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. PREFACE

Th!s volume has been written under BuAer Contract NQus 51-514(c) to provide en~
gineérs with analytical and other techniques basic to the unified approach to problems
of aircraft control system design.

A large portion of the volume is a codification of existing techniques an¢ material
appearing in textbooks and published papers. However; a cerfain ameunt of new
taterial is also presented for the first time in published form. Bxbliographws cover-
‘ing the major source material are appended to éach Chapter. :

- This volume has been wiitfen from the point of view that the basic approach to control
- systenis problems is of necessity through the transfer function. The various ways of
dealing witit such probléms {n practice are éssentizlly mearis of getting varicus de-
grées of approximations to the transient solution of the equations of mdtion from whick
the transfer functions are derived. Since the object of prime intérest in ¢ontrel and
servomechanisms work is the transient behavior of the system under corsidem;tion,
1t is felt that this approach will provide the control systems engiheér with re’iatwely
new codifying condept with which to attack his problems. .

The authors are indebted to many individuals and companies who have aided or in-
flienced this volume either dn'ectly or mdlrectly, and partlcularly to the Bureau of
Aeronautics of the United States N avy Special appreciation is dué to Mr, L. M.

Chatfler, Mr. R. A. Bennsche, and ¥, Folse, of Buder, whose foresight and
contifpted interest have made this proies.“ possible. Special mention should be

given to Juanita Zimmerinan, Befty Harsey, Elias Moness, ¥. B. Bacus, and James
Jonies of the Northrop Servomechanisms Section for their untirmg efforts in preparing
the manuseript for publieation; also to K. B. Tutile, who was charged with the re-
sponsibility of coordinating all the individual efforts involved. The arduous task of
writing this book tas beeri inade a more pleasant one by the continuing interest and
able assistance of all thosé mentioned above and the entire Northrop Engineering
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MMPORTANT NOTE

This volume was written by and for engineers and scientists who are ecricerned with
the analysis and synthesis of piloted aircraft fiight control systems. The Bureau of
Aeronautics .ndertook the sponsorship of this project when it become apparent that
many signific: ot advances were being made in this extremel, technicaf field and that

© the presentatwn and dissernination of information conceru‘lng such advances would

.';{
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‘be:of ‘benefit tc the Services, to the airframe companies, znd to the individuals con-
cerned. -

A contract for vollecting, codifying, and presenting ii'is scattered material was
awarded to Nortirop Aircraft, Inc.,

and the present bzsic volume represents the
the results of these efforts.

The need for suck a volume as this is obvious to tho:se working in the field. It is
equally apparent that the rapid changes and refinements in the technigues used make
it essential that new material be added as it becomes available.

The best way of
maintaining and impwoving the usefulness of this volume is therefore by frequent re-
visions to Keep it as complete and as up-to-date as pcgsible,

For these reasons, the Burzau of Aeronautics solicit's suggestions for revisions and
additicihs from those who make use of the volume. In some cases, these suggestions

might be simply that ti:e wording of a paragraph be ct.aiged for clarification; in other
cases, whole sections cutlining new techniques migiat be submitted.

Bach suggestion will be acknowledged and will receix 2 vareful study. For those which

are approved, revision pages will be prepared an-i disiributed. Each of these will
" contain notafions ar necessary to give full credit Lo
" gponsgible.

o the person and organization re-

: ‘hte cooperation on the part of the readers of thi; volame is vital
- -

] vital. Suggestions for-
2xded to the Chief, Burcau of Aeronautics, ¢ *tention AE-612), Washington 25

D.; <., will be most welccre.

«

i

: ' L. M. Chattler
X
4

Head, Actuating & Flight Controls Systems Section
Airborne Eqvipment Division
: Bureau of Aeronautics
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CHAPTER 1
‘GENERAL CONSIDERATIONS

The purpose of this volume is to present the systems
engineer with essential mathematical tools for solving
problems arising in piloted aireraft control system
design. This introductory chapter is devoted to survey-

Ing some of the general principles involved and to de- ~

fine certain important terms,

As far ag his degree of control over the airslane is
concerned, a pilot may be said to engage in two types of
flight activity in the course of a mission. The first of
thes2, usually called navigation, does not require great
precision of control but enables the pilot to fly the air-
plane to some point at which he begins the second type
of flight activity characterized by the much greater
control needed. During this second type of flight, the
pilot must direct the airplane in some precise geo-
metrical relationship to an object on the ground or in
the air. The object on the ground may perhaps be the
landing field where the pilot will terminate the flight or
a target which is to be bombed; the object in the air
may perhaps.be an enemy aircraft which is to be de-
stroyed or a friendly aircraft with which the pilot is
fc fly in completing a mission. Depending upon the
particular situation, it can be seen that this precision
type of flight is required in such activities as landing,
tracking, gunlaying, cud bombing runs. The essential

difference between the two types is one of precision of
control maintained by the pilot; the essential likeness
is that the pilot is primarily interested in directing or
commanding the airplane to assume a certain orientation
in gpace.

The pilot uses the cockpit control devices for two func-
tions: o command and to stabilize the airpléne, The
ditference between these two functions can be ciarified
by a simple but common illustration:

A pilot takes an ajrplane aloft and at a certain
flight condition attempts to establish a certain
rate of climb, He pulls back on the stick and
holds it steady. In response to this com-
mand, the airplane smoothly takes up a
steady climb. However, the climb rate is
not precisely what the pilot wants, so he
applies a slight forward force to the stick.
The airplane then pitches forward, and the
rate of climb is reduced. But it is reduced
too much, so the pilot zpplies back pressure
again, and again the airplane climbs too
fast. This procedure continues: The pilot
adjusts the stick forward and backward
continuously, and the airplane pitches up
and down without ever settling' down to the
desired rate of climb. ’ o
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In this example, the pilot was unable to command a rate
of climb and get exactly what he wanted, He had to
jockey the stick back and forth, climbing fi~st too fast,
then too slowly. The average rate of climb was pro-
bably satisfactory, but the pilot was compelled to work
very hard to:maintain it. If he has been able to stabilize
at the desired rate of climb after perhaps one or two
small corrections with the stick, he would have been
satisfied; but he was not satisfied with the oscillating
response he actually achieved,

However, performance was unsatisfactory only if the
pilot iusisted on getting exactly the rate of climb he had
initially decided upon. As long as he placed the stick in
a certain position and held it there (command input), the
airplane flew smoothly with no tendency to oscillate; its
flight behavior was stable. It was only when he attempted
to make certain fine adjustments that the oscillation
occurred. The airplane by itself was stable. What was
unstable was actually the pilot-airplane combination .

To sclve a preblem of this sort, one must study three
factors: a) the pilot, to determine how he rasponds to
certain stimuli, such as pitch angle, normal accelera-
tion, and stick force; b) the airplane, to determine how
it responds to certain control movements and air forces,
such as backward and forward stick deflection, lift
chariges, -and pitching moment changes; and c) the pilot-
airplane combination as a system, to determine how they
will interact with each other.

When this has been accomplished, changes can be made
ih certain-elements to praduce a better system.

This volume presenis techniques suitable for handling
feedback controt systems problems of types of practical
importance to engineers concerned with the design of
flight contral systems, of which the one considered above
is an example, These are the methods of analysis:
methods of determning how a system or elements of a
system behave when subjected to command inputs or to
external disturbances. The volume goes beyond anal-
ysis, however, and consider methods of synthesis,
that is, procedures for determining the best way of
selecting many elements and combining them into a
system. Analysis takes a given system and datermines
its behavior, whereas synthesis creates a systzm which
will behave according to a certain desired pattern.

In building up a control system, it is usually con-
venient at first, and often necessary, to "live with" a

certain number of components, In controlling an air-
plane, for example, the airframe must usually be ac-
cepted without change because certain design parameters
affecting its performance were determined by considera-
tions other than control, such as landing speed and
maximum gross weight. Those elements which are
accepted without change are referred to as unalter-
able elements. All the other elements in the system
which can be chosen or designed at will to obtain the
desired performance are called alterable elements .
In the example used above, certainly the pilot and most
probably the airframe would be considered unalterable
elements. The surface controls would be the alterable
elenients. Thus a problem in analysis can be considered

I-3

as one in which the behavior of the system is studied
to indicate which of the alterable elements might be
changed to produce satisfactory performance. On the

other hand, synthesis is concerned with designing or

choosing alterable elements which will énable the system
to produce a desired performance.

The term system, as used in this volume, may be de-
fined as any group of interacting entities required to
account completely for the physics of a particuiar
observed phenomenon, This definition includes systems
as simple as a penduluin and as complex as an aircraft
{ire control system. For the pendulum, the interacting
entities are gravity, the atmosphere, bearing friction,
and the mass of the pendulum, as illustrated in figure
I-2. In an aircraft fire control system, there are too
many elements to list here. However, a pertinent point
is that many of the elements are themselves complex
"sub-systems, " such as a tracking radar system or a
pilot-controls-airframe combination similar to the
one described earier in this chapter.

The purpose of this survey has been to present some
general considerations relating to the design of piloted
aircraft control systems: in subsequent chapters, thr
mathematical means for dealing with design probler .s
are discussed.

This volume is directed to-college graduate en‘.ineers .
Consequently, the entire effort is 'owax< a logical
presentation of the methods of analys is ani. synthesis.

This precludes digressions for th: preasentation of
general background material. Hov ever, since it is
expected that the engineers who use ‘nis book will have
backgrounds in various branches ~: engineering, not
all of which make use of the m:in matics pertinent to
controls analysis, an append!- {: ‘nchided which touches
briefly on important topicr B i3 highly recommended
that the reader scan the apy:. »~dix so that he may acquaint
himself with any unfamiliu~ material found their.

In addition to certain mathemaix~al material, the ap-
pendix contains a rather extensive gl ssary of terms In
particular, many new definitions azr  given io old and
familiar words. Although this may at {*rst seem arbi-
trary, experience will show that once these definitions
are well {ixed in mind, the text can be f¢'towed with
much less confusion than would exist had the-{ «finitions
been left to chance. The reasons for this are simply
that automatic control theory is relatively new and Rt
there are a number of systems of nomenclature in use.
If no standardization were settled upon for this book, 1.~
two readers would gather the same impressions from the
text. The definitions adopted by the AIEE-ASME joint
committee at the time this volume is published are used
whenever possible. A list of these symbols and de-
finitions is given in the glossary, together with those
of whatever standards exist in fields where th¢ AIEE-
ASME presentation is not applicable.

The main body of text can be divided into three major
divisions. The first division is simply chapter II in
which fundamental background material relevant to the
description of system behavior is presented. Chapters
I, IV, and V {form the next major division. These
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chapters are concerned solely with the analysis and
synthesis of linear systems. The third divisicn consists

~ of chapters VI, VII, dnd VIII and considers not only
linear devices, but also non-linear systems. Chapters

VIl and VIH are devoted to machine methods of handling
analysis and synthesis problems. These chapters coim-

plete the volume.
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CHAPTER Il
FUNDAMENTAL CONCEPTS

SECTION I — INTRODUCTION

This chapter discusses the means of describing control
systems in order to facilitate a2nalysis and synthesis.

The mathematical form used to describe a system and
éach of its componerits is called "the transfer function.”
‘The transfer function of a linear system completely
specifies its dynamic performance in terms of the
Laplace transform variable s and certain fundamental
‘parameters such as natural frequency, time delay and
damping ratio. Since control systems analysis and
synthesis is carried on almost entirely in terms of
transfer functions, it is important that its forms,
mearnings and various graphical representations be

firinly established.

The transfer function is essentially a ""mathematical
model" of a unit or system, and it is manipulated like
a laboratory model in order to produce satisfactory
performance.

Manipulation of the transfer function is greatly facili-
tated by a number of graphical aids that show relation-
ships between the transfer functions of the individual
components of a system, and promote visualization of
the transfer functions themselves. .

SECTION 2 — MATHEMATICAL MODELS

(a) GENERAL

Given the problem of designing a gear unit, an engineer
proceeds by first considering the physical requirements,
such as mechanical advantage, pitch diameter, and
stresses. Bearing in mind such further factors as
producibility and availability of material, he formulates
his design. These ideas are then converted into work-
ing drawings, frcm which the gear is produced. Finally,
the finished product is tested.

Essentially, the design procedure may be summarized
as follows:
1. The requirements of the design are determined .
2. Calculations are performed in order to deter-
mine controlling parameters.
3. The best methods of meeting requirements are
determined.
4. Working drawings are prepared.
5. The unit is constructed.
6. The completed design is tested.

A similar procedure is followed in designing control

systems, However, the complexity of such systems
makes a2 more extensive design procedure necessary .
Following the formulation of the design, a rigorous
analysis must be applied to answer these questions.;

1. Is the basic concept sound?

2. How does the system perform?

3. How well does the system perform?

4. How can the system be improved?

These analyses can sométimes be done through Iabo-
ratory experiments. As an example, consider the
analysis of an electrical distribution network. The
system is simulated-in the laboratory by assuming that

lumped parameters approximate the distributc;d capaci-
tances, inductances, and resistances. ies¢ para-
meters, along with variables such as loading conditxons
to represent disturbances, are varied and measure-
mients of the responges are made. Because of the as-
sumption of lumped parameters, the results are not
a parfect representation of the physical system. How-
ever, they are the best obtainable under laboratory con-
ditions and may y:eld a great deal of useful information .

The complex nature of most control systems often pre-
cludes the laboratory experiment method of analysis .
However, one can come close to achieving the advan-
tages of the laboratory experiment by performing the
experiment on paper. Mathematical equations may be
used to represent a physical system in much the same

" way as the laboratory model simulates it, When prop-

erly derived both the mathematical and laboratory
models should reflect, within.certain limits, the charac-
teristics of the physical system being analyzed. What
these limits are is determined by the assumptions used .

Obviously, a mathematical model derived from unfounded
zssumptions will lead to grossly misleading conclusions .
Consequently, assumptions must be made with great
care, Frecautions must be taken throughout the analysis
not to lose sight of these assumptions and to realize
that they limit the validity of the final con-lusions .

In order to provide a reminder, it is wise to make &
complete and well defined list of assumptions which
control the analysis. This procedure yields .additional
benefits, For one thing, in order to express precisely
what he has in mind, the engineer must think critically
the mental assumption "no. friction, but it requires.
more careful consideration to write down precisely

-1
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Section 2

!Lhel_e there is no friction. In considering "where, " the

| -engineer often discevers that the assumption is un-

reasonable and hence changes his attack. Another
additionsl ber 3fit derived from the list of assumptions
is realized when disérepancies occur between analytical
and experimental data. *Reference to the list usually

" points to the cause.

For these and many other rezzouns, it is highly recom-
‘mended that all assumptions be listed before proceed-
ing on any analysus problém.

(b) LINEARIZATION

One of the most important assumptions usually made
in analysis concerns the "linearity" of the élements
of the system. The system shown in figure II-1 is
considered in some detail in section II-3 where Lhe
iollowmg equatxon is derived.

o E a® d
~(11;1f) o dtl‘*« B ks Q)
G

= >y ] " - T = —— - -

’- o
Sprmg (k) z. Da:-per (B)

\ L/

Figure 1I.1, Second Order System

Since x is the displacement of the mass, th1s equation
says that the sum of the inertia force (Md x/dt’), the
damping force (Bdx/dt), and the spring force (kx),
equals the driving force, Q(t). In order to solve this

~equation conveniently, the following three assumptions

are made:
* 1., The mass M is constant.
2, The damping factor B is constant,
3. The spring characteristic k is constant,
If these statements are true, (II-1) is of the form:
d'x  d™ix 4% . dx
(I1-2) Bogg* digge1+ ﬂzdtTr *8n. 137+ BnX w QL)

where a5, a1, . + .81, . . 8p are constants and Q(t) is
some function of time (t). Eguations of the form of
(I1-2) are called linear differential equations with
constant coefficients and are readily solved, However,
none of the taree assumptions is precisely correct.
Consider, for example, the spring charactéristic
k . One form which this quantity may have is illus-
trated in figure 11-2.

‘The essential point here is that the spring characteristic
k is 4 fanction of the dependent variable x. If ¥ and

-2 ’
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Force (F)
(Output) ‘

Dyisvlaéémehf ‘
( In"p‘ut—) )

Figure II-2. Non-Linear Spring Constant

B vary in a similar fashion, (II-1) takes the form:

n- i
veeosf (x)-jx“”lf (x)Ef,,x- aty

ax
ar-3)%, (")dtn*fl(x) tn-
Tbis is known as a non-linear differential equation. In
the simple example chosen it was assumed that the
f;(x) were functions of x only. In general, however,

dx d’x dox
£, [ 'dt’ ace Et_n]

In most cases equations of the type of (II-3) are solved
only by lengthy computations. However, in some cases,
such as that represented by figure II-2, an additional
assumption can be made that reduces the equation to
the form of (II-2). Specifically, it can be assumed
that the range of values of x is restricted so that the
slope of the curve is constant. This is called the
linear range of x.

It can be inferred from the discussion that one necessary
characteristic of a linear system is that the static re-
lationship between the input and the output is a straight
line, Systems which do not satisfy this criterion are
said to have non-linear static characteristics.

Non-linear static characteristics are divided into two
main classifications: )
1.. Continuous non-~linearities.
2. Discontinuous non-Iinearities.

Figure II-2 represents a continuous non-linearity .
Figure II-3a represents a different type of non-linear
static characteristic in that there is no straight line
portion, The device represented might be 3. pressure
transducer, figure II-3b, in which case the input is
pressure and the output iq volts. The curved line on
the graph of input ys. output répresents the actual
static characteristic of the system The dotted stralght

4
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S ltnes represent seéveral different possible linear ap-
*_proximations to.the true curve, If the operating range

-of interegt were large and symmetrical about the origin,

“.the line xy would be used. If the operating range were

small, the line uv would be used. I the ranrge of opera-

o “tion centered about thé point 2, the straight line passing

-, through that operating point- wo’uld be used to represent

“--thé system static characteristic Whénever the true

" characteristics of a system dre approximated by a

. straight line,in this. manner, it 1s sald that the system
‘ “has ‘been "linearized v

x/
\
—
Inpu’i:
Input
r {Pressure) -
/ -'" rr Output P—— /
Potentiometer (Volts)

-

Figure II-3. Continwus Non-Linear System

Suppose that the pressure transducer were redesigned
so that it had a static ¢haracteristic represented by
the line xy. Next, assume that the potentiometer
wiper attachment to the bellows became loose. The
unit would then appear schematically as in figure 0-4b .
The bellows can now move through a certain distance
without moving the potentiometer wiper. The result
is a discontinuous static characteristic as shown in
figure II-4a. This type of discontinuous non-linearity
has as its essential feature a hysteresis loop and is
called backlash. Note that it can be referred to in
terms of the output or input.

The only way to linearize a system of this type is to
assume that the backlash is negligible. This is equiva-
lent to saying that the range of operation of greatest
concern is large compared to the backlash, This
situation is illusirated in figure II-5.

Figure II-6 illustrates some other important dis-
continuous non-linearities. .

s Sl R

. Output |.-
Backlash - -~ |,
Referred ry -
to Output ; a e

P A [

Input

Backlash
- Referred
to Input

—

£
(2)
Input

I——(Pressure)

-...!._1...-.
..

| 9
¢ EERNCTY

o l g ian w mp et o ey d b=
i
Potentiometer Tl " ((:I‘g;lpt‘g; ’/

(b

Figure Ii-¢. Backlash Type Discontinuous
Non-Linearity

Threshold or flat spot, figure II-6b, occurs in a system
equivalent to that of figure II-4 thh the addition of a
centering spring from the potentiometer wiper to the
case. Whenever the bellows has moved beyond the
threshold region, the spring hoids the wiper against
the wiper attachment. Thus when the bellows reverses
its direction of travel, thére is no lost motion until
the threshold region is reached again.

Preload, figure II-6c, is characterized by a. step funct-
ion force or torque versus a displacement away from
neutral. Note that the applied force on a device with
this characteristic can vary from minus the preload

Output.

Figure 1I-5. Backlash

S
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value to plus, without causing any displacement .

Coulomb friction has the same relation to velocity
that prelcad bas to displacement, figure I-6d. As
shown in the illustration, a force equal to the friction
is required to produce a displacement away from zero.
To reverse the direction, the force must be reduced
to zero, then applied again in equdl strength in the
opposite direction.

Detent, figure II-6e, differs from preload in that the
force | reduces to zero at somie small value of dis-
placement. The shape of the detent characteristic is
determined by design.

Stiction, figure I1-6f, is usually assumed to be related
to velocity as detent is related to displacement. In
general, this assumption is valid only for very low
values of velocity. Stiction differs from coulomb
friction in that the force reduces to zero at some sneall
value of veloeity.

All of the non-linearities so far discussed have con-
cerned behavior of a system near neutral or the null
point. An important non-linearity encountered with
larger values of input and cutput is limiting, figure
II-6g. This characteristic occurs in any real system .
The usual assumption is that the operating range of
significance in analysis is "below saturation.”

Chapter It
Section 3

There are many other types of non-linearities that
are important in certain control system analyses.
But these are discussed in some detail in chapter VI.
The essential point to be gathered here is that these
examples are typical of what is not acceptable if the
system is to be represented by linear differential
equations with constant coefficients (II-2).

So far oniy those effects of coefficients varying with
the dependent variable (x) have been considered. The
coefficients may also vary with time. In the simple
mass-damper-spring example shown above, the tem-
perature of the environment may be changing in some
fashion. If this were the case, M, B, and k would
also vary with time; then (I-1) would take on the form:

(r-4)

@ 1 n-i

ll
£4(t) tff'«fl(t) P '+f1(t)d—€-=1+"'+f DI

This is known as a linezr differential equation with
variable coefficients. It is more readily solved than
a non-linear equation, hat the process is much more
involved than that required for the simpie linear equation
with constant coefficients. In particular, it is not amen-
able to any of the methods to be used in chapters III
through V. Consequently, the remainder of this chapter
‘is devoted to mathematical models that can be derived
from equations typified by (11-2).

SECTION 3 —BLOCK DIAGRAMS AND TRANSFER FUNCTIONS

(3) THE BLOCK DIAGRAM

Engineers have developed methods of working with
drawings and diagrams especially designed to provide
useful information and to aid in the visualization of
certain aspects of a problem. For example, figure
1I-7 shows a pump geared to a motor whose field voltage
is supplied by a remotely located control box. This
diagram provides information regarding the number of
units composing the system and their relative locations
and sizes. That is, it conveys a description of some
of the external features of the system. However, it
does not provide a thorough understanding of how the
system operates. The operation may be seen more

readily in the schematic diagram of figure Ii-8.

This figure shows an amplifier supplying a voltage,
Vq, to the control field of a motor. Tkis voltage alters
the motor torque, thus eifecting a charge in motor
speed, n,, with a corresponding perturbation of the
rate of flow of fluid,Q,, in the outlet pipe. The flow
of fluid im pinges on the flowmeter vane which is
balanced by a spring. A potentiometer attached to
the vane puts out a voltage,Vy, proportional to vane
deflection (and consequently, proportional to Q) - The
flowmeter potentiometer is connected to the control
potentiometer in a bridge circuit. Thus, when the
control potentiometer is turned clockwise the voltage,

Fluid
Discharge

Flowmeter

Control Box

Figure II-7. Pump Drive System
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Figure II-8, Schematic ‘Dia,g'x"am of Pump Drive System

Vy, is in‘cr‘ea'sed' S0 that a voltage V,= v, - v, appears

at the amplifier input. The amplifier contains special

circuitry which iricreases the current in the motor

control field until the flowmeter voltage, V, just ..
balances the control potentiometer voltageé,v,; (i.e., .
Vi~ Vg=0). In this way precise control is maintained -

-over the flow rate Q-

Although figure II-8 is an abstraction that bears.only a
slight resemblarce to figure II-7, it is useful because it
shows the functional relationships of the entire system.
Thus, it serves.as an aid to the formulation of the math-~
ématical model of the system. In fact, one of the equa-
tions has already been derived, namely, V; =V, - Vp. This
equation states that the amplifier input voltage is the
difference between the control potentiometer setting and
the vane potentiometer position. This relation will be
used later in deriving the complete equation of the
system.

An even more gbsi:ract representation of the system
can be devised which allows direct determination of the

. mathematical model. Consider first the amplifier. It

has as its input, Vg , the difference between the control
potentiometer voltage and the flow meter potentiometer-
veltage. Its-output is the motor controi field voltage,

Vo . This can be represented as in figure II-9,

— YA .

Amplifier
Figure II.9 .‘ Block Representation of Ampli fiet
The term Y, in the figure is referred‘to as the amplifier
transfer function because it transfers the input to the
output, and it is a mathematical expression of the

amplifier performance. That is, the output of the
unit is given by V, = Y,V; .

The motor operation may be expressed in a similar
fashion by a block as in figure 11-10,

Notice here that the motor input voltage is the amplifier
output voltage and that the motor output is the rotational

II-6

speed ;. The function Y, transfers the input ¥, to the: .

-output n,,

RN

g

Figure II-10. Block Representation of Notor -

There is another input to both the motor and the ampli-
fier, namely, the line voltage. See figure II-8. How-
ever, this voltage is considered as merely an energy
source of constanf magnitude. If this assumption is
true, only the steady state characteristics of the
system are affected. In this particular case, line

voltage is important because it determines tiie steady )

state speed of the motor. The question of primary
importance in the analysis treated in this book is>
"What happens to the system when it is disturbed
slightly from the steady state operating point?' Con~
sequently, the transfer function is concerned only
with those inputs which will help answer this question .
An important assumption upon which all the analysis

- treated in this volume is hased is that a static-analysis

has previously been made and it has been ascertained

state operating point under consideration,

that the system is capable of operation at the steady =

Retuming' to figure II-8, the gear unit and the pump
may 21so be represented by blocks, each with a transfer
function: relating the output to.the ijan_!mt,v figure II-11

n y ) n n ) | ~ R o
—-L> YG | ?'r_' o n; :. ' y~1‘l .
Gearing Puip. . -
(a) by ome v

Figure IT.11. Block Rgpreséﬁtétio'mv.,\ IR

o
vy

D= Yely Land Q= Ypn,,

In figure II-11, the output quantities are. .(leﬂnedvbvyi‘ |

W

Combining figures. II-9, II-10, and I-11 resulis in
figure I1-12; : A

g




Thls combination of blocks 1% knowni as.a block diagram .
t shows the cascade arrangement of the amplifier,

t a compléte functional representatlon of the pump
L ¢ systém since the function of the fiowmeter in the
- system is nol; yet accounted for. However, the diagram
doés show’ tf{e transfer of an input {control) quantity,
" VE through various functional components into an
~ output (controlled quantity) fluid flow, Q,, and -on thig

4

“Rearing, and pump, As vet, this block diagram .

basis could be called a control system But regarde&

Symbol © , calleda df.herential v,hich repre—-
sents the equatmn Vg=V, - Ve

The complete block diagram for the pump drive sysiem
is derived by combining figures 1-12, 1I-12, and II-14,
and is shown in figure JI-15, Notxce that by following
the arrows away from the differential to the right and
back through the flowmeter, a complete "loop” is
described. Systems that can be represented in this
way are known as closed-ioop systems and are dis-

‘I‘Qo

Yy

Motor

as a system, it has the serious deficiency that any
varnatxons of the préssure of the fluid supply to the
_ pump produces a change in the output quantity, q,. It
-is-evident that to maintain a constant output flow, q_;
with this system, some means would be -needed to vary
the input, v ,whenever 'ch’a'h“g’es‘ occur in Q.

This means is provided by a flowmeter used as §hown

8. The flowmeter, driven by the fluid,
ntiometer, which produces a voltage,
s represented by fxgure 11-13.

Ve

'A,»:.‘Ei'“g.t_ii'e* IE-13. Block Representa tion of Flowne ter

; — - Differential
’ Qi T - V1 \ vE
Control
Potentiometer

F i gure II -14, Biock Representatmn of Input
‘to: Amp.lz fier

The position of the control potentiometer wiper; and

Vi=YeQ

- m fferept1al

ony ] - m

Figure II-12. Block Diagram

thus its voltage, is proportional to the desired flow,
‘By virtue of this circuitry, the voltage into

Yq Tp K——’ -

Gearing Pimp

of Portion of Pump Drive System

tinctly different in their properties from those that
can be represented-by simple cascadmg of e‘ements as
in figure II-12.

The blocks starting with the amplifier and ending with
the pump form what is known as the forward 1600p
elements of the system.* That is, theseunits transfer
the input forward to the output. The flowmeter, which
feeds information f: om the output back to the input,

©  makes up the feedback loop element of the system .

1f, in this closed loop system, the output,qQ ,mereases
for some reason, the feedback voltage, Vp ,vnll also in-
crease. And since the input io the amplifier is
V= Vy= v!,the amplifier will reduce the motor-control
ﬁeld yoltage and, consequently, the pump: ouiput, 4, .
Automatie regulatxon of the flow is thus. achieved

if the flowmeter is removed, the feedback from output

to input is removed which opens the loop of the block

diagram. The system then assumes the form of figure
II-12, and is called an *'open-loop™ system.

A homely example is presented now to emphasize the
difference between open and closed loop systems’.
Consider the automatic washing machine. This device
cannot sense the degree of dirtiness of the clothes and
performs each operation of its cycle oniy for a pre-
determined length of time. This is an oper-loop system .
On the other hand, when the clothes are laundered by
hand, the time and energy expended are a function of
the dirtmess -of thé clothes because the washerwoman

the amplifier is. the difference between the flowmeter
- potentiometer cutput,V, , and the control potenhometer
‘setting, V. Thig is indicated by the schemeé shown in
5‘4 The illustration a‘lso introduces anew

DU — v . n n
--Q‘—— Y. Y, Sl Y, LIS Y, ——— Y; % >
RS PSR N ki - ) ] . N y

.- Control - - Amplifier Motor Gearing Pump

Potentiometer :

, : Ve ‘ Q,
Flowmeter

Figure II-15. Block Diagram of Pump Drive Systém

* The temms forward loop, and feedback loop sre mis-
leading since “loops” as such are not referred to.
‘However, because of long usage, they are commonly
accepted. In this volume, they are also referred
to as. forward path and feedback path.

n-7
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. rships ‘between the umts.

- contmuousiy observes the clothes and controls her

behavior according to her degree of satiafaction with
them. Thus, she behayes not only according to the.

1 ,‘ ‘Whether it refers to an open or a closed loop, the

block dxagram possesses several important character—

“istics that deserve special mention. It must ke r
' méambered-that 4 block diagram is a functional repre-

- Sentation of a physical system. Since ce the blocks re-
‘présent functional components rather than physiccl
‘components, a block may represent several physical
‘units lumped together, or one physical umt may be

s ‘is based upon ‘the operatmnal relation-

'For instance, figure II-15 shows individual blocks for
the control potentiometer and amplifier and a symbol
for a differential,  Actually, the potentiometer and
amplifier are located within one control box, while
the dltferenﬁal merely represents 2 method of wiring.

Also in figure Ii-15, the block representing the motor
accounts for the relationship between shaft speed and
control field voltage. But since the pump character-
istics are important factors in determining shaft speed,

certain puinp features are actually a part of the motor
block. In this example, the flow, q,, is a simple
function of pump speed. It is this simple function
that is represented by Y,. It is evident that an intimate

knowledge of the behavmr of the elements of a system:

is needed before a block. diagram can be constructed .
This aspect of the problem will be treated in some
detail later.

(b) BLOCK DIAGRAM ALGEBRA

It is a comparatively simple job to derive the mathe-
matical models (transfer functions) of the indivicdual
elements such as Ya, Yy, Yg of figure 1I-15. Each
model describes the behavior of the corresponding
individual element. To determine how these elements
periorm when linked together requires the derivation
of a new mathematical model that describes the com-
plete closed loop system of figure 11-15. This new
model is more complex than any repréesented by the
individual elementary transfer functions, and must
be examined to obtain a description of the behavior of
the entire system. The field of controls system analy-
sis consists simply of a number of special ways of
investigating the properties of the closed loop. All
of these special methods depend upon manipulating
block diagrams such as figure II-15 into simple form.
Such manipulations fall into the subject of block diagram
algebra,

As systems become more-complex, they become un-
wieldy mathematically, This situation is remedied

-8

Wash these clothes, ' but also-according to-
4s a.result of the washing operation. The -
as.sociated equtpmentamakemp a" ¢

. oot
e .

by a system of block dtagram algebra that makes 1t
- possible to-reducé even the most complex system to
a single block v ,

A

above>

.
e

‘The: transfer functions YA, Yy, Ygand Yp are the trans- ’

fer furictions of the forward elements of the system
Referring to figure 11~12, Y,=V,/Vg, ¥, = 1y/V;
YG = n / g,

Qo/vg (v, /VE) (nl/V )(no/n1) (Qo/no) YA Yy Yo Yp= YH.:
the four blocks of the forward path may be reduced to
a single block, .defined by a forward transier fungtign

- o Y 18 Lo a3
V— fioure M-1R _ Bionea 2¥ 12 Caiien wo Toprepentea

as'in ﬁg;ure 11-17
Ve . Q

Figure II-16, Equxvalent Szngle Bloclc Representxng
Forward Path of Fzguze II-15 )

Note that the feedback element of figure II-17 is un-

changed fram that of figure JI-15, because the flowmeter .

transfer funcfion, Yp, is'the only element in the feed- _
back link; ¢onsequently it defines the feedback transfer
function of-the system.

~—— Forward Path —=

W .

Q

| Vi

~~——Feedback Path—

Figure I1-17. Simpli fied Block Dxagram of Pump
Drive System

The overall relationship between the output Q, and
input, Q, , is obtained in terms of the forward and feéd-
back transfer functions as follows:

The voltage to the amplifier was given by
(11-5)° Vg=V, - Vg

and since Vg = =Qe/Yp, » Vi=YcQ, and Vp=YpQ,,
these expressions can be substituted into (II-5) y1e1ding
Q/Ypy, = YoQ - YpQ, Rearranging the terms,
Q(1/Ypy, + Yp) = chl . Clearing fractions and forming
the ratio of output to input, the equation is N

S_g_ = Yo Ypr
(I1-6) e Q;" 1+Yp Ypy

{11-5) and (I1-6) are the two fundamental relationships
on which all closed-loop control systems theory is
based. (II-5) is called the actuating error equation.
It defines the "actuating error” (as represented by *
Vg ) as the differéncé between the desired quantity
(as represented by v; ) and the output quantity (as.

represented by Vg). By direct substitution of the input

and output, and by application of the forward and feed-

This is 111ustrated by the pump gontrol sy,ste'n discussed

Y, =Q,/, ; and since
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Potentiometer e ‘ FTIN
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Control Surface s X3
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3 " Figure II-22, Surface Control Pésitioning System -
1
;;: COntmller
TN v T u S
¥ , ' vy Vg ] . ] - o
T —> Yo = ‘.? —pt ¥, I —— 3 ¥y i
, | (‘bntml Potentmmete “ Amplifier | Motor V - s . ‘
. | Eghgsihalibhngnivn ——— e , ' J
LR .
Feedback Potentiometer
Figure II-23. Kotor Control System
3 Hydraulic Lines—7
| 3
Fi - - =
: -l o /‘ Dressure T\ Sump ﬂ
HE 4 ( ’ '
-prassure I l Piston
_Shaft
. == Cylinder : —
\ Arn ' ,
' nmnz aen Feedback Rod = — Y
Motor Shaft \F
. Fzgur- I1-24. Hydra:..lzc System &
| by the block diagram of figure 1I-25. in both Y, and Y;,are conversion factors to account for
- X x Q the mechanical advantages.of the walking beam. : .
1 1 % v 5 . ’ g o
+ :
—_— Y, Y, Yen - > The block dxagram equatxon of the hydraulic system is '

Yo ¥en
#YY cNYL

Valve Cylinder

i :
or §—YSY,, where Yy = = Yex

(Ir-10) = Ysl 1+YchNYL o L L ‘ ) l,,‘

N ‘ The complete block dxagram of ﬂgure n-22 is con=
Linkage N structed by combining figures nm-23 and I1-25, This '
' ' is shown in figure I1-26.

i -25, Hydraulic C Systen e '
Figure I1-25. Mydraulic Control System Making use of the definitions of {11-9) and (n-io), the - g

Theé block Y, is needed to account for the conversion system is reduced to a simple cascade,ﬁgnre 11'27 o4

of rotary motmn (o) to linear motion (x;).. The block G L

Y;, accounts for the conversions of surface deflection - By dennmg ch = Yc Yg Ys Y" the: system is reﬂuced - R
= (3) to linear feedback displacement (xp). Iné¢luded to a single block, ﬁgure 1128, ‘ A i

o
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= Motor Control System

Hydraulic Control System

Fzgure II1-26, Surface Contral Positioning System

e T e M s
et Yo Lt Vg ] Y, i Yy [

Figure. 127, Surface Control Positioning System

& -8
—t Y“'P’ ‘

Figure 11-.28. Surface Control System

A block diagram form of great value in the analysis

to be treated in later chapters is shown in figure II-29.

--R' + E " ]

Figure II-29, Unity Feedback Loop

The block diagram equation for this system is derived
using the principles of figure Ii-18. Referring to.
figure 1129, E« R~ C and ¢« YE, thereéfcre ¢/Y=R-C .

Y
1+Y

sja

Equation (II-11) should be compared to ({I-7). There
is one essential difference between these two forms:

the presence ofa product of two different functions
in the denominator of (II-7). Since (II-11) can be
derived from (II-7) if the feedback transfer function
is unity(Y,= 1), the system in figure I1-29 is referred

to as a unity feedback system. For this type of system
the closed-loop transfer function is simply

Xy )
olalvel .
o Ovlinder | 2.3
, ——

Figure II-30. Unity Feedback Control System

(Ir-12) CLOSED: LOOP TRANSFER FUNCTION =

FORWARD TRANSFER FUNCTION
1+ FORWARD TRANSFIR FUNCTION

A comimon example of an inherently unity feedback type
system is the hydraulic system shown in figure 11-30.

Since the valve is attached directly to the cylinder,
there is a one to one follow-up. The sequence is as
follows: control stick rotation displaces the valve
spooi relative to the valve allowing fluid to flow into
the cylinder. The fluid flow is accompanied by cylinder
displacement. As the cylinder moves, it carries the
valve housing with it. Since the spool is attached to
the stick (now held stationary), the cylinder will come
to rest when it has carried the valve housing to the
neutral position relative to the spool. -

+ X
AN I Y. 0.

- Stick Cylinder

“Figure II-31. Unity Feedback Hydraulic Systein -

A control system with non-unity feedback can be con-
verted to the form of figure II-29 by the following

sequence. For example, the system appears-as in
figure II-32; its transfer function may be written as
C _ 1 Y1Y2 o '
(II-13) R Y, 1+Y,Y,
R, E ¢
Yy

Figure II-32. Non-Unity Feedback System

Replacing Y;Y; by Y, the closed loop of figure II-33
is obtained.

3 +
R-‘.l. ‘T—.YT’C :

Figure IX-33. Unity Feédback System

g
3

After the closed loop is analyzed, it is necessary
to multiply the results by 1/Y; in order to de-
scribe the complete closed loop behavior, i, e.
C/R = (1/¥) [Y/(1+Y)],

The unity feedback system is very seldom encountered
-1
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ln physical networks but 1t is very help!ul 1n analyzlng:
-eloser loop systems 3 o

. Another useful diagram is that of the unity forward
- path systems, figure I1-34,

Figure II-34. Unity Forward Path

The transfer function for this system is derived by
eliminating one loop at a time. Since the forward
transfer function is unity, the first loop is eliminated
by applying (II-7) to figure I[-34, i.e.,d/c=1/{1+Y,).

The resuiting diagram is shown in figure I1-35.

L —

Y; <

Figure 1I-35. First Step in Reduction. of
Figiwre II-34

Appiylng {II-7) to the second loop,

—1_
4. TY- .1
b + 1 1+Y ¢ Y,
1Y,(_HY1
1 d .
1+4Y,+Y, )

Pigure II-36. Elimination of Sécond Loop of
Fi‘l"e II-34

Finally, .
1+Y+Y

. 1

a = 1+Y1+Yz+ Y’
1+ Y’(I !1" Y z)

and the block diagram is shown in figure I1-37.

n-12

Y R V L S
Y e Yy -

Figure II-37. Fiml Form of Figure II-34"

A symbol useful’ in developing block diagrams is the
adder(). Application of thig syimbol is rather subtle
since it is mechanized by the same type of apparatus

- as the differential (®).* One important application

is in describing a so0 called open loop-closed loop con-
trol system figure I{-38. Here the input is compared
to a feedback quantity as in any of the closed loop
systems described previously. In addition it is applied
directly to the final control element (¥p) through an
"open loop controller' (Y,,) . Here the adder symbol
is-uged to show that signals are being added into the

loop from an external source (Yg).

Figure II-38. Open Loop—Cl‘osed Loop Controller

The adder is also used to describe positive feedback.

systems. If the quantity fed back is added to the inp s
the block diagram will appear as in figure II-39
The closed‘loop- ‘équation now has the form:

Y.
II- K.
(11-16) vV oIgy,
V- gy Bl o) -
e O pummn > Yy
B , - '1'2‘ "

\l+ B
Fzgu'e 1139, Positive !eedback System

A third application of the adder is. slnwninﬂgure n-40. .
This is a parallel arrangement of blocks: ~ Tlie adderA .

output is given by d=a”+b' +.¢” , and slnce '

b’ =bY,, and ¢’ =cY,, d-aY +bY,,+cY

;‘at ) e

¢ See Lauer, Lesnick and Maison (Ref,3) or q:-es, N 3 -
chols and Phillips,: (Ref.4) for extellent descrip-
tive material on nechmization of ﬁuei Mctim.

Y

'Note that B e
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Chdpter 11

Sectio, 3
the cascade §r series arrangément of blocks, figure SRR S ey T N0 s debre or
1112, representéd a multiplication opération, and the AU N e STV
parallél arréngement vepi‘esenfs arf adding operation, 1

. ’ - o= c 5
The locationi of the adder of differential,can be shitied : - +
in.a block diagram to-aid in the simplification process . . ] (8)

' Fﬁgure 1i-41 illustrates this. ‘ Ch .

Table 1I-1* i5 an eﬁ&ensive list of sunﬂé.r transformation -~ o ’ asc! d= (a+ )Y ofF
pairs to be used in’ modifying and reducing complex - —ef— Y —
diagrams. Note that item 10 wis used to transform 3 d= (a+y]'¥ or
the cascaded blocks of figure 11412 into that of the le d=a¥+c
singleé block of figure 11-16. ’Also note that figure 11-29 . ‘ 1 .
was modiﬁed to figure 1I-2¢ by using item 186. , T -o—Ic .

To illustrate the use of this tablé a complex multi-loop

block diagram, figure I-42,i5 reduced to a simple o (b)
single loop as follows ‘ _ o
Figure II-41. Equivaiént Block Diagramss

o 'mis tnble was adapted from Reference: 6 Noving of Summinig Point
:El.- ‘Vf1 - B’1 . » E"Q- my - ‘B2 A B ENy E’i A- B’
m, +_ E,. m : n 1w, [
3 3R] Y, o Yy bt v, ot ¥y e C
B m’
| Y ) ) 2 .
Y A
. s, |
a i : | |
By .
Figure II-42. Kulti-Loop Block Diagram
I o 1m s Es 1 m -
4 n—-@ 2l L] 1, fr = ol Ty
18, .
v | ) s
- . .
Figure I1.43. Cascade Eleiments of Figure II1-42
Combined
- m T . c
‘3hY"+Y, A - "b Ys Yy -
. j c
—_ 1 Y e
Figuré II-44. Forward Loop of Figire II-43
Eliminated
hzi ' 1I-13
3 A e EEEse—
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[ Trinsfornation

] drigina.l" Diagram

Equivalent Diagran

' Eﬁﬁatioh ',

| Interchanie of Blocks 1 2l V1 T, Pw A b, ‘b aYyY,
L o . 8 4a 8-b d
13, Interchange of summing points = g d= a~b+ C
' A ' Rl ‘ o
a Ramr ﬁ 2 =R d 8+ + nd .
3. Rearrangeient of summing points. . -3 > - d=a-b-¢
. N b c_ i ‘b . o ’
4. Moving'a summing point ' b :
ahead of an element d=aY-c
| 5. Moving a summing point .
beyond an element c= (a~b)Y
“ 6. Moving a takeoff point
ahead of an element h=aY .
‘7. Moving a takeoff point b=a¥Y
beyond an element : a=b/y
2 , =a
) - & o __C_ a + )
8. Moving a takeoff point S * = -
" ahead of a swming peint e c b ema-b
. . N > M B ‘ Prd s '7 - V ' ) - b K
— Ty 2 Fex € .
- 8, Moving a takeoff point beyond. - c=a-b
a summing point a - a=c+h
10. Combining cascade elements SN vy B b=a¥,Y,
11. Remcving an element from
a forwerd loop d= a(Y,-Y,)
12. Inserting an element in degaY.~a
‘a foArws.rd‘ loop 1
'13. Eliminating a forward loop d= a(Y,~Yy)
14. Removing an elewent from a 4 2N
] feedback loop- 1+Y,Y,
15, Inserting an element in a d= aY,
- forward loop Iy Y,
i . f! I, d '};Jl
16. Eliminating a feedback loop —p 1Y, Y, i = TTY?Y';
. R ' a Y, d > . 1
o %—th =, ey
At d - *
a 1 d 1
16b. *§ |f|: [ i B | d=ay
b s oyl a_ |2 Do tdewe | gy ‘
17. 1Inserting a feedback loop ﬂ i S > 1T, 1 ‘
 17a. : d= gifl
I-14
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As a starting point, the series. blocks are combined before belng subtracted from the input v. Thus, the
whereéver possible (item 10).. Thus. ¥ and Ys; dnd input to Y, is (V=15 - Bl)Yll( Suhstituting for e the =
Ys and Y;are combined. Figure II-43 8 ws the tirst input 18 (V~B,y/Y,Y, ~B)) YIY,- (V-By) Y,¥, - B,. -
reduction. Since (V~By) X;¥; My it can be seen that this is the i
' Bame inpat to ¥ in fi - K
Next, the forward loop between mg and A is simplified inpu 2 88 In figure II-44. I
(transformatlon 13; see figure II-44). The three séts of cascaded blocks are combined in
figure i1-46, leaving two minor loops separated by 5
Figure II-45 shows the relocatmn of the take-off point a single block i1l enclosed by a major Toop.
and differential point of the main (outer) loop. (trans- =
formations 7 and 4). At the original take~-off poini The two inner loops are easlly converted into single i
figure 11-44, the input to the feedback block denoted blocks (transformation 16) as indicated in figure II-47. ,;,
by ¥;, was mg, The take-off point is now atC. Con- From this, the final modified diagrams of ﬁgure 11-48 i
sequently, C must be transferred back to mg through afe evolved ]
‘the block 1/Y, sY-, before: being fed into Y{¢. Similarly, *
By, the-output of Y;,, must be trgnsferred to By« B/Y,Y, The final dlagram allows' the ditect determlnatlon of :
- | i
oo o E' «V-B! BB, T — 1 m,
,lv + . 1w — ~~—3rtt ~, ! .'l', Yle . e Y3 m3 | Y‘ * Yo 1 ) - ‘v . Y. Y-’ ¢
,'Bt I B, -
A m e B fﬁ‘?
- Yy e 2 1 Ys I 4 =
; zA m "3 | - . - 5: Y L My & § R i
o M ‘t B Y],Yz 1. 10 g Y‘Y.’ - M — .:‘j
"Figure I1-45. Take-Off Point for Mg Moved-to Right «1
and Summing Point for By Noved to Left =
B Y,YaYs i oYy J—2 N . TR
My i | c
Y1 3 =Yg rt—
? T
g Y10 .t
& Yi¥aYeY7
Bi‘ . oy
. |l .
Figure II-46, Cascade Elements of Figure II-45 - A
Combined :
i , , _ :
jl ; Y Xy By YoY, ‘ XYY, C- i3
I Wy ] v LYY taYy - i
- - ¢ |
.';-{ g': Y1Y2Y‘Y-’ ’ "LA i ;J,
Xf \ (N - 1
% Pjtu'e IT-47; Two Inner Loops of Fut.re II-46 . 1
Li . Eliminated
-15
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Fzgure II 48. Final Szmplexed Block Diagrams
of Figure I1I-42

the overall closed loop equation c/V For this diagram,
itis given bys-

(I1-15) GC= R VY Yy (YY)
R (1+Y1Y2Y3Yu)(1+Y5YeY7Y5) +¥3Y5Y10(Yy+Yp)

(c) EQUIVALENT BLOCK DIAGRAM

The transfer function (Y} for many physical units can
be derived dxrectly by ordinary methods of analysis.
However, it is often advantageous to construct block
diagramsfrom the equations as the derivation proceeds.

" This not only helps in the derivation by indicating sub-

sequent steps, but also greatly aids in developing an
undérstanding of the physical situation that the equations
represent; The procedure is illustrated here by deriv-
ing the transfer functions of a compound wound d-c

- motor with a separately excited control field.

Figure 11-49a is.a schematic renresentatmn of the
motor. This can be simplified as in figure II-49b.

In figure II-49b resistances and inductances are lumped
together in the respective branches of the circuit, By

 this simplification, analysis is facilitated without loss

of specific information. It is important to note that
posxtive control field flux is in opposition to the fixed
‘shunt field.

The following assumptions are made for this motor
‘analysis:
a. The system is linear.
b. Perturbations about operating points are small.
¢. There exists negligible coupling other than that

intended between circuits, components, or voltage

and frequency control systems.

d. Negligible armature reaction effects.

e. Negligible d-c bus voltage variations.

f. Negligible shunt field current variations,

g. Negligible saturation of magnetic circuits .

