Mathematics
http://www.aimspress.com/journal/Math

Research article

On meromorphic solutions of certain differential-difference equations

Yong Liu*, Chaofeng Gao and Shuai Jiang
Department of Mathematics, Shaoxing College of Arts and Sciences, Shaoxing, Zhejiang 312000, China

* Correspondence: Email: liuyongsdu1982@163.com; Tel: +18258518421.

Abstract

In this article, we mainly use Nevanlinna theory to investigate some differential-difference equations. Our results about the existence and the forms of solutions for these differential-difference equations extend the previous theorems given by Wang, Xu and Tu [19].

Keywords: entire functions; differential-difference equations; value distribution; finite-order Mathematics Subject Classification: 30D35, 39A10

1. Introduction and main results

We assume that the reader is familiar with the basic notions of Nevanlinna theory (see [4, 6, 22]). Recently, a number of papers (including [1-3, 5, 7-21, 23]) have focused on solvability and existence of meromorphic solutions of difference equations or differential-difference equations in complex plane. In 2009, Liu [10] obtianed the Fermat type equation $l(z)^{2}+[l(z+c)-l(z)]^{2}=1$ has a nonconstant entire solution of finite order. In 2012, Liu et al. [11] proved that $l(z)^{2}+l(z+c)^{2}=1$ has a transcendental entire solution of finite order. In 2018, Zhang [23] obtained the difference equations $l(z)^{2}+[l(z+c)-l(z)]^{2}=$ $R(z)$ has no finite order transcendental meromorphic solutions with finitely many poles. In 2020, Wang et al. [18] further discussed the existence and the forms of the solutions for some differential-difference equations, they obtained
Theorem A. Let c be a nonzero constant, $R(z)$ be a nonzero rational function, and $\alpha, \beta \in \mathbb{C}$ satisfy $\alpha^{2}-\beta^{2} \neq 1$. Then the following difference equation of Fermat-type

$$
l(z)^{2}+[\alpha l(z+c)-\beta l(z)]^{2}=R(z)
$$

has no finite order transcendental meromorphic solutions with finitely many poles.
Theorem B. Let $c(\neq 0), \alpha(\neq 0), \beta \in \mathbb{C}$, and $P(z), Q(z)$ be nonzero polynomials satisfying one of two following cases:
(i) $\operatorname{deg}_{z} P(z) \geq 1, \operatorname{deg}_{z} Q(z) \geq 1$;
(ii) $P(z), Q(z)$ are two constants and $P^{2}\left(\alpha^{2}-\beta^{2}\right) \neq 1$. Then the following Fermat-type difference equation

$$
l(z)^{2}+P^{2}(z)[\alpha l(z+c)-\beta l(z)]^{2}=Q(z)
$$

has no transcendental entire solutions with finite order.
For further study, we continue to discuss the existence and the forms of solutions for certain differential-difference equations with more general forms than the previous forms by Liu et al. [10, $11,18,23]$ and obtain the following results.
Theorem 1.1. Let $c_{j}(j=1,2, \cdots, m)$ be distinct constants, $a \in \mathbb{C} \backslash\{0\}, \varrho_{i} \in \mathbb{C}(i=1,2, \cdots, m), R(z)$ be a nonzero rational function, and $\sum_{i=1}^{m} \varrho_{i}\left(\exp ^{a c_{i}}+\exp ^{-a c_{i}}\right) \neq 0$. Then the following difference equation

$$
\begin{equation*}
l(z)^{2}+\left[\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right]^{2}=R(z) \tag{1.1}
\end{equation*}
$$

has no finite order transcendental meromorphic solutions with finitely many poles.
Theorem 1.2. Let $c_{j}(j=1,2, \cdots, m)$ be distinct constants, $a \in \mathbb{C} \backslash\{0\}, \varrho_{i} \in \mathbb{C}(i=1,2, \cdots, m)$, and $P(z), Q(z)$ be nonzero polynomials satisfying one of two following cases:
(i) $\operatorname{deg}_{z} P(z) \geq 1$;
(ii) P is a constant and $P^{2}\left[\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}} \sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}}\right] \neq 1$. Then the following difference equation

$$
\begin{equation*}
l(z)^{2}+P(z)^{2}\left[\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right]^{2}=Q(z) \tag{1.2}
\end{equation*}
$$

has no transcendental entire solutions with finite order.
Theorem 1.3. Let $c_{j}(j=1,2, \cdots, m)$ be distinct constants, $a \in \mathbb{C} \backslash\{0\}, \varrho_{i} \in \mathbb{C}(i=1,2, \cdots, m)$. Let $l(z)$ be a transcendental finite order meromorphic solution of difference-differential equation

$$
\begin{equation*}
l^{\prime}(z)^{2}+\left[\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right]^{2}=R(z) \tag{1.3}
\end{equation*}
$$

where $R(z)$ is a nonzero rational function. If $l(z)$ has finitely many poles, and $\sum_{j=1}^{m} c_{j}{ }^{2} \varrho_{j} \exp ^{a c_{j}} \sum_{j=1}^{m} c_{j}^{2} \varrho_{j} \exp ^{-a c_{j}} \neq 0$, then $R(z)$ is a nonconstant polynomial with $\operatorname{deg}_{z} R(z) \leqslant 2$, and $\sum_{j=1}^{m} c_{j} \varrho_{j} \exp ^{a c_{j}} \sum_{j=1}^{m} c_{j} \varrho_{j} \exp ^{-a c_{j}}=1$. Furthermore,
(i) If $R(z)$ is a nonconstant polynomial with $d e g_{z} R(z) \leqslant 2$, and $\sum_{i=1}^{m} \varrho_{i} \neq 0$, then we have

$$
l(z)=\frac{s_{1}(z) \exp ^{a z+b}+s_{2}(z) \exp ^{-(a z+b)}}{2}
$$

where $R(z)=\left(m_{1}+a s_{1}(z)\right)\left(m_{2}-a s_{2}(z)\right), a \neq 0, b \in \mathbb{C}$ and a, b, c_{j}, ϱ_{i} satisfy $i\left(\varrho_{1} \exp ^{a c_{1}}+\cdots+\varrho_{m} \exp ^{a c_{m}}\right)=$ a and $i\left(\varrho_{1} \exp ^{-a c_{1}}+\cdots+\varrho_{m} \exp ^{-a c_{m}}\right)=a$, where $s_{j}(z)=m_{j} z+n_{j}, m_{j}, n_{j} \in \mathbb{C}(j=1,2)$.
(ii) If $R(z)$ is a nonzero constant, and $\sum_{i=1}^{m} \varrho_{i} \neq 0$, then

