discourse, $9,43,69,71,78,82,89,91$, 103
teaching students, 43
DLMF, 34
doggedness, 112
Douglas, R., 42
drug addict, 65
Dubinsky, Ed, 94
Einstein, Albert, 10, 73, 86, 102
empowerment vs. attrition vs. content
vs. self-esteem, 44
engineers
and mistakes, 84
and proof, 92
Epitome Astronomiae Copernicanae, 24
erf, 34
error detection mechanisms, 37
error term, 31
established experts, 82
Esterle, Jean, 13
Euclid, 10
Euclidean geometry, 88
Europe and centralized schooling, 67

Evert, Chris, 55
Ewing, John, 46
fear of failure, 14
Federer, Herbert, 96
Fefferman, Charles, 56
Fermat's last theorem, 38
error in the proof of, 38
proof of, 38
Fermat, Pierre de, 89
Fields Medal, 56
Fields Medalists, 17
forest for the trees
see the, 38
four elements
atoms, 10
Fourier analysis, 86
fractal geometry, 69
fractions, 87
function, 88
Galilei, Galileo, 10
Galois, Evariste, 56, 59, 102
group, 90
Galton, Francis, 71
gaps
filling in, 38
Garfunkel, Art, 55
Gauss, Carl Friedrich, 74
genes
good, 77
geophysicists and proof, 92
getting a sense of the students, 5
giddy elation, 99
Gladwell, Malcolm, 6
Gödel, Kurt, 74, 102
Goldstine, Herman, 99
Gould, Glen, 73
GPS systems, 86, 92, 118
graph theory, 5, 6
Hald, Ole, 103
teaching method, 104
Hamlet, 30
Hardy, Godfrey Harold, 29, 39, 85
Harmonices Mundi, 24

Harvard calculus, 43
project, 43
sales of, 43
Harvard method in physics, 103
Hawking, Stephen, 11
Herstein, Israel Nathan, 96
higamus bigamus men are polygamous, 112
Hironaka, Hisuke, 56
Hitler, Adolph, 73
Hugo, Victor, 74
human understanding
tracks of, 21
ideas
internalizing, 47, 79, 81, 94
traveling well, 85
Illusie, Luc, 38
Institute for Advanced Learning, 47
Institute for Defense Analyses, 108
intelligence
analytic, 101
bodily kinesthetic, 100
creativity, 101
interpersonal, 100
intrapersonal, 100
linguistic, 100
logic-mathematical, 100
musical, 100
naturalistic, 100
practical, 101
spatial, 100
types of, 100
internalizing ideas, 94
Internet
learning, 52
intuition
not a panacea, 105
intuition vs. rigor, 104
sorting out the differences, 105
iPhone, xiv, 33
IQ Test, 72
flaws in, 72
ISETL, 94
Jaffe, Arthur, 116
Jeans, James, 30

