A $C D$
Engineering Academy Leading Institute for ESE/GATE/PSUs

Hyderabad | Kukatpally | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kolkata

# GATE 2017 

Production and Industrial Engineering

## Questions with Detailed Solutions

## FORENOON SESSION

All Queries related to GATE - 2017 key are to be send to the following email address hyderabad@aceenggacademy.com | Contact Us: 040-23234418, 19, 20

1. In Value Engineering approach, the value of the product is
(A) inversely proportional to its functions and directly proportional to its cost
(B) directly proportional to its functions and inversely proportional to its cost
(C) inversely proportional to its functions as well as its cost
(D) directly proportional to its functions as well as its cost
2. Ans: (B)

Sol: VALUE $=\frac{\text { WORTH }}{\text { COST }}$
02. If E is the modulus of elasticity in $\mathrm{GPa}, \mathrm{G}$ is the shear modulus in GPa and v is the Poisson's ratio of a linear elastic and isotropic material, the three terms are related as
(A) $\mathrm{E}=\mathrm{G}(1-2 \mathrm{v})$
(B) $\mathrm{E}=2 \mathrm{G}(1-\mathrm{v})$
(C) $\mathrm{E}=\mathrm{G}(1+2 \mathrm{v})$
(D) $\mathrm{E}=2 \mathrm{G}(1+\mathrm{v})$
02. Ans: (D)
03. In powder metallurgy, the process 'atomization' refers to a method of
(A) producing powders
(B) compaction of powders
(C) sintering of powder compacts
(D) blending of metal powders
03. Ans: (A)
04. For a two dimensional state-of-stress defined as $\sigma_{x x}=\sigma_{y y}=\tau_{\mathrm{xy}}=\mathrm{S}$, the Mohr's circle of stress has
(A) center at $(S, 0)$ and radius $S$
(B) center at $(0,0)$ and radius S
(C) center at ( $\mathrm{S}, 0$ ) and radius 0
(D) center at $(\mathrm{S} / 2,0)$ and radius 2 S
04. Ans: (A)

## Sol:


05. The ideal stress-strain behavior for a completely brittle material during tensile testing up to failure is described by

(C)


(D)

05. Ans: (B)
06. In gas tungsten arc welding process, the material coated on pure tungsten electrode to enhance its current carrying capacity is
(A) Titanium
(B) Manganese
(C) Radium
(D) Thorium
06. Ans: (D)

Sol: Pure tungsten electrodes are frequently coated oxides of $\mathrm{Th}, \mathrm{Zr}, \mathrm{La}$, and Ce . These oxides are expected to perform two important functions a) increasing arc stability and b) increasing the current carrying capacity of the electrodes.
07. Using Simpson's $1 / 3$ rule for numerical integration, the consecutive points are joined by a
(A) line
(B) Parabola
(C) polynomial with power 3
(D) polynomial with power $1 / 3$

## 07. Ans: (B)

Sol: In simpson's $\frac{1}{3}$ rule, the curve is replaced by a second degree polynomial (parabola)
08. A metallic cylindrical casing of an exhaust pipe has inner radius 50 mm and wall thickness 7 mm . If the thermal conductivity of the material of the casing is $50 \mathrm{~W} / \mathrm{m}-\mathrm{K}$, then the thermal resistance of the casing in $\mathrm{K} / \mathrm{kW}$ is $\qquad$ (up to three decimal places).
08. Ans: 0.417

Sol: $\quad K=50 \mathrm{~W} / \mathrm{m}-\mathrm{K}$
Assume length of pipe $=1 \mathrm{~m}$
Thermal resistance $=\frac{\ln \left(\frac{r_{2}}{r_{1}}\right)}{2 \pi \mathrm{KL}}$
$=\frac{\ln \left(\frac{57}{50}\right)}{2 \pi \times 50 \times 1}$
$=4.17075 \times 10^{-4} \mathrm{~K} / \mathrm{W}=4.17075 \times 10^{-4} \times \frac{10^{3} \mathrm{~K}}{10^{3} \mathrm{~W}}$

$$
\mathrm{R}_{\mathrm{Th}}=0.417 \mathrm{~K} / \mathrm{kW}
$$

9. A steel wire of 2 mm diameter is to be drawn from a wire of 5 mm diameter. The value of true strain developed is $\qquad$ (up to three decimal places)
10. Ans: 1.832

Sol: True strain $=\ln \left(\mathrm{A}_{0} / \mathrm{A}_{1}\right)$

$$
=2 \ln \left(\mathrm{~d}_{0} / \mathrm{d}_{1}\right)=2 \ln (5 / 2)=1.83258
$$

10. A specimen of steel has yield strength of 700 MPa . The specimen is subjected to a state of planestress with $\sigma_{1}=\sigma_{2}=500 \mathrm{MPa}$. The factor of safety according to the von-Mises theory of failure is
$\qquad$
11. Ans: 1.4

Sol: According to von-Mises theory
For 2 - D
$\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2} \leq\left(\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}}\right)^{2}$
$\sigma_{1}=\sigma_{2}=\sigma=500 \mathrm{MPa}$
$\sigma^{2}+\sigma^{2}-\sigma^{2} \leq\left(\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}}\right)^{2}$
$\sigma^{2} \leq\left(\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}}\right)^{2}$
$\sigma \leq \frac{S_{y t}}{F S}$
$500 \leq \frac{700}{\text { FS }}$
$\mathrm{FS} \leq \frac{700}{500}$
For limiting case factor of safety $=1.4$
11. Accuracy of a measuring instrument is expressed as
(A) true value - measured value
(B) measured value - true value
(C) $1-\left|\frac{\text { true value }- \text { measured value }}{\text { true value }}\right|$
(D) $1+\left|\frac{\text { true value }- \text { measured value }}{\text { true value }}\right|$
11. Ans: (A)

Sol: Accuracy is the difference between standard value and measured value.

## COAL INDIA LIMITED (CIL)

 Management Trainee \& Other PSUs
## Classroom coaching

(General Knowledge / Awareness, Reasoning, Numerical Ability \& General English)

## Starts on

『 $15^{\mathrm{mh}}$ Feb 2017 @ Delhi

## Online Test Series ( EE | ME | CE )

Total Tests : 20
$\left[/\right.$ starts from $17^{\text {th }}$ Feb 2017

# ESE-2017 <br> Mains (Stage - II) 

Classroom Coaching Starts from 15 ${ }^{\text {th }}$ Feb 2017
at Hyderabad, Delhi \& Pune

Offline Test Series : Starts from - 18 ${ }^{\text {th }}$ March 2017
Number of Tests : 16
$\boxed{\square}$ Will Conduct at all Our centers
12. In chemical machining, the etch factor is expressed as
(A) $\frac{\text { undercut }}{\text { depth of cut }}$
(B) $\frac{\text { depth of cut }}{\text { undercut }}$
(C) $\frac{\text { workpiece wear }}{\text { tool wear }}$
(D) $\frac{\text { toolwear }}{\text { workpiecewear }}$
12. Ans: (A)

Sol: Etch Factor is the ratio of the undercut to the depth of cut. The undercut depends upon the depth of cut, the strength of the etchant solution and work piece material.
13. The operating characteristic curves of three single sampling plans $X, Y$ and $Z$ with same lot size and acceptance number are shown in the figure.


