
POLITECNICO DI TORINO
DIPARTIMENTO DI INGEGNERIA MECCANICA E AEREOSPAZIALE

(DIMEAS)

Master’s degree course in Biomedical Engineering

Master’s Degree Thesis

On optimization of an embedded
ATC-FES system for synergic

muscles actions execution

Supervisors
Prof. Danilo Demarchi
Ph.D. Paolo Motto Ros
M.Sc. Fabio Rossi
M.Sc. Andrea Mongardi

Candidate
Nicolò Landra

Torino, December 2021



Abstract

The Functional Electrical Stimulation (FES) exploits low-energy electrical pulses
to retrain, or even restore, the functional mobility in patient affected by neuromus-
cular disorders. The FES effectiveness can be increased modulating the stimulation
delivery using the activation pattern of muscles. The ATC is an event-driven pro-
cessing technique which can be applied to the Surface ElectroMyoGraphy (sEMG)
to estimate the muscle contraction force with a low-power approach, representing
an effective solution for controlling the FES therapy.

The aim of this project is the optimization of an embedded ATC-controlled FES
system, which was developed using Python programming language. The applica-
tion of the system relies on two calibration phases: the first calibration determines
the maximum ATC value expressed during the muscle contraction, whereas in the
second phase stimulation parameters are tuned to induce the execution of func-
tional movements. In the previous version of the system, the two calibrations could
not manage more than a single channel at a time and the stimulation profile used
for setting FES parameter did not represent the physiological muscle activation.
In this project the Profile Extraction algorithm (PE) has been proposed to extend
the calibration to functional movements based on the synergic activation of multi-
ple muscles. Specifically, the PE allows the system to extract a multichannel ATC
profile from the repetitive execution of a specific movement, representing a statis-
tical information of the voluntary muscle activity. The resulting activation profile
can be used to calibrate the maximum ATC value of each channel and to produce a
biomimetic stimulation of the patient even during the FES parameters calibration.
Moreover, extracted profiles can be stored and used to deliver fully automated FES
therapies.

In the first part of the project the PE algorithm has been developed using Python
programming language: the processing pipeline receives the sequence of ATC val-
ues from each acquisition channel and computes the segmentation of movements
in real-time. When the acquisition is terminated, segmented movements undergo
the final processing phase, which firstly selects the most correlated movements and
secondarily aligns selected data maximizing their correlation. Statistical ATC pro-
files are eventually extracted for each acquisition channel, performing the median
among aligned movements.

In the second part the ATC-controlled FES system is applied to the stimula-
tion of a multichannel functional task, named drinking task. Initially, a feasibility



study has been conducted breaking down the task in the rotation of the gleno-
humeral joint and the elbow joint, controlled by the contraction of anterior deltoid
(AD) and biceps brachii (BB) respectively. An experimental protocol has been
designed to validate the multichannel application of the ATC-FES system: eight
therapist-patient couples are involved in structured experimental sessions, in which
movement trajectories are collected using a motion tracking system. Sessions are
performed testing different functional tasks (single channel, multichannel) and stim-
ulation types (biomimetic profile, general pyramidal pattern) delivered during FES
calibration. For each couple the validation is performed comparing movement tra-
jectories in different experimental conditions.
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Chapter 1

Introduction

1.1 Skeletal Muscle

Figure 1.1: The skeletal muscle connects different bone segments, enabling body movements. The
joint rotation results from the competitive action of agonist and antagonist muscles [4].

The muscle is an composed of contractile tissue, which can shorten after ner-
vous stimulation converting chemical energy into mechanical work. Muscles are
organized into the muscular system responsible for many essential physiological
functions, such as voluntary movements, posture maintenance, blood circulations,
digestion, and breathing control. Skeletal muscle is a class of muscles that connects
bone segments and is voluntarily controlled, allowing body movements. Skeletal
muscle also plays a crucial role in human metabolism, storing essential substrates
such as amino acids and carbohydrates [29]. Skeletal muscle can connect two bone
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Introduction

segments crossing one or two joints. In the former case, muscle is called mono-
articular, whereas it is bi-articular if it crosses two joints connecting separated
bones.
Complex movements are often performed by the synergic activation of different mus-
cle groups, which work together, maximizing the action efficiency. Inside groups,
each muscle can be classified according to its function: Agonist muscles, also known
as primary movers, works to produce joint motion, whereas antagonists are located
on the opposite side of the joint and contrast agonist action. Besides these two
main classes, other muscles assist the movement execution: Among them, syner-
gists sustain the agonist action, guiding the movement, stabilizers fix the agonist
muscle origin, and neutralizers limit the action of other muscles preventing unde-
sired motions.

1.1.1 Muscle architecture

Figure 1.2: The skeletal muscle architecture [77].

Skeletal muscle consists of a contractile body, called muscle belly, attached to
different bone segments by fibrous connective structures, called tendons. The prox-
imal attachment point is called origin, and it is often the less movable, whereas
the distal one is called insertion, and it transmits the force from the muscle to
the bone producing the joint movement. As shown in the figure 1.2, the mus-
cle belly consists of a fibrous structure with multiple levels of organization: the
skeletal muscle is firstly surrounded by an outer layer of connective tissue called
epimysium. Within the outer layer of connective tissue, muscle fibers are grouped
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1.1 – Skeletal Muscle

in bundles and surrounded by a further layer of connective tissue called perimy-
sium. The muscle fiber is also known as myocyte and is a multinucleated tubular
cell with approximate dimensions of 100 µm in diameter and 1 cm in length [29].
Thanks to its multinuclear structure, the myocyte can diversify protein expression
across different regions of the cell [29]. The myocyte consists of a cellular mem-
brane called sarcolemma, which surrounds the intracellular environment, including
many organelles, such as the transverse tubular system (T tubule), the sarcoplas-
mic reticulum, mitochondrial network, and a bundle of myofibrils. Myofibril is a
rod-like organelle that consists of the repetition of the fundamental contractile unit
of skeletal muscles called sarcomere.

Figure 1.3: The internal structure of a muscle fiber [48].

The sarcomere consists of the combination of two types of protein-based fil-
aments organized in a multiple bands structure (Figure 1.4): The sarcomere is
delimited by two external I-bands, where each one is composed of thin actin fila-
ments, anchored to a high protein density disk, called Z-disk or Z-line. The A-band
is located in the middle region of the sarcomere and is mainly composed of thick
myosin filaments bound to a protein structure called M-line. The two filament types
are aligned and partially overlapped, interacting and producing the structure con-
traction: The thin actin filaments disposed in a hexagonal arrangement surround
a bundle of myosin stalks, which forms the thick filament.
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The thin filament consists of a central F-actin strand formed from the polymeriza-
tion of G-actin monomers around a structural protein called nebulin [30]. Actin
monomers exhibit the binding site for the actin-myosin interactions, giving struc-
tural and functional polarity to the thin filament and orienting the direction of
the contractile force. A secondary filamentous structure formed by the head-to-tail
polymerization of coiled-coil dimers of tropomyosin (Tm) runs helically along the
actin filament [30]. The troponin (Tn) is a protein complex made up of three in-
dividual subunits, and it is bound to each Tm molecule. The Tm-Tn complex is
sensitive to the presence of Ca2+ ions, which induce a morphological rearrange-
ment of the complex along the actin filament. At low Ca2+ concentrations, the
Tm filament physically blocks the myosin-binding sites, whereas higher concentra-
tions of Ca2+ produce a cascade of allosteric changes within the Tn–Tm complex,
resulting in the active sites exposition [30].
The thick filament comprises myosin-II molecules, which are hexameric proteins
consisting of four light chains and two heavy chains (MHC). Each MHC consists of
two main parts: the globular head and the long coiled-coil tail connected via the
hinge region. The Coiled-coil tail region has an α-helical structure 1500 Å long and
20 Å in diameter and polymerizes with the other chains forming the thick filament
[70]. The globular head regions protrude from the thick filament at regular inter-
vals and contain an ATPase site and an actin-binding site allowing the interaction
with actin to form cross-bridges [30]. The orientation of MHC molecules is crucial
for directing force toward the center of the sarcomere during a contraction: The
globular heads are oriented toward the Z-line, while the coiled-coil tails are directed
toward the M-line [30].
Each thick filament is also connected to the Z-disk via an elastic element made of
titin, which improves filament stabilization [44]. Inside the sarcomere titin elements
are passive force generators, whereas the myosin motors along the thick filament
behave as active force generators [44].
The sarcolemma presents many surface invaginations which connect the extracel-

lular environment to the interior of the cell. Such connections are called T-tubules
and are responsible for the conduction of the nervous excitation throughout the
myocyte. The sarcoplasmic reticulum surrounds myofibril chains and controls cal-
cium homeostasis, which plays a fundamental role in the contraction mechanism.
The ends of the sarcoplasmic reticulum, called terminal cisternae, store calcium
ions and are in close contact with the T tubule system. Mitochondria are arranged
in a three-dimensional network and are responsible for the aerobic production of
adenosine triphosphate (ATP). The number and the size of mitochondria can be
both increased with proper training programs based on aerobic exercises [29].
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1.1 – Skeletal Muscle

Figure 1.4: The sarcomere [30].

1.1.2 Nervous stimulation and contraction mechanism

Skeletal muscle contraction is a complex mechanism carried out by myocytes and
results in mechanical force generation. The muscle action starts in the brain motor
cortex, where the voluntary movement is elaborated and coded into action potential
(AP) trains delivered from the brain to the target muscle through efferent neurons,
called motor neurons. The dendrites of the inferior motor neuron are connected to
a group of myocytes through specific chemical synapses called neuromuscular junc-
tions, forming the motor unit. At the neuromuscular junction, the acetylcholine
neurotransmitter is released into the motor plate by the motor neuron [15]. Then, it
starts the AP in muscle fibres causing the membrane depolarization from the rest-
ing transmembrane potential of about -85 mV to reach values of up to 100 mV [15].
The AP propagates along the sarcolemma and transversally inside the cell body
along the T-tubules system. When the nervous signal reaches specific T-tubules di-
hydropyridine receptors, it induces their allosteric interaction with the neighboring
sarcoplasmic reticulum (SR) ryanodine receptors. After receptors activation, the
SR releases Ca2+ ions from the terminal cisternae into the sarcoplasm. The resting
cytoplasmatic concentration of Ca2+ ions increases from 100 nM up to 20 µM, with
a release rate over 200 µmoles/ms in fast-twitch mammalian fibres [15]. The Ca2+
ions bind to troponin, triggering the Tm-Tn complex structural modification and
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Figure 1.5: The skeletal muscle contraction mechanism [7].

the thin filament activation. Myosin heads of the thick filaments can now interact
with the F-actin filaments forming the cross-bridge bindings. ATP molecules in
the sarcoplasm interact with myosin heads, and their hydrolysis releases energy
and induces the structural rotation of myosin heads, producing the thick filaments
sliding over thin filaments and generating tension in the sarcomere structure. The
Ca2+ is constantly taken back to the SR buffered by soluble cytoplasmic proteins
with a removal rate of 50 µmoles/ms [15]. This process is energy-consuming, re-
quiring ATP molecules, and prevents the formation of new actin-myosin bonds in
the absence of neuronal stimulations [42]. A single contraction cycle followed by
relaxation is called twitch [42].