The motor constants are defined as follows:
Total armature back EMF « E,

11-16

. ‘Controlr Field |

i motal armaiure current # I, Co : e

* ‘Total d~c bus voltage = Egy, ., e
-~ Total flux "= & ‘ S
Motor speed = & St

Armature circuit resistance = R,

- Armatureé circuit inductance - L,
Control field resistance = Ry,
Control field inductance = L ,

-1 utal effective’ motor control

" field current = I, o
Total motor torque = T,

Motor-load inertia = J
" Motor-load viscous friction = B

Small perturbations are denotéd by lower case letters.

110t01m
:OVDC Bus

Compensating Winding

Commutating Winding =

Brush & other
résistances

Frequency

. Armature
+ Brush & Other

tances
Fixed Field Resis

Fixed Field g/
Current /{;
- Adjuster-

- Series Running Field

Note: Series Starting
Field not shown,

If‘l +
. 3 o
L, 110 to 120
Ry V.D.C. Bus
. R. S v
Control o , Fixed foms= Control Field

‘Field rield f s‘“ Fixed Shut

Fisld
Series Field
(Bucking or Aiding)

Note: Increasing I; , Decreases Net Flux
(b) Reduced Diagram of (a).
Figure II.49, Notor Schematic

Then, from motor theory, Ex «K14 &, In addition to

being a function of fixed and control field currents, & is
also a function of armatire current since the motor is
compounded. Thern, perturbations in Eyx are d-.ied by

9, (33, - OFu 4
(II:16) &n a;(al. B2 -i’°")

(No term due to fixed field current exists since its
perturbatiornis are assumed negligible.) Here it is
important to note that the control tield is a bucking

-




Hield, that iz (3¢)/(3I,.,) i5-by-convention a ngggnlg
number at the operatlng point

Motor theoryfaiso relates armat'ure current {o! back EMF
-as follows; Eqo=Ey+Iy(Ryraly) where s wd/( d'l:) or for
sinall pefhnrbdiom,

111-17 S
) b REeD

Wher'e T, '{,.'7 B,

Equatiohs (Ir-18) and (I1-17) indicate that the back EMF
scompment 18:a feedback system as shown in figure I1-50.,

B Rg('r.sfl) '

Ak |

6 ]| oEa g |
1 26 - - ‘

Figure II-50. Back EMF Block Diagram

‘Motor torque is proportional to the product of the net
flux and the armature current, i.e., T, =Ky 5I,,

‘Because of the series field, perturbations in ¢ area
function. of armature currentI, as well as the control
field current I .. Consequently for small perturbations

. T 38,
(11-18) tax g3 <:Ifi. g 1,c,)+2TI.

Figure II-QSI’. Notor Torque Block Diagram

. chieﬂy by windage: Therefore, 'r. -8 'y Bé

In perturbed values . maET
(TE19) . 6. A et
, ty  B(gs+l).. S
where 5 =3/B ..

Figure 1I-52 shows the speed-tergue block diagraqx

R Y-
- Bmyse) | .

Figure I1I-52, Séeed:--Torque :Block Diagram.

The control field transfer function doesmot affect metor
stability, however it is presented here to compléte the
description of the motor "components.*

Input to the motor is the control field voltage E¢ .
Because of the control field inductance Ls nthereisa
time lag between the control field current I¢,..and.the
control field voltage Ef. .
i, . Crem | Keouicn
rc‘ Lfc.S "‘th. ‘rf » 8 4‘ 1

where 7y = (bg oMBy i) and Kyg= 1/(R¢¢.) This is
shown in figure If-53.

Figure II-51 i a block diagram of the motor torque ea [ K ] o

equation. —| .
i . "Th “important dynainic loads oh thé moktor are simply ' o . |
‘3 motor-load inertia and damping, the latter caused Figure II-53. Motor Control Field Block Disigram
3 ] - ' e o ‘
&
i . 5
i g 3

C Ryrsd) | g f Ofa |
i

Figure II:54, Notor System Block Diagram
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Combining figures II-50, 1I~51, and II-52, the motor
systefn block diagram of ﬁgure 1-54 is obtamed The
system transfer furiction is derived by combinizns equa-
tions (1I-16), {-17), (11-18), and ([I-16), and is shown
by equation (11-20)

N(s) / D(s) +:KG inwhich K is a positive constant
and G is a function of s expressed as a non-dimensional
ratio of products of the factors of N¢s)and B(s), The
roots-of N(s) and D(8) are referred to.as the zeros.and
poles, respectively, - ot the transter iunction, and to-

(a0 - | [.a_n L

98 99

TR

a@)]
20 28 26 (oI, 39 ' 7o

Y-“)"Ef;'[ﬁfﬁh]x

A (e B AT

Equation (II-20) is formidablé to say the least, How-
ever, figure II-54, which is its block diagram form,
is fairly straightforward in that it shows in readily
identifiable form the manner in which all of the electri-
cal and magnetic entities of the motor interact to pro-
duce the dynamic behavior defined in the transfer
function equation (I1-20j.

(d) THE TRANSFER FUNCTION

In subsection (b) of this chapter the terms y,, Y, ,. and

Y, of the pump drive system were denoted as the block
transfer functions of the functional comporents. In sub-
section (c), a means of obtaining block diagrams from
differential equations was discussed with the derivation
:of specific transfer functions considered incidental to
the process. These sections were primarily concerned
with developing block diagram abstractions of physical
systems. An ultimate aim of this volume is to provide
the designer with the basic tools required to periorm

is a necessary step in this direction.

To perform experiments on paper, the system designer
inust have available mathematical models of system
components which
1., completely define the performance of the com-
ponents,
2. can be combined with other models according
to the procedure developed in section II-3b to ob-
tain models of a system,
The transfer function is a form of mathematical model
fulfilling the above requirements. This subsection is

concerned with the derivation and interpretation of

transfer functions. In the process of explanation, it
is shown that the transfer functions can be combined
and do completely define the performance of a system.

To simplify the presentation, the characteristics of
transfer functions «re developed by the extensive use
of examples. Transient and stability characteristics
are discussed for specific systems, with pertinent
generalizations noted without proof.

Transfer functions of linear systems with constant
parameters* can always be expressed as the ratio
of two polynomials in the Laplace transform vari-
able s .** Further, it is always possible to write

* A linear system is one whose properties may be ex~
pressed mathematicully in *erms of linear differ-
-ential equations.

** The Laplace tranaform 1is extensively used in this
volume., The reader whoisunfamiliar with thismeth-
od is referred to Reference 5.

1I-18

,gether wi’tn the "gain" K they eompl‘etely ;deﬁ._ne the
system,

The simplest transfer function is one in which 6 is
aunity. Consider, for example, the potentiometer,
gear box, and amplifier of the puinp drive system of
subsection (a). The potentiometer- i3 calibrated so that
2 certain setting representing a desired fluid flow rate,
Q; , will produce a voltage, v, . Since the potentiometex
is essentially linear, the transfer function is V,/Q; = K
volts/gpm, where K, is a constant determined by the
reference voltage, V,,¢ , and the calibration of the
potentiometer. .The potentiometer block is now given
by figure I1-55.

Qt * V1
o K'c ea—

Figure IX-55. Potentiometer Block

The gear transfer function is simply the gear ratic
since inertias and friction effects have been lumped
into the motor block. Dencting the gear ratio-as K; ,
the transfer function is then n /n, = K (dimensionless) .

ng Do
Ll Ky |

Figure 1I-56, Gear Block

Idea.lly, the transfer function for the amplifier is de-
iined dy its gain, X, . For an input voitage, Vz , the
output voltage, V; , is equal to K,Vx . The transfer
function is K, volts/volt and is constant. It is quite
possible, however, that the output voltage will not
vary instantaneously as the inpui voltage varies. That
is, there may be an elapsed time, or time lag, be-
tween the change in input voltage and the proportional
change in the output voltage. In this case, the ¢ would
not be unity. A detailed study of the amplifier would
result in an aunalytical expression for G which would
account for che time lag.

For a simple example of 2 component which has a
G function other than unity, consider the hydraulic
amplifier shown in figure II-57. An input displacement
in the direction shown will open the valve so that the
fluid will flow in the direction of the arrows. The
result is that the load is displaced to the right. From
the figure, the following relationship can be derived:*

* For input x;, pivot is at A; for output x,, pivot is
at B.

e o - o, v o

P i ——
. T
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(1I-21)

0 ".' P 7]
Duhlaéement,'; BB R

l"‘—Piston "

Fxture 11-57 Schemtzc of Idealued llydruuuc
’ Amp.lrfxer ‘

X, = Bi(a +b)~ XO%

The valve displacement x, controls the quantity of

fiuid flowliig’ through the ‘inlet tube. ‘This also gove'rns

the velo¢ity of the piston- displacement. When
hydraultc fluid is incompresslble, thts relattonship
18 defined by the equatto*x ‘

11.22) -. a

(. 22) Tt Cx

or, transformed, Cx,« sx, where s is the Laplace
operator and C is the piston velocity per unit valve
displacement (constant for constant inlet fluid pres-
sure). These o equations are illustrated in figure
11258, Combining the two figures yields the closed-
100p block diagram for the hydraulic ampli!ter, figure
11559, ' Note that the walking beam is’ broken up into
t functional parts the input ctton and the ieed-

Figure I1I.58. Components of Hydraulic Amplifier
X,

= Y + <
T b——.-T_“ s [ O e

-2
b r

Figure II- 59, Closed-Loop Diagram of Hydraulic
Amplifier

The output-mput transfer functlon is given by
x, (8) a+b./“ - . a+b/

w0 LA \esu)

Xo(S)
x;(8)

(II~23) - *l’ +3

where KLﬂ (a+ b)/& , TV - b/(aC) ‘-

2 g

(1I-24)

Chaptex

ctton 3 -

Egquation (I[-23) is {llustrated in figure 11~ 60 Thtp
diagram is iuncttonally equtvalent to dfigure 11+59, byt

s

" note that the physical relatlonships are loat in ﬁ;\’ Ire

IIsOO

R e

Figure I1-60'. Block Representatxon of Ilydraqlxc
Amplifier

The transfer function (1I-23) represents a single time
lag. .To illustrate this point, the response of the hy-
draultc system to an input, xi, " will-be-. determtned

xo('S‘) * xi(S) T

A common type of input. that is. used to evaluaie a sys-
tem is the unit step function (heavy line in ftgure n-er) g
That is, . : ‘

(11-25)  xy(t) = 0 t.<0

= 1 t>o0

The Laplace transforn: of (II-25) i8. x;(8).= 1/s: Con-
sequently, equation (II-24) becomes.

V

‘The inverse transform of (11-26) i8s xo(t) = Ky (1~e"5y),
This expression is plotted in figure II-61 for two values
of 7 where %, > %, .

Notice that K (the "gain") determines the ratio of the.
output to the mput in the steady state. It is clear from
figure II-61 that the quantity v determines how fast
the output approaches.a , steady state value. A practical
figure of merit is obtained’ by letting t~ 7, , then
x, = 0,633K, . So, 7y represents the time required
for the output to reach approximately 63.3% of its
steady state value. It is convenient to.csll T the

SRS PRLLNTAAa DAl WU sl waal

“time constant' of the element.

(I11-26).

Evidently a system whose transfer function is of the
form of (I1-24) does not respond instantaneously to
changes in the input -Since the time delay is repre-
sented by a first order. equatmn the system is said
to have a "first order time lag.m

Another important observation is that the quantities
7y and K;, completely describe the first order system:
K, describes the steady state performance, and % , the
transient. In _keeping with mathematical conventions,
(11-24) is said to have aﬁrst order pole at -1/7, .

The linear approximation.to a system never reaches
a steady state condition but only approaches it asymp-
totically. Consequently, some figure of merit is needed
to describe the speed with which the system approaches
the staady-stafe valtie, The ﬁrst order tine tonstant

7 i8 an’ excellent tigure of merit for systems that can
‘be represented by simple transfer functions ‘such as
(11—23) For more complex systems a different cri-

1n-19
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' Displacement

x;= Unit Step Punction: Input

Tine ——

Figure II-61. Response Curve of Hydraulic Amplifier

" terion of speed of response is needed. It has been

found that a-convenient one is the time required for
‘the output to reach and remain within 5% of the final
value, This time is referred to by several names

such as damping time, settling time, solution time,’
‘and response time. By referring to the equation above

it can be seen that x,(t)»~95% K, when t= 3%, The
response time RT= 37,, This is shown in figure TI-61.

The difference betw«en the time constant () and the
response time (RT) is that 7 is related strictly to
first order poles whereas RT can be related to systems
of any degree of complexity. This distinction will
become more apparent later.

The preceding discussion has developed the transfer
tunction concept for systems of zero order { G unity)
and first order, G= 1/(rs +1). The next simple trans-
fer function of general interest in this sequence is the
second order system. The characteristics of this
‘System will be-developed in terms.: of the- accélero-
meter shown in figure II-62,

] 5

Figure I1-62, Accelercmeter Assenmbly

This system consists of a mass (n), a damper (B) and
a spring (k). yindicates the motion of the mass rel-
ative to the frame and is called the output. x indicates
the motion of the frame relative to inertial space and
is called the input. The frame (F) is constrained to
move in a vertical direction only. Any acceleration
of F will cause a displacement of the mass m relative
to F, thus giving an indication on the y scale. This
is represented more simply in figure 1I-63 where x, in~
dicates motion of mass relative to inertial space.

In order to derive a transfer tunction relating output
n-20 '

¥ to-input x, the forces on the mass are summed and
Newton's law applied. The forces are

Spring Force Fo=-ky

Damping Force Fp= -B(dy/ aty
Thus:
Fg + Fp=m(d®x,)/(dt?), or m(d?x,)/(dt3)+B(dy/dt)+ky =0,
Replacing x, by y-x and rearranging the terms, the
equation becomes

v ky = g 32X
RF=RL SRARE-

242 044041

(11-27)

121

Figure 11-63. Equivalent Diagram of_ Acce ler ometer

Equation (II-27) is the differential equation of the
spring-mass-damper acceierometer assembly. By

dividing through by the mass m, the equation is rewritten

3, p. a3x
(11-27a) s . B gy o

The coefficient k/m represents the square of the an-
gular undamped natural frequency of the system,

w? .* Likewise B/m cdn be replaced by-the product - '
2{ , where { is the damping ratio. 'I:hen (II 27&).

becomes 7

(11-28) _.x + 2 Py d_x - Lo
Lo %% +apty 52 ‘x A

where s, is the acceleration ¢t the frime,

The Laplace transform of (n-za) yields

(s3+ 2Lans +anl) Y(8) » 8x(8), . RN

Forming the ratio of output to input, (dlbplaeement y. to “

T

* See any eleémentary text o dynuice or geﬁueehe-

nisms, e.g., Lauer, Leenlck, and Matson _(llef. Mmoo
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.eceeleration a,) glvep &he traneter function of the
~aceeiex:ometer fox an acc lerattorn input.

denominator I
‘ non—dilﬁéh‘s'ionul‘ rbrm

K,
——‘-S'F];

+‘

where fie gam IC = ok, Factoring tlie 'dtmensional
forriit, (ir-29) can be written as: o
1

"~ ‘To determine the nature of the transient for this sys-

tem, a step-acceleration function is applied (by mul~

~ tiplying. (I1-29) by 1/s and the inverse transform ob-
: ‘ta.lned Then

e~ tontsin (o, 7T+ tan"1Y _;-z;;’ )]
\

',This response is plotted infigures 1I-64 and 11-65
-for several vilues of L Each of the curves in the
ﬁgv;re is typical of a range of values of L. Tle sys-
tems described by such curves are classiﬁed as
“follows: - -
t>>3 Overdamped second order system.
L1 Critically damped second ordexr system .
<< 1 ‘Underdamped second order system.
_&=0- ' Zero dainped: {néutrally stable) second order
© 7 gystem.

. y(t) x.l_1~

‘Second order systems with 0< < lare of the greatest
- importance to the designer, so a special series of
_plots is contained in figure {A-1).* (Note that output

is plotted versus the non-dimensional time parameter

t/T, where T, is the undamped natural period: T,=2v/cy).

These plots reveal that the systems. with values of
{ between 0.6 and 0.7 have the lowest response time.

* ‘Since many of the illustrations used in this chap-
ter are useful in actual ehgineering probléms, they
have been placed inthe appendix for more convenient

_everyday reference.

A

As a matter of tact it can be shown that the second:
order system with- t26; 84}as’ the Teast Fesponse ]
for & fixed w,, Conaequently, A prob
s a criteriomier destgn. :

Fuure 11-6€. Three Types of I‘ranuent Reaponse to
Step Function Input for Three Ranges of the Damping
Ratio {

The value of 7 in a second ordeér system transter
function must often be détermined from experimehfal‘ly
obtained curves. Figurés A-1, A-Z, A-3, and A-4 ire
useful for this purpose.* When { is close to unity, the
avershoots are not clearly enough distinguishable to
apply these charts. 'Consequerntly, a special plot is
used, figure A-§,

In the particular case where [« 1, {II-29)takes the
form
yesy_ _ 1 __ Ke

a(s) (s+4) (rs+ 1)’

whereK,=r2 and 7=1/w,, The inverse transform of this -

system when a step aecehuﬂon fuiiction iiiput (1/8) is
applied is y(t) =K [l 1t/ et/ ”] 'rhis is plotted

‘in figure 11-65,

* These curvesare self éxplanatory. However, special
note must be made that these curves are approxima-
tions and must be used with caution. .

K —__—‘a——-—-—_f;

R :;(s'e-f»n;‘é. \(\-%t‘

hjm'e 11-65 Second Order System Response vuth

Critical Damping ([ = 1)
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-thi
_ into two first-order terns:

I
e el

) (see ﬂgure A 6)

' (II.-JO) '”“-“, 1(5) .. SR

Wheni”> 1, the characteristic equation. (deriominator of

. . LY
ol (s+l)1(,.1) i Tergse D

Where 1~

N w..[c+lz’ i
The time response of this system to a step acceleration
function input is shown in figure II-64. It has the form
.of the sum of two first order transients. :

, and K“-'rl'rzp

It is-evident from this discussion that zecond order

traﬁster funct! ona_‘pan be. written in any of several
Deﬁmng vr' T';/T‘z

®

S

- By(8) 83y 2{w s,+ Pk 4

R vt sl

Wy -.k;)"'(;%—)r @
@, X8 o 1.
; c \ 3,(5) (s;%l-) (s+ ?1;) « 1)
(11-33)
X8, L .. 1
(11-34) .l(ss) als (1%_1_)3..%1 (s‘:i%i-'i(sf %)
’ ' (€ >1)

ransfer function in equation II-29) can be m:tored'
) The table includes several forms not discussed above.
- 1t is to'be noted, for example, that the forms 1/(~7s + 1)

the various forms of firat and second order system
tranafer functions and'their associated tyme responses.

and 1/(s%~ 2Lw,s+w?) correspond to systems whose

time responses. 1ncrease in value with time, The

divergent systems arise from the fact that the ex-
ponential factors are positive. All of the mathematical
manipulations performed above apply equally well to
these diverging systems except that proper accountlng
of signs must be kept.

Anocther point of interest is that multiplying the numer-
ator or denominator of the transfer function by s has
no effect on the convergence or divergence of the sys-
tém. Only the initial and fin alvalues of the time Te=

gponses are iffected.

The preceding lengthy discussion on the first and se-
cond order systems was aimed toward developing a
fariliarity with their many, essentially equivalent,
forms and meanings. The most important fact to be

~understocd is that the gains; poles, and zeros of the
-transfer functions éompletely define the behavior of

the linear system represented. The charts and tables
referred to in the appendix are intended to help the
control system designer determine and interrelate
these parameters readily, Since rearly all linear
system transfor fun¢tions can be reduced to products
of first and second order factors, even the most com-

. plex system can be handled by means of the charts.

The following examples. will bring out some of these

points.

The preceding discussion concerned itself v;ith, ,sfihg"le

Reference y vy Ll 2
Position ) S
= Inertial X Xy

Space

(b

Figure 1I-66. Accelerometer Nounted o Spring Damper Arrangement

The relationship§ between all these parameters are
summadrized in Table A-1, Another table, A-2, sum-
marizes methods of determining these parameters by
measuring certain chnracteristics of the transient
Tesponses,

The third table in the. Appendix (Table A-3) summarizes

1-22

degree of freedom systems. A two dégree of freedom
casé will now be discussed in order to illustrate some
additional features of transfer functions. In this case,
two independent transfer functions are required to de-
fine the system completely. In figure II-66 the ac-
celerometer is mounted on another spring-damper
arrangement. Summing up the forces on each mass,
the following equations are cbtained:

o

T me—S

i SR




Jdy d’x
dt'fl " ""dtz

*"ab'z Ty

: db’

’.

gh equattons ar ,rewrlttem
- (m,s +B,s+ k,)y,(s) - m,s’yl(ﬁ)ﬂ- -m,s’x(s)
(II 35) ’

(st* kg)Yz(s) + (@;5.

-th, Iollowing matric equation‘

_"Fre‘m these eqqo,tlons, :
18 £ v

? -ty ~my8?
‘ . m,s? Wiy 534 B¢k,
; _mas¥+ 5’,{\5# k3 -mgs?

Byseky ' m;!:sz B8 ¢kl

- I mzsz + 935"-’ kz - m,s’
¥,(8) Bs+k, m,s3
i‘(‘s) ms2+B s+ k, - m, 82

Bys+k, mys? + B;s+K, A

Expanding the detenninants gives the: trander functions )

relating outputs ¥y and ¥4 to. input X.

(11-37)
Ya(s) ~ 83[-my(my8%+ Bys+ k,) +mym o8] ,
x(s) (llls2 + B8+ &) (n,s‘ +. B,s + kz) +m,8 (B,s+ ky)
(11-38)
yi(s) _ s?mm,s? + (my+my)B,s + (my + mp)kyl
x(s) (mys“+B;8+K,)(m,87+B,8+ kz)+4n:2§’(82§» ky)
Collectinig terms
‘ L My 5(By )
N - 28 +
(11-39) Y. K ('Tx s
x(s) As*+Bs’+Cs?+Ds+E
) Mnlllz m;mg . 52
(iraoy | IEE L fALn) o ‘kz"‘
T x(sy '80’403’4Dul c
whére X ‘V:I B ‘ : "“U‘.’i ® N h N ‘j;.): - _.:‘,
A "'1"’: - Q e ;7&,,‘
| k,k Lo
SR L

'By rearranging the ,terms and I,aplace trmt«prming, .

Bys+ kﬂh(s)-m,sﬂxcs)" -

' s
o Ky=5 lb/ft Ly

U ity

. B= 17 ‘

| For this pant-}‘,cixl_ar syétemy let .
~my= 100 ,smgg . 0.5 slug .

»i: Ky 3 10/26 '
1" 1 lb/tt/sec . B,- 2 lb/ﬁ; ‘sec

‘In ordgxf to determine the transfer !unction of the oufput
" (yy) ofth gccelerometer versus the input (xy, these

) numbers are substltuted 1nto (II-39), yieldlng

ya(8):

. -.167 8%(. 28 1)
x{sy -

3:338% + 1343824 20, 2082+ .8’7’ ¥ 3

*’rhe !ourth order characteriatic.: equagmn is factorableu
into quadratics as follows: - }

- 16783(.28 1) T

a2y ®
;o . X(8) _ (.16683 + .688s + i,)(anxz +.208+1)
ya(8) ~,16783(, 285 + 1)

1 x(8) -[( ':)'421;1(%1)+1 r“’ng' 4";2@’11 )-H.

The first quadratic factor defires a highly damped.- -

short period mode ({.=0.82; -y = 2.46) . A
mode is a poorly (famped long pericd osdlv ation
(c,-o 023, w,, =0,224). , . _

£u

; For a step m;celeration function input (X(8).= /s ).

- (i1-42) becomes

-, 1675(. 25 + 1)
(. 16652+ .668s + 1) (20s2+ .05+ 1)

(I1-43) Ya(8) =

The time fanction y,(t)is given by the inverse trans-
form of y,(s). The inverse transform of (II-43) is
obtained by a method of partial fraction expansion.
By rewriting (n-43) in the dimensional form, it may
‘be shown that .

(11-44)
‘ =.01s(8+5) .
PACKE (774,038 +6.03) (32 + 018 + .05)
Qep— T
C (sl Yy {FFLY (stlaon Hong{1-12%)

: K; i ‘,‘ ¥ k* .
V\} i (ﬂs"”zz‘,"’nz:jwnzll‘gza ) (s+£,wnz+J ngd1%2%)

L e

‘r,‘ ”(t).x e( ;1“& ﬁ“. Jl z;i)t*xze( ;x"hl ~J o J—f‘f)t

0: . K ‘ C‘“" *50,,,:11 Z’ )t 43(- ha j”":‘r;;‘,)t

o , 1-23

The second. -
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.004— ) S ot 1
\ | 1 | A N
0021t .
0k b

= -.0095 e-2:91tcos(1:41t + 2.62)

.0082 e+0%8teog(, 224t - 08T) |

™t 2 3 & 5 10

F;igufe II-67. Transient Response

. where §,wp 2wy, v 1-L{ and {zon *.Jw,,yzv'_l‘-ﬁz? are the
roots of the first and second quadratics respectively.
Thei.coefficients are* '

t —

of 2 Degree of Freedom System
¥o(t) = =.0005 &3O cng(1, 41t42,62)-.0082¢™* ¥ oos(, 224t-.08T)

Equation (II-45) is pllotted‘ in figure II-67. The first

_ -.015(s +5)

P Ly +Jey (T T(824 gy Srwy )

Ky 5 .'-‘Lrolsg;e 5) ‘
,2 V (5‘,*‘.{:1‘“"1?1’"‘1“’!15' ¢y y(8%+ '2;,39),,354'0)!:)

Kyw i sOla(er®)
(8 Ty ¢y 1 1) (8% Rgey m ey )

_-.018(8+45) o
Jo J1-03 ) (8% #2Lyw, + w0 F)

K, = - -
‘ {8+ { 2“’11‘3 -

- _.00475 e‘j 3.62

8= -{‘lwll : + anl I 1"- ;,?'

= -,00475 e° 13.2

8= <Ly - @, 1- L2

= -.0041 e-d:087

8= 'lz@nz‘éjwn?m:

= =,0041 ed-087

8= "cz“’ng'j“’ng 1- ;22

* The final solution is given by
(11-45)

“taw ¢ -l
.yz(t)"c.ie * nm(wmh% iy )4C,e g'q’"'tm(“’ﬂz‘] L, 26H,)

* See Gardner and Baines Page 154 (Ref. 5), for com~
plete discussion of this method,
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transient mode is seen to die out very quickly because
of its high damping ratio and natural frequency, while
the second transient decays very slowly because of the
low damping ratio. Since it is a simple matter to obtain
the response time of the envelope of an exponentially

decaying oscillation from the single parameter {v,, and

a relatively difficult one to obtain the response time of
the actual damped wave, the following approximate ré-
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'I‘hus the response time ior the first mode may be
approximatéd by RT,n 3/(3,©,,)%3/2,01= 1,49 seconds .
That is, the first transient mode decays to within

approximately 5% of its final value in 1.49 seconds, _

However, the- poorly damped mode requires 600 se-
conda. to die down té ;pp;oximately 5% of its final
‘steady sute value R'r ~ 3/({, )-3/9 ‘005~ coo seconds .

TR T T

/c‘g {.iﬂntfc‘osi(wnl'/‘&l “ ‘(‘-1’ t ;4‘1) -

I linear systems, the m,annen in Which 2 system sub-
si(ies pr diverges is indicated by the conventions
trated by figure II- 69. The diagram shows that;-
1. The atatically atabie system tends to return to
- .equilibrium after being displaced (like an ordifiary
pendulum),
2. The statically unstable system tends to diverge
away from equilibrium (like an inverted pendulum) .
3. The dynamically stable system returns to equili-
brium if it is statically stable.
4, The dynamic,ally unstable system tends to return
to-equilibrium ut it overshoots, reverses direction,
- and overshoots an even larger a.mount and thus con-
'tinues to oscillate at an ever increuing a.mplitude

- {,

Ti0ge bt cos(y VITLT t4Yp) e Cge’

aond ,,,,g(a,n’/fl-;;' tegg) = (L)

Figure IT-68. Respone of 2 Dogree of Freedo Syaten.,

Although it is not phy;iicgllv possible for the system
of figure II-8€ to be described by such a transform,
it is of interest for illustrative purposes to examing
an equation of the form of (II-46).

Ki(sray .
(32 * 2t 1(0“18' + “’n 1’) (sz“ 2L 2“’)\ 2S+ “’ﬁ:r)

R S .
(II-46) ¥ (8) =

The second quadratic factor has a root with a positive
real part, leading to a divergent exponential e*{s¥s,t,

5. The statically unstable, dynamically unstable
.system has a tendency to diverge away from equili-
brium while oscillating with ever increasing am-
plitude. -~ ‘

All of these i.haracteristics are revealed by the trans-

. fer function. Referringto table A-3, it wili be observ-

ed that when { <0, the system has a-dyhamically un-
stable mode while {> 0 indicates dynamic stability.
A first order term with negative r ‘indicates static
inatability and a positive 1, static stability

The time domain solution is

CI1-47) - y(t) = C et

*ns beos(w, ,] 1-¢ 1§t+|[;1) +0 et l"utoos(wnz.l 1-¢, tu/:,)

The two modes aré given by items 15 and 11, respec-
tively, of Tom e A-3. A representative plot of (Il-47) is
shown in figure II-68 with{;> {,, @y > w,,zand C;nC,.

The diverging osciliation is an example of an unstable
mode, 'The word stability has been avoided up to this

point because it means different things to different

people. In this volume: If a tempor ary chanige in the
input to a system causes a temporary__lgn_gg_in_ﬂ
put, the sy, .18 said to be stable. 1t is important to

understand that this definition says nothing about the
detailed behivior of the system. Thus it may approach
steady state conditions in 4 jerky or unsteady manner,
but as long as it reéaches a steady state it is stable.

In all the transfer function examples, it Should be
rioted that the transfer function is made up of ratios
of products of first and second order terms. In fact,
the transfer function of any system described by a
higher order differential equation car be expressed
as a ratio of products of first and second order terms
s , (xrs+l), and [8%/wd £(2l/w,)s+1).

An examination of the transfer functions derived so far
reveals that they are consistently of the form Y(swKE(s).
That is, there is a constant multipliéd by a non-di-
mensional function of s. The transfer functions Y(s)
will usually occur as elements in a closed-loop sys-
tem. The transter function of units ih the forward
path of a systém is designated by thé notation K G,

n-25
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- ménsional ratio of polynomials’ N(s)/D(s) sis

“ —Chapter o

‘where K, is a positive constant, and G isa non-di-
: ynomials ) (s) such that
- That is, G(s) is of the form

AR N PRI N

I

. Statically Unstable

gy

Anplitude ey

-

amicaIIYStable _\~/""’

methods to ke used make extensive use of graphical
conatructions involving tranafer functions, The charac-
teristics: of the graphical representations of the transfer
tunction are discussed in this:section. -

Basically, the transfer function may be represented

”\‘;“ " C

"]

Voo
\\/

L i

Statically Stable, Dynanically Stable \_/ B

Figure II-69. Stability Curves

~ Similarly, elements in the feedback path are designated
by the form ¢K,H. Thus the closed-loop transfer func-.

tion can be written

L. _K§ 1
R T+ K K@ ~ Ky

where Y(s) - KyKyGH.

- Itis a comparatively simple task to obtain & and H in

factoredforr as shown, consequently Y(s) is available
in factored form and is easily interpreted in terms of
performance in the time domain. However, when the
operation 1+ Y(s) is performed the factors are lost.
This s illustrated by the case of a simple servo in

which the simple form y(s) » K/ is(r,8+1)] becomes

Y(8)/[1+X(8)]< V(7 /K,)83+ (1/K,)s+ 1] In the first
expression, K, is'a simple gain factor, while in the
Becond expression it affects the roots, Consequently,
if it were necessary to work exclusively with the se-
cond form, the denominator would have to be factored

~‘every time the gain K, were adjusted. In control sys-

tem design, equations of very high order are common
and this process would be very time consuming. Thus,
all the methods of control system analysis are directed
toward determining performance by working with Y(%)
Instead of (s)/[1+¥(s)].

(¢) GRAPHICAL FORMS OF THE TRANSFER FUNC-
TION | | |

The preceding section has Shown that the system
‘equation or transfer function defines the system per-
formarice in ferms of its zeros and poles.. _'The problem
of analysis then.resolves itself into one of determining
the zeros and poles of the closed-loop equation, The
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of 8. (the poles and zercs) as discrete points on a plane.

The second is a plot of Y(s) for all values of 5. In

* . either instance, similar information is available in &

simple graphical form.

The plot of discrete, singular points is considered
first. The singular points of a transfer function occur
for values of s-equal to the poles and zeros.” The
Plane on which these values are plotted 18 referred
to as the s-plane,. '

Since the poles and zeros can be complex, pure real,
or pure imaginary numbers, the s-plane plot for an

illustrative case might appear as in figure II-70. This '

figure defines all the characteristics of the s-plane
pldts; . Y : P St e e FE

+je
(c) ‘
X indicates & zero
¥ = cos'ly ____ e indicates & pole
1. %=1 me poles and zeros of y(a)
- ,—’ -;Y plotted here are
e G= (a) Pole &t origin
(e) (b) et ‘(4) (b) Pole at ._';;!
‘ (¢). Pole wt ~lay + Jau [T- 17"
(d) Fole at =fay -..iq./l =
@ , (e) Zero at ﬁ%’ ’

I'iﬁxre II-70. Polex and Zéros 9["17(;):.

a(ria +1) ( 5{{ 2 fi)
n ‘

In two ways. 'The first {s a'plot of the singular values-

[,

agarr Sy
s } e



" Asg shown in section II-3d, the poles and zeros deter~
mine the type of time response the System will have

- to aninput Conséquently, a table can be constructed , a\tie
-~ welating the s-plane plot to the time response, Table \

Poles if Btiaded
\ Ares Indicate
N {<0.5

II-2 is such a conipilation for a second order system.,

Table JI-2: indicates that the type of response desired )
can be ¢ontrolled by specitying the location of the poles =
of the closed—loop transfer function. For instance, .
Suppose that for a unit step function input, it is desired

that the height of the first overshoot of the output be

leas than 1,15, i.e.h/l=.15. From figure A-2; dny

value of the damplng ratio { greater than or equal o

- B wﬂlfsatisi"' this sondition,

;/;////////////Z /%

o From ﬂgure [-71, Y=cos*1{ =cos~1,5= 60°. Therefore,
© e excluding all poles of the transfer function from the

- . region to the right of the 60° lirie a8 shown in figure

11-71 ensures that { >.5,

i the problem is to make the transient subside t6 a

negligibly simall value in a certain time interval, the
quantity {w, *1/3 RT must be controlled, This iz done
by e:ncluding all poles 1rom the shided region of figure

Fuure Ir-71. Poles Eleuded from Shaded Re‘xon for
> 0.5 ' .

corresponds to a root with a positive real part. Previ-
ous discussions showed that such a root led to a diver-
gent response. This {8 also indicated in Table -2,

Obviously, then, a requirement for a stable closed-

e

Tablo I1-2. Bffect of Damping Ratio ({) on Poles and Transient Rnponae when sy-tem,

- T 72, . loop system is that it have rie poles in the right half
: . plane.
g S “Another important feature is revealed in figure I1-70. , L .
= - ' Inparticular, a root in the right half of the s-plane The 8-plane is also very useful in determining equation
'.‘.Ji,,-ﬁi:i: 5 L ~ Location o! Poles of i ] i s
Satio | Gystem Equation in s-Plane - Time. Response: of Modes
o &
o e e
®
eru
(=0 [
$
. 4 i
Iary
0<g<1. v |
3 y it .
{=1 e
; Doubted | 0+
VY »
? ' qu
E% ¢>1 1 0f¢.

Bquition has the Form ? XK.
(®) - [(s’/a:‘)o(zt/m,)]ui

xi(s) Inpuf; 1

For S vy

II-2ﬁ'

- e . — s
Paniare piaieans=let s * v 3 i fraeasgarismarns >
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* Chapter II
- Section 8

coefticients such as those given by Ky, K,, K;, and
Kg.An (I-44), Consider a simple closed-loop transfer
tunction given by w ‘

ey

‘wﬁ;&h ltb#;.;“step; functioniinp\i,t becomes
s (‘g’ ¥ %.,)(g’ + 2lwnS ¢ w.’)

or

R e e s e -
o B(E e A (84 g Ja (1= LI (5 Lwg + Jupdl-17)
The time Solution is given by *
C(t) =K, +'K,ef % ¥ x,a( -‘G,."*-*J-'-,-‘j.ri‘l'n + Ko (-;».-J‘or.;l i-l’}t:
where '
(II-48)
K aee KK e
(5+-3)(8+ Lan= Jop]1-LF) (84 Lan + Juny1-L D)
G KK __
1 88 Luy = o, [1-L2)(8 + Loy + Ju 1500

Ki

S=8,"0

s'l sl- —-}:

Ko e Kx
*os(s+ 2).(s+ {wy + J%Jl'l-’)

8= 8ym ~Lw, + Jo JT-LF
.‘K“. N R K K . _
ostaey(se ;w“; dun] 1‘;2) 8= 8g= ~fuwy - jwnq'l-_i’"

By making the indicated substitutions for s, (II-48)
becomes: - '

0 * & Uinison
L
N\

Fi gure IT-72, Area of Exclusion to Obtaiﬁ Specified
Ninimum Damping {{wp)

By- 832 ( ~1/7+ fwn- Jon VI-{2)in equation (I1-49).
In a similar manner, the vector (~1/7+ {wn + JondT= L3)=
"81~ 83 i8 drawn in fiFur“" ‘e I[-74., This figure shows that

=1/7+ {wn~ Jod1- L2 and ~1/7 + lw, + ju, {1-{2 are -

complex conjugates. Therefore, the product of these
two vectors is a real number:; '

Kys oy T =02
()7 + - deni- 2]

K, is ohtained by measuring the lengths of two vectors

3,and s, - 's,and carrying out the indicated multiplication
: Kz= (-K)/([54]. [54-52])2

The product is negative and the vector K, points in the

negative direction along the real axis.

Each of the factors of K, is shown in figure H-75.
K; may be expressed as Ky~ (Kie)/(|K}|eI®X3) where
X3 = [851185- 5|85~ 85| and LR AL AT

(1I-49) K,» X x

#e ’%Jl'—'&’%w.dw.f -7 |

K m———

Ky = (.H (.}«f ;‘mn-,jwnjl-=;i) (--11,-.+ Lo + Jamdl- C’)

K" (-zml+ Jayl1- ;ﬂ(—zwg + Jopd1-

0% D)ty Sy 1 e Gy e J 1 09

- ‘ __K«x e —
4 (-Cwn- Jua1 -7;) (-lwn - jen{1- 3 N}') (-L’wn - jonJ1- 8+ Lwn= jwn{1- -L’")

In sub-secticn (<) the K’ s were obtained by substituting
the numerical values for each of the parameters ( {,
. @y, ete.) in (I1-48). K, 1is evaluated in this way very
easily; K, = (Kkr) /a3 = K, K, Ky, andK, somewhat more
complicated and graphical computation is advantageous
in these ciises. This can'be done by utilizing the s-plane
plot as shown in the following explanation.

The poles (s~0, sy=~1/7, s5= =+ ju, {1~ {2 ; and
8g = « lw, = juw, {1«7) of the transfer function are
pfotted- on the s-plane in figure II-73. Also shown
are the vectors representing these poles. A vec-
tor is drawn from s, to s, representing the factor

* See Gardner and Barnes, Page 154 (Ref. 5).
I-28 ' '

Similarly, Kjis plotted in figure II-76. Note particu-
larly that K is the complex conjugate of K; . So
[K3 ||| and 4eg = ~dx

The complete time solution C(t) is now
t
O(t) = K| Loy —£ e T+[Kq|e ~Uantion [T t-ddx,
O R

+ ]k, e Ctonmtu] 1-:'S't-5¢,;]

where [K,| = (Kx)/[K;| and [K,| = (Ke)/]K.] . Snce
K, and %; %’re‘ éomple’x conjdg_ate‘s ‘

1
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Figure I1.73. Vector Plotof Cu——yp KK
s(u*)(azdlm.nm.)

Figure IXI.74, Graphical Solution for Kq
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[y | & -9 *-Loysdu J1TF)t T T RRL R o
:'K'j lle 'Jﬁ;ﬂ-{q.ﬂa. e . ¢j¢“+(-¢g_-j.,_ﬁ'_';_i)g] .
!K',,A'! e~lont [gd (¥n »|l-l~i"¢‘;) +e ~d(w, Jfl_[n‘-¢‘.;)}

Referring to figure I1-77 it is seen that the term

et T 4o 3t enJTT] - 2 con, T4

is the sum of two unit vectors. Consequently, only
figure II-75 need have been constructed to obtain the

_amplitiude terms of the time response.

“The time response is:

C(t) =K+K, e'ﬂf—xi‘e “Watoon(ey, [I-T o - ﬁ'
3
Note that this value checks with the inverse transform

given on page 343 d Gu'cher and Barnes (Ref 5) It

is interesting to observe that the vectors K3 and
K: fall in the left half of the s-pline. Because of
this, it might be assumed that the amplitude of the
last term of the tithe response should be precedéd by
a.ne ‘,Avesign Buwever, this woiild be incofrect since
thie sign is taken care of in the termCos(ws[1-{3t-#x})

"This exampie hid no zeros in the transfer function.

To illustrate the procedure of graphically determining
the transient response amplitude terms for a case in
which the transfer function has zeros, the coefficients
of (II-44) shall be déiermined. The graphical solutions
forK,, K,, K;and K of (II-44) are given in figures II-78
and H-79. Only K; and K3 are obtained since X,is the
complex conjugate of K;, and K,is the complex con-
jugate of X3. The special point to observe in this ex-
ample is that zeros are treated in the same manner
as poles with due caution being taken to keep the alge-
brai¢ signs correct,

" By = =Lun + Junt1 - {2 .
83~ 81 =-Lun + Janl1- ‘;
B2- --z«,ﬂa.ﬁ l’ Z%*iﬂm‘l
uzjan“, - {2

Figure II-75, Graphical Solution for Ky

¢, ,

Ba= ~foun - denl1= L3 S ‘¢°

By -8y = ~fuwy = Jop Jl 2 +

By = 8p=<fu, - jo..h l’#{an-ja:nJ14£’
= ~2un V1= ¥

Figuré I1.76, Graphical Solution for K,
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(o VI= T2t - 1)

& Ot

. ~( V1 = %t - ¢

Fdgure II-"?‘? . C'm‘;iueaté lin‘iit ~Vbctors

Following this procedure, the time solution for (11-44)
is obtained by substituting these K's into the proper

: ‘equation. ‘Since

yz(t) - Kle-i. 0110] 1. “t".xéé‘-z' 01t-J1, 41t

+ KgeS-00SEH1 328, g oo 003t-J. 324t

substituting the values for the K's from the graphs,
5t becomes .

:;Y,(f‘») "

(- 004"15ej 62 o;‘"-"’“ﬂl-‘iif' -.00475e 1382 ¢2.01t-1. 41t

— -.09418 =4 087 e*.OOS‘hJ J224t 00419"1 08T e 2005t-3+ 2241:)

This may be: rewritten as:

¥a(t) = ~. 00475¢ 7291
T (el sl Q-J(z. 8241.411))
ii.,oou,-.oost :
(e J(-.087 , mt)w-i(.ou zm))

or
y,(t) - -.oom*’- o1t 208(1, 41t+ 2.62)

: .oosze 008t cos(. 224t- osv)
which agrees with (11-45),

The second basic way of representing the transfer
function is to plot Y(s) as a continuous function of

.s . Since s is a complex variable, such a plot for

all values of s would require four dimensions. How-
ever, very useful representitions can be obtained by

allowing s tobe a pure imaginary ( jo ), thereby

restricting the plot to two dimensions,

Y(jw) is in general a complex number, Its value for

any fixed « can be expressed as a magnitude (called

the amplitude ratio) and a phase angle. Two con-
venient methods of graphical representation will be
described in this subsection. In the first, the ampli-
tude ratio is plotted at a given phase angle on a polar

+2.01+j1.41 +5« 3, 3oe1 a5, 2°

R
By~ -2.01+§1.41+2.01+ j1.41 - 2.82¢990°
| E1-B3%-201+11.41 4,005 - J, 224 = 2, 3des149.5°

“3-1 r--o 01+31.41+.005+ . 22,4;‘3'.,5.9‘91119 0°

S e

En --2 01 +11 41 2 mJ 148, 2

~.01(%) (8, - 8,)
(8, - 83) (3, - B (8, -~ 8§y)
-, 01(2, 4331 148,2° ) (3. 30el 25. 2%
" (2.82e190 )(2.59e1m-0°> (2.3¢ei149, 5%
= ~.00475¢"3310° . _ 00478e*} 1"‘- -. 00475e) 2. 62
= ~,00475e~32.62 .

. . ) . 4
8;=-2,01+j1.41 o]
J

Bg=-.005 - . 226

L il' -8

-1

$e—8, = <2.01-31. 41

=je

Figure I1.78. Graphical Solution For Ky of (II-44)
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By = Bom =,005 + §, 224 + 5 = 5ei 3. 6°
By -y~ =.005+1,224 +2,01 - j1.41 = 2, 34a*329.8°
Ba-Bz=-.005+],224+2.01+j1.41 = 2, 50e*$39.1°

By-84=~.005+7.224 +.005 + §.224 =, 448e190°

By = -. 005 + 3,224 = . 224ei91°

,ls; . ~2.01 ¢ j 1041

(85 -8,) (By - 8,) (By - B)
-, 01(. 224e391°) (e 2.6°%
(2.596339-17) (2, 34e3339.8°) (, 448e3 96°)

s - .0041e-1365° . - 004ie-45°
= -.0041e-3.087

" Ky -.0041e*]. 087

' 3,-K
8o = “Bg= -5 3 °g
- O - . . - -
. L —— = e renr e U PP T R T é
puy ot st
=5 : -4 -3 -2
X -.01(83) (83 - 8o)

¥s, = -2.01 - §1.41

s S AT

Figure II-79. Graphical Solution for Ky and Ky of (II-44)

plot with » as a parameter. In the second, a con-
venient function of the amplitude ratio is plotted versus
frequency on semi-log paper with the phase angle béing
plotted in a similar way.

For the purposes of this subsection, the selection of
s= jw is essentially a matter of convenience. However,
there is a definite correlation between Y(jw) and part of
the time response of a system excited by a sinusoidal
input. This correlation will be considered in detail.

In the development of the graphical representations a
procedure similar to that used previously will be em-
ployed. The explanations will be made for actual ex-
amples, starting with very simple cases.

The first graphical representation discussed will be

‘the polar parametric plot commonly referred to as

the Nyquist diagram.
Consider the system which has the transfer function:

K

(I1-50) K G(8) = FICC TR

If jo is substituted for &, where -o¢w<g,

(11-51) KGO * v Ty

Figure II-80 shows that both j« and 7jw + 1 may be
represented as vectors.

{
Jo
Jo = 90°
. 1y
E X 4 O — O =
-jw
{

Fi gure I1-80, Vector Representations of jo and Tjw+1

Writing K G(j») in a2 form to take advantage of this
fact, (II-53) is obtained.

K
r,e irge 2

where ri=@, © =[r%d+ 1, $;=90° ¢,~tan"! mw
so that

(11-52) K G(jw) =

L S TR

(11-53) K,G(ja) .-m
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Equation (II-53) shows that KG(j«) can be represented
as a vector with a magnitudeK/ (w7232 + 1)and a phase
angle -(¢; + ¢3}. ‘The magnitude is commonly called
the amplitude ratio.

Plots of (II-53) for K= 10 and K= 2.5 with 7= .5 are
drawn on a polar chart in figure II-81,

340 250 -260 -270 -280 ~-290.__ -300
310 '
+ Imaginary™~

TK=2.5]

<130
%

| -120 ~-110 -100 -90

Figure II-81, Nyquist Diagram of Open-Loop -
Transfer Function

For illustrative purposes the vector for »=1,2 and
w=2 are shown.

Notice that rectangular coordinate axes have been
superimposed upon the polar plot with the axis of
imaginaries oriented along the +90°, +270° line and
the axis of reals oriented along the ~180°, 0° line.
The vector drawn from the point -1+ jo on this coordi-
nate axis to the locus is the vector 1 +K,G(j«), Since
the closed-loop response is given by

s K,6(s)
R(s)  1+K,G(s)

=N pe

This relationship makes it possible to obtain the closed-
loop magnitude and phase relationships from those of an
open-loop Nyquist plot.

(11-54)

Particular attention should be paid to the effect of the
constant K in figure II-81. The phase angles are in-
dependent of the magnitude of K. Consequentily, the
shape of the curve is unchanged by changing K. The
only effect of K on the polar plot is to change its scale.

Another important feature of the plot is that it is sym-
metrical about the real axis. The reason for {iis is
that £Y(s) 4.4, changes sign with »», while the squaring
process required to establish |Y(s)|,.s, €lminates the
effect of a negative ",

Higher order transfer functions are plotted in the same
“way. The procedure is to set s » jo and to calculate the
magnitude and phase angle of the transfer function for
each value of «» from zero to infinity. Table II-3 is a
summary of locus plots for some common transfer
functions, In this table only the parts of the loeci corre-
sponding to o< w< +» are plotted for simplicity.

One part of every Nyquist plot that is of special interest
is the "low frequency end." Table II-3 shows that as the
frequency, «, approaches zero certain loci take on
infinitely large values and approach an axis as an
asymptote (Table II-3d and II-3f). Loci exhibiting this
behavior correspond to important classes of contirol
systems. The three most important ones will be dis-
cussed in some detail in chapter IV. Figure II-82
shows the characteristic loci for each class and the
corresponding form of the transfer function.