Considering the above operating characteristic curves, the correct relationship of the plans with respect to sample size is
(A) Sample size of $\mathrm{X}<$ sample size of $\mathrm{Y}<$ sample size of Z
(B) Sample size of $\mathrm{X}=$ sample size of $\mathrm{Y}=$ sample size of Z
(C) Sample size of $\mathrm{X}>$ sample size of $\mathrm{Y}>$ sample size of Z
(D) Sample size of $\mathrm{X}>$ sample size of $\mathrm{Y}<$ sample size of Z
13. Ans: (D)
14. The product of a complex number $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and its complex conjugate $\overline{\mathrm{Z}}$ is
(A) $x^{2}$
(B) $y^{2}$
(C) $x^{2}-y^{2}$
(D) $x^{2}+y^{2}$
14. Ans: (D)

Sol: $\bar{Z}=(x+i y)(x-i y)=x^{2}+y^{2}$
15. With reference to Iron-Carbon equilibrium phase diagram, the crystal structure of $0.3 \%$ plain carbon steel at $1,100^{\circ} \mathrm{C}$ is
(A) HCP
(B) BCT
(C) BCC
(D) FCC
15. Ans: (D)
16. Match the ASME process chart symbols with their correct description

## Symbols

P. $\bigcirc$
Q. $\quad \Rightarrow$
R. $\square$
S. $\quad \nabla$
T. D

## Description

## 1. STORAGE

2. TRANSPORTATION
3. OPERATION
4. DELAY
5. INSPECTION
(A) P-3, Q-4, R-1, S-5, T-2
(B) P-4, Q-2, R-5, S-1, T-3
(C) P-3, Q-2, R-5, S-1, T-4
(D) P-1, Q-5, R-3, S-2, T-4
6. Ans: (C)
7. A machined surface with standard symbols indicating the surface texture is shown in the Figure. (All dimensions in the Figure are in micrometer).


The waviness height (in micrometer) of the surface is
(A) 1
(B) 50
(C) 60
(D) 120
17. Ans: (A)

Sol: It is the surface roughness value in microns.
18. A Shewhart $\overline{\mathrm{X}}$-chart was developed for an in-control process. Considering the probability of a point falling outside the $3 \sigma$ control limits as 0.0026 , the value of average run length for this chart is $\qquad$ .
18. Ans: 384.6

Sol: Average run length, $A R L=\frac{1}{p}=\frac{1}{0.0026}=384.6$

$$
=\frac{1}{\mathrm{P}(\text { ONE POINTOUTSIDE CONTROL LIMIT })}
$$

19. Divergence of the curl of a twice differentiable continuous vector function is
(A) unity
(B) infinity
(C) zero
(D) a unit vector
20. Ans: (C)

Sol: Let $\vec{F}$ be continuously differentiable vector point function
Div (curl $\overrightarrow{\mathrm{F}})=0$ (vector identity)
20. In carbon dioxide molding process, the binder used is
(A) Sodium bentonite
(B) Calcium bentonite
(C) Sodium silicate
(D) Phenol formaldehyde
20. Ans: (C)

Sol: When carbon dioxide is supplied to the dry sand it is chemically reacting with sodium silicate and produces silica gel called as paste like material and on drying it gives high strength to the mold.
21. For two non-zero vectors $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$, if $\overline{\mathrm{A}}+\overline{\mathrm{B}}$ is perpendicular to $\overline{\mathrm{A}}-\overline{\mathrm{B}}$, then
(A) the magnitude of $\overline{\mathrm{A}}$ is twice the magnitude of $\overline{\mathrm{B}}$
(B) the magnitude of $\overline{\mathrm{A}}$ is half the magnitude of $\overline{\mathrm{B}}$
(C) $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$ cannot be orthogonal
(D) the magnitudes of $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$ are equal

## 21. Ans: (D)

Sol: Let $\overrightarrow{\mathrm{A}} \& \overrightarrow{\mathrm{~B}}$ be two non-zero vectors
$(\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})=0 \quad(\because(\vec{A}+\vec{B}) \&(\vec{A}-\vec{B})$ are perpendicular to each other $)$.
$\Rightarrow(\overrightarrow{\mathrm{A}})^{2}-(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}) \cdot(\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{A}})-(\overrightarrow{\mathrm{B}})^{2}=0$
$\Rightarrow(\vec{A})^{2}-(\vec{B})^{2}=0 \quad(\because \vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A})$
$\Rightarrow|\overrightarrow{\mathrm{A}}|^{2}-|\overrightarrow{\mathrm{B}}|^{2}=0$
$\Rightarrow|\mathrm{A}|^{2}=|\overrightarrow{\mathrm{B}}|^{2}$
$\therefore|\overrightarrow{\mathrm{A}}|=|\overrightarrow{\mathrm{B}}|$
$\therefore$ The magnitudes of $\overrightarrow{\mathrm{A}} \& \overrightarrow{\mathrm{~B}}$ are equal

SHORT TERM BATCHES FOR GATE+PSUs -2018 STARTING FROM

## HYDERABAD

$29^{\text {th }}$ APRIL 2017 onwards

GENERAL STUDIES BATCHES FOR ESE-2018 STARTING FROM
HYDERABAD \& DELHI
$1^{\text {st }}$ week of July 2017
22. For an orthogonal matrix Q , the valid equality is
(A) $\mathrm{Q}^{\mathrm{T}}=\mathrm{Q}^{-1}$
(B) $\mathrm{Q}=\mathrm{Q}^{-1}$
(C) $Q^{T}=Q$
(D) $\operatorname{det}(\mathrm{Q})=0$
22. Ans: (A)

Sol: A matrix Q is said to be orthogonal if

$$
\mathrm{QQ}^{\mathrm{T}}=\mathrm{Q}^{\mathrm{T}} \mathrm{Q}=\mathrm{I} \text { (or) } \mathrm{Q}^{\mathrm{T}}=\mathrm{Q}^{-1}
$$

23. In Glass Fiber Reinforced Plastic (GFRP) composites with long fibers, the role of matrix is to
(P) Support and transfer the stresses to the fibers
(Q) Reduce propagation of cracks
(R) Carry the entire load
(S) Protect the fibers against damage

The correct statements are
(A) P, Q and R
(B) $\mathrm{Q}, \mathrm{R}$ and S
(C) P, Q and S
(D) P, R and S
23. Ans: (C)
24. Turning, drilling, boring and milling are commonly used machining operations. Among these, the operation (s) performed by a single point cutting tool is (are)
(A) turning only
(B) drilling and milling only
(C) turning and boring only
(D) boring only

## 24. Ans: (C)

Sol: Turning and boring are the single point cutting tool operations because boring is nothing but internal turning operation.
25. The inside and outside radii of a thick-walled cylindrical pressure vessel are denoted by $a$ and $b$, respectively. If the vessel is subjected to an internal pressure P , then the magnitude of the radial stress $\sigma_{\mathrm{rr}}$ is
(A) zero at $\mathrm{r}=\mathrm{a}$ and maximum at $\mathrm{r}=\mathrm{b}$
(B) maximum at $\mathrm{r}=\mathrm{a}$ and zero at $\mathrm{r}=\mathrm{b}$
(C) constant over the entire thickness
(D) zero at both $\mathrm{r}=\mathrm{a}$ and $\mathrm{r}=\mathrm{b}$
25. Ans: (B)