1.1.3 Contraction types
The muscle contractions can be classified according to the movement induced: The
contraction is defined as isometric or static when the muscle tension generates no
action. In this case, the muscle tension equals the resistive force, which can be
external or internally produced by antagonist muscles. The muscle contraction is
isotonic when it produces a joint movement and occurs when the muscle generates a

6



1.1 – Skeletal Muscle

Figure 1.6: Muscle contraction types [46].

force level different from the resistance, and it can be either concentric or eccentric.
In the former case, the isotonic contraction develops tension, overcoming resistance
and producing muscle shortening and positive work on the joint. On the other
hand, the contraction is considered eccentric when the tension is lower than the
resistance, resulting in a controlled movement towards the resistive force direction.
During the eccentric contraction, the muscle lengthens although it develops tension,
performing a negative work. The eccentric contraction has gained a growing interest
in rehabilitation for its physiological properties: This contraction type can generate
greater forces activating less motor unit and consuming less oxygen and energy than
concentric contractions [36].

1.1.4 Muscle force generation

Figure 1.7: The temporal summation of consecutive twitch events produces an increase of the
contraction force [8].

The muscle force results from different regulation mechanisms, which range from
the control of a single myocyte’s force level to the recruitment of motor units. The
stimulation frequency represents a key mechanism in the muscle force generation
[42]. Since the duration of a single twitch is higher than the AP period, it is pos-
sible to induce new Ca2+ releases before the intracellular concentration reaches
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the resting value. AP trains with time intervals lower than 1/3 of twitch periods
produce a cumulative increase of the Ca2+ concentration until it reaches a plateau
in which no more Ca2+ ions can be released from the SR [42]. In these conditions,
the myocytes produce a tetanic contraction. After stimulation cessation, the Ca2+
concentration is taken back to the resting value, thanks to the ATP molecules
consuming [42]. Besides the APs temporal summation, the selective recruitment of
MU represents a fundamental mechanism for controlling force levels during delicate
movements [42]. Motor units generally differ for the number of controlled muscle
fibers, typically ranging from few myocytes in motor units responsible for the ex-
ecution of precision movements to thousands of elements in units that must deal
with high efforts. The recruitment of different MUs is both sequential, and addi-
tive [42]. When a movement starts requiring precise fine-tuning, smaller units are
generally recruited first. The largest units are recruited last as the requirement for
force increases. For providing even force distribution inside the muscle during the
whole movement execution, fibers of individual MUs are evenly distributed within
the muscle [42].

Figure 1.8: The muscle fibers recruitment strategy [31].

1.1.5 Fiber types
The skeletal muscle structure consists of a heterogenic composition of fiber types to
adapt to different activities, demanding specific mechanical and metabolic perfor-
mances. Fibers can be distinguished according to their contractile and metabolic
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1.1 – Skeletal Muscle

properties [51]. The contraction speed of a muscle fiber is mainly related to its
protein expression, such as differences in the myosin heavy chain structure [51] and
SR development [29]. Muscle fibers can be classified as fast-twitch or slow-twitch
fibers, according to the contractile speed. The metabolic pathway of the muscle
fiber characterizes its tolerance to fatigue and the energy production rate. Mus-
cle fibers with high mitochondrial content and well-vascularized can use oxidative
metabolism, exhibiting a lower fatigability and a reduced ability to quickly satisfy
high energy demand. On the other hand, Muscle fibers can follow the glycolytic
pathway to produce ATP molecules, increasing the energy production rate but low-
ering the tolerance to fatigue due to the lactic acid production [29]. According to
the previous properties, muscles can include three fiber types in proportions that
reflect their typical usage: Type I fibers have a slow contractile response but are
less susceptible to fatigue, rely on aerobic metabolism, and are predominant in
muscles that must perform long-lasting activities. Type IIA fibers produce fast
contractions with intermediate resistance to fatigue since their metabolism results
from the overlap between aerobic and anaerobic pathways. Type IIB fibers pro-
duce fast contractions demanding rapid energy supplies. They are subjected to
rapid fatigability and are suited for activities that involve explosive efforts.
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Introduction

1.2 Surface electromyography (sEMG)
Electromyography (EMG) is an instrumental technique for measuring muscle activ-
ity, recording the electric signal generated during contractions. The resulting time-
dependent bio-signal is called electromyogram and provides information about neu-
romuscular system properties, such as the force level developed during a contraction
[24], and the muscular fatigue state [18]. The EMG signal can be recorded by either
inserting needle electrodes inside the muscle or placing a set of surface electrodes
externally on the skin, close to the target muscle. The former methodology is known
as intramuscular EMG and allows to perform high precision recordings, focusing
on small muscle regions and reducing external interferences. On the other hand,
the needle insertion results uncomfortable for the patient, and for this reason, this
technique is limited to the evaluation of peripheral neuromuscular disorders [20].
The latter methodology is known as surface electromyography (sEMG), and it is
widely used in many application fields, thanks to its non-invasive approach, such
as rehabilitation medicine, ergonomics, sports medicine, physiotherapy, neurophys-
iology, and kinesiology [53]. One of the main drawbacks of the sEMG recording is
the low spatial selectivity and the source location uncertainty inside the detection
volume [53].

Figure 1.9: sEMG signal detected from the Tibialis Anterior during an isometric contraction and
the respective Power Spectral Density (PSD) function [21].
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1.2 – Surface electromyography (sEMG)

1.2.1 Signal properties
Each muscle consists of multiple motor units, which are selectively stimulated
through motor unit action potentials (MUAPs). MUAPs reaches the neuromuscular
junction of each myocyte, eliciting the membrane depolarization, which propagates
in opposite directions until it reaches the muscle fiber endings [68]. The membrane
depolarization induces potential changes in the extracellular environment, which
can be detected employing invasive or external electrodes[68]. The EMG signal is
the result of the algebraic summation of these electrical events (Figure 1.10), which
can be constructive or destructive because depolarization waves can be bi-phasic
or tri-phasic [68]. Since the MU firing rate is a random process, with a low level
of synchronization, the EMG signal appears as a Gaussian stochastic process [21],
with significant variability in the signal morphology and less proportionality be-
tween the signal amplitude and the number of firing MUs [68]. The sEMG signal
has a peak-to-peak amplitude which can range from 0 to 10 mV, and a frequency
bandwidth that typically spans from 0 to 500 Hz (Figure 1.9), with a high energy
content in the 50-150 Hz range [21].

Figure 1.10: The EMG signal is the result of the algebraic summation of MUAPS trains [47].

1.2.2 Electrodes
Electrodes for biopotentials are electrochemical transducers that convert ions cur-
rents, generated by electrophysiological events inside the tissue, into the electric
current conducted by metal wires and measured using proper instrumentations
[53].
Electrodes are generally organized in a multilayer architecture, composed of a se-
ries of metal plates and an electrolytic layer, which is in contact with the biological
tissue. The electrolyte exchanges ions with the tissue and produces redox reactions
at the interface with the metal. Ions and charges produced by the redox reactions
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may form a double layer distribution, polarizing the interface and generating a
DC offset voltage, called half-cell potential. Generated electrons can be conveyed
through a metal wire connected to the conductive plate.
The electrode-skin interface can be modeled by a non-linear RC circuit organized in
the series of two impedances (Figure 1.11), which represent the electrode-electrolyte
interface and electrolyte-skin interface [53]: the metal-electrolyte interface is rep-
resented by an RC parallel, which takes into account the polarizability and the
capacitive behavior of the junction, in series to a DC voltage generator and a re-
sistor, which model the half-cell potential and the electrolyte gel respectively. A
similar model describes the electrolyte-skin interface with the respective half-cell
potential and interface impedance. The global impedance depends on many oper-
ation parameters, such as the electrode size and materials, the electrolyte compo-
sition, and the skin properties, and range from a few kΩ to MΩ [53]. The previous
electrode features are generally variable in time, involving significant variations of
model impedances during long term recordings.

Figure 1.11: Electrical model of the electrode-skin interface [53]

Electrodes used for sEMG applications can be classified in dry and wet elec-
trodes, according to their building materials and manufacturing technologies [53]:

• Dry electrodes are composed only by the conductive layer, which directly con-
tacts the skin, exploiting the sweated skin as an electrolytic layer. For this class
of electrodes, manufacturing materials include noble metals, carbon, sintered
silver, and silver chloride.

• Wet electrodes consist of a metal component in contact with a soft layer,
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saturated with an electrolyte solution. This type of electrode often exhibits
an adhesive surface which increases the application stability and allows to
perform sEMG recordings in dynamic conditions.

A further classification criterion is represented by the electrochemical behavior,
which distinguishes electrodes in polarizable and non-polarizable [53]:

• The polarizable electrode exhibits primarily a capacitive nature producing a
double charges layer distribution at the metal-electrolyte interface and limiting
the current transmission. These electrodes have higher half-cell potentials and
are particularly susceptible to motion artifacts since the electrode movement
produces a perturbation in the charges distribution.

• The non-polarizable electrode exhibits mainly an ohmic behavior, producing
a direct ionic current at the interface between the electrode and tissue in
the presence of an applied voltage. This latter type is currently preferred
for sEMG applications, mainly the Ag–AgCl electrode is highly stable and
exhibits a lower noise level at the metal-gel junction with respect to other
metallic electrodes [53].

1.2.3 Noise sources
Multiple noise sources can alter the surface EMG signal, which affects the sig-
nal information content and leads to misinterpretation. Using filtering techniques,
proper electronic design, and electrode configurations can generally reduce signal
contamination, preserving its informative content.

• Electrode noise: Part of the noise that alters the EMG signal is due to the
electrodes in which charge exchanges occur at the metal-electrolyte interface.
The electrode noise intensity is frequency-dependent, and it becomes more
relevant than the resistive thermal noise at frequencies lower than 100 Hz.
Ag–AgCl electrodes are typically recommended for sEMG recordings due to
their low noise interface. In addition, a proper skin preparation, consisting of
a slight skin abrasion, is recommended for decreasing both the noise and the
impedance values. [53]

• Movement artifact: Performing sEMG recordings in dynamic conditions im-
plies the movement of electrodes and their connection cables. The relative
movement of the metal part of the electrode over the electrolyte solution or
the skin can induce a change in the surface potential, producing motion ar-
tifacts [53]. The resulting time-varying voltage produced across the two elec-
trodes has a frequency interval that can overlap with the low part of the EMG
frequency spectrum [22], ranging from 1 Hz to 10 Hz [17]. While the Ca-
ble motion artifact can be almost eliminated by exploiting modern electronic
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technologies and performing an appropriate circuit design [22], the movement
artifact influence is reduced processing the signal with a Butterworth high-
pass filter with a corner frequency of 20 Hz and a slope of 12 dB/oct. This
technique offers the best compromise between noise rejection and information
content preserving in general uses [22].

