Calculations of PKA spectra and kerma factors using PHITS code and measurement of displacement cross section of Cu irradiated with 125 MeV protons at cryogenic temperature

Yosuke Iwamoto

Nuclear Science and Engineering Center Japan Atomic Energy Agency
(1) Calculations of PKA spectra using PHITS-EG for 5 and 14.5 MeV neutrons
(2) Calculations of neutron kerma factors using

PHITS-EG with $1 \mathrm{e}-10<\mathrm{E}_{\mathrm{n}}<20 \mathrm{MeV}$
(3) Calculation of gas production cross sections for $\mathrm{p}+\mathrm{Fe}$ using SHITS
(4) Measurement of displacement cross section of copper irradiated with 125 MeV protons
(1) Calculation of PKA spectra using PHITS-EG and NJOY-SPKA

Neutron energy (MeV)	Target
5, 14.5	${ }^{28} \mathrm{Si}$, ${ }^{56} \mathrm{Fe}$, ${ }^{90} \mathrm{Zr},{ }^{184} \mathrm{~W}$

Processing step	ACE Library
PHITS-EG	JENDL-4
PHITS-EG	ENDF/B-VII.1
NJOY-SPKA	JENDL-4
NJOY-SPKA	ENDF/B-VII.1

Energy group structure of neutron and PKA is vitamin-j 175-group.

NJOY-SPKA: PKA matrixes are produced by NJOY and then fold with neutron spectrum using SPKA code. Obtained from https://www-nds.iaea.org/CRPdpa/

Next slide: PHITS-EG (Event Generator mode)

Event generator mode by neutrons with $\mathrm{E}_{\mathrm{n}}<20 \mathrm{MeV}$

The model can determine all ejectiles with keeping energy and momentum conservation.
T. Ogawa et al., NIM A 763 (2014) 575-590.

Sampling reaction channel with neutron cross sections

PHITS-EG uses inclusive (n, n^{\prime}) cross sections with residuals in all excited states and in continuum.

Benchmark calculation for PHITS-EG

PHITS-EG can reproduce neutron and α energy spectra, but it overestimates the experimental data for proton over 5 MeV .

PKA spectra for $\mathrm{n}+\mathrm{Si}$

\checkmark PKA spectra processed by SPKA-JENDL4 are not correct due to lack of recoil data in JENDL4.
\checkmark Good agreements between PHITS-EG and SPKA-END/F-BVII. 1

PKA spectra for $n+S i$

Contribution of reaction channel to total using PHITS-EG-JENDL4.

5 MeV : Contribution of elastic and (n,n') on PKA spectra are large. 14.5 $\mathrm{MeV}:(\mathrm{n}, \alpha)$ is dominant for higher energy region.

PKA spectra for $\mathrm{n}+\mathrm{Fe}$

PKA spectra processed by SPKA-JENDL4 are not correct due to lack of recoil data in JENDL4.

PKA spectra for $\mathrm{n}+\mathrm{Fe}$

Contribution of reaction channel to total using PHITS-EG-JENDL4.

5 MeV : Contribution of elastic and (n, n ') on PKA spectra are large.
14.5 MeV : Contribution of $(\mathrm{n}, 2 \mathrm{n})$ is also large. (n, α) is dominant for higher energy.

PKA spectra for $n+Z r$

PKA spectra for $n+Z r$

Contribution of reaction channel to total using PHITS-EG-JENDL4.

5 MeV : Contribution of elastic and ($\mathrm{n}, \mathrm{n}^{\prime}$) on PKA spectra are large.
14.5 MeV : Contribution of $(n, 2 n)$ is also large. (n, α) is dominant for higher energy. It is important to compare of PKA for each channel between codes.

PKA spectra for $\mathrm{n}+\mathrm{W}$

PKA spectra for $n+W$

Contribution of reaction channel to total using PHITS-EG-JENDL4.

5 MeV : Contribution of elastic and (n, n ') on PKA spectra are large.
14.5 MeV : Contribution of $(\mathrm{n}, 2 \mathrm{n})$ is also large. (n, α) is dominant for higher energy.

Comparison of PKA for each channel between codes will be needed.

Summary for PKA calculation

Calculation of PKA spectra on ${ }^{28} \mathrm{Si},{ }^{56} \mathrm{Fe},{ }^{90} \mathrm{Zr}$ and ${ }^{184} \mathrm{~W}$ for 5 and 14.5 MeV neutrons.