## Sol:

 $\sigma_{\mathrm{rr}}\left\{\begin{array}{c}\text { maximumata } \mathrm{a} \\ \text { zeroat } \mathrm{b}\end{array}\right.$
26. An electron beam welding process uses 15 mA beam current at an accelerating voltage of 150 kV . The energy released per second by the beam (in J) is $\qquad$ (up to one decimal place).
$\left(1\right.$ Ampere $=6.28 \times 10^{18}$ electrons per second, $\left.1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$
26. Ans: 2250

Sol: $P=15 \times 10^{-3} \times 150 \times 10^{3}=2250 \mathrm{~J}$
27. The preparatory and miscellaneous codes used in CNC part programming and the functions are given in the Table

| Group I | Group II |
| :--- | :--- |
| P. G01 | 1. Circular interpolation, counter-clock wise |
| Q. G03 | 2. End of program |
| R. M06 | 3. Tool change |
| S. M02 | 4. Linear interpolation |

The correct combination of code and the respective function is
(A) P-4, Q-1, R-3, S-2
(B) P-4, Q-1, R-2, S-3
(C) P-1, Q-4, R-3, S-2
(D) P-2, Q-1, R-3, S-4

## 27. Ans: (A)

Sol: G01 - linear interpolation, G03 - circular interpolation CCW, M06 - tool change and M02 - end of main program written without use of sub program.
28. In a machining operation with turning tool, the tool life $(T)$ is related to cutting speed $v(\mathrm{~m} / \mathrm{s})$, feed $f(\mathrm{~mm})$ and depth of cut $d(\mathrm{~mm})$ as

$$
\mathrm{T}=\mathrm{C} \mathrm{v}^{-2.5} \mathrm{f}^{-0.9} \mathrm{~d}^{-0.15}
$$

where, C is a constant. The suggested values for the cutting parameters are: $v=1.5 \mathrm{~m} / \mathrm{s}, f=0.25$ mm and $d=3 \mathrm{~mm}$ for normal rough turning. If the operation is performed at twice the cutting speed and the other parameters remain unchanged, the corresponding percentage change in tool life is $\qquad$ .
28. Ans: $\mathbf{8 2 . 4} \%$

Sol: Because there is no change in the feed and depth of cut, the tool life equation can be written as

$$
\mathrm{T}=\mathrm{C} . \mathrm{V}^{-2.5} \Rightarrow \mathrm{~T}=\left(\mathrm{C} / \mathrm{V}^{2.5}\right) \Rightarrow \mathrm{V}^{2.5} \mathrm{~T}=\mathrm{C}
$$

Hence $\quad \mathrm{V}_{1}{ }^{2.5} \mathrm{~T}_{1}=\mathrm{V}_{2}{ }^{2.5} \mathrm{~T}_{2}, \quad$ also given that $\mathrm{V}_{2}=2 \mathrm{~V}_{1}$

$$
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{~V}_{1} / \mathrm{V}_{2}\right)^{2.5}=0.176 \mathrm{~T}_{1}
$$

$\%$ change in tool life $=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) / \mathrm{T}_{1}=0.824=82.4 \%$
29. The local minima of the function $f(x)=x^{2}-x^{4}$ in the range $-0.8 \leq x \leq 0.8$ is located at
(A) $x=0$
(B) $x=\frac{1}{\sqrt{2}}$
(C) $x=-\frac{1}{\sqrt{2}}$
(D) $\mathrm{x}=\frac{1}{2}$
29. Ans: (A)

Sol: Given $f(x)=x^{2}-x^{4}$

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-4 \mathrm{x}^{3}, \mathrm{f}^{\prime \prime}(\mathrm{x})=2-12 \mathrm{x}^{2} \\
& \mathrm{f}^{\prime}(\mathrm{x})=0 \\
\Rightarrow & 2 \mathrm{x}-4 \mathrm{x}^{3}=0 \\
\Rightarrow & 2 \mathrm{x}\left(1-2 \mathrm{x}^{2}\right)=0 \\
\Rightarrow & \mathrm{x}=0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \text { are critical points } \\
& \mathrm{f}^{\prime \prime}(0)>0
\end{aligned}
$$

$\therefore \mathrm{f}(\mathrm{x})$ has local minimum at $\mathrm{x}=0$
30. A schematic diagram of peripheral milling is shown in the Figure.


If $t$ is the depth of cut and $d$ is the diameter of the milling cutter, then the length of approach $\left(l_{a}\right)$ is expressed as
(A) $\sqrt{\mathrm{d}(\mathrm{t}-\mathrm{d})}$
(B) $\sqrt{\mathrm{d}(\mathrm{d}-\mathrm{t})}$
(C) $\sqrt{\mathrm{t}(\mathrm{d}-\mathrm{t})}$
(D) $\sqrt{\mathrm{t}(\mathrm{t}-\mathrm{d})}$
30. Ans: (C)

Sol: $l_{\mathrm{a}}=$ compulsory approach $=$ distance to be travelled by milling cutter for complete depth of material to be removed
31. A solid circular shaft is subjected to a bending moment M and torque T simultaneously. Neglecting the effects of stress concentration, the equivalent bending moment is expressed as
(A) $\frac{1}{2}\left(\mathrm{M}+\sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}}\right)$
(B) $\left(\frac{\mathrm{M}}{2}+\sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}}\right)$
(C) $\frac{1}{2}\left(\mathrm{M}+\sqrt{\mathrm{M}^{2}+4 \mathrm{~T}^{2}}\right)$
(D) $\left(\frac{\mathrm{M}}{2}+\sqrt{\mathrm{M}^{2}+4 \mathrm{~T}^{2}}\right)$

## 31. Ans: (A)

#  

## Exclusive Postal Coaching Offer for Prelims Qualified Students

## For E\&T / EE / CE / ME



This offer is for Those Who Qualified in the PRELIMS only.
32. In a machine shop, four jobs need to be assigned to four different machines. Each of the jobs is to be assigned to one machine only at a time. The time taken to complete the job in different machines is given in the Table.

Machines

|  |  |  | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathrm{M}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{J}_{1}$ | 15 | 13 | 14 | 17 |
|  | $\mathrm{J}_{2}$ | 11 | 12 | 15 | 13 |
|  | $\mathrm{J}_{3}$ | 13 | 12 | 10 | 11 |
| - | $\mathrm{J}_{4}$ | 15 | 17 | 14 | 16 |

In order to ensure that the total time required to complete all the jobs in minimum, the optional assignment of the job is
(A) $\mathrm{J}_{1} \Rightarrow \mathrm{M}_{4}, \mathrm{~J}_{2} \Rightarrow \mathrm{M}_{2}, \mathrm{~J}_{3} \Rightarrow \mathrm{M}_{3}, \mathrm{~J}_{4} \Rightarrow \mathrm{M}_{1}$
(B) $\mathrm{J}_{1} \Rightarrow \mathrm{M}_{2}, \mathrm{~J}_{2} \Rightarrow \mathrm{M}_{1}, \mathrm{~J}_{3} \Rightarrow \mathrm{M}_{4}, \mathrm{~J}_{4} \Rightarrow \mathrm{M}_{3}$
(C) $\mathrm{J}_{1} \Rightarrow \mathrm{M}_{2}, \mathrm{~J}_{2} \Rightarrow \mathrm{M}_{1}, \mathrm{~J}_{3} \Rightarrow \mathrm{M}_{3}, \mathrm{~J}_{4} \Rightarrow \mathrm{M}_{4}$
(D) $\mathrm{J}_{1} \Rightarrow \mathrm{M}_{4}, \mathrm{~J}_{2} \Rightarrow \mathrm{M}_{2}, \mathrm{~J}_{3} \Rightarrow \mathrm{M}_{1}, \mathrm{~J}_{4} \Rightarrow \mathrm{M}_{3}$
32. Ans: (B)