! -

+jw ‘ +jw

A\

o
. 1

KN(8)

Y(8) = D(s)

J o —

e KN(s) 3 KN(s)
8
VYo | Y= Gy

Figure II-82, Special Locus Shapes
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" where I indicates "imaginary part of .'j

The motion x(t) described by s eiuation consists of

4 sinusoidal oscillation of amplitude X,/a, and fre-
quency w; aid a transient: determined by the: sum of the

exponential terms Kje®i?, Kge*s®, etc. 'The sinusoidal.
- oscillation is described by N

. “ _}.en 7

(Il 58) ()= T
‘ ) )“n :ﬂ s“+l; 1ga-dyoyy
‘ T . A8mjw
" -
: ‘ sin ot )
8P+ a;ol sh- 1*--~+1 '
is*jw

where K =X/a and.0 <+ ®. The term in the brackets

. determines the : amplitude and phase angie of the sinu-

soidal response.and is recognized -as the transfer funct-

.~ don ¥(s) | suja Of the System. This result applies to
. linear systems of any onder -of complexity. It shows.

that the transfer function can be obtained from the
physical system by applying a steady sinusoidal input
and separating the Steady output oscillation from the
transient terms.. The. stability of a system has no
effect on the validity of these results, although, prac-
tically speaking it scmetimes is difiicult to separate the
‘sinusoid from-the 'transients' in. unstable systems
withont the sppiicaiion of special techniques.

B

,The second graphical representation of Y(s) to be
discussed is the logarithmic or Bode plot, The cal-
culations required to construct such a plot point by

point are identical to those discussed above. For the

simple system .

]
LB

(11-59) KgG(S) = oy

the form (II-53) is derived, and the amplitude ratio
K/(wl-r’w’ + 1) and phase angle ~(¢; + ¢,) are plotted
independently versus the angular frequensy » on semi-
logarithmic paper. The o« is plotted o
scale, and 20 log,, [K/(w][T2wI+ 1)]anG -{d, + d;) are
plotted on the linear scale as in figure I1-83.

The notation 20 log 4 ) is reierred to as the log-
modulus or Lm and performing the indicated operation
results in a number in decibel (or db) units (see figure
A-20). One advantage of this procedure is that ampli-
tude ratios can be plotted very simply. In the example
chosen (see II-51)

(I7-60) ml I Lm K -Lm|jo|~Ln|7j o +1|

Ja(Tiwtl)
‘These three terms are plotted in figure II-83 as curves
A, B, and C and are summed as curve D.
.

'I‘he dashed sloping line marked(n)is the Lujl/(j m)l curve.
Since the plot is done on logarithmic coordinates, it is
a straight line as shown. Irca plot of this type'a change
in » by a factor of 10 is called a "decade;'* a change by

.34

.garithmic

a factor of 2.(doubling its value) is referred to as an
Yoctave; 1. Conseguently, since the slope of the line is
=20 db per decade, the curve is said to "attenuater at

a ‘rate of 20 db/dec. or 6 db/octave. That is,
Lm| 1/Gey) = 20 1logge 1w=-2010g;0¢ and each time the

frequency is mcreased by a factor of 10, the magniiude
of Lm|1/(jv)] is decreased by 20 db, The 20 db/dec.
attenuation rate is true of all s= jo terms in the de-

. nominator-of a transfer function. An s= jo term in.the

numerator plots with-a positive slope and is said to be
amplified at the rate of 20 db/dec. (or 6 db/oct.). The
attenuation and amplification rate will be specified in

terms of decades in this volume. If the §¥ jwterm s

raised to.the nt" power, the slope is 20ndb/dec.. i é.,
Lai|jat™| = 20 logy o @™ % 201 logyo @

The (nm 1)1 term of the transfer function is shown
by curve (C) in figure II-83. This curve approaches
two straight line asymptotes. The relationships tggr{

establishing the asymptotes to the true curve are as
follows when jaur << <1,

~m1=0db ' ¢
: * T

Y - A 2 ’ 1

(H 61) Lm Jorv 1

When jwr3> 1, " L
o el 1 o1

(11-62) Lm_ m ~Lml:]"a,—,r

| Equation (1I-61) establishes a horizontal line at zero

db and (I1-62) establishes.a straight line sloping at
=20 db per decade. The asymptotes intersect at
the frequency where w=1/7 ; (o7 =1}, At re= 1,
tm|1/ (jor + D] = Lw 1/{2%-3db. Therefore, the true
curve lies ~-3 db from the asymptote at this point.
At one octave below the vbreak point, " 7o=.5. Therefore
m| 1/ (jor + 1 n /(5D =L V(JLI) ~-1 db.
Thle a(é]hial 1o)glmodulus(value isthen1 db below the as-
Jymptote, Atrw=2, (one octave above the break point),
"Ln¢ 1/ 2%+ D)=L 1/{L -7db , however, atrcw2, the as-
ymptote is at -6 db, Therefore, the log-modulus curve
lies one db below the asymptote at this point.

The complete log-modulus curve, (D), for the transfer
function (II-59) is obtained by simply adding the three
curves (A), (B), -and (C) in accordance with (II-60).
The same result is also obtained by adding the asymp-
totes for each of the factors of the transfer fnnction,
line bo'a’, and then sketching in the true curve bca’,
Notice that the break point is still at #=2, (@ = 1) and
that the 3 db and 1 db departure characteristics still
hold. For any changes in the value of X the db scale
need only be shifted up or down depending on the nature
of the change of %. Evidently this procedure is general
for first order terms and may be summarized as
follows:

1. Establish break point (&= 1/7)on the zero db

line and draw in the asymptotes.

. 2. At the break point, draw a line sloping down-

ward to the right at 20 db per decade for a de-

nominator term, and upward to the right for a nu-
- - merator-term.

3. At the break point, spot a point 3 db below the

zero db line for a denominator term and zbove

the line for a numerator term.

4. At one octave above and at one octave below

.




R _‘ "the break potit, spot polits 1 db distait (Fom the
asymptotes, below for a denominator term and
-above for-a numerator term.

5. Skeich in the log-modulus curve; using the asy-

-i  mptotes and the three points,

A 'rhe ‘phase angle curyes for the transfer function are
also shown in figure I1-83; the phase angle varies
from ~90° to -130° as the frequency increases (solid
-line). ‘This phase angle curve is the sum of the two
‘curves arising from the (i) ~! and-(. 5jw +1y"1 factors,
The (Jw) 1 term plots as a constant ~ 1° phase angle

(curve E).,

Chapter I
ﬁectlon 3

The (, 5@+ 1)~+ angle factor hppr'oaches
an asymptote at 0° and another at -90°; its midpoint

- (45°) --being -determined by 1/7, Figure A-T ig in-,
cluded in the appendix in order to facilitate sketching:
the curves. It is to be noted that a factor rs+11in the

" numeérator produces a phase curve starting ata 0%asy-:

mptote and approaching +00° at high Irequencies and-
of the same shape as the denominator factor.

V Many of these ‘same principles can be used in plotting

second order terms in logarithmic form. However,
gince the second order factor is a function of two in—

o h gure II-83 Bode Dmgram of Open Loop Transfer Fumuon K G( s)
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Figure II-84. Bode Diagram of KgG(s)

dependent parameters { and «,, plotting is slightly
more complicated. Figure II-84 points out some of
the special features of these terms. The two key
characteristics are the -40 db/dec slope at high fre-
quencies and the phase shift of 180° .

Several charts have been prepared to aid in the con-
struction of Bode plots of second order factors. After
the break point and the -40 db/dec asymptote have been

established, figures A-12 and A-13 are used to-locate
the peak when one exists. Figures A-14 through A-17

are charts which give amplitude ratio departure from

the asymptotes and phase angle. For most Jarposes
11-36

a satisfactory sketch of the amplitude curve can be

completed using oniy figures A-12 and A-13. How-
ever, figures A-14 and A-15 can be used to aid in the
construction of more accurate curves. Values of the
amplitude departure from the asymptotes for discrete
frequency ratios «/wn are read by proceeding up and
down the ordinate representing the value of [. The
same procedure is followed when using figures A-16
and A-17 to construct the phase angle plot.

Gain (K,) adjustments are made by shifting the db
scale as shown in figure II-84. Consequently, the
amplitude curves are nearly always plotted for
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Kg= 1 (0db), and the 0.db line correspondmg tq the.
true gain marked in later, If the gain (X;) is greater
thm unlty, the true 0 db line occurs below the one
used for ‘plotting; a K; less than unity places it above,

‘ It 18 clear that any number of factors of any order
- may be added on Bode plots to achieve a complete
' transfer function plot. Since itis so simple to plot

and second order terms, thé transfer functions

' Lare always factored accordingly. This avoids tedious

computations of amplitudes and phase angles of com~
.plicated transfer functions. -+

‘Table A-4 is a summary of forms of the transfer

functions encountered in system: analysis, In the last

" column showing the Bode plots of the factors, only
-the: asymptotes to the log-modulus curves are shown.

For items (7, 8, 9, and 10), the 3 db and 1 db de-
‘parture ‘relationshi‘ps apply. For the second order
‘terms (items 11, 12, 13, and 14), the exact shape
of the phase angle curve and the log-modulus (am-

-plitude ratio) curves depend on the damping ratio { .

Notice particularly in Table A-4 that the asymptote
curve breaks upward for all numerator terms (items
1, 2, 3, 7, 9, 11, and 13), and all denominator terms
show a downward break of the asymptote. Note also
that this fact plus the phase change indicate whether
the zeros or poles are in the right or left half of the
s-plane. That is, a phase curve tending to go in the
same direction as thée amplitude ratio curve {items
7, & 11, and 12) shows that the zeros or poles are
in the left haif piane, whiie those that go in the oppo-
gite direction indicate zeros or poles in the positive
half of the s-plane,

I3
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Bode (Ref. 8) refers to systems that contain no-poles
or zeros in the right half plane as minimum phase

systems, If any poles or zeros exist in the right half

plane, the system is non-minimum phase. Following
this lead, those factors that represent poles or zeros
in; the r;ght half s<plane-are generally referred to as
non-minimum phase terms; all

and zeros on the lmagmary axis,. are mmimum phase'

terms.

The following general conclusions can bé made con-

- ¢erning the interpretation of Bode diagrama;

1. Asymptote slopes must always be either zero or
-Some integral multiple of + 20 db/dec.
2. The charge in slope of the asymptotic plot at a
break point indicates the order of the pole or zero
tha.t exists at the break point.
3. A positive change in slope corresponds to a zero.
4. A negative change in slope corresponds to a pole.
5. a. The location of the break point of the asymptotes
indicates the location of first order poles and zeros
on the s-plane.
b. The location of the break point and the departure
from the asymptotes indicates location of second
order poles and zeros on the s-plane.
6. When phase and amplitude curves change in the
same direction, 2 minimum phage term is indicated.
7. When phase and amplitude curves change in oppo-
site directions a non-minimum phase term occurs.
8. When the slope of the amplitude as » » 0is -20.
db/dec. the system is of the zero position error type.*

8. When the slope is -40 db/dec. as® —~ Othe system

is of the zero velocity error type. *
10. When the slope is -60-db/dec. as« —~ 0the system
is of the zero acceleration error type.*

SECTION 4 ~ SERVOMECHANISMS

The control system field is extraordinarily broad and
most of the previously discussed methods are sufficient
to describe any linear problems in this field. However,

this book is concerned with the methods of handling only
a certain class of control systems.

From the discussion in the preceding pages it is evident
that there are two broad classes of control systems:
Open loop control systems and feedback control sys-
tems. There are aircraft flight control systems in
both of the classes. Typical examples of an open
loop system are the common cable or push-pull rod
surface controls; on the other hand, a hydraulic valve

- cylinder combination or an autopilot are closed loop

systems.

Open loop systems are by their very nature calibrated

systems, and their performance is profoundly affected

by the condition of the calibration. Aircraft flight con-
trol system designers are intimately aware of this and
expend a great deal of time attempting to minimize
environmental effects on the calibration by means of
such devices as cable tension regulators. In any case,
the design principles governing those devices are well
known. Akhough one of the end results of these volumes

~ will be to set up criteria governing the performance of
these systems, the design process itself in these cases

THE FIELD OF CONTROL SYSTEMS

Feedback (Closed Loop)
Control System

Servomechanisus

other closed
Loop Systems

Open Loop Control Systems

Figure II-85. The Field of Control Systems

*  See Chapter 1V.
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Lo MR S 3. They involve mechanical motion.

This i8 a very broad definition and includes many
systems not often brought to mind-by common pariance,
Thus such things as autopilots, tracking control sys-
tems, pilot-airframe combinations, etc,, are referred

Servomechanisms have the following deﬁning charac-
" to as servomechanisms or servo systems.

teristics:
-1, 'They are closed loop systems
2. A large amount of power is controlled by a
relatively low power :elément.

in figure: II-93
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SECTION 1 — INTRODUCTION

System analysis is concerned with an inquiry into
thé behavior of a given system. Previous chapters
have established that the static and dynamic perform-
ance of a linear systém, including its responses to

known inputs, is completely determined by its transfer

function. The problem of linéar analysis then becomes

’ ‘one of obtaining information about systein transfer

functions. Since servo anafysis is primarily con-
cerned with feedback control systems, the linear analy-
sis problem is further limited to obtaining information
regarding closed loop transfer furictions from a knowl-
edge of the open loop transfer functions. This chapter
will consider the important methods and techniques
,avai.able for solving this: limited problem :

The notion of a feedback control system, such as that
represented by the block diagram of figure III-1, has
been previously introduced and the algebra of such
block diagrams has been considéred. With all of this
bickground information inderstood, the essential
prcblem of linear servo analysis can be described .

KyH

Figure III.1. Illustrative Servomechanism

In the control system represented by figure III-1,
the closed loop transfer function, which defines the
properties of the system, is given by:

c 1 K KnGH 1 [Y
T1X.1) — — TR o e |
(a1r-3 R KyH {14 K.K).ﬂ{} KyH 1.+Y]

where Y =K K, GH, The analysis prcblem is essentially
solved when the properties of the closed loop transfer
functions are known to the analyst, Transfer functions
are completely specified by their poles, Zeros, and scale
factors. Therefore, the inalysis problem to bé con-

. : -

sidered is concerned with gathering information about
the values of the poles and zeros of the closed 1oop.
transfer function(l/xhﬂ) [¥/(1+ 1)) from & knowledge of
the open ioop transfer function, Y. Since KyH is kiown,
the portion of (M-1) requiring additional study 1s the:
‘bracketed term, Y/(1+Y).

" While the poles nnd zeros of Y/ (i+Y), are ihe

prime information required, the major effort of analysis
need be directed toward finding only the poles, since
thezeros of Y/(1+Y) are the zerosof Y, and herce,
are known. To illustrate, if N(s) is the numerator of
Y~ and D(s) the denominator,

N(s) . Nt A
(111-2) =55 |
(znus) Y N | NG) '

1+Y 1+ N(s)/D(s) N(s) + D(s)

The analysis problem can now be stated mathematica.lly
as; Given Y, determine the poles of  Y/(i+Y),
alternatively the zeros of 1+Y.

" Before the specific conient of the chapter is outlined,
it should be mentioned that a direct analytical method:

of ‘determining the poles and zeros is to factor the
-closed loop transfer function. However; for ail but
the simplest systems, this procedure may be very
tedious and time consuming. Therefore, direct factori-
zation is usually impractical and will not be discussed
in this chapter. However, methods of approximate
{actorization are included in an appendix to this volume,
‘and may be used if desired.

The major portion of this chapter consists of three in-

terrelated sections. These sections are organized so

that the techniques employed-give closed loop zéro and

. pole locations with greateér and greater accuricy as one

method succeeds another.

The first method presented enables one to obtain only
very general information concerning the regions in
which the poles and zeros: lie. In addition to this in-
formation, a certain amount of qualitative data can
sometimes be obtained by analogy between the behavior
of actual systems and very simple systems. by the use
of transfer function characteristics discussed in the
tifth section of this chapter. A rule known as the
Gereralized Cauchy-Nyquist criterion is developed and
used as the basis of this method. Nyquist diagram

and s-plané representations of the transter :unction

o pi ey v
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-7 are utilized in-the application of this criterion,

" The second method permits a much more exact deter-

mination of closed loop pole and zero values, While

‘the previous muthod requires the use of both Nyquist

diagram and s-plane plots, this section ytilizes the
logarithmic transfer function representation and another

'graphical aid called the Nichols chart.

The third method is the most exact presented, The

- values. of closed loop poles and zeros are determined to
dccuracies limited only by the graphical process: in-

volvcd Only the s- -plane representation of the transfer

function is required, from which the loci of closed loop

poles. are obtained.

' “The {ifth section deals with certain transfor character-

istics giving valuable resprnse data in special cases .

It should be noted again that the presentation used in
thia chapter emphasizes the essential unity of presently
existing methods of servo analysis, and such methods
are considered directly in terms of transfer function
graphical representations. This basic unity is stressed
throtghout the chapter, and.concepts such as frequency
respons  phase margin and gain margin, which are
frequently used jn the litemture, are m tioned‘ only
incidentally as items of interest in . pecial ¢

SECTION 2 ~ THE GENERALIZED NYQUIST METHOD

' The first; and most approximate, method to be dis-

cussed utilizes polar transfer function plots together
with the closed-loop s-plane plot of transfer function
poles and zeros. By using the results of a mapping
theaorétn it is possible to consider a region of the closed-
loop s-plane and determine the number of poles of the

‘clesed-loop trangfer function within that region.

Before tlis method can be developed some fundamental
concepts must be understood. The first concept is that
of the ""closed-loop s-plane." The second involves a

~ basic mapping théorem. These ideas will be-discussed,

initially, followed by a development and. application
of the method diséussed above to the problcm of de-
termining stability.

(a) CLOSED LOOP 5-PLANE.

As pointed‘ out inchapter II the poles and zeros
of any transfer function may be plotted on an s-plane .
Siich a plot may then be ¢onsidered a graphical repre-

sentation of the transfer function. If the poles and

zeros of a closed-lcop transfer function are plotted on
‘an s-plane, the plane has been particularized to the
extent that it may now be referred to as a closed-loop
s-plane. Furtlhiermore the plot may be called a graphi-
cal r'epresentation of the closed-loop transfer function.

Si.nce the problem at hand is to determine the closed~
loop transfer function, and thus its poles and zeros,
obviously the polés and zeros cannot be plotted ex-

- plicitly on the closed~loop s-plane. However, it is
known that the polésind zeros do exist.

It is the aim of the balance of this section to develop
a technique by which the poles and zeros of the closed-
loop transfer function may be locatad approximately on
the: closed-loop s-plane.

M) THE MAPPING THEOREM.

As pointed out previously, in order to determine
theé behavior of 4 closed-loop system, it is: necessary

to locate in the s-plane the poles and zeros of the ex-’

pression Y/(1+Y).

©One method, to be described here, of locating these
zeros and poles requires the use of two graphical con-
structions. .These constructions wili be illustrated
by example.

Or-2

Consider the simple third order syatem ot (lll-4)

(111-4) (= 1) (b‘ =0
Y may be plotted for v.lues of s described by the

contour shown in figure III-2. (The choice of the s
contour may be considered arbitrary in this exa.mple ,

ojw* 4

o>

-je[D
Figure IXI-2, S-Plane Contour
but the reasons for choosing particular contours in

the s-plane will be explained later.) Proceeding from
4 to B, s=+jw and Y(s) appears as the heavy solid

.part of figure II-3.

-

Figure I11.3. Y(s)-Plane Napping
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o ‘Similar.lyin the region CctoD ot ﬁgure II-2 ‘sx-jw and

¥(s) appears as the heavy dotted trace of figure II-3%

"rhe gegmernt B t6C on'the s-plme contour 18 a semi-
-, circle of small radlus (v~ 0) designed to. exclude the
~pole at the origin (s~ o). To déteFmine how this plois
_inthe Y(s)-p‘axw substitute 8= re“ in (m -4) then

Y(zelt) «

" Hence:

Lim Y(rel?) = @ g™i¢
r-o

From (IlII-5) it may be seen that, as r swings from

" BA(p=+n/2y to C (¢=-n/2), Y swings from -n/2 to
) m/ 2 in a positive sense. This is shown by the light

. ; dotted are in figure III-3. The remainder of the s~
plane contour (arc DEA. ), ﬁgure nr-z, represents .

o lim YReY®y= o . -
6 . Rew L

The mapping theorem**' shtes t'hat. “If the cOntonr in

. the s-plane, figure II-2, ,_positively encircles Z zeros

and P_poles of 1+ ¥(s), the map of Y(s)encircles the

. point s« <1 NxZ-P tlmes,,where Nis the nuiiber of

encirclements and may be either positive or negative,.

. A positive encirclement is. defined as one in which the
.area enclosed by the contour is always on the left as
- the .contour is traversed.

Since 1+¥(s) - 1 + M) . DI the pales(prak1+ Y(s)

D(s)” (s)
are simply the poles.of Y(s) and are known. There-
fore, the zeros are determined from the equatton :

£ » -

(111-7) z-pm

On figures NI-2 and IiI-3 the arrows indicate the positive
sense. The positive sense.of encirclements can be.
remembered as the direction in which an observer

would travel if he walked along the contour so that.the -

interior was always to his left.

To apply these principles to the system of (1II-4), first
note that the contour of figure III-2 includes the entire
right-half, a—plane. Consequently, the examination of
Y(s) will determine the number of poles (P) in the
region. - To determine how many encirclements of the
-1 point ¥(s) makes, draw a vector from the point
-1 to the Y(s) contour (figure III-4), As the arrow
head moves along the contour, the vector pivots about
its tail. Each time the vector sweeps out an angle of
2r in the positive (counter clockwise) direction, a
positive encirclement is completed. In tigure II-4
no encirclements occur (N=0) . Consequently,
ZuP+N=0+0 =70, ‘

Therefore, there are no roots of 1 #Yls}fn the right-half

* Note that the portion of the curve from Cto D is the
‘mirror image of that from B to A,

*+ For detailed proof of this thedrem sﬂe the appendix
to this volume, Section (A=IV).

ot Bl s e e e
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Although this theorem was discussed in terms of a

Figure III-4. Napping

s-plane. Figuré II-8b shows this same systém plotted
for a high enough value of the gain K so that there are
two roots of 1 +Y(s)in the right-half of the s-plane.
This is indicated by the encirclements of s=-1 .

specific problem, it is quite general, In the example
chosen, only the right-half s-plane was mapped. But
any region can be examined for the existence of zeros
simply by properly designing the mappmg contour’
(figure III-S)

Only two assumptmns are necessary in order to apply‘
thé mapping theorem:
1. Y(s) isa rational function of 5.
2. None of the poles or zeros lies on the’ contour
‘in thie s-plane.
(It-was because of assumption. (2) that the caontour in
figure 1II-2 detoured around the pole at the origin.)

The following section discusses in detail the use of the
mapping thecorem to detérmine the stabilify of closed- :
loop systems. ,

{c) THE CONVENTIONAL NYQUIST CRITERION

It was pointed cut in Chapter II that if any zeros of
1+Y(s) have positive real parts, the system described
by the open-loop transfer function Y{s) is unstable.
Hence, to verify stability alon€, the entire right-half
of the s-plane must be explored for zeros of 1 +Y(s) in
the manner describéd in Section (b). (Now it is evident
why2 tlu)e contour of figure 1II-2 was chosen in Section
IiT-2b

Since there can be no zeros of ‘1 +Y(s) in this region
if the system: is to be stable, z must be zero inN =

and hence the criterion for stability is that N~ -I’
The simple system described by the ¢ontour of figure

I0-:
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Figure III-5. Genéral Contou- Iappmg

III-4 is stable, The same system with higher gain,
figure III-8b,1s unstable,

It is well to review at this peint the characteristics
Of the contour used to eniclose the right-half plane. The
Values of s defining this contour,figure II-2, are given

as follows:

.. 8= jm o B> w> ot

:Emm B to C »——»snre—fi‘ ‘r=0
: ,rb»-n!',- when @=0*
¢‘--"zi when w= 0"

From C tc B
From D to B

Usejw  §Tsw>-w
S= Re.”" R

For the o;;en—loop transfer function Y(s), the presence
of zeros of 1+ Y(s) in the right-half plane is readily

_determined by plotting Y(s) with the above values sub-

stituted for s, and then simply countirig the encircle-

ments of -1 and then applying (INI-7).

The actual plotting may be somewhat simplified by the
following considerations: For physically realizable
systems, the part of the s-plane contour DEA: is un-
important in determining the plot of Y(s). Thisis
true since y(q) . N(g) . AuSEtcet+h,

D(S) a Shg e .4.a
where n, the order of the- denommator, must be greater
than m, the order of the numerator, The value of Y(s)
corresponding to the contour from DEA is:

(III,-9)A 1mY(s5T cop. ia « Aul® eJuby veuyp,
Y b @) s-Reié STy
. .}g‘ilg’ an u‘.. =0

Consequently, the entire arc DEA maps into the origin
of the Y(s) plane.

The portion of the Y(s) contour corresponding to the s-
plane contour from & to B'is just Y(jo) , the simplest
form of transfer function plot developed in Chapter I,
From ¢ to D, Y(s) is given by ¥(-jw), which is the

mirror image about the real axis of Y(+j«).

-4

The only part of the contour remaining is that from"‘
In many engineering probiems, Y has a pole

B tocC.
of order n at the origin. But one of the conditions upon

which the mapping theorem can be applied is that the

s-plane contour does not pass through any poles. Con-

sequently, the contour is detoured by lettfng S reM »

(with r very. smaIl) near the origin o

Then, since l(ﬂ) is. of the form R

N(s).

(1r1-10) ©OYgs) = EhDEsy

substituting s = rel¢ toavoid the pole-‘ol order n a

(111-11)

Aurrei®by. ik,
yhelns [’akrkeJ LT aq]

Y(s)=iim Y(rei®y=Tim
s-'o r—+o r-o

Now as the s-plane contour in the region B to C is

traversed. in a positive direction, ¢ goes from +m/2

- o ——

..jw;f

I‘igure II1-6. Poles on Imaginary dxis
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ﬂ”“;ﬁo -n/z

- ~tn/2 afd proceeds to-+nm/2 , in a positive sense.

‘ Qq,nd at 4 radius equal to 14, A ¢ Evidently;

' T~0 dorht

" the portion of X¥(s) corresponding to the one from
Btoc of the s-phne -contour is an arc of infinite radlus,

. "rhere are two comman situations in which this procedure
" mustbe slightly modified. First, if A,/¢, is negative,
-+~ the Y(s) contour sweeps from +nm/2 to -nn/2 ina

-~ positive sense as s traverses the s-plane contour from
. B to €, figure IlI-2. Secondly, it sometimes occurs

A - rthat thé denominator of ¥(s) includes factors of the
- form 53¥ w?,

To avoid these poles and those at the
origin the s-plane contour must take the shape of figure
~ 11-6 and the map of Y(s) be treated accordingly.

" I¥(s) has no poles at the origin, the device of letting
8% rel¥near s = 048 not required, and the entire contour

- of Y(s) is thade up of Y(+ju). and ¥(-jv), figure m-7.

. ’,rhe above points are lllustrated in ﬂgures m-sa to

s m-Bg.

' (d) SPECIFIED MINIMUM 'DAMPING AND DAMPING
o RATIO

;t is clear that the mapping theorem discussed in section
(b). of this chapter could be used in checking any desired

region of the s-plnne for closed loop poles. However,

consequently, the contour of Y(s) starts o

. ~:-jw T,

Figure ITI-7. Simple Contour

s - Plane

KG-PLANE =
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Pigure 111 ‘8 (Sheet 1 of 3 Sheets). lxa-plu of Mapping for Stable and Unitable Systems
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Figure III-8 (Shest 2 of 3 Sheets). Examples of Napping for Stable and Unstable Systems
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"7 “in all cases, the regions checked define the values of

'8 to be substituted in X(s), and hence practical use
- of analysis time usually requires that the boundaries
. of the regions in the s-plane to be.examined be defined, . ..
by comparatively simple functions of s, .The simplest

case, that of the conventional Nyquist criterion.covered .

in section Ill-2¢, is of much value in ckecking stability .,
Two other cases, those of minimum daniping and minj-:
mum damping ratic are also of intérest and occasional
importance, These cases will be considered in this
section, ) ’

First, consider the minimum damping case. in this . .
situation it is desired to investigatec the closed loop .
transfei function for p‘ole‘gs having damping less than.
-some specified value. The s-plane contour in this: .

" case is'shown in figure II-9. The values of s.defining

the contour are:

(II1-12) From Ato B s=-g,+jo  ®raz-w
FromB to A  s=Rel?® R~®

" where 1/¢, " = min. damping and ¢=-7/2 when w= -0

time constant ¢= i7/2 - when w= 4.

For the same reasons mentioned previously, the portion:
of the contour BCA does not contribute to the locus of

. KG(s).

If (~1+j0) lies between
A and B
P=3, N=-1, Z=2

If (-1+j0) 1lies
between A and C
P=3, N=0

Z=3

(a)

If (-1+j0) lies
between A and B
P2
N=0
Zs 2

.

()

Figure II1-10 (Sheet 1 of 2 Sheets). Examplés of Ninimun Damping =

1118




If (»'1010) 11“ 7 .

(c)

If (-1+30) lieés
between A And €
Pe 1, N«

Zs 1

I (~1330) lies
between A and B
P=1, N=1

Z= 2

(d)

3o

| XL (=1430) Yied -
be and D

|
eﬁbvb‘u‘

=0

=t

(e)

If (~1+430) 1o
betweén B anil €
Pil' ““'1, Z'O

’

Figure I11-10 (Sheet 2 of 2 Sheets). Bxaimples ot ‘Hirisim Damping
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Y(S) for physically realizable systems. The value of
Y(8) corresponding to the remainder- of the: contour-
in the s—plane 1s given by: pa L

e

( 11{1-13) Y(S) Y(-% + Jjay

: 5
Typlecal ex amp.e for .hia situa-.irn are shown i
ﬂ["ure (III-IO)

I

PR

(a); GENERAL -

This section discusses a method of estimating closed

loop poles and zeros from logarithmic open loop trans- -

fer functloq, plots.

bi 4 the transfer functions concemed are ratios of ratlonal
polynomials, -they may be written in factored form,
all factors in either numerator or denominator being
tirst order or quadratic. Each of the magnitudes
(absolute values) of these factors may be represented
by a pair of asymptotes on a logarithmic plot, except
near the intersection of these dsymptotes (the "break-
point"). Then, since the use of logarxthxmc coordinates
Permits addition of the logarithins to replace multipli-
cation (and division) of the factors, by adding the
asymptotic factor-plots graphically,; an "asymptotic”
graph of the entife transfer function results. All‘the
straigit line approximations obtained in this way will
Lie referred to in this volume a's asymptotes, It is
realized-that thisis an extension of the strict mathe-
matical meaning of the word asymptote, but this prac-
iice is well justified by usage in the -controls field.

It will be recalled that the intersection of two asymptotes
with a slope difference of 20 db/dec indicates the pre-
Sence of a first order pole or zero,..vith the d:fection

Ir-10.

~:z .Note:that-for damping greater than the minimum-chosen;,

{ there must be no zeros of 1 +¥(5) in the domain encloséd.
L Dby the contour in the s-plane; §.e.;-in the -Y¢s) plane
~ the number of encirclements of the '?'1 point must be
' such that Z=N+p =0, .

- —— . 'i

It is mteresting to note m the examples given that under
7 no circumstances can the minimum damping time con-

' gtant be less than a , (see figure III-;lOe), and that to

. obtain even this damping time the gain must be adjustedé
i so that the ~1 point lies between pomts B and ¢ m

: ﬁgure 1H-10e. '

For the specified thinimum dampihg ratio case the
s-plane contour is shown in figure HI-11.

;

! Note that possible poles of 1+ Y(S) at s=0 (an wlse-

: ‘where on the contour) must be avoided in this case- as-
. inthe conventional Nyquist case. The values of s der
* fined by the contour are given by : .

. (III-14) . From A to B  s= <fw+ jm/].—-_T - wmws ot

Prombg,“ ',s.-"rgj,‘f’ -0
= when «=0%

&=~ v}hen w= 07"

- e e - . . A‘.r-,.u..«w-r@ P

From € to D L §w+3wv1 102 - 0'>w>-m
From Dto'A s=Rel$ . R

and o= -1r+x/} when w: -m

==y when w= @

A typlcal appncanon of the mlmmum dampmg ratio
case is shown in ﬁgure III-12 !

SECTION 3-THE OPEN LOOP—CLOSED LOOP LOGARITHMIC METHOD

of the phase curve in that region indicating whether the

: pole or zerois of minimuan or nop-minimum phase(i. e.,

in the left or right half of the s plane representation).,
For quadratic factors (slope differences at mtersectlon
of 40 db/dec), the asymptote intersection occurs at the

| undamped natural frequency, and the departure ofthe

actual plot from the a,sympﬁote intersection is equal to
twice the damping ratio in decibels. These charac-
teristics of Ioganthmlc transfer function plots are
basic to this section. Broadly spedking, the method
involves the following steps:
1. The open-loop transfer function, Y(s), is,
plotted logarithmically with s set equalto jw.
2. For a.given open-loop gain, K, (or open-loop.
zero db line), the closed.loop transfer function
plot is constructed. This constructionis materially
aided by the use of approximations and a speclal
chart.
3. The analytical factored form of the closed loop.
transfer function is obtained by eéstablishing the
asymptotic representation of the plotted curve,,
and by utilizing the characteristics of the logarithmic
plot. This process is aided by the use of previcusly
known data (the zeros of the CIObed loop transfe;
function).

The first item of the above list has been extensively

/ B
,




KG(s) =

: K___.
“a(as+T)(bsel)

If (<14J0) lies
betwéen A and C~
P=0, Ns 0

Z=0

h

K(as+1) =

s[g; LXK sfi]f'(bssi{

If (-1+J0) lies
‘between A and C
P=I Ns1
Z=2

If (~1+4j0) lies .
between A and B
C Py, N S

Figure ITI-12. Examples of Ninimum Damping Ratio
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- Seqtion 3.

‘ _ discussed in the transfer fusiction section of chapter I,

and needs no further explahation. The second item can
be achieved by use of approximations aind the use of a
special chart where required. A subsection will be de-
'voted to the derivation of this chart and approximations
with examples of their use, The third item (finding the
analytic form of a given closed loop plot) is essentially
a curve fitting task, The curve fitting process is made
practical by the fact that the asymptotes to-be fitted to
the closed loop plot have slopes which are integral
multiples of +20 db/dec. Another aid is the fact thiat the
zeros of the closed loop are also thé-zeros of the operi-
loop transfer funclion, and hence are known, The pro-
cess of finding ajn analytic factored form of a given
transfer function plot is discussed, with examples, in
a iurther subsection. e

. (b) RELATIONSH!PS BETW""EN OPEN AND CLOSED—

LOOP TRANSFER FUNCTIONS —CHARTS

The portion of the closed loop transfer functicn, Z(s)
of interest to the discussion of this chapter is givén by

Y¢s)
i+Y(s) -
'A method will now be developed to relate Y(s)/[1+¥(s)]
to Y(s) by simple graphical means. For convenierce
¥(jo)/[1+ Y(ie)] will:be related to Y(j«). Since this
is‘merely a: functional representation, j» may later
be replaced by s: )

(I11-15) Z(s) =

Y(Jw) is usually readily available in the logarithmic
graphical form. The logarithmic graphical represen-

. taiion of Y(Gwy/ [1+Y(jw)] is obtained from Y(j«) by
: usmg a special chart which will now he derived.

If the magnitudn (amplitude ratio) and the phase angle

of the closed-loop transfer function are denoted by
M and y, respectively; relationships between ¥(j«) and

- constant valués of M and ¢ can be derived. If, in

addition, cortours of constant values of M and i are
superimposed upon a linear, rectangular plot of
Y(jw), amplitude ratio of Y(j«) plotted versus the
‘phase angle of Y(j&), the phase angle and amplitude
ratio of Y(jw)/[1+Y(j)] can be read directly off the
plot for a given value of frequency «. Inthe following
paragraphs. these contours and their associated chart
will be developed.

The open-loop transfer function, Y(j»), may be re-
presented-as a complex number g = -

(1II-16) Y(jw) = x(w)+Jy(w)
‘Then
p— - lXGo) [ . | x@ iy |
(111‘17.) ‘ K 1+Y(J@)| . ’
{ Dx(e) 12+ [y (@)] 2 }*
L [1ex(w) ]2+ [y ()]

M3{{1ex(a)] % '[Y(,Wij 3} = [x(w)] % fy(w)]?

[y (w) 13(M3-1) + [x(w) ] 3(M2~1) + [x(c) ] 2H34M3= O

By completing the square of the x terms:
arrasy  fy@1s[xe + B STt

-12

. (III-19)

R St ~~.;.~...;;.;J,, o

(111-18), plotted on a linear rectangular plot, y va. x,’
- isthatof 2 series of circles, with centers at '

yo-o B ‘

ﬁ”"l

~and with radii

lu-il

" These "M circles" Are shown in figure III-13

Note thai to any fixed value of M, there corres-

ponds an infinite number of combinations of x(w)

and y(w). If the log of the magnitude of Y(s),
i.e., log [x3w) +32(w)1%, in db, is plotted against,
tan = ¥{y(w)/xtw)] for a series of values of M, these

"M circles" or lines of constant closed ldop transfer .
function amplitude ratio, plot into "M contours" such *
: as-those indicated in figure ITI-14. ]

' gince the ampiitude ratio of Y(j&) is ordinarily ex-

pressed in db, it is most. convenient to express the
all the ensuing plots, M is givenin db as in ﬁgure I-15.

Lines of constant closed loop phase angle, ¥, arede-
Fived in a similar £ashion.

=1 Y - &)
[ﬁ%s;)l] - tanct B -t ‘f:ﬁ(ﬁ;

_ By trigonometry,. then:

Yet - ity
X(cw +X(W

PESIECE

lx LTxay . -

(III-20) ¢ = tan~ ¥

which simplifies to

 (1rz-21) tan T
. X2+ XY S
P - 1| tan?y+ 1]
or (x+ 5&)) +(.Y Tty [tan? m

| again the equation of a circle. The radius is

tan?y +1

1
(II1-22) T g

. and the center is located at

X, = -1/2; ¥o = 2t:n¢

(1II-23)

These circles, when plotted on the same logarithmic
coordinates as the ¥ contdurs, are the ¢ contours of
figure 111-14.

The plot of figure III-14, commonly called a Nichols
chart, enables the analyst to find easily the closed-loop

'values of the transfer function from the open-loop,

either by actual plotting on the chart, or simply by
reference. An example of this method is shown in
figure III-15, going successively from the open-loop
plot shown in figure IlI-15a, to the Nichols chart plot

of figure III- 15b, and then to the closed 1oop plot of

ﬂgure III— 15¢.

 amplitude ratio of Z(jw) in this form. Consequently on .

e e

Tt At e < 2

.
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" Open :Loop; Magnitude ifi db

ramthssi o

" - the work required to obtain Y(jw)/[1+¥(je)]
" Y(Jo) by the method shown inthe previous Subsection

Y= 04| lo¥=0

— 900

In practme the actual plotting shown in figure NI-15b
may be avoided by utllizing the chartas a graphical
table.

LI S

Accurate"ver.sions .of Nichols charts are provided in

~ figures A-18 »é\nd A—19 of the appendix.

(c): RELATIONSHIP BETWEEN OPEN AND CLOSED-
LoOP TRANSFER FUNCTIONS —BY APPROXIMATION

Because of certain approximate relationships, much of
from

(III-3b) may be reduced. These approximate relation-
ships are especially valuable in preliminary studies and
for any case where rapid, though not extremely accurate
results are required

Itis evidentfrom (11-15) that if [y(s)p>1 then

(III-24) |Z(syl~1
or zero decibels. Also if |Y(s)k<1
(III-25) |z¢sy | = leesyl

An examination of a Nichols chart shows that if

[Y(jw)|= 25db, the relationship of (III-24) is correct
within an error of 0,5db, If |Y(jwy|210db, the error
involved is of the order of 2 db.

However if |X(sy| is of the order of magnitude of 1
m-14 "

Open -Loop Phase Anzle

90(»7' Tee e R 2700

Figure III-14. Nichols Chart

(0 db), the entire expression for Z(s) must be used,
i.e., where |Y(s)|~1

(II1-26) Z(s) = Y(s)/[L+¥(s)]

In those regions of Y(s) where (III-24) or (III-25)
apply, the plot of Z(s) is given directly by a knowl-
edge of ¥(s). In those regions where (III-26) applies,
the method outlined in section III-3b must be used.

For illustrative purposes several examples of ob-
taining closed-loop plots from open-loop plots are
given below.

EXAMPLE 1. Assume an open-loop transfer function
3.16/(jw+ 1) which is drawn lightly in figure III-186,
Where |Y(jw)|= 13.16/(jw+1)|210db it will be assumed
that the closed-loop transfer function |[Z(jw)| = 0db.
Where |Y(je)|<-10db it will be assumed that
|Z¢iw) | = |¥(jw)|. Thus, the dark lines are drawn
in to represent |Z(jw)| in these regions. Where
10db >|¥(jew) |> ~10 db the Nichols chart has been used,
and the results are indicated by dashed lines. It is
-evident that the dashed line does not fair into the solid
line at the lower end of the frequency range. 'This
is a result of the approximation that was made above
and could have been predicted. This difficulty may be
overcome at the outset by a simple calculation of the
steady state gain. Since

< N(8) « - KN(),
209 e X MO, 7(e) « NS

-
2
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Phase Angle (Deg.)

Dpen Loop A.R. in db

Phase Angle in Deg.

' ;001 002 ,004 01 .02.03.04 A0 .2 .3 .4 by 2 3 4

in db

1

©w

o
Auplitude Retio

Y{sy =

200 }— a(r, s+1) (73 B> 4 i \si | \ '

-225 nm = 1; To =10

0

01 01 .02.08.08 .1 .2 .8.4 1

Frequency in Rad/Sec
(a) '

104

"4

N

T T2 A AN

I

AT\

-225°  -180° -135°

Open. Loop Phase Angle
(b)

110

10

42

in db

30

VL N

Amplitude Rati6

-40

50:

- 100

)QA. \ .

60

Y.(8) |l

1

~1%01— Z(8) = y(sy " K (s ) (P £ s ap )
— k'=1=0db, w, = .1755, [=.19 NC

"0 — g=cyodb T = .968

Frequency in Rad/Sec.
o (e}

Figure II1-15. ‘Opeﬂ Loop to Closéd Loop. by Nichols Chart
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fined by the breakpoints of an asymptotic plot if all the

poles and zeros are first order, If a pole or zero is of
second.order, the departure of the actual curve from the
breakpoint is also required. The sign of the pole or
zero, i.e., whethe? the term is minimum or non-
minimum phase, is completely determined by the
direction or slope cf the phase curve in the region of
the pole or zero. Therefore, to determine the analytic

" form. of the closed-loop function from its plot it is

only necessary to establish the asymptotic plut, and
to observe the phase angle change in the immediate
vicinity of break points. Values of poles and zeros
are then determined directly from the break point.
frequencies (and break point departures in the case
of quadratic terms), and sighs are determined by the
local phase angle change. The functional form of
Y(jw)/[1 +Y(jw)] is then known analytically, and
Y(s)/[1+¥(s)] is obtained simply by Substituting
8 for jw.

In detérmining the asymptotic plot, the following facts
are of value;
1. Any asymptote is a straight line with a slope:
. which is an integral multiple of +20 db/dec. There-
. fore, for any transfer function expressible as the
ratio of rational, constant coefficient polynomials,
the change in slopo of the asymptotic plot at any
break point must be an integral multiple of 20
db/dec. The value of the integral multiplier is,
* 6f course, the order of the pole or zero.

decibels.

PR ST 0 S N

‘Cﬁ?ﬁter m

Sectiorr» S

2. In regions where equations (III-24) and (III-25)”
are valid, a portion of the approximate analytic
factored form of the closed-loop is known by a
simple inspection of the open-loop logarithmic
transfer function plot,
3. The zeros of the closed-loop transfer function
or its analytic form are known initially, since they
_ are also the zeros of the open-loop transfer function.

"To illustrate the methods of obtaining the *clos_ﬁd- loop
transfer function in analytic, factored form several
examples are given below.

EXAMPLE 1. A closed logp transfer function is shown

in figure 1II-19. If the asymptotes to the amplitude
curve are drawn, it is found that, when extended, they
meet at a frequency 1/7. Also, at the frequency
1/7 the phase is -45° It is evident that the closed-

.. Joop transfer function has the form. Z(s)= K/ (rys + 1)
-From the amplitude curve it is seen that the gain 1n
db.is K'.

The linear gain K may be obtaine
figure A-20 which relates linear amplitude:
The compléte closed-loop transfe functlon

&) = K/ (18 +1)

is ,theh:

' EXAMPLE 2. This example is considerably more

complex than the first. It is introduced to emphasize
various details. ‘The closed-loop transfer function is
shown in figure III-20. The asymptotes to the amplitude

1.

.001 - ) S .1 30 —
R 1 e | \ RS . R ;J./“""-1
\\»y - Y(s) (Open Loop) , o wl AN /'.‘\ .
i R RAAVAR
. Fe 5
| b o) Y, oy LN
1 Z(8). 1 § £ |
o1 g0 | ] wi 2o
f ' B e S \ ; g %/
-25} N 7 {20 & 5""\ ' ‘
: : \( Z(s) Obtained L N . '5‘. . g *‘"3“‘/ {_ \ y=0Y|
T from: Nichols L > Jryes), :
-50 Chart . T 30 o 5/ N*
. N B Fae i
" \ \ W0
& 15 - - - -40 .30 -210 -180 90 )
5 90 | ¢Y¥(® (Open Loop) ‘ Open Loop Phase Angle
5-100—— ~ : ! B |
§-125 — N ‘ N
£ N \
B ‘ \ Z(s) (Closed Loop) \
-150} X l 3 \
-300 ‘
 Yes) w — o318 N | '
225 S = ST (105 7D \\ v
sk L .oe4 ].008 04 toosl | [ |1 T I e e e
.00L  .002 .006 .01 02 06 .1 .2 .4 .6.81 2 4 6 810 20 40 60 80100

. Frequency in RadISec

Figure III-17% Open Loop to Closed Loop by Approxxmhom
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' 'Phase Atigle- in Deg.”
}

s curve arefirst drawn,., The figure will now be examined .

by starting from the left (or low frequency side) and
- continuing to the right (or high frequency side).

. should be placed in front of the closed-loop gain K .
‘breakat 1/7, . This indicates a first order term

in the denominator (or pole), However, the phase
lag is decreasing in the vicinity of 1/r,. This,to-

gether with the fact that the first order term 18 in- ‘

“the denominator, indicates that the term is non-
minimum phase of the form 1/(~7,s + 1).
¢. The.amplitude breaks from -20 db/dec to.0 db/dec
-at 1/%,. This indicates a first order term in the

'numerator Since the phase lag continués to de- -

el

" Amplitude |
Ratio in db

(-]
i
£

N
-
o
4
1
s

boe
g
_O
4
M
i

hture IXI-19. Obtauuné Poles and Zetos of
. Transfer Functmn

" creade to 0° after this it indicates a minimum pnasé
term ¢f the form (T8 +1)s N
.4 . The amplitnde breaks to -20 db/dec after 1/7.

.and the phase decreases at the Same time, which

) indlcates a first order pole of the form 1/(7s +1) ,

"¢, "The amplitude breaks from -20 db/dec to -60
.db/dec atw, . This,together with the peaking at

. wy, indicates a second order term in the denominator.
‘Thé sharp increase in phase lag atw, indicates

-.further that the term is minimum phase. The -

_natural frequency is known from the break point,
and the damping may be determined from the amount
the peak departs from the asymptotes. (This was

discussed in an earlier section). Theterm then has -

. the form 1/[(s/w,) 3+ 2L (s/wg) + 1}
1. The amplitude breaks from -60 db/dec to ~40
~ db/dec at 7; . This indicates & first order term in
-the-numerator. Since the phase lag increases in the
‘vlcinity of 1/ry ‘this indicates a non-minimum phase
term of the form (-74s +1). All the terms are

now collected and the closed loop transfer function:-

is of the form

Z(8) = l((-rbs +1) (--rds+ D

(~Ta B* 1)<'r¢ s+ 1)[ 2{ s +1]

with the parameters +, {, w, obtained from the
bBreak points.
In the normal analysis case, the numerator terms
7, and r, are known at'the outset, and aid in establish-

- lug-the asymptotic plot,

&. Itis evident that at Zero irequency the phase is-
-180°. This 'indicates that a negative sign (~)

b. The amputude dacreases at -20 db/dec after the

Deg. - unp1t. Ratio in nb‘“
i
-
€

EXAMPLE 3. This final example i.s an exoeptional 1'
_.one but is offered tc demonstrate that, when the analytic

{orm of the closed-loop transfer Iunction is obtained

from ‘the graphical representation, care must be taken

& o
T T

BEE § _
& l ’ “ :

.;l[)-a - — e i

Angle in Deg.

Tl 1opog el
Ta .

Mk f=m
P

-

Fxgute III-20 Obtaining Poles and Zeros of
Transfer Funr:t.:on

!

to consider each and all of the followmg items:

i. The analytic expression for the open-loop transfer ‘

function,
2. The graphical representation ‘of the amplitude
ratio of the closed-loop transfer function,
3. The graghical representation of the phase of
the closed-loop transfer:function, .
Consider the closed-loop transfer functlon shown in
figure II-21. . ; ;

If the amplitude ratio curve aloné were considered,

. the incorrect conclusion might be reached that the
. transfer function is merely of the form Z(s)y *K=1.