• Muscle crosstalk: The sEMG technique allows to record the electrical signal
generated by muscle fibers inside a detection volume, and their position can be
far from recording electrodes[27]. When the detection volume includes different
muscles that are close to each other, the sEMG signals can be attributed to
non-active muscle, whereas it is produced by a neighboring muscle [27]. This
phenomenon, which produces misinterpretation of muscle activity, is known
as crosstalk and can be limited using small-sized electrodes[21] and reducing
the inter-electrodes distance[27].

• ECG contamination: The cardiac activity can interfere with the sEMG record-
ing, especially when investigated muscles are located in the body trunk. This
signal alteration is prominent in muscle activity performed in static condi-
tions or below the 25% of maximum voluntary contraction. Since the ECG
and sEMG frequency spectra are partially overlapped, it is difficult to filter
out the ECG artifact from EMG recordings. [17]

• External electromagnetic interference: The human body is constantly sur-
rounded by external electromagnetic fields, which can be transmitted through
the body tissues affecting bio-signal recordings. The amplitude of electro-
magnetic noise can be one to three times greater than the EMG signal [17].
The most relevant electromagnetic interference is produced by power sources,
which can interact with the human body through parasitic capacitances. The
resulting electromagnetic noise has a constant frequency, either 50 Hz in Eu-
rope or 60 Hz in the USA. The power-line interference can be reduced by
applying selective filtering techniques, such as the notch filter[17], and prop-
erly designing the front-end stage of the recording device in order to increase
the common-mode rejection [53].

1.2.4 Signal acquisition and conditioning
The electrodes unit enables the EMG signal acquisition, representing a critical
aspect that influences the signal fidelity and the subsequent processing stage [21].
Different electrodes configurations can be employed in order to provide minimal
signal distortion and maximal noise suppression:

• The monopolar configuration represents the ideal condition in which a single
electrode is placed on the skin close to the signal source, while a reference
electrode is located as far as possible on a neutral area. This configuration
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Figure 1.12: Three different configurations of the sEMG acquisition stage [52]

allows collecting the entire information from the detection volume, which may
be affected by the background noise. [53]

• The single differential configuration (SD) allows increasing the signal-to-noise
ratio removing the common-mode noise influence. The resulting signal is the
difference between potentials detected from two different detection sites at
a fixed distance along the muscle fiber direction [53]. However, in practice,
it is difficult to perform a complete common-mode suppression. Therefore
the performance of the differential circuit is determined by the common-mode
rejection ratio (CMRR), which is expressed in dB and compares the differential
signal amplitude with the residual common-mode noise.

• The double differential configuration (DD) is constituted by a series of three
equally spaced electrodes positioned along the longitudinal axis of the muscle
[53]. The resulting signal is the difference between two SD signals acquired
from two electrodes referred to the middle one. This configuration appertains
to the main class of spatial filters, which allow limiting the detection volume,
enhancing the spatial selectivity of surface recordings [53]. The enhanced selec-
tivity can be exploited for detecting potential propagations and estimating the
muscle fiber conduction velocity (CV) [53]. Moreover, the DD configuration
increases the common-mode rejection.

The signal recorded by the electrode unit must be processed in order to amplify
the information content and to reduce the signal corruption:
The input stage of sEMG amplifiers is represented by the instrumentation ampli-
fier (IA) (Figure 1.13), which performs the difference between two floating signals,
maximizing the CMRR and providing a single-ended signal referred to the refer-
ence ground [53]. A CMRR of 90 dB is generally sufficient to suppress extraneous
electrical noises [21]. Operational amplifiers in voltage follower configuration may
be interposed between the electrodes and the IA in order to increase the input
impedance and to reduce the coupling of interfering sources to the EMG wires
[53]. Additionally, the common-mode interference can be reduced by exploiting the
driven right leg (DRL) circuit: this system is based on a negative feedback circuit
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that detects the common-mode voltage and applies it back to the subject after am-
plification and phase reversal [53].
The conditioning of the signal can be performed either by hardware or digitally.
The first method requires the integration of different analogical filters in the am-
plification chain: An high-pass filter should be implemented in the first stage to
remove low-frequency interferences due to movements artifacts and instability of
the electrodes contacts [53]. A low-pass filter is placed at the end of the ampli-
fication chain to remove the high-frequency noise introduced by all the electronic
components and prevent the aliasing occurrence[53]. The offset introduced by the
cascaded amplification stages can be removed by placing additional high-pass filters
along the processing chain [53].
In the second conditioning, method components are reduced to a low gain ampli-
fier and a low-pass filter before the sampling process. The high-pass filter can be
avoided if the A/D converter resolution is large enough. The low-frequency com-
ponents are removed via digital online filtering.
For both the processing methods, the recommended 3 dB cut-off frequency is 10–20
Hz for the high-pass filter and 400–450 Hz for the low-pass filter [53].

Figure 1.13: Circuit diagram of the instrumentation amplifier (IA) [5]

1.2.5 Features extraction
In order to perform quantitative studies on muscle activations and to perform clas-
sification tasks, different features can be extracted from raw sEMG signals in time
and frequency domain. [67]
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Time domain features are easy to calculate and are based upon the EMG sig-
nal amplitude. They are computed considering signal segments, in which its length
is represented by N and the general sample by xi:

• The integrated EMG (IEMG) is the area under the curve of the rectified EMG
signal and is used as a pre-activation index for muscle activity.

IEMG =
NØ

i=1
|xi|

• The Mean Absolute Value (MAV) is the average value of a rectified EMG
signal segment and is used for detecting and muscle contraction levels.

MAV = 1
N

NØ
i=1

|xi|

• The Mean Absolute Value Slope (MAVS) is the estimation of the difference
between the MAVs of the adjacent signal segments.

MAV Si = MAVi+1 − MAVi

• The Simple Square Integral (SSI) expresses the energy content of a EMG signal
segment. It is computed performing the integral of a squared segment.

SSI =
NØ

i=1
(xi)2

• The Variance of EMG (VAR) expresses the power of a EMG signal segment.
It is computed dividing the SSI by the number of samples inside the segment
minus one.

V AR = 1
N − 1

NØ
i=1

(xi)2

• The Root Mean Square (RMS) is calculated square rooting the division be-
tween SSI and the number of sample in the considered time segment. This
feature allows to estimate the muscle fatigue occurrence, since the fatigue typ-
ically implies an EMG amplitude increase [74].

RMS =

öõõô 1
N

NØ
i=1

(xi)2
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• The Waveform Length (WL) is the cumulative length of the waveform over
the segment. Rapid amplitude variations inside a signal segment increase the
WL feature.

WL =
N−1Ø
i=1

|xi+1 − xi|

• Wilson amplitude (WAMP) is the number of times that the difference between
two consecutive amplitudes in a time segment overcome a specific threshold.
This feature is an indicator of the motor units firing rate and therefore esti-
mates the muscle contraction level [13].

WAMP =
N−1Ø
i=1

f(|xi − xi+1|)

where

f(x) =

1 if x ≥ threshold

0 otherwise

• Zero crossing (ZC) is the number of times that the EMG signal crosses the
zero amplitude axes.

ZC =
N−1Ø
i=1

sgn(−xi · xi+1)

where

sgn(x) =

1 if x > 0
0 otherwise

The features extracted using the frequency domains are generally based on a sig-
nal’s estimated power spectral density (PSD) [67], demanding more computational
resources than the previous class of features. This type of features are usually
employed for monitoring the muscle fatigue.

• The Median Frequency (MDF) is the frequency value which divide the PSD
in two parts with equal area. The fatigue state occurrence induces the shift of
this parameter to lower frequencies.

MDFØ
f=fmin

PSDf =
fmaxØ

f=MDF

PSDf = 1
2

fmaxØ
f=fmin

PSDf

where the frequency domain range from fmin to fmax and PSDf represents
the generic sample of the PSD function.
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• The Mean Frequency (MNF) is the ratio between spectral moments of order
1 and 0. In case of fatigue onset this feature behave similarly to the MDF.

MNF =
qfmax

f=fmin
f · PSDfqfmax

f=fmin
PSDf

• The Dimitrov Spectral Index (FInsmk) is computed as the ratio between spec-
tral moments of order -1 and k, with k value higher than 1. This feature is
proposed by Dimitrov et al. [23] as an alternative to MDF and MNF, offering
higher sensitivity in the muscle fatigue detection.

FInsmk =
qfmax

f=fmin
f−1 · PSDfqfmax

f=fmin
fk · PSDf

The Conduction Velocity (CV) is computed comparing the EMG signals recorded
by two different DD acquisition channels. Knowing the inter-electrode distance is
possible to estimate the time lag between the two signals and the conduction ve-
locity. The CV represents a crucial parameter for estimating muscle fatigue: An
intensive muscle activity increases the concentration of metabolic products into the
intracellular environment causing a CV decrease.
The CV decrease is reflected by the signal power spectrum shift toward lower fre-
quencies, dues to the shape mutation of MUAPs, followed by the increase of sEMG
signal amplitude because of a spatial low-pass filtering effect of tissue as a conductor
[18].

(a) (b)

Figure 1.14: Muscle fatigue effect on frequency spectrum (a) and signal amplitude (b). In figure
(a), the dashed line represents the sEMG spectrum in the presence of muscle fatigue. The solid
line spectrum is referred, on the contrary, to the muscle activity in the absence of fatigue. [14]

19



Introduction

1.3 Average Threshold Crossing

The Average Threshold Crossing (ATC) is a signal processing technique based on
an event-driven approach that reduces the information stored inside an analogical
signal into a simple quasi-digital pulses sequence. First, the signal is compared
with a static or dynamic threshold, generating a digital pulse whenever the signal
overcomes the threshold level. This procedure behaves similarly to the nervous
system since it generates potential pulse sequences exploiting time dimension rather
than amplitude for storing information. A microcontroller then counts the number
of events generated in fixed time windows and computes the ATC value performing
the ratio between the number of events and the observation window length.

Figure 1.15: ATC signal represents an alternative technique to process EMG signal: It reduces
the extracted information to the essential and simplifies the digitalization process, employing a
voltage comparator rather than an A/D converter [62].