Sol: Time Matrix $\rightarrow$ Minimize

|  | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | M4 | row Transactioncolumn transaction |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{J}_{1}$ | 15 | 13 | 14 | 17 |  |
| $\mathrm{J}_{2}$ | 11 | 12 | 15 | 13 |  |
| $\mathrm{J}_{3}$ | 13 | 12 | 10 | 11 |  |
| $\mathrm{J}_{4}$ | 15 | 17 | 14 | 16 |  |
| $\mathrm{J}_{1}$ | 2 | 0 | 1 | 4 |  |
| $\mathrm{J}_{2}$ | 0 | 1 | 4 | 2 |  |
| $\mathrm{J}_{3}$ | 3 | 2 | 0 | 1 |  |
| $\mathrm{J}_{4}$ | 1 | 3 | 0 | 2 |  |
| $\mathrm{J}_{1}$ | 2 | 0 | 1 | 3 |  |
| $\mathrm{J}_{2}$ | 0 |  | 4 | 1 |  |
| $\mathrm{J}_{3}$ |  | 2 | 0 | 0 |  |
| $\mathrm{J}_{4}$ |  | 3 | 0 | 1 |  |

$\Rightarrow \mathbf{J}_{\mathbf{1}} \rightarrow \mathbf{M}_{\mathbf{2}} ; \mathbf{J}_{\mathbf{2}} \rightarrow \mathbf{M}_{\mathbf{1}}, \mathbf{J}_{3} \rightarrow \mathbf{M}_{4}, \mathbf{J}_{4} \rightarrow \mathbf{M}_{\mathbf{3}}$
33. An air conditioner unit is expected to run continuously. The mean time between failures (MTBF) for this unit is 2,000 hours and the mean time to repair (MTTR) is 48 hours. The availability of the air conditioning unit is $\qquad$ (up to three decimal places).
33. Ans: $\mathbf{0 . 9 7 6}$

Sol: $\mathrm{MTBF}=2000$ hours
MTTR $=48$ hours
Availability $=\frac{\mathrm{MTBF}}{\mathrm{MTBF}+\mathrm{MTTR}}=\frac{2000}{2000+48}=0.976$
34. A manometer is used for the pressure measurement in a closed tank. The three fluids $\mathrm{f} 1, \mathrm{f} 2$ and f 3 have specific weights $\gamma, 2 \gamma$ and $0.5 \gamma$, respectively. The schematic arrangement with manometric readings and other dimensions are shown in the Figure. In order to ensure zero gauge pressure in the tank at the mid-height level (h/2), the height of the tank $h$ (in m) is $\qquad$

34. Ans: 2

Sol: Let P be the point at the mid-height level of the tank.
The pressure at point P can be written as,

$$
\begin{aligned}
& P_{p}=P_{\text {atm }}+\gamma \times 1.2-2 \mathrm{v} \times 0.2-0.5 \gamma\left(0.6+\frac{\mathrm{h}}{2}\right) \\
& \text { or }\left(\mathrm{P}_{\mathrm{p}}\right)-\mathrm{P}_{\text {atm }}=\gamma[1.2-0.4-0.3-0.25 \mathrm{~h}] \\
& \quad\left(\mathrm{P}_{\mathrm{p}}\right)_{\text {gage }}=\gamma[0.5-0.25 \mathrm{~h}]
\end{aligned}
$$

According to problem, $\left(\mathrm{P}_{\mathrm{p}}\right)_{\text {gauge }}=0$

or $\quad 0.5-0.25 \mathrm{~h}=0$
or $\quad h=2 \mathrm{~m}$
35. In a gear manufacturing company, three orders $\mathrm{P}, \mathrm{Q}$ and R are to be processed on a hobbing machine. The orders were received in the sequence $\mathrm{P}-\mathrm{Q}-\mathrm{R}$. The Table indicates the process time remaining and production calendar due date for each other.

| Order | Process Time Remaining (day) | Due date |
| :---: | :---: | :---: |
| P | 4 | Day 20 |
| Q | 16 | Day 30 |
| R | 6 | Day 19 |

Considering today as the Day 10 in the production calendar of the Hobbing Shop, the sequence of the orders scheduled using the 'Critical Ratio' rule is
(A) $\mathrm{P}-\mathrm{Q}-\mathrm{R}$
(B) $\mathrm{P}-\mathrm{R}-\mathrm{Q}$
(C) $\mathrm{Q}-\mathrm{P}-\mathrm{R}$
(D) $\mathrm{Q}-\mathrm{R}-\mathrm{P}$
35. Ans: (D)

Sol:

| ORDER | Process time Remaining, <br> PTR (days) | $\mathrm{CR}=\frac{\mathrm{DD}-\mathrm{TDD}}{\mathrm{PTR}}$ |
| :---: | :---: | :---: |
| P | 4 | $(20-10) / 4=2.5$ |
| Q | 16 | $(30-10) / 16=1.25$ |
| R | 6 | $(19-10) / 6=1.5$ |

$\mathrm{CR} \rightarrow$ critical ratio
DD $\rightarrow$ due date
TDD $\rightarrow$ today's date
PTR $\rightarrow$ process time remaining
Schedule the job with least critical ratio first, Q-R-P
36. A reversible heat engine (E) operating in a cycle interacts with three reservoirs 1,2 and 3 maintained at temperature $T_{1}=500 \mathrm{~K}, \mathrm{~T}_{2}=400 \mathrm{~K}$ and $\mathrm{T}_{3}=300 \mathrm{~K}$, respectively. The engine receives 10 kJ of heat from reservoir 1 and rejects 3 kJ to reservoir 3 . The net work output, $\mathrm{W}_{\text {net }}$ (in kJ ) from the engine is $\qquad$

36. Ans: $\mathbf{3 k J}$

## Sol:

Reversible Engine

$$
\begin{aligned}
& \oint \frac{\delta \mathrm{Q}}{\mathrm{~T}}=0 \\
& \frac{\mathrm{Q}_{1}}{\mathrm{~T}_{1}}+\frac{\mathrm{Q}_{2}}{\mathrm{~T}_{2}}-\frac{\mathrm{Q}_{3}}{\mathrm{~T}_{3}}=0 \\
& \frac{10}{500}+\frac{\mathrm{Q}_{2}}{400}-\frac{3}{300}=0 \\
& \begin{aligned}
0.01+\frac{\mathrm{Q}_{2}}{400}=0
\end{aligned} \\
& \begin{aligned}
& \mathrm{Q}_{2}=-4 \mathrm{~kJ}=4 \mathrm{~kJ} \text { (heat rejected) } \\
& \begin{aligned}
\text { net } & =\mathrm{Q}_{1}-\mathrm{Q}_{2}-\mathrm{Q}_{3} \\
& =10-4-3 \\
& =3 \mathrm{~kJ}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