For ${ }^{28} \mathrm{Si}$ and ${ }^{56} \mathrm{Fe}$, good agreements between PHITS-EG and SPKA-END/F-BVII.1.

For ${ }^{90} \mathrm{Zr}$ and ${ }^{184} \mathrm{~W}$, SPKA-ENDF/B-VII. 1 may lack some reactions.

Future plans:
\checkmark Calculation of PKA spectra at different radiation environments. \checkmark Intecomparison of PHITS results with others.

(2) Calculations of neutron kerma factors

Neutron kerma : the sum of the initial kinetic energies of all the charged particles induced by neutron irradiation.

$$
\begin{aligned}
& H(E)=\sum_{i} \sum_{j} \rho_{i} k_{i j}(E) \varphi(E) \longrightarrow \text { Neutron fluence } \\
& \text { Number density of material } i \begin{array}{l}
\text { Neutron kerma factor } \\
\text { of material } i \text {, reaction } j
\end{array} \\
& k_{i j}(E)=\sum_{l} \underbrace{E_{i j l}(E) \sigma_{i j}(E) \longrightarrow \text { Total neutron cross section }}_{i j l}
\end{aligned}
$$

Kinetic energy of secondary charged particle $/$:Heating number

- Heating number is obtained by NJOY and nuclear data.
- Heating numbers are included in the ACE file of data library.

Problem of neutron kerma factor in ACE file

- Energy balance method

$$
k_{i j}(E)=\left(E_{i}+Q_{i j}-\bar{E}_{i j n}-\bar{E}_{i j \gamma}\right) \sigma_{i j}(E) \text { Total energy }{ }^{\text {g }}
$$

Incident neutron energy Total energy of secondary neutrons

- Kinematic method Calculation of upper limit of energy for charged particles.

Official ACE files $\left\{\begin{array}{l}\text { END/F-BVII.1: no check by Kinematic method }\end{array}\right.$
Official ACE files $\{$ JENDL4 : check by Kinematic method

- error in energy

More than 200 nucleus have problem for ACE files of END/F-BVII. 1 Konno et al., Nuclear data sheet, 118 (2014) 450-452.
Necessary to validate kerma factors using new method

Purpose for kerma calculation

- Calculation of neutron heating number using PHITS-EG
- Comparison with data in ACE files and experimental data

Neutron energy range: $10^{-10} \mathrm{MeV} \sim 20 \mathrm{MeV}$
Elements of human body:
${ }^{1} \mathrm{H},{ }^{\text {nat }} \mathrm{C},{ }^{44} \mathrm{~N},{ }^{16} \mathrm{O},{ }^{23} \mathrm{Na},{ }^{31} \mathrm{P},{ }^{32} \mathrm{~S},{ }^{34} \mathrm{~S},{ }^{35} \mathrm{CI},{ }^{39} \mathrm{~K},{ }^{41} \mathrm{~K},{ }^{40} \mathrm{Ca}$
Structural materials:
${ }^{24} \mathrm{Mg},{ }^{27} \mathrm{Al},{ }^{28} \mathrm{Si},{ }^{56} \mathrm{Fe},{ }^{58} \mathrm{Ni},{ }^{63} \mathrm{Cu},{ }^{90} \mathrm{Zr},{ }^{138} \mathrm{Ba},{ }^{184} \mathrm{~W},{ }^{208} \mathrm{~Pb}$

Comparison of calculated results with values in ACE files

${ }^{\text {nat }} \mathrm{C},{ }^{27} \mathrm{Al},{ }^{28} \mathrm{Si},{ }^{56} \mathrm{Fe}$:
Good agreements

Comparison of calculated results with values in ACE files

\checkmark PHITS-EG does not give strange results.
\checkmark PHITS-EG results are good agreements with value in ACE file of JENDL4.

Effects on Kerma due to difference of (n, α) cross section

Large difference depending on nuclear data.

(n, α) cross section for JENDL4 is quite different from that for END/F-BVII.1.

Necessary to re-evaluate (n, α) cross section.
 \section*{Comparison with experimental data in high-energy region}
 \section*{Comparison with experimental data in high-energy region}

${ }^{\text {nat }} \mathrm{C},{ }^{27} \mathrm{Al},{ }^{28} \mathrm{Si}$: good agreements
${ }^{56} \mathrm{Fe}$: underestimates

Summary for kerma calculations

\checkmark PHITS-EG does not introduce strange kerma factor obtained by the energy balance method.
\checkmark PHITS-EG generally agrees with values in ACE file.
\checkmark Neutron heating numbers for ${ }^{40} \mathrm{Ca},{ }^{208} \mathrm{~Pb}$ are strongly depend on the (n, a) cross section in evaluated libraries.