$$
l(z)=\frac{n_{1} \exp ^{a z+b}+n_{2} \exp ^{-(a z+b)}}{2}
$$

where $R(z)=-a^{2} n_{1} n_{2}, a \neq 0, b \in \mathbb{C}$.
Theorem 1.4. Let $c_{j}(j=1,2, \cdots, m)$ be distinct constants, $a \in \mathbb{C} \backslash\{0\}, \varrho_{i} \in \mathbb{C}(i=1,2, \cdots, m)$. Let $l(z)$ be a transcendental meromorphic solution of the following difference-differential equation

$$
\begin{equation*}
l^{\prime \prime}(z)^{2}+\left[\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right]^{2}=R(z), \tag{1.4}
\end{equation*}
$$

where $R(z)$ is a nonzero rational function.
(i) If $\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}}+\sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}} \neq 0$, then (1.4) has no finite order transcendental meromorphic solution with finitely many poles.
(ii) If $\sum_{j=1}^{m} i c_{j} \varrho_{j} \exp ^{a c_{j}} \neq 2 a, \sum_{j=1}^{m} i c_{j} \varrho_{j} \exp ^{-a c_{j}} \neq 2 a$, and (1.4) has a finite order transcendental meromorphic solution $l(z)$ with finitely many poles, then $R(z)$ is a constant. Furthermore if $\sum_{i=1}^{m} \varrho_{i} \neq 0$, then we have

$$
l(z)=\frac{t_{1} \exp ^{a z+b}+t_{2} \exp ^{-(a z+b)}}{2}
$$

where $a, b, t_{1}, t_{2}, \varrho_{i}, c_{j}$ satisfy $\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}}+\sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}}=0, R(z)=a^{4} t_{1} t_{2}, b \in \mathbb{C}$.

2. Preliminary lemmas

The following two lemmas play an important role in the proof of our results.
Lemma 2.1. ([22]) Suppose that $f_{1}, f_{2}, \cdots, f_{n}(n \geq 2)$ are meromorphic functions and $g_{1}, g_{2}, \cdots, g_{n}$ are entire functions satisfying the following conditions:
(i) $\sum_{j=1}^{n} f_{j} e^{x^{g_{j}}} \equiv 0$;
(ii) $g_{j}-g_{k}$ are not constants for $1 \leq j<k \leq n$;
(iii) For $1 \leq j \leq n, 1 \leq h<k \leq n, T\left(r, f_{j}\right)=o\left\{T\left(r\right.\right.$, exp $\left.\left.^{g_{n}-g_{k}}\right)\right\}(r \rightarrow \infty, r \notin E)$, where E is a set of $r \in(0, \infty)$ with finite linear measure.
Then $f_{j} \equiv 0(j=1,2, \cdots, m)$.
Lemma 2.2. ([22]) Let $l(z)$ be a meromorphic function of finite order $\rho(l)$. Write

$$
l(z)=c_{k} z^{k}+c_{k+1} z^{k+1}+\cdots,\left(c_{k} \neq 0\right)
$$

near $z=0$ and let $\left\{a_{1}, a_{2}, \cdots\right\}$ and $\left\{b_{1}, b_{2}, \cdots\right\}$ be the zeros and poles of l in $\mathbb{C} \backslash\{0\}$, respectively. Then

$$
l(z)=z^{k} \exp ^{Q(z)} \frac{P_{1}(z)}{P_{2}(z)}
$$

where $P_{1}(z)$ and $P_{2}(z)$ are the canonical products of l formed with the non-null zeros and poles of l, respectively, and $Q(z)$ is a polynomial of degree $\leqslant \rho(l)$.

3. Proof of Theorem 1.1

Suppose that (1.1) has a finite order transcendental meromorphic solution $l(z)$ with finitely many poles. Rewriting (1.1) as follows

$$
\begin{align*}
& \left(l(z)+i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)\right)(l(z)- \tag{3.1}\\
& \left.i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)\right)=R(z) .
\end{align*}
$$

Since $l(z)$ has finitely many poles, $R(z)$ is a nonzero rational function, then $l(z)+i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l(z+\right.$ $\left.\left.c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)$ and $l(z)-i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)$ both have finitely many poles and zeros. Together Lemma 2.2 with (3.1), we obtain that

$$
\begin{equation*}
l(z)+i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)=R_{1}(z) \exp ^{p(z)} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
l(z)-i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)=R_{2}(z) \exp ^{-p(z)}, \tag{3.3}
\end{equation*}
$$

where $R_{1}(z), R_{2}(z)$ are two nonzero rational functions such that $R_{1}(z) R_{2}(z)=R(z)$, and $p(z)$ is a nonconstant polynomial. (3.2) and (3.3) imply that

$$
\begin{equation*}
l(z)=\frac{R_{1}(z) e x p^{p(z)}+R_{2}(z) \exp ^{-p(z)}}{2} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)=\frac{R_{1}(z) \exp ^{p(z)}-R_{2}(z) \exp ^{-p(z)}}{2 i} . \tag{3.5}
\end{equation*}
$$

Substituting (3.4) into (3.5), we have

$$
\begin{align*}
& \exp ^{p(z)}\left(i \varrho_{1} R_{1}\left(z+c_{1}\right) \exp ^{p\left(z+c_{1}\right)-p(z)}+i \varrho_{2} R_{1}\left(z+c_{2}\right) \exp ^{p\left(z+c_{2}\right)-p(z)}+\cdots\right. \\
& \left.+\varrho_{m} R_{1}\left(z+c_{m}\right) \exp ^{p\left(z+c_{m}\right)-p(z)}-R_{1}(z)\right)+ \\
& \exp ^{-p(z)}\left(i \varrho_{1} R_{2}\left(z+c_{1}\right) \exp ^{p(z)-p\left(z+c_{1}\right)}+i \varrho_{2} R_{2}\left(z+c_{2}\right) \exp ^{p(z)-p\left(z+c_{2}\right)}+\cdots\right. \tag{3.6}\\
& \left.+i \varrho_{m} R_{2}\left(z+c_{m}\right) \exp ^{p(z)-p\left(z+c_{m}\right)}+R_{2}(z)\right)=0
\end{align*}
$$

By Lemma 2.1 and (3.6), we have

$$
\begin{align*}
& i \varrho_{1} R_{1}\left(z+c_{1}\right) \exp ^{p\left(z+c_{1}\right)-p(z)}+i \varrho_{2} R_{1}\left(z+c_{2}\right) \exp ^{p\left(z+c_{2}\right)-p(z)} \\
& +\cdots+i \varrho_{m} R_{1}\left(z+c_{m}\right) \exp ^{p\left(z+c_{m}\right)-p(z)}-R_{1}(z)=0, \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
& i \varrho_{1} R_{2}\left(z+c_{1}\right) \exp ^{p(z)-p\left(z+c_{1}\right)}+i \varrho_{2} R_{2}\left(z+c_{2}\right) \exp ^{p(z)-p\left(z+c_{2}\right)} \\
& +\cdots+i \varrho_{m} R_{2}\left(z+c_{m}\right) \exp ^{p(z)-p\left(z+c_{m}\right)}+R_{2}(z)=0 . \tag{3.8}
\end{align*}
$$