Typically, the estimation of muscle contraction force requires the acquisition
and processing of the EMG signal. Like many biological signals, it has an analogi-
cal nature that implies the employment of an A/D converter (ADC) for digitizing
its information, impacting power consumption and transmission performances, and
limiting wearable applications. The ATC technique can be exploited for extracting
quasi-digital information from biological signals, such as the EMG signal: Crepaldi
et al. [19] demonstrated that the firing rate of motor units present in a muscle,
and consequently the force generated, are highly correlated with the ATC signal
obtained. This technique allows extracting essential informative content from the
EMG signal, avoiding the ADC employment, improving the information transmis-
sion, and reducing the global power consumption. The main drawback of this
technique is represented by the morphological information loss, limiting the use
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of the ATC technique in specific diagnostic applications. Different technical as-
pects influence the ATC performances: Firstly, the threshold selection process is
particularly crucial for the ATC signal extraction. If the voltage threshold is too
high, the EMG signal hardly overcomes this level, reflecting a reduction of gen-
erated events and information. On the other hand, low-level thresholds are likely
susceptible to environmental noise, generating spurious TC events and corrupting
the ATC signal. In order to achieve a compromise between information integrity
and noise robustness, a dynamic voltage threshold selection can be implemented
[66]. Alternatively, the threshold can be set at a fixed level after a research process,
reinforced by hysteresis implementation. Another operational parameter affecting
the ATC technique performances is the time window length in which the number
of threshold crossings is averaged. With the extension of the window width, a
higher number of events can be detected, but the time resolution of the signal is
consequently reduced.
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1.4 Functional Electrical Stimulation
The spinal cord injury (SCI) and stroke represent two classes of injuries which
prevent the affected individuals to perform and control voluntary motions. In
SCI patients the descendent connection between central and peripheral nervous
system is interrupted blocking the nervous signal transmission, whereas in stroke
patients cerebral motor areas are damaged affecting the ability to perform motor
control functions. However, in these pathological cases muscles innervations, joints
and muscle tissue are often intact, allowing the electrical stimulation of muscle
and achieving joints actuation. When the stimulation activates the damaged or
disabled neuromuscular system producing coordinated body movements it is called
Functional electrical stimulation (FES) [34]. This technique can be exploited in
two different use cases: Firstly it can artificially induce body movements oriented
to carry out daily tasks, resulting suitable for developing neuroprostheses which
aims to restore permanently motion functions. Secondarily, FES can be also used
as short term therapy for supporting and retraining specific movements execution.
The latter approach is often preferred since the long period stimulation effectiveness
can be limited by the fatigue onset.

The nervous system controls muscle contractions through electrical pulse trains
transmitted along with motor neuron connections organized in nerves. External
electrical stimulation produces potential changes in nerves, eliciting the action po-
tential generation. Lower motor neurons, which connect the spine to muscles,
represent the access point for inducing muscle contractions using electrical stimu-
lation. This process represents the basis of the FES application, and it is possible
only if these terminal connections are intact. However, direct muscle stimulation
is possible but implies a higher energy consumption [49]. If the stimulation of the
motor neuron is sufficient to induce the cell depolarization, the action potentials
generated propagates along the axon directed toward both ends. The depolar-
ization wave which travels from the starting point towards the muscle is called
orthodromic wave, whereas the other wave which is directed towards the CNS is
called antidromic wave. Typically the former stimulus is used for generating coordi-
nated muscle contractions, whereas the latter is considered an irrelevant side effect
of FES [49]. Artificially induced muscle activations are generally limited owing
to the decreased contraction efficiency and the tendency to induce neuromuscular
fatigue due to the alteration of the normal recruitment order and the unnatural
simultaneous activation of MUs [26].

1.4.1 Technology
The FES can use different types of stimulation electrodes, either transcutaneous or
subcutaneous electrodes: transcutaneous electrodes are placed over the skin surface

22



1.4 – Functional Electrical Stimulation

Figure 1.16: Functional Electrical Stimulation (FES) principle: α-motorneurons (a) are stimulated
electrically (b) producing depolarizations which travel along the axons (c) until they reach the
neuromuscular junctions (d). Received action potentials induce the activation of multiple motor
units in the muscle (e) and force production (f). The biphasic current stimulation (g) prevents
the charge accumulation under the stimulating electrodes (h). [3]

above the neuromuscular junction of the muscle that needs to be activated. These
electrodes are widely used in rehabilitation therapies since they are non-invasive
and generally inexpensive. The two main drawbacks of using surface electrodes
are the difficulty to reach deeper innervations and the higher stimulation intensity
required for overcoming the skin impedance and eliciting contractions. On the con-
trary, the subcutaneous stimulation is carried out by invasive electrodes precisely
located close to the nerve target. This class of invasive electrodes is further dis-
tinguished in percutaneous and implanted electrodes. Percutaneous electrodes are
thought for temporary interventions. They consist of thin wires inserted through
the skin to reach specific target areas inside the muscle tissue. Implanted electrodes
are permanently inserted in the body and aim to sustain patient movements in the
long term. The use of percutaneous solutions allow to precisely stimulate nerves
with lower current intensities but expose the patient to the risk of infections.
The electrical stimulation is delivered as a train of square-shaped impulses, im-
itating the control strategy exploited by the CNS for transmitting the informa-
tion. Although both voltage and current pulses are effective in eliciting action
potential generation in nerves, current modulation exhibits several advantages if
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compared with the voltage modulation [49]. Firstly the use of current-modulated
pulses in transcutaneous stimulation systems is not affected by changes in the skin
impedance that occur during, which instead represents a problem for pulses based
on voltage regulation. Moreover, tuning the current impulse width allows precisely
controlling the amount of delivered charge and its removal. Charge accumulation
is particularly harmful since it can affect biological functions and damage tissues.
Considering the stimulation pulse shape, it can be either monophasic or biphasic.
Through monophasic pulse stimulation, the current flows in a single direction from
the anode to the cathode electrode, causing the charge accumulation into the tissue.
The charge extraction is obtained through the use of balanced biphasic stimulation
pulses. If the two stimulation phases are symmetrical, both electrodes result active.
Otherwise, the muscle below the anode is mainly stimulated [49].

1.4.2 Stimulation parameters
The selection of proper stimulation parameters represents a critical aspect that
must precede the FES therapy delivery since it influences stimuli effectiveness and
prevents the rapid occurrence of fatigue. Main stimulation parameters are repre-
sented by pulse amplitude, duration, and frequency.

Pulse amplitude:
The pulse amplitude is expressed in mA for current pulses. This parameter di-
rectly influences the amount of charge delivered to the patient and, consequently,
the number of motor units (MUs) that can be recruited with a stimulus. However,
the number of MUs that the stimulation can involve is limited to those in proximity
to stimulating electrodes. For this reason, pulse intensity can be increased until
the stimulation does not produce a contraction increase. Beyond this point, the
electrical stimulation is perceived as uncomfortable. Current amplitudes can typi-
cally range from 0 to 140 mA[11]. The right pulse amplitude is highly variable and
depends on muscle features, skin impedance, electrodes integrity, and stimulation
set-up.

Pulse width:
The time duration of the stimulation pulse typically ranges from 200 µs to 400 µs
[38]. This parameter contributes to controlling the muscle force generation, defin-
ing the stimulation intensity. Short pulse widths result in being more comfortable
than longer stimulations [11] but need higher pulse amplitude in order to deliver
the same amount of charge. Moreover, longer pulse durations can penetrate more
deeply into the muscle tissues, recruiting a wider motor units population, including
deeper type I muscle fibers, which show better resistance to fatigue [38].
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Stimulation Frequency:
The stimulation frequency refers to the number of pulses delivered in a second and
is expressed in Hertz (Hz). Paralyzed skeletal muscle can be typically activated
with a stimulation frequency that ranges from 20 to 50 Hz [39]. Through the vari-
ation of this operative parameter, different types of muscle fiber can be recruited,
achieving different stimulation responses [11]. Specifically, higher frequencies are
responsible for fast contraction fibers recruitment, inducing the rapid onset of mus-
cle fatigue, whereas lower frequencies involve slower fiber types that are generally
more resistant to the fatigue phenomenon. However, extended low-frequency stim-
ulation produces a different type of fatigue, which is called low-frequency fatigue
and consists in a long-lasting effect that reduces the force-generating capabilities of
skeletal muscle [40].

1.4.3 FES Intensity Calibration
Since the pulse amplitude is highly variable and depends on the muscle investi-
gated and subject’s conditions, it must be properly calibrated each time that a new
stimulation session is conducted. The typical calibration approach is performed for
each muscle individually and consists of the patient stimulation, performed slowly
ramping current amplitude values [11]. The intensity is increased until reaches the
motor threshold, which represents the minimum stimulation level to induce a motor
response of the muscle [69]. When the FES is used for stimulating a full movement
similar to a voluntary, the calibration is further extended until the pulse amplitude
reaches the functional threshold [16].

1.4.4 Muscle fatigue
The FES application benefits in assisting the muscle contraction of the subject
with neuromuscular disorders are limited by the muscle fatigue phenomenon, which
mainly affects paralyzed muscles [49]. The term fatigue refers to the decline of
the expected force generated by muscles due to extended muscular activity. Even
though this phenomenon is expressed with visible effects, it is due to complex phys-
iological processes within motor units and Central Nervous System. Muscle fatigue
can be classified in peripheral fatigue, and central fatigue [25], according to the
origin site: The peripheral fatigue refers to intracellular events which affect the
conversion of action potentials arrived at the neuromuscular junction into contrac-
tions of the muscle fiber. On the contrary, central fatigue is due to processes that
occur outside muscle fiber, specifically within the CNS, failing in action potential
transmission and motor unit recruitment. Considering pathological subjects, in
which the transmission of the nervous signal is seriously impaired or interrupted,
the central fatigue influence is negligible.
The electrical stimulation produces a non-physiological contraction condition that
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enhances muscle fatigue: the primary cause is the inverse MU recruitment strategy.
The CNS progressively recruits MU starting from the slow contractile type I MU,
which are innervated by small-diameter axons, going to the fast contractile type
IIa and IIb MU, which motor neurons axons have larger dimensions, following the
effort increase. In addition, the recruited MU are evenly distributed in the muscle
belly, and their number increases with contraction tension. On the contrary, the
electrical stimulation primary activates larger axons in the proximity of stimulat-
ing electrodes, causing the preferential recruiting of type II MU and limiting the
contraction endurance. Moreover, repetitive stimulations involve the same group
of MU which are more likely to decline force level during extended activity. Patho-
logical subjects are further susceptible to a rapid fatigue onset since their muscles
exhibit an altered composition of different MU types [37].
In order to prevent the rapid fatigue onset, a proper modulation of stimulation pa-
rameter is fundamental: Considering constant parameters, Kesar et al. [41] suggest
that the use of lowest frequency and most extended pulse duration may maximize
performance. Other studies focused on the employment of time-varying parame-
ters, such as Keabaetse et al.[39], which proposed an alternative stimulation strat-
egy based on the switch of pulse frequency from low to high values, improving the
stimulation of repetitive contractions and overcoming the effects of low-frequency
fatigue.
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Chapter 2