However, ‘the open~loop transfer function ha$s the form
K(-7,5 +1)/(m,s + 1), It is known that the closed-
loop transfer function must have the same zeros as

the open-loop (i.e.,;a term in the numerator equal to_ -

(~7,8+ 1) . The next problem is to determine the

01 0.1 110 ,,,190 1000

21T

=150) 1 o 1
5-17‘ 1T s 14T . 180

i;;oi, 0.1 1 16, 100 _ 1000
£ Fréquency in Red/Sec

hture III-21 %tnmn‘ PoIes ard Zeros of
R . Transfer Function -
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‘Amplifier Ratio in db

Phase-Angle

torm of the denominator Since

z(s) = K82

or Iozlz(s) | = loglK| + loclﬂ(s) = 10¢|D(S) I

. (IH-27)1°¢[ !D(s) l] . 10¢|Z(s)| -1o¢lx| 1ox1N(s)|
also -
(111-28)" ’~-_¢-‘:n(r;);--el*z,(s§; = z'tx:-,;zms)

1
o

(a) INTRODUCTION

Although each of the preceding sections has the purpose
of locating the zeros and poles of the closéd-loop trans-
fer function, the work was performed not on the s-plane
(in which the poles and zeros are lacated) but on the
Y(s) -plane. Of course, this was done as a matter of
-convenience in obtaining quick approximations to the
solution of the problem. The cost of this procedure
is that {he values of the poles and zeros must be more
or less extracted from the graphical representations
used.

and yields a plof of the locus of all possible roots of
D(8) +KN(&) = 0 (where D(#) +KN(s) is the denominator
of the closed-loop transfer function), as a function of
gain. Thus, a mere glince suffices to discover a

1-20

The root locus method deals with the s-plane exclusively"

o Rigure III-22 Gi‘aphn.&l Reptesemai‘zon of (III-??) ari (II1-28)

When (II1-27) an (I0-28) are performed graphically
‘a8 shown in figure III-22, the amplitude and phase
of 1/D(s) are determined It is evident that
1/D(8) = Ymy s +1) and thus Z(s)=(-7,5 + 17 s+1).
With a little experience the graphical step shown in
figure 111-22 may be eliminated and the complete
analytical form of 2(8) mayebe' ritten.by
ot its graphical representatlon

[,

' SECTION 4— ROOT LOCUS METHOD

nearly complete picture of the Mcs ot the system

" (b) BASIC PRINCIPLES

The fundamental problem in. establishing a locus of
roots of D(8) +KN(s) =01is the same as existed in the
preceding methods, that is, how can.these roots be
found by working with Y(s) only. To tieterm!ne the
root. locus. method answer to this question, ﬂrst note
that : » o ,

%

(I11-29) . 1,;{(,‘,,“1(1#(:- .

pgs) +KN(8) _ o -
D(8)

Hence, it D(») is finite, roots of D(8) +K N(a)w0 are




T T T

e S

L. X R T
S s : DO

p zeros.of1 +¥(x)., WhenD(8)=x a special case occurs,
@ ‘In physical problems the order of I(s) i8 always greater
than that of N(#), so that for finite K
Lim D(8) + KN(8)., D(8). 1

e D(s) ™ " D(sy

* which 15 not equivalent to (I-20), However, if Kis

infinitely large
Lin D+ KNS | @
Pl ] D(s) 0

and the limiting process might possibly reveal roots.*

¢ Consequently, except under this condition, the solution
~ D(s)=~« is trivial; in all other cases the equation

I(5) +KN(8) « 0will reveal all of the zeros of 1 +Y(s)-of

. interest (i.e., zercs corresponding to finite values of

XJ. This is the first principle upon which the root
locus method is based.

' The second important fact upon which the method de-
pends is that the denominator of the cldsed-loop trans-

fer function of a single loop-feedback system is of the

form1+¥(s). Because of this, instead of solving the
- equation 1+Y{(s) =0 , it is possible to work with the
equivalent expression Y{s)=-1., Now, Y(s) can be
‘written as a4 complex number R(s)el#(®} for any value
of . Also, -11is a complex number, ~1 = 1e3(3k +D7,
‘Consequently, if Y(s) =~1 then it must be true that:
{(II1-30) Reltz pl(3K+L)n
where X«=0, 1, 2, t... 80that R=1and ¢={(2k + 1)x.
That is, the magnitude of the complex number, Y(s),
must be unity, and its phase angle an odd multiple of
= if s itself can be & root of 1 +Y(s).~0.

X(s)is usually of .thé form:

CTTT31) - yiw) = 2EN(S)

(IT-31) - WB) D(s)

N(s) and B({s) are usually written in the form:
s‘(nss:lb«(msﬂ)...;[a;: 2-—5: s+ﬂ[%:§: —3% s+ﬂ ces

For purposes of working with root loci, it is-con-

" venient to Tewrite this as:
. TT® e p
(I1-32) —A 3 g (s 1 )(s 1 ) B
¢ ) IR e P ik 2 L ek 77
*

x[s%+ 20,0, 54 “’uﬂ [5%+ 2L g, 8+ wydl...
- ;:}:2‘;::‘8'65*.l-)GS*.l-)"'
oy EPANS

xT (se0g+Jwy) (Beerg=Juoy) ] [{meorgr Jurg) (mecrg=Jug) ]. . .

—where on={p% and oy =&y V1-7f. When N(s) and
D(s) are written in this form, Y(s)can be expressed

O o
- {171-33) Y(s) = KX N(S)
‘D'(s)

* This situstion is discussed in greater detadl later -

‘on.

- ot ve v e e e e iy ;,w,;,.l;“_:,m:m.f.;.;;
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where N’ (s) and D’ (s) are the factors containing 8 and
the quantity « is the ratio 7rg. .. /a? ,43" . » Now each
of the factors of N“(s) and D'(s) is & complex number
{for any value of &) and hence can be plotted-as-a vec- '
tor, as in the left.hand ¢olumn of figure TI-23.

Since

(III-34) , ‘

KN’ (8) [eRery Ty ooty Ty ] RIS B Al < +PNw)
D'(s) | T, To...Tp,.,To, _\ o (PR FED, * e - ThD,)

where the ry_are the magnitudes and the ¢y , the
phase angles, *of the vectors representing the factors
©of N (s); and the rp, and the ¢p , ‘the corresponding
quantities for D’ (s).

The quantity in the brackets in (IlI-34) can be written as:

n
+Kx T 1y
di=0 i

# o
:]}-to 3

2K &Iy Ty oo eTy Ty
Ll . "

Ty Tpseselp T i
LPA Pp-i Pn .

1t is also convenient to denote the total phase angle
of N{(s)/D’(s)by
(I11-35)

, b B
d’no * "’xl" ""én. - ‘¢n° "d’nl" . "¢§nn = & #’mi T §=o "f"nj
Then, by expressing each of the factors of N'(s) and
D’ (s) as vectors, the conditions that s be a roct of
1+Y(8) =0 .can be written as; '

(III-36)
K« igo
.a
I
I=0
2 ¢'1-J_’° ¢D_., = (2k+D7r k=0, 21, #2, ...
(when ithe + sign ;appears before X)
or

a .}
P - =2K: k=0x1, 2, ..
= ¢"1 jfo ¢°‘1 2kn k=0%1, 2, #...

(when the- sign appears before X )

However, for reasons that will become apparent later,
it is more convenient to shift the vectors as in the
right hand column of figure T1-23. Consequently,
roots of 1 +Y(s) can be determined by choosing = trial
point on the s-plane and drawing vectors to this point
from each of the poles and zeros of ¥(s).* If the
products of the lengths of the vectors Ty and of Kx
divided by the product of the lengths of the vectors
rp=1, (see equation III-34) and the sum of the angles
»{2k + 1), then the trial point represents a root of the
equation D(s) +KN(s) =0 { + sign before K). Angles
measured from a reference line through s are positive

* Note that by shifting the vectors as shown in the
right hand column of Fig. (III-23), the point 1/7,
and oijo become the poles or zeros of Yi(s). This
is one advantage of the :shift.
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] 1
[ — T
(s+ %-]
. / | .- L
1 @
AR e 7 %,
. e CHl Jz
- .?1 +j0 ( o — ?IOJO 0——
.1 : -
71
[s-17
T —

(s?+ 2Aw,s+w?) = (s+0+ jw)(s+o~ jw)

Figure III-23. Phase Angle of Vectors (s +1/ry),(S-1/Ty), (S+0 +jw), and (s+0 - ju)

when measured as shown in figure III-24.

. .
Y(S)= ___IJIZ.__-

8 r
L ‘¢‘ (S#-—-) (S#——
. X ¢\ |-
stz _ seF \¢. Y
ko) 1 1\
1 T o—

T T |

‘I‘ 1 .

I Ty

Figure II1-24. Typical Construction

m-22

It is to be noted that since Z¢ #(2k+1)x, in this example,
the point cannot possibly be a root. Another trial point
must be chosen, and the angles added to test its possi-
bilities of being a root. With experience, only very few
trials are needed to locate a point that meets the test:

k=0, 21, 2, ...

for+ K

for-K

The root locus method consists of determining a num-
ber of such pointg in this fashion and drawing a curve
through these points, the locus of possible roots; and

taal - SN
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e R TeerTT
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. (III-39)

 for all points annE the locus.

»
' Ir ‘
(Ti1-38) Kk -A2EL - 1 , \

j_crnjj

must be satisfied, The process is considerably speededx

by the.use of a graphical aid (the "Root Locus Plotter")

_ to be described later.

(c) CONSTRUCTING THE LOCUS

~ As with any graphical construction,- x:oot Jocus: plotting
" 18 speeded up by establishing

1. Starting points.

2. End points.

3. Special intermediate points.
4. Asymptotes.

" In constructing a locus of roots these points and the

asymptotes can be established by inspection.

. The starting points of the root locus plot are defined as

those: points that représent roots of D(s)+KN(8)=0 when
K approaches zero. Since the order of D(s) is always
greater than that of N(s) ,

Lim D(s) + KN(8) = D(s)
K=o ,

for any value of s at all, Then the equation B(s)+XN(s)
becomes,. in this case, D (s) =0. Hence the locus of
possible roots of D (s) +KN(s) = 0 starts (at gain K =
-0 )* at the zeros of D(s), i.e., the poles of Y(5). As
K is increased from zero, the Iocus must move away
from the-poles-of Y(s) in some direction -:ct yet de-
termined (sée figure IN1=25).

F

o :,-:5%- 4

s.- Plane , V Y(s) =
b el
-~/ — o\l
Pl l\ 1 /I\ PAR O ot
1 n ‘
‘T2 T | Note:sindicates pole

X indicates zero

Figure III-25, Starting Points of Locus

The end points are defined as those points that represent
roots of D(s) +KN(s) = 0 when K approaches infinity .

However, it was shown at the beginning of section (b)
that there was a possibility of. having roots which them-

* When the gain (K ) ofaclosed-loop system is zero an
input cannot cause an output
Consequently, the concept of .
‘roots at zero gain’ may be confusing. What actually
happens is that &s the gain géts very small, the
roots approach certain finite values while the am-
plitudes of the transient terms. approach zero, Thus,
the type of response is defined by the finite rdots
of the denotiinator of Y(s), but the response itself
hecomes unperceptibly small in magnitude,

(III-41)

~be no-zeros of Y(s), an

e s T g arei g it it i T

. Chiptet INf

- ,Seethﬁ:,., e

seIVes are very la.rge (8~=) when K is large (K=o) .
Consequently, thére are two corditions: which.must be
investigated to locate the end points:

1, Iiim [D(s) +KN(8)] , (8 finite)

2. 't_,i [D(s) + KN(8YT,

i
83

(K. 1arge)

~Tn the first condition

(III-40) %i’:.!‘ D(s) + KN(S) = L KN(sY, (s finite)

~and, in this event, D(8) +»KN(8) =0 reduces to KN(s) =0 .

Consequently, at high gain: (K)-the: locus. must enter each:
of the zercs of N(s), figure III-26, which are also the

zZeros of Y(s).

arr,

'3 -"?1.!"9 | ‘ f

NP \&/ s b

'rz 'rl KA :
TKTI (s + -}—- ]

Y(5) =- 2":;1»"'117
B(S + ;-:;)(s +;;)

Figure II1.26. Starting and End Points of Locus

But since ‘the order of N(s) is always less than that of
p(s) , and since the order of D(s) +KN(s) is equak-to
the order of D(s), there are(n-m)*roots stilkto he
accounted for at high gain. Since condition (1) did not
Teveal them, these remaining roots must correspond
fo condition (2). That is,. the roots occur at s—=,
This is illustrated in figure HI-27. An observer lo-
cated far away from the origin of the s-plane and from
all the zeros and poles sees the zeros and poles of
Y (s) all bunched up on the s-plane near the origin.

In fact, from far enough out in the plane, the vector
angles of all the factors become very nearly equal.

Then the angle of a vector from a zero to the trial
point far out on the plane appears to cancel the angle
of a vector from one of the poles to the trial point.
The result is that each zero appears to cancel i pole
so that the plot of Y(s) looks like simply a multiple
order pole at the origin. The order of the pole will
be the difference between the mimber of poles and
zeros of Y(s). Thatis

KN(s)

'Lim Y(s)s[.im D(s) s"""

Consequently ior large values of s there appear to
and D(s) = s So that
(III:42) I.,yg D(8) + XN(8) = s*"" |

* n and m are the orders of D(s) and N(8) respec-
tively. See sduation (IXI-36).
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kg 1\ - Ty
K-,;—L- s+ o K-,.—.}—‘: -
Lin Y(s) ~Lin 2’3( T) .

#

. ‘Behavior of Ahgles as s~

)

s~ Plane

R

Figure II1-27. Limiting Values of Angles as|s|-

Now, since §¢N =0 and¢p =dp,=...=dp=... =dp,

(2. ¢N - j-o 4’9 = - Z %A--(n-m)%Af (2k+1)ﬂ or 2k

i-o ) J=o
k=0, £1, 22, £3, &, .
then

{2k + 1)71 2k_1i

k k=0,%1,£2, £3, ...
n-m n-m

(III-43) ¢y, =

Evidently vectors drawn pointing away from the crigin
at angles ¢;, will point to large roots of D(s)+KN(s) =0
for large values of X.

At this point it is well to recall that it has been deter-
mined that at Zero gain the roots of D(s)+ KN(s) = 0 are
simply the roots of D(s) =0 and that as gain (K) in-
ereases, the locus must proceed away from these roots.
It has also been determined that under some conditions
the roots of D(s)+ KN(s)= G for large values of K are the
roots of KN(s) = 0 and for other cases they appear far
out in the s-plane at angles ¢p,. Since the locus has
several starting points, and several terminating points,
it would appear that the locus is not a single continuous
curve, but rather consists of several branches. -Certain
branches will start at the poles of Y(s) (roots of
D (s) = 0 ) and proceed to zeros of Y(s) (roots of

KN(s) =0) and other branches will start at other poles

and proceed toward the roots at infinity in the direction
of the angles ¢p,. Thus it would appear that (III-43)
establishes asymiptotes for n - m branches of the locus.
1t will be shown in the following pages that this is true
(see figure MI-28). ;

Starting points, end points, and asymptotes have been
established. Some intermediate points can be es-
tablished by closer examination of certain parts of
the s plane. Consider first the real axis. To determine
whether or not there are any possible roots there, take
a trial point (s) on the real axis, figure II-29.

All the vectors from the zéros and poles to point‘ 81

make angles nearly zero, Consequently 3¢~ 0 and
thiere cannot possibly be any roots along the posmve
real axis, Next try a point s, near the real axis be~
tween « 1/, and the origin (figure II[-30). In this
case the vector from the pole at the origin has an

HI-24

Since there is a+ sign before K, angles to agymptotes are

. 180° _ gne L 43)(180°) Lompe  pom = 4
$pa,= 5 = 90 ¢M' L.Hz___l 270 Lemm %

K« s+l
( "1)*1— jw
szs +Ir,) ‘ s+k)  Asymptote —
n=3, m=1]1
\'/ by x’[/ .
/|\ /'\ SIN SN
1
—f —"—’i_ R
$oa,” 210°
~.|

Figure IXI-28, Starting Points, End Points
and Asymptotes

angle of approximately 180° and the rest of the poles
and zeros contribute nothing. Consequently, there
can be roots anywhere between the pole - 1/7, and
the pole at the origin. It should be noted that the

1 $y-idy+ by + P Im0

s- Plane Jo .
Finite for
Asyn Illustrative
ptote Purpose Only

l+ Asymptote

Figure III-29, Test for Roots on Positive Reai Axis
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qnestion/ of whether or not the poles themselves die’
‘oh the’ locus canriot be ai of: «
4 Vector from’the pole'to-a test point lying ont
S is undetermined A

W Jog By-(dg+ byt )
. N | ~=180°

fdsymotote

Fzgure III;-JO. Test for Roots betwéen -._7@ 3j0
and Origin

A repetition of this process will show that there are
also possible roots between the pole at - 1/7, and the
zero at - /7y, Consequently, a part of the locus is
established along the real axis (see figure III-31}.

At this point it is known that the part of the real axis
between: the pole at- 1/7, and the zero at - 1/7; must
‘contain part of the locus. It is also known that the
locus proceeds away from this pole and toward the
zero, It remains to be shown that the only path the
locus can tike betweern these two points is along the
real axis. This is proved by noting that if the locus

proceeds away from the polé and departs from. the

real axis, say, above it, another part of the locus
must appear below the axis, symmetrical with the

‘part above it. This is So because each complex root

on the locus must have a conjugate. Then, at very
low values of X two roots would appear approximately
at the pole~ 1/r5. But when (III-39) is applied to this
example it can be seen that only one root (i.e.,sx-1/7,
can appear at this point. Therefore, the locus must
proceed away from the pole along the real axis. A
similar argument applying equation (111-40) shows
that the Iocus must approach the zero -1/r along
the reil axis also, This is shown in figure III-31.
(Of course, when this same argument is applied to
a system involving higher order zeros and poles on
the real axis, it will be found that it is possible for
the locus to appear in the complex part of the plane
in the immediate vicinity of the zeros and poles.)

To complete the locus, it is necessary to find how the

" rdots approach infinity along the asymptoteés. To do

thls another characteristic of the expression D(s)+ KN(8)
niust be understood.

CHSTTE MR Y IREITR . b By s g i 4 i

Parts of Locus of Roots -
of D(s} + KN (s)

2

n:‘""

iy TN
[

c-ﬂ"‘

- 1 ";"'
T

N asymptotes™

Figure IIT-31. Locus Along the Real Axis.
N(s) and'D(s) dre of the form - ° o
N(sY . K85+ A, 8% L4, +~Ais"1

€

D(s) Bs"oB ls" 1y,

Consequently,
(IIT-44)

D(s) + KN(8) = B,s™+ B, ;5% 1+, . +(B, + KA ) s"

+ (Bn-1 +KA _1) st-ls,, 9(-B-1 +-..KAf) s.i.v
It is known from algéebra* that each root of an equation
18 a continuous function of the coefficients of the equa-

tion. In (IM-44) the coefficierits A; and B; are constant,

but K is varied contimiously in constructing the locus "f

roots. Conseguenily, the coefficients (B, +Ka,) are

continuous functions of X and therefore, the roots of -

(I1I-44) must be continuous. Therefore, each branch

of the locus of rocts must be continuois. This means

that the locus must break away from the real axis and
approach the asymptotes at inﬁnii:y. “The part of the
locus away from the real axis représents complex
conjugate roots. The only places where such roots

could have started are the poles at - 1/11 and at the

origin,

Consequently, at some particular gain (K), the locus<

breaks away from the real axis in opposite directions
as shown in figure TMI-32.

Kl (54» _1) Breakavay Point
Y(8)
s (s +,}i )(s ...’1,3_)
-1 T 1
T2 i )

Figure III-.32. Breakaway Point

The remainder of the locus must be established by
a trial and error procédure as described above, It

is repeated in figure III-33 in order to show how the

vector originating at the zero is handled.

Repetition of this procedure yields-the locus shown in
figure I11-34.

* See Bfcher, ‘Introduction to. Higher Algebra’ (Ref-
erence 8. ) P
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Figure II1I-34. Complete Lacus

In order to locate the roots corresponding to'a known
value of gain (X), points on each of the'branches of the

" Jocus are choSen and the lengths of the vectors meas-

ured. If these lengths satisfy. (T-36), the points repre-

. seént roots for this value of K. However, in the more

common problem K is unknown and is to be determined
in order to place the roots at certain desired locations
‘as discussed in section II-3e. In this problem, the de-
sired root.on'the locus is chosen and the gain (X) com-
puted as the unknown in equation (III-36)

Ty |’“‘H {( 2 1r 1.87 ]

D (3) | (1.03)(2.78) (1. 1) |
s

(K) (.667)(.573) = 1

Figure III-35, Calculation of X for a chosen Koot 3.1

When Y(s) contains complex roots, the procedure is
identical to that previously described However, since

m-26

the rrraphical construction has a slightly d(iiffe,rent. aps ¢
’ loded:

pearance the following dtscussion is i ( ‘
possible confusion, The example also includes a'pc
on the posttive real axis. : ' .

Distance Shown .

Finite for T1lus-
" trative Purposes
only ~—

“‘A’,"'r;wz-, iy
 Ta%” (s+ _1_)
T ATy

(s _L)(s2+ 2w s+ w 2)

¥(s) =

Figure IIT-36. Location of Locus on Réal dxis

, In figure III-36 a point near the positive real axis
- ‘beyond + 1/7, is chosen to check for roots there. The

angles of the vectors from the poles and zeros on the
real axis are all zero. The angles to vectors origi~
nating at the complex poles are non-zero but they are
equal and opposite so the net angle is zero; therefore
there are no roots beyond the 1/7,. Repeating this
procedure along the real axis locates roots between
the origin and the pole at 1/7; andbetween - 1/r; and
< . Consequently, the locus along the-realaxis ap-
pears as in ﬁgure TI1-37. This ixlustraﬂon also’ shows

g =y - (g + by +dy) I ,/jg* Asym;ﬁoﬁg
Trial Point, -o+jw y ‘
>60°
60°
Y- ™ (84 e :‘\iAsymptéi‘:e., ‘

—— il
S8 =200 (87 + w8 + o)
82 + QL8 + ciylx (S 40+ J) (8 + 0 = o)

o= {wn,w-wnl - {2

Figure II1-37. Cons‘tt"uction Imvolving Compléx Poles

the asymptotes and how the vectors are drawn from
the complex poles, (The points at which the locus
enters and leaves the real axis are still undetermined
but are shown to indicate what the locus must do.)

&

®)




. Inorder to determine in which direction the locus
moves away from the complex poies; a trial point is
taken very cloge to one of them, The point is taken
80 close to the pole that the vectors drawn from all
the other poles and xeros to the trial point look as
though they terminated right on the comglex pole being
investigated This is shown in figure III-38. Al-
th :

Pole it ts exact locatlon above, below, lett 6r right ofr

2 x

RTINS f
» 50-(140+90+120) ||
= =300° . jw

By % =300 - 180

S b - O = - 20°
« 480 + 360 - -120° 2-1807 > $q = -120°

Trial point taken ins 'Complex Pole
definitely close to - C ~o+jw
the pole -0+ ju = .

; K—Jm" (s+
Y (S) =g B 1 - i
S(S-——)(sh 2§wns+wn2)

h‘we III-38 Establishing Direction of Departure
from Compléx Pole -

/11 )/

1 'L O ivnmmisatis
5N A
, (so-l) \ \
P = \
’ s(s-—-) (—r 2-5- s+1) ' \

Figue IT-39. Initial Parts of Locus - -

w

the pole is left undetermined. Consequently, when
the anglés are added, the angle to the veéctor from
the complex pole being investigated to the trial point
is left out (in this example ¢,); and in order that the

trial point lié on-tlie locus, the sum of the angles in

this example must be ¢~ (¢g + ¢4 +¢4 + ¢3)= 180K, odd) or
¢s Pr=(dq + g+ dy + 180K oad) * In the ligure it is seen
‘that ¢; = ~120°, 'rhis means that the vector from the
c¢omplex pole to the trial point Les down and to the
left ais shown by the inget in figure Ti1-38. . With this
added information, figure II-39 can be constructed,

Figure IN1-40 indicates some possible forms of the
locus. Several intermediate points must be deter-

' ,S.actibn;é‘

S R L N S
-

mined in order to show which is the correcﬂocus T

: (d) 'THE ROGT LOCUS PLOTTER

Constructing amlocus of roots using the techniques
described would be'a tedious job and the method would
not be very valuable to the designer. Howevyer, itis

_possible to devise a. simple:too} that greatly : simpliﬁes

and expedites the work. The use of this tool will now
be discussed,

One form of the plotter is shown in figures IIi-41 and
II1-42.

‘The technique of using the plotter is indicated in figures

TII-43 through I[+52. The pintle is first placed oi:the
trial point. In-this position, the card and disc are held
together by the action of the spring. The disc and pintle
are then depressed by pressing cn the top of the pmtle
free to rotate w1thout carrying the dlsc with 1t the
latter being held in its initial position by the pressure»
on it.

For the purpose of showing clearly what is' happening,
the plotter will now be teduced to schematic form,
figure HI-44.

The system shown in figure THi-24 will be used for
illustration. To detérmineif a point s, lies on the
locus of roots for thig system, place the pintle of
the ploiter 8,as shown in figure II1-45. '

'rhe -disc is depressed and the reference line on tlie
¢ard moved until it coincides with the line from s  to
- 1/7, as shown in figure IH-46.

‘Fifure TII-40, Root Locus Forms
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h‘tre III-42 Cross Sectxon of Root Locus Plotter
Shouung Duc Locked to Card

Reference Liné—_ | / ~/"

g -

Trial Point— | -

o 8§ !a' f |
I § s, ) i
v ,cltef. Directionl ~ 7 X l
e \‘ i Reference Line-~ ' P l
B Y A
/ - b
- . B s T
- 5 b 3 i
i —.le -7;-% T2 Ty
Figure 1I1I-45. Use of Root Locus Plotter Figure III.46. Use of Root Locus Plotter
e —— “

The pointer is now released and the entire plotter is
swung back until the referénce line again coincides
with the reference direction, i.e., the horizontal
direction through s,. This operation will have rotated
the disc through an anigle ¢,, with respect to the card.

: 'The plotter now appears as shown {n figure II-47 .

Ref. Dxrection‘ %1\
SR S
Ref, Linej

-7

. 3
] 3

13
IO

Figure ITI-47. Use of Root Locus Plotter
11128

This process 18 now repeated using -1/7,, as $hown
in figures IN1-48.and 111-49.

S~

Ref, Di'rection:

et

“~Reference Line

o /
WL S1
Ty 7y

g

Figure II7-48. Use of Root [ocus plotter

The plotter ig again réoriented upon the reference
iine as shown in figure III-49 and now has ¢, + ¢, added
inte it as shown by the relative position of disc to card,




Ref, the‘ction: 1

Ret, Line? * 7

4
I

X
o =4
1
Y |

Figure IIT-49. Use of Root Locizs f!dt;t'er
The process is. repeated for the root at the origin as
shown in figures ITf-50 and NI-51.

i

~ Ref. Directions

Ref. Liiie””
=1 1
T2 T

Figure III-SO. Use of Root Locus Plotter

When the plotter ia returned to its initial position,
‘as shown in figure III-51, it is séen that the sum of
the angles thus measured is not equal to 180°. This
is iridicated by the fact that the pointer has not exactly

' ‘ reversed its direction,

Ref, Directionj .

Ref, Line”

Figure $II-51. Use of Root Locis Plotter

_ Chapter 1) G
Section 4»_-_,',,

since for this particular 8,,¢>180°, & second trial

point, sz, lying on the same horizontal line is selected
- ahd the entire process repeated for it. A possible

result is shown in figure 1I1-52,

For s,, ¢<180°. Sifice-the two points, s,and 8, lie
on thé same horizontal line, the locus nitist-pass- be-
tween thei, - e ym o
4 SRR !

. - ¢

i

wet, Direction~_ .=
‘Ref Lme/ V

'
Y l‘:—t 4

Figure I¥I-52. Use of Root Locus Plotter

When zeros occur in the transfer function it is neces-
sary to subtract their angles from those of the poles.
This is done by réversing the order of operations in
using the plotter, as is illustrated in the following
example, using ‘the. transfer filnction of (IT{-43).

1

. s+ L
Y(8) = Kk ——F1
7-_‘

(1II-43) i
s(s+ 2»)

The poles and zeros of (II1-43) . are plotted in figure

1m-53.
)
*— —
-

Figure III-53. Poles and Zeros of Equation (III-43)

-0

Select a point 51, and add into the plotter the angle
to the pole -1/7,, ¢,, as shown i figure II-54.

The plotter is returned to its original position as shown

The next critical point to be considered is -1/7; .
Since it is a zero, its angle must be ‘subtracted from
the sum of the angles of the poles. This is done as
follows: Without depressing the pointer, the cardis
oriented with the reference line lying along the vector
joining s, and -1/r; as shown in figure 11[-58.

The pointer is then depressed and the reference line’

swing through the clockwise angle ¢, to the reference
direction as shown in figure 157,

1E-29
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F.lgure III-54 Use of Plotter for Opensloop Transfer
Functicn. thh Zeros and. Poles
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,Figﬁre iII;56.i Use of plotter for Open-Laop' Transfer
Function with Zeros and Poles

! tefcrence Lin _1

' Refexence,ﬁpgrcc_t;éxg: J )
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Fxgure TII-55. Use of plotter for Opén-Loop Transfer
Functxon thh Zeros and Polés

'~s=

Sy

Reference Di'recti()n-‘

reference Liné ‘ %;{pl/\ C

N*l"“ '
ﬂ

Figure III-57. Use of plotter for Open-Loop Transfer
Function with Zeros and Poles

‘ﬁ‘he angle ¢, that was in the plotter prior to this last
step has been reduceq' by ¢4,

In this way, by rotafmg the plotter before or after
releasing the disc, it is possible to take care of both
zeros and poles.

A logarithmic spiral marked on the plotter can be
used to multiply the lengths of the vectors according
to equation (III-36) The equation of a logarithmic
spiral is of the form :

(II1-46) r= 2%/%
(see figure III-98) or

: 8
(I1I-47) log,or'= (10g;,8) X

In these relations, the quantities a and 8, are para--

meters which can be used to set the linear and angular
scales,

Consider, as an exafnple, the vectors ry andr,, sich
that the correspondiitg angles on the logarithmic spiral

1-30

are 6, and 6,. Then if r-rx, (see figure -II,I}'59),

L : . log,,8. - Lo
(II1-45) log, r= 10g;5n; -+ 1ogyy Ty = ol (& +6;)
. o T

Figure ITI-58. Logarithmic Spirael

D

Figure II1-59. Nultiplication

4
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H0f - X Ao
r ‘ Curve: no;:
{ , ‘ to seale
" 100]

'xt is convenient to take a = 10, andg, =772, When this.

is dog;g, tpg padius vector of the curve is increased
by a2 factor 19, 3: the angle & is increased by 90°.

Figure III~60 shows the general appearance of the
ﬁmt of the logarithmic spiral lying in the second,

6 18+ gnpgsu&;:d fr

<5y ARE the yp
Hon, & ﬁﬁﬂotﬁ%. hﬂ

;qugm uadrants. (It is to be noted here.
M’ ' 4 gw,ard vegt.tpal-_r,

Figure I1J-60. Wultiplication Factors

Figure III-60 shows that if the vector being measured
is in the second quadrant its numerical value lies
between 1 and 10 in the third, between 10 and 100; in
the fourth, between 100 and 1900, etc. Thus, if the
radius vector representing a product of the lengths
falls in the second quadrant, that is, if its end lies
on-the; portion of the -curve actually inscribed on the
plotter, the product is read off dxrectly

It is a property of this logarithmic spiral thatif a
radius yector, r,, leads another radius vectcr, Ty,
by 90 then r, =10r; ; for a lead angle of 180%, -106:*,,
,agd, in general if 1' ieads ra py n x 90°, rz= 108 ry.

vector by qsmg only the part of the spiral lying in
the second quadrant; if r, falls in the third quadrant,
read off the value of the radius vector in the second
quadrant which lags r, by 900 and multiply this value
by 10; it T, falls in the fourth quadrant, read the value

Log: Ref. Line

E;"gth:,e‘ ,111-61'. Detecimination of X for a Point ori the

Root Locus, of ¥(8)= (K)/Is(s +4)(s 4401

hapter i1}

Section 4

2 x 907 (this is simply ihe radius vector lying along
the extension of r,backwards, into the second quadrant)
and multiply its value by 100, and so on, r is always
evaluated in the second quadrant, and the result multi-

plied-by a power of ten whose exporient is the smallést
numi)er of clockwise right angles needed to bring the
actual radius vector into the second quadrant.

For example, assume that the gain is desired at the
point 8, on the locus of figure pii g 61, The plotter is
to be aligned initially p.s;;shown in figure MJ-61 with
the log reference line along the line joining s; and

Ay

The disc j5 depressed and: the card rotated*until the
log curve falls upon. the point -1/1y 28 shown in figure
- 62 ' - i ~

hgurg III-62 Determmahon of X t'or a Po1nt ‘on the
Root Locus of Y(s) = (Kk)/[scsf%)(s ¢-}-)]

Figure III-63. Determination of K for a poiﬁt on the
' Root Locus of Y(S)= (Ke)/[s(s £ ) (84 43)]
Since the head of the arrow lies in the second quadrant,

|8y + 1/7, | is measured directly on the logarithmic
spiral.

To multiply |s, + 1/7;] by |s, + 1/7,| the entire plotter
is then aligned, with the f'log reference line* lying
along the vector from &, to the root -1/7, ag shown

-in figure I1-63.

m-31
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Again-the disc is depressed: and the card is swung
until th gf curve talls ‘upon the root -»1/r2 as shown

o /

hgure III-64. Determination of K for a Point
on the Root Locus

For the roots chosen for this example, the arrow
on the disc'now lies in the third quadrant; so the pro-
duct rir; is read from the plotter as shown and the
answer-multiplied by 10.

If there are zeros in a Y (s) being investigated, it is
still possible tc determine the gain in one continuous
process; the zeros and poles ‘may be taken into account

- in any convenient order, It is only necessary io sub-

tract the angle on the spirule corresponding to a zeéro.
This may be done in the same way as the angles due
to zeros were subtracted in determining thé root locus
itself.

(e) APPLICATIONS

The root locus method yields a plot of the poles of
the closed-loop transfer function [Y(s)l/[1+¥(s)] as

K varies from 0 to «. Consequently, if the locus

moves into the right half plane, the possibility of in-
stability exists. In design problems, the locus is
usually plotted for a ‘proposed system and the gain
is adjusted 8o that & certain damping ratfo () or

Lk 7{7/—]»
5,5 1/
Y m/ -
/l Loy,
Ey -%2 \ ; 1 [ o
A \'k qﬁ-_c"'
L S '\
h s(s«%):(s;%) : ] \
'sz... B

H

Figure IIT-65. Root Locus of Simple Systéms

damping factor ({«n) is obtained. If desired stabxlitv
cannot be achieved.for any gain, equalization becomes
nect;ssary (i.e., adding poles and zeros to alter the
loci).

Whenevér a zero is added to Y(s)y, it has the effect of
drawing the locus toward it. Conversely, whenever a
zéro is rémoved, the locus moves away from the va-
cated point.. For example, the system of figuie III-34
can never become unstable becausé of the zero at
-1/r, . X the zero is removed, the Jocus appears as
in figure T1I-65. At high values of gain this system
becomes unstable because of the roots s {wya, {1~ 12
and sy = {en -« {1- £? in the right half plane, This
cannot happen as long as the zero is presgent in the

O —-

Figure II1-66. Effect of Zero .on Negative Real Axis

When a complex conjugate pair of zeros is added to
the system of figure III-85, the locus appears as in
figure III-67, while the zero or the positive real axis
draws the lecus to itself producing a system. that is.
unstable ior any value of gain (see ﬁgure 111-68)

!

Ja}

Figure IIT-67. Effect of a Pair of
Complex Conjugate Zeros

Poles repel the locus; this is shown by a resketch of
figure II-65 in which the pole at -1/7, is moved along
the real axis from the origin to -« (see figure IIT-69).

Figure I1I-70 illustrates a common occurrence in the
analysis of complex systems. As the zero is moved
along the real axis a situation is reached in which the
branches of the locus lave a pair of complex conjugate
roots in, common. It is not possible to determine this

point diréctly by the methods just discussed, but it

f: ﬁgure 111-66"

e




‘may pe obtained by extrapolating the parts ot the locus
in lh "immedtgtp vicimty. :

e gl

Figure III- Effect of Zero on Positive Real dxis

' However, if for some reason it is important to know

the value of the equal roots (common point in figure
II-70(c)), the method described in reference 5 (page

159) can be warked out on the root locus. plot However, .

this is very rarely of interest.

'Se,ctim II-3(e) discusses a graphical method of obtaining
the coefficients of an equation.of motion in the timne do-
‘main from a plot of the poles and zeros of the equation
in the s plane. Now, in the closed-loop transfer funct-
ion, z(s) = [¥(5)1/{1+Y(s)]=[KkN(5)]/[D(S) +KN(s)], the
zeros are the roots of XN(s) =0 and are known, and
‘the poles are the roots of D(s)+KN(s) = 0-which can be
obtained on the s-plane by the root locus method.
Consequently, the graphical procedure of section -3
(e), can be carried out right on the root locus plot to
obtain the coefficients of the closed-loop eguation of

motion in the time domain.

A final note of caution should be sounded here concern-
ingtheformoft(s)tobeused in the root locus méthod.

T

Pole - —- und Tocus
T

\‘
move in this direction

Struight Line ‘
. e ye

Figure III—69: Effect of Pole N[_,ocat:.ion on
Shape of Locus

It is important that in the: expression for Y(s)

o+ A)(r2 s 20 2)

(G IR

¥(8) = K«

all of the s that stand alone (the s of s 1/7;, the
5% +200n,8 +on,) be preceded by a + sign and that
‘Kbe a positive number Unless this is done con=

sistently, the analyst will frequently use the critexion
S¢= (2k + 1)7 when he should be using $¢ = 2kn , and
worthless results will be obtained.

3 0 7 /

- 1/

° h o = o™ <
B

S ) \

YAy
0,

: \
o N\

Figure I11-70. Effect of Zero Location on Shap= of f[;ocm
SECTION 5— SPECIAL CASES -~ GAIN MARGIN, PHASE MARGIN,- MAXIMUM
MAGNIFICATION RATIO

3
' While the previous portions of this chapter have covered
s the most important analytical tools used in servo-

mechanisms work, completeness requires the con-
sideration of certain other concepts that are often

111-33
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uge_fu_lj. These concepts are all concerned with ob-
taining approximate data regarding the closed loop
transfer function, and hence the transient response,

The approach used in thiz section shall be to define

pertinent quantities-initially and then to discuss what
information may be obtairied from a knowledge of these
quantities.

An open loop transter !unction polar plot is shown in

tngnre HI-11.
M Circle M<Mp S ' f
T : A e
Gain
Margin
= : - O e
e | Phase

| Margin

\4— Y(jo)

Figure III-71. NMp, and Gain and Phase Nargins

The first of the quantities to be considered is the maxi-
mum yalue of the closed loop transfer function, which
is defined by the M circle just tangent to the open loop

locus. This value of Mis called the péak magnification

ratio of the closed loop system, and is denoted by
¥, . The second quantity is the phase margin; it is
the angle between the negative real axis and the Y(j«)
vector for the frequency at which |Y¥{j«}| is unity. The
third quantity is the gain margin, and is the value of
J1- Y(¢ied] for the frequency at which Y(j«} has a phase
angle of <1800,
have been defined in the same way utilizing an open-
loop logarithmic plot. The polar-plot was used only
for convenience). It should be noted that each of the
quantities approximately defines the closeness of the
open-loop plot to the minus one point. Since the close-

J

‘ '\"20' log,, 2¢

0db}

lp-“-—-‘-‘-.-———

ol

it

(The same quantities could of course

ness of the open-loop transfer function to this polit is
a measure of relative stability of the modes existing
in this region, the My value, phase margin, and gain
margin have been used extensively as measures of
stability (hence the term "ihargin'). In systems of
certain specific types, criterii in terms of these
quantities have served as measurements of both stability
and transient response. However, their use in sucha
fashion for an any system in general without extensive
investigation is likely to yield misleading results.

In this subsection, a slightly different point -of view
wiil be taken.

G [[]
| -20 db/dec
o T Ay
0db lm:nnnnm.uu FHjie el
o} N ,Gam Margin
yGe) oo : ' NP
. phas Margm’ NG 40 db/dec

a0t < - EEE RN

Open Loop

£ -ﬂl_ﬁ’-L 90 = — — — = N
1+ Y(jw)

L o e e - =2

-180
Closed Loop

Figure I1I-72. Approximation by Second Order System

The phase margin, gain margin, and M, value serve
as bounds to the open-loop transfer function in the
region of frequencies giving the largest values of the
closed-loop transfer function; (i.e., where |Y (a){~1),
It is to be expected, therefore, that they can be cor-

related with the poles and zeros of the closed-loop

P —

ﬂﬂ;

ct
}
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F.: ‘we III-73“ Suc.lhl Trmtfer i‘unction
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teansfer-function oecurring nezr this region, If such
a’correlation can be determined, then the region where
|¥(3a) | is of the-order of 1 can be Approximated along
with those regions defined by (III-24) and (II-25) (1. e. ,
1Y ey | «iand| Y(jay|>1). Theclosed-loop transfer
function can then be reasonably weil:known for all
values

R

of « with'a mere glance at the-open loop function.

Figure III-75. Northrop Nodel Root Locus pPlotter

If the servo system is such that only one break from
a -20 db/dec slope to a -40 db/dec slope occurs in the
region where | Y (ju)| =1, the closed loop transfer
function in that region is normally approximated by a
quadratic factor (See figure INI-72).

In this case, the closed loop transfer function looks
like that of a second order system. Ina second-order
system, the maximum magnification ratio is given by:

(XII-49) My = 1

2T
and occurs at a frequency

- (II1-50) o= J1-27

where [ = damping ratio and «, « undamped natural

frequency. (III-27) is plotted (in db) in figure A-13,
and (II-28) is plotted in figure A-12. Examining the

transient responses of second order systems, figures
A-1 and A-2, it is noted that the overshoot tends to
become excessive for values of {<0.4, For good
transient response, therefore, the value of M for such
a system should be from 1.2 {0 1.6. (1.7 dbto 4 db).

Since many servos are reasonably close to that of figure
III-72 in the regions where |Y(j:)|s1, it is a widespread
practice to use the second order system peak ®;) as
a specification of transient response. The phase margin
can be discussed in a similar fashicn, with repre-
sentative values of 30 to 40° ‘being considered reason-
able. For'gain margin, values of 0.6 10.0.9 (-4.5 db
to. -1 db) are often quoted as being adequate.

Thére are many exceptions to the accurate use of

- M, , gain margin, or phase margin criteriz in predict-

ing transient response of systems. For example, a
¢losed loop transfer function of the type shown in
figure I1I-73 has the form (if minimum phase).
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7 The K, value in this case can be used only to estimate of the modes they partially define, If (II~24) and
i . _ - . . N i 2 = T——— o Vo N o . <
- the response time of the quadratic mede, whereas the 1-25) are alsoused, a fair idea of transient response
! actual response time will bé determined almost en- can then be obtained in many practical cases with ¢om-
i tirely by the value of 7, if M, i8 a reasonable value. paratively little effort. However, since the effort
TN e . required to make a much more gomplete analysis by
. (II1-51) Z(s) » — e (Tb8* 1) the open loop-closed loop, or even the root locus
é o (r.s +1),(,3’ i3 S+1) method, is but little more, it is recommended that
- e T these more exact methods be used for the first solutions
- of any new sysfem. From this first solution, M,, gain
" It i8 logical to conclude however, that My, gain margin, margin and phasé margin criteria can be. defined and
and phase margin criteria give reasonable answers used to minimize the effort required for the following
_about ,thé‘:trmal‘e“nt:,re'sppn‘s,,ev,1_‘ﬁn‘ the immediate region analyses. R o A
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CHAPTER IV
SYNTHESIS

SECTION 1 — INTRODUCTION

(a) GENERAL

As a general term, synthesis may be defined as the
process of combining elements into 2 unified whole.
A servo system may be considered as the ccmbination
of two basic portions — a controlled element and a
coniroller, The controlled element is characterized
by output quantities to be controlled and input quantities
to which control is applied. The controller has three
functions, namely, sensing, actuation, and equalization.
The first of these is performed by sensors, or elements
capable of detecting the output quantities to be con-
trolled. The second function requires actuators, or
elements. capable of applying control. The third
function, equalization, includes all of the means re-
quired to connect or modify the performance of any
of thé system elements and of the overall system to
achieve satisfactory system operation. In summary,
the basic functional portions of a servo system are:
1. The controiled elements
2. The controller elements

2. Sensing elements (8ensors)

b. Actuating elements (actuators)

c. Equalization
The most general servomechanism system synthesis
problem is then one of designing properly both con-
trolled and controller elements so that their union
results in a satisfactory total system. In many cases
the controlled element is more or less predetermined
by factors beyond the scope of the system designer.
In other situations, it is assumed to be known in order
to facilitate the design process. The controlled element
then is to be regarded as unalterable, and will often
be referred to as the "unalterable element." Sensing
and actuating elements are "'quasi-alterable' in prac-
tice, since they are capable of change only by select-
ion of a different item of the same general class. Equa-
lization elements are completely alterable within the
realm of physical realizability and practicality. With
this basis, system synthesis may be defined as the
process of determining the properties of a mechanism
required to control an unalterable physical element
in some desired fashion.

(b) SYSTEM DESIGN PROCEDURE

This subsection outlines general procedures and methods
used to synthesize a controller. It will indicate the

various interrelated tasks which must be accomplished
before a satisfactory controller is developed. This
outline of procedure is not to bé construed as the only
possible way to achieve the desired result. Rather it

is a method that has been found to be most efficient over
an extended period of time, and is in a contimual process
of development. The basic premise is that proper and
efficient. desigg must be firmly founded upon physical
understanding of system and commnent characteristics,
A direct corollary is that physical understanding is
greatly enhanced by extensive use of mathematical
models of the system componmts

The aim of servc system design is to integrate com-
ponents into a functional system. In achieving this end,

the:designer must

1. Establish system requiremeris. !
2. Synthesize a system meeting the requirements ,
i.e., select and integrate components into the func-
tional system. In this process, the designer must
. &, "Live with" the unaiterable elements.
b. Select or design the best quasi-alterable ele-
ments (sensors and actuators) available.
‘c. Design equalization to tie the unalterable and
quasi-alterable elements ifto a well integrated
functicnal system meeting the system requirements .

With this background, it is now possible to discuss the
various steps of controller design, remembering that
they are chronological in a general sense only; there
must be considerabie feedback and interrelation ex-
isting betwcen steps. .

1. SPECIFICATION OF:

a. Purpose of system.

. General system requirements.
Discussion: The requirements and purposes of a
system are partially derivable from operational con-
ditions imposed upon the equipment. Certain other
requirements are somewhat adjustable, and are usually
set forth as design objectives. Still others are evolved
during the design process.

2. DETERMINATION OF UNALTERABLE ELEMENT
(CONTROLLED ELEMENT) CHARACTERISTICS .
Discussion: The defining characteristics and opera-
tional features of the unalterable element should be
thoroughly understood and completely defined. The
physical quantities to be controlled must be identified,
and the means through which control can be imposed
must be established.

3., DETERMINATION OF BASIC FUNCTIONAL BLOCK
DIAGRAM.

Discussion: An intimate knowledge of the system re-
quirements and the unalterable element: clnracteristics,

Iv-1
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~mext in an allowable time span).

" coupled with a detailed understanding of possible means

of achieving the ends required, are the main bases for
selecting and evolving the proper functional didgram.
1t is at this point that experience and understanding of
physical systems pays off most heavily. In thisphase

* fa’type.of control is established. The ability to measure
rthe controlled variables, and to control the un.iterable
"' elements accordingly must be carefully considered,

Preliminary equalization is established by the manner

j in wh’ich connections between elements are made.

4. SELECTION OF ACTUATING AND SENSING ELE-

'MENTS

Discussion: In the functional block diagram phase the
type of control has been determined, at least asto the
general types of sensors to be used The unalterable

_ . elements and systém reguirements largely determine
__ " the characteristics required of the actuating elemeénts;
- this narrows the field of possible actuators down to 2

small group of units available, (or capable of develop-
Therefore, a very
few versions of sensors and actuators need be con-

. - sidered further. It is the selection of these choice few
"' that is desired in this phase. Final selection is made -
" “after a considerable portion of the next phase i8 com-

pleted for all likely combinations.

5 ‘DETAILED SYSTEM Q'I'UDY
a. Studies using “norimal" unalterable element
haracteristics.
b Studies using critical abnormal unglterable
lement ¢haracteristics.
siission: - These studies are performed by the use

f of one or all of the analysis techniques of chapters INI
and VIil as tools for use in experimenting with the

mathematical model. The modifying characteristics
oi the remaining equalization are found by judicious

‘use of trial and error experimentation with these

models. Hence, the study phase usually consists of

-many detailed computations using the root-locus,
~ open loop—closed loop logarithmic, - and analog com-
‘puter methods or other means which may be available.

In the latter portions of the study, as much information
about the physical system is used as is possible, in-
cluding all important non-linearities. All assumptions
are carefully listed in great detail for later verifi-

. cation by actual -tests.

6. SYSTEM DETAIL DESIGN

Discussion: This phase consists of taking the mathe-
matical models of the equalization, sensing, and actuat-
ing element and designing, developing, and construct-

‘ ing the physical manitestations of these models.

ibasic to items 1,

PRRNSNSNIET S IS POV AL SR R

7. TESTS

Discusaion: This phase usually starts with individual
-component tests (which sometimes commence in phase
4 or 5), and ends with tests on the complete system.