Since $R_{1}(z), R_{2}(z)$ are two nonzero rational functions and that $l(z)$ is of finite order, we obtain that $p(z)$ is a polynomial of degree one. If $\operatorname{deg}_{z} p(z) \geq 2$, then we obtain that $\operatorname{deg}_{z}\left[p\left(z+c_{j}\right)-p\left(z+c_{i}\right)\right] \geq 1$. Hence, we have $T\left(r, \varrho_{j} R_{j}\left(z+c_{j}\right)\right)=S\left(r, \exp ^{p\left(z+c_{i}\right)-p\left(z+c_{j}\right)}\right)$, Lemma 2.1 and (3.7) imply that $R_{1}(z) \equiv 0$. This is impossible. By the similar method as above, we also have $R_{2}(z) \equiv 0$, a contradiction. So we have $\operatorname{deg}_{z} p(z)=1$. Set $p(z)=a z+b, a \neq 0, b \in \mathbb{C}$. By (3.7) and (3.8), we have

$$
\begin{aligned}
& \lim _{|z| \rightarrow \infty} i\left(\varrho_{1} \frac{R_{1}\left(z+c_{1}\right)}{R_{1}(z)} \exp ^{p\left(z+c_{1}\right)-p(z)}+\cdots+\varrho_{m} \frac{R_{1}\left(z+c_{m}\right)}{R_{1}(z)} \exp ^{p\left(z+c_{m}\right)-p(z)}\right) \\
& =i\left(\varrho_{1} \exp ^{a c_{1}}+\cdots+\varrho_{m} \exp ^{a c_{m}}\right)=1,
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{|z| \rightarrow \infty} i\left(\varrho_{1} \frac{R_{2}\left(z+c_{1}\right)}{R_{2}(z)} \exp ^{p(z)-p\left(z+c_{1}\right)}+\cdots+\varrho_{m} \frac{R_{2}\left(z+c_{m}\right)}{R_{2}(z)} \exp ^{p(z)-p\left(z+c_{m}\right)}\right) \\
& =i\left(\varrho_{1} \exp ^{-a c_{1}}+\cdots+\varrho_{m} \exp ^{-a c_{m}}\right)=-1 .
\end{aligned}
$$

Thus, it yields that $\sum_{i=1}^{m} \varrho_{i}\left(\exp ^{a c_{i}}+\exp ^{-a c_{i}}\right)=0$, this is a contradiction with the assumption of Theorem 1.1. Hence, Theorem 1.1 holds.

4. Proof of Theorem 1.2

If $l(z)$ is a transcendental entire solution with finite order of (1.2), then by the similar method as the proof of Theorem 1.1, we have

$$
\begin{equation*}
l(z)=\frac{Q_{1}(z) \exp ^{p(z)}+Q_{2}(z) \exp ^{-p(z)}}{2} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)=\frac{Q_{1}(z) \exp ^{p(z)}-Q_{2}(z) \exp ^{-p(z)}}{2 i P(z)} \tag{4.2}
\end{equation*}
$$

where $p(z)$ is a nonconstant polynomial and $Q_{1}(z) Q_{2}(z)=Q(z), Q_{1}(z), Q_{2}(z)$ are nonzero polynomials. Together (4.1) with (4.2), we have

$$
\begin{align*}
& \exp ^{p(z)}\left(i_{1} P(z) Q_{1}\left(z+c_{1}\right) \exp ^{p\left(z+c_{1}\right)-p(z)}+i \varrho_{2} P(z) Q_{1}\left(z+c_{2}\right) \exp ^{p\left(z+c_{2}\right)-p(z)}\right. \\
& \left.+\cdots+i \varrho_{m} P(z) Q_{1}\left(z+c_{m}\right) \exp ^{p\left(z+c_{m}\right)-p(z)}-Q_{1}(z)\right)+ \\
& \exp ^{p(z)}\left(\text { i }_{1} P(z) Q_{2}\left(z+c_{1}\right) \exp ^{p(z)-p\left(z+c_{1}\right)}+i \varrho_{2} P(z) Q_{2}\left(z+c_{2}\right) \exp ^{p(z)-p\left(z+c_{2}\right)}\right. \tag{4.3}\\
& \left.+\cdots+i \varrho_{m} P(z) Q_{2}\left(z+c_{m}\right) \exp ^{p(z)-p\left(z+c_{m}\right)}+Q_{2}(z)\right)=0 .
\end{align*}
$$

By Lemma 2.1 and $p(z)$ is a nonconstant polynomial, we have

$$
\begin{align*}
& i \varrho_{1} P(z) Q_{1}\left(z+c_{1}\right) \exp ^{p\left(z+c_{1}\right)-p(z)}+i \varrho_{2} P(z) Q_{1}\left(z+c_{2}\right) \exp ^{p\left(z+c_{2}\right)-p(z)} \tag{4.4}\\
& +\cdots+i \varrho_{m} P(z) Q_{1}\left(z+c_{m}\right) \exp ^{p\left(z+c_{m}\right)-p(z)}-Q_{1}(z)=0,
\end{align*}
$$

and

$$
\begin{align*}
& i \varrho_{1} P(z) Q_{2}\left(z+c_{1}\right) \exp ^{p(z)-p\left(z+c_{1}\right)}+i \varrho_{2} P(z) Q_{2}\left(z+c_{2}\right) \exp ^{p(z)-p\left(z+c_{2}\right)} \\
& +\cdots+i \varrho_{m} P(z) Q_{2}\left(z+c_{m}\right) \exp ^{p(z)-p\left(z+c_{m}\right)}+Q_{2}(z)=0 . \tag{4.5}
\end{align*}
$$