State of Art

2.1 sEMG wearable acquisition systems
The acquisition of sEMG signal is particularly significant in many applications
which involve physical activity monitoring. Considering sEMG acquisition sys-
tems, they can be distinguished in four different scenarios by differences in instru-
mentation cost and precision [54]: The first scenario is represented by diagnostic
applications, which requires high-quality signal acquisition and processing in order
to minimize signal distortions. In such application, the data analysis is mainly
performed offline. The required high standard performances are satisfied by the
employment of high-cost components. The use of sEMG for prosthesis control
represents the second scenario, in which the signal is recorded and processed in
real-time, translating the stored information into the desired gestures which the
prosthesis has to reproduce. The primary technical constraint is the movement
recognition time which must be shorter as possible to ensure a quick prosthesis
response. The third scenario is represented by rehabilitative application, in which
sEMG devices are designed to be easily deployed, also for at-home uses. The last
scenario includes non-medical applications, such as human-machine interfaces, in
which the signal quality requirements and the system complexity can be lower than
in medical devices.
Thanks to the latest technological development, wearable acquisition systems have
started to represent a reliable solution for performing real-time bio-signal recordings
in dynamic conditions in the previous application scenarios. This class of devices
is meant to be completely wireless, allowing freedom of movement and reducing
signal alterations owed to cable connections. This technical approach implies the
adoption of a wireless communication system for performing data exchange and an
internal power supply provided by a battery. In order to extend the battery life, the
power consumption represents a critical factor that must be limited while ensuring
solid acquisition and communication performances.
Wearable EMG devices consist of embedded solutions with a miniaturized circuit
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board responsible for signal acquisition and conditioning. The acquisition is per-
formed through a single-differential (SD) configuration, involving two surface metal
electrodes connected to the instrumentation amplifier (INA) and an additional one
as a reference electrode. As reported in the section 1.2.4, the differential signal
must be filtered, removing high and DC noise components, and amplified with a
programmable gain amplifier in order to adapt the signal amplitude to the input
voltage range of the ADC. The digital signal produced by the A/D conversion
stage is processed by a micro-controller unit that performs the feature extraction.
Micro-controller can also receive and process data from other embedded sensor sys-
tems, such as the inertial measurement unit (IMU) [12]. The data transmission is
performed by implementing a wireless communication protocol. Among different
possible protocol solutions, the Bluetooth Low Energy (BLE) represents an excel-
lent candidate for many applications, combining good performances and ubiquitous
diffusion [73].

Different high-performance wireless sEMG acquisition solutions are present on the
market:

(a)
(b)

(c)

Figure 2.1: State of the Art wireless sEMG acquisition devices: (a) Biometrics Ltd DataLITE [9];
(b) Cometa srl PicoEMG [2]; (c) Cometa srl Mini Wave Infinity [2].

The DataLITE wireless EMG sensor (Figure 2.1a), made by Biometrics Ltd [9],
with a weight of 17 g and a compact size of 42 x 24 x 14 mm, can be easily worn,
allowing comfortable muscle activity readings even in dynamic conditions. The
amplification stage exhibits an input impedance higher than 100 MΩ, which allows
the user to interface two reusable dry electrodes to the skin without preparation
and the need of any conducting gels. The data exchange between the DataLITE
sensor and the PC is performed exploiting the DataLITE PIONEER dongle, which
enables wireless communication up to a distance of 30 m. The power supply is
provided by a rechargeable Li-Ion Polymer, which ensures a battery life of up to 8
hours.
Cometa srl [2] produces high performance wireless sEMG devices, such as the Pi-
coEMG (Figure 2.1b) and the Mini Wave Infinity (Figure 2.1c). The PicoEMG
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represents one of the lightest acquisition devices on the market, with a total weight
of only 7 grams, while the Mini Wave Infinity provides the longest transmission
range on the market, reaching an indoor distance of 50 m. Both devices include an
accelerometer and a memory integrated onboard. Considering power consumption
performances, the PicoEMG can last more than 12 hours with a single recharge,
whereas the battery life of Mini Wave Infinity is limited to 8 hours of operation.
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2.2 ATC technique
The ATC processing technique can be successfully applied to sEMG recordings
to extract information about the muscle contraction force, reducing hardware and
transmission complexity.

The work of Crepaldi et al. [19] firstly introduced the application of ATC to sEMG
recordings, where the force level exerted by a muscle during a contraction activ-
ity was compared with the number of TC events generated. Comparison results
showed a correlation level of 0.95±0.02, suggesting that ATC values could be used
as a reliable estimator of contraction force (Figure 2.2). Moreover, the adoption of
the ATC as a processing method implied the hardware simplification since a volt-
age threshold comparator is employed instead of the ADC module for extracting
the digital information and allowed the transmission of muscle force information
through an event-driven wireless approach. Motto Ros et al.[58] extended the use of
ATC to a multi-channel case, using Address-Event Representation (AER) as means
to convey information in the wireless transmission. Additionally, they compared
the ATC robustness with the average rectified value (ARV) in three different noise
conditions: white noise artificial addition, amplifier distortion, and ATC events
loss. In the first condition (Figure 2.3a), the ATC already reached the maximum
of correlation at 5-6 dB of SNR, whereas the ARV reached the maximum at 20
dB. The second test condition (Figure 2.3b) demonstrated that the ATC paradigm
is nearly independent of the amplifier distortion, relaxing the requirements for the
EMG signal amplifier. The third test condition (Figure 2.3c) highlighted the ATC
paradigm’s robustness to information loss, tolerating almost 70% event losses.

Figure 2.2: The ATC technique applied to the grip force estimation. The ATC values are compared
with the Absolute Rectified Values (ARV) extracted from the sEMG signal [19].
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(a) (b)

(c)

Figure 2.3: ATC-Force correlation in different noise conditions: (a) varying SNR; (b) amplification
distortion effect; (c) presence of ATC events losses [58].

Sapienza et al.[63] investigated the lowest level of complexity reachable by an
ATC system, realizing a miniaturized wearable prototype with a whole systems
power consumption of 15.49 mW. The system was capable of performing the dif-
ferential EMG acquisition, followed by the ATC technique implementation. The
wireless transmission of the resulting quasi-digital signal was performed, deliver-
ing ultra-wideband (UWB) pulses to an external receiver. Additionally, in-vivo
experiments were conducted in order to study the relationship between the mus-
cle activity produced during an isometric and isotonic contraction and the number
of TC events generated. The experimental results showed a growth of ATC pulses
number as the muscle tension was increased. Later, Guzman et al.[33] developed an
ATC acquisition system made of Commercial Off-The-Shelf (COTS) components
and explored the opportunity of exploiting a static threshold in order to simplify
the ATC implementation and to maintain system complexity as low as possible.

The first application of the ATC technique to a movement recognition algorithm
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Figure 2.4: [33].

was presented by Sapienza et al. [64]. This study used a full-custom acquisi-
tion board to extract TC events from sEMG recordings of three different forearm
muscles. Then, ATC signals generated from the muscles activation were used for
classifying four different wrist movements: flexion, extension, abduction, and grasp.
The movement classification was performed employing a Support Vector Machine
(SVM) model, which was trained with the signals of repetitive gestures repetitions
acquired from ten different subjects. Classification results showed that, from the
acquisition of three channels, it is possible to identify four different wrist movements
with an accuracy above 92.87% and latencies of only 160 ms. The application of the
ATC paradigm, instead of the use of raw sEMG signal, allowed to significantly re-
duce the data rate from 6.14 kB/s to 30 B/s, and consequently consumption values.
In recent work, Mongardi et al. [55] implemented a low power system for real-time
hand movement recognition. The system exploited the event-driven processing of
the sEMG signal for extracting three input features used to classify six different
movements. The classification was performed using a fully-connected Neural Net-
work (NN), implemented on an Apollo 2 microcontroller. The system classification
performances achieved an accuracy of 96.34%, a system latency of 268.5 ms, and
total power consumption of 2.9 mW.

In the work of Rossi et al. [62], the ATC processing was applied, for the first
time, to the control of Functional Electrical Stimulation (FES), using the ATC pa-
rameter generated by a muscle activation to modulate the electrical stimulation in
a real-time mode. They employed the acquisition hardware proposed in a previous
work [33], composed of 4 analog front-end channels and a microcontroller unit, and
implemented the Bluetooth wireless communication protocol in order to exchange
data with an external workstation. The management application was implemented
in Matlab®, coupled with a Simulink® model for controlling stimulation parameters.
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Considering power consumption, it amounted to 5.125 mW for the acquisition stage,
while including the data transmission phase, the power usage reached 20.23mW and
23.47 mW for TC events and sEMG signal transmission, respectively. Then, the sys-
tem was validated and further evolved, thanks to subsequent works [61][60]. In [61]
two stimulation modalities are implemented in order to cover the standard rehabili-
tation flow: in the former, two subjects were involved, with a therapist figure, from
whom the ATC signal was recorded, and a patient figure which was proportionally
stimulated based on the therapist activity. The second stimulation mode involved
a single subject that was able to perform a self-stimulation. The system was tested,
evaluating the reproducibility between the voluntary movement and the stimulated
one in the therapist-patient stimulation modality. Experimental results showed the
median value of the correlation coefficient, used as similarity measurement, above
0.9 across four benchmark movements. In [60] the system management software
was moved from a general-purpose PC to an embedded solution, represented by
a Raspberry Pi. The previous Matlab® & Simulink® software architecture was re-
placed with a novel and more versatile version programmed in Python, which was
able to work with several devices and different operating systems, exploiting the
advantages of the object-oriented and multi-threaded approach. Moreover, in this
work, the conversion from ATC to FES stimulation parameters values was quickly
performed, exploiting a calibrated lookup table.
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2.3 FES control strategies based on sEMG
In rehabilitation, FES systems are used for assisting the movements of pathologi-
cal subjects in accomplishing fundamental tasks in daily life, such as reaching ad
grasping. Such movements involve the contraction of different muscle groups, fol-
lowing specific activation patterns. The use of passive electrical stimulation for
supporting patient movements may result ineffective since it cannot reproduce the
muscle activation complexity, and additionally, it can cause excessive stimulation
leading to a quicker muscle fatigue onset [76]. The effectiveness of an FES ther-
apy, in terms of movement reproducibility and muscle fatigue prevention, can be
increased by implementing an active control of stimulation parameters capable of
adapting to physiological activation patterns to generate effective movement exe-
cutions. A biomimetic control method for modulating the electrical stimulation is
represented by the use of sEMG signal as an indicator of muscle force level, which
can be applied in three different scenarios:

• The first scenario consists of the application of signal acquisition and stimu-
lation to contralateral muscles. This case can be applied to severe hemiplegic
patients whose affected side can be stimulated based on the muscle activity of
the unaffected side. The main advantage of this application is represented by
the patient’s active participation, which is desired to improve the rehabilitation
performances [76].