The major aim is to ascertain that the actual physical
equipment will perform in accordance with the system

. requirements and purposes.

8. PRODUCTION DESIGN, QUALIFICATION ANi)
FUNCTIONAL TESTS, ETC. :
Discussion: This phase is concerned with all of the
items necessary to make a workable prototype system
into a suitable production design. Organizationaily,
the people charged with this responsibility are usually
quite removed from the original system designers

However, the entire effort is directed toward pro-
duction, and thig phase ig ag important in the overall
system synthesis as any other.

2 above procedure for designing a controller also

Hovlever, this chapter is concerned only with aspects
, and’5. -

Restricting the discussion to basic items then limits

the subject of synthesis, as understood here, to that

of designing suitable equalization for a sysiem composed
of more or iess unalterable sensing, actuating and

controlled elements.

(c) EQUALIZER SYNTHESIS

The analysis problem of chapter III was particularized
from a very general one to the problem of finding the
closed-loop transfer function from a knowledge of the
open-loop transfer function. In this chapter, certain
desired properties:of the closed-loop system are known,
as well as the characieristics of all of the elements of
the open-loop, with the exception of the egualization.
The problem then becories one oi determining methods
of utxlizing elements with essentially fixed charac-
teristics in order to achieve a type of behavior that is
in no way inherent in the element itself, by inter-
connecting it with other elements. The third section
of this chapter will point out some ways in which this
can be accomplished.

However, an objective must be clearly stated before
this can be attempted. This objective is expressed

in terms of the desired characteristics of the completed

system. Therefore, the second section of the chapter
deals with the methods of specifying servo system
performance.

SECTION 2 — SPECIFICATION OF SERVO SYSTEM PERFORMANCE

The most compiete specification of a linear system
would be in the form of the desired system transfer
functions. However, such specification is usually

‘impractical, and would not evén beé useful in some

cases. Therefore, most systems are specified in
terms of quantities ‘putting bounds upon some of the
parameters occurring in the possible transfer functions,
i.e., quantities which partially define the desired
transfer function "Such specifications allow the system

Iv-2 L

designer leeway in handling the less important features
of the system transfer function and emphasize the im-
portant features. This section will discuss in detail
the various quantities normally used in specifying
linear system performance. All of these quantities
will be correlated with the properties of the trans-
fer function which they describe.

Quantities of direct interest in specifying servo per-

‘-




rmance are: ) ]

B Degree of st,abtlity. ' ‘

2, Response tiine to representattve inputs.
3. Aceuracy of control,

" A servo system is-almost always required to be stable.

This immediately specifies that the closed-loop trans-

_{fer function poles be in. the left half of the s~-plane
- .only. Inaddition, a reasonable degree of stability is
- usually required, making it necesssry that the dominant
- closed-loop second order poles have reasonable damp—

ing ratiod. Since application of the open loop - elosed
loop logarithmic method and the root locus methods

~both lead to closed loop pole-and zero values explicitly,
- the stability and degree of stability is always known

;oughout any anglysis probletp. By the use of theee

ed loop mode can be easily selected directly if
rable, ‘Therefore; the degree of stibility reguire-

Ty ‘mient could be set up in terms of the domiriant closed

loop tode- dampmg ratio-if such a-dominant niode ex-

© - {8ts alofe. “If more-than one dominarit oliciilatory mode
o _exists in the system, a minimum' damping ratio require-

ent is often satisfactory.

| “The response time requirement basically fixes the
-~damping times of the dominant. modes, and hence,

either the time constants' of dominant closed-loop
'modes or the damping ratio-undamped natural fre-

-quency products, or both. This information is also

*directly aviilable from theuse of the analyticnl methods

: prevlously dlscussed

'rhe steady State error of a closed-loop system is a

~ matter of great interest in many applications, and has

oftén been used as a defining-characteristic -of servo
systems Consider, for example, the serva: system
Q) Jl‘e IV- P y

| KNGS <.

Figure IV-1. Illustrahve Servu-echamgn

The error-input txansfer iunction is given by.
E(s) . 1 1 - __ 8"D(s)

M-8 gy~ 13w KN(5)  S90(8)+ KN(8)
LS

The . steady-state error is given by use of the final
yalue theorem of the Laplace transformation as

'-* lD ’. - .
e s"D(l) onm) ;

The limit a8 50 d D(s)and Nisy is dcmm, o@ul
to 1, since N(s) and b(s) endln 1, -

(zv-z) Lin e(t) = m. s[l‘@_]

1+Y(8) R(.)

BN S S

If R(s)isa unlt;‘step dispheemnt, 1“..",, ll(l) «1/8,

- and n »1, the steady siste error is sero. HNepce, 8

servo system having an qn-he’ trm m
of the tom d aV-C) .

o ha N,”

:,‘ s o, B e

(IV-4)

is called a zero position error gystem.* If R(as) re-

presents an input velocity step, i,e, R(8) = 1/83, and

n32 , the steady stite error will be zero 16r this -

type of input alsc. Therefore, systems with: open-
loop transfer funi ions .of the form.of - (IV-S)

avsy M KNE o

are called zero velocity error systems Slmﬂarly,
1f n.»3, the system is a zero a¢celeration error sys-
tem, and 80 iorth ad infinitum, -

S e

error to a unit step dilplacement 1nput of.

(v-6)

Lim g(t) = Lin BE(8)~Lim . sD(s) . 1. Ll
%40 D(e)sKN(®) 5 TTFE

)
3

If nad, the gystem of Aigure IV-1 Has a-steady-state

This systém error can be expressed as:

(v-1) Lm et) = dg - C,

(Since R(t)in this case is a step function Lim, R(t)is
simply the magnitude of the step iunctlon) C, is called
the position error coefficient. Similarly, i a unit step
'velocity is applied to a'zero-position error system, ‘the

steady state position error is:
(Iv-8) ,l,ai!g £(t), 1 dR(%) « ¢ RO
K dt v dt

whére LindR(t)dtis simply the constant velocity of the
inpat; fnd” Cy is called the velocity error coefficlenf

P

The concept of an errer coefficient may be generalized,
to provide a very useful ‘way of considering the natiire
of the response of a system to almosl; any arbitrary
input.

Consider the error-input trans!er Iunction for a general
servo system, as M(s). ,

€1v-9) ﬁ%’ = M(8)

Assume that M(s) can be expanded in a power series
in s which is valid for some values of s. Then

(IV-10) E (8) = M(8)R(8) = A,R(8) + A,SR(8) + A;82R(8)++ "+

The region of convergence -of this power series is
near s=0. Since 5-0 is equivalent in the time domain
to t-« , an expression for E(t) as t - « may be
obtained from (IV-10). It can beé shown, by utmzing

[ ‘the properties of asymptotic behavior of functions,
- that (IvV-10) may be inverse transformed term by term,

(1v-3) L S0 = gm. SR

¢ It should be noted that the term ‘zero position er-
ror’ as given here implies that the output has 2ero

steady-state error only if the ‘position’ input is a

oonstant in the steady-state.. If the input is of a
different nature, the so-called zero position error
sysies will /tctuliy have a steady-state ‘position*
error. . .

T e
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(Iv-11) z(t)] dIRC)

dt?

dr(t)
at-

" A R(t) + A1

’t"ﬂ

TR S

'here Ao L CO' Al .0v. Az - c% 2 md CO,‘ CV md C.,
v are the general position, velocity, and acceleration
. error coeﬂlcienta, respectively.

T’ Illlustrate the general error coeﬂicient concept

'.,,K('rxs"*'l) I
| s+ Dms+D [ j -

Figure IV-2, Simple Servomechanism

The error-input transfer function is given by:

(-12) ges) . | .
o, xn 51

o (res+ L) (rps+ 1)
TS + 1) 'n-,‘,sr+1) +K(7y{8¥1)

1+ (1, + 7 )8+ Te7y83]
T[S 3

Slnce the bracketed term in the denominator is of the
-form {1 +Z(s)], and since, by the binomial theorem:

(IV“13) m(—s')- =1~ Z('S)"F zz(s) LEAAR A

the expressien for the errér may be developed into a
power series:

(IV-14) ~
E(s) = %ﬁ%{[h CALIDT L X s“][ - (Ml s AR s’)]

1+ K 1+X
o)

Multiplying and collecting terms; E(s) becomes
(1v-15)

B X K
.E(s) - -5-—11”‘{{“1 K[j.*’b "HIS*——I,K{";"%

—I—K- (1" K,)(T ""fh )7‘1 fK'fi r(r*fb)ﬂ} 32;...}}

or
(IV-16)  E (8) = CoR(S) + CysR(S) + 921 SIR(8)++ e

where Cg=

g’ O Trpr L], ad

Co» -(—1%%5{*. ’B‘I%'Tx [(1- K) (7at ) _1:;41'& n3-( -rg fs) ’]};

I s
.'é i

oS-
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Section IV-1 has deﬁned equzllutian as the process -
of modifying performance of elements by external
means. Section (V-3 has discussed some of the re-
quirements which would be lmpoud by Mﬂcm

" 7 5 <
V-4 - b

C oy e e

Applyligthe inversion utilized to obtain equation {IV-11),

the steady-state error expression bec":om‘es*‘

(Iv-17) e(t)] - ccu(t):,c_(_L 2| ;:2*7 i

‘If R(t) is given by, say,

(1V-18) R(t) = vt

' ;"the steady-staté error is approximated by-
(1v-19) e(t)]

——— vt+ -(-i:-—_i ['r. +'rb-1'1']="l

The error in the above case becomes inﬁnite as time

-approaches infinity.

1t is of interest to note that all of thg error ceefficients

are decreased with an increase in gain. An increase

in the open-loop transfer function denominator time
constants causges an increase in the velocity error

-¢coefficient, while an increase of nimerator time con-

stants causes a decrease of the same error coefficient.

In some instances a requirement that the servo be a
zero position, velocity, or acceleration error device
is imposed. In these cases, the form of the open-loop
transfer function near s =0 is, of course, fixed. Accu-
racy requirements are often more general than this,

‘however, in which cases it is usuail prat=tice to specify

the first few error coefficients. The specification of
error coefficients immediately puts several bounds
upon the closed-loop transfer function in addition to
those established by the stability and response time
requirement.

Another specification occasionally imposed upon a
system is concerned with its response to disturbances
and "unwanted inputs." If the unwanted input is random,
there are methods of determining the root-mean-square
error due to the disturbance. These méthods are con-
sidered in detail in Chapter V. For the present, it is
sufficient to note that the specification of an allowable
rms error due to unwanted inputs also places bounds
upon the closed-loop transfer function.

In view of the above discussion, it is clear that specifi-
cations in terms of actual operating conditions may be

* set upforia given system, and that these requirements

define certain properties of the complete system trans-
fer function. If the system unalterable elements are
then identified, it becomes possible to consider the
methods of connecting some. other elements such that

: _ the characteristics of the combined system meet the

specified systexmti objectives. The next section discusses
the basic forms of modification which are used in

actﬁhl system lyntm

g

v

sz:c-non é— lqumz.mon <,

on the portotmnco of a servomechanism. This sec-
tion will' discuss the methods of equalization avail-
able for modifying the performance of eloments or
.’dm." "
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Tt fnust be recognized that there are an infinite number

of ways in which an element or system can be modified.
No attempt will be made here to categorize all possible
methods of modification. Instead, the discussion will
emphasize some of the basic underlying operations
that are physically possible, and the fundamental
physical forms which can be obtained by use of these
operations, Synthesis then consists of properly combin-
ing these forms so that the combination meets certain
speciﬁc requirements, ' This is usually a cut and try
process i which characteristics are assumed for
certdin a.. sfable elements, the combination analyzed,
changes made, another analysis performed, etc.,

until satisfactory performance (and hence modification)
has been achieved. The trial and error process in-
volved is essentially a series of experiments performed
on paper, using mathematical models. An exception
:to this experimental process is discussed in Chapter V,

‘where "optinium" Synthesis procedures are de_vélopéd‘
which lead directly to a system meeting a spécific

" criterion.

‘The most basie operaticnal functions that are available
for making modifications may be reduced to:

%. Addition (or subtraction)

2. Multiplication (or division)
‘These operations are:denoted graphicauy in figure IV-3.

4 A
Subtraction Additicn Multiplication

Figure IV-3. Basic Operations

FrourtiessUp Wﬁ‘i‘f‘%"s‘”’“ﬁﬁ*‘éﬂﬁasic structure forms
may be derived as shown in figure IV-4,

Figure IV-4. Basic Structurss

Note that any of the blocks Y,, Yz or ¥; may be re-
placed by a line (or wire), which reduces the block to
thetrivial case of multiplying by one.

As mentioned above, the bisic structure forms sho“m
in figure IV-2 miay be used in an indefinitely great
riumber of ways to modify-a- system oF élement, There

Chapter I‘{‘
Section 3

are, however, several ‘simple combinations of tiie
basic structures which may be considered as finda-
mental, in that they may be obtained by combining the
basic forms using each only once. If multiplication
and subtraction are used only once, the single loop
teedback combination of figure IV-5 is formed. (Using
the addition structure instead of the subtraction leads
to essentially the safiie results.) If multiplication,
addition, and subtraction are used only once in a

.ltructure, the open. loop -closed loop Structures of

R' . — c
il Y5 B o Yo
”YBJ -
o, YWY :
R 1 +Y0Y

Figure 1IV-5. angle Loop Feedback
Combination

Ali of the structures, both basic and simple com-
binations, can be utilized to modify the characteristics
of an element or system. These modifications may
be logically looked at as transformations, Some simple
modifications to an element derivable from the basic
structure and first simple combination are given below.

_ Y is the basic element, with Y; and Y, being moditying

(or equalizing) elements.
‘1, "From Basic Structurai Forms:

g, Y-1YzY,

-B. Y- YYI , ; w

2. From Singlé Feedback Loop Structure:

a.y-:-X -l

b. Y- L.

iy 2 S




The open loop ~ closed loop structurea lead to-thany
more transform pairs.

In synthesis work, an element Y is to be modified to

SERUICDE S

achieve some particular specified form. Experience

and knowledge of basic forms usually lead to the propéer
connections, with trial and error mathematical model
experiments leading to thé clL.rusteristics of the
modifying elements. : ‘

~— A Yy > P - Y.D i -
% : 1 Y 1
R — ' R | " c
2 > > Yy 2 {h‘—> Yo |jim pdped Vi | Yg | o
g - . V
Cou Yo(¥u+Yp) L - IR C . Ye(X\ Yo+ Yp) | ] -
RTIRYY, R [ T 2 S T
' o o (a) )
1 | |
- Yy . o T —-—
- Y
‘ R .k S, Y o - R + o
v o v e e T
1 V[ V
7 c . Ypt¥Ye ¥ . c Yp - -
i — g — + ¥
", R TIEE, P S TF A Al
L c
,;':;.‘,‘ ( ) (d)
N N
5, |
MY R c
" —— Y, Yo Fo—1"
i Y
| PR ——
- R 1+ YCYB > YD | YB -
ot -
(e)
; Figure IV-6. Open Loop — Closed Loop Structures

IvV-6.
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CHAPTER V
" - OPTIMUM SYNTHESIS METHODS

[

Provision is made, at this point, for the addition
of a supplementary chapter on "Optimum Synthesis
Methods, " .

While the contents of this volume are essentially com-
plete without the addition of this Chapter V, it is felt

‘that the material it is to contain is of great enough

importance to warrant its inclusion in the:interest of
making this volume as valuable as possible to-the
control systems designer. -

It is planned to issue this addltional chapter in the:

immediate future.

[ Fegie by
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) CHAPTER VI -~ ‘: .
7t NON-LINEARITIES. <~ B

SECTION 1- INTRODUCTION

In most of the preceding work, the assumption has

_been: made that physical systems can be described by

linear differential equations of the type:
d';: dlm1 dn -2 dx
(VI-I) TN tagR-1 az—t;:y' **t4Bpe 1ot AnX Q(t)

where the a; are constants This assumption has per-
mitted the deavelopment of analytical and graphical
methods described in chapters Il and IV for the analy-
sis and synthesis of dynamical systems. The validlty
of this basic assumption was discussed briefly in
chapter .

It is recognized in this chapter that (VI-1) only ap-
proximates true physical systems. The coefficients
are not ideally constant, but vary as some functions
of the dependent variable x. That is, (VI-1) will take
the form

n n-l

“"at»*“’" S (2= QD)

(VI-2)
where the f;(x) may be any functions of x and its de-
Fivatives.

When the coefficients of differential equations are
some continuous functions of the dependent variable
x the equations are non-linear differential equations,
and the systems described by such equations are said
to possess continuous non-linearities. When the co-
efﬁcients of differential equations are some functions
of the variable x, but have finite discontinuities, the

tions are non-linear, and the systems are said to
have non-linearities of the discontinuous type. The

£(x)| continuous £(x)| discontinuous

—x

—

Figure VI-1. Non-Linearities, :

two types of nmu-nnearitles are shown in Figure (VI~1)

Unfortunately, no general method of analysis or syn-
thesis, such as discussed in chapters I and IV, has
been developed for real physical systems having non-
linearities. A few writers have develéped direct
methods of treating some non«linearities, ‘but these
methods are generally limited to specific cases and
cannot be easily extended to solve the more general
problems, However, since an assumed linear system
lends itself so readily to analysis and synthesis, an
indirect method for the consideration of non-linearities
is available. This indirect method consists of finding
an answer to the question: “An analysis or synthesis
having been made of a2 systéem based upon linear con-
stant coefficient equations, what would be the effect
of certain non-linearitles on the results?“ 1ithis
question can be answered satisfactorily, the indirect
method provides essentially the same information as
would a direct solution of the non-linear equation .

The best method for determining the effects of non-

‘Unearities on a particular system depends upon the

nature of the non-linearities. For this reasoen, the
non-linearities are, as mentioned before, divided into
two basic types: continuous and discontinuous. Also
since there is a great difference between the effect
of large and small discontinuous non-linearifies on
a system, the discontinuous types are to be further
subdivided into major and minor ciasses.

Continuous non-linearities are usually eliminated
from the differential equations of motion by assumirig
restricted ranges for the variables. By so doing,
convenient linear relationships are obtained between
such quantities as forces, torques, and moments. It
is then desirable to determine if the non-linear terms
in the original equations could lead to instability of
the system. The first section of this chapter discusses
a method, utilizing a theorem due to Liapounoff, by
which it is possible to check such continuous non-linear.
equations for stability.

Discontinuous type non-linearities are unavoidable
in real physical systems. They are primarily due to
the existence of friction forces, limiting, and free play
or hysteresis effects. In addition to these unavoidable
discontinuities, some types are added to a physical
system to create special effects (spring preloading);
or exist by the very nature of the system (relay con-
trollers). These discontinuities are illustrated at the
beginning of the seconid section of this chapter.

VI-1
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o 'rhe discontinuous type of rion=lin¢arity, as such,
- precludes the application of Liapounofi's theorem,
since a basic requirement of the theorem is that she

“functions f;(x) in (VI-2) possess continuous derivatives .
As mentidned previously, the effects of discontinuous

“elements depend greatly upon their relative magnitudes ,

For sufficiently small discontinuities, the physical

© system apéproaches the assumed linear system with
inuous non-linearities having only a smail

the diseon
effect o the system output. This small effect cannot

e ignored, however, for its presence may be sui‘fxcient‘

to cause sustained oscillations.

If a sinusoidal iunction is used as the input to an
elément representing a small discontinuous non-line-

‘arity, the output is almost sinusoidal This similarity

toa sinusoxd suggests it can be adequately represented

by the fundamental of a Fouriér expansion. If the dis-
‘:;continuous non-~-linearity 18 included in 2

‘closad loop
armonics

and if the transmission of higher or

. about the loop is smali relative to the transmission
of the fundamental the harmonics may be ignorad,

and the non-linearity represented by an equivalent

- transfer. function with an amplituoe-phase character-

istic. Ineffect, then, the discontinuous system is
_approximated‘ by a linear system as was done with the
i 'lineariti’es "With such an aid, a Bode
h ,ed linear system may be

In designing a system based upon the linear dpproxi-

mation of the system diixerential equations, it is

- recogmzed that the taations of the trué systém following

‘somie small disturbance will not be exactly as predicted,
The validity cof this linw approximation is.of particular
interest when used to predict the stability of the system .
If the solution of the continuous non-linear eguations
indicates a condition of instability not revealed by the
"litearized" form, linear approximations and the
aiethods described in, chapters Il and IV can-not be
realistically applied. ‘

"The possibility of obtaining incorrect answers to the

question of stability from the equations of the linear

"approxinjation was investigated by M. A, Liapounoff .*

The results of his investigation may be summarized
in the following theorem: "If the real parts of the roots
of the characteristic equation corresponding to the
differential equations of the first approximation are
different from zero, the equations of the first approxi-
mation always give a correct answer to the question

- of stability of a non-linear system, '™* The theorem

assumes only that the non-linear terms of the differ-
ential equation may be éxpanded in a Taylor's series
about the equilibrium point in question.

o According to this theorem, if all the roots: of the linear

approximation of the differential equation are negative,

*  Liapolinoff, M.A.; ‘p'robléme général de la stabnité
du -mouvement; Annals of Mathematical Studies, Vol. 1T;
Princeton Press.

**  Minorsky, N., Introduction to Non-Linear lechanics,

CJWW. Edwards, 1947, Ann Arbor.

VI-2
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revised and the eff ect of the discmtimiity determined

The methods used for determining the ejuivalent

transfer functiuns of the miuor discontinuities are
_ discussed in the second section of this chapter. The
possibility of steady-state oscillations due to these

non-linearities in systems is also considered

The third section of this chapter considers the
major discontinuous non-linearities. These large
discontinuities possess neither continuous derivatives
nor negligible harmonics iii the sfnusoidal reésponses;
hence, the methods discussed to this point cannot be
used. Although the analog computer (chapter VIiI) may
be used for the consideration of such non-linearities.
(as well as the other types), an analytical or graphical-
approach is desirable for a better understanding of the
system a.nd a check of computer results .

'I:ne indirect method discussed m this section in-
voives graphical analysis of simple second order sys-
tems which contain ocne of moére major non-linearities

It is recognizeéd that most physical systems are more
complex, but, if the general effects of major non-
lnezrities ¢an be found for simple systems, an insight
is gained as to possible éffects of these major dis»
continuities on a tmmplex syste e

o 'srfcr'ros' gl CONTINUOUS NON-LINEARITIES

the non-linear system is stable about the point in
question, and any small temporary disturbance in
the ipput will result in a temporary disturbance’ in
the output. If, however, any of the roots of the linear
approximation of the differential equation are positive,
the non-linear System is unstable about the - equilibrium
point and any small temporary distirbance at the input
'will resuit in an output which will diverge from this
unstable point

If any of the roots. of the linear approximation of the
differential equation about the equilibritimi point are
zero, the theorem may not be used, and higher order
terms of the Taylor series must be considered Zero
roots may result in a "conditionally stable" situation
which would depend upon the direction of the dis-
turbance. In servo wark, conditionally stable situations
are usually as undesirable as absolutely unstable situ-
ations and hence, the fact that the theorem does not
apply is of little consequence.

It may be pointed out that although the linear approxi-
mations of the differential equations indicate stable
systems for all amplitudes of disturbances, the theorem
applies only for small dxsturbances.

Figure VI-2 illustrates simple stable and unstable
equihbrium positions. If a ball is Tocated at (a),
small disturbance in either direction will result in
the return of the ball to (a); and the system represented,
is stable about the equilibrium point (a). If, however,
the ball is located at either (b) or (c) and disturbed,
it will leave these equilibrium points, and the system
represented is unstable about these points..




Figure VI-2, Stable and Unstable Equilibrium

"To illustrate the: application ot ‘the: theoren;, two' slmilar
"second order nen-linear difterential equations will be

".%consuiered & .

L ;

»(*I‘-l?)‘l‘ L dtﬁ* wll= xi)—+ Kx=-Q .
d 2,4

'(vzuc) mgi- M )——¢ Kx= Q

' When the acceleration and velocity are zero in these

equations, the value of x defines the point of equi-
librium, x, . That is, Kx~Q or x= @/K=x,.

dachmgeofvanabhismine, suchux- X, + 5, where
§ is the deviation about the equilibrlum point x,; (VI-3)
becomes

2

' de , 5 '
(VI-s) maezt el1-(x3+ 2x 5 + 83)]5!— +Kx +K8 =Q

In accordance with the theorem, the first (linear)
approxlmation ot the term n[l- (x2 +2x,8+ §%)]dby4¢ is

substituted i‘ntg equ_atlon (VI-5) 20 that

3 . ’za d M )
(vx.ﬁ) , dtgf u(l x,) 0% +xs 0 ;:';:;: B

. Equation (VI-6) indicates that the aystem is stable

about all equilibrium points less than unity. As x,
approaches unity, the coefficient of df/dt.becomes
very small and the system oecomes poorly damped;
but still stable for .ssufﬁciently small values of § about -
x, Forx,=1, the coefficient of 4 Hecomes Zero and -
one of the roots of the characteristic equation corre-
sponding to (VI-6) will be zero. The theorem is not
applicable in this case, For x, greater than: unity the.
system described by (VI-6) is unstable. X

I equation (VI-4) is analyzed in the same manner, the
-equation corxeeponding to (VI-6) is iy

-(VI 7) © o mb e p(lex ’)sucsw -

For tlus case, the coefﬁcient of 5 is negatwe Ior

.....

‘llhrium posltion in this range. For x> I, "the coef-

ficient of the 5 term is positive, and the* system de-
scribed by (VI-4) is stable for small 5 about x, .

In general, it may be concluded that the analysxs and
synthesis of dynamic systems based upon the linear
approximations of the continuous non-linear differential
equations may be made with assurance that the question
of stability will be answered correctly. It must be kept
in mind, however, that the answers may be:yalid only
for small disturbances about some eqmlibrium point .

If the response of some dynamical system to a dis-
turbance skould be poorly damped, the system should
be carefully analyzed for the presence of some non~ -
linear term in the damping coefficient may cause the
true non-linear system to be unstable for very smail
magnitudes of disturbance. Or, stated in another way),
the designer of a system described-by linearized
equations should satisfy himself that.the damping
coefficient is relatively independent. of the non—linarlty

SECTION 3- DI&ONTINUOUS NON-LINEARITIES

(a) GENERAL

Section VI-1 has dealt with the continuous type of non-
linearity. Under certain restrictions, it was found
that continuous non-linearities could be linearized,
so that the methods of analysis and synthesis outlined
in previous chapters could be used. Unforiunately,
another type of non-linearity also occurs in most real
physical systems, This type is the dlscontmuous non-
linearity.

‘The form in which discontinuities occur is varied.
Figures VI-3 through VI-T illustrate the static transfer
sharacteristics of several of the more common types.

Coulomb friction exists in all physical systems in which
there is relative motion between two contacting sur-
faces. The friction force is-of constant magnitude and
is-always in Such a direction as to resist the relative
motion.  The discontinuity in systems with coulomb

' i ‘I-“ .

friction occurs at the instant of a reversal in relative
motion. Coulomb friction may be ignored only if the

friction force is much smaller than the other forces.

acting.

+8

-8

Figure VI-3. Coulbmb Fr ictioh

In certain cases, it is desirable to spring load a device
so that, when external forces are removed, the spring
will cause the device to seek a null or zero position.
The presence of coulomb frictiun, however, may cause

VI-3
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l the device to stop short of the desii'ed zero position.

To overcome {his, the spring may be preloaded by an
amount equal to the ¢conlomb friction force. Preloading
introduces.a discontinuity, but is desirable for the above
reason.

. Figure VI-4. Spring Preload

In many physical systems, an input to the system must
exceed a certain minimum value before any output is
realized. One effect of this type is known as threshold
or-flatspot and the value which must be exceeded is re-
ferred to as the threshold value. Threshold is generally
undesirable and can be ignored only if the threshold
value is. much smaller than the ingut value.

-

-8

Slope =K

+8 X =t

Figure VI-5, Threshold

Linear systems can transmit signais of infinite magni-
tude. However, all components forming a real system
have limitations on such quantities as position, speed,
or voltage. In some cases, the limitations may never
be reached, with the result that they need not be con-
sidered. In other cases, the limitations may be ex-
ceeded and cannot be ignored. Limiting may or may
not be desirable.
R T“’ +2

slope = K

X ——p

+-a

. Figure VI-6. Limiting

In many physical devices, a plot of the input versus
the output results in a closed curve called a hysteresis
loop. The cause of such a loop in mechanical systems
i8 referred to as the backlash or free play which exists
between two mechanically coupled components. Hys-
teresis is generally undesirable and should be elimi-
nated wherever possible. .

For the cases in which the discontinuities may not be _

neglected without serious effect upon the results, it

VI-4

Figure VI-7. Hysteresis

is desirable to have a method or methods available to
determine such effects. This section of the chapter
will discuss two such methods. The first method is
applicable only to small discontinuities:; while the se-
cond may be used for any discontinuity, providing it
occurs in a second or lower order system.

(b) SMALL DISCONTINUITIES

For ease in the analysis and synthesis of closed loop
systems, one of the methods of previous chapters made
use of Bode diagrams in which the amplitude ratios and
phase angles of transfer functions were plotted versus
frequency. While these diagrams have not been empha-
sized as frequency responses, they can be considered
as such, since the curves are exactly those which would
be obtained if the systems were stable and were excited
with sinusoids of varying frequency.

" In this subsection, the non-linear elements will be

replaced by ""equivalent’ linear elements. An "equiva-
Ientr transfer funciion will be derived by applying a
sinusoidal input to the non-linear element and by de-
termining the Fourier series of the output waveform.
The “'equivalent' amplitude ratic will be defined as the
ratic of the fundamental output amplitude to the input
amplitude. The phase angle will be defined as the
difference between the phase of the fundamental and
that of the input. The concept of such an "'equivalent'
transfer function is sound if:
1. The system is oscillating at constant amplitude
at the frequency considered. (This implies that the
system is either unstable, or that a sinusoidal input
is being applied.)
2. The amplitude of harmonics appearing at the input
of the non-linear element is negligible, This means
that the transmission of these harmonics through the
system (around the loop) is negligible compared to
the transmission of the fundamental.

A'"small discontinuity" may now be defined as one

satisfying the above conditions. Since the non-line-
arities considered here are not frequency sensitive,
the ratio between the amplitude of the fundamental of
the output wave and that of the input represenis a shift
in the amplitude ratio of the Bode plot. A similar shift
may occur in the phase curve.

The remaining portions of this subsection discuss
the equivalent transfer functions of various non-line-
arities, and their effect upon Bode plots, Ratios of
harmonic to inpui anplitude are derived to aid in deter-

mining the validity of condition 2 above for z specific

problem.
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To obtain the frequency responses of discontinuous
eloments of the type discussed in this section, it is

only necessary to analyze them at a single frequency,
{or they are not frequency Sensitive, In general, the

outputs may be represented by Fourier expansions of
the responses written as functions of the amplitudes
of the discontinuities and the amplitudes cf the sine-

: Bection 3

waves being transmitted through the elements. Figures
V1-8 through VI-12 {llustrite the nature of the responses
of discontinuous elements to sinusoidal inputs, If the
amplitudes.of the harmonics may be ignorad when com-
‘pared to'the amplitudes of thé tundamentils, the am-
plitudes and phases of thé: firdimontals plotted against

frequency would be the frequéiicy responses or transfer

Tnput: V(t) = Asinat ‘
Output: P(t) ifﬁ[stn at 0,'-;-”51!1 3ut +

Figure VI-8, Transfer Characterintic of Coulomb Friction

~(KA+ ).

Input: x(t) = Asinat
“Output: P(t) = bysin b RN T {
-
+2 basinnat
B=3, 5, ... '

F ' A’,pe =K
. wfl
"-‘ Y )
= A *_A L
o ~ L)
o
; ‘.1; e " Figure V1.9, Tranafer Chaiacteristic of Spr ing. Preload.
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PR ~K(A- w) ‘
:'«‘- s 2 wh
e ’ o . . y ] ,"
g e Input: x(t)=Asinat Output: R(E) = hminct +§’h& sinnwt
e . . =3, 3, g

DL L S

Fijure VI-10. Tradsfer Characteristic of Threshold
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A= --[eol ’P+ l'(14' cos 41")]
b, ---[1 sin 4 +ain zr]

P= sin’ Wi

@
Input: x(t)* Asinwt Output: R(t) ™ b,sinwt + 53 g,, sinnwt

¥here b, = [Ax(znn- & Jl () )“‘J‘ (Ki)]

e 4 ; o s e e e
© b i) o s b Gumy i dais)
B = lin“ E‘-K

-

Figure VI-11, Transfer Characteristic q[m';l'.{_;"qii-t.ingﬂ

.
Inputix(t) = A sinwt Output:R(t) = x; sin(wt+¢t)+%3 ;g,_qin(mt«u!)

: Al 33 gin {37 ain-Tu) '_.l‘ -
Where: z!tﬁjl u T sins u): 3 2 sin n)n ‘; )
s

@, = tan™? u-1

M sinin 4""u'=ll e

¢, = ton

1

a = _[5 oL eos 415-— cos. Q’]" '

10w 2

by = ..___[.l sin ep+ ] lin QPJ
uxl- 2-—

Figia’re VI-12. Transfer Characteristic of Hysteresis

functions-of the discontinuities.

In Figures VI-13 through VI-16 the amplitude ratios
and phase shifts of the fundamentals and harmonics

- are plotted against the ratio of discontinuity amplitudes

to element input amplitudes ( a/A) to show how the rel-
ative amplitude ratios vary.* .

' From these figures, itis apparent that for very small

discontinuities, the harmonic amplitudes are negligible
compared to the fundamentals, However, as the dis-
continuities becorae larger, these figures show an in-
crease in harmonic amplitudes relative to the funda-
mentals. In these latter cases the system equations
must be examined to determine if condition 2 above
will hold.. This can be done with the aid of the Bode
diagram. if the harmonics are not negligible, the dis-
continuities are considered as large and will not be diz-

* The ‘amplitude ratio’ of a hammonic to a fundamen~
tal is an arbitrary term, and completely ignores the

difference in frequency existing between the hlm-‘ .

nic and the fundamental

" Y-8

cussed in this part of Section 3. It is interesting to
note that the discontinuity amplitude is not necessarily

" small relative to the input amplitude for the discon-

tinuity to be considered small, e.g., the backlash case.

To apply the amplitude ratios and phases of Figures
VI-13 through VI-16 to a particular problem, itis
necessary to have an open loop Bode diagram for the
system. The primary frequency of interest is in the

" ‘region of the crossover point (the point at which the

amplitude ratio curve passes through zero db), be-
cause it is within this region that the stability of a2
closed-loop system is determined. The procedure to
determine effects of discontinuities is as follows:
" 1. Draw the Bode diagram for the linear system
and establish an optimum gain.
2. Assume that the system is oscillating at a fre-
quency corresponding to the crossover point (point
at which amplitude ratio curve intersects zero db
line) and at constant amplitude.
3. Assume that the harmonics of the Fourier series
representing the output wave of the norn-linear ele-
inent are negligible,
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o L 1. .. force to a sinusoidal velocity. When the harmonics
| 3 o A—T"] (,.m.ndg,i@ﬁ{ﬂ t are neglected the response of the non-linearity is
A ° I O i g , given by the first term of the Feurier series, or
S e ol -1 | 1 ‘ h P(t) = (48/7) 8in ot , The transier characteristics
£l & #8p S I B N m— corresponding to this first approximation are illus-
L § ° 0 3RD: Harmonicywn oot trated in figure VI-18. The figure shows that the
3 - g1 T LT | L slope or "gain" has the units of viscous friction, that
W |k il N D o i8; the first approximation to coiilonib Iriction 18
B g9 3 ’f D . viscous friction.
oM § : 1 1. A “~ 5T Harmonic
g i - -gi'*zoi‘ i v B R A If the output ofthe closed- loop systf‘m otiigure VI-17
o : B Bigsl // B SN IO G BN I is subjected to this. vefféctive viscous: friction, the .
% a4 /’ N T differential equation written with the. ti_ proxi- - .
¥ IR 1/ S ‘mation becomes B R
& /P ERE »
| ij L w4 .5 8T W) Tm‘dt("" )ox,x,c xln
. ) T A T - From this expression, it is concluded that the effect
» g60f . . : L ot coulomb frictign on the system of figure VI-17
& T e o . (viewed in.this way) is to increase the dampiiig ratio
=230 . L ' without changing the frequency. Itis to: .be. further
i , f.‘t’!"?"f {“?,\ = noted that for a given value :of coulomb friction, the
% oF o R effective coefficient of viscosity approaehes inﬁnity
530 - ' as the sinput amplitude approaches zero,
ﬁf | ‘ Equation {VI-9) mayt be written in the form 01 (VI-lO)
Bl L
0.1 .2 .3 .4 .1 .8 .8 Lo O .
ﬁ - T~ N —
: M N e 2 b T
: 10— \""\ ¢ Fundamentai
Figure VI-13. Amplitude Ratio and Pha o
1auee YIDue tomgp:ingek:l;:da = %_1, 3RD Harmonic— \\
‘4. Determine effect that the fundamental of the =20 // \,\\, L.
non-linear element output has ‘on the Bédé diagrarm. " / ‘ . \\
5. Check the validity of step 3. 8.925 4 —— i 4\
Chec y P z 25 ///-\\(_513 Harmonic) \
In generxal, if the amplitude ratio of the discontinuous g-ao / 7T ,_\
element is greater. than unity (zero db), the closed- - // \!
loop system becomes less stable. If the gain is less 235 —
than zero db, the closed-loop system becomes more ]

[}
[ -3
k=4

stable. As will be shown in one of the exampies to
follow, it is possible to have a combination of am~
plitude ratio and phase lag with a resulting insta-
bility of a system which is stable when discontinuities

1

>

(2]
\

In each example, it will be initially assumed that the

harmonics have a negligible effect. Following ﬂll!,,,the‘; R IR Fxture VI-14. Amplitude Ratio and Phase
validity of the assumption will be checked, . .- -* Cae 5 Due to Threshold

b

~5
are not present. Several examples will now be dis- <
cussed in which the méthod outlined above will be 0.1 .2 . A S .0
applied to the eimple' positional servo illustrated in : ,glsc | ) = 3)
figure VI-17. @ 3% ¢5 | |¢
g . ‘
o 135
The closed and operi-loop differential equations de- a !
scribing this system are, respectively: 5 {$5
) o |
. . ) " .
vI- ’ d_Q dc, w ) '
| (VI-8a) Tt gt KiKeC = KyR ; 45 . }
3 Q - i .
‘; ¢19. s
j (VI-85) '8, 148, Kike g > £o A2 \
% dt? 7 dt ‘ T 0 L 2 .3 .4 .5 .6 .1 .8 .9 10

1 , , VI-7
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Figure VI-16. Amplitude Ratio and Phase -
Pug to Hystaresis
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. Fzéure vI-19. Poutxon Servo yuth Caulomb Fuctmn

in figure VI-20,

‘It is evident that decreasing amiplitude A of the con-
~‘4rolled variable (input to coiilomb friction block) in~
creases the open=loop gain, thus fesiltitig in an in-
" «¢rease in the apparent damping ntio of the closed-
loop system.

“The Bode diagram shows that at the frequency of the
‘third harmonic the signal is attenuated 9.5 db below
its amplitude ratio at.the fundamental frequency, The
“Fourier expansion accompanying figure Vi-8 reveils

a further attenuation of three (9.5 decibels) due to .

-the: feedback element, With such a large attenuation

: l;of‘the harmonics re’ative to the iundamental it can

‘be:concluded that .ae harmonics contribute’ Itttle to
;.the stability of the system.

g SPRING PREI.DAD Figure VI-9 illustrates the trans-
fer characteristics relating the force, applied by a
preloaded spring, ‘to a sinusoidal displacement. When

' “the-barmonics are neglected, the resvinse of the non-
-linearity is given by the first term of the Fourier
iséries, or F(t)= [ A + (4a/n) ] sin «t . The transfer
characteristics corresponding to this first.approxi-
—‘maﬁon are illustrated infigure VI-21.

'As indicated by this figure, the preloaded spring is
,effectwely replaced with a spring with a coefficient
. of K+ (As/nA) -The closed-loop differential equation

’ he open-loop Bode diagram o! figure W- 19 is Bhown-

.writt for the system of figure VI-117 when loaded

(vr-m fge%s’-‘hﬁgix,f K+ )]c x;n " ‘

'rhe addition of this spring increases: the natnral 1re-
quency and decreases tlw damplng ‘ratio of the system.

Writing equation (Vl-lZ) in the ierm of (VI-IS)

(VI-13) r‘% dg’ ke - "[R- K"x c]

s i s s e s s s e e s e G

| s20db/dec,—\ 2~

AR in db
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Figure VI-20, Opcn-Loop Bode Diagram of
Systen uth Coulomb. Inctxon o B
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'permits drawing ngure VI-22; . As with the previous
-case, a preloaded apring may be represented by the
. _adtlltlon ot a second teedback gath to !lgure VI-17.

‘c'l.:.' .
B T '
‘.
( »4—‘.
[ K*mk"-* .
. Ky :
| ' \.‘"{"#“, : x 3 - . K. Ky -

Figure VI-22. Position Servo
with Preloaded Srrmg

‘The open loop Bode diagram ot ﬁgure VI-22 in.which

~ the term (K + (4a/nA) | /K, is now part of the gain, is

shown in ﬁgure vI-23.

ap »Natiral Fraq;:_ei;zcy

Fhase An%l:e in Degrees

8

Figure VI-23. Open Loop Bode Diagram of
Sya'gem with Spring Preload

For increasing valiies of the ratio(s/Athe gain increases
with & resulting increase in the natural frequency of the
closed loop and a decrease in damping ratio.

As is apparent from the curves of figure VI-13 and
the fairly rapid attenuation above the natural frequency
shown by the Bode dlngnm, the harmonics have little
effect on the stability as determined by the fundamen-
tal alone.

In the above cases it may be notice& ihet the addition

VI-10

Agaln of the open loop, If K3 is: the-effective.. slope,,
»dmerentla.k equation for the system becomes,n,,_,

of non-linear loads to the closed loop system of figure
VI-17 effectively added a second feedback path. In the
following cases, the feedback pith of tigure VI-17 will
contain the non~linearities and the form of the figure
will be unchanged.

THRESHOLD. It will now be assumed-that the position
servo illustrated in figure VI-17 has threshold non-
linearity in the feedback portion of the loop. When the
harmonics can be ignored, the curve of figure Vi-10
sse effectively changed to that of figure ’71-24 with a

"slope of (K/n) (m=25+8in’28)~ [(4Ka)/(7A)] cos Bas

determined from thé first term of the Fourier series.

Figure VI-24 also-shows that K; becomes part.of the

d?c

(vVI-14) Taet dt+ KIK,C - KIR

From this, it is seen that a decrease in K results in
4 lower natural frequency and a higher damping ratio
‘of the closed loop system. This is also 1llustrated in
‘the open loop Bode diagram of figure VI—25

“When the zero db line intersects the -40 db/dec portion

of the Bode. diagram, the rapid attenuation of the system

“above the nafural frequency suggests the possibility of

neglecting the harmonics. Fer smaller values of inputs
to the non-linear element, however, the zero decibel
line may cut the -20. db/dec line with the result that the

'ovér~all system gain at the third harmonic must be

-compared with the over-all gain at the fundamental.

Although figure VI-25 shows. the same harmonic at-

;tenuation for both locations of the zero db line, it must
.be remembered that the straight lines shown are as-

- ymptotes to the actual curve. At the natural frequency,

«,, the asymptotes are below the true curve; and at the
nztural frequency, o}, the asymptotes may be above the
true curve. Therefore, while attenuation in the un-

,primed case may actually be greater than 19 db, the

.attenuation in the primed case may be less than 19 db.
'As shown by the relative gains from figure VI-14, the
“third harmonic approaches the fundamental in gain as

the ratio.a/A approaches unity. In this range then, the

discontinuity is not small and the stability of the system

for small amplitudes of the controlled variable cannot
be determined in this way.

LIMITING. The position servo illustrated in figure
VI-17 will now be assumed to possess limiting in the
feedback portion of the loop. When the harmonics can
be ignored, the transfer curve of the non-linearity,
figure VI-11, is effectively cha.nged to that of figure
VI-26 with a slope

K’ - 717 sin-if“- -2 /1—(AK) )“/b J

as determined from the tirst term of the Fourier
series.

The differential equation for this example is identical
with that for threshold including the discussion which

"followed. The effect of limiting in the feedback path

of figure VI-17 is to reduce the apparent natural fre-

. TR
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‘ ‘quency and inérease the apparc‘nt daimping ratio for the
cases in which the input amplitude to the non-linear
element does not exceed the. limiting value by large
enough values to invaudate the assumptions concerning
. ‘me“harmomcs. " E

. KYSTERE&S. From the Fourier series accompanying
figure VI-12, it may be seen that when the harmonics
are neglee\ed an element containing hysteresis will
‘have an effective shift of phase as weil as a shift in

' amplitude. The giin’ and phase of the fundamentai,

as obtained from the Fourier expsnslon, are glven
¢ by equatlons (VI-15) and (VI-16),

;ll-u*o

%"’l.- sin“u]ozk—- sin 1y )Jl-—.’(“)

S ) a_ '
(VI-16) Phase~ tan"lo— L
[~—-- sin“uoujl u? ]

- The <change in gainand. phaseé as a function of the ratio |

of: discontinuity amplttude to signal"amplitude is plotted
in figure VI-16.

" Unlike thje previous examples in which the effects of
discontinuity were simple gain changes which conld
not make the system of figure VI-17 unstable, hys-
teresis may cause the system to become unstable,

Conisider the case when backlash exists in the feed-
back path, Figure VI-25 illustrates the open-lop
Bode diagram of the comb!nation in which the con-
troiied variable amplitude is much larger than the
hysteresis range. In this range of amplitudes the
effect of hysteresis is negligible. For smaller values
of the controlied variable, figure VI-18 shows a de-
creased.gain and.a phase lag for the feedback element.
From the Bode diagram it is apparent that the phase
lag tends to reduce the stability of the system.

Fora sufficiently small amplitude of the input to the
- non-linearity there will exist a-.combination of phase
*. and gain change such thatthe zero db line cuts the
' Bode diagram at a frequency at which the phase passes
through 180 degrees. For this particular amplitude
and frequency, the system will oscillate with a con-
stant amplitude. This type of oscillation is called a
"limit cycle," If the harmonics are negligible at the
limit cycle, the oscillations will be sinusoidal. For
such a case, the frequency of oscillations may be
obtained from the Bode diagram, and the amplitude
of oscillations from the amplitude ratio curves.

‘(¢) PHASE PLANE

In part (b) of this section, a method was discussed
which permitted the inclusion of smail discontinuities
in the analysis and synthesis of systems. It was empha-
sized that if the discontinuities were not small relative
to the inputs to the non-linear. elements, the method
could not be applied.

The investigation of systems containing large dis-
continuities by andlytical and graphical methods is

vi-12

laborious Ior all except the simplest of systems, since
the di!!erential equations change abruptly at the points
of discontinuity, To carry out such investigations, the
initial conditions foi each new equation, following a
““diseontinuity, must be determined from the previous
" requation at.the points. of discontinmty.

© Sincé discontinuous systems of normal complexity do
not lend themselves readily to analysis by the available
analytical and graphica[ methods, this part of section
two discusses a method for determining the éffects of
large discontiauities on simple systems. While it is
recognized that few complex systems may be approxi-
‘mated by such simple systems, knowledge of the effects
of discontinuities on these systems may somettmes
provide an insight as tc-their behavior in the more
vomplex systems ,

When a system can be represented by second order
differential equations, the state of the system at any
instant following some disturbance may be completely
described in terms of the dependent variable and its
_derivative at that instait, - Since these two guantities.
are all that are needed, a convenient method of de-
. seribing the motions of a system is to plot one against
.the other in a single plane called the "phase plane."
.The bath followed by the point representing the state

. of the system at various instants of time then describes

the complete Sequence of events following the disturb-
ance. Such a path is referred to as the "trajectory"

" in the phase plane.

To illustrate the techniques used with the phase plane ,
4 sirmnle linear system will be anaiyzed in detail, This
will be Iollowed by an analysis of a similar system
having spring preload as a discontinuous non-linearity,
The techniques used with these illustrations will then
be applied to several -examples in which the feedback
path of a position servo is subject tc dlscontinnities

. To-ntroduce the phase plane, consider. the. undamped .

second order mechanical system described by equatlon
(VI-17) .

dz-’-ka =0

Since time must be eliminated as a variable to obtain

" an equation in terms of the position and velocity alone,

equation (VI-17) may be multiplied through by dx/dt
and integrated with respect to time:

©(m/2)(dx/dt)2 + (k/2)X2 = h
or. : R o

@
(VI-18) Nt/ . x2_ .y
oh/m 2h/x

- where h is the constant of integration, evaluated from
the initial condltions. ‘

If the substitutions (dx/dt) =Yy, a2« (2h/m) and 2= (2h/K)
are made, equation (VI-18) may be written as

2

z v
(VI-19) y, 20
oat e

Equation (VI-19) mady be recognized as that of an

‘;"@E




System Equation mg_t.zg + kx=0

Equation of ’rrm ect:ories —2h1’7— +Wl: =1

hﬂu'g VI-27. Phase Plane; Undampéd
Second: Order System

If viscous: damping is added to-the. mecha:ucal system

described by (VI-17), the differenﬁal equation of motion

becomes (VI-ZG)”, or (VI-21).