Jefferson, Thomas, 73
Jones, Quincy, 55
Jordan canonical form, 52
Joyce, James, 73
Julius Caesar, 30
Kantianism, 18
and physical science, 19
Katz, Nicholas, 38
Kaufman Assessment Battery for Children, 72
Kepler, Johannes, 10, 23
laws, 10, 24
Kevorkian, Jack, 65
knowledge
is essential, 80
Kodaira Vanishing Theorem, 13
Lafforgue, Laurent, 56
Lang, Serge, 74, 85
Laumon, Gérard, 56
law school text, 96
Lawrence Berkeley Labs, 108
Lawson, Blaine, 17
lawyers
and proof, 91
learning
by imitating a master, 78
by trial and error, 78
different types of, 79
for understanding, 80
how students engage in, 81
in terms of what I taught myself, 82
rote, 78,80
style of, 80
learning from mistakes, 62
Leibniz, Gotffried Wilhelm von, 84, 89
Lewy, Hans, 13
life
fulfilling, 8
rules of, 110
life-changing experience, 62
literary critics
and proof, 91
literature maturity, 9
Littlewood, John Edensor, 30, 110-113
local control of schools, 67
logarithms, 24
logic
first order, 6
first-order, 4
sentential, 5
Los Alamos, 8
MacArthur Prize, 43, 47
Malagueña, 64
manic depression, 65, 101
Maple, 33
Mars, 24
Masters Degree
terminal, 74
math
avoidance, 65
is unforgiving, 64
math anxiety, 64, 98
and education, 65
and lack of mathematical maturity, 98
and the mathematician, 66
math teacher
goals of, 2
Mathematica, 33
mathematical
approximation, 31
child, 94
facts, 90
language, 22
mathematical beauty
creation of, 39
mathematical centers of the world, 56
mathematical idea
credence of, 90
mathematical immaturity, 8
mathematical maturity, 1
and computers, 28
and critical thinking skills, 118
and knowledge, 89
and physics, 116
and problems, 28
and rigorous reasoning, 116
and teachers, 45
and the average citizen, 117
as the nub of a mathematical education, 117
basics of, 2
born into a state of, 6
examples of, 11
levels of, 16
to-do list for, 108
what is?, 2
mathematician
life of, 108
professional, 47
successful, 108
mathematicians
and life, 66
and music, 66
and tunnel vision, 66
dimensions of, 66
self-absorbed, 115
A Mathematician's Apology, 111
A Mathematician's Miscellany, 110
mathematics
advent of mathematical thinking, 94
and diversions, 66
and mistakes, 84
beginning of awareness, 93
context for life, 67
curriculum, 50
dawn of reason, 94
ideas in, 22
layering of, 79
naïve stage, 93
rapid development of, 22
the big picture, 79
Math for America, 46
MatLab, 33
maturity vs. inquisitiveness, 86
Maurer, Stephen, 42
Maxima, 33
Mazur, Barry, 59
Mazur, Eric, 103
McDonnell-Douglas, 33
medical school text, 96
men
and mathematical maturity, 75
skills, 75
Michelangelo, 73
Milnor, John, 12, 59
mistakes, 84
in famous papers, 37
in mathematical writing, 37
recovering from, 84
modeling
mathematical, 39
Mohammed, 71
Monte Carlo method, 32
Morgenstern, Oskar, 99
Mozart, Wolfgang Amadeus, 73
Mumford, David, 52, 56, 59
Myers-Briggs Index, 69
and mathematical maturity, 70
Myers-Briggs Type Indicator, 69

Napier, John, 10, 23
Nash, John, 102
National Academy of Sciences, 75
National Council of Teachers of Mathematics, 68
National Medal of Science, 75
National Science Foundation, 60
National Security Agency, 108
national standards, 67
nature vs. nurture, 77
NCTM, 68
Neumann, John von, 99
Newton Institute, 38
Newton, Isaac, 10, 73, 89
law of gravity, 91
Noyce, Robert, 107
NSF education programs, 42
numbers
large, 30
Oak Ridge National Laboratory, 108
ODEs, 87
Oldenburg, Henry, 23
optimism, 62
Orwell, George, 73
Oxford University, 43
Pavlov, Ivan, 8
Penrose, Roger, 11, 116
personality types, 69
pharmaceutical machinists, 32
Ph.D. advisor, 61

Philosophical Transactions of the Royal
Society of London, 23
philosophy maturity, 9
physicians
and mistakes, 84
and proof, 92
physicists
and proof, 91
physics maturity, 9
Piaget, Jean, 78, 93
concrete operational stage, 93
formal operational stage, 93
four stages of learning, 93
logical concepts, 95
preoperational stage, 93
sensorimotor stage, 93
Picard iteration scheme, 94
pills
shapes of, 32
sizing, 32
Plancherel theorem, 94
Plato
solids, 10
Platonism, 18
Poincaré, Henri, 84
points of view
other, 116
Prefontaine, Steve, 55
problems
betting your life on, 108
of Hardy, 29
research, 61
proof
pretty, 39
proof and progress in mathematics, 19
psychological
conditions, 101
counselors, 65
Pythagoras, 18
theorem, 18
Qing Dynasty, 71
Quillen, Daniel, 56
Rabi, Isidor Isaac, 12
Ramanujan, Srinivasa, 56, 87, 113
Raven's Progressive Matrices, 72
reading
and thinking, 95
real numbers, 87
reasoning
abstract, 16
rigorous, 116
rebuilding an idea in the mind, 94
received wisdom, 90
reform, money and, 44
regularity theory for elliptic boundary
value problems, 94
relativity, 10, 102
general, 10
Research Experience for Undergraduates, 60
research problems, 61
reserve system of accounting, 51
REU program, 60
Riemann hypothesis, 59
twenty-step program for, 59
Riemann, Bernhard, 10
rigor
as counterpoint to intuition, 105
rock star, 7
Roosevelt, Franklin Delano, 44
Rudin, Mary Ellen, 88
Rudin, Walter, 96
Ruelle, David, 39
Saccheri, Giovanni, 85
Sage, 33
schizophrenia, 101
scholar
recognized, 17
self-confidence, 99
self-doubt, 38
self-esteem, 44
self-esteem vs. empowerment vs. attrition vs. content, 44
semigroups, 5, 6
series, 87
Serre, Jean-Pierre, 52, 56
Simon, Barry, 116
Simons, James, 46
Simpson, Thomas, 74
Siu, Yum-Tong, 13

