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Abstract

AlphaSeq Platform

Iterative Machine Learning 
Guided Antibody Optimization

Validation: ML Models

Validation: Designed Sequences

Pseudovirus Neutralization 
Measurements of Top Hits

BLI Measurements of Top Hits

Next Steps: Transfer Learning

AlphaSeq uses synthetic biology and next generation
sequencing to measure protein-protein interactions at a library-
on-library scale. (A) Two libraries are built that each contain
protein sequences for display on the yeast cell surface,
randomized DNA barcodes, and a recombination site. (B)
Libraries are mixed in liquid culture and interactions between
surface displayed proteins drives agglutination and cell fusion.
(C) The number of fused cells with a given protein pair is
dependent on protein interaction strength. (D) Recombination
is induced with β-estradiol to consolidate DNA barcodes. Cells
are then lysed and sequenced to count the abundance of each
barcode pair and determine all protein interaction strengths.

(A) 5-fold cross-validation performance quantified by
Spearman's R of models trained on only sequences of round 1 or
sequences of both round 1 and round 2. Due to the high
performance of the LGB model, only that model was used to
design sequences of round 2. LGB and CNN models were used
to design sequences of round 3. Error bars show the variation
over the eight CoV targets that were assayed in both round 1
and round 2. (B) Spearman’s R, computed on hold-out
sequences of round 3, of models trained on only sequences of
round 1 or sequences of both round 1 and round 2. (C) Hold-out
ROC AUC score to correctly classify sequences that bind
stronger than the parent sequence. (D) Hold-out Spearman's R
stratified by the number of mutations from VHH-72. (E)
Scatterplot of model predictions vs. ground truth labels for
SARS-CoV-2 of the LGB model trained on round 1 and round 2.
Each dot corresponds to one hold-sequence assayed in round 3
that was not used for model training. Labels and predictions
correspond to binding affinities (higher is stronger) obtained by
normalizing AlphaSeq log KD values and computing the
difference from the maximum observed log KD.

An initial dataset of VHH sequences and experimental binding
measurements against CoV variants is the input for ML model
training. The model consists of two components, a regressor
and classifier, and predicts binding strengths given input
sequences. The classifier predicts whether an input VHH
sequence binds measurably to a specific SARS-CoV target, with
1 indicating “yes” and 0 indicating “no.” The regressor predicts a
quantitative binding strength. The model output is the product
of the classifier and regressor predictions. Model optimization is
performed in silico by searching for sequences with high
predicted affinities. A diverse subset consisting of 10,000s of
optimized sequences are selected and validated experimentally
using the AlphaSeq platform. The resulting experimental
measurements are preprocessed and used as additional training
data for subsequent rounds of optimization.

(A) Hit rate, the fraction of sequences that improve affinity
compared to parental by at least one standard deviation, is
higher with ML design and (B) enables sampling of a larger
sequence space. ML-designed sequences result in (C)
stronger (lower KD) binders and (D) enable a greater
mutational distance from VHH-72 compared with human-
designed sequences, as measured by AlphaSeq.

Biolayer interferometry (BLI) affinity measurements of 12 top
VHH hits and VHH-72 against SARS-CoV-1 RBD, SARS-CoV-2
RBD, SARS-CoV-2 Delta RBD, and SARS-CoV-2 Omicron RBD.

From 12 ML derived variants, 11 bind stronger to SARS-CoV-2
and maintain binding to SARS-CoV-1. Additionally, all tested
variants gain cross-reactivity to the Omicron variant.

Rapid discovery and development of therapeutic antibodies to
new pathogens and pathogen variants is crucial for combatting
infectious diseases. An off-the-shelf computational model to
generate evolved candidates from a starting antibody would
save months by eliminating wet-lab antibody discovery. In
collaboration with Google Research and Lumen Bioscience, we
developed a combined experimental and machine learning (ML)
framework for optimizing a well-described anti-SARS-CoV
antibody (VHH-72) to recognize diverse variants of SARS-CoV-
2. We leverage the AlphaSeq platform, using yeast synthetic
biology to measure millions of protein interactions on a library-
on-library scale, to train and validate an ML model for antibody
sequence proposals. Starting from a parental antibody with
moderate affinity to SARS-CoV-2, we improve its affinity by
more than 50-fold while maintaining cross-reactivity to SARS-
CoV. We confirm that >90% of top hits have improved affinity by
biolayer interferometry (BLI) and therapeutic potency by
pseudovirus neutralization. Top hits are sequence diverse,
containing up to 8 mutations from the parental sequence, and
have a range of recombinant expression yields. Furthermore,
we observe that many top hits show significant cross-reactivity
to the SARS-CoV-2 Omicron variant, even though it was not
included in the original training data. After 3 iterations of
AlphaSeq + ML, model generated sequences outperform non-
ML baseline sequences (combinatorial recombination of the
best performing sequences) by up to 4-fold.

(A) Pseudovirus neutralization potency (IC50) for the top VHH
hits and parental VHH-72 against the RBDs of SARS-CoV-1,
SARS-CoV-2, SARS-CoV-2 Delta, and SARS-CoV-2 Omicron.
(B) Neutralization curves of the top three ML-designed
sequences (Seq1-3) and parental VHH-72.

Conclusions

From 12 ML derived variants, 11 have improved SARS-CoV-2
neutralization and retain neutralization of the Delta variant.
Additionally, 5 of the top hits gain neutralization of the Omicron
variant, which is undetectable for parental VHH-72.

After 3 rounds of ML-guided optimization, ML-generated
sequences outperformed a non-ML baseline approach by up to
4-fold. We validated that >90% of top hits have improved
binding by BLI and increased potency by pseudovirus
neutralization to SARS-CoV-2, our primary target sequence. We
also observed cross-reactivity to Delta and Omicron variants,
which were not included in the original training set. The top
VHH hits have an average of 6 mutations and up to 8 mutations
from parental VHH-72, which suggests that ML-based
optimization is capable to generating higher-order mutational
variants and allow for exploration of a diverse sequence space.

A-Alpha Bio’s ML-guided antibody optimization workflow
allows for a rapid design/test/iterate workflow on 10,000s of
antibody variants against 10s of targets. This approach
generates many sequence-diverse antibody variants with the
desired affinity, specificity, and developability properties.

We have recently demonstrated that using a model pre-trained
on antibody-antigen binding data, even from an unrelated
target, can significantly improve binding predictions when
starting a new antibody optimization campaign. We expect that
our predictive power will continue to improve as we grow our
PPI database (currently >300M PPIs) and implement more
powerful pre-trained models.

Using ML-guided design, we identified sequences with up to
15 mutations from parental VHH-72 with a significantly higher
success rate compared to human-guided sequence design.
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