CVE.20) 422 hUX s kx = 0
(VE-20) mdt"-" pr Y

25%‘%! “’:'%

dix, 2%w, —-+ wzxﬂl)

(r-2r) 5%

By making the substitution(dx/dt)- ¥, (VI-21) may be
written in the form .

d, 2w y+ wZx =0

(VI-22) =

If equation (VI-22) is divided through by y, and re-
arranged, (VI-23) results,

(2§w 2w ¥+ @ x "'x)

in terms of the two variables x dind y alone. 'Equation
(VI-23) may be integrated to the form of (VI-24),

(VE-23> -

(V1-24)
A, -t TS
¥2+ Awyxy+ wd x3= Ce ™ e l o ) ;o= ay[1-72

but this expression is not easily used. To express the
equaﬁot in a more usable form; a change of variables
such a8 u~w;x and v=y+ [, may be made, so that.

the equation may be written as. (.VI-25)

. ’ b4 LA
(VI-25 ). vi: il = Ce (T'?'t" 1‘!’)«

chh, in polar form, becomes (vx-zo)

“cvr 26

50

p-rCé”a"

- Bquation (VI-36) is that of » logarithmic spiral 1 the

.u=y plane and' may be of the foxm uluatrated in. ﬁgu:e
vl."za‘& Lt .. -

When di“scontinuities are introduced into the phase
plane, more than one equation is needed to describe

the motions of a system completely. A transformation ‘
. of variables 18 not always possible wher more than

‘one equation is involved, without increasing the diffi-
- culty in interpreting the resuits, Thérefore, it is

~ often desirable to obtain the-path or trajectory of the

- position and velocity on the phase plane using the
original coordinate system. To obtain the trajectories
given by equation (VI-24) without actually solving the
the -equation, the method of isoclines can be used.

In equation (VI-23) it may be noted that the slope (dy/dx)
of the trajectory in the phase plane depends only upon
the values of x and y. It may-be further noted thatin
this equation the slope is constant for any particular
ratio.of xto y. For this particular example then,
straight lines may be drawn in the phase plane corres-
ponding to different ratios of x to y. If any irajectory
intersects these lines, it must do so with the slope
defined by equation (VI-23). In general, equations of
the form of {VI-23) may always be used to obtain the
curves through: which the trajectories must pass with
a particular slope. These curves are referred to as
"isoclines." If a sufficient number of isoclines are
drawn in a phase plane, a trajectory may be drawn by
intersecting each isocline with the appropriate slope.

Il

System Equation: mg%—’,‘- +Db %% +kx=0
Equation of Trajectories: p = ¢,
Where: u=p cos i, v=p sin ¢

hlm‘e VI.28. Phase Plane; Second Order Systen vxth
Damping Ratio <1

In figure VI-29 the isoclines are drawn as straight

lines through the origin. The slopes, as determined

from equation {VI-23), are drawn as short dashes

through the isoclines to act as guides in drawing the
trajectory from some. initial condition.

VI-13
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'other quadrants are similarly checked, the direction

’

'I'he direction traveled by a point in a trajectory is
. found fron the original equations, Consider, for

example, the fourth quadrant of figure VI-29, In this

- quadrant, “y-is negative so thai (dx/dt)is also negative,
* and. ﬁ*om equation-(VI-22), (dy/dt) » ~(+2{eny + agx), £0

that for oix ¥2luy . (dy/dt) is also negative, ‘I the

travel.on the phaﬁé plane wm be.fzamd a8 xmdxcated y

d3x _dx
System Equation: mm+ba—t-+kx-=0

Slope of Trajectories: gy_ _(!3! +kx)
dx m!

" Figure VI-29, Phase Plane; Second Order System with
Daiping Ratio <1

The simple linear systems described above sérve to
illustrate some of the techniques used with the phase
plane representation. Now, to include a discontinuity,
the spring constant term of equation (VI-17) wiil be
changed to represent 2 preloaded spring. This. changes
the equation to the form m(d2x/dt3)+(kx + £,sgnx) = 0 .

This relation may be expressed by the pair of equations

(vI-27) m%%gmxdoso for x>0

mg—x*kx-f =0 for x<0
dt? ‘

where £, is the aniount by which the spring is pre-
loaded. Let k=ma? and f,=an?® , equations (VI-27)
may be written in the form

(VI-28) g—g +olx+a? =0 for x>0
»,%sz‘x- awl =0 for. x<0
VI-14

Ii néw choices of origin are taken such that x.
x>0 and X=X~ g for <0, equations (VI-
written, after integration, as *

"ZL'W m %1 for x>0

Yn xz
2h/wf”~

(VI-29)

(VI-30) =1 for x<0

where h is 5 constant of integration. o

This system is represented in the phase plane by
pairs of ellipses with origins displaced from x = 0 by
£a on the x axis. As a point on the trajectory passes
from the left half plane into the right half piane,
ithe trajectory changes from the ellipse at origin
x=+a to the ¢€llipse at origin x ~ -a.. Figure VI-30'
shows the trajectories for four 1nitial conditions.

&

)
% ‘/
System Equation;: m —d—7+ kx = -f, sgn x

= -f, For x>0

= +f, For x<0
Equations of Trajectories: -—- + —L = 1 For x>o

2h/,2

i‘r
"2T+W—= 1 For x<o

™)
Where: X,;=X+2; Xp=X~48
Figure VI-30. Phase Plane; Second Order with
Spring Preload -

As illustrated by the simple undamped system with a
preloaded spring, the inclusion of discontinuities in
the phase plane representation of systems may be
simply achieved. The labor of determining the initial
conditions at the points of discontinuity is eliminated,
since the velocity and position are always available
for all points in the plane including points of discon-
tinuity.

The remainder.of this section will present several
examples of simple systems containing discontinuities
to further illustrate the phase plane method.

COULOMB FRICTION. The effects. of coulomb friction




S5 colbindon wil
that of (VI-3‘I B
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g ane? gre g, (V1-31),
i of equhﬂﬁi‘s {V1-82) diid

?(Vf-,.,f . 2 m: 1 .f,'Or HE >0
équati

Note Arithlletic
Prozrosslon

. Syston Bquition: = Lfikx - -F son §
' -+f‘°, Fbrd—x <o
dx

.
— >o

==t Fbr at -

-

“Equations of 'rrdecfaories jl- 'E‘]_z -1 For E" <o

’z 3 :
A

h[trc VI-31. Phnu Plane, Second: Order Svateh \nth
Couloab Friction

=1 For a—-">o‘~

In this case the trajectories follow the ellipses with
center at x = ~a for positive values of (dx/dt) and the

d'mass L ﬁ’ow bé considered:~—- "ellipsexswith céiiter atx «4s for negative values of -
?qﬂafion telating the mass- spring friclton comi-

S to note that:

-t fo¥ (dizdty <d,, F’u £ dot -

r&i}m i it egratink, Becﬁﬁ:e fhos of -

{dx/dty , as shown in Higure VI-31. Itis of inferest. . .
the maxima forn an arithmetic progression~ - . -

g with difterence ~4s in contrast to the geomietric, pro- -
. i, gression of linear gystems, Alio, it is eyident in
t figure Vi-31 that a sfeady state value other than zero -
.. 18 possible, * If the methods used with gmall discon- |

iinﬁiiies were atpplié to this problem,-the possibltlity ,

—{_ Non-Ltneaztty [t

i

hgwe VI~32 C‘losed-Loop System )

'i*a illustrate thié efte
on clossd-160p. Systei ihe posxtional servbmechmﬁsm
lustrated fn g ré VI-32 will be decussed for three*

,‘ types uf discon nuities

R TV

Ce Swstém Equations:
{1 )

"Slope of Trajectories:
dy

-

=-A for ~a <x<a
dx

[N

Adx =0 for.-a<x<a

dt2 dt

@y, dxg ok v Lo(Ae +sz) NN
@ Fr AR tBxe0 for ¥a o Vi f°';?’,‘
(3) 9%1+ A‘%+Bx2-0 for x<-a 9!_ -(Q"'y—”gl) ‘ .fg‘,f‘,,xi ¥

Figurs VI-33, Phase Plane; Closed-boop System
- with Thteshold in Feedback

¥

* At this value the spring restoring force :Ls not
greater thhn the coulomb friction force. and no
further motion is possible., -

LI



» ,_&' ‘gfq Equations:
(1) A mdhc::-o l'br -a<xg 2

: .(?):Agi%t%.-‘w For x> a .

- .
h - = : %l‘
d2x , pdx. J - T
- (3) Adtz;wg% +aC For x<-a '
’ hga'e VI1-34, Phase Plane; CIosed-Loop Systeu with Lm;tln‘ in Peedbick
"rnREsnonn When the output is fed back thfougha 4%, dx o
component having threshold, it must exceed the thres- (VI-38)" v 53t g¢* klk,(x ‘&) -0 fc,",’h x<-a

- . ~hold limits a and-a (see ‘iiigure VI-5) before any signal
. reaches the input, To describe this system for all - where x is the
_ quantity fed back and k, is the slope of
values of the output quantity, equations (VI'“) AVE-37), the threshold curve. By making the substitutions

.and (V1-38) chnbewritten. . B A x,=x-a for x>s and x,=x+afor x<-a, these

) .-- i = © ' equations may be written, after rearranging, in the
| (VI 36) T ——f o 0 f?T l< xca | form of. (VI-39), (V1-40), 'and (Vl'“) '
“vr.az 20 forxSa — - - iyr.my. 4% g_:g:;‘- = o - "
”( ) 7 d_tf‘ ok k (y a) 0 fo? x>a - ,4 (474 39) ] ~E”Adt ‘40 | for 'l<rr‘x<|

4
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R Ry f 1 the subsiitution
e '“tyécd:/m t_‘}mwai-aymmsnwxmam

F.:‘u'e VI-JJ 'y-feruu Curve

" The trajectory shown in figure VI-33 was drawn with
the aid of these isoclines. As indicated by this tigure,
the presence of threshold in the feedback path of &
position servomechanism may cause a steady state
error equal in magnitude to the threskisid value. When
. " the miethiod used with smiall dlscontlnuitles was applied.

" - to this problem, tlie possibility of a steady state value
other than zero wis not apparent, since that method
approximated the non-linear transfer characteristic
by & straight line. . )

IJHHING Whe!i the quanﬂty fed back in ﬂgure VI-32
s limited 80 that values otthecutpnt exceeding sa will
" ‘not-be fed back, fhree ons (VI-45); (VI-46), and = - 8 5
(VI-47) are :gnin n d to descrtbe all the possible ' mwo Vl-u M-n rum, czond-l.oop Systu with i
motions of the system. o lntoruu in Fndbnck

VI-17



- mnﬁmum unﬁlftudes reached by the output and_za is i _ - hysteresis range were assigned the: values A wBw s - 1 5

“These three equations With-A=Bs1 mdyc- 10 We »‘ L Equations (Vl—55) and (V1-57) are of the same form as

uudte draw the isociines of figure ’VI—84 o *'. % previcusly discussed.. Equations (VI-586) and (VI-58), ' ¥

however, are tunctions. of x,, Therefore, no family a
‘B’I‘ERESB Figure VI-35 illustrates the hysteresis - of isoclines car be drawn:until an-initial value of x, 13%: o
rve which describes. the relation between the: gutput - - -obtained, For the purpose of drawing the trajecto ies;
+(x) _ and the quantity fed back (£); x, and x; are the b in figure VI-36,. the: coeﬂclenis of the equations: ai

andc 10

To start the construction of ihe trajectory- an initial
."value of x, was chosen at point A in the figare

this value of x,; equation (VI-»56) provided the slo s,
“of the trajectory for different values of v, which per-"
mitted drawing the traject Imm A toB.. Point 3
4 g distance of 2a (total hystei ange) on 8
from A, and is the point at which the equations of slopes
“must change from (VI-56) to (VI-57). From jpoint-B: to:
C the trajectory foliows the slopes. given by equation
(VI-57) The: value of x at point. C is the x, of. ‘equation
- {VI-58)-which 15 valid until the trajectory reaches point
D . From point D to E equation {(VI-55) provides:
“- slopes of the trajectory At point E the proces:
“~repeated éxcept for the¢ different values of xgusédas
the tx:ajeotory passes through the x-axis, .

/ In figure 'VI-36 a second startingyomt was iak@
: ' *  point L. and the above procedure repeated. Urnlike the
'By meklng the~ substitutionsﬂ tnldx/dt,) 5 x, =Xeay o othed clozed-loop- examples, the steady state motion ™
IgeX+ * and dividing the resulting equations by Yy .of the-output is other than zero. The trajectory start- . .. §

; - _ ing at A tends to spiral toward the origin; while that

o L o s i
T )

7 e »—-~wwstwtmgﬂgom€,. eardr-theorigin, p RS ToS o

- plete, but contains the major source material for this chapter. Many of: the ref-

o - eremaces, themselves, contain much more complete and detailed bibliographies, A
TR » .
'rl. 'Problhe général de la stabilité du mouvement,’ by M. A. Liapounoff; Aunals of ) ‘ g
. Mathematical Studies. Vol. 17, Princeton Press. _ - » SR ) )
" 2. ,_'Introduction to Non-Linear Mechanics,’ by N. Minorsky, J w Fdwarus, Ann Arbor - E
Cov 1047, , i Coo T

L VI-18

,

spiral away from the origih. Both of these spirals.

. - --+ are-actually 4pproaching the closed curve indicated .
_ by a dashed line, - The significance of this closed curve - : .0

" 18 that the system will operaté in what is teemeda - -

" limit cycle. That:s, irrespective of the initial con-

' ditions the steady state output of the system willbe = . =

~“oscillatory and of a magnitude indicated by the dashed T

line. That steady state ogcillations could occur in o

such a.system has been shown by the methods used

with' small discontinuities. ! .
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used to dbtain a suﬂicientiy ciose approximation to the

PR

In the:preceding chapters of this volume various

~methods of analysis and synthesis have been. discussed.
‘It has.been pointed out that the matter of primary

eresi“in control systems work is the transient re-
sponse; and the mathods previously used have beén
considered from thie point of view of obtaining eppro:i-
mations to that reswns*e e

T e e

transient. What is meant by’ sufficiently clgse at iny
point of tlig design process {sa matter-of judgment;
but the essential polit is that as design continues and

_Mmore‘ and mor_e emt decieious"hsve‘ to ~be made, more

. type are frequently used to contro] the behavior of

_,.eircraft, ‘which are,* ln,themselves, dynsmtcnl systems
"’of 1o ‘mean order’ ot complexity .

In order to handle - complex multi loop systems
* somie method is needed which-rapidly determines the

total transient response in such a way that the effects
~-of varying any parameter are easily isolated aiid ob-

-served, Theoretically, it'would'be possible, say by
~ hand computation of enough individual cases, to find -
--an.optimum comnibination of parameters. However, -

from. the point of view of the time requiredto complete

* a design, this procedure is often outside practical
. consideration. The result is that a thorough analysis -

is not performed, and an extensive period of debugging

¢ the actual physical system is requir'ed. 'l?or this

’l‘he dyﬁamical probiems presented by the design of -

aircraft control systems are complex. -They involve
many degrees of {freedom, and may contain a multiplic-
ity of feedback loops. “Some of these feedbacks are in-

" herent in the dynamics ol the airframe itself; others are

e
- #

' iy ) S . e

o

CHAPTER VI'
MACHINE METHODS

. SECTION 2 — NEED FOR MACHINE METHODS | B

reason, lt now becomes necesury to consider vhst

can be done by automatic ‘means of computation. This -

will*be the general subject matter of this chapter

In the following section, the reasons ior uslng i
ach , 13 will |

) analysis will be discussed more tharoughiy
been doné in-theé-above cursory and pure

o“aue ory ‘examination, ’rhe potentialities and limi-
" ‘tations of these devices will be exemined Speoial'

attention will e given to problems which, to date, can'
be solved: most practicably with computer. techniqu 8

“It will be shown tniit there are oniy tw_o types of

 devices suitable for such purposes at present; the
" analog, and the digital type of computer, Thetwo

variations within each type)
arily-with & view to indicate

‘types of computer (s
“will be discussed, prir:

which are best for control systems analysis and syn- .

thesis and’ why they are best.

-

During this discusz:ion, it wili-become apparent that

- the operational amplifier type of analog computer ap-
peéars to be most iseful for the applications considered

b “here. The final section of this chapter will attempt. to..
S ””"’estabhsn thiat this proposition.is indeed true, and to
= ei‘fects of varyins"an mner-loop parameter on the over-
< - all behavinr.n! the-entire system. Systems of this

--8ay under what conditions, and for ‘what type of prob-
" 1ems this superiority of the- operatimal ampliﬂer analog

". . most manifests itself.

. In order to do this, it will be necessary to. qescribe )
in some detail, how the- computer works. This section -
will therefore lay the groundwork for the following - -

chapter, in which the properties and opération of the
__operational amplifief computer will be considered in
detailt Section 3 of this chapter will thus be in Some

- “ gengie preliminary, but énough material will be given
. toform a firm bssis for the discussion of the relative

advantages of this type of computer over other kinds .
Special attention will be .glven to such. qualities a8
easy and rapid variation of basic parameters, -ability
to collect data in a form suited for immediate inspec-
tion, and usefulness in simulstim while using actual

system components

ndded in the deslgn of the control system
Multiple-loop systems give rise to the most diﬂicult
problems in control systems design, primarily because

o o(thedif!icultyddeterminmghowachmelnminner-




" Chapter I

Ma...‘,‘

Section 8

loop pavameter aﬂects the ov«rall transient response of
_the’ entjre system. An:attemipt is sometimes made to -

. avold the problem of d-términing these effects. For

r-f‘,example,one part of the system may’ be overdesigned

and forced to meet too strinpent requirenients in an |

.+ ‘effort to assure that unknown requirements on inner
‘ loop narameter are met.

: :“‘ itisa iairl"‘ ‘simple two-1

*Tne techniq"es previcusly discussed do not ‘adequately-
- meet the problem discussed- abovre,

The analytical, ‘
methods replace a complicated system by a single

' closed loop transfer function for the complete sub--
.. :mystem. “This closed loop. expression often containg -
- the parameters of the components ‘th complicated comi~
'"'binations rather than as individual, and easily isolated '

g : d.-2

(vux) -

It i8 evident from the form of this expression that even

- ,; integrated unit, is imperiled

* To resolve this difficuity, some means of analysis is’
: needed | which will, permit the eftects eLvar;zing 11

~_ about suitable (and attainable} ranges of adjustable

‘ G GQG! ‘
R 1+ G,Hzf Glu,G,H

for this comparatively- :simple-case it would not be
~easy to say anything about the effects of the indi,vidual
. perarheters contained in G;, or Hz, upcn'the behavior
. of the entire system; *-In more.involved multiplenloop TR
systems, Such as found in aircraft control systems, .. - =
the determination of effects of inner loop parameter. .= . - -
-variation becomes an horrendous task and is frequently .- .
econcmically unfeasible. The technique of overdesign L
(which was dizcussed above) may be applied, ‘andthe ' = .
efficient design of the entire controls’ system, as an ' o

matter Vova the. component beari-ig these parame’tersb
is interconnected with th rest of the system P

It is not to be understood that the reasons discussed
above are the only ones which indicate that it would be i
-desirable to have 4 means by which parameter changes =~ = . ...

ccould he readily handled. The analysis of any compiex e
system, with a nuniber of adjustable parameters, would
be greatly e;cpedited by some such method. Even after
‘2 large amount of preliminary thinking has been done

quantities, there may well remain a large. ‘amount of

hgure VIL-I IIIustr.stzve Two-Loop Servonechamsn ‘

For example- cmsider the system shown in figure VI-1;
oop device. Its transfer

. ‘,____;‘.;.__._. JU -

d_‘__

Sectioh 2 of this chapter has shown that a need exists
- for some automatic means of solving the equationis of
motion of complex systems. This section will consider
twodiﬂerentways in which this may be done by the use

- of sutomatic computation.. The two-types of- computation
consldered are the analog and the dlgital methods. ‘

HEENN

(a) DIGITAL COMPUTERS

A digital computer is any device which solves mathe-

‘matical problems by the numerical process of counting
discrete quantities. The digital computer may be a
- device as sinmple as the ancient abacus or as com-
plicated :as the modern electronic giant "Whirlwind 1, "'
but the fundamental principles ot operatim are the same.

- The nox‘mal desk computing machine is another.example
of & digital computer.. Since this is a relatively. simple - -
- device, ‘it will be used to illustrate, in somewhat more
“Concrete form, the general principle of operatlon
“stated above. o .

- VII-2

6, ‘pammeters canioe sei ted. ~ T

SE(TTION G ‘ﬂlAILABLE METHODS OF AUTOMATIC COMPUTATION

- . To do 80, of course, requires 4t least a knowledge of

_analysis to be dane before the most suitable combination. . L

Eor these reasons it | now becomes necessary to inves-
tigate machine methods.. The next section will.discuss |
‘the various types of computer and the basic mode of B
operation for each. The final section will compare the ‘
types of computers and their relative usefulness in
solving problems of the sort discussed in this section A

Y
FAFVEEEN

- - ‘Seppose that 1t is required to dx:aw a graph -of the R

‘équation y = 5x+ 10 An operator would ¢hoose discrete
values of x, say Xy, Xz,...X, and use the machine to ®
multiply each x; by 5. The machine actually operates :

" in the following way:

The quantity one is added x 1times, and then this.sum -

is added five more times. In other words the machine

has operated by counting the discrete quantity one, 5x;

times. Another interesting property can be noted: Thé

machine stored the sum of x; units so-that the secend
operation of addition could take place later,

After each x1 was multiplied by 5, the operator would

‘their effects upon the roots of the characteristic
equation. Many of the methods previously developed
‘are essentially waysof getting thisinformetion wita-
out actually factoring that equation, bat it is evi-
dent from (VII-1) that these methods will not work
here, because of the way in which G3, Hj (and hence

-their parasei:ers) are involved.

[®)




o

= add-10 to obtain yo “In this™ operation, the operator
.. stored the_ information 5x, 8o that the quantity 10 might " ~
"~"* be added.at a later time, When all the y, weré com- f
“ " puted and tabulated, the graph y « f(x) could be drawn .
“’l‘heprecisimdthegraphwaﬂddependmthemmdmm

‘ "since this would determine the-minimum possible
j““interval between the  x;.

mgde as accurate as desired, within the limits {mposed
- by the available rumber of decimal Pblaces, by choosing

2 suf iciently small intervals isetween the x;, ~ B

dme iniormation into the machine
\ é operated on sone iniormation, and
réd Some information,

" Equations of the types considered in this volome could
""always be solved nuifierically if time were available;
solutions to these equations might be obtained by using
' sk, c omputing ¥ » hat {n the manner -
| ' very time
onsuming It 15-to overcome this objection that modern
ﬁigh speed digital computers have besn built. In these
3, both numerical information and programming
{ oduced at the beginning of a problem All
required operati ns (including storage) then become .
X . ’ | automatic. = Final answers: génerally_are
F ) S received in the form of tabulatione or punched cards ;
' ) ‘but new methods have been developed to plot answers: in.

b graphical form also. .

L Maﬁy techniques have been developed to speed up
ez computation Electronics has been used tg réplace
. mechanical parts. Counting systems other than decimal
- are frequently used. These details’ will not be discussed .
. here, but are merely mentioned as matters of back-
ground interest. -

“

@ ANALOG COMPUTERS

" An analog. computer is a physical system the variables
“-of‘which may be easily measured,. controlled or- manip-
g ulsted it is used to study another physical system which

does" not have these desirable characteristics. In
addition, the physical system represented by the analog
computer must be governed by thé same mathematical
relationships as the system under study. '

The analog computer may be a device as simple asa
slide rule in which a length along the rule is made
-proportional to the logarithm of thie number concerned.
~On the other hand the analog computer may be as complex
as the modern electronic computer whose electrical
system is set up according to the mathematical relationi-

i ; write down the reluliing product and at some later Atime .

nymber of decimal places available in the machine; -~
Obviousiy the graph could be- ="~ "

_ce.lyequaltothe '

hips oi the system to be studied

’rhere are meny types of analog computeu, but they -
all may be-divided into two categories: -
‘1, ‘Those devices in which the detailed stru..ture }
_“e@ch component of the system under investigation is
. represented as its analog (e.g.; a spring is made
malogous to a condenser, a damper to a resistance). /.’ -
‘3. ‘Those deyices which function by performing the - . . _
~ mathematical operations: indicated ¥ ' the differential
. equations representing the syst( .s-to be studied .

" Tnis device might be sef up to investigate the dynamice o

- oi a mecha.nical system which contains amass, M, . ‘
& e ibed:

-2 )

The mathematictal form of the. expressions in (VIM) T

- -and {VII-3) 18 identical provided that the inputs £(t)and =

-e(t) " dspend upon the time, t, in the same way func--

tionally. Thus the behavior of the electrical system can
d.

l;%ﬁtudied the. x:esults applied torthetpenormanc_e,,-.ms T,

The magnitude of the inductance may be made numeri-
Y e of the masi;" the resi’ist'ance,
to the damping; and the inverse of the cupacitn.nce2 to,
tlie spring constant. . )

The second type of analog computer ig.cne in which o
devices are used essentially to perform a’thematicsf

- operations as such, rather than to-mimic more directly

the behavior of the system being representl'd ’

These computers are of the "differential aualyzer"
electromechanical type, using, for example, Kelvin

ball-and-disk integrators, and of the "operational
amplitier" type. These operational amplifiers perform
‘the mathematical operations of addition, multiplication.
-by constants, and integration with respect to time. In
addition, special apparatus may be used for multi-
plication of variables and the introduction of discominuity
type non-linearities.

In this type of computer, variables are represented by
voltages; parameters are adjusted oy plug-in resistors,
- potentiometers, and capacitors, and results are easily
recorded in graphic iorm by means oi oscillographs

The previous example may be used to show how such-a
computer mjght be set up. Equation (Vll—ﬂ may be'
rewritten as:

. g_} £(t) - -kx o
The computer might be set up as indicated in- the sche-

VII-3



» graphical representation.

matlo of figure V3.0

. Note that the only operations used are addition, multipli-

cation by constants (including -1) or integration with

" respect to time. A voltage equal to' £(t) 1s fed.into the

- computer and x and-its first two-derivatives may be

" picked off as voitages or applied-to a recorder for

R
R

~ _In'this e;xampl_p the com

* :-Hion, time scale changes may be eusily mads. .
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 thi np puter {s-easily designed to .
-operate in the same time scale asthe physical system
represented, The operational amp'iffer type analog
~-computer car almost always be used. on this one-to-one -
time relationship with physical systems such-as seryo-
mechanisms, - For the special cases whers frequencies
involved are too high or too low for satisi  Opera-

‘::SM,AQ‘
S -

e R

n
S a

TThe previous'Sections of this chipter have shown the

-z -mged for mackine methods-and the types of ¢computers

_avalahle;

“digital computers'when used in cont, 1

““cations.

. system work. The two types will be compared and
-contrasted so that some conclusion. may be drawn re-

SECTION 4 — EVALUATION OF MACHINE METHODS FCR CONTROL SYSTEM WORK

 sectioniwill discuss the.relative:merits - -—-problems;~ini-a-éonsidarable prico-has:to. b paid for =

garding the choice of computer type for specific appli-"

Y1 Set-up time. : L T
2. 'Easy and rapid variation of parameters.

- 3. Ability to collect data in a form suited for im-

mediate inspection. ;. -

- actual system components. - '
- 5. Accuracy. e LT

4. .Usefulness in simulation whl,le‘cgnngctedté _

- (a) SET-UP TIME

operation depended upon previous programming. “In
complex problems, of the type treated in aircraft
control work, the preliminary programming' may be-

) . come a Herculean task. Recall the operations re-
. quired for the simple
" and then: consider the

example given in the last section,
] iarge programming necessary
to solve a simple sixth order algebraic equation.,
This task is multiplied many times when one considers
operations such as integration, differentiation and
inputs: such as sine waves, or irregular waves.

‘ Mény digital computers are-bult s "general purpose"

machines. That is, they can be set-up to perform a

* wide variety of combinations of elementary operations

necessary for the solution of various kinds of problems .

I P

| e cholce of type of computer will be dependent large- )
Norio -1y on the following items; '~ - . o

- Inthe las‘tj‘,.section, it was shown that digital _computér\ "

- These "general" computers have thegdvﬁjaéé: of . __

being applicable to a very large number of types of

“ -~

this flexibility, Because of it, extensive programming

and a large Set-up tinie becomes necessary to prepare’ - - . A”

- the machine for the solution of specific problems .

Digital computers have also been bpilt for special .~

purposes but not all exigencies can be adequately
_covered by such "special pirpose" machines, and
even with "'special purpose™ machines, careful pro-
gramming may be required; - A
For those types of problems where the same cycle of
operations is performed repetitively, the set-up time
for a digital machine beconies a smaller proportion -
of the total time allotted for a task. Use of analog
‘computers may also require careful planning. Certain
precautions, important i any electrical circuitry,
must be observed. Details such as impedance match-
ing, voltage levels, and efficient use of amplifiers
must be examined. These considerations are of con-
siderable more importance in the physical structure type
of analog ¢amputer than in the operational amplifier type .

With both analog and digital type computers, consider-
able interconnecting must be dane. The interconnecting
must be checked and this takes time. However, the
wiring required in the analog computer is -considerably
less than that used in the digital type because of complex
pProgramming required by the latter. L :

" (b) VARIATION OF PARAMETERS

It is not usually éasy to change the numerical values
of parameters in digital computers. These machines
may perform individual operations at extremely high
speed. However, an entire computation may have to be
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carned fﬁréugh one or two | hundred tlmes betore the

~represented by equations is complete. “In addition the ..
~  results are usually” pxesented in tabular oF punch gard:
_form, For these iwo réasons - length of time and poor -

. .o cevaluate qulckly a result so that he may sensibly va;ry
Rt — e parameter. ’

parameter is usually” represented by easily identifiable
individual or group resistors, capacitors, or inductors.
g These components may be varied within limits, but the

:xigl:lem of slze (mentioned earller) muet be reckoned

Parameters may usually be varled on the onerational

_.the'setting .of & potentiometer. It will be shown later -
lhet all electrical analog computers present data in a

A8 has been pointed out previously, it is difficult to -
- visualize the behavior of a physical system from tables
_or punched cards. There are some new machinas
whlch convert the results. into. graphical form. How-

'—lmg;seriod

The results obtained from analog computers are pre-
sented in the form of voltages. It isa simple matter
10 connect any output of the corputer to-one of several,

"the fact that the

agalnst time. This,” ‘together-with,

~ evaluation of the sys&em under lnvesﬂgatlon slmple
¢ --- and rapld e T . -

(d) SIMULATION

.o lt ls trequently desirable to simulate operation of a
= - complete system by combining actual physical sub-
” systems with the mathematical representation {com-
. puter operation) of the balance of the system. In this
" way, it becomes. p.ysible to avoid errors which might
result from an attempt to represént the subsystem in .
purely mat“ematical form. In some cases the physical
- laws whic 1 govern the behavior of that subsystem
. have not bzen well worked out in mathematical form, or
_-they are sufficiently complicated that reduction to. -
. -suitable machine form might demand excessive time.

© . Digital computers donot operate on a real time scale,
' in general, and also generally do not put out. signals in
a form dlrectly usable by the physlcal equlpment

B
. P B Ty,
. : ) . B o © . : -
. . o . . s - ' . - s
K S . N N .
K | : .o .
. L . v .
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A I

_ equivalent of -one second time of operation of the device- ’f

- the operational amplifier type, does work-in real time ...
‘ and is admirably sulted to stmulatlon studieS, S

»form of output data - it {s difficult for an operator to _,,-

<In. @ physlcal structure type analog’ computer, -each.

= auiill.ler type by merely changing a plug-in resistor or -
© toa relatlvely few significant:figures.

. difficulty may be- minlmls:ed by very careful plannlng R
-form that makes evaluation slmple and raj id ,Thls ’ : ,

" The precision of a.na.log computers is largely determlned

punché ‘ ards or tabulation ot numbers .

_ seldom known to better than about ten percent. In the
" case of certain aerodynamic quantities; uncertainties

ever,.even wlth these machlnes it takes a relatfvely

quxres extreme o
beused at the present tlme T

of recorders which autsmatica.ly plot a variable ~-

‘ ~__analog compiters can  Werk-in real time,” ‘makes the «f?f
. above considerations, that the operational amplifier-

It may ) not be inapposite here to look ahead somewhat

to-digital translators.—before such a combination will
become possible. .In such a macliine, the analog com- .
ponents would be used wherever their other- advantages’ ,

. This prospect is, - however, somethlng very deflnitely

practically realizable, the advantages of the analog
type of computer for control.system work will, in{ "
almost all cases overbalance the hlgher accuracy ol
the dlgitzl computer. 2

oot

therelore , it normally cannot be used for the purposes .
" of simulation.” The analog computer, and in particular.

(e). Accmmcv L

Theoretically, the results of dlgltal computlng may be Lo
made as precise as-desired. The precision is Ilmlted .
. only by the number of digits which the machine ¢an ', ~
‘hold ir the various reglsters of its arithmetic unit N
and its. memory or storage function, This limitation L
is-mare severe than is apparent at first glafice.” Numer-- -
ical errofs caused by rounding off figures and trup-
-cating numerical series tend to cumulate statistically,
For this reason, it may be necessary, for example, to .
- carry-a large number of sighificant figures ina com- ~
putation in order to be assured that the result is. correct
This sort of -

“and programmlng. T -._ AR

by the precision 6f the components within the. computext ‘
| ‘With cdreful plannlng, most analeg computers-can
produee results accurate to wlthln a few percent

It should be noted that if conti "ols system work “the -
parameters of components of the control system are

as much as + 5C% are not'uncommon. For these
- purposes: extreme accuracy is. not usually justliled in
chines, - .

“In cohcluslon, it may be stated, on the basis of the

type analog computer is generally the "best” machine -

‘ “for use in control systems - work. In special’ casés,

*'the other types should be consldered.

to a possible future time at which a purely automatic
~ comtination of digital and analog methods can be effected .

Many problems will have to be solved to do this— suck ~

as design of high-speed dlgital-to-analog and analog-
outweighed the need for precision,

in the future, and until this means or others become



. . In the precedlng chapter, it m shown that the opeu-. -
. ‘tional amplifier analog computer s the most valuable
evice now in existence for the machine solution of .
control systems dynamical problems. The present
: -chapter conriders material relevant.to the application
of this typeot, tomatic computat{mtomhproblema )

v ceal operations required !or the solution of dmetentialf
. -équations, _In this section it is assumed: that the ampli-
. fier i8 an ideal device. Hence, this discussion will be ‘;-
:,“_completely applicable only in those cases where the- .
. warious approximations made in idea..hing the opera-
'tioml ampliﬂer lntroduce negltgible orror -

The second section will consider real amplmers e~
. non-ideal) and show how and why the results obtained
=from such 2 Tezl amplifier differ from the Tesults™
* obtained from an.ideal: ‘amplifier. In pa.rtlculu the
7, effects of non-jnﬁntte .gain in the ampliﬁer, o( drtft

i i’nd of grid curr ent wili be dlscussed b

- The third secticn will consider. in more detaﬂ the use °
i of the operational amplifier as a summer, a'sign
')f“ changer, "and 2g an integrator. ~ -

' {, o

foe ‘This will'be followed by materhl related to the inter-~
‘connection and use of operational amplifiers in the

~-..7 golution of single and simultaneous linear differential

' oqmttm with constant coeﬁiciants ‘

hthhplrtdthocm themnsrinwhichacom-

\

- SR

= ‘45

e p e s D

o . SECTION 3 ”IDEAL" D, C
~ 'l‘his secuondiacuases waya in.wlichopenuomlmpu

" flers may be used to perform certain mathematical
~ processes used in the sohition-of differential equations.
These processes usually consist of algebraic addition,
multiplication, integration, and differentiation. In the
operational amplifier, these quantities are voliages
which are analogous.to the dependent variables of the
. differential oquttonl writtcn for the oyltems to be

> studied,

In zeneral the operatioml ampluier consiptl o! a
high gain dc voltage amplifier, an input impedance,
and a feedback impedance. Figure VINI-1 illustrates
tho mmvr in vllch these olen-u are inurcmetd

11"

T

putar is ut np (or a ropresentative set o! suttable
" equations will be considered. This will inciude the'
‘determination of vgatns, " the selaction of appropriate

- voltage hvell, the computntlon of sultable resistor Lo

~values and potentiometer settings, and the arrange--

_inent of the apparatus for maximum utilization of equips- - -
; atimd t.in- m!biuty gl migbelnviﬁr —

ment and mh\l.m

'rhe conclud!ng sectlcn of this chapter wlli then take -

upthe

linear effects such as backlash, Cculonﬂ) friction, and: .
" threehcld and very often,.
to minimize their-effect bacause of ignorance uf their
*influence on systom behavior. Other non-linearities 5
.- guch-as apying hre-loading. or var; ing:
° may actially be built into ;systom in order to produce

= % dynum. effect whlch cmnot be obtalned by unear; “

- mean&

The means. d represent&ng threshold acceleratim ve- =
~_lccity, -or displacement limitations, hackhah Coulomb T
- friction; spring preload; and varying spring constaits
will be discussed. Certsin limitationson:the means
o( repreaenting these eﬁects \ull be pointed it

-détermining the résponsé, sihce analytic solufim of
equations with non-linearities is inherently-a tedious
‘step-by-step process. The automatic computational
MuemtoderﬂuaﬂyhmMMdM-‘
ing with theoe wvery uq)ortmt prantiu d the sysum

.‘.,‘_

AMPLIHER OPERAT’ION

The imped:nce,
the lnput grid resistor of the volto ge amplifier, -

"rhe overall gam of this-zamplifier may*bo“found by
wrmng the four equations (Vm-l) thtmch (vm-4),

[

(vIII-1) e,
oy age Koyt -

. mntioul smplitier design roquiruents necessi-
tate an odd number-of qlitur ctuu. Hence, the
‘ainis sign. .

: am:mg constants , =

The. pr : : ‘Tmera- B
tlmhaaavery grea.tadvantageover other methods for o

is adadto this ﬂgure to represent '

) important | question of the representation. i
'’ in machine Iorm of non-linearities: “As pointed out in
"' ‘chapter Il any real control system will contain non- -

messtveeﬂortsmaybemade '
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For this case,-the operation performed by the opera- -
-_.-tional amplifier is that of integration, sign changing,
=+ and multiplication by a constant (1/RC). o
I R VR B e e . 7
_g,-, > e LT oEII L R e . “
S )T ® operaticnal amplifier may be made to diffcrentiate: =
" by interchanging the reésistance and capacitive resptance
used above so that the relation between the input-and
.7 ~output voltages-will be as given by equation (VIHI-10). "
o TAVIN20). . ege-RCse, . v ho-

e e

.+ 'The equivalent relation in the time domainis. <

Wi eeeme¥E)

_..Jn this case, the operational amplifier will:multiply..
" this derivative by R(C and change its sign. As-willbe
pointed out in section VIII-3, the use of the operational
-amplifier as a differentiator may not be desirable -

~ because of the presence of noise

S

I the feedback impedance of the operational amplifter
consists of a p,a,falgglj-@oxp,bi?natipn of resistance and.
- capacitive reactance. S'O’?th%t wlp=Ry, Vi T ﬂle

~“resulting relationship between the input voitage andithe

- /output. voltage 18 given by equation (VIH

1 be-consideredan . . (7 1 7Y

idea » n (VHI-5), a very =~ WIII:12) - e : ﬁ‘)»_&x; N

high gain de voltage amplifier will make the operational - T T R SO VS

amplifier relatively  indeperident of all Gaiilities except In the:time domain, ‘this relation is-given by‘equation = e
e ratio of feedback impedance (Z¢} to input impedance (VII-13). - A ‘ > e

i) ::-Anideal operational amplifier then, wouldhave ~ - - .

-4.de voltage amplifier of infinite gain, For this ideal

iase, "the relationship between the input:voltage.and the -

- . outpat voltage en by equation (VIII-6);. wh
- minus: sfgn-in 'k ;

RSO R B

) input, ‘ihe outpu
J1-14). : . .

e A R STt
N oo L ,* ;;’,A‘ ., “ R RS ‘,._V,“: ’ CVIII‘I‘) ) K’.cl ) . T K \,
.- yThe.ratlo -7¢/Z; may be thought of as'a multiplying =~ .~ - .S T I
p 77 {factor or-operator by which the-input voltage is-multi- Before discussing the process of addition with the’ R
|~ plied to get the output voltage. In particular, if these ™ operational amplifier, it is of importance to note that S T
- 'two impedances are resistors, the input voltage will - - the-grid voltage, e;, of the dc voltage amplifier re- = . .. °
~be’multiplied by the ratio of these resistors; and will = “mains relatively unchanged while the input is varied.

have its sign changed. The operation performed by That ig, as this grid voltage tends to change, the out-

&2 _erational amplifier is that of multiplication by put voltage tends to oppose this change. To show that

@ constant and sign changing for this case. If the.-ratio “this 18 true, . equations (VIII-1) through (VII-4) are ) -

is unlt:a,h;he operational amplifier serves only asa solved for t!lu ratio of grid voltage to input voltage:
. signchanger. - S o o R TR

- ;. i‘_‘,_‘e ‘ T ;‘.LEH: Sy g o
. Qo.(t)z'-":i;ﬁig (1- e lgCé): P ’“ e -“.:;‘—. S

° Miadance {5 4 o, sy - e -1 - - | -
If the feedback impedarice is a capacitive reactance, ‘ * k., ( 1+ 21, ZL) o
t.e.: 2, = 1/(s0); and the input impedance, a resistance, - . ‘ AR 7 : T
the operator becomes ; o ‘

e R 1 , : , S . Itis apparent that, fo:v'.ggina‘rapp;oacm infinity,-as

- VIII-7) ERR Zﬁ-‘ "R ) S does that of the ideal amplifier, the grid voltage ve-

Tsh;ixx]?%;g;ﬁiudn t(h‘fﬁi;‘_‘:‘)t voltageand i voliage . *Figure VII-2 illustrates:the manner in which the ele-

Eaty ' R e A ments are interconnected to perform the process of -

S TR SR ’ * addition.” The sum of‘the currents flowing into point -~ -~ .

- (VIII-8) ST Res * A must equal the sum of the currents flowing out of O
point A : : T P : -

' mains at zero;

e

" The equivalent relation i the time domain {s

T ey egeid fegat

<

rrry vy €€ €,-@ e,-e e = e
'VIII-16) . LK 3 . o 2K 4 JO°K . &K ‘ ,
A A T i 2 :
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h9 zrid curunt iu guumoa Earo iu the voltaga ani-
plifier- l:ntdho doés not énter into’ equa:ihon (VIII-16). As
lluwnl pnced!n( pra.gnph, e grid voltago ls ’

_ln Boctlon vxn-z it was.shown how the opergf!onal
“amplifier, if ideal, could be used to perlorm certain
Mcal operations. Actually, the operational
‘amplifier is not ideal. The dc voltage ampiitier does
“not have infinite gain, and is.subject to “drift, » grid
.. current, electrical noise, and limiting. In nddmon
.tothess undésirable characteristics in the dec voltage
’mplﬂior, the other components which make up the
‘ oporlttona,l nmpuner muy nut have the properties
-agamod. In

- ‘diyoloped“m aection vm-4

Coeh 'l‘le dc voltage lmpliﬁers used iuslectron.c analog

~ . computers usually have voltage gnins ranging in the
“order‘of 5,000t0 100,.000. Asis apparesit-from equation
) (VII-5), thohctﬂntﬂnpinismtlnﬂnlten&tscemm
. -+ restrictions upon the permissible values of input and
-foedback 1mpedancén These restrictions will be
. .-further-d@scussed in: Bection vm-el,

: *,Whn tha Anput toa high gain and properly balahced
- de voltage-amplifier is zero-the output shoild also be
at gero potential, However, there may be small current
changes (drifts) in the tubes. ‘These drifts may be
' _caused by slow changes in dc supply potentlals, 1n
icathode emission due to filament supply changes, ‘and

~ in the reststance of resistors due to change in the
ambient temperature, When these current changes

effoct will be muitiplied by the gain of the amplmor
an amplifier is used as a computer, the cutput sigaal
for the 1deal opontloml umpnnon . ’ '
ruammmmm ol o)

Mhmutornd"chuAm" That b.
thogrﬂhdmnmﬁnwﬁt“h.“

- which whqp rurmngpd carn bp written in

§EC'1!ION L) —I{QN-IDEAL OP"ERATION‘AL ANPLIFIERS

' oecur in the first tube of the dc voltage amplifier, their =

Mthlrmhrgcnhmmthwfput When such . . v
-:;su quitunb when solved for the outpnt volta,ge,

"lllth-thntﬂldﬂftvoltmmtouﬂm;

M) thcn takes zhe !orin bl (Vln-l’l)

- ' A;e-‘n gl- - ép-. )
‘vz 17) 7 + -

Z,

mu,m

ety

!‘rom this latter eq\mtion it can’ =7

of the operationdl amplifier is-the- sum ottlré
multjplied by their respective: operators. only -
three inpits were ¢onsidered above, any number can. -
‘e used, The opecation of integnﬁi)n or duferenuaum,
muitiplication hy eénstants, and summmg cdii be m-

bined: {n a sfngle qxperatlonil amplifier,

wgm the grid is negative with respect to the *"athode '

,amperes,' but, when- ..;....r.g mrﬁxgh B 'mﬂ‘lciently high '
impedance, it may cauu an. appreciable voltage dré\p
flcrosstlatim edanc

T A m————
oy

Figure vIII-3, &crat.lonal Amhfxer vzth
Brid Current . . ’

In WO Vd!-’ the sum oi’ the currents entertng
«‘potnt; Am be sero as shown by equatlon (VIII-19).

jﬂ'ﬁvioi,-o :

(vnt 19)0*

(vm-u) . " (!‘ %y ‘c&\)

( -ao)mmumuw onsists
m'ﬁch hmmiu«u

- VHI-§
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e. feedback 1mpedance.

= Generally speaking, nowe may be defined as any un- -

.desirable voltage which may appear with the desired

B f_j' voltage, The average value .of the noige has been
.. discussed in connection with drift and grid current, -
-ln the following discussion, noise will refer o that

pmponem which has-a zero average value. The sources
0i8é are many. Within the d¢ voltage ampliﬁer,

thy’two per_gry sources._of noise are that generated S

ftubes due to the uneven "bomng offr of the' electrons

;tt Was mentioned in. the grevious section that differ-
ttation ‘with the operational ampliﬁer may not be
.the presence of noise. If the

1 v jall rige and decay times, as do
the, thermg,}.and resi’stor types, the- operational ampli~
- gonnected a8 a- diﬂerentiator will differentiate
'these voltages .l the. input voltage is varying slowly,
it is easy fo see that the .output stgnal may become

largely noise-, In addgtion the differentiated noise
iload

The dc voltage ampl{ﬁer used in the operational ampli-

fier is limited-to- amaxmmm ‘voltage which can be ob-

e , tainea at the; output Above this valié, the output stage
B s:;turates. Yo help eliminate the possibility of un-
- knowingly exceeding’ the lineat. .operation range of the

ampnﬁere, most electronic dnalog computers make

e use“of indicators which signal when llmittng occurs,

~As was: pointed out in the previous section, the oper-

= ation performed hy the operational amplifier depends
" primarily upon-the input-and fecdback impedances,

The operational amplmer ‘may be considered as non-

" ideal in the sense that these' impedances may not be

as assumed. While the values of resistors and con-
densers used for these impedances are stated, the
fact that they may differ by whatever tolerance ‘has
beén assigned must be kept in mind. In addition to

the values, it is of importance to know if the com- -
That is, if a resistor

ponents are effectivély pure.
contains only resistance and a ‘capacitor only capecitive

" reactance. At the frequencies used in analog computers
- the inductive-effects of resistors are negligiblc and need
- not be cansidered. C‘apcttore, however, have a certain

amount of leakage through them 50 that an accurate

Tepresentation of a capacitor would Showa w
parsllel to represent the lukc‘e Tor )
ieakage to a negligtblo nlu, m quality coadesers

C

tetional amplmer, plue an eddmonal component- o
ermined by the magiitude ot the grtd current end )

.amplttude may become 180 great that ampnﬁers over- '

~",»~~(vt:n.zvt)w U k| ——t

i : ’ ' "
oo . I

e - gl.m.emw.e_r

are ueed tn the better enelog computere. o ’,; s L R

As wtll be shown m eection ﬁve, the gains. used: in the
operational amplifier may correspond to the coefficients -
_ of the differential equation being analyzed. Since there 3
© {8 an infinite number of possible coefficients;~an infinite - -
number of possible gains could be required. It is not . W
practical to obtain these gain variationsty varying the B
__feedback impedance, ‘since when integrating, thiswould . ~.© ...
mean & very large’ va.rtable capacttor woulé have tc-be - =T A
employed. . For the same reason it is not very practical. =~ -
to vary the input {mpedance appraciably. . Furthermore, e
if small values of input impedance were required, the S
sources of input voltage would be: exceeeively lcaded

analog computers heve provieione for meerﬁngy po- T .
" tentiometer. in the. 1nput of the operational amplitier
as shown in ftgure VIII-4 . ,

hlut'e VIII 4 Q:eratzonel Jmphfxer vuth
Potenfxontet‘ o ToaTn -

In effect the. potentiometer may be coneldered ae an
amplifier with.a gain variable-from zero-to- anity, As
‘may benoted in the figure, the fact that the grid voltage’ _ -
is always near zero effectively placea the input impe-
dance across the potentiometer as. luuetnted in ﬂgure’ :
VIII-5 . ‘v"‘:"f‘ e P )

@

) ruuu 'é’nz.s lq:uvnlent C‘Jrcmt

‘1 KR, lethet fraction-of the potentionietern,, across z,, , -
the overall gun (e ,/e.) is o b

o s g e

ce RN
s Ki—-(l x)‘”j S
From tiils expression, it is apparent that the gain ahead
of the operational amplitier is the fraction, X , of
potentiometer setting only when the input lmpedance
Js much liirger than the potentiometer ‘resistance.
‘Equation (VIiI-31) may be used to construct a family

of cnrvos relating the mcucmlmnuometer setting

to the utul potcutometer nln for vmone values
“ m < - 7

0|

<

.
\\‘
{
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‘ ln section thrn, it m pointed out that opentioml, I juis lubst!tutod for s, (vm«zs) my be sqhnhd o
amplifiers are.not ideal devices: They may be assumed lnto the mputudo and m.o oxpreuicml of (Vm-”)l S
75 "idesl, however, if the effects which make.the sroplifiers " e TN

differ from ideal can'be made negligible. In this sec- . .
‘ton, measures 'tm h minimize these effects ‘will be

Macussed a0t ‘operational amplifier may be
usedas -with a‘negligible efror in results:- 1t - | Lot AR RS
i wach steps were not taken, ‘it wold be necessalry to wiliR,\ -~ r .
“make tlmo consumin canbnuqn and eormuen com-» ‘ (‘"" ”) 6- - tan -1 (___L_t) i s e
‘. : T : S ' Equation (vm 26) mncomblned with the ﬁrst bmk-,, _
AR tho Ic voltm unplmers used vith most analog - .eted term of (VIII-23) provides the means for determin-

,;*conputors, the grid impednncc, Zg , 18 made-much r:ﬁ":tng the permissibie ra ge in' compepent valuu and
_larger than the input and Ieedback‘imp«hncu For ~.-frequency which will ke : ‘

*tha acceptable limits. ~Equation (VIII:27
the ‘sime mtormation necessary for kes
. shift Mthin nceeptable umits T

mwmamamwwwmm R |
z g::‘,: ﬁ:eampuhﬂemd 8 codrihuudbythencmd

'mitio“n (vm- 5) may be’ suiiplm,‘d to

!br any glm operational amplifier, the nrst bracketed
term of equation (VIII-23) 18 & constant, and usually
cinnot be chgnged ' the error introdnced by thia

" range in compopgnt ‘values and trequency which will"
kpop the nmpntude and ynse .errors below acceptable A

valnen. R B A »_
oper "perlormed is hitegutlon or -To dlucuss ﬂm study-stnie accuracy of operational i
dlﬂormthuon, and will introduce a phase ghift. It is ‘amplifiers when (sed as integrators, it is convenient .
assumed that the permisaible error is known, andthat = todosoin terms of the response to n‘mlt stepinput. - '}

aproblemaldcdduerminganoperaﬂngproced:re
.. which:will keep the gain and phase chiiiges within the
~accqmble Hmits. An mmhnuono!theucond term
will determine these llmita ol operatlou. -

- © = hack ﬁpﬁco i'capncitor mﬁon (Vm-”) nly bo
4.~cmartumumuon. Itcanbesbowntm' written in thc !ormol(vm- 30). -

P -y - e s Em Y -

o e

~ the oqumon cme:pou’,_ g'to (vm-u) is (vm-zs),‘ ) ‘ R ,
.y . = ; PR .‘ ot K . [ AN o
P ' L . "(-"11-30) & " W Tl

8y ‘,':_c,oi‘o,) (ifx') ——1-— I mybemucodthttﬁnmudthemﬂorm
, .y T8 Ft( ?T(T - u(vnr-n) That is, the non-ideal operational ampli-
*04 fier behaves like tholdul smplifier wmu very large

vlure m: ll the pnnllel comblnation ol the input lllil- . time lag. ,

" -pedances. 0!