Skinner, Burrhus Frederic, 8
Smale, Stephen, 52, 56
smart
value of, 97
smarts, 101
street, 101
snails and birds, 61
Stanford-Binet test, 64, 72
Stein, Elias Menachem, 52, 56
Sternberg, Robert Jeffrey, 101
strange attractor, 39
string theory, 11
student research, 60
students
and research, 60
asking questions, 11
becoming motivated, 82
challenging, 54, 55
creating questions, 58
excited about learning, 103
from a different generation, 103
getting a sense of, 5
goals, 102, 104
listening to, 5
motivation of, 83
problems for, 57
values, 102
studying existing mathematics, 74,75
stumbles and missteps, 62
Sui Dynasty, 71
Sutton, Willie, 43
Swift, Jonathan, 73
tablets
shapes of, 32
Tang Dynasty, 71
Tao, Terence, 52, 56, 59
Taylor, Elizabeth, 83
Taylor, Richard, 35, 38
teacher
as role model, 45, 46, 55, 81, 107
teachers
sensitivity to errors, 37
teaching
parody, 49
reform, 42
techniques, 41
teaching reform, 4
and mathematical maturity, 45
teaching reform, NSF sponsorship of, 42
tenacity, 36, 97
value of, 97
10,000 hours of effort, 7
theorem
beautiful, 39
theorems
big, 35
little, 35
thinking
abstract, 16
concrete, 16
Thom, René, 56
Thurston, William Paul, 17, 19-21
TIMSS, 48
tongue in mouth, 113
track
lower division for math majors, 52
upper division for math majors, 52
traditional methods, rethinking, 45
transitions course, 3
significance of, 3
trash
problems thrown in the, 15
Treisman, Uri, 7, 42, 46-48
teaching techniques, 46
Trends in International Mathematics and
Science Study, 48
triangle
dilation of, 28
trigonometric functions, 29
trigonometry, 88
Tulane University, 42
turf in the reform vs. tradition debate, 44
Turing, Alan, 73

Ullman, Jeff, 98
undergraduate research, 60
understanding of mathematics, 19
understanding what the author is not saying, 62
understanding what the author is saying, 62
United States
ranking in math teaching, 48
wall, hitting the, 99
Warhol, Andy, 73
Wechsler
Adult Intelligence Scale, 72
Intelligence Scale for Children, 72
Weierstrass, Karl, 74
nowhere differentiable function, 89
Wiener, Norbert, 74
Wilczek, Frank, 116
Wiles, Andrew, 35, 97
Wiles, Andrews, 38
Witten, Edward, 11, 116
Wittgenstein, Ludwig, 73
WolframAlpha, 33
women
and mathematical maturity, 75
skills, 75
Woodcock-Johnson Tests of Cognitive Abilities, 72
Woods, Tiger, 55
World Series, 14
writing
and analytical thinking, 96
Zariski, Oskar, 52, 56
zero sphere, 13

About the Author

Steven G. Krantz was born in San Francisco, California in 1951. He received the B.A. degree from the University of California at Santa Cruz in 1971 and the Ph.D. from Princeton University in 1974.

Krantz has taught at UCLA, Penn State, Princeton University, and Washington University in St. Louis. He served as Chair of the latter department for five years.

Krantz has published more than 60 books and more than 160 scholarly papers. He is the recipient of the Chauvenet Prize and the Beckenbach Book Award of the MAA. He has received the UCLA Alumni Foundation Distinguished Teaching Award and the Kemper Award. He has directed 18 Ph.D. theses and 9 Masters theses.

This book is about the concept of mathematical maturity. Mathematical maturity is central to a mathematics education. The goal of a mathematics education is to transform the student from someone who treats mathematical ideas empirically and intuitively to someone who treats mathematical ideas analytically and can control and manipulate them effectively. Put more directly, a mathematically mature person is one who can read, analyze, and evaluate proofs. And, most significantly, he/ she is one who can create proofs. For this is what modern mathematics is all about: coming up with new ideas and validating them with proofs. The book provides background, data, and analysis for understanding the concept of mathematical maturity. It turns the idea of mathematical maturity from a topic for coffee-room conversation to a topic for analysis and serious consideration.