• In the second scenario, a master-slave approach is implemented: the sEMG
signal acquisition is performed on the muscle of a healthy subject, denoted
as a therapist, and used as a reference for driving the electrical stimulation
of the patient muscle. In addition, the therapist represents a visual reference
for the patient. This strong inductive effect will enhance the rehabilitation
effectiveness [45].

• The ipsilateral stimulation represents the last scenario, in which the movement
intention of the patient triggers the electrical stimulation, and additionally, it
is modulated using the voluntary muscle activity, expressed as EMG signal.
In such application, active engagement of the patient is fundamental for en-
hancing the therapeutic effect of FES [56].

Zhou et al.[75] proposed a FES closed-loop control system in which the sEMG bias
between two bilateral arms is used for driving the electrical stimulation on the af-
fected arm. Firstly, the healthy arm performs a standard rehabilitation gesture,
and the sEMG signal generated by the muscle contraction is processed, extracting
the root mean square (RMS) feature as an indicator of voluntary contraction force.
A second time, the subject performs the same action using the affected arm. The
RMS values extracted during the second training are compared with the reference
RMS sequence generated by the healthy arm in real-time. The bias between the
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RMS values of the two arms represents the input of the FES controller.

In [76], a multichannel FES control system based on the sEMG acquisition is pro-
posed. The implemented algorithm exploits a gaussian mixture regression (GMR)
for mapping the relationship between the sEMG and the muscle force, followed by
a polynomial fitting (PF), which estimates both stimulation amplitude and pulse
width from the muscle force value. The grip movement was selected to validate
the effectiveness of the method. Estimated parameters were tested comparing the
FES-induced grip force and the originally recorded voluntary grip force, revealing
a high correlation index (R > 0.9).

Osuagwu et al. [56] proposed an active FES system (Figure 2.5), in which the
FES intensity is proportionally modulated exploiting the sEMG signal extracted
from the ipsilateral muscle voluntary activity. The main challenge they addressed
is the removal of the stimulation artifact, which contaminates the voluntary elec-
tromyogram (EMG) during FES application: they have implemented an entirely
software-based solution that extracts voluntary EMG from muscles under FES in
real-time, using an adaptive filtering technique with an optional comb filter. The
resulting EMG-FES system was validated among fifteen patients with tetraplegia,
demonstrating that the FES intensity modulation produced by the active system
was proportional to intentional movement.

Figure 2.5: Schematic diagram of an EMG-FES system proposed by Osuagwu et al. (EDC,
Extensor digitorum muscle; FDS, Flexor digitorum muscle) [56].
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2.4 ATC-FES System description
The aim of this project is the optimization of an embedded ATC-controlled FES
system, which has been developed in previous works [62][61][60]. The system ex-
ploits sequences of ATC values extracted from the sEMG signal to control the
Functional Electrical Stimulation (FES) therapy in real-time. The system has
been designed to operate on a maximum of eight channels and is composed of
three central communicating units: The acquisition unit is represented by wearable
embedded devices which detect the sEMG signal generated during the voluntary
contraction and compute the ATC. The control unit is a software environment im-
plemented on PC, which enables the communication with acquisition devices, the
processing of ATC values, and the management of the electrical stimulation. This
unit provides a Graphical User Interface to allow users to interact with the system
through different services. The FES unit is represented by an external stimulator,
which communicates with the control unit through a USB interface.

2.4.1 Wearable acquisition device

Figure 2.6: Wireless ATC acquisition device [59].

The acquisition unit of the ATC-FES system is organized in multiple channels,
which enable the acquisition of the sEMG generated from different muscle groups.
Each channel is represented by a wearable device, developed by Rossi et al.[59],
which consists of an analog front-end, responsible for the sEMG detection and the
event-driven hardware processing of the bio-signal, embedded with a digital part,
which employs a microcontroller unit for the wireless data transmission and for
optionally sampling the sEMG signal. The whole device circuitry is powered with
a constant voltage supply of 1.8 V.
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Figure 2.7: Schematic diagram of the Analog Front-End [59].

Analog Front-End (AFE): The analogical part of the acquisition channel
consists of the sEMG conditioning circuit completely designed using commercial
off-the-shelf components. The front-end exploits a single differential configuration,
in which two sensing electrodes detect the muscle fibers depolarization, and an ad-
ditional electrode refers the body potential to an internally-generated voltage. As
shown in the figure 2.7, input and reference terminals are connected to protection
circuits to preserve the onboard circuitry components from high input voltages that
overcome the supply voltage and to ensure the user safety limiting output currents.
Before the amplification stage, sensing terminals are decoupled from the electrode-
skin impedance employing a couple of voltage followers and then are connected
to a first order Differential High-Pass Filter (DHPF), with a cut-off frequency set
to 30 Hz. The use of DHPF avoids the amplification of low-frequency noises and
movement artifacts, preventing the saturation of consecutive electronic components
and limiting the attenuation of the sEMG energy content.
The amplification is carried out in two separated stages in order to relax amplifier
constraints and reduce the signal alteration induced by each amplification stage.
The first amplification stage is represented by the Instrumentation Amplifier (IA)
with negative feedback on the reference. The IA amplifies the difference between
the two inputs with a differential amplification Ad, equal to 500 V/V, and rejects
the common-mode noise. The negative feedback takes the output, and after a low
pass filtering and a phase, reversion feeds it again to the IA reference, increas-
ing the stability of the amplified signal. The second amplification stage can be
programmed, allowing the user to set an additional gain for detecting low muscle
activities.
The amplification chain is followed by a low-pass Butterworth filter which limits
the signal bandwidth to 400 Hz, also working as an anti-aliasing filter in case of
sEMG sampling. At the end of the sEMG-conditioning chain, a voltage compara-
tor is employed, enabling the conversion of the analogical signal into a sequence of
Threshold Crossing (TC) events. The threshold can be adequately set through a
Digital-to-Analog Converter (DAC), with a hysteresis of 30 mV around the thresh-
old, stabilizing the digital output of the comparator and preventing the generation
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of spurious events.
The user susceptibility to external common-mode interference is reduced employing
the Driven Right Leg circuit (DRL) as a reference voltage control solution.

Digital unit and data transmission: The TC signal, given as output by the
AFE, undergoes a digital processing stage to compute the ATC parameter. This
process is carried out by the microcontroller unit (MCU) Apollo3 Blue, powered
with an ARM Cortex®-M4F processor, which has been selected for its technical
characteristics:

• Power efficiency: 6 µA MHz−1.
• Clock frequency: Up to 48 MHz.
• Transmission (TX) current: 3 mA TX power transmitting at 0 dBm
• RAM: 384 kB
• Flash/ROM: 1024 kB
• Package sizes: 4.5 mm × 4.5 mm
• Power supply: 1.8 V
• Transmission standard: Bluetooth 4.2

The use of the ATC technique has led to a complexity reduction of the muscle force
information, enabling low-power data transmission. Thus, Bluetooth Low Energy
(BLE) 4.2 is adopted as a low-power communication protocol, thanks to its flexible
throughput and widespread usage.

The performances of the resulting embedded device were tested, showing high
acquisition performances, with a signal-to-noise ratio higher than 15 dB. Moreover,
the device allows the user to perform both the sEMG and ATC acquisition. In the
former case, the transmission throughput reaches 2 kBs−1, supported by a battery
life of 80 h. Instead, considering the transmission of ATC values, the throughput
is relaxed to 8 Bs−1, extending the operating time up to 230 h.

2.4.2 Control platform
The control software has been developed in [60] and further updated in [57], using
Python programming language, in order to exploit the advantages of the Object
Oriented Programming (OOP) paradigm: the platform architecture organized in
objects facilitates the software maintenance and allows the application to be easily
scalable and modular, maintaining its performance independently by the number
and type of devices involved. Moreover, exploiting the multithreading function, the
real-time simultaneous control of multiple system processes is realized.
The software architecture is organized in a three-layer structure: the bottom layer
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is responsible for the communication between the control application and external
devices instantiating an object for each physical device involved. The middle layer
represents the core of the control platform, consisting of an object called System,
which manages the communication among the objects of the lower layer. The top
layer implements the Graphical User Interface (GUI), which allows the user to in-
teract with the system, specifically with the middle layer. The GUI was developed
inheriting from the classes of the Kivy Python framework [6], making the applica-
tion usable on different Operating Systems (OSs), such as Microsoft® Windows®,
Linux®, Raspbian. The Bluetooth communication can be implemented in differ-
ent ways, depending on the OSs of the device: Computers based on Microsoft®
Windows® rely on an external USB dongle CC2540 [1], from Texas Instrument, for
communicating with external devices. On the contrary, in the case of Linux® and
Raspbian OSs, Bluetooth communication is implemented exploiting an integrated
antenna.

The control platform provides different services, implemented as a method of the
object System and accessible from the GUI. They allow the user to configure the
system settings and realize controlled FES sessions:

System connection and configuration: This function is implemented with
the method connect, which connects the computer to external devices, enabling the
serial communication with the electrical stimulator and the BLE dongle, if present.
Furthermore, the system starts the scanning process, looking for Bluetooth acqui-
sition devices. The user can therefore select the list of scanned devices with which
he wants to establish the connection, instantiating and configuring the respective
objects in the low layer of the software architecture.
The user can select the stimulation channels, associating each channel to a different
acquisition device.

Threshold calibration: The implementation of the ATC processing technique
relies on the setting of a proper voltage threshold, which allows the system to
distinguish the effective muscle activity from the baseline signal generated by back-
ground electrical events. In order to adapt the ATC method to the variable subject
conditions, the threshold calibration has to be performed. The user can trigger the
calibration process using the control platform, which delivers a Bluetooth notifi-
cation to the connected physical devices. The threshold calibration is conducted
by a proper firmware routine of the device, implementing a finite state machine
which modifies the threshold value starting from the power supply level (1.8 V)
and gradually decreasing the voltage until the baseline is detected.

System calibration: The FES control mechanism is based on the relation be-
tween the ATC data acquisition unit and the stimulation unit. The modulation
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of FES, in particular, is conducted by adjusting the stimulation intensity, which
can be either obtained by modifying the pulse width or amplitude in order to pro-
duce the variation of the number of recruited motor units. As reported in [60],
the conversion from ATC data to FES intensity values is achieved by exploiting
a Look-Up Table (LUT), which reduces the computational cost of the stimulation
intensity definition. Specifically, the LUT creates a one-by-one association between
ATC values, ranging from 0 to a maximum value which varies among different sub-
jects and current values. Two calibration processes are needed to define both the
maximum ATC value that the voluntary action can produce and the proper current
intensity that must be set to induce a successful and comfortable stimulation of the
patient.
Considering the ATC maximum calibration (ATCmax calibration), the acquisition
is performed during repetitive movement execution, and the maximum ATC value
is statistically extracted from the collection peak values generated during the ac-
quisition. The ATCmax calibration can also be called therapist calibration when
it is performed in a master-slave FES configuration. The second calibration phase
searches the proper stimulation intensity, and is described in the section 2.4.4.