Future plans: calculation and validation of kerma factors for heavier nuclei.

Next slide: calculations of gas production for $\mathrm{p}+\mathrm{Fe}$

(3) Intercomparison for gas production cross sections for $\mathrm{p}+\mathrm{Fe}$

KIT data: https://www-nds.iaea.org/public/download-endf/DXS/
Hydrogen: Good agreements with 80 MeV < $\mathrm{E}_{\mathrm{n}}<500 \mathrm{MeV}$.
Helium: For INCL4/GEM, good agreements with $150 \mathrm{MeV}<\mathrm{E}_{\mathrm{n}}<500 \mathrm{MeV}$. For Bertini/GEM, generally underestimation.
Alpha particles are produced by evaporation process, mainly.
Applicable range of INCL/GEM is limited from 150 MeV to 500 MeV .
Future plans : calculation and validation for other materials 23

(4) Measurement of displacement cross section of copper irradiated with 125 MeV protons at 12 K

Y. Iwamoto ${ }^{*, a}$, T. Yoshiie ${ }^{\text {b }}$, M. Yoshidac ${ }^{\text {c }}$ T. Nakamoto ${ }^{\text {c }}$, M. Sakamoto ${ }^{\text {b }}$, Y. Kuriyama ${ }^{\text {b }}$, T. Uesugib, Y. Ishib ${ }^{\text {b }}$ Q. Xu ${ }^{\text {b }}$, H. Yashima ${ }^{\text {b }}$, F. Takahashia, Y. Morib, T. Ogitsu ${ }^{\text {b }}$

aJAEA bKURRI/Kyoto Univ. ${ }^{\text {c }}$ KEK

Details are in Journal of Nuclear Materials 458 (2015) 369-375.

Supported by a Japan Grant-in-Aid for Young Scientists (B) (25820450) and "Clarification of material behaviors in accelerator driven systems by an FFAG accelerator" carried out under the Strategic Promotion Program for Basic Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

How to measure displacement cross section?

Irradiation on metal at cryogenic temperature

Recombination of Frenkel pairs by thermal motion is well suppressed.

$$
\begin{aligned}
& \text { Damage rate } \\
& \sigma_{\exp }=\frac{1}{\rho_{F P}}: \frac{\Delta \rho_{m e t a l}}{\phi} \\
& \text { J. Nucl. Mater. } 49 \\
& (1973 / 74) 161 .
\end{aligned}
$$

Resistivity increase is the sum of resistivity per Frenkel pair
BNL data for 1.1 and 1.9GeV: Cryostat assembly consisted of complicated system to deliver a flow of liquid cryogen.
Hard to measure systematic data at other facilities with same device.
Development of cryogen-free cooling system Measurements of damage rate of Cu under cryogenic irradiation

Beam line of FFAG accelerator facility

Fixed-Field Alternating Gradient (FFAG) accelerator facility at Kyoto University Research Reactor Institute (KURRI)

Proton energy: 125 MeV , 1 nA

Next slide: Irradiation chamber

Irradiation chamber with GM cryocooler

GM cryocooler 500 mW cooling capacity at 4 K He gas lines (RDK-205E, Sumitomo inc.) to compressor

Signal cable

Irradiation chamber (consist of aluminum)
proton

Next slide: Target assembly
rotary pump and turbomolecular pump Vacuum of $10^{-5} \mathrm{~Pa} 27$

Target assembly

Sample was cooled by conduction coolant via Al (3) and oxygen-free highconductivity copper (OFHC) (4).

(9) 1st stage
of cold head, 50 K
(8) 2nd stage of cold head, 4 K

(6) Silicon
thermometer, T2

Next slide: Sample

Sample and its retention

Material	Copper
Diameter (um)	250
Purity (\%)	99.999
Shape	a serpentine-shaped line Annealed for 1 h at $1000^{\circ} \mathrm{C}$ Length between two potential points (mm) 152

Electrical resistivity changes of copper during irradiation

$\phi\left(\right.$ protons $\left./ \mathrm{m}^{2}\right)$	Resistivity increase $\Delta \rho_{\mathrm{cu}}(\Omega \mathrm{m})$	Damage rate $\left(\Omega \mathrm{m}^{3} /\right.$ proton $)$
1.45×10^{18}	4.94×10^{-13}	3.41×10^{-31}