37. A surface of $30 \mathrm{~mm} \times 30 \mathrm{~mm}$ of an iron block is machined using electrochemical machining process. The atomic weight and valency of iron is 55.85 and 2 , respectively. The density of iron is $7,860 \mathrm{~kg} / \mathrm{m}^{3}$. If input current is $1,000 \mathrm{~A}$ and Faraday's constant is 96,540 Coulombs, then the feed rate (in $\mathrm{mm} / \mathrm{min}$ ) is $\qquad$ (up to two decimal places).
38. Ans: 2.453

Sol: $\quad$ MRR $=$ A.I. $/ \rho$. Z.F. $=A_{c} . f$

$$
\begin{aligned}
\text { Feed } & =\mathrm{f}=\mathrm{MRR} / \mathrm{A}_{\mathrm{c}}=\text { A.I. } / \rho . \text { Z. F. } \mathrm{A}_{\mathrm{c}} \\
& =(55.85 \times 1000) /\left(7860 \times 10^{-6} \times 2 \times 96540 \times 30 \times 30\right) \\
& =0.04089 \mathrm{~mm} / \mathrm{sec}=2.453 \mathrm{~mm} / \mathrm{min} .
\end{aligned}
$$

38. In a calendar year, the demand forecast of motorbikes for the month of June is 200. The actual demand of motorbikes for the month of June and July are 300 and 350 , respectively. If single exponential smoothing method with smoothing constant 0.7 is used, then the demand forecast for the month of August is $\qquad$
39. Ans: $\mathbf{3 2 6}$

Sol: $\quad F_{\text {JUNE }}=200$ units
$\mathrm{D}_{\text {JUNE }}=300$ units
$\mathrm{D}_{\mathrm{JULY}}=350$ units
$\alpha=0.7$
$\mathrm{F}_{\mathrm{JULY}}=\mathrm{F}_{\mathrm{JUNE}}+\alpha\left(\mathrm{D}_{\mathrm{JUNE}}-\mathrm{F}_{\mathrm{JUNE}}\right)=200+0.7(300-200)=270$ units

$$
\begin{aligned}
\mathrm{F}_{\mathrm{AUGUST}} & =\mathrm{F}_{\text {JULY }}+\alpha\left(\mathrm{D}_{\mathrm{JULY}}-\mathrm{F}_{\text {JULY }}\right) \\
& =270+0.7(350-270) \\
& =270+56=326 \text { units }
\end{aligned}
$$

39. A metallic strip having a thickness of 12 mm is to be rolled using two steel rolls, each of 800 mm diameter. It is assumed that there is no change in width of the strip during rolling. In order to achieve $10 \%$ reduction in cross-sectional area of the strip after rolling, the angle subtended (in degrees) by the deformation zone at the center of the roll is
(A) 1.84
(B) 3.14
(C) 6.84
(D) 8.23
40. Ans: (B)

Sol: $\Delta \mathrm{H}=10 \%$ of $12=1.2 \mathrm{~mm}$,
$\operatorname{Tan} \alpha=(\Delta \mathrm{H} / \mathrm{R})^{0.5}=(1.2 / 400)^{0.5}$
$\Rightarrow \alpha=3.138$
40. The annual demand of wrist watches produced on an assembly line is $1,03,125$ units. The line operates 50 weeks/year, 5 shifts/week and 7.5 hours/shift. The uptime efficiency of the line is $99 \%$. The cycle time ( $\mathrm{T}_{\mathrm{c}}$ ) of the assembly line (in minutes/unit) is $\qquad$ (up to two decimal places).
40. Ans: 1.08

Sol: Number of units required $=\mathrm{N}=1,03,125$ units
Available time for production,
T $=$ No.OF HOURS $/$ SHIFT $\times$ NO. OF SHIFTS $/$ WEEK $\times$ NO.OF WEEK $/$ YEAR $\times \eta_{\text {line }}$ (UPTIME)
$\mathrm{T}=7.5 \times 5 \times 50 \times 0.99 \times 60$ minutes
$=111375$ minutes
Cycle Time $=\mathrm{C}=\frac{\mathrm{T}}{\mathrm{N}}=\frac{111375}{103125}=1.08$ minutes
41. The simply-supported beam shown in the Figure is loaded symmetrically using two equal point loads P . The radius of curvature of the deflection-curve is 15 m for the portion of the beam that is subjected to pure bending. The vertical deflection (in mm ) at point M , equidistant from both the supports is $\qquad$ (up to two decimal places).


## 41. Ans: 18.75

Sol:

$Y_{c}-Y_{B}=\frac{1}{E I}(A \bar{X})$

$$
=\frac{1}{\mathrm{EI}}\left(0.75 \times 0.25 \mathrm{P} \times \frac{0.75}{2}\right)
$$

$0.25 \mathrm{P}=\mathrm{M}$ (moment)

$$
=\frac{1}{\mathrm{EI}}\left(0.75 \times \frac{0.75}{2} \times \mathrm{M}\right)
$$

$$
Y_{c}-Y_{B}=\frac{M}{E I}\left(0.75 \times \frac{0.75}{2}\right)
$$

$$
\frac{1}{\mathrm{R}}=\frac{\mathrm{M}}{\mathrm{EI}}
$$

$$
\mathrm{R}=15 \mathrm{~m} \text { (given) }
$$

$\frac{1}{15}=\frac{M}{E I}$
$\mathrm{Y}_{\mathrm{c}}-\mathrm{Y}_{\mathrm{B}}=\frac{1}{15}\left(0.75 \times \frac{0.75}{2}\right)$
$\mathrm{Y}_{\mathrm{B}}=0$ [at support, no deflection]
$\mathrm{Y}_{\mathrm{c}}=18.75 \mathrm{~mm}$
$\mathrm{Y}_{\mathrm{c}}=$ deflection at c.

42. An electrical appliances showroom sells 2,400 ceiling fans in one year ( 52 weeks). The holding cost is $10 \%$ of the cost of the ceiling fan. The most of one ceiling fan is Rs. 600. The cost incurred for placing an order is Rs. 201. There is a lead time of 5 weeks. The economic order quantity (EOQ) and the reorder level, respectively (rounded to the next higher integer) are
(A) 231,127
(B) 38,231
(C) 127, 231
(D) 127,13
42. Ans: (C)

Sol: Annual Demand $=\mathrm{A}=2400$
No. Of weeks $=t=52$
Consumption rate $=\mathrm{r}=\frac{\mathrm{A}}{\mathrm{t}}=\frac{2400}{52}=46.1538$ units/week
Cost Per unit $=\mathrm{C}=$ Rs 600
Inventory Carrying cost, $\mathrm{I}=0.1$
Cost of Ordering = S = Rs. 201
Lead Time $=5$ Weeks

$$
\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{AS}}{\mathrm{CI}}}=\sqrt{\frac{2 \times 2400 \times 201}{600 \times 0.1}}=126.8 \cong 127 \mathrm{UNITS}
$$

Reorder Level $=$ Consumption Rate $\times$ Lead Time

$$
=46.1538 \times 5=230.77 \cong 231
$$

43. The improper integral $\int_{0}^{\infty} \mathrm{e}^{-2 t} d t$ converges to
(A) 0
(B) 1.0
(C) 0.5
(D) 2.0
44. Ans: (C)

Sol: $\quad \int_{0}^{\infty} \mathrm{e}^{-2 t} \mathrm{dt}=\left(\frac{-\mathrm{e}^{-2 \mathrm{t}}}{2}\right)_{0}^{\infty}$

$$
=(0)-\left(\frac{-\mathrm{e}^{-0}}{2}\right)=\frac{1}{2}
$$

$\therefore$ The improper integral converges to 0.5 .
44. The Merchant circle diagram showing various forces associated with a cutting process using a wedge shaped tool is given in the Figure


The coefficient of friction can be estimated from the ratio
(A) $\frac{f_{1}}{f_{2}}$
(B) $\frac{f_{3}}{f_{4}}$
(C) $\frac{\mathrm{f}_{5}}{\mathrm{f}_{6}}$
(D) $\frac{\mathrm{f}_{6}}{\mathrm{f}_{5}}$

## 44. Ans: (D)

Sol: $\mu=$ coefficient of friction $=F / N=f_{6} / f_{5}$ (As the diagram)
45. Schematic diagram of pouring basin and sprue of a gating system is shown in the Figure. Depth of molten metal in the pouring basin is 100 mm and the height of the sprue is $1,500 \mathrm{~mm}$.