Iﬂll‘: upﬁ,t;e.tmhgx 2‘;‘&:‘;‘:&3 ol; 'rhe rupoue of the: lntocraung opentioul amplifier

_voltages which may be added for any given fesdback to a unit step input, as found trom (vm-ao), is de-
- .resistor, gain, and acceptable error in tho wn-mul I ’ncribd by (vm"l) -

opontloml mpun.r, L LE .

ot o xfi- '*) for i€+ 1)u,c,~u,c,- r'
. 1n tho case of mmmson, the dw Bi'uhhd, j,

© term d}(m-a) hoeolu: that of (VIH-$8). oL rhn w h l povor uﬂu, vm-u) hku tln h

o . ; P . orm d : —

. -'(VIIL.38)" - : o '

: P mu-a) s"“""* 15' 3'5'"")/




mu..m .Q(t) . ._.L

Cav -

,,,,, ance tho ideal iutegrator would have
pn outwt of- u/th, the'term -t/2r is thit fraction by
= hich the output of & non~ideal integrator i8 in error
’5 ‘IOr t « 7. As apparent from (VINI-33), this error .

~ RyCe—product is a constant for a given oporauon,

Pmpnﬁcu with a. hrgo valuc o( L

}n thu equﬁo‘ -t “ea 18 the drift. voltage
T measured at- thc .cutput of the dc voltage amplifier
. when the !nput u
: itional amplifier consists
: and

p‘term swhick: éxists -dus to*tlio drift vottage < For
e valucs of guin, this second term reduces to”

) »«-/l)t(z,/zg)ol]ed Whueitmiynppeuthatasu!-
M AN - ficiently large gain would eliminate the effect of drift, -
A g.ltmstbormmbeudtmmedﬂftwmchmsin
Wt - rﬂwmhmtoih:dﬂltinthonr:mpdthcdc

‘ln:—wnvmaholncrmthe

I Al‘his mtion wlll discuu in detlu the proccu of in-
§erconnectin¢ ooperational amplifiers {0tk solution
' . of a set of simultaneous linear differential equations
b with constant coefficients. The essentials of the pro-
l.] . ecess involved shall be illustrated by use of an example

“1 - involving a fairly complex set of équations. . Speci-
ficaily, the equations will-be those of the longitudinal
gnouon .of an aircraft under-the control of a simple

ond:order servo motor, a perfect rate plus dis-

v gystem between tho servo motor and the control m-
. Iace deflection.— .

,' The equations of motion in quuﬂoi are i,l (oljpv!

T

©(vi1-38) S
= -0.000u_ -o osz- 32,2 - .
i (Vlgl-w-o 0831y -0. o12. “ so'w“ 25 .zs | Mertrame...
. ;t We - L ] +28. . o
! «08dlw * 7 Equations
(VI11-37) ' S
S .. §+-0.0006¥-0.0028¥ -1.036 +8. o'n
N k ( ) = Y
4y oy ¢ ,
off . Fa=135 <4000 »xl[o. x,d] ‘sorwiobr mtm :
L (vIIL-99)
' ho—t-l:-.—l- *+ !i htlol Surtace Bguation R
<

° e
vim-6 - . - o

Ce ( Tl \f the drift term takes the form (1/K).[1/(sRC )ouo.i S
* “That ia,’ thedri!tvolugo is tntqcnteduwonuthe Y

iy be made small by making v large. Since the _

< the error may be made small by using oporatlon&lm "

maL ¥ iqthenouﬂyasmallpropaﬂond 0 total output sigmal. \E
ool e showarby (VII-20), é etfect of g¥id GuFrent ia f6

P ﬁciently large value of feedback inp

.nded From (VII-34), it is =

- cussed. Though the assumption that the amplifiers
_areideal will be made, it will be noticed that the value -

SECTIQN 5- SOLUTION OF DIF!’EREN’IIAL EQUATIONS

S - futopilot. The autopilot is assumed to consist ol a
,_,,,,;,_ _placement equalizer, and » single time lag hydraulic . -

;" for which the halanco of paf:amotors is fixed. - e

;-

AR . --.‘L [

luhsoporattmtobeperlormedis&lutd tntcgrau

lnputvoltaco K o R

Since the error duo tg drm isa fmctiqn o! time, it. ls o
‘s simple matter to measure the drift of an operational -
“amplifier with no-input and note the time it tapkes to
.exceed a specifiad negiigible value. :Any solution ex- = -
_ tending beyond this time is not within the. required Coy,
accuracy. The error due to drift may be minimizsd = ' ©

- by using large amplitude signals,. Bincethedﬂftvoltage

o s

add a voltage to the output which is aprodu:tofthe grid
current and the feedback 1i nce. Though this-grid
current is small in m;llwdeslgned ampllfiers, asuf- -
\ce may add an

" current may umlly be made neglimble by restrlctlng I
. the feedback !mpedance to values of one megphm or ERRREE
lesa , s ‘ ;

In the next saction, the nse ol operational ampnﬁers ,
_{or the solution of differential- ~equations will be dis- : - =

- -of the ¢ z ‘Andvokagelonllundtead‘tomm--
mizge the undesirable effects of non—iden opontlcml '
ampuﬁers. . o

Zr— . : s wrn T

where- (All quantltios are "pex:turbed" values from L T
» a lteady-state ‘equilibrium condition. ) . - n
v uis the forward velocity of the aircraft. , PR S
~'w is the vertical velocity of the aircraft. - .- T
¥ eis the pitch angle of the aircraft, -
vis the output rotation: of the servo moto
518 the total control surface defhection. ) o
siis an input disturbance. to: the sarface. . . .-~ - =
Ky &K; are equaliser gains.
K,Is the gain between servo. motor gnd surface.

.It wlll be nouced that the three constants x,, Kg, Ky
‘have not been specified. This bas been done tc provide
a simple illustration for later use, to show how the
analog compiter may be used for synthesis. With

- these parameters available for change it is possible
to optimize the performance of the physical lymm

3 -liould be. notlcod that the equtions are written so
that the highest derivative of the principal variable
in each equation is {solated on the left side. Thll is
~ done to ucnum se‘tlnz up tha cbmputer., o

'rhe control sumce equation la an exceptlon tothis T
rule. However, the equation contains a simple time (’)
lag, and, as was stated in section VIN-32, this is most D
cmvdéubrqudwuwu}norﬂthsmﬂhl ’ . ,
RC nctwork in the tooﬁuck. /,‘ =

L

f .
. v’i

5ot + R I3



;C‘onsidn* tlw rmun{ng o! the !!ret of the: nrfrune oqua-
tlons, Expressedin words;~it says that the rate of
change of tie Quaﬁtlty uis oqunl to & linear combi- -
nation ofw, v, and 6 \\Intcrmno!mm u’

., W aad o zre “each muktiplied-by the

mu &

Cold JM,

' j’tibn, vmaz has already Jomoutrntpd thtt thalé

1! ou. ‘However, clouoacmﬂnymthtﬂnmty
!_l needed nowhore in the solution. What is really --

‘(,wantodisnthortheqmnutyn Aslnsboonmuﬁionod ,
wou in thuchqnorz lummlns ﬁ%WW my,, v

comblnod b

- :ﬁ should be noted that tMs coz:r.oction o(apptratu is
o iﬁuivalem to.writing (VIIT-35) in the form: =

(VIIL-405. fu dt. mu= f (=0, oosu-o 03&2!'-32 26 )dt
Nothingluayotbeen saida.boutwhere w and acome

- from. However, itshouldbeclearﬂnttwmechmm‘
mmwmmdmungtwproﬂercmectlm

lotiutnchquanﬁtyamﬂngutbemtntdanam-

plifier-is fod to the appropriate input, the various -

~.quantities. involved will be relatéd ag described by the
sguations. Hence; if the completely mechanized sys-
hmudllturbedlnnymuatml and'thus caused

- - toi""move, ' its motion can: only be tlnt wluch satisfies’

;ﬂbmatlm o e

“while patentiometers, input-resistors, and a fesdback
_capacitor are indicated by the diagram, their numerical

- ', . values do not appear. This will be taken care of later.

- Mwﬂlbeehmnwﬁntxdmcelyﬂngmm-
tlonllormolthemuonurulued, but also so that

‘the cootﬂctﬂhtl lnve the magmtudu occurrlngm the . =

equations.

" The Becond of the airframe eqmm- (vm-so), may
© i similarly be: symboncnny repieunted in tarml d thn
oy yappnratu&n* o _ e ’

" Pigure VHHIT. Wechanixaticn of the ¥ eqiation’
s L < SR .

o used to obtatn the corréct gﬁ.ﬁnm u,. Jor tlic
tions can be carried out by . operational-ampli=" = " *

f'l‘heamdsmttoumtym#‘ <4
interconnections of the' Ms are as shown by ‘

thimtobe@h!ervedabwtﬂmevm-ﬂiatht—~

- Were it was not ponlble to elrry ouf fln -unm
‘and the integration in = single mpuﬁa since ¥is-
.needed for usein the squation for 4.° mmuh
taput quantities liad to be summed Séyi “Albo, .

. . ly. -
-the two reversals of sign tut the sumveer snd the . h-
CM megothor (Mrllctny), thl rcﬂlt, Y

tegratcr gives +v instend of -v witlelt 1o neoded in i
8 ‘equation; Therefore stotivs atpliitér Mis 16 be"-

'rlw tlm'd nrcrut equatton of nmtton nly ln m ip

" in much the same way. -The princlpll d!!tcramn‘ is
.. that two intogrations are nqmrul

: signs
noutive stgns are used for the 3’::!! u eqnaﬁons bnt
tlb pbsitlve ‘ones: wsll,bvﬂqufnd" for the relation
-+6” smplifter wis taken off in a stde
bunch inatead of cncnd!ng ail four mylulgrs to’
r«heu the nambeér of tmpuncrs inthe cﬁain

ﬂmrd vm-or

2

Notlce tlut wia not»rdqured otnce the t&utlonal
smchmlnthrs amplifier gives rise to +0, which ..
l- uudedforfoedluhckwth urbmom‘.

hltre VIII-9. hchnrrinuon o! 8 and 3 Iqmtiom

Figire VIII-9 rebreunu the Mcttoul torm ot the
“above equitions. There still ramaine the task of puiting
the appropmte numbers lnto the mcclnnlntlon.

First it 18 uennry to selset Wm voltage
lmla,ﬁ,(a . how may voits are to corrnpord to

o
Wy

vI-7

¥
.,L “ n

»lot‘up, IM“M —e




o By hypothutﬁ; x, and K. lro :
LT s ummodtobetsynthssispfobhm 3£ 68 . -
--—;:..ﬁnding values for suitable response of the system, .
“Thic means that thm two coefficients would hive o -
be-determinad experimentally by trial of various com- .
~ ‘bindtions of reailtorl and poténtionieter settings in‘d
. observation of the transients occurring in réspouse to

vamms m_puts of interest. In this, the letui

o

"""ldtbl\liﬂfof ¥ 5

. . ) §

R S

: e ' oy S © @« -0;009u - 0.0362w- 32,20 o
T o e ST . #=-0,0821u- 0,6127+ 8075+ 25,28 . S |

: o T R S 5--oooooi-ooom--1oséonvn Fre
. e T b ‘ &. -12& - 4000 ¢+ Ki(0¢ K - , K ,
== =l 7 - wote:” Pill_scale of potentioweters. - &_’_'_‘.1 T
. : L bes Been uu—d to be 1000. ER TR ey , ‘

. . .‘4,“" . . . n N . N . § . - L -~ ,», ’. ‘- ' .

o0 " . - T

ol

S - Figure VII1-12. Analog Computer Setup R



fe«‘g"(,‘ﬂ-

ST

Ko -

2 ‘“hack capacltance (ms Ie pre!erable to a megohm and

o Itis of great 1mportance to notice, however, that
* than i the guin were all taken at the input to the first
T inputto; output of the o amplifier would not have been"

S I!one volt 13 phced at the input of the -8ign cha,nger,

-' and the potonuometer eettings, {gter theee were -

\'l i

- 'A;ﬁowever, there is enot!m' wob&m 'I‘he gain from o o
., +$ 18400; that 48, 35/3= 400; and while gains of 100
.; ~OF; eoncross ¥

. single’ aperationa amplifier aye practl- ...
cable if the amplifier is a good one, 400 is. definitely

*s'mgach too high. This.disposes of the obvious solution

“mlking O 10“

fnrads, It, :2500 o.‘une 80 that

'rlue gntn does not all have to be taken at the input

. 7o to the circuitry, ‘however, . It makes no difference
1t paﬂdthemistakenﬂnue, and-the'Test in passing

ot | through the other amplifiers in the cascaded chain,

= -‘/‘ ) 1@ = 9‘@ Mﬁ ‘ohmas

A ,":.-‘. P .S . v-nuew,

aln o;} 1"" plek

i i and: its Ieedba..,k resistor a megohm,

; ;voltage gain‘ of ten-results at this point, = A furthér
gain of 10 rnay be taken in the last integrator by using
0.1 megohm input resistor and a microfarad feed-.

is 400 as it should be

‘something essentially different has. beeri done here

4nt In the latter ‘cage, the: voltage level from

:eha.nged In the:way the gain was actually taken, the
A,voltage levelv hu been_ aised’ wlce, as shown in the-

for example, and thiz represents one unit of ¢, then

" the ten volts resulting at the output of that amplifier
- -can still represent only that one unit of the physical

quantity &; and hence the voltage level, the number of
‘volts/unit of & o, has been changed. It is essential to. B
bear this concept in mind when the voltage represent- -

- ing o is used.as in the 3 equation here;: as it is neces-

0.+ sary to know the o-Voltage level so that the gain into

the next equatton may be properly calc\‘rlated

“.The gain 37/% requlres no particular effort; a gain of
" 20 may be taken at this input by using a 50 000 ohm
resistor, and setting the associated potentiometer for
" 600. (uncorrected) : ’

<

As was shown in: eection vm-z the RC product ;here

: 'rhe gain 38/aa x. 1n the next eqution te 3;3!;1 not

known. The voltige level of 3 may arbitrarily be~
~taken as 1, 000 volt per unit which is convenient for
teedtncuntothe vandeequadone, nndx ulthnately

calculated on this basis: : S N

It remains only to determ&ne the teeaaeck reeutor and:
:~cnpncitorinthe 5 eqoaﬁonsothatﬂxetimehghuthe—
~ ‘right magnitude to complete the mechgnizntion of the

A__equations (vm-as) through (vm‘- ) S v

" must be the value of the lag, 0.1 sec. in this case,

- sistor, and a 0,1 mfd capacitor.

ther. a ::ff“““the'

This 1 easily ‘obtained by using, say, 2 megohm re- .
As has beern pre-
wviocusly remarked, thiz car. be 2.good parer cos

 not requtred for use in time leg circultry

= Figure VIII-lz ehows the complete diagram for the
mechanization of the equations undér consideration.

Al 'numbers are included except those to be. deter-

t As a syntheeis problem, the one here coneidered 13'

k also lntegratore are 1n ea edby

' mined'by the synthesis; those not computed above may

easily be veriﬂed ifitis deslred to do 80,

This diagram has been drawn on the basis that au"'

stanees are one megohm and ali capacitanceé one’
7 ing

. 1 Illfd 1o s " i‘:l}. P, B

very simple. However, if it were desired to do more
- than merely fix certain gains, ‘that is, if it were desired.
to investigate the effects of various additional lags or
to introduce other types of control, it 15 easy to see

thattheeecanbetntrod:cedintothecomp\uerbymtro- -

ducing new apparatus and interconnecting it properly. :

i

Another interesting and: important aspect of such prob-

"“lems is to déetermine the effects of certain non-linear-
itles, such as Coulomb friction or limiting, upon the.

‘ belnv‘or of the system. The machine means of repre-

senting such discontinuities will be the subject of the
next and ﬁnal section of this chaner ,

BECTION 6 SDIULATIW OF NON-LINEARITIES

e =

@ m'rnonucnon TR

In‘the prevlous eectione of this clnpter, ic. m shown
_ how the electronic operational amplifier could be used
to obtain the sclution of linear: differential equations

¢ with tonstant coefficlents. As was pointed out in chap-

ter N1, real physical systems may not be nccurntely
deecrlbed by this type of equntion because of non- o
unenrltiel wlnch nny exut 'l‘hll section will dllcnu

‘ vm-m

"

" methods by which it is possible to introduce these

non-linearities in the analog computer for mare accurate

‘ representation et physical systems,

Since the simulation of non-linearities in the analog
computer makes frequént use cf the diode or polarized
_relay, abrief discussion of the general properties of
-, these devices will aid the \mderetnndlng of the circuite
“to be dlscuued

iigh-qualily polysiyrene: type needed for mtegraﬁon .

o | wirmmeea




=z =7 for currents flowing in the opposlte direction,. The
~. . non-ideal diodes possess neither:of these:features,
" .. In'figure VII-1$ typical characteriatic curves are -
* - shown for non-ideal diodes. The’ ‘reciprocal of the

" .- Blopes of these curves have the units of resistance ,

- A8 shown by the’ relatively small- slope for negative - -

large in value As e incrmee through zero and as-
“sumes positive values, the slq)e of the curve lmreuee,

T g “and the corresponding resistance decreases. For still

T . larger values of e, the slope becomes relatively con-
‘ ‘ etant and determlnee the loweot reslptence a dlode

PR e MG
) N " [ N ‘

R

‘l'lot ce.tliode Diode Crystal Dtode

Fxﬂure VIIL-I." Diode Cborlcteristzce . e

, ,,"l‘he polarized relays, a8 used in computation, are
- very sensitive devices. When no voltage is applied
" to the electromagnet,” the armature is in 4 neutral
" position. When.a voltage is.applied to the electro-

magnet, the. n-mature closes either of two pggolble

- ~ contacts: deponcllng upon the polorlty of the voltage
e e.ppnod

ey~ Veloclty
" 'e,~ Force (-" T
E ~ Coulomb Prictlon
l?orce ‘\ s

8y wmp

o€

s "‘wo Vil1-14, S.i-uauon of w hktu
o : _with Mluﬂ [ >y~ °

L TT

0 .

e ldeal dlode le a de ,ce whlch wlll bohave llke 2 )
- Tresistor of gero fesistance for currents flowing in’ o
- "ope direction, and a resistor of infinite resistance ;i .
" a device which will accept a voltage-(representing
‘velocity) and deliver a ‘constant voltage (representing-

. and B applted»to«the xelay*contact&az&t}!&mltagﬁ&“'
A whlch tepresent ‘the. coulomb friction force. '

' Aln ﬁgure Vm-15 the representatlon'ot cgul
L ational ampliﬁers R

' ‘For zero output voltage the dtodes are biased': y ¢

= the baftery (B) and the resistors (®) form a m'brlilge,'

" have twice the bias it @
- lua zero bias. An)

i h | ittt i b e i e e it
A e e

(b) COULOMB FRICTION

uu_ ,—/A.-——av..

3 To elmulate coulomb trtctlon, it is necessary to have

—Horce), which will reverse:in polarity when the voltage

i repreeentlng velocity is reversed

-;:;'rhe polarized relay could bé used alone to do thls, e
“values of e, the resistance of the diode  R,) 18 quite - -
. be relatively large beiore the contacts would close

‘bt the voltage repreeentlng velocity would haveto ~

in one direction or the other, 'r “overcome this diffi- -
culty, a high gain amplifier i. used in_ conjunctton
‘with the relay as shown in figure VIII-14. With the
aid of this amplifier, the relay contacts close at 2"
very small value of input voltage. The' wvoltages E; -

12 ‘ed-‘cllodééf

battery (8 .so that both diodes represent yery hlgh

resistances and eﬂecttvellgpen the ci

the voltage at point a equals. the yoltage-at point b

!‘or an output. voltage equal to one-half the bettery
es

Figure VIII.15. ‘Simulition of Coulomb Fnctxon S
with ondel

reeulte in the condnctlou or lowered resistance of
one of the diodes. Since this diode {s in series with
R, and the combination in parallel with the feedback
reelstor, the effect of a conducting diode is to lower
the operational amplifier gain.’ This reduction in

. gain prevents the rise in outpv: voitage which would

normally be associated with a given rise in input volt-
sge. Asa result of the changing diode resistance and
reduction of amplifier gain, the output voltage remains

constant. High gain amplifiers are used

.oauotlally
.;*'hllodmmthomrmuvlththe ,ohrued

relay sircuit.

,‘,.-
i

V-1l



' é;’wi’osition
~Poreex .~
E f o Preloud .

Figure VIIT-17. Sinulation of Threahol

B {e) LIMITING m

A slmple method of simulating llmiting is skown in
figure VIII-18. When R is small relative to the input
impedance of the following stage, but stul large com-
pared to the resistance of a/conduc ‘

put voltzge will be th“

the output voltage

€ simulation of threshold may be accomplished (¥4} HYSTERESIS

3 lirougha éircait stinilar to that of figure VII-17,
#° ' Asshown by this figure, the diodes are non-conduct- The circuit of ﬁgure VII-=19 may be used to simulateA
¥ e mg (very ‘high resistance) when the input voltageé is hysteresis. As an-aid in understanding the opezation
) zero. For input voltages exceeding the bias voltage, of this-circuit, it may be recalled that the grid voltage
" -one of the diodes conducts (lowered resistance) and the of an pperaﬁonal amplifier is effectively zero. As may
output ‘voltage becomes R,/ R+ R+ R ] (e;-€) . In be seen by the figure, any positive ‘input voltage large
“ this circuit, R, must be small compared to R;. Since enmgh to cause one of the diodes to conduct will charge
" theé output of the diode circuit will interact with the the condenser, C;, to a value equal to the input voltage
: input of the following-operationzl amplifier, - the thres- minus or.e~half the bias battery voltage. As the input
* hold ¢ircuit must be connected to the circuit with which voltage begins to decrease, ¢; will maintain the voltage

it 1s to operate when calibrating. ) at polni (A at a constant value until the input voltage

c
—i

. TR - F—

T T e s S ‘e, and e, ~ Position or Voltage
., and e, ~ Position, Kl

.‘1 Velocity. Acceleratior
or librce - )

"‘
e

hgm virz-1s, sug.ugn of Linifing~ = Figure VIII:19. Siaulation of Hysteresia
vm-lz o e
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co el e ame st e e b e o s s LD e e e e et oo S S —
L e CI RSP ah) - o (R P 0y

S Cmﬂ” 4

hu been, red;co@ tmﬂlclently to cause the thx dlodo
“to conduct. When this.second diode conducts, ¢, msa
voltage equal to the input voltage plus the bias voltage ..
. Thie feedback impedancé of the operational mplmor e
7. "is'made a capacitive reactance to prevént differen- -
R \ tiation due to the fact that the lnput hapidnco is s
D8 pgcitlve reactnnce.

dlsconttnuou«s non-llnearlties. ‘n flguro vmego tho
- visse of dlodes to approximate a smooth curve by straight
lines is illustrated. This circuit is similar to figure
“VII-15, The-difference in this case lies in the re-
'_sistaiices placed in series with each diode.
TeBistors pernit the chﬁgmg -0t the- Ve o -
““back imipedance in steps. ~The diodes serve to switch -
‘in-each resistor when the output voluge roaclus &
certain value,

-The circults described above Are not necuurlly the

"_best ones for the particular non-linearities simulated. .

~They are circuits which have been used; and serve to

show how a few auxiuary“ componenta cln be used to
: ity

The following blbllognphy is included for rdcronce. 'rhc list is in no sense com= .
Plete, but contains the major scurce: material for-this chapter. Many of the ref-
) erences, themselves, cOntaln much more complete o.nd detalled blbllographles

. ‘Analog coq)uters for Servo Problems,’ by D. Iooonld' 'llw iovlw ot Scientinc
CUE Instrunet:s. Vol. 21, Wo. 2, Pebruary, 1950

‘Lineax- Electronic Annloc ‘Computer Design,’ by c. A lonoley and c D.. Iorrill
‘Goodyear Aircraft Corp., Akrom, ohic,

3. ‘Cowputer Applications to Pilotless Alrcraft stwu. mrt nam_z Good.ve‘or‘ o
. Adroratt o, Mkrob, Ohdo, 10 April 1961, |

4. Rlectronie Analog oo-putm. Yy A lon -n T N lorn. ueom-mn m
T York, 1982 . ,

mde - . - LTl < -
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Table A-1. Relationship Asong System Parameters and Equation Coefficients for Second Order System

a,[(d2x)/(dt2)]+a; [(dx)/(dt))ra,x = 0
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_chaysetedastic gquation (the cian wileristic syoaation ia

N ’!;v.xm-‘.'.;hu.xx..«mw*”;}e‘ﬂ'f,%mﬁ T o sty

1

_set eqeal to vera). AS was joks
" .body of the jext, most of the pe. hods awailable Lo
.- find reots are tedisus and are gontt ‘ol whes gnssilis,

- However sorie /imple casss may & 3¢ ,
- in this way, ant for this reason #t &5
. cussion is prese.ted. ‘ -

" “The problem is: CGiven the equatica,

e N

@trvanyfer Panetion

the denomi ktor polynomizi of 8
2d out si tee main

¥

vely- i

AT AP a,zhle e zea = 8
. A i nwl 3

ndl thé vilues of 2z fof which the equation is satisfied,

~when the a,(i«1,2,3,., ) are known real gicutities.

1t can be proved rigoro.sly that the destved ~oots

are never anything othér tAam complex nuzabers, with
real numbers considered special cases. of copplax
Y

... numbers. - , ‘ :

Tt is & matter of common experience fhat real rools "
- are much more easily locatec than %re the complex

-ones; it is also true that some o the methods for find-

~ ing all of the raots tend to work 6wt considerably better

when the equation has only complrx roots. 4 logieal
procedure is then:
.1, Determine real roots and remove them from
¢hararjeristic eguation.
2. Determaiie complex roots from remainder.

Standard graghical and numerical methods for doing
 this aj'e well known, #uch as the Newton-Raphson
- methad, Horner's method, and the so-called "method
~ of false position. " For those wishing to study these

in detail, standard references* provide-amgie material.
They all depend, however, on first obtaining at least

- a.rough approximation to a real root, and then im-

ugh ‘
proving the approximation. This can be dope to any
degree of accuracy desired, by these methot.,

In the general case, there is nc information ahoat the
characteristic equation to indicate if there are any
real roots. 'The initial step is to obtain some in-

- formation on this point. A method due to J.C. F.

Sturm, a French mathematician of the early nineteea-
th century , which determines if an equation has rezi
roots,will now be presented. The method may be
stated rather simply and is presented here without
proof. : : ¥

Let the charactexistic equation be
P(z)= az™+ azh*tieen = ¢
From the given P(), a s:equence of functions i derived
as foliows:
‘The first Stirm function, referred to as that of zero

* Willers, Dr. F.A,, Practical Analysis, Dover, N.Y, 1048
Milne, W.E., Numerical Calculvs, Princeton U. Press,
, ‘Princeton, N.J., 1948
Scurborough, J.B., WNumeical Mathenatical Amilysis
The John llopkins Press, Baltimore, Wd. 1930

At £ b Mt b et e+ e e e

oned.

- Appendix
A t} .

- 8ét

(ﬁ'de:ﬁ, is P’S},‘) usﬁ},f: Rl
{4 1-2) 5, n D) .

i [

The second Sturm funetjon:
vegpest to. 4, dp/dz, ,

wis) sl |
The third Sturm function is derived from 8, and 8., a§
follows: Divide %, bys; ; the result will be a quotient
Q and a remainder &, ; the latter will be of ‘degree
n-2. The quotient is of no further use in the process,

and is discarded. - The remdinder, . with changed.algg: .

braic sign, is S,. In symbols, A
then; S R

(A 1-4)

Bo'Si* Q4+ (Ri/8y) -

By = Ry

The further Sturm functions of the Seqﬁe$ce are obs
tained by using the foilowing formula: 5%-1 . o, ®& 5
\s‘

: T
S

and the definition

(4 1-5) Syn Ry

" that is, by repetitiqns- of the general procéss giving R, .

&.uce the degree of each successive Sturm functior: is
oue less than that of the preceding one, the process
will findlly end with an §, whick is a constant, net
dependent npon =. ‘ o o
The whole sequenceof ‘Sturm fusictions for Py is
thes . . ' e ‘

w 7-6) - coL T

SD ER-ALEY alzn" Tiee 4+8p.1%+ 8p

Sy»n2" Le(n-1)812" 2o e esBay . u+ 8y, . :
‘ n-1ya, 2| (-2 -..

R - S___._..l._ w2 . 1 B0 = st &1ELY] gl
S = 282 T 151 Y ,l

1, 28i%a- 4] . i frlngt
. meeempl(ned)ag. - Eiond ,,,;n!n,an e

Sn =K
where ¥, of course, is a constant.

The location of the real xoots of P(%) is £ ¢n carried
out by applying the following rules

If it is desired to detersming tie number of real roots.
of P(2)= 0 lying between the (real) values a and b of
z , evaluate euch of the functions 8,(a),S,(#), ...K;and
Sy(b* &,(bY,...,K. The number of real roots between
= and b,is then the difference in the number of changes
of sign betwern the two Sequences of functions.

It is to be noted that since only the algebraic sigas of
the functions of the two sequences is of interest in this
rule, the arithmetlic used in establishing what the
* Sequences are can.be considerably simplified. Any
function of the sequence (A I-6), for example, can
be divided through by any positive constant which will

A-85




Lo i

b N 'v *he work easier, Tnstead of using Syas 1t slands
S o T ), ibmdy be divided through by n to facilitate
Ji cmpaﬁaﬁm.

" “The rule makes it very easy to setile the gusstion
:  of whether F(2) has apy real roots or not, In this
. - cage, the constants o and b may be taken as+@ gud
2 . esmaaﬁvely, and the evaluation of the functions
wd . oft aa Sequences ia then simply 4 matier of inspection

- v, of the algebraic gign of theterme of highest degree in
O R ‘z - If theSx have tWo chitgus-of sign for zx +x and
, . four changes of signfor z=-®, then, by-the rule, there.
‘ol  areemsilytwo rwl roots of the cha.raaz;emstic equation
{ .- Bl2) = 0. S

S | = shc"“ aisa be menuaned that the preﬂence of positive
- real rootg mmay be determined very easily by this
ethod. Inihis case, the functions are o be evaluaied
=97 forzs +o and z=0, The fofmer gives Simpiy the
a4 7 - algebraic sign of the termis of highest degree, a8 before;
- and the latter, that of the constant ternis: examination
... of this range of ihe variable can ti«en also be carried
o out by inspection.

N L

e

-, ey

T Y

s

. {;‘r;e use of the Sturm functions can bhe extended to the
L rocess of geftinginitial approximate valiug of the

.. roots for refinement by one of the standard mathods.
‘The a and b used above ir the rule ave any real mupbers
“at-all, and by taking trial values of these, the Sturm
-process can be used to locate ranges of any &ize at
“all in which roots must lie, Theoretically, the Sturin
functions can be used to locate the roots with any ac-

o . curaey desired; howeyver, the computational work
. - -involved in thejr use fox, %ﬁm plizdiose is canszdera’sxy
greater than for more usual technigues, and their
‘greatest utility is achieved in merely determmmg
fairly broad ranges of values in which the roots must

lie.

AT

..”,"a

IS

e ks i

An important exception to the use of these functions
‘ must now be noted; the Sturm functions wiil always
4 ! do the jcb they are supposed to, when they exist; how-
¥ .. ever, if S, contains higher order roots, it will be
‘[~ found that the result of the first division, S,/5;, has
~ no remdinder. In this case, the process does not
- apply. There are ways of avmdmg this, but in controls
work the case of multiple joots of P(z) oceurs so
seldom that they are not worth considering here.

I

Tor the sakeof illustration, a numerieal application. of
Sturm functions now follows; consider the characteristic
equation;

(A X.7) 28~ 25~ 14zt- 20+ 2525 4 38z +24 = 0

The corresponding Séquence of Sturm: functions may
be ccmpt.tod as:
(A18) S5= 2%+ b= tdnte zB+ 2527+ B8zv 24
5= 25+ 0,8882%- 9,3832% - 0.52%+ 8.338%+ 6.333
— el g 2t 0.42878 - 3, 4502 ~ 6,879~ 5,214
s4= 2%+ 0.3802%~ 0,910z~ 0.045 ‘
‘wfzh PRI -y S S
8= -zw 1561 R
s-(i‘qéi b ‘

A-56
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_obtained initially as their correct values, but as tie

The informatwﬂ obinigable from thege, in; gecordance y
with the rulg ,gwen above, i,; mgst indwa‘keﬂd m tabu!ar oo

T Nmber ‘
B sign‘changes

Bl

Sp b1 Bn Sg By S‘f,ﬁ‘g
B 0% o+ % ¢ +x-”7—‘-‘

0 £ AE o XK e R

ey -

«&) -‘-x,-,- +K"‘K’f +x~i:

The crosses have been placed. betwenn the signs of the
funetions of the sequences to indicate where the sign
changes egour,

-

It 15 seen that thersig a d4iff iference of iouy cbazages of
sign between -wand+o; the conclusion ig that the given i
P(z) has exactly four real roots; since there Bed] U
differences in changes of sign of tr‘m bétween =# and- -
8, and two between 0 and +o, there zre fwo positive’
and two negative real roots. Actually, this eguation
was arrived at by multzp.»ymg out the expression:

(84 1) (8- 2)(S#+ 3)(S~ 4) (S2+ S¢ 1) -; it may besdéin
th.,a* this bas exacily the distribution of roots- predﬁctédr
by the Sturm fanction process.

Once the total smmber of real roots, and thelr approzi~

mate locations ave known, ‘any of the standard methods
may e any.zeé to obfain etted approxim dtions to the
roots. Wheii thesa h&w i carried out to whatever
decuraey is desired, ‘the degree of the equation may
‘then Le successively decreased by one bv dtvidinv out
¢ach, of these roots.

The process of synthetic divisics is particulariy recom-
mended in this determination of the real mot&' Hrisa
roct of the equatzon, synthetic division by if le Laves the
remainder %ero, and the partial quoti¢nts are the
coeffitienits of the “equation.of next lower nﬂgree. i
r 18 not an éxact root (to {hat order of Approximation
deswed) the last figere resulting from the division is
the remajnder, and may Ye used as a msdsure of how
faf away from the true root is the approximation which
1as just been triad, A closer spproximation can then
be obtained by any of the gtandard rfethods, and the
division repeated with the  new trial divisor. ,
When all the real roots have been removed, not all the T
factors of the original equation may be accounted for,
It is then necessary to have a process which will extract
complex roots. Several methods for this purpose are
in more or less frequent use; of these, the most comimon
and best seem to be Graeffe’s root squarmg method, -
and Lin's method. ‘

Graeffe's method suffers from certain defects not
fzund in some of the others., In the first place, the
aumerical work ihvolved is not of an iterative nature,
so that an error incomputation makes all the rest of
the application of thé process worthless. It ig thus
essential to chesk &1l roots obtained by stibstitution
into the original equation. Also, the roots are not

second, fourth, or some hishar even power of the
roots of the original equation, This means that it
is necessary to extract the square, fourth, ...,
{27\ th root of the complev number which the Graeffe
meth6d gives. This gives rise to additional possibilities




T A Sy T Ve

of error in the computations,” For these riasons, s
well as the fact that the process is rather fommenly

knoym, this method will not be- discussed fu’t:&her here. ..
‘In thz.s pmcesa, ‘the rematnder hag no use bit to gerve;

f.,i—i‘ s method is prqba‘oly the most ysable of all the

" present processes for the extraction of complex ronts..

It takes out the roois as quadeatic factors; since each
pair of complax reats gives rise fo one such facior,

u may be said to yleld the roois them&elves directiy,

in a form requiring only the application of the dratie

formula, It has the further advantage that isne com-

putation is iterdtive; errors tend to Slow down the work,

- but do not absoligtely prevent gettmg the correct final-

“esu’;t.

'H- mnﬁg‘nnu 4wnm what ugnnum& to ha tha. Copamon defaot

W wAnN A

of all present methads of accomplishing the same end;
if two 1 pairs of comniex roots are very nearly equal in
magnnucle the process converges slowly, and may .
‘need many repetitions of its basic procedure before a
Sufficiently 2ccurate resilt can be obtained, It is also
tyne that in some rare cases Lin's method diverges
“Father than converges. ‘The ¢onditions undér which
this may oceeur are not fully undepstood; it happens
only very seldom, ia ~.> ~vent, and is practically
always cbviated by taking out s.. real roots first,

Es%m.ilahy, Lin's method is this: The last three
terms of 2 polynomial are used as a first approxi-
~mationto a quadratie factor. The pal:momial is divided
by the first approximation. The result is a quotient
and. a anmden

. D4

At

Fextam cveﬂicie*zts in the ouotient are used ta get a
new !riax diwso; from the old oné,

as a measure of the closeness of the approximation to,

" the coryect value, The method is repeated until the’

;‘remainder is within gome as&gn@d lirait of approxi-'

-occurs, it inm

-~ “mation; or, antil it remains of the same magnitt.de

——iwoe

after geveral repetitions of the process. If this izst.
tes that the result is as accurafe am
can be attatned with the number of- digits used 1n thm,
ceetfzci ents '

4
E3

. It should be noted heré that the ;Eirst- eyele of Linig:

PLOCESS glves an approxxmate factorization of the;
i t’hﬁ» cosfficients are literal ﬁgv f;rqf ’

) TEY Tariibaiie w2 LeBnl,

cyc},e is all that itis practica‘ble to.use, However, in

‘praetxhai sﬁuaﬁons as in the case of the tab' m,'

<exuelh=ntly

‘ Figufe A §-1 shows the appiicaiion of the first cjclé of

Lin's method to a general cage. This iilustration shows
how the first trial divisor 1§ obtaiited from the quadiatic
termms of the polynomial, in line (2); it also illusirates
the notation used in ihe quoﬁxeut and shows in line (4).
how the next trial divisor i5-obtaited fror the anpropri-
atz terms of the quot1ent and dividend. The subsequent

trial divisors are obtaingd in & similar manner. .

v "If the polymmial Being investigated has a pair of com- N

‘ ,zlex roots of very nearly egual magmtude. the- con- -

T ¢ ¢ : ;
€2y - -
x a, "y - . - .
: 8z - ¢
‘ . (3) Z.’%’:d-il)'zf_dg‘l)‘) Z=+a, 1Zn"1+ LB azzzﬂi- 8y z+ 8, AzB5%+ (a, .‘-da))z"' N
. .z[l _‘_dfl) &u' W R I '\F q(l)z +q(!)z+ qél)
(au -d(il)zn‘ l.p . e o ‘ o
(8, -d“))z~- e i)
¥ i —_—
 xemainder
1
; L

Figure AI-1. Lin's Method for t&p C«;r;giglex Roots of a Pclynoinia.l

A-B7
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Apx)endix ] .‘ ‘, i - 7‘ ) - . ‘ 7 ) ‘u o - L el s ”l't-“;
‘ 'Beetion Af[ i, '

3.!}@9

ﬁ87o+0825)1 0 oo
= o

peo + 7 GQG + p.,QO
+ 3

8.

0.625

7 75 + 7.000
59 ~ lc39~ﬂ

.).67

&
hERd

Mﬁg“z“s = 1 8!
5 5451
- ~5.a

6 +
16

.mf
(+

At

G =~ 2.125
o q,r = 5,518
L 2.981
* $9.426956 |

- 0.9?0

1+u.060+8000+'7000+v.000
. o 1~'-*0 920 - ©.905.
B ern Dam e s L, 2.080 + 7.094 + 7,000 : o
LS5 ) 2,080 ~.1,914 - 1.884 ‘
- . T B0+
st , B 1@0,- 4,766~ 4. 693
s wr: H0.350 4.0, 307
- (7) €5, 180) = (5) (2 080) S A
LB, 18088 o o

TR e

=.25.86
26,8324 -

"_5_- B
18 0 65

Q 964

1+ 3.000+ 8,000 + 7,000 +*5.‘ob6’ ‘

{1 +72.080 + 5,180

5.116 +5ooo‘_

PR

(1‘2036+5072

PRI I - 0.964 - 0.985 S
T ‘ 2,636 F 7.085 + 7.000
ST 2% - 1963 - 1.965 _ _
5 S ' Yy 5.0‘1.2‘ +5.035 + 5.600 T T v e )
g : = 5:072 + 4:880 - 4,894 . A
. T 0.146 ¥ . 106 - “ -
C dy = D (5.012) - (5) (2;036) < ¢
. (5.072)2 s A
N . 25.3%4 Lo L -
25,745184 AG -984 ‘ L f
45 = 5.072 T~ OO ‘ . : -
- g ~r R L. R
+ 0.984+ 1+ 3.000 + 8,000 CU(L + 2,016 +5.030
1+ 0.98% csss,‘ 084 = 5 000 |
2.016 ¥ 7,014+ 7.000
- 1,984 - 1,988 .
5.030 ¥ 5,012 + 5,000
.= 43950 * 4.960
) 0.062 + 0,040
a, = (7 _(5.G80) - {5) (2.016)
! (ERE LI
. 25,130 e
_ 25.3009
, f = 0,902
d, =5 _ = 0,09
° “g.g3 = 0499
1+ 0,593 # 0,994) 1% 3,000 + £.000 (1 + 2,007 ¥ 5.013)
© T 2,007 ¥7.005 ¥ 7.000 D ,
= 1,993 ~ 1,945
"5.013 + 5.005 + 5,000
- 4.978 - 4,983
0,827 ¥ 0,017
igure AT - Example 5f i._z“ﬁf"s ‘Iet;‘zad" ) ?
A-g};
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“yergente depends Gerectly vpon the relafive magnitudes

.- . of the rogts /For this regsth, when the Process appears
~ " to be golng too slowly, it iz worth while to subject the
" polynomial to 2 transformstion-which will increase dif~
.. lerences in magnitudes of the ronts, Graeffo's method

= miay B usedd for this, If there is any appreciable gepa~

ration in the size of the rocts, squaring thes ofice or

= e Fotiine will glvo o teansformed Equation for whith Lin's

-Progess will eunrorge with satisfactory rapidily, Asz
~matter of fact, the rootsares yusually far enotigh apart in
* the eguations miet with in controls work so that it is
* peldgm riecessiry to tFanstorm the polynomial in this
way. C

-As a numerical exempie, the location of the roots of

T B8 (B e 1) n 2 855 G2y 500 will

be 0] faimd from a. k:gOWiéﬂge of the unfactoréd form.

“In déaling with stability problemsi cine‘bfﬁsmiinbas,hgs
¢ decide if the rosis of a given dlgebraic eguation of
“nth. degree; suchas - R R

u(f‘ H-‘I); aaz“ + aiz"‘ S ‘aﬁ;-i'zb" &, = 0 7 '
_all have negative réal parts. The coefficients
T Ageses 8y - Areireal nuiibers, N :
A general criterion given by Hurwitz is that the n de-
- terminants:
A 2y
o Dy=a;; D,=|a;, a,l;
Tl B Bg

1233 2y 2y
85 24 ug)

-8y . &g o « » . O
: as ag ay * « « 0
Lo e ‘Di_l.-—_ as '3*4 873 o .“ . -

182n-1 Bzn-z 8gnege s o o8y
'must all be positive. The cosificient &, must be
positive or must be made positive (by multiplying
the equation by -1}, o ' ’

Thig stability eriterion results ix simple rules for
quadratic, cubic and fourth order equations

For the above three types of eqhé.ii}mé the rule ,s:ta.tes"
that aill coefficients must be posifive. In addition;
for the cubic equation : s
(4 II-3) a,2% + a,22 *a,Z+aZ0 o
tizere 1 the:dondition that

For the &quation of fourth degree

CII:55 7 moe B ot g
bR IS agzhe et 802% ¢ 8,7+ a, -0

Figure A 12 shows the necessary work, |

Vs procese des
he quadratic factors with erxoxs of lens -
than 1% in their coefficients. S

It will be naﬁé&d_ﬁ.ﬂ‘:a&ifeuz’ cyé&,es
termines the

the rgots of the factors are 1 and

be geen that the ratio of the magni~ -
tudes 1= not very mueh grester than unt
the convergence of the pi

' The magnitudes of
VBl 2,24, Trwill

ceess is fairly rapld,

Detached coefficients have been used in the working
out of this example to shorten the
‘practice in applying the method will enabis ona to
- Slmplify it still further by omitting the Weiting of
' § numbers occurring in the process, ,
1t was felt that the whole work should be shown here
to facﬂitate-chgpldhg one's understanding of
- S T

process, A Jittle

the process.

SECTION A It ~ THE ROUTH-HURWIZZ STABILITY CRITERION

_the additional condition is that
ﬂg.(‘-&l&z-‘- aoaa) L 8,12 a_4,> 0

For equations of hi

‘ gher degree than the Tourth ail
the determinints -

: (A 11-2) must be fornmed andthe
value of each must be tested for its sign. = .