Comparison with other experimental data

Source	Fast neutrons ANL-CP5- V153 [1]	Fusion neutrons RTNS-II [2]	125 MeV KURRI-FFAG	1.94 GeV protons BNL [3]
Damage rate $\left(10^{-31} \Omega \mathrm{~m}^{3} /\right.$ particle $)$	0.424	2.48	3.41	3.66

\checkmark The damage rates by neutrons increase with incident energies up to 14 MeV . \checkmark Those by protons with energies $>100 \mathrm{MeV}$ are higher than the damage rate by 14 MeV neutrons.
[1] J.A. Horak, T.H. Blewitt, J. Nucl. Mater. 49 (1973/74) 161-180.
[2] M.W. Guinan, J.H. Kinney, J. Nucl. Mater. 108\&109 (1982) 95-103.
[3] G.A. Greene, et al., Proceedings of AccApp’03, 2004, p.881-892.

Displacement cross section

Large difference between experimental data and NRT (no defect production efficiency)

The measured data agrees better with BCA-MD (defect production efficiency)

Main uncertainty comes from ρ_{FP}.

P. Ehrhart, U. Schlagheck, J. Phys. F: Metal Phys. 4 (1974) 1575-1588.

Can be derived from damage rate measurements in single crystals under electron irradiation at low temperature

Summary for experimental study

Summary

Cryogenic irradiation system has been developed.
-Sample was cooled by conduction coolant via AI and OFHC.

- $\sigma_{B C A-M D}$ is in better agreement with experimental data than $\sigma_{N R T}$ But, it still overestimates the experimental data.

Future plans

-Improving cooling system.
-Measurements under 125 MeV proton on Al at KURRI.
-Move the device to other facilities, such as RCNP and FNAL.
-Measurements for $100 \mathrm{MeV}-100 \mathrm{GeV}$ proton on metals.

Thank you for your attention.

Scale of irradiation effect

PHITS treats nuclear reaction and approximation of displacement damages Courtesy Prof. T. Yoshiie NIM B 269 (2011) 1740. Time Scale (sec)

C: Production of a neutron in the continuum not included in the discrete represent.
L1: Production of a neutron, with residual in the 1st excited state.

PKA spectra for ${ }^{90} \mathrm{Zr}$ at ITER and IFMIF

SPKA-ENDF/B-VII. 1 is close to SPKA-JENDL4 below 0.6 MeV .

Recovery of defects through annealing after irradiation

Annealing effects up to certain temperatures were observed using isochronal schedule.
(1) Warming the sample by the electric heater at annealing temperature.
(2) Holding the temperature of the sample constant for 10 min .
(3) Cooling the sample to 12 K .
(4) Measuring the electric resistivity of the sample at 12 K .

Behavior of resistivity recovery for 125 MeV is similar to that for 0.54 MeV .
Essentially no damage was recovered below 15 K , where Frenkel defects were almost immobile.

How to measure beam fluence(protons $/ \mathrm{m}^{2}$) ?

The number of protons on the sample during irradiation was measured in situ by the Faraday cup.

Copper collimator with $\phi 2 \mathrm{~cm}$ hole Faraday cup, 3 cm thick Cu block
\checkmark Reduce halo of proton striking the thermometer on the sample.
\checkmark Cu block was insulated by Kapton polyimide tape to ensure secondary electrons do not escape from Cu block.

An activation measurement was carried out .

Electrical resistance of copper wire

$\mathrm{V}_{+}-$	Nano-voltmeter $\mathrm{V}-$ 2182A Keithley Inc.
TRIG link	RS232

Precision of this resistance measurement was $\pm 0.01 \mu \Omega$, Corresponding to a resistivity of $\pm 3 \mathrm{f} \Omega \mathrm{m}$.

Electrical resistivity

$\rho_{C u}=R A / L$

R: Measured electrical resistance
L: Length between two potential points (152 mm fixed) A : Area of the sample ($4.91 \times 10^{-2} \mathrm{~mm}^{2}$ fixed).

Cooling test for sample

Estimated heat entering the sample through signal cable and thermal radiation 14 mW : much less than 500 mW power .
-Insufficient thermal contact between the aluminum columns and AIN sheets.

Material	Copper
Resistivity at $298 \mathrm{~K}(\Omega \mathrm{~m})$	$1.67 \times 10^{-8}(52.0 \mathrm{~m} \Omega)$
Resistivity at $12 \mathrm{~K}(\Omega \mathrm{~m})$	$9.44 \times 10^{-12}(29.4 \mu \Omega)$
Residual resistivity ratio (RRR)	1769

Next slide: How to measure beam fluence on sample

Why is damage rate important?