If $\operatorname{deg}_{z} p(z) \geq 2$, then we have that $\operatorname{deg}_{z}\left[p\left(z+c_{j}\right)-p\left(z+c_{i}\right)\right] \geq 1$. Hence, we have $T\left(r, \varrho_{j} P(z) Q_{1}\left(z+c_{j}\right)\right)=$ $S\left(r, \exp ^{p\left(z+c_{i}\right)-p\left(z+c_{j}\right)}\right)$, Lemma 2.1 and (4.4) imply that $Q_{1}(z) \equiv 0$. A contradiction. By the similar method as above, we also obtain that $Q_{2}(z) \equiv 0$, this is also impossible. Hence, $\operatorname{deg}_{z} p(z)=1$. Let $p(z)=a z+b, a \neq 0, b \in \mathbb{C}$. (4.4) and (4.5) imply that

$$
\begin{gathered}
i \varrho_{1} P(z) Q_{1}\left(z+c_{1}\right) \exp ^{p\left(z+c_{1}\right)-p(z)}+i \varrho_{2} P(z) Q_{1}\left(z+c_{2}\right) \exp ^{p\left(z+c_{2}\right)-p(z)} \\
+\cdots+\varrho_{m} P(z) Q_{1}\left(z+c_{m}\right) \exp ^{p\left(z+c_{m}\right)-p(z)}=Q_{1}(z),
\end{gathered}
$$

and

$$
\begin{gathered}
i \varrho_{1} P(z) Q_{2}\left(z+c_{1}\right) \exp ^{p(z)-p\left(z+c_{1}\right)}+i \varrho_{2} P(z) Q_{2}\left(z+c_{2}\right) \exp ^{p(z)-p\left(z+c_{2}\right)} \\
+\cdots+i \varrho_{m} P(z) Q_{2}\left(z+c_{m}\right) \exp ^{p(z)-p\left(z+c_{m}\right)}=-Q_{2}(z) .
\end{gathered}
$$

By this, we have

$$
\begin{align*}
& P(z)^{2}\left[\varrho_{1}^{2} Q\left(z+c_{1}\right)+\varrho_{2}^{2} Q\left(z+c_{1}\right)+\cdots+\varrho_{m}^{2} Q\left(z+c_{m}\right)+\right. \\
& \varrho_{1} \varrho_{2} Q_{1}\left(z+c_{1}\right) Q_{2}\left(z+c_{2}\right) \exp ^{a c_{1}-a c_{2}}+\cdots+ \\
& \varrho_{1} \varrho_{m} Q_{1}\left(z+c_{1}\right) Q_{2}\left(z+c_{m}\right) \exp ^{a c_{1}-a c_{m}}+\varrho_{2} \varrho_{1} Q_{1}\left(z+c_{2}\right) Q_{2}\left(z+c_{1}\right) \exp ^{a c_{2}-a c_{1}} \tag{4.6}\\
& +\cdots+\varrho_{2} \varrho_{m} Q_{1}\left(z+c_{2}\right) Q_{2}\left(z+c_{m}\right) \exp ^{a c_{2}-a c_{m}} \\
& \left.+\cdots+\varrho_{m} \varrho_{m-1} Q_{1}\left(z+c_{m-1}\right) Q_{2}\left(z+c_{m}\right) \exp ^{a c_{m}-a c_{m-1}}\right]=Q(z) .
\end{align*}
$$

Set $\operatorname{deg}_{z} P(z)=p$ and $\operatorname{deg}_{z} Q(z)=q$, then $p \geq 0, q \geq 0$ and $p, q \in \mathbb{N}_{+}$. Next we divided the following proof into four cases:

Case 1. $p \geq 1$ and $\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}} \sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}}=0$. If $q \geq 1$, by comparing the order both sides of (4.6), we have $2 p+q-1 \leqslant q$, that is, $p \leqslant \frac{1}{2}$, this is impossible. If $q=0$, that is, $Q(z)$ is a constant. Hence, by (4.6), we have $Q(z)=0$, a contradiction.

Case 2. $p \geq 1$ and $\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}} \sum_{i=1}^{m} \varrho_{i}$ exp $^{-a c_{i}} \neq 0$. If $q \geq 1$, by comparing the order both sides of (4.6), we have $2 p+q=q$, that is, $p=0$, a contradiction. If $q=0$, that is, $Q(z)$ is a constant. Hence, by (4.6), we have $P(z)$ is a constant, this is impossible.

Case 3. $p=0$ and $\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}} \sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}}=0$. That is, $P(z)=K(\neq 0)$. If $q \geq 1$, we have $q-1=q$, this is impossible. If $q=0$, we have $Q(z) \equiv 0$. A contradiction.

Case 4. $p=0$ and $\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}} \sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}} \neq 0$. If $q \geq 1$, set $P(z)=K(\neq 0), Q(z)=b_{q} z^{q}+b_{q-1} z^{q-1}+$ $\cdots+b_{0}, b_{q} \neq 0, b_{q-1}, \cdots, b_{0}$ are constants. By comparing the coefficients of z^{q} both sides of (4.6), we have

$$
\begin{equation*}
K^{2}\left[\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}} \sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}}\right]=1 \tag{4.7}
\end{equation*}
$$

This is a contradiction with the condition of Theorem 1.2. If $q=0$, then $K^{2}\left[\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}} \sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}}\right]=$ 1 , this is impossible.

Hecne, Theorem 1.2 holds.

5. Proof of Theorem 1.3

Suppose that (1.3) has a finite order transcendental meromorphic solution $l(z)$ with finitely many poles. Rewriting (1.3) as follows

$$
\begin{align*}
& \left(l^{\prime}(z)+i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)\right)\left(l^{\prime}(z)-\right. \\
& \left.i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)\right)=R(z) . \tag{5.1}
\end{align*}
$$

Since $l(z)$ has finitely many poles, and $R(z)$ is a nonzero rational function, then $l^{\prime}(z)+i\left(\varrho_{1} l\left(z+c_{1}\right)+\right.$ $\left.\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)$ and $l^{\prime}(z)-i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)$ both have finitely many poles and zeros. Hence, by Lemma 2.2, (5.1) can be written as

$$
\begin{equation*}
l^{\prime}(z)+i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)=R_{1}(z) \exp ^{p(z)} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
l^{\prime}(z)-i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)=R_{2}(z) \exp ^{-p(z)} \tag{5.3}
\end{equation*}
$$

where $R_{1}(z), R_{2}(z)$ are two nonzero rational functions such that $R_{1}(z) R_{2}(z)=R(z)$, and $p(z)$ is a nonconstant polynomial. (5.2) and (5.3) imply that

$$
\begin{equation*}
l^{\prime}(z)=\frac{R_{1}(z) e x p^{p(z)}+R_{2}(z) e x p^{-p(z)}}{2} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)=\frac{R_{1}(z) \exp ^{p(z)}-R_{2}(z) \exp ^{-p(z)}}{2 i} \tag{5.5}
\end{equation*}
$$