Another, more general exiterion, the Routh driterion,
is givenin chapter VII, section 8, of "rransients in
Linear Systems" by Gardner and Barnes, Tri 8
to indicating instability it also discloses fie nu
of roots with positive real parts as well &5 the number
of purely imaginary rodts. - '

As an example of application of thé above stability
be required to investigate the siability
of the motion of the pendulury shown below {z2e figure
A B-1). The pendulim is rotated about its axis o-o
¥ o rad./sec.; it is deflec

criterion let

at ian angular velocit ,
Iaterally thru a small angle a; will

, ; this angulaz
flection die out, or will it diverge?: '- 7

AN\

R

Figure 4 IT-1. Pendulum (Stability)

It; is assumed that o is constant; that the mass of the
- pendulum is concentrated in the bob, ¢ ; and that the
ateral motion is opposed by viscous friction,
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Section, A XX

™7 “The equation of motion ¢f this system 1s¢ N

W éfé'jzn is the damping coeificient; g is the gﬁm.,,

' “taticnal acceleration constant, Assuming a solution
; 1ts the equation

. 6f‘(f}.?;»’fn“-i’?)., of theform &« est thers.resu

e o IS ~

ey

" "’~" ‘ - " .‘ ' - ‘. ‘-. P
eI § Suam e fute (Fr o) -
7 oo AT pN s W :

e

%_ ‘(X*ﬁré#«ﬁ"e{i@»ﬁsﬁé‘ fgr the understandiang of this section

" 18 a working Fnowledge of the elements of the theory

- of complex wibers. This includes the properties. of

~o . compiex numbers, the various ways of representing
o them algebraically and graphically; and the fundz-

T -omental oparations of addition, ‘subtraction,, multipl{-

_catlon, divieicy, evolution and involutios of complex

“nunibers,] R :

ONTENTS.OF THIS SECTION

ri¥s seciion infrotiuces the concept of functions of
- eomplex varisbles; it definés analyiic functions and
sgusses some of their properties; it introduces the
plex w-plane, in wiieh functions w of the complex
ble = are plofied; 3 discusses poles and zeros of
My 1t deals with the kine integraliof v *

The mrfte‘ri’al presented here is‘a useful tool ini the
;. =Study of various technital Subjects, especially in the
7 study ot electrical circuits and of certain phages of

et <Rl il

Servomechanism Theory, — °

- “INTRODUCTION OF ¥(z), A FUNCTION OF THE
SVARIABLE 2. T |

Létzbea complex number 7« % + iy. Whep y =0, 2
- .becomes-real, Thus real nyehers may te considered
' =2 sggial case of complex numbers,

‘The function y = £(x) of the real variable x ivay be
" represented as a curve in theRy-plane. The value
of .y which corresponds to a given x is found on the
same horizontal line 48 the pgint on thi«: carve which

o~ P2 Rl g

e
)
R
g
&

Figure ,‘1 III.1. ‘Real Bawttion

¥ 7 iy used s¥ the symboi‘f;\ffgi“ 8 complex ntmber {ip=
. Stead of 5 asg in the body uf fhis volume) to Gai»
thematical “usage,

resgond with traditional m

A~60

Appgng!;igg o R S A pe S : . ,

o Mo ab s, the mol garts of both zsais,. s,

| SECTION A Ifi ~ FUNCTION OF A COMPLEX VARGABLE

refegative; this correngonds to a.condition;
Chility, Lo thedsciilition, will i
A cailiné;«‘jg;gﬁ wienpy - :

(4 I'r«xa)? o 5%% s~ pun g oo ': |

1 i Seen thit the 100t 5  HTET 1y posttives this
1 o

. corresponds to instability. of

 'This shows that (A I5-30),

the condition that all eoe!!’
an unstable mofion, ’

lies vertically ahove the given x .- It may be gtated
that: As x moves along the x-axts, ¢ moves along
the curve £(x) as shown in figure A -1,

Now, one may thiiik of the function ¥ = S5 uf the real
variable x as a special casé of the fanction ¥ = F(z) of
the complex variable z ; -The function w » Flz)iza
generalization of the funetion y = £.(), justss z is a
genieralization of x . '

Since z=x+ iy y WaB(2) sF(x+ iy}, Itis of in‘ter‘e‘fﬁst
to find the relationship betweenw , aud andy, when
the relationship between » and z is‘krown, .

The following. example. shows how this can be done,

(A ZZI-1) W= f(z)= 2%
“Then

(& III-2) e (x+ 3y)2x (x%- y3) + 1 2xy

et
sk

- Thus, w is itself 3 complex number; designating the TR

real part of v by u andthe imaginary part by v,

@

(A II1:3)  wxxP-3%  v=2xy

and £

(A III-4) W=t+iy .

1t may be seen that fhe real and-also
part are functions of x and ¥y,

e imaginary

(A IF1-5) We FG@) 5 30 e
Another exampll:g jet ey

wol

b !
SR’ A JN-cN
R ETA

(4 IEx.6) "

Then B . .

) . + I Koz, 5 "“:,‘Y.',: S, b od 18
17 g w sl §odotin et
(4 11Xy wr st perfen il Heys

where
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7 18’2 funetion, f :, ” Ca i e WL z&t t5 “nd the
derivative dw/dz . o
"L‘he realfun ‘o L - 20 Boo vdenvadye &l (gee
“figure 4 WI-2); this i 4 sar 2 qua.tity fe any given
value, of %2 .1t represents dre magnitude of the siope
. of the cupve | () B ivest point . The expression
i i addition to x and fypctions
"but since ,y must lie on the

Bigure A ITL-2. Derivative of a Real Functipn

vtz SEST e e AN T

Fhe derpvative -dw/dz will now be found.

he derivative dy/dx -has been defined as the limit of
‘h’p ratic Ay/0x asithe increment Ax approdches zero .
i Ais achange in x along the x- axis and Ay is
ohding change in'y as the latter rhoves
-{see figire ATII-3).

ry=0x) / /

Fi g‘"pzesf)i‘ R 1.3: Finite ‘Chande dn ¥

S ,'Ix‘ pne were to define dw/dz as the limit of the ratio
¥ . v Aw/Az as the vector z is given an increment Az, and
oL ._;;,Az approaches zero, & Qffieully would arise; for
.. while, in theease of Ay/.%, xis constrained to move
- thru the mcrement Ay along the X-axis, z can "move
‘thrqugh Az in guy directipn at all; and this would

¢ imght hane any number -of valies .

3~‘che directlon of AA

- ¢,A zmss) gy 8850

W TII-11)

(See ixgure A III—4)

‘Ohbviously, in n:'der 1 thst® G 2 Slf o RIS -vvmti S

: .-and shill have f.definite. ganpgle’ answe?;«, This Feeonp uf

funciions to be dealt with. must be nayrdyed dugs ¢
-those ‘which are so constxtutt’d that tw/), Ins the same
value regarm 58 of the direction of Ay, - Zust What tha

co*xdxtmn is thai% is 1mposeci by ‘Ens %quix*é;,‘"w' can he

dw

dz Az~o Az‘ Az.vo Ah ms,

"and let Az lie along the x-axis; 1. ‘€, MR ; then

“ +, ;A.. lim (%MA;),_ L P a’v’

=l‘i )
!H Aq-’o 325

f(A TIT-10 )

Now, let Az lie .ki!?uoné the y-axis; i.g, Az=2syi; ,the:n -

.

dw Autidy_ 4 Au Ay .au 'av
g, Sy, oy a5

' Tf the-derivalive is to be independent yf the dvrfedtxon

"of Az, theseé two. éxppéssions for dw/dz mustbe identi-
cally the same hence

‘ -(‘A’ II1-12)

or: )
; U W, 4nq . Bu
(4 TII-13) 2% oy x 3y

- A funciion o= f{z2) = £ (u, v) = F(X, 5 +id (x. ]

- which satisfies the condition (A IIT-13) iycalled vanaly-

tien at the point z where it has a derivaliye, The equa-

tions (4 III-13) are kmown as the Caye Ty=Riemann
w cond itions.

Fer the function w =z given abave:

’ ) uxxz-yzrg.g =3X
(A III-14) :
. = D E-Y\ w 2X
v=RKY 2y

ﬁ?e fi dtez

* plane.- It satisfies the condition (& ;;"’l-“i }
odis carrie

This funetmn i$ analytic at any point;.

,erq b &
Thus,dw/dz = d(22)/dz = 2z; the &, utzatl &
e - é‘*‘“"“mﬂ‘ ‘the’ derivative,

any ?lel‘c % .

out as in the case of a real
2z, has a definite value ofy

¥or the function w= /2 4

£ ¥y
4 ——r 3 £ e, *
U= = 5e syt b

-4

f %% y2
2% 2 '

_3,‘}/' ;,/,.,(.—%-};,% s gyt

P

: Lo oD e
1 %g* a7 2E s R ¥y
sy g7 LRSI
- Y @8- -
[ wsiBrahs
¥ o .
‘ CRP ‘
e o da vw—“‘} eg“"‘l--x
I’:}:, 9{3“;2%3 4 k&y'&)z"
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A1

«

1t oy be @henn that w = 2° and dw/dzsnzn-texisd and inin-

.
O
AL &S

i
e

Nt 0.

ytig 2t all points 4, ‘exoopt 7 =0} at
ﬁ@i)}i’%(iﬁéﬁ‘a;;ist; “fror foes the:dériva-
G

i r

o ' Tee 4 B oy

.3

1&? an analytic funciion, in the ﬁnitg M «f the
“-plane. i ’

'

N A
, %g@ Tacmiays is wddpbe canop
at thavie vaiues of z whickeZ7make the deneulrany vamsh,

- ‘ s
e i 5. e » Y
Tf‘ e giotient of two such poj

| i.e., for which v is A miinite,

2,
A
Y B PES .
“swn that sinz, no 2, wid slher trige

it can nlso ke g

oeymatric §i <tions of 7, 2l of Whizh nrv expressibie
i power z.&prles of 4, qre analytic axcopt at certain

points; »Ced the same is frue of the hyperholie funstions
of ot Also: if sin z is an analytic functios of z, and
L7672} 2 1S alst ana¥ptic, then sin (1 +22) is glso analy-
“'”_”".E:; i.e., it cxa be shuwn that an analytic fedetion of

7
an analytic function is ilssif analytic. And in all cases
it will be found that the analytic functions'satisfy the
Czuchy-~Riemann conditty 55 (A II-13). ‘

s

An. example ¢f 2 non-analytic function is
(4 JII-18) Vo 2x Fe (X4 1y)(X~ iy) = 2%s y2uu+ iy
where u- x%+ 2, ya o; obviously du/3x7 dv/ay.

It sheuld also be mentionsd fhat a function fails to be
anzlytie at a point whzre it is multiple-valued. An
example §sw=2% = +/Z; for this simple function, things
cdn be redefined, of course, so that the plus of the
-double sign iz always taken, whigh makes z4 single

valued; byt until this is done the function s it stands -

i ot 2ualytic.

%ﬁzb@ this point onronly analytic functions will be dealt
with, -

EXPONENTIAL FUNCTIONS OF z

What 1s the meaning of w=e%=e*"1¥ 2 Tp arrive at
the answer it is convenient fo_consider the seriés
expansion of cos 8, sin ¢ and ef :

. i
#

Lo 2 gt gb
- (& TII-19)  cos 3*‘1"%_" -Z;—-rﬂ;%—% te

'

Cain gep B, 6858 L. ..
Ein J=2 0= vt M Lad v 2 0
 #in.g SR

PR 2 3

8,85,
TR TR T A TR

< pives:

| FUNDEYENTALYOF ¥ SEPIG

1 .

ixpanding !¢ formally écé‘o‘r’.%ftﬁng to the"‘lfé.‘éf seriss

i 95‘3?

C o pE b g
(& rE-20) et isi Lo Goidios a1l

(M M

tegral} o, e apalytic at all points in the z-plane when cos & series, the result is the series ( i
TR0 . Whenn<0, whas a derivative at all points . forés e :
¢ alecin vt A oyt et 2 7l = . . . .-
chdpt ot the origin, i.e., at =0 | oA 11121 L &
The sym or the product of two analytic functions is . g =
‘also a4 andlytic function, Thus, dny polynomial Noﬁvﬁfiﬂf*“ : ‘
¢4 IIT \i?‘) -y Zyereg ot . fﬁﬁwm IIT-22) %= ex*1¥s etel¥ e eX(cos ¥4 1 oin ¥}
i A AR S A R : Jm e ete e n ¥y

This is what is meant by the exponentia’ fupction w- o2,
. This ig anavalytic function, 4% can'be ghows by Akt
the test for-the Cauchy-Riemann cunditons; =~

e%» e pomy+ie’ singsu+iv.
where u=eXcosy and-vse* 5i‘iy';
(4-111-23) . e

S

L B xa ou T S
= it S EGE T = wa® V5 R e MO Y
.ax=e cos ¥; dy=e CoB™ 3 15} Smy“%ﬁ% € B ¥

v

Since w=1(x,¥) +i¢(x,3) andz - x + iy, it follows try
" -to each z#x+ iv,, there correspondsaw - ¥¢ WiV
(%o, %) . A new complex plane ¢an be g, g8
which there is a u~axis, the azis of feals, and a v-
4xis, the axis of imaginaries, then one can plot w &
this plane as a function of » and v; this is the 5
"w-plane." To edch u,and v, there corrospi.dy -
W3 then to each z, {ini the z~plane) there corres; .
a w,(in the w-plane). If gil the 2”salong some ruen
in the z-plane are plotted in the w-plane, the s !
is a curve in the w-plane which is called the Ep
of the curve in the g-plane. If all the points in - Lo
area in the z-plane are plotted in the w-plar 2, the
result is an area in the w~plane. Thus, bath gurea:
and areas can'be mapped from ong Bt v infa the athén
~ (See figure A Hi-5.}

#
I

W - Piate

“’:mﬂ;-#- s, ‘2‘ 7,
al
T hein M"‘;‘;‘}
Risgre 4 ITI-B, Endpiug Through vwe £(2)
Let ' Lo

' 7
(‘4 111.24‘5 3’1‘4:5*},} " N 3»-«1

zﬂ“l+. . -A
TN A T i -l
B2 e By 200 e i

-0
4]

Whore %2) and D(z) have v aﬁiﬁ)m'aia"x‘latar,
S, WO - ‘
it 15 required to plot this fovenioy th vhe spplais,

#d

vvder to do this 1t is conventad o Jrpate Hirs
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3 ,,ntg on, -thw plot; ;for ingtance,“any- %, which makes
the polynomial in the numemtar nfz), wanigh glyes

' ‘;"; _Are {.€ roots of the equation

: M“w;(d ;;'1.,25) N(z) = Amzme‘ ‘Am-xz’“ | PP ’*Ac =

:\La.t thoge roots be DyoRges oDy 5 then (& IH}-ZE) éan be
“--70 factored into

(A ITI-26) N(Z)= (- p)(2-pg)* * (2~ 1y,)

" ‘wheré the p' 5 ave complex roots of n(z). When z as-

. . ... ' sumes pach of these valugs, WN(2)vanishes, and so does

© .U w(z) § therefdre, w(p, )W(bz) . w(p,)are all zero, The
w0 roots PyoPgees By of N(z) are'called "zeros'*-of w(z);
© - they all map intd the origin of the w—plane

P b -Any z, which makes the ﬁdlyhafximét D (2) vamsh causes
tLTwzy to beconie infinite. These z values are the roots
"of the gquation

(A TIE-27) | D(2) = Byah+ Bn._iz“‘%.- LR

. ,ﬁ these #oots be 51,85 ..+ 5y ; then

’}(4 117-28)  D(z) = (7~ 1) (2= sz) . (Z=8p)

//lf.‘ ius, w(zj becomes infinite for z= S5 %% Sg. . 228 }
tHese are called the "polas™ ofw(z). Since w(zy), w(z,)

i W(zg)are infinitely laipr, ‘hoy wamnot be plotted in the
L finiie portion of the w-plane,

To show them, a4 "artificial™ repran: e wionof infinity

'is introduced; the locus of all mfismt”fly large Wsis

shown a8 & circle aboith ¢he orisds, of Hmte yadius® ¢
‘ ar*d’ \ztwat &x)eaﬁed that B~ abpréa»'ﬁeﬁ? infinity.

wa,g sl mmea of z othey  au thy Zersg and poles of
¥ it is nesensery to vubslivee apunber of 2' s fnte the
aolymmmla of (A I-94) wewl bo eolve for the gorres.
popding valyes of w. I the s s Bo aloug a closed curve,
the plot in Hhe weplone » also & closed curve; the area
inside this cudye wiil plot imiv an area in the w-plane
but; not neeesearily inside the w-curye; it cas also fall
outsige fie Wegupve. The subieet of mapping is an
Srirtant odo in the stydly of geryomethanisms, More
about it is pives in seeton A IV of this appendex.

*"x‘EGRATim m«‘ X'U,ﬂcmons OF COMPLEX VARI-
‘ ,&BLES o

t

gy

The integral [£(x) dx can be thoueht ¢f as the area under
e surve y= £(x), It is thelimit of the sum of the
sxeasd of the rectangie’s whose base is Ax and height is
¥y =£(x), as Ax becomeg Iidefinitely small and $ie num-
ber of these reclangtes becomes mdnfmlrely Targe (See
figure: & T8,

L R et

Py

L.

i s e Ko 1 8
P R—— - S

1y

w(zga 0. bt the 7 s which make the ""memtm vanmh '

il ; - : ,.,,,,,,,._;‘,“,.%

" ; E " *. ; : ' ,
| Agpeﬁdm

| geetton BT

: Shouzd one form the Integral./w(z)dzand thmx of it as
the limit of the sum of thé reciangles whose base is

Az and height w= £(2), the same difficulty ariges as in
‘the éase of differentiation, namely, in which direction

is 4z to be taken, IE/E(zjdzis to ive a definite mean-
ing, the direction of Az-Has to be prescribegd; and this
isdone by picking out, of the infinite number of 2’ s in

the z~plane, only a set of 2 s which lie along gome
single selected line in the z-plane. For this rFeasen -
{he mtpgral 8 known as a "line mtegral it is . de« - ¢
fsignated by the symbol J, £(z) dz (see hgure A III 7)

//\ *
N

N ¢ (Path Of
Integrationy

Tt -

B ‘;{fiy 1

% .

Figurs 4 IIT+7, L.ine Intégral

If the line has as its end puints the valueg 2 and Zg,
the integral is a2 definite one, Izz fezydz . 'l’hese end
points may be anywhere in the z ~plane. If the points
z1 and zp coincide, i.e., the line is a ¢losed curye, -
the integral is sometimes designated By the sy
The line selected in the z-plane is knowh as the
of mtegratxon" (Sée flgure A Iﬂ»’&)

ol (Path of
W fnf:egr fon,
Y 8 Closed Carw }

Figure A ¥1I-8. Closed Corto.

A frequently uséd path of intégration is a eircle (see .
figure 4 II:9). The equation of such w mrcle 1s ‘

(A IIT=39) z= %4+ a.&1?

Fzém’e A III-9. \grcle 2* 2, +ae“’

'Ihm means f.“lat any ‘point on this c.rt,ke cax be Iocated
.. by a vector whici is the sumdf 3 7, and of the vector a
. whose angle with the positive x+« a.-gz.a 18 8.

If the center of the circle is af the oi‘xgm of theé z-plane

the equation (A 111—29) simply becomes’ (see flgux:e
A OI- 10) : (\r ER R o R

B ’- ‘ Jﬁ-*&.“& g



ARV ) Figure & II7-1)). Circle z= pelf

CAS an exampln of a line :.ntegratmn, let w=z2 be in-

tegrated along the abséve gircie (ﬁgure A nI-io0),
z= aeiﬁ’ . ‘3”‘61’“ ihl's path w=a2efte; (7 = jaelfde; then

' fw 2261203 5 010§ » § o3 ) eizogy

=1a3f "cos 39d6~a3f "sin36d6=0

hus, the integral is zero and is & dependent of the
ramus of the circle used as the pa“h of integration.

It ﬁzﬂ path f integration is the circie shown in figure
/‘1 IIIv-.‘ , the 1ntegra,1 is s tﬂl Zero, as 1hown below'

i ‘bquare bean n t1mes ag ﬁm«ge (ses
the litnits would beeoms Zito ayid ;.

. -:,—(A 11z -34)

' square. By i{rvipg other paths of integrations &47

3

:(i, W.e strex‘ thy t m: wigd, wu‘, i..s B, ‘w‘lether s Xs 8
nfge Livale, a smdll ons ar evers nqddre,  Mad the
fgwey A TE-38 ) )
along BC 751+ Ly
along CD Z=X+ m, the in‘§agrw nce woul be:
f

o

-f z’dz',‘f x2dx + fn(h"r i Pidys f‘j(«‘i"" inftxs i (iy)ﬁ idy'

Jn x2dx + 1n3f oy anf i2ydy+ 1f i%y*dy

f"‘\? - +f b dx+ ;m.\* kxdu f *1%n%ax + lf _'f’yzdy

‘;=Inx2dx* .«“u‘f ds » afn%'dy 1fnyzdy fﬂ%

mJ’ 2dx s < Cdmr Lf “y2dy

X

% in%« @‘n ,m" «nd =0

It is clear thnt $z<iz is zero for any finite sitad)
-.Jll
be found that §s2u. is zero for any path. ‘Iais 4’s true
beeause 2% 1y gnilytic at any finite point in ihe / e splang

And it catt be showa that for any functicn 4% 5 whwh
is analytie af mny point in the z-plane “,famn sgral
along amr f:ﬂo acd carve is zero. ‘

‘2) z= Z, # ae“’: zrz z‘3+ Za‘beia + a2e2‘9' dz=iaelfdag;

: .-§Z;de;z.i--;j. z2ae59d6~é'iﬂ‘ 2a',‘Zf @fzedﬁ:ﬂeif‘ a3ei35d6=‘

, rlzzaf Tetso +1 singld 5+ 12 2%

21r . . ) o pR 4SS
£ frosy F+isin28]de +1 &“.{{g‘g‘f’ﬁfzcﬂ3ﬂ4 isin§6l do=o

7

. In t}us €286, too, the v'a‘*u;t is mdeperdnxit of t&*e radius,
nor doec; the position ¢f the cente. of the circle matter,

1 W‘uame funetion w=z2 be
5. & #juare in thé z-plane

| P L
.}, 1 "
C‘.‘ .
oot BE L - i B {n,
1; i ""'i""" . 0, 0. ;,‘._,32._);.

. Figure & I17.11. Rectangzeo ag Paths of Integrylion

R’ is seen that alongAB 7 X nb’ w0, slin'e ¥ o0y mot
change; along 80 2s 1«59 oo« ady, Stnde % ?oés not

: ¢change; aloéng DG e s« whe g edu s Blong D 2« 1
dz = 1dy

’

counterclock-
¥y Chand DA

sl of the sguare,
Ty mrzdfs .&Ionb Ay

{4 €/7-35) § 7

), Y

;’(zmm 0

for anj eloted path uf}’ £(2) is apalviic anywhe e in the

% -plane, éff
This property of 7, /i malytic functions which is :iven here
without proof, 4#/5ut only made plausible by & few ex-
amples, 15 the £ 4+ eortent of the Cauchy-Goursst theorem.

Such a m’,ﬁf /m ciy of 3 function is wickout precedent in
the read s f;. of véal numbers and might, therefore, proce

somewf ~at puzzling, To make it canier (o accept it,

one wg: vy think of zome physicsl medels m which an
mtagr 41 of a { nction sikibifs similar chaiacteristics.
Fow g 1ple, 1ol & tension spring be atbachied at the
pitni g (f'. M {mee figwre & 12},

L7 4 mm end, 4, is made to follow the eurve c. At
ar '?, 7 anint 2 alons the eyrve the uxtension 4£ the spring
.. ¥ ’: :-l2,] . Thé potential cmergv B is py oportmnal to
L'-: axtension. Thus £ is a f function of z. The net in-
Canse in energy at any poits Is the summation of the
Jwinges in energy up to thet goint. “The total change
Fo onEERY s A reiurns teo Its Inltial point is the in-
?;p-, wgral of the chang@ dE along the curve, And, since
f he sprlng end.a up in itﬁ mi‘tral t‘(»zz&lhon, there isno

i&'»:»'i‘ 14 *I xaxs 1! (1* 1zy~ v‘z)d.wl (223 125 1)dx

,; i;‘ 2zdx *J dx+1fy3dy . L +1,g0
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' ‘&emi

‘ e gy L nd Waaes amtmg!._ghe hill while eluat -
S dag Grdese R-m. ‘The net ghange in potenfial enemyy
- %@&m 4 poire along g ,sae na‘rh is the "é; tagral oft} e changps

00 T =

K FJ.gute ﬁ Irr- 12 ‘Tension sz‘lng as 16-5&9-1 of

g . "
ot Aﬁn.{."ﬂ; Euﬂvb.‘ﬁn

% As 4 fial ex;m:*u- 7 Igt a t(:"‘hon ,m mg, fin the shape
d\ hav» ofig-end. &y dcheu, fa Y=pefnt (0, 0) (see

FPigure A II.L-13 Torsion Spring as Nodzl of
énalyi'z.c Function

N ‘Lét the point A of the slider move along a closed curve,
S such as the gne in figure A IlI-13. 'The torsional energy

- -of the rod is proportmnzﬂ to the angle 6 ; ag the point
. & comes back to its original pq,»mon the nes, enexgy in

.true for any path not Ssurrqunding the origin, i.e., the
p omt where the rod is attached.

Turmng* to the fun,,tmnw 1/z, it is geen that it becomes

Anfinite at z=0 (i.¢., it has a pale at z=0). This
«iumi on is Apalytic evérywhere in the z-plane except
at thf* origin. Itis Lnterest to mtep'za this funchion
:along ~¢lrele ha.'mg 1tb cenfer at thmomgin (sen ﬁgurez
A nI-10y.

\,l

- »,,,‘,H-D
\ ¢ "36) fde:"

; - e - “the'torsion spring (i.e., inthe rodyis zero andthis is

Anw@ﬁdix
Seaﬁzon £y m, 0

: it m\ seen that tzze integml ;in %
Eor Wi 1/?%* L

um\. -

fox all ;ni‘ 1.

Thus, I z"dz 1<‘ zero for any n, posmye or negatwe,
except n = ~1, for which its valué is 2xi. .

I the path of mtegratmn ig ap arc of 1

e above gircle - .

‘«642». (see figure A III-JA), the mtegral bchm

(0'

(A 11 38) J'“J-dz-‘l\f i

d8=»i(9,-91) R

Figure A III-14. Integration Along Circular 4rc

if the integra;tioxi '.p,rtﬁceeds from 2z, to z, , and
106, -85} = (0, -6, I mwmds from z, %0 z1 :

“The mtegral of /=8 {wherem >l) over the ag;;gg;c
gwes L

A uran & ;;1 (@161 «’;’:sm:ﬁ(m—@&l}d&
AC.

As the radius a increases, the value of (A III-39‘
decreases and as a approaches infinity, it appro hes»
zero. , ST T

The integral of z» over this arc is:
(A III-40)

f’z“dzajjzaﬂei xiael? do= ial*? f Tel(nrIdgg
5 - hes

= ia"“"'ij; ez{‘cos[(nﬂ)ﬂ] +isin [(0+1)613d6
) .

This integral varies as a®*! and as a approaches zérs,
-it alsg approaches zero.

To summarize, the integral of 2" over an arc of radius

PP

(A III.41) 8) forng-2 wd a very large, ff z*dz— 0

by for fr=~1 and any a, f“zr'dz ==1(c9ﬂ - 91)

¢y forn»0 and & very small j;12zndz-!’}

. In taking the integral along:a simpla closed curve (i.e..

A-65
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s beeit shown that the value of a line integral of
‘ “afunction dépends not only on the function itself but
“algo on the path of integration. It will now be shown
. that when the path of integration is a closed curve and,
7 iurthermose, the function is analytic on the curve and
-+ -at any Point in the region enclosed by thils curve, except
- ‘at the'point z, (that means, z, is a pole of this function),
" theirthe valte of Uiis line integ¥al 15 4 known function

s+ .+ ,0f this point z,. '
“i-+ This can be done as follows: ‘Thefinction havinga

- Zﬁo) ('cne

*.pelé dt'a =12, is of the form W(zy ~L(z)/(z~%,) {sei
. - figure thefagtor
i “ 2y '

-

BN

- :?igw'e' & III-15' Contour of Integration Enclosing
L - " aPole -
& - 4

“Because of the presence of this pole, the Iine integral
‘Around ¢ is not gero. But, -one can-change the contour
7. ©in such a manner, as to aveid the pole; (see figure
S7F A T-15(b). Now the function is dnalytic on-the new
. - contour and at all points inside the enclosed region.
Theérefo
5 i oot the-intégration as shovm in the figure, ong:
Lomn Writér T 7 LG IR
3

re, the Cauchy-Goursat theorem applies, and

A

(A TIT42) : I o
P . . ‘a’ g 2 B le> . . C
(2)dz= wzydz+ f;.rwv(z).dz + Iy w(z)dz- @2W(Z) dz

(&) INTRODUCTION -

‘One of the methods for investigating the stability of 2
.seryomechanism is based on the use of the $p~-called
wNyquist criterion,” Inorder to undewstand the deri-
.. yafiomof this criterion it is necessary to.know some=
" thing about the operation of 'mapping™ of a given cortour
© from fhe z-plane iito the w-plane. Furthermore, hefore
a digeussion of mapping may be begun certain funda-
menital concepts regarding plots in a complex plang
" must be undexstood.. For these reasons the presentation
in this chupter will be as follows: i

RS

“ 1. Fundamental ¢onceptsi- methods Yoi dEsighating

.. .. points, lines and areas in 4 complex plare.

~.’2. Mapping. - ,
3. Nyquistcritézion. . . . " D

L5

£-86

' (The negative sign is used because 0, is traversed in

- a divection opposite to ¢,). Sinee ps can be madedin-

" definitely ¢loge to S'Pr, and since the two lnes are
.- traversed in oppdsite directions, the integral over this
part-of-the path cancels aut. Noting that the inttgrai
around the tircle ¢, is iaken in a diregtion opposit

[

al

Y
PR S

_that 0f 0y, thoro zomatns: B

s

(A IIT-43)° . [ wzida= [iw(zydz & o ‘
: B . o By : i ) L
The equation of the ¢ircle ¢, is '

(A IIr-44) Cg= g+ delf ‘

._Wm"&;o; dz= jael® and z=Z % el _By"‘substitﬁting -
~ these values into. the right half of equation (ATIL~43), -

(4 137-45)
f(&dz,
z,

‘The radius 2 can be made arbitrarily smalil; in the

. limit it approaches merg. Then equation (A 111-45) -

becomes: | ‘
. K(2)dz o

(A IIT-45) ()4
“ .07

.and, finally, equation (A II-43) becames: = =

fcz aydz

%~ Zg
_ This relation is known as the Cauchy integral formula.
It states that if a function has a pole at some point Z,
5(1'...e-, it i‘s of the form [f(z)]}/{z-2,) ), the integral of
this function around any closed curve surrounding the
Pole is equal to 2mif(z ;) where £(z,) isthe value of
f(z) at the pole. R T

(4 IIT-47) 2mit(z,) ;

As an example of the applicativn 6f the Cauchy integral

formula, let w(z) =sin z/(2~z,)(which shows. that w (z) .

. has :
a path which encircles the point Zy is: ¥
§ wiz)dz.< § SIZ 00 | oot
14z % P dz = 2nj sinz,

PERN

- 2SI X, cosh y,*jcos X, sinh y, 1

' SECTION AIV — MAPPING

() METHODS OF DESIGNATING POINTS, LINES
AND AREAS IN THE Z-PLANE

It is important t.c': become familiar with the ways used
to designate points, lines and areas in the z-planc .

4 -

‘, §n the theory of'ﬁoriniiﬂex. rumbers it is shown that a
Tixed point.in the z-plase is designated by z, =, + 3
(see figure ATV-1), - - Y Zq® Y% 43,

Straight lines when unlimited, are designated as foliowse

__ The y axis is'%=0; the x axis is y= 0; a line parallel
© 1o the ¥y axis and 4t a distance C from it is %= C; when
4> 0, the line is in the right half plane {see figure A
IV-<2). The designation of certain other lines {$ Sshown
i figure A IV-2. - -

S PN I eiﬁ‘f"' ' . pRa o B

aypoleatz=z,}. Then the integral of w(z).around '

K
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" ?The half plane lying to the right off, the line x~c s
S (see figure_A ) : .
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N—x= 0

- ., ¢ Figure A IV-2. Stiaight ies: . -

V&\\\\?\x\\\b\.\x&\\\\\xég\\\ii
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2 h - . d
.. ENP 2 A )
: fademn 0 e ..
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Figure 4 ¥#-3. iialf-?lar‘—:e

It foll'cws that x >0.15 the entire righthssliuplane, (Note
the crosshatehing used to designate ai=area ) S1mﬂar1y
¥> 0 is the entive halfmlan., lvmtT al:mve the x axis.

Straight’ séml mfuute lines. startmgact}le origm are

designated b y their phase anrr!e gt see fifrure A IV-4)

it

< Appepdxx
D ”“Secflon AIV

\-8" 753

!"ugureA IV d  Radial Stz‘agght Lme ‘

Thus, the positive half of the x~suns isg=0; twe nega- o
tive half is 6=, :

B

Fartly Wded areas s

A VAN A NSRS
Y AASALARERLRERREERRREY \\\A\

ame U R XE L.
i v EN
- -0y —
Figure A IV-S ; Infinage~ Strip
A vertical strip is g, < <0 P98 a horizontal strip is
C,<¥y<C, . Usingthe uhase angle, the upper half-
plane can be designyted by 0< 6< 7 and the right half-
plane by ~n/2< 6< +#/2;if the boundary lines are in-
© cluded, one wi'tes-n/2<8<+7/2. The first quadrant
93 either 09 <n/2 or x>0, ¥y>¢; the second quadrant
m afi< 6<7r or x<0 y> 0
A rectangle can be defined by its boundaries; x;=<Cy; - 3
- y ’ | ‘ .lr-j‘%;
R ~ ;o
1y -

: ﬂ-t-e-m"—a—é—r——‘




03 5 ¥2C4’s "‘he area ingide this
Lx< Gy O3Syt A ‘citcie of umt
(see ﬁgures A IV»G 4nd A A )

tAds

(IR

A

)

g )

' 3:2.,;-51;1‘19‘.?; Gircle at.brig;i/;rl

‘n‘cluded one wr:te»,. ER II the entlra area outsxi%‘

L 2’03‘:/..1_“ ~

ne area jnside che unit cirele is,r< 1; if the boundazy . -

L

(su;. f).gure A IV~9)

<)% ZO!’%‘Q.,

4 v sufficient to enablé tne
The above exampleb s}w d : 5 st be used later T

W "
(¢} MAPPING : |
>, essent\ally, as follows -

The problem of m?/ﬁ. % 4 ome closed curve lytag in

given . contour, thadsg, &

the z-plane and & ~icﬂ,‘/§ tane, If the fm*zctmm W cz) e
mnidm% contou;'; » B 1=Pilfls can be dorie by t(t'amfnm mg:
a s mp e 0’\% V‘-.'&\ !J“\fvu 4‘0‘. T l e, /qi" ag‘ Qw
the cortmm FIEbE m shigy’ Z-Plane. But, g

Figure A IV-10. Happing Through w=1z +¢,

Let thers be an irregular contour € in the z-plane .
To- eack point on this contour corresponds a poini
w=2z +$ , where G,is a complex number. It follows
that w transforms C max'ely by shifiing it in its entirety
thriugh the distance {C,|, in the direction of the angle
- of C,. Rather than draw the eontour C in its new po-
tition it is simpler to shift the axes to a point -C,
Thus, with respect to the uv axeg, thatis, in the
~plane the mapof C is of the same shape aihd Orrsnta-
mon asC, but shifted through C,. This map or "image'!
- of Gis deSIgnated by ¢ .

": - Analyh\,aily, this tranbiormat;on is arrived at as

follbw:s-

G =X, + 0V BER N We g CEe X))

e

e atd d‘é‘i-"%‘&;f Vey+y,

“This shows that every poinf of the contour C is shifted
~heoriz ontally through- x, and vertically through y, ,
_hence, through the distance ¢, |, inthe propexr-dires-

. txon d.& wau done graphxcaﬂv, ThlS s,lmple trar.sfm'~

¥

ORGP T i VI . =




i il

on

Lt % = 2o C(,  and let ¢ 0, be a point inside the contcur
~'C‘ in the "wniane gsea ﬁqure ATV=ET), -

7 ‘c in z - Plane,
0’ in w =~ Plahe

Figure A 1V-11, Mapping (Translation)

Then, rather than shift the contour © through -C,, the
uy axes are shifted by +co, i.e., the ozigin of the
av cogrdinates is at point ¢ Coe ‘The contouy € is now
-also the contour ¢ inthe w=piane. (Note that mottinE,

~&-gonlour thz'ough the function w= 7+, fnounts to putt-

ing the origin of the uy axes at the goznt Cq il

» y'N‘ow, let a polit z iraverse the sontour © in a clock-

z travels completely around the contour ¢, the vectcm
-r swings back and foxth through an inc uded angle
.6 hut ends up in ifs initial posxtmn sq that the net
an;vle traversed is zere. Ising wepel?, it is likewise
Apparvent that the vesior ¢ re‘"*es ‘i‘fﬁ’uﬁg‘l 3600 abont
*'the origin as the point w.ifavels around C’; w travels
arcand €' in the same direction as 2z travels around € .

_A theorem can now be stated' as follows: When s ¢losed

e "»y.,; contour C¢is mnpped through the functicm w= z-co, where

¢ in Z - Plane
“)6'in w « Plzne:

' mm{mzi *helps to explzmt 2 theorem %vhlch 15 3 ed Tater |

o tha point v, sy oo °‘S‘de the contcﬂr Gy “’lﬁﬂ v gdoes

“ through some: angla 81 w1th net an;

wise di*ectwn, using z=reff; itis apparent that, as .

‘ (A IV-2)

&W@rdtx C
Seciion Alv i

'Thig theorem can be extended fo the case vzhare thm N

- goptour ¢ has n Ioop 350 thereby encireles the point
G, twice (seefigure A IV-12), 1tis seenthatas z
~traVels completely aroimd ©, w travels twice arownd
the origin, In genex:al whei-C gnvizgies O 1 fzﬁfes,
W goes aroand the fmgl n t;mas ang mtmes tn,,,m"rb‘
‘m padigng, e

1ot go around the oxigin but swings back and (s}

téy Zero (pee

¢ i z - Plane
A g

Fi gure & IV-13, Mapping

MADPPING-OF A CONTOUR THROUGH THE FUNC ‘.['ION
¥ =Gz . Tomap a contour C in the w~plane thx‘owgh _
the function w=G = , whereco;s a complex nunyber, i€, .
is. best to use the polar form for 2 and w; thws s e

| 2=red?; w=peld: o 21 g% R

V!'CQZ' #r ef."ff’s*&'); “px LTy = G+ O

i‘”'— o —;‘ ‘,, [
. ERNIN) - ‘
l K o%_ / K !

; N RN
\l*i‘?\‘i L“\i:‘v}m S

: Figure A'IV-12. ﬂ;a";,»p;x{g (Milt iple. Encirclement)

" Fi gure A X‘!K.H. ;: ,rgp.mx} /i‘Through W Cyz ‘;

» /
Thug,i @}zzp transtri mation. wq nsists in enlavging all
- ve(tofs ¥ hy a fac) Or T, 2nd; hen rotating these vn-

[T

larged vectors chmu,‘}h the ..n‘qe 8, {see ngmm A TV-18,
= A //u

40




_dppendie o ‘
Section £ IV
‘ //‘
" (tn this figure v, yas taken e e ko /

€, the uwylt 2 unus, Inskedd

of rotating the confour
' /fokes weve votated -

through -4, .) - .

. A . ra
The result of thisswtm%i@rm:;,/f/
is geometrically sioallar toon is 4 vontoua €' which
vemoved from the origlr /€, bu acinvged (ifiy > 1),
fative to the wv 2xes ok /and nith 146 o entation Fe-
its original apiestatio Ange Uy  constant angle fror

a

P .
AL N . Lo b

. where €, and Cp are complex nymbers, Caliing
el

.. one can write(see figure & IV-18):

R .

.’ZV—“) ; .W1 % Ze 03!* pl eJ¢1: aﬂd Wzr" Zyen ‘Cz-’s‘ f?ge.j%

S

[we peldn wyuye o ppedlerg) - o

4 p= p1ogh B byt by

k 41'3 i -
? : VAN
PR3 jv (¥
)| ' .
—y ' ' : i ;‘
' I %
: (’f” [
N SN |
[ .l 4 "
1 wa ‘#s‘(
' st b s o e
- *ﬁi l L it
N\
Gy Uy —nr
P (a) =

Wi- Plajte _

f w -~ Plane. -

p, = pl pz
& = $yPy

{®)

e

Figure A IV-15. Mapping Through (A IV-5) .

¢, 1 wivze two transformations can be combined into

.
.

A) W= COZ"' CI
myyosdinp to this transformation 2 contour ¢ is first
cortighiad by C,, giving v = €% then the resuliing
thi owr e shifted by €, giving w=w'+C,. Graphically
fig oy pe done by plotting C into €', as shown in
sho ® & ¥0-14 and then shifting the origin by -C,, as
11 igrre A IV-10. ¥
™ oal -
geom he transformation deseribed so far ¢ remains
©padatl trienldy similar to ¢, though its orientation
o sy 1 $He UV axes may Be different from that of
&ive to the &y axes, ' '
e T , L
| Fetiows 0 w¥h 8§nted absve-van be further extended ag
g RU ' -
: . Yo {2 GO O
a0 5 %= Uy

Examination of w, shows that if C; lies inside the contour
¢ , p, travelingalong ¢ in the w,~plane rotates through
2m radians around the w, origin as z goes completely
around €. Similarly, p, traveling along C* in the
wq -plane rotates through 2 7 radians about the w; origin
a5 z goes completely around C,

Consequently, when &, and ¢, each goes through2x
radians, ¢ which is =g+ &, goes through 47 radians.
The theorem is now exténded to the case when ¢ contains
two points, C, and ¢,, and the contour is mapped through
w= {2~ C,}(z- &5, Then, as z goes once around the
contour, w goes 2mx 2 tirnes around the origin, andin
the same direction as z {i.e., clockwise, if ztravels
elockwise).

¥f both ¢, and €, arve outside the contour €, wdoes not
go aroufid the origin but rotatés through ax ahgle

G Y

s



SWs (% Ty % Cy)

du, + qﬁ,;. + It one of the points lies inside ©, v. goes
one mmpiete time around the origin. Similariy, for

m points inside the contour ¢, W goes throug'h 2

radizne aroand the origin,, i, e., it encircles the

origin m complete times, rotating in thes same direc~
tion as z.

" The extended theorem can now be stated: * When

% ¢losed contaur is. mapped through a function
#(#-C,) where all &s lie inside
the ccntoar, hen as z travels completely apound
C , ¥ travels around the origin n times and in the

‘same direction,

"' Thereis no restrietion on the location of ©,; and C,

as long as they are inside the:contour C. . '}{‘hug ©y may
coincide with C, giving W= (2~ €,)%; the tule s_till nE-
mains the same. .

MAPPING A CONTQUR THEROUGH THE FUNCTION
We 1/ . ¥ will he shown that when the contour ¢ is
mapped through this function, the resulting contour ¢’ is
no longer geometrically sirmilar to ¢ but is generally,
dzstorted into quite a different shape, This transior-
mation still transforins circles inte( irzles, but straight
lines become either eirvcles 6f straignt lines, depending
on their positxon in the z—plane.

' Usingz the polar forxm one writes:

RN i -

Z=rel?; we= peld= L lo-i6
z T

":.j'_", = -
o r'¢

These relations explain the reason for the distortion
¢f the contour: each vector r turns into its own re-
ciprocal, 1/r; thus, points far away from the origin

' _come guite near, and vice versa. Koreover, each

angle @ turns intodts negatwe, -0, Thus, the contour
is reflected across the x-axis, i.e., points of ¢ lying:
in the upper half-fuane be¢ome pomts in ¢ Iymg, in
the lower half—pl'me (see figure A. IV-16)

i, g Jy f i .

Figure A IV-16. Happing; w= 1/z

Figure 5 IV-16 shows the mapping of a single point,
Co into tne w-plane. It alsorshows ihe unit circle,
=1, r,isshownto be a‘bout 2gnitsy £, is /r=1/2
unit, The final image, ¢4 , isihe comugate of 84 .

A pendxx L
Sﬁction ALV' -

Figure MW? #ows the im@ga of the cmiﬁ I 2. )

'rhis imzqge isa cizm!e cf s'adius po 1/2,, a pomt % moving
along the contour C'from 4 to B moves clockwise; the
corresponding painﬁ: w moving irom & to b move
Lounterclockwism a4 intpontant o fiote that tisds .
the opposite of the beﬁavwr -of the ,tr;xisffppmgt{“ﬁng
dmcubqed befo:e, e o

3y f S
fegvyt fooa o T

Figure 4 IV-«I'?’r Kapping: w= 1/z :

The "erzczrciement" theorem cap now be extendm
once more., Let s

Examination of W=y G, (0, inside contour O)shows
that, as # moves around ¢ in a clockwise direstion
once, ¥ circles the origin once, also in a clock-
wise direction. And since W= 1/p;e”'%, it follows
that, as w; circles the origin once in a clockwise

dxrectmn w circles its origin once in 4 counterclock- .

wise dxrectlon By analogy one may infer ths# f’g;.‘

1
(A IV-8) W (- Cp) (7= Tp)
when €, and Cy lie inside the contour ¢ then, as u
iravels around C once in a clockwise divection, w ro-
tates through 27y 2 radians around its origin, bt in the
connterclockwise divection. Omce Wore, if C; coincides
with €y, W= 1/ (2~ G ¥; the rule still remains the same,

MAPPING THEOREM UNDERLYING NYQUIsT CRITER—
ION OF STABILITY. The above { meory is sufficient to
prove ati important theorem used in servomechanlsm
WGrk ,

AT
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bpendix

" Seetlon AV

1t will be recalled (see section A T, Functions of
' Complex Variable ) that a tragsfer function ean be
* of the form- S o

N (Z"iiz)l(zﬁaz)}:-'(Z"ém)-
IV -9 w B mremerges R — e el
W) T b T e e s by

LBy By vuaty BFE the Z6X0S OfW(); Gy, yss . pare S
- foles, ’

If there are niultiple rools of N(z or of D(s), this

" expression may become:

(zr 8)%(z~ 85) .. (%= 8y)
(2= o) T (%~ Gg)ess (B~ Gp)

. Let there be » gonfour € in the z -plane and let a'l

the zevos .- . poles of w(z) lie inside this contonr;
let © be mapped into the w~plane through the function
w(z) shown in (A IV-10). It wiil at once be géen,

- as a eonseguence of the above "encirclement® theorem,
. that ag z travels around © once, ina clochwisze direc-
" " tion, the point w traveling on its image ¢, will eirzle

the origin of the w-plane in the same direction ag many
times 4. there are roots a, (i.e., zeros) and in the

spposite divertinn as wasny Hines e thepe are roots

~lying Inside &, the w, culsing the e

R r&}“‘@w{';&" RPN !
R T E -

oy (L€, o poles). ¥ therenre 2 merd: aré N poles
bet o4 eniejycle~

sttne direg~
g thaty

eRohirt5f the: Bt of the weplane, 4
tion-as thai of 2, N, this théorem sta

(4 -1%) B

w}’.::z’ e

Defining the epunteytlpckwise direction as positiye,

(A I¥=11) ean e expressed in words as follows: vt
the contour & erwizples Zzeros and Pyoles in a positive

sense, theconter & encircles the origin N» Z-p times

in a positive sense. "

In servo work w(z) usually is of the foxma w(z) =1+« Y(z).
It is more convenient yo work with ¥(z) and thus the
Y (z)~plane. Since ¥(z) = we.)~-1, any point in the
w(z) ~-plane maps into the .. me point shifted to the
lefi by one wnit in the ¥(z) ~plane, Thus the origin
of the w.(z)~plané becomes the -1 point of the. Y (2)
~piane and the mapping theorem may be restated .

Mif the contons ¢ encircles 7 zeros and ppolésina

Positive Sense, the contour ¢*. encirclesthe -1 point
N= Z~F timev in a nositive sense.” R

SECTION A V — FACTORING POLYNOMIALS BY SERVO ANALYSIS METHODS

 SECTION AV - FACTORING POLYNOMIALS BY SERVC
_ANALYSIS METHODS

Any of the serve analysis methods developed in Chapter
I can be nsed to find the roots of equations to varying
degrees of approzimaiion. This is accomplished by
rearranging polynomials to obtain a succession of
equations of the form 1 + £(x) = 0 and applying the special
methads developed in that chapter for finding roots of
thig type of equation. A method is explained here in
detdil using thé roo! focus method only as a matter of
conveénience. .

'
i

Axny rational polynomial with constant coefficients can

be factored by the root locus method. In-order to do
this the equation is rearranged as in the following Steps:

xt+ Ax+ Bx?+0x+¢D = 0

{x+ &)x%+ Bx3+ Ox+ D = 0 -
[tz+ Byx+Blz? gx+D = 0

{[(x«» 5 %+ Bix+ c}xﬂ) = 0

A v

Next, the expression inn the inder brackets [} is solved
as follows; .

(A V2) -

i
[

(x¢Bx#B=0 - L .7
(X &% *1’&}0‘ - .

-—3-'- ¥ o2 w
B(:nA)x 1

The last expression may be represeted by the complex
fifmber ref~, This procedure is the same 55 was used |

in ploiting the root locus of ¥48) = ~1. Thug, using
x=0 and x=-A ds the zeros of the last-equation in
: . ]

{(AV-2), one ean plot a locus of points for which
3¢y = 180 K, 44 (See figure AV-1). Next, on this locus
one finds two points, -a + joand-b + jo, which satisfy the
conditionllkry = 1, In this caseX = 1/B; there are just
tworys:-aand -b.

(It will be seen that the expression 1/B(x + A)x = -1 is
different from those encountered in the development
of the root loeus method in section I1[-4 in that it has
no denominator. The situation was not covered ia
section ¥iI-4 which deals only with system= .n which
the order of the numerator is lower than that of the
denominator, However, this property, as well as
some others dependent upon the poles of ¥(s) pertains
only to transfer functions of physical systems. Bui
ghe root locus methed is not limited to such systems:
it can be applied to purely mathematical eguations,
i.e., ones which need not be tied-up with the dynamics
of physieal systems. The form of the root locus of
these equations will differ in some respects from those
shown previousty.)

Figure A Vel (K+8)T+B=0= (x+8)(x+bh)

Note that the locus comes in from infinity and ter-
wiinates at the zeros as B deereases from infinity.
Having determined roots -a andb, the next step is
to substitute the new fgund factors infu Fhe expression
inthe bracts {} of eqiasion (A V-}} B w.ile
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Finally, the factors (x+d), (x+e), and (zx+£) are / e ' TN
substituted into equation (A'V-1) and the new equation /ﬁ i - b e g S
: - solved: : R TN
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