The average number of displaced atoms per atom of a material

DPA (displacement per atom) $=\int \sigma_{\text {disp. }}(E) \phi(E) d E$

Displacement cross section

$d \sigma / d T_{i}$:recoil atom energy distribution

$$
v\left(T_{i}\right)=N_{\mathrm{NRT}}=0.8 T_{\mathrm{dam}} /\left(2 E_{\mathrm{d}}\right)
$$

$v\left(T_{i}\right)$: number of defects $T_{\text {dam }}$: Damage energy
E_{d} : threshold displacement energy

$$
\text { or } \quad v\left(T_{i}\right)=\eta N_{\mathrm{NRT}}
$$

Defect production efficiency by MD-BCA

Measurement
Irradiation at cryogenic temperature Recombination of Frenkel pairs by thermal motion is well suppressed.

$$
\sigma_{\exp }=\frac{1}{\Omega} \frac{\Delta \rho_{\text {metal }}}{\phi} \text { Damage rate }
$$

$\Delta \rho_{\text {metal }}$: Electrical resistivity change $(\Omega \mathrm{m})$ Ф: Beam fluence($1 / \mathrm{m}^{2}$)
$\rho_{\text {FP }}$: Frenkel-pair resistivity ($\Omega \mathrm{m}$)
J. Nucl. Mater. 49 (1973/74) 161.

PHITS simulation

Average energy $\mathrm{E}_{\text {ave }}$ of a charged particle in a region

$$
\left(E_{\text {ave }}, M_{1}, Z_{1}\right)
$$

To check the accuracy of calculation of PKA for each reieitilactaninti, cross section σ

e1 e2

It is important to compare of PKA for each channel between codes.
Range(e1) Range(e2)
Delt=Range(e1)-Range(e2)

$$
D P A=\frac{\sum(\sigma \times \text { delt } \times \text { dens })}{\sum \text { den } s \times \text { Volume }}
$$

(2) Calculation of PKA spectra using PHITS-EG and NJOY-SPKA for different radiation environments

from https://www-nds.iaea.org/CRPdpa/

Neutron source	Targets
Demo/HCLL	$\mathrm{Fe}, \mathrm{Zr}, \mathrm{SiC}$
IFMIF	$\mathrm{Fe}, \mathrm{Zr}, \mathrm{SiC}$
ITER	$\mathrm{Fe}, \mathrm{Zr}, \mathrm{SiC}$

Processing step	Library
PHITS-EG	JENDL-4
PHITS-EG	ENDF/B-VII.1
NJOY-SPKA	JENDL-4
NJOY-SPKA	ENDF/B-VII.1

PHITS-EG: En<20MeV Event Generator mode En>20MeV INCL4 intra nuclear cascade model

PKA group structure is vitamin-j 175-group.

PKA spectra for $\mathrm{n}+{ }^{56} \mathrm{Fe}$

Good agreements except for SPKA-JENDL4

PKA spectra for $\mathrm{n}+{ }^{56} \mathrm{Fe}$

Good agreements except for SPKA-JENDL4

PKA spectra for $n+{ }^{90} \mathrm{Zr}$

SPKA-ENDF/B-VII. 1 is close to SPKA-JENDL4 below 0.6 MeV .

PKA spectra for $n+{ }^{90} Z r$

PKA spectra for $\mathrm{n}+\mathrm{SiC}$

Good agreements between PHITSEG-JENDL4 and PHITS EG-ENDF/BVII.1.

PKA spectra for $\mathrm{n}+\mathrm{SiC}$

Comparison of calculated results with values in ACE files

－PHITS－EG：
Not give strange results．
PHITS－EG results are good agreements with value in ACE file of JENDL4．

－neutron capture reaction：
EGとNJOYの反跳核エネルギ一導出の違いが原因か。運動学： $\mathrm{E} \gamma=5 \mathrm{MeV}$ とすると，${ }^{185} \mathrm{~W}$ の反跳エネルギー 72 eV

NJOYのエネルギーバランス：

$$
\begin{aligned}
k_{i j}(E)= & \left(E+Q_{i j}-\bar{E}_{i j n}-\bar{E}_{i j \gamma}\right) \sigma_{i j}(E) \\
& \text { 極めて大きな数の差し引き }
\end{aligned}
$$

極めて精度が悪いと考えられる。