(5.5) implies that

$$
\begin{equation*}
\varrho_{1} l^{\prime}\left(z+c_{1}\right)+\varrho_{2} l^{\prime}\left(z+c_{2}\right)+\cdots+\varrho_{m} l^{\prime}\left(z+c_{m}\right)=\frac{A_{1}(z) \exp ^{p(z)}-B_{1}(z) \exp ^{-p(z)}}{2 i} \tag{5.6}
\end{equation*}
$$

where $A_{1}(z)=R_{1}^{\prime}+R_{1}(z) p^{\prime}$ and $B_{1}(z)=R_{2}^{\prime}-R_{2}(z) p^{\prime}$. Substituting (5.4) into (5.6), we have

$$
\begin{align*}
& \exp ^{p(z)}\left(i \varrho_{1} R_{1}\left(z+c_{1}\right) \exp ^{p\left(z+c_{1}\right)-p(z)}+i \varrho_{2} R_{1}\left(z+c_{2}\right) \exp ^{p\left(z+c_{2}\right)-p(z)}\right. \\
& \left.+\cdots+i \varrho_{m} R_{1}\left(z+c_{m}\right) \exp ^{p\left(z+c_{m}\right)-p(z)}-A_{1}(z)\right)+ \\
& \exp ^{-p(z)}\left(i_{1} R_{2}\left(z+c_{1}\right) \exp ^{p(z)-p\left(z+c_{1}\right)}+i \varrho_{2} R_{2}\left(z+c_{2}\right) \exp ^{p(z)-p\left(z+c_{2}\right)}\right. \tag{5.7}\\
& \left.+\cdots+i \varrho_{m} R_{2}\left(z+c_{m}\right) \exp ^{p(z)-p\left(z+c_{m}\right)}+B_{1}(z)\right)=0 .
\end{align*}
$$

Together Lemma 2.1 with (5.7), we have

$$
\begin{align*}
& i \varrho_{1} R_{1}\left(z+c_{1}\right) \exp ^{p\left(z+c_{1}\right)-p(z)}+i \varrho_{2} R_{1}\left(z+c_{2}\right) \exp ^{p\left(z+c_{2}\right)-p(z)} \\
& +\cdots+i \varrho_{m} R_{1}\left(z+c_{m}\right) \exp ^{p\left(z+c_{m}\right)-p(z)}-A_{1}(z)=0, \tag{5.8}
\end{align*}
$$

and

$$
\begin{align*}
& i \varrho_{1} R_{2}\left(z+c_{1}\right) \exp ^{p(z)-p\left(z+c_{1}\right)}+i \varrho_{2} R_{2}\left(z+c_{2}\right) \exp ^{p(z)-p\left(z+c_{2}\right)} \tag{5.9}\\
& +\cdots+i \varrho_{m} R_{2}\left(z+c_{m}\right) \exp ^{p(z)-p\left(z+c_{m}\right)}+B_{1}(z)=0 .
\end{align*}
$$

Since $R_{1}(z), R_{2}(z)$ are two nonzero rational functions and $l(z)$ is of finite order, by the similar method as the proof of Theorem 1.1, we have $\operatorname{deg}_{z} p(z)=1$. Let $p(z)=a z+b, a \neq 0, b \in \mathbb{C}$. Substituting $p(z)$, $A_{1}(z), B_{1}(z)$ into (5.8) and (5.9), as $z \longrightarrow \infty$, we have

$$
\begin{aligned}
& \lim _{|z| \rightarrow \infty} i\left(\varrho_{1} \frac{R_{1}\left(z+c_{1}\right)}{R_{1}(z)} \exp ^{p\left(z+c_{1}\right)-p(z)}+\cdots+\varrho_{m} \frac{R_{1}\left(z+c_{m}\right)}{R_{1}(z)} \exp ^{p\left(z+c_{m}\right)-p(z)}\right) \\
& =i\left(\varrho_{1} \exp ^{a c_{1}}+\cdots+\varrho_{m} \exp ^{a c_{m}}\right)=\frac{R_{1}^{R_{1}(z)}}{R_{1}(z)}+a=a,
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{|z| \rightarrow \infty} i\left(\varrho_{1} \frac{R_{2}\left(z+c_{1}\right)}{R_{2}(z)} \exp ^{p(z)-p\left(z+c_{1}\right)}+\cdots+\varrho_{m} \frac{R_{2}\left(z+c_{m}\right)}{R_{2}(z)} \exp ^{p(z)-p\left(z+c_{m}\right)}\right) \\
& =i\left(\varrho_{1} \exp ^{-a c_{1}}+\cdots+\varrho_{m} \exp ^{-a c_{m}}\right)=-\frac{R_{2}^{\prime}(z)}{R_{2}(z)}+a=a .
\end{aligned}
$$

That is

$$
\begin{align*}
& i\left(\varrho_{1} \exp ^{a c_{1}}+\cdots+\varrho_{m} \exp ^{a c_{m}}\right)=a \\
& i\left(\varrho_{1} \exp ^{-a c_{1}}+\cdots+\varrho_{m} \exp ^{-a c_{m}}\right)=a \tag{5.10}
\end{align*}
$$

According to (5.8), (5.9) and (5.10), we have

$$
\begin{align*}
& i \varrho_{1} \exp ^{a c_{1}}\left(R_{1}\left(z+c_{1}\right)-R_{1}(z)\right)+\varrho_{2} \exp ^{a c_{2}}\left(R_{1}\left(z+c_{2}\right)-R_{1}(z)\right) \tag{5.11}\\
& +\cdots+i \varrho_{m} \exp ^{a c_{m}}\left(R_{1}\left(z+c_{m}\right)-R_{1}(z)\right)=R_{1}^{\prime}(z)
\end{align*}
$$

and

$$
\begin{align*}
& i \varrho_{1} \exp ^{-a c_{1}}\left(R_{2}\left(z+c_{1}\right)-R_{2}(z)\right)+i \varrho_{2} \exp ^{-a c_{2}}\left(R_{2}\left(z+c_{2}\right)-R_{2}(z)\right) \\
& +\cdots+\varrho_{m} \exp ^{-a c_{m}}\left(R_{2}\left(z+c_{m}\right)-R_{2}(z)\right)=-R_{2}^{\prime}(z) . \tag{5.12}
\end{align*}
$$