Considering the cross-section of the sprue is circular, the ratio $\mathrm{d}_{1}: \mathrm{d}_{2}$ to avoid aspiration is
(A) $3: 2$
(B) $5: 6$
(C) $15: 16$
(D) $1: 2$
45. Ans: (D)

Sol: Given that $\mathrm{h}_{\mathrm{t}}=1500+100=1600 \mathrm{~mm}, \mathrm{~h}_{2}=1500 \mathrm{~mm}$
To avoid aspiration effect

$$
\begin{aligned}
& \mathrm{A}_{1} / \mathrm{A}_{2}=\left[\left(\mathrm{h}_{\mathrm{t}}-\mathrm{h}_{2}\right) / \mathrm{h}_{\mathrm{t}}\right]^{0.5}=[(1600-1500) / 1600]^{0.5}=\left(\mathrm{d}_{1} / \mathrm{d}_{2}\right)^{2} \\
& \left(\mathrm{~d}_{1} / \mathrm{d}_{2}\right)=1 / 2
\end{aligned}
$$

46. A hose coupling manufacturing company has production capacity of 2,500 units per year. The unit selling price of the item is Rs. 150. The fixed cost of production is Rs. 80,000 and variable cost of production per unit is Rs. 70. If the company wishes to achieve a profit of Rs. 20,000 during the calendar year, then the minimum quantity to be produced is $\qquad$
47. Ans: 1250

Sol: s=Rs 150/-
$\mathrm{F}=$ Rs 80,000
$\mathrm{v}=$ Rs 70/-
P = Rs 20,000
Marginal Costing Equation,

$$
\begin{aligned}
& q(s-v)=F+P \\
& q=\frac{F+P}{s-v}=\frac{80,000+20,000}{150-70}=\frac{1.00,000}{80 \text { Since } 1995}=1250 \text { units }
\end{aligned}
$$

47. Two machines are defective in a lot of 10 . A combination of four machines is to be picked at a time from the lot. The maximum number of combinations that can be obtained without any defective machine is $\qquad$
48. Ans: 70

Sol: Total number of machines $=10$
Number of defective machines $=2$
Number of non defective machines $=8$
Number of combinations can be obtained with out any defective machine $=8 \mathrm{C}_{4}=70$
48. Quality control department of a company maintains ' $c$ ' chart to assess the quality of laptops. In this process, twenty laptops are examined randomly. The number of nonconformities observed per laptop is given in the Table.

| Laptop number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number of <br> nonconformities | 1 | 3 | 7 | 4 | 10 | 6 | 1 | 5 | 4 | 3 | 6 | 4 | 2 | 7 | 4 | 2 | 9 | 8 | 5 | 2 |

Based on the data, the upper control limit for the ' $c$ ' chart is $\qquad$ (up to two decimal places).
48. Ans: 11.11

Sol: $\Sigma \mathrm{c}=93, \quad \mathrm{n}=20$

$$
\overline{\mathrm{c}}=\frac{\Sigma \mathrm{c}}{\mathrm{n}}=\frac{93}{20}=4.65
$$

Control limit, $\mathrm{CL}=\overline{\mathrm{C}}=4.65$
Upper Control Limit, UCL $=\overline{\mathrm{C}}+3 \sqrt{\overline{\mathrm{C}}}=4.65+3 \sqrt{4.65}=11.11$
49. In a numerical control (NC) machine positioning system, the measures of precision are expressed by considering a single axis as shown in the Figure.


If $\sigma$ is standard deviation of the error distribution, the $l, m$ and $n$ are
(A) $l=$ Accuracy,
$m=$ Repeatability,
(B) $l=$ Repeatability,
$m=$ Accuracy,
(C) $l=$ Control resolution,
(D) $l=$ Accuracy,
$m=$ Repeatability,
$m=$ Control resolution,
$n=$ Control resolution
$n=$ Control resolution
$n=$ Accuracy
$n=$ Repeatability
49. Ans: (A)
50. In a project, tasks $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}$ and J are to be performed. The precedence relationships and the time required (in days) to complete the tasks are given in the Table.

| Tasks | A | B | C | D | E | F | G | H | I | J |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Time (days) | 8 | 10 | 8 | 10 | 16 | 17 | 18 | 14 | 9 | 4 |
| Preceding tasks | - | - | - | A | A | B, D | C | C | F,G | E,I,H |

The time required (in days) to complete the project along the critical path is $\qquad$
50. Ans: 48

Sol:


Critical path is ADFIJ $=48$ days
51. A pair of spur gears with $20^{\circ}$ full-depth involute teeth is used to transmit 3.5 kW of power. The pinion rotates at 700 rpm and has pitch circle diameter of 100 mm . Assuming a single pair of teeth in contact, the total force acting on a gear tooth (in kN ) is
(A) 0.347
(B) 0.954
(C) 1.016
(D) 1.302

## 51. Ans: (C)

Sol: $\phi=20^{\circ}$,
Power $=3.5 \mathrm{~kW}$
$\mathrm{N}_{\text {pinion }}=700 \mathrm{rpm}$
$\mathrm{r}_{\text {pinion }}=50 \mathrm{~mm}=0.05 \mathrm{~m}$
Power $=\frac{2 \pi \times \mathrm{N}_{\mathrm{P}} \times \mathrm{F}_{\mathrm{t}} \times \mathrm{r}_{\mathrm{p}}}{60}$


$$
3500=\frac{2 \pi \times 700 \times \mathrm{F}_{\mathrm{t}} \times 0.05}{60}
$$

$$
\mathrm{F}_{\mathrm{t}}=954.92 \mathrm{~N}
$$

Resultant force, $\mathrm{F}_{\mathrm{N}}=\frac{\mathrm{F}_{\mathrm{t}}}{\cos \phi}=\frac{954.92}{\cos 20}=1016.21 \mathrm{~N}$

$$
\mathrm{F}_{\mathrm{N}}=1.016 \mathrm{kN}
$$

52. Runge-Kutta fourth order method is used to solve the differential equation $\frac{d y}{d x}=y-x$. If the initial value $y(0)=2$ and step-size is 0.1 , then the value of $y(0.1)$ is $\qquad$ (up to three decimal places).
53. Ans: 2.20