FES Training: The FES Training represents the primary function of the ATC-
FES system, in which the patient stimulation is driven by the voluntary movements
of the therapist or the contralateral part of the patient body. The LUT, generated
after the system calibrations, is exploited to convert ATC sequences provided by
acquisition devices into modulated stimulation patterns delivered to the patient
through the respective stimulator channels. The latency which separates the vol-
untary actions of the master and the patient stimulation represents a critical factor
that must be minimized to enhance the system responsiveness.

2.4.3 Electrical stimulator
The current version of the system exploits an external electrical stimulator for per-
forming the FES task, which is the RehaStim2, made by HASOMED GmbH [35].
The stimulator is classified as a IIa medical device and consists of 8 stimulation
channels, organized in two groups made of 4 channels and controlled separately
by two independent current generators. The power supply is provided by an in-
ternal battery, keeping the user connected to the device isolated from the power
line interference, hence resulting compatible with the acquisition of bio-signals in
parallel to the stimulation process. In order to ensure user safety, the stimulator is
equipped with an emergency button, which can be used for manually stopping the
stimulation process.

The RehaStim2 generates biphasic current pulses (Figure 2.9), characterized by
adjustable intensity and a fixed pause of 100 µs between the two phases of the
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Figure 2.8: RehaStim2 electrical stimulator ready for use [35].

pulse. At the end of the pulse, the remaining charge on the electrodes and skin
is actively removed. In order to deliver electrical pulses in safety conditions, the
stimulator checks the impedance between the two active electrodes, sending a small
test impulse before each stimulation pulse. If the impedance value is not included
inside a reference range, then the electrical stimulation is blocked.

Figure 2.9: Representation of the biphasic current pulse generated by the RehaStim2 during the
stimulation [43].

The control of the stimulation mode and the FES parameters setting can be
achieved either accessing through a display interface integrated into the device
or connecting the stimulator to a PC via USB connection.
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The second control strategy is based on the ScienceMode2 communication protocol,
enabling bidirectional communication between a PC and the functional electrical
stimulator RehaStim2. The ScienceMode2 allows the user to implement custom
made software solutions for creating complex stimulation patterns and training
protocols, extending the stimulator application to a wide range of research scenar-
ios [43].

The FES parameters which can be modified by the user are the following:

• Current intensity (I): 0 - 130 mA
• Pulse width (PW): 0 - 500 µs
• Stimulation frequency: 1 - 50 Hz for 8 channels

Additionally, the RehaStim2 allows the user to intensify the stimulation in selected
channels, sending in the same main stimulation period (t1) repeated pulses grouped
in doublets or triplets, properly spaced with an interpulse interval (t2).

The pulse generator is controlled by selecting a stimulation mode among three
different possibilities:

• The Continuous Channel List Mode (CCLM) simplifies the generation of com-
plex stimulation patterns: A list of stimulation channels has to be specified,
defining the respective stimulation parameters and the pulse group mode (sin-
gle, doublets, or triplets). Electrical pulses, or pulse groups, are repeatedly
generated in each specified channel according to t1. A command is used to ini-
tialize or update the CCLM with current, pulse width, and pulse group mode
parameters for each activated channel. After the initialization, the channel list
is repeatedly processed according to the specified intervals. The CCLM can
be stopped with the appropriate command.

• Using the One Shot Channel List mode (OSCL), the stimuli generation must
be triggered by the start/update command sent by the user, allowing the PC,
or other external devices, to control the main stimulation frequency, while the
t2 time inside doublets and triplets is still managed by the stimulator.

• The Single Pulse command triggers the instantaneous generation of a single
stimulation pulse, specifying the operating channel, the current intensity, and
pulse width parameter.

In the ATC-FES system, the stimulator is mainly used in the CCLM mode since
the stimulation frequency is managed directly by the RehaStim2, maximizing the
stimulation reliability. Therefore, the control system is only responsible for send-
ing commands through the ScienceMode2 protocol to start, update, or stop the
electrical stimulation.
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Figure 2.10: Example of the Continuous Channel List Mode [43]

2.4.4 FES Calibration
In the ATC-FES system, the FES calibration process is crucial to define the limit
intensity that can be employed to perform effective and tolerable electrical stimula-
tions. The proper current intensity is set, delivering repetitive stimulation patterns
to the patient at intervals of 4 seconds (Figure 2.11b), increasing the maximum
pulse intensity from one stimulation to the next. A general pyramidal-shaped pat-
tern (Figure 2.11a) is used for ramping up and down the current gradually, allowing
a gradual excitation of nerves fibers [11]. The calibration is done when the stim-
ulation is effective, without inducing discomfort in the patient. This calibration
strategy can involve a single channel at a time, requiring a calibration repetition
for each muscle investigated. The system allows the possibility of modulating the
pulse width (PW) instead of the amplitude.
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(a)

(b)

Figure 2.11: FES Calibration: (a) The pyramidal-shaped pattern employed for modulating the
current intensity during the FES calibration. (b) Example of the calibration process, in which
repetitive stimulation is delivered, increasing the maximum intensity. The acronym IPW refers
to the possibility to calibrate either the current or the pulse width.
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Profile extraction algorithm

In the previous version of the ATC-FES system, presented in section 2.4, the two
calibration phases were limited since they could not manage more than a single
channel at a time. This approach increases the calibration time with the number of
channels and prevents the calibration of complex multichannel movements. More-
over, as introduced in the section 2.4.4, the stimulation profile used for setting the
FES parameter presents a symmetrical pyramidal shape, which did not represent
the complexity of physiological muscle activation. On this basis, a different calibra-
tion approach was needed to extend the system application range and cope with
higher-level functional movements.
Since daily life movements, such as the reaching and gait, involve the synergic
activation of multiple muscle groups selectively recruited by the CNS, the FES cal-
ibration phase must be tailored to those specific activation patterns to induce the
correct execution of the functional movement. In this project, the Profile Extraction
algorithm (PE) has been proposed to extend the calibration to functional move-
ments based on the synergic multichannel activation: The idea behind this method
is to exploit the ATCmax calibration phase for extracting a multichannel ATC profile
highly correlated to the muscle activation pattern generated during the voluntary
movement. The resulting profile consists of a set of ATC sequences, representing
the activation pattern of each channel expressed during a specific movement.
This information provides ATC maximum values produced by acquisition channels
and a stimulation pattern to be used during the patient-side calibration. Remind-
ing the purpose of the ATC-controlled FES system, it aims to improve FES results
by modulating the electrical stimulation with a biomimetic pattern derived from
the muscle activity. In the same way, this principle can also be applied to the FES
calibration thanks to the extracted profile, improving the selection of the proper
parameters. Furthermore, extracted profiles can be stored and used to deliver fully
automated FES therapies that no longer require the simultaneous action of the
therapist.
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3.1 Processing pipeline

ATC data Smoothing
Movements
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Figure 3.1: Schematic diagram of the Profile Extraction Pipeline.

The PE algorithm is structured in a processing pipeline, implemented into the
ATC maximum calibration phase: The therapist has to perform a series of move-
ment repetitions. At the same time, the muscle activity is collected using the wire-
less acquisition devices described previously in section 2.4.1. The pipeline takes the
ATC values coming from acquisition channels and performs a series of processing
stages that lead to the extraction of the final profile. Firstly, ATC sequences un-
dergo a smoothing stage (Section 3.1.1), reducing the influence of background noise
on ATC acquisitions. Then, regularized data sequences go through a segmentation
step (Section 3.1.2), in which the algorithm detects ATC data segments that can
be associated with an actual muscle contraction. The first two pipeline steps are
performed in real-time during the data acquisition, working on all the investigating
channels at the same time: ATC segments, generally called movements, are 2-D
arrays in which rows correspond to ATC sequences of multiple investigating chan-
nels.
Once the user stops the acquisition, segmented movements undergo a selection step
(Section 3.1.3), where they are compared to each other, and only those that show
higher similarity are preserved. In the fourth step, the remaining data segments
are aligned into a 3-D array, maximizing the cross-correlation (Section 3.1.4). The
last processing step is responsible for the extraction of the final profile from the
stack of movements.

3.1.1 Smoothing
Despite the intrinsic robustness of the ATC technique to several noise alterations
(Section 2.2), raw ATC data transmitted by acquisition channels must be regular-
ized to smooth ATC sequences and reduce the number of spurious TC events which
affect the baseline. In each channel, incoming ATC data are appended to a sliding
window containing the previous values. The smoothing is achieved performing the
median operation inside each window line.
The window width (WW) is an operating parameter that defines the number of
ATC data involved in the median and consequently the level of smoothing: a higher
window width value intensifies the smoothing effect but takes to an information loss,
expressed as reduction of the maximum intensity of ATC sequences and their tem-
poral resolution. The setting of the WW depends on the ATC sequences length and
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the time interval length in which the ATC is computed. Considering a sequence of
ATC values computed every 130 ms and a contraction duration which range from
2s to 7s, the WW parameter can range from 3 to 5 consecutive samples, but it can
be further increased in case of persistent background noise.
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Figure 3.2: Example of the ATC smoothing process: Four acquisition channels send the lastly
computed ATC data, organized in a column vector (a). The (a) vector is appended to the sliding
window (b), which also stores the two previous ATC values of each channel (WW = 3). Then,
the median is performed along each row of the sliding window, generating a new column vector
containing regularized ATC values (c).
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(a)

(b)

Figure 3.3: ATC smoothing example: (a) shows two raw ATC sequences recorded from two
respective channels (Ch2, Ch3 ) during the repetitive execution of the drinking task (Figure 4.1).
Ch2 refers to the Biceps Brachii (BB), whereas Ch3 represents the muscle activity of the Anterior
Deltoid (AD). (b) shows the result of the smoothing process applied to both acquisition channels.
The regularization effect of the smoothing on ATC sequences is clear.
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3.1.2 Movements Segmentation
The Movements Segmentation process detects ongoing muscle contractions by check-
ing the ATC data received from the Smoothing stage. Even though non-zero ATC
values can be typically associated with muscle activity, sometimes even the back-
ground noise can produce spurious ATC spikes. Moreover, in the presence of persis-
tent noise interference and the case of the wrong calibration of the ATC threshold,
neither the smoothing can adequately prevent noisy ATC activations. In order to
make the algorithm resilient to these alterations, two criteria have been introduced
to determine if ATC sequences are part of a voluntary contraction or not:

Channels activity: The first criterion considers acquisition channels individu-
ally. It fundamentally assesses if channels exhibit an individual activity compatible
with the voluntary contraction, classifying channels inactive or silent. The actual
voluntary activity can be distinguished from the background noise considering se-
quences duration and peak intensities since the latter typically produces shorter and
lower activation sequences. So, the channel is active when the sequence of last N
ATC data contains non-zero elements (eq. 3.1) and a peak value higher than 2 ATC
(eq. 3.2). The parameter N represents the minimum length of channel activation in
terms of ATC samples and must be set according to the typical movement duration.