If $R_{1}(z), R_{2}(z)$ are two nonzero constants, then (5.11) and (5.12) hold and $R_{1}(z) R_{2}(z)=R(z)$ is a constant.
We next consider the case that $R_{1}(z), R_{2}(z)$ are two nonzero rational functions. If $R_{1}(z)$ has a pole of multiplicity v at z_{0}, by (5.11), we know that there exists at least on index $l_{1} \in\{1,2, \cdots, m\}$ such that
$z_{0}+c_{l_{1}}$ is a pole of $R_{1}(z)$ of multiplicity $v+1$, following the above step, we know $R_{1}(z)$ has a sequence of poles

$$
\left\{\tau_{n}=z_{0}+c_{l_{1}}+\cdots+c_{l_{n}}: n=1,2, \cdots\right\}
$$

Hence, we have $\lambda\left(\frac{1}{R_{1}(z)}\right) \geq 1$, this is impossible. So $R_{1}(z)$ is a polynomial. Using the same method as above, we know that $R_{2}(z)$ is also a polynomial. If $R_{i}(z)$ is a nonconstant polynomial with $\operatorname{deg}_{z} R_{i}(z) \geq 2$. Let $R_{i}(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$, then

$$
\begin{gather*}
R_{i}^{\prime}(z)=n a_{n} z^{n-1}+(n-1) a_{n-1} z^{n-2}+\cdots, \tag{5.13}\\
R_{i}\left(z+c_{m}\right)-R_{i}(z)=n a_{n} c_{m} z^{n-1}+\left(a_{n} C_{n}^{2} c_{m}^{2}+(n-1) a_{n-1} c_{m}\right) z^{n-2}+\cdots, \tag{5.14}
\end{gather*}
$$

where $i=1,2$. Substituting (5.13) and (5.14) into (5.11) and (5.12), comparing the coefficients of z^{n-1}, z^{n-2}, we have $\sum_{j=1}^{m} i c_{j} \varrho_{j} \exp ^{a c_{j}}=1, \sum_{j=1}^{m} c_{j}^{2} \varrho_{j} \exp ^{a c_{j}}=0$ and $\sum_{j=1}^{m} i c_{j} \varrho_{j} \exp ^{-a c_{j}}=-1, \sum_{j=1}^{m} c_{j}^{2} \varrho_{j} \exp ^{-a c_{j}}=$ 0 , a contradiction with $\sum_{j=1}^{m} c_{j}^{2} \varrho_{j} \exp ^{a c_{j}} \sum_{j=1}^{m} c_{j}^{2} \varrho_{j} \exp ^{-a c_{j}} \neq 0$. Hence, $\operatorname{deg}_{z} R_{i}(z) \leq 1$. So $\operatorname{deg}_{z} R(z)=$ $\operatorname{deg}_{z} R_{1}(z) R_{2}(z) \leq 2$.
(i) If $R(z)$ is a nonconstant polynomial with $\operatorname{deg}_{z} R(z) \leqslant 2$, then by (5.4), we have

$$
\begin{equation*}
l(z)=\frac{s_{1}(z) \exp ^{a z+b}+s_{2}(z) e^{-x p^{-(a z+b)}}}{2}+\vartheta \tag{5.15}
\end{equation*}
$$

where $s_{j}(z)=m_{j} z+n_{j}, m_{j}, n_{j} \in \mathbb{C},(j=1,2)$ and $\vartheta \in \mathbb{C}$;
Case 1. If $\operatorname{deg}_{z} R(z)=2$, then $m_{j} \neq 0, j=1,2$. If $\sum_{i=1}^{m} \varrho_{i} \neq 0$, substituting (5.15) into (5.5), we have $\vartheta \equiv 0, R(z)=\left(m_{1}+a s_{1}(z)\right)\left(m_{2}-a s_{2}(z)\right)$. Hence, we have

$$
l(z)=\frac{s_{1}(z) \exp ^{a z+b}+s_{2}(z) \exp ^{-(a z+b)}}{2}
$$

$R(z)=\left(m_{1}+a s_{1}(z)\right)\left(m_{2}-a s_{2}(z)\right), a \neq 0, b \in \mathbb{C}$.
Case 2. If $\operatorname{deg}_{z} R(z)=1$, then one of m_{1}, m_{2} is zero, we can assume that $m_{1}=0$. Substituting (5.15) into (5.5), we have $R_{1}(z)$ is a constant and $R_{2}(z)$ is a polynomial of degree one. Using the same method as case 1 , we have $\vartheta \equiv 0$. Hence, we obtain that

$$
l(z)=\frac{s_{1}(z) e^{a z+b}+s_{2}(z) \exp ^{-(a z+b)}}{2}
$$

$R(z)=\left(m_{1}+a s_{1}(z)\right)\left(m_{2}-a s_{2}(z)\right), a \neq 0, b \in \mathbb{C}$.
(ii) If $R(z)$ is a nonzero constant, by (5.4), we have

$$
\begin{equation*}
l(z)=\frac{n_{1} \exp ^{a z+b}+n_{2} \exp ^{-(a z+b)}}{2}+d \tag{5.16}
\end{equation*}
$$

where $n_{1}, n_{2} \in \mathbb{C}$ and $d \in \mathbb{C}$. Substituting (5.16) into (5.5), we have $d=0, R(z)=-a^{2} n_{1} n_{2}$. Hence, Theorem 1.3 holds.

6. Proof of Theorem 1.4

Suppose that (1.4) has a finite order transcendental meromorphic solution $l(z)$ with finitely many poles. Rewriting (1.4) as follows

$$
\begin{align*}
& \left(l^{\prime \prime}(z)+i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)\right)\left(l^{\prime \prime}(z)-\right. \\
& \left.i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)\right)=R(z) . \tag{6.1}
\end{align*}
$$

Since $l(z)$ has finitely many poles, $R(z)$ is a nonzero rational function, then $l^{\prime \prime}(z)+i\left(\varrho_{1} l\left(z+c_{1}\right)+\right.$ $\left.\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)$ and $l^{\prime \prime}(z)-i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)$ both have finitely many poles and zeros. Hence, we can rewrite (6.1) as follows

$$
\begin{equation*}
l^{\prime \prime}(z)+i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)=R_{1}(z) \exp ^{p(z)} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
l^{\prime \prime}(z)-i\left(\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)\right)=R_{2}(z) \exp ^{-p(z)} \tag{6.3}
\end{equation*}
$$

where $R_{1}(z), R_{2}(z)$ are two nonzero rational functions such that $R_{1}(z) R_{2}(z)=R(z)$, and $p(z)$ is a nonconstant polynomial. By (6.2) and (6.3), we obtain

$$
\begin{equation*}
l^{\prime \prime}(z)=\frac{R_{1}(z) \exp ^{p(z)}+R_{2}(z) \exp ^{-p(z)}}{2} \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\varrho_{1} l\left(z+c_{1}\right)+\varrho_{2} l\left(z+c_{2}\right)+\cdots+\varrho_{m} l\left(z+c_{m}\right)=\frac{R_{1}(z) \exp ^{p(z)}-R_{2}(z) \exp ^{-p(z)}}{2 i} . \tag{6.5}
\end{equation*}
$$