Sol: Given $\frac{d y}{d x}=y-x, \quad y(0)=2, \quad h=0.1$
$\mathrm{K}_{1}=0.1 \mathrm{f}(0,2)=0.1(2)=0.2$
$\mathrm{K}_{2}=0.1 \mathrm{f}(0.05,2.2)=0.1\{2.2=0.05\}=0.215$
$\mathrm{K}_{3}=0.1 \mathrm{f}(0.05,2.1075)=0.1\{2.1075-0.05\}=0.2057$
$\mathrm{K}_{4}=0.1 \mathrm{f}(0.1,2.2057)=0.1\{2.2057-0.1\}=0.2105$

$$
\begin{aligned}
\mathrm{K} & =\frac{1}{6}\left(\mathrm{~K}_{1}+2 \mathrm{~K}_{2}+2 \mathrm{~K}_{3}+\mathrm{K}_{4}\right) \\
& =\frac{1}{6}\{0.2+0.43+0.4114+0.2105\}=0.2086
\end{aligned}
$$

$\therefore$ The value of $y$ at $\mathrm{x}=0.1$ is $\mathrm{y}_{0}+\mathrm{K}=2+0.2086=2.2086$

To win the race join ACE

HEARTY CONGRATULATIONS TO OUR GATE 2016 RANKERS

53. The potential production alternatives for manufacturing a product along with their unit cost and monthly capacity are given in the Table.

| S.NO | Production Alternatives | Unit cost (Rs.) | Capacity/month |
| :--- | :--- | :--- | :--- |
| 1 | Regular time production | 5 | 300 |
| 2 | Overtime production | 6 | 200 |
| 3 | Subcontrating | 10 | 500 |

The inventory at the end of July is 100 units. If the demand for the month of August is 620 , then the minimum total cost (in Rs.) to meet the demand is $\qquad$
53. Ans: 2900

Sol: Demand in August $=620$ units
Inventory at end of July $=100$ units
Demand to be met $=620-100=520$ units

$$
\begin{aligned}
& \text { RTP }=300, \quad \text { OTP }=200, \quad \text { SCP }=20 \\
& \text { Total Cost }=300 \times 5+200 \times 6+210 \times 10=1500+1200+200=2900 /-
\end{aligned}
$$

54. A firm manufactures capacitors using a specialized process. The desired specification for the capacitance is $40 \pm 10$ picofarads $(\mathrm{pF})$. The process used is in statistical control. If the process mean is 41 pF and the estimated standard deviation is 3 pF , then the process capability index $\mathrm{C}_{\mathrm{pk}}$ is $\qquad$ .
55. Ans: 1

Sol: USL $=50 \mathrm{pf}, \quad \mathrm{LSL}=30 \mathrm{pf}, \quad \sigma=3 \mathrm{pf}$
Process Capability $=\frac{\text { USL }- \text { LSL }}{6 \sigma}=\frac{50-30}{6 \times 3}=1.11$
$(\mathrm{CPU})=\frac{\mathrm{USL}-\mu}{3 \sigma}=\frac{50-41}{3 \times 3}=+1$

$(\mathrm{CPL})=\frac{\mu-\mathrm{LSL}}{3 \sigma}=\frac{41-30}{3 \times 3}=1.22$
Process capability index, $\mathrm{C}_{\mathrm{pk}}=\min (\mathrm{CPU} ; \mathrm{CPL})=1$
55. A pipeline with variable cross-section contains water with specific weight $10^{4} \mathrm{~N} / \mathrm{m}^{3}$. The flow conditions at two points 1 and 2 on the axis of the pipe are:

$$
\begin{array}{ll}
P_{1}=3 \mathrm{bar}, & \mathrm{~V}_{1}=10 \mathrm{~m} / \mathrm{s} \\
\mathrm{P}_{2}=1 \mathrm{bar}, & \mathrm{~V}_{2}=20 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Consider frictional losses to be negligible. For no-flow condition between points 1 and 2 (as shown in Figure), if the height $z_{1}$ from the datum is 1 m , then the height $\mathrm{z}_{2}$ (in m ) is $\qquad$ $\left(\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$


## 55. Ans: 21

Sol: For no flow condition

$$
\overrightarrow{\mathrm{V}}_{1}=\overrightarrow{\mathrm{V}}_{2}=0
$$

Applying Bernoulli equation between (1) and (2)

$$
\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}
$$

$$
\frac{P_{1}}{\rho g}+z_{1}=\frac{P_{2}}{\rho g}+z_{2}
$$

$$
\rho \mathrm{g}=10^{4} \mathrm{~N} / \mathrm{m}^{3} \text { (given) }
$$

$$
\begin{gathered}
\frac{3 \times 10^{5}}{10^{4}}+1=\frac{1 \times 10^{5}}{10^{4}}+\mathrm{z}_{2} \\
30+1=10+\mathrm{z}_{2} \\
\mathrm{z}_{2}=21 \mathrm{~m}
\end{gathered}
$$

## GENERAL APTITUDE

1. I $\qquad$ made arrangements had I $\qquad$ informed earlier.
(A) could have, been
(B) would have, being
(C) had, have
(D) had been, been
2. Ans: (A)

Sol: Conditional tense Type 3 - Past perfect (could have) + perfect conditional (had $+\mathrm{V}_{3}$ )
02. She has a sharp tongue and it can occasionally turn $\qquad$
(A) hurtful
(B) left
(C) methodical
(D) vital
02. Ans: (A)

Sol: Hurtful $\rightarrow$ It is a supporting sentence. The word 'sharp tongue' strengthens the latter part of the sentence 'it can occasionally turn hurtful'
$03.40 \%$ of deaths on city roads may be attributed to drunken driving. The number of degrees needed to represent this as a slice of a pie chart is
(A) 120
(B) 144
(C) 160
(D) 212
03. Ans: (B)

Sol: Sum of angles in a pie chart $=360^{\circ}$
The relation between angle and percentage is

$$
\begin{gathered}
100 \%=360^{\circ} \\
\%=3.6^{\circ} \\
\therefore 40 \%=? \\
40 \times 3.6=144^{\circ}
\end{gathered}
$$

4. Some tables are shelves. Some shelves are chairs. All chairs are benches. Which of the following conclusions can be deduced from the preceding sentences?
(i) At least one bench is a table
(ii) At least one shelf is a bench
(iii) At least one chair is a table
(iv) All benches are chairs
(A) Only i
(B) Only ii
(C) Only ii and iii
(D) Only iv
5. Ans: (B)

Sol: From given statements the following venn diagrams are possible
$\mathrm{T}=$ tables, $\mathrm{S}=$ shelves, $\mathrm{C}=$ chairs and $\mathrm{B}=$ benches

(a)

(b)

(c)

From all of the above diagrams, conclusion (ii) only deduced from the statements.
05. In the summer, water consumption is known to decrease overall by $25 \%$. A water Board official states that in the summer household consumption decreases by $20 \%$ while other consumption increases by $70 \%$.