(6.5) implies that

$$
\begin{equation*}
\varrho_{1} l^{\prime \prime}\left(z+c_{1}\right)+\varrho_{2} l^{\prime \prime}\left(z+c_{2}\right)+\cdots+\varrho_{m} l^{\prime \prime}\left(z+c_{m}\right)=\frac{A_{2}(z) \exp ^{p(z)}-B_{2}(z) \exp ^{-p(z)}}{2 i} \tag{6.6}
\end{equation*}
$$

where $A_{2}(z)=A_{1}^{\prime}+A_{1}(z) p^{\prime}$ and $B_{2}(z)=B_{1}^{\prime}-B_{1}(z) p^{\prime}$. Together (6.4) with (6.6), we obtain that

$$
\begin{align*}
& \exp ^{p(z)}\left(\varrho_{1} R_{1}\left(z+c_{1}\right) \exp ^{p\left(z+c_{1}\right)-p(z)}+i \varrho_{2} R_{1}\left(z+c_{2}\right) \exp ^{p\left(z+c_{2}\right)-p(z)}\right. \\
& \left.+\cdots+i \varrho_{m} R_{1}\left(z+c_{m}\right) \exp ^{p\left(z+c_{m}\right)-p(z)}-A_{2}(z)\right)+ \\
& \exp ^{-p(z)}\left(\varrho_{1} R_{2}\left(z+c_{1}\right) \exp ^{p(z)-p\left(z+c_{1}\right)}+i \varrho_{2} R_{2}\left(z+c_{2}\right) \exp ^{p(z)-p\left(z+c_{2}\right)}\right. \tag{6.7}\\
& \left.+\cdots+i \varrho_{m} R_{2}\left(z+c_{m}\right) \exp ^{p(z)-p\left(z+c_{m}\right)}+B_{2}(z)\right)=0 .
\end{align*}
$$

Lemma 2.1 and (6.7) imply that

$$
\begin{align*}
& i \varrho_{1} R_{1}\left(z+c_{1}\right) \exp ^{p\left(z+c_{1}\right)-p(z)}+i \varrho_{2} R_{1}\left(z+c_{2}\right) \exp ^{p\left(z+c_{2}\right)-p(z)} \\
& +\cdots+i \varrho_{m} R_{1}\left(z+c_{m}\right) \exp ^{p\left(z+c_{m}\right)-p(z)}-A_{2}(z)=0, \tag{6.8}
\end{align*}
$$

and

$$
\begin{align*}
& i \varrho_{1} R_{2}\left(z+c_{1}\right) \exp ^{p(z)-p\left(z+c_{1}\right)}+i \varrho_{2} R_{2}\left(z+c_{2}\right) \exp ^{p(z)-p\left(z+c_{2}\right)} \tag{6.9}\\
& +\cdots+i \varrho_{m} R_{2}\left(z+c_{m}\right) \exp ^{p(z)-p\left(z+c_{m}\right)}+B_{2}(z)=0 .
\end{align*}
$$

Since $R_{1}(z), R_{2}(z)$ are two nonzero rational functions and $l(z)$ is of finite order, using the similar method as the proof of Theorem 1.1, we know that $p(z)$ is a polynomial of degree one. Let $p(z)=a z+b, a \neq$ $0, b \in \mathbb{C}$. Substituting $p(z), A_{2}(z), B_{2}(z)$ into (6.8) and (6.9), and as $z \longrightarrow \infty$, we have

$$
\begin{aligned}
& \lim _{|z| \rightarrow \infty} i\left(\varrho_{1} \frac{R_{1}\left(z+c_{1}\right)}{R_{1}(z)} \exp ^{p\left(z+c_{1}\right)-p(z)}+\cdots+\varrho_{m} \frac{R_{1}\left(z+c_{m}\right)}{R_{1}(z)} \exp ^{p\left(z+c_{m}\right)-p(z)}\right) \\
& =i\left(\varrho_{1} \exp ^{a c_{1}}+\cdots+\varrho_{m} \exp ^{a c_{m}}\right)=\frac{A_{1}(z)}{R_{1}(z)}+a^{2}=a^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{|z| \rightarrow \infty} i\left(\varrho_{1} \frac{R_{2}\left(z+c_{1}\right)}{R_{2}(z)} \exp ^{p(z)-p\left(z+c_{1}\right)}+\cdots+\varrho_{m} \frac{R_{2}\left(z+c_{m}\right)}{R_{2}(z)} \exp ^{p(z)-p\left(z+c_{m}\right)}\right) \\
& =i\left(\varrho_{1} \exp ^{-a c_{1}}+\cdots+\varrho_{m} \exp ^{-a c_{m}}\right)=-\frac{B_{1}^{1}(z)}{R_{2}(z)}-a^{2}=-a^{2},
\end{aligned}
$$

that is

$$
\begin{align*}
& i\left(\varrho_{1} \exp ^{a c_{1}}+\cdots+\varrho_{m} \exp ^{a c_{m}}\right)=a^{2} \\
& i\left(\varrho_{1} \exp ^{-a c_{1}}+\cdots+\varrho_{m} \exp ^{-a c_{m}}\right)=-a^{2} \tag{6.10}
\end{align*}
$$

So, we have $\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}}+\sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}}=0$.
(i) If $\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}}+\sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}} \neq 0$, this is a contradiction with $\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}}+\sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}}=0$. Hence, Theorem 1.4 (i) holds.
(ii) If $\sum_{j=1}^{m} i c_{j} \varrho_{j} \exp ^{a c_{j}} \neq 2 a$ and $\sum_{j=1}^{m} i c_{j} \varrho_{j} \exp ^{-a c_{j}} \neq 2 a$. By (6.8)-(6.10), we have

$$
\begin{align*}
& i \varrho_{1} \exp ^{a c_{1}}\left(R_{1}\left(z+c_{1}\right)-R_{1}(z)\right)+i \varrho_{2} \exp ^{a c_{2}}\left(R_{1}\left(z+c_{2}\right)-R_{1}(z)\right) \\
& +\cdots+i \varrho_{m} \exp ^{a c_{m}}\left(R_{1}\left(z+c_{m}\right)-R_{1}(z)\right)=R_{1}^{\prime \prime}(z)+2 a R_{1}^{\prime}(z), \tag{6.11}
\end{align*}
$$

and

$$
\begin{align*}
& i \varrho_{1} \exp ^{-a c_{1}}\left(R_{2}\left(z+c_{1}\right)-R_{2}(z)\right)+i \varrho_{2} \exp ^{-a c_{2}}\left(R_{2}\left(z+c_{2}\right)-R_{2}(z)\right) \\
& +\cdots+i \varrho_{m} \exp ^{-a c_{m}}\left(R_{2}\left(z+c_{m}\right)-R_{2}(z)\right)=-R_{2}{ }^{\prime \prime}(z)+2 a R_{2}^{\prime}(z) . \tag{6.12}
\end{align*}
$$

If $R_{1}(z), R_{2}(z)$ are two nonzero rational functions, using the similar method as the proof of Theorem 1.3, we know that $R_{i}(z)$ is a polynomial. If $\operatorname{deg}_{z} R_{i}(z) \geq 2$. Let $R_{i}(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$, then

$$
\begin{align*}
& R^{\prime}{ }_{i}(z)=n a_{n} z^{n-1}+(n-1) a_{n-1} z^{n-2}+\cdots, \\
& R^{\prime \prime}{ }_{i}(z)=n(n-1) a_{n} z^{n-2}+(n-1)(n-2) a_{n-1} z^{n-3}+\cdots, \\
& R_{i}\left(z+c_{m}\right)-R_{i}(z)=n a_{n} c_{m} z^{n-1}+\left(a_{n} C_{n}^{2} c_{m}^{2}+(n-1) a_{n-1} c_{m}\right) z^{n-2}+ \tag{6.13}\\
& \left(a_{n} C_{n}^{3} c_{m}^{3}+a_{n-1} C_{n-1}^{2} c_{m}^{2}+(n-2) a_{n-2} c_{m}\right) z^{n-3}+\cdots,
\end{align*}
$$

where $i=1,2$. Substituting (6.13) into (6.11) and (6.12), comparing the coefficients of z^{n-1}, z^{n-2}, we have $\sum_{j=1}^{m} i c_{j} \varrho_{j} \exp ^{a c_{j}}=2 a, \sum_{j=1}^{m} c_{j}^{2} \varrho_{j} \exp ^{a c_{j}}=2$ and $\sum_{j=1}^{m} i c_{j} \varrho_{j} \exp ^{-a c_{j}}=2 a, \sum_{j=1}^{m} c_{j}^{2} \varrho_{j} \exp ^{-a c_{j}}=-2$, a contradiction. Hence, $\operatorname{deg}_{z} R_{i}(z) \leq 1$.
If $\operatorname{deg}_{z} R_{i}(z)=1$, then (6.11) and (6.12) imply that $\sum_{j=1}^{m} i c_{j} \varrho_{j} \exp ^{a c_{j}}=2 a$ and $\sum_{j=1}^{m} i c_{j} \varrho_{j} \exp ^{-a c_{j}}=2 a$ a contradiction. Hence, $R_{1}(z), R_{2}(z)$ are two nonzero constants, $R(z)=R_{1}(z) R_{2}(z)$ is a constant. By (6.5), we have

$$
l(z)=\frac{t_{1} \exp ^{a z+b}+t_{2} \exp ^{-(a z+b)}}{2}+P(z)
$$

where $a \neq 0, b \in \mathbb{C}, t_{1}, t_{2} \in \mathbb{C} \backslash\{0\}$ and $P(z)$ is a polynomial of degree one. Since $\sum_{i=1}^{m} \varrho_{i} \neq 0$, then by (6.5), we have $P(z) \equiv 0$. So, we have

$$
\begin{equation*}
l(z)=\frac{t_{1} \exp ^{a z+b}+t_{2} \exp ^{-(a z+b)}}{2} \tag{6.14}
\end{equation*}
$$

where $\sum_{i=1}^{m} \varrho_{i} \exp ^{a c_{i}}+\sum_{i=1}^{m} \varrho_{i} \exp ^{-a c_{i}}=0, b \in \mathbb{C}, R(z)=a^{4} t_{1} t_{2}$. Hence, Theorem 1.4 holds.

Acknowledgments

We thank the referee(s) for reading the manuscript very carefully and making a number of valuable and kind comments which improved the presentation. The work was supported by the NNSF of China (No.10771121, 11401387), the NSF of Zhejiang Province, China (No. LQ14A010007), the NSFC Tianyuan Mathematics Youth Fund (No. 11226094), the NSF of Shandong Province, China (No. ZR2012AQ020 and No. ZR2010AM030) and the Fund of Doctoral Program Research of Shaoxing College of Art and Science (20135018).

Conflict of interest

The authors declare that none of the authors have any competing interests in the manuscript.

References

1. G. G. Gundersen, J. Heittokangas, I. Laine, J. Rieppo, D. Yang, Meromorphic solutions of generalized Schröder equations, Aequat. Math., 63 (2002), 110-135.
2. R. G. Halburd, R. Korhonen, Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. London. Math. Soc., 94 (2007), 443-474.
3. R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31 (2006), 463-478.
4. W. K. Hayman, Meromorphic solutions, Oxford: The Clarendon Press, 1964.
5. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, K. Tohge, Complex difference equations of Malmquist type, Comput. Methods. Funct. Theory, 1 (2001), 27-39.
6. I. Laine, Nevanlinna theory and complex differential equations, Berlin: Walter de Gruyter, 1993.
7. Z. Latreuch, On the existence of entire solutions of certain class of nonlinear difference equations, Mediterr. J. Math., 14 (2017), 115.
8. H. C. Li, On the existence of differential-difference equations, Math. Method. Appl. Sci., 39 (2016), 144-151.
9. K. Liu, T. B. Cao, X. L. Liu, The properties of differential-difference polynomials, Ukr. Math. J., 69 (2017), 85-100.
10. K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384-393.
11. K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat-type differential-difference equations, Arch. Math., 99 (2012), 147-155.
12. K. Liu, L. Z. Yang, On of some differential-difference equations, Comput. Methods. Funct. Theory., 13 (2013), 433-447.
13. K. Liu, T. B. Cao, Entire solutions of Fermat-type differential-difference equations, Electron. J. Differ. Eq., 2013 (2013), 1-10.
14. K. Liu, C. J. Song, Meromorphic solutions of complex differential-difference equations, Results Math., 72 (2017), 1759-1771.
15. X. G. Qi, L. Z. Yang, Properties of meromorphic solutions to certain differential-difference equations, Electron. J. Differ. Eq., 2013 (2013), 1-9.
16. J. Rieppo, On a class of complex functional equations, Ann. Acad. Sci. Fenn. Math., 32 (2007), 151-170.
17. A. J. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. Math., 141 (1995), 443-551.
18. H. Wang, H. Y. Xu, J. Tu, The existence and forms of solutions for some Fermat-type differentialdifference equations, AIMS Mathematics, 5 (2020), 685-700.
19. H. Y. Xu, S. Y. Liu, Q. P. Li, Entire solutions of several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl., 483 (2020), 123641.
20. H. Y. Xu, S. Y. Liu, Q. P. Li, The existence and growth of solutions for several systems of complex nonlinear difference equations, Mediterr. J. Math., 16 (2019), 8.
21. H. Y. Xu, J. Tu, Growth of solutions to systems of q-difference differential equations, Electron. J. Differ. Eq., 2016 (2016), 1-14.
22. C. C. Yang, H. X. Yi, Uniqueness theroy of meromorphic functions, Dordrecht: Kluwer Academic Publishers, 2003.
23. J. Zhang, On some spcial difference equations of Malmquist type, Bull. Korean Math. Soc., 55 (2018), 51-61.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