Which of the following statements is correct?
(A) The ratio of household to other consumption is $\frac{8}{17}$
(B) The ratio of household to other consumption is $\frac{1}{17}$
(C) The ratio of household to other consumption is $\frac{17}{8}$
(D) There are errors in the officials statement.
05. Ans: (D)

Sol: $\mathrm{H}=$ house hold consumption
$\mathrm{P}=$ other consumption
House hold consumption decreases by $20 \%=\frac{80}{100} \mathrm{H}$
Other consumption increases by $70 \%=\frac{170}{100} \mathrm{P}$
$\frac{80 \mathrm{H}}{100}+\frac{170 \mathrm{P}}{100}=\frac{75}{100}(\mathrm{H}+\mathrm{P})$
$80 \mathrm{H}+170 \mathrm{P}=75 \mathrm{H}+75 \mathrm{P}$
$80 \mathrm{H}-75 \mathrm{H}=75 \mathrm{P}-170 \mathrm{P}$
$5 \mathrm{H}=-95 \mathrm{P}$
There is a negative ratio so, there are errors in the official's statement.
06. Trucks ( 10 m long) and cars ( 5 m long) go on a single lane bridge. There must be a gap of at least 20 m after each truck and a gap of at least 15 m after each car. Trucks and cars travel at a speed of $36 \mathrm{~km} / \mathrm{h}$. If cars and trucks go alternately, what is the maximum number of vehicles that can use the bridge in one hour?
(A) 1440
(B) 1200
(C) 720
(D) 600
06. Ans: (A)

Sol: Length of truck + gap required $=10+20=30 \mathrm{~m}$
Length of car + gap required $=5+15=20 \mathrm{~m}$
Total distance is need for truck and car for passing alternatively $=30+20=50 \mathrm{~m}$
Given, speed $=36 \mathrm{kmph}=36 \times \frac{5}{18}=10 \mathrm{~m} / \mathrm{sec}$
Let ' $x$ ' be the number of repetitions of (Truck + car) in one hour

$$
\begin{aligned}
& \frac{50 \times x}{60 \times 60}=10 \mathrm{~m} / \mathrm{s} \\
\Rightarrow & x=\frac{10 \times 60 \times 60}{50}=720 \text { numbers of }(\text { Trucks }+ \text { cars })
\end{aligned}
$$

$\therefore$ The maximum number of vehicles $=720+720=1440$
07. $\mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z are seated around a circular table. T's neighbours are Y and $\mathrm{V} . \mathrm{Z}$ is seated third to the left of T and second to the right of S. U's neighbours are S and Y ; and T and W are not seated opposite each other. Who is third to the left of V?
(A) X
(B) W
(C) U
(D) T
07. Ans: (A)

Sol: From the given data, eight persons are seated around a circular table as follows

| Y | T | V | S | U | Y |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (or) |  |  | (or) |  |  |
| V | T | Y | Y | U | S |

$$
\mathrm{S}-\mathrm{Z}-\mathrm{T}
$$

$\therefore \mathrm{X}$ is third to the left of V

08. "If you are looking for a history of India, or for an account of the rise and fall of the British Raj, Or for the reason of the cleaving of the subcontinent into two mutually antagonistic parts and the effects this mutilation will have in the respective sections, and ultimately on Asia, you will not find it in these pages; for though I have spent a lifetime in the country, I lived too near the seat of events, and was too intimately associated with the actors, to get the perspective needed for the impartial recording of these matters".

Here, the word 'antagonistic' is closest in meaning to
(A) impartial
(B) argumentative
(C) separated
(D) hostile
08. Ans: (D)

Sol: 'Antagonistic' means showing dislike or opposition. So the word closest in meaning is 'hostile' (not friendly, having or showing unfriendly feelings, unpleasant or harsh)
09. A contour line joins locations having the same height above the mean sea level. The following is a contour plot of a geographical region. Contour lines are shown at 25 m intervals in this plot.


The path from P to Q is best described by
(A) Up-Down-Up-Down
(B) Down-Up-Down-Up
(C) Down-Up-Down
(D) Up-Down-Up
09. Ans: (C)

Sol: Contour lines can be observed to cross region with height from P to Q is as follows

$\therefore$ The path from P to Q is Down-Up-Down option (C) is satisfies this path
10. There are 3 Indians and 3 Chinese in a group of 6 people. How many subgroups of this group can we choose so that every subgroup has at least one Indian?
(A) 56
(B) 52
(C) 48
(D) 44
10. Ans: (A)

Sol: Sub group has at least one Indian means minimum one Indian and maximum three (or) more
Sub groups containing only Indians $=3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}=3+3+1=7$
In the sub group one Indian and remaining are Chinese $=3 \mathrm{C}_{1}\left[3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}\right]=3[3+3+1]$ $=3 \times 7=21$

In the sub group two Indians and remaining are Chinese

$$
=3 \mathrm{C}_{2}\left[3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}\right]=3[3+3+1]=3 \times 7=21
$$

In the sub group three Indians and remaining are Chinese $=3 \mathrm{C}_{3}\left[3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}\right]$

$$
=1[3+3+1]=7
$$

$\therefore$ Total number of sub groups $=7+21+21+7=56$


## USEFUL BOOKS FOR ESE(IES), GATE, PSUs

| GATE (Previous Questions \& Solutions) | IES (Previous Questions \& Solutions) |  |
| :---: | :---: | :---: |
| Electronics \& Communication Engineering | Electronics \& Telecommunication Engineering (Volume-I Obi) | Civil Engineering (Volume-1 Obi) |
| Electrical Engineering | Electronics \& Telecommunication Engineering (Volume-ll Obi) | Civil Engineoring (Volume-ll Obi) |
| Mechanical Engineering | Electronics \& Telecommunication Engineering (Paper-1 Conv) | Civil Engineering (Poper-1 Conv) |
| Civil Engineering | Electranics \& Telecommunication Engineering (Paper-11 Conv) | Civil Engineering (Paper-ll Conv) |
| Computer Science \& Information Engineering | Electrical Engineering (Volume-1 Obi) | Mechanical Engineering (Volume-1 Obi) |
| Instrumentation Engineering | Electrical Engineering (Volume-ll Obi) | Mechanical Engineering (Volume-ll Obi) |
| General Aptitude (Numerical \& Verbal) | Electrical Engineering (Paper-1 Conv) | Mochanical Engineoring (Paper-1 Conv) |
| GATE Practice Booklet (Vol-1), (Vol-il) | Electrical Engineering (Paper-11 Conv) | Mechanical Engineering (Paper-ll Conv) |
| Engineering Mathematics Solutions | General Studies \& Engineering Aptiude |  |
| Special Books For ISRO / PSUs (Provious Yoors Questions With Solutions \& Useful for BARC, SAIL, BEL, NPCIL, AAI \& OTHER PSUs) |  |  |

* GATE Solutions for more than 30 years
* IES Solutions for more than 32years
* Solutions, Chapterwise and Subjectwise
* You can Buy Online also



## TESTSERIES

| (Prelims \& Mains ) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Streams: EC, EE, ME, CE |  |  |  |  |
| Test Type | Prelims | Mains |  |  |
|  | Online | oflline | Offline |  |
| Chapter-wise Tests | 43 | - | - |  |
| Subject-wise Grand Tests | 31 | 20 | 08 |  |
| Revision Tests | - | - | 04 |  |
| Full Lenth Mock Tests | 08 | 04 | 04 |  |

Pre-GATE Exam (Center Based Test)
ACE uest tochnology powerod by TCS ion for conduting Ew-GATE 2018 (Canter boted MOCK Tast) on PAN India bosis with Analytica


## GATE

Streams : EC, EE, ME, CE, CS, IN, PI

| Test Type | No. Of Tests (Online) |
| :--- | :---: |
| Chapter-wise Tests | 20 |
| Subject-wise Grand Tests | 40 |
| Full Lenth Mock Tests | 12 |

Full Lenth Mock Tests
12