ATCj /= 0 , ∀ ATCj ∈ chi (3.1)

max(chi) = ATCpeak > 2 (3.2)
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Figure 3.4: Example of channel activation: The channel activity is assessed considering the last
N=4 ATC values. Thus, a sliding window progressively checks the last 4 data verifying the
satisfaction of activity conditions (eq. 3.1, 3.2). In (a), no channels are active since all sequences
contain at least a zero value. On the contrary, in (b) the channel 2, marked in green, changes its
status, becoming active.
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Movements definition: Generally, a single channel activation can be associ-
ated with a voluntary contraction, but also noisy channels can exhibit a sustained
activity in borderline cases. In such cases, the background noise can produce chan-
nels activations, and the user generally checks the acquisition quality from the GUI
to identify and address possible problems. This approach becomes difficult to apply
when the number of investigating channels increases, so automatic support from
the control system is necessary.
The second criterion defines the minimum number of simultaneously active chan-
nels associated with an actual movement. If the ratio between the number of active
channels and the total number of investigating channels is higher than a predefined
operative parameter, called Group Factor (GF), the set of ATC sequences is part
of a Movement segment (eq. 3.3). The GF value can range from 0 and 1 and
depends on the acquisition setup (i.e., number of channels and recording devices).
When the movement condition is satisfied, incoming ATC values are stored in a
Movement matrix (Figure 3.5). Each matrix row corresponds to an investigating
channel and contains the ATC sequence associated with a voluntary contraction.
The end of the Movement sequence is defined when the second criterion is no more
satisfied for M consecutive iterations. M is an additional parameter that repre-
sents the minimum time distance between two different movements and takes into
account discontinuous activations.

N◦ Active Channels

Total N◦ Channels
> GF , GF ∈ [0,1] → Movement ON (3.3)

0 0 1 0 1 2 4 3 2 0 3 5 8 9 7 5 4 3 1 0 1 0

0 1 2 4 7 8 6 7 5 3 2 1 0 0 0 1 1 3 2 0 0 0

0 0 0 0 0 2 2 3 1 0 0 1 1 2 5 6 4 3 2 1 0 0

0 0 1 3 3 1 0 0 1 2 1 1 0 1 3 5 7 4 2 0 0 1

ch1

ch2

ch3

ch4

Movement matrix

Figure 3.5: Example of Movement matrix (GF=0.2): ATC Sequences marked in green satisfy the
channel activity criterion. ATC values marked in orange are excluded from the Movement matrix.
White ATC values do not produce the channel activation but are even included in the movement
since the second criterion is satisfied by other channels, nonetheless.

The final result of the Segmentation process is a collection of Movement matrices.
Despite the selective criterion applied to distinguish the actual voluntary activity
from the rest state, the segmentation stage can not identify possible irregular ac-
tivations produced by incorrect movements execution. The accurate selection of
regular movements is performed by the following processing stage, called Irregular
Movements Detection.
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Figure 3.6: Movements Segmentation example: smoothed ATC sequences (3.3b) undergo the
Movements Segmentation process, producing a collection of eight movements. As it can be noticed
that the fourth and seventh activation sequences are different in shape, intensity, and duration
from the others since they come from improper movement executions.

3.1.3 Irregular Movements Detection (IMD)

Movements
pairing

Channels
correlation

Average
correlation

Correlation
matrix

Figure 3.7: Schematic diagram of the Irregular Movements Detection process.

The IMD technique is performed at the end of the ATC acquisition and takes
the collection of Movement matrices provided by the Segmentation stage. The
algorithm selects the group of segments that exhibit the higher mutual similar-
ity, starting from the assumption that most of the collection is made of regular
and highly similar sequences. In the selection, Movement matrices are compared,
extracting from each cross-check a Correlation Index (CI), which quantifies the
overall similarity between movement patterns and ranges from 0 to 1. The process
outlined in figure 3.7 takes movement segments, expressed as multichannel 2-D ar-
rays, and leads to the computation of the CI.
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1) Movements pairing: Firstly, the system generates the list of all the pos-
sible combinations of segments included in the collection in order to compare each
movement with the others (figure 3.8). Starting from a collection of N movements,
N2−N

2 combinations are compared.

1 1 0 2 ... 6 3 1 1

0 1 3 4 ... 3 4 2 0

0 0 1 0 ... 2 3 1 1

0 2 1 4 ... 8 5 3 0

0 1 0 1 ... 4 3 1 0

1 2 4 7 ... 1 3 2 0

0 0 0 0 ... 4 3 2 1

0 1 2 3 ... 7 4 2 0

1

ch1

ch2

ch3

ch4

2

ch1

ch2

ch3

ch4

X

ch1

ch2

ch3

ch4

Y

ch1

ch2

ch3

ch4

N-2

ch1

ch2

ch3

ch4

N

ch1

ch2

ch3

ch4

N-1

ch1

ch2

ch3

ch4

N

ch1

ch2

ch3

ch4

Movement matrix - X Movement matrix - Y

......

Movements pairs

Figure 3.8: Paired Movement matrices: The figure zooms in on a generic pair of movements X
and Y.

2) Channels correlation: The first step to compare two generic multichan-
nel movements, X and Y, involves the computation of the cross-correlation (CC)
channel-by-channel (eq. 3.4): The operation returns a row vectors composed of
Lx + Ly − 1 elements, where Lx and Ly are the size of X and Y rows respectively.
The CC vector estimates the similarity of two channel sequences as a function of
their relative displacement. Thanks to the normalization factor, the function ex-
pressed by the equation 3.4 is sensitive to both pattern and intensity differences,
returning the maximum value (CC = 1) only if the two sequences are identical. The
CC vectors are grouped in the CCxy matrix (figure 3.9). The Lagsxy vector (eq.
3.5) contains values of relative displacement of Y channels respect to X channels,
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which can be directly associated to each column of CCxy.

CCxy[ch, m] =
qB

n=A Xch[n + m − Ly] · Ych[n]
max(|Xch|22, |Ych|22)

(3.4)

Lagsxy[m] = m − Ly (3.5)

m = 1, ..., Lx + Ly − 1

A = max(1, 1 − m + Ly)

B = min(Ly, Lx + Ly − m)

X

ch1

ch2

ch3

ch4

Y

ch1

ch2

ch3

ch4

0 0 ... 0.70 0.84 0.93 0.93 0.83 ... 0 0

0 0.01 ... 0.67 0.78 0.77 0.73 0.62 ... 0 0

0 0 ... 0.72 0.87 0,89 0.76 0.64 ... 0 0

0 0.01 ... 0.72 0.80 0.68 0.46 0.24 ... 0 0

CCxy

-20 -19 ... -3 -2 -1 0 +1 ... +19 +20

Lagsxy

Channels

Cross-Correlation

Lx Ly

Figure 3.9: Channels Cross-Correlation computed between two different Movement matrices (X,
Y)

3) Average correlation: A weighted mean of CCxy rows is performed for
merging channels similarities in an average correlation vector CCxy (figure 3.10).
Weights are computed by quantifying the individual contribution of each channel
proportionally to the activity. Specifically, the vector of weights is computed by
integrating each channel sequence and averaging over the two movements involved
(eq. 3.6a). Then, the resulting vector wxy is eventually normalized (eq. 3.6b).
Once the final weights vector Wxy is generated, the weighted mean is computed
performing the inner product between Wxy and the matrix CCxy.

wxy[ch] =
q

n X[ch, n] + q
m Y [ch, m]

2 (3.6a)

Wxy[ch] = wxy[ch]q
ch wxy[ch] (3.6b)

The Correlation index CIxy is the maximum of the average correlation vector CCxy

(eq. 3.7) and expresses the overall similarity between movement X and Y in a sin-
gle parameter. The relative displacement between the two movement matrices is
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X

ch1

ch2

ch3

ch4

Y

ch1

ch2

ch3

ch4

Wxy

0.33

0.27

0.19

0.21

0.33 0.27 0.19 0.21

Wxy

0 0 ... 0.70 0.84 0.93 0.93 0.83 ... 0 0

0 0.01 ... 0.67 0.78 0.77 0.73 0.62 ... 0 0

0 0 ... 0.72 0.87 0.89 0.76 0.64 ... 0 0

0 0.01 ... 0.72 0.80 0.68 0.46 0.24 ... 0 0

CCxy

0.00 0.00 ... 0.70 0.82 0.82 0.74 0.61 ... 0.00 0.00

CCxy

-20 -19 ... -3 -2 -1 0 +1 ... +19 +20

Lagsxy

Weights computation

Weighted mean

·

Figure 3.10: Computation of the Average correlation vector (CCxy).

extracted from the Lagsxy vector.

CIxy = max(CCxy) (3.7)
4) Correlation matrix: In the last step, the Correlation matrix is built by pro-
cessing all the movement combinations. In this symmetrical matrix, rows and
columns are associated with different movements, and each set of coordinates points
to the Correlation Index of a specific movements combination (figure 3.11). The
displacements associated with CI values are stored into an anti-symmetrical ma-
trix, called Displacement matrix, where values represent lags between movements
indexed by matrix columns and movements indexed by rows.

The Correlation matrix is then used for detecting irregular movements: indices
contained into the matrix are compared with a fixed threshold value CClim. Two
movements are similar if their CI is higher or equal to CClim, otherwise, they are
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0.00 0.00 ... 0.70 0.82 0.82 0.74 0.61 ... 0.00 0.00

CCxy

vs 1 2 ... X ... Y ... N-1 N

1 1.00 0.88 ... 0.89 ... 0.85 ... 0.48 0.84

2 0.88 1.00 ... 0.86 ... 0.76 ... 0.50 0.81

... ... ... ... ... ... ... ... ... ...

X 0.89 0.86 ... 1.00 ... 0.82 ... 0.66 0.83

... ... ... ... ... ... ... ... ... ...

Y 0.85 0.76 ... 0.82 ... 1.00 ... 0.64 0.86

... ... ... ... ... ... ... ... ... ...

N-1 0.48 0.50 ... 0.66 ... 0.64 ... 1.00 0.53

N 0.84 0.81 ... 0.83 ... 0.86 ... 0.53 1.00

Correlation matrix

-20 -19 ... -3 -2 -1 0 +1 ... +19 +20

Lagsxy

vs 1 2 ... X ... Y ... N-1 N

1 0 +2 ... -1 ... +1 ... 0 +1

2 -2 0 ... -2 ... 0 ... -1 +2

... ... ... ... ... ... ... ... ... ...

X +1 +2 ... 0 ... -1 ... -2 -3

... ... ... ... ... ... ... ... ... ...

Y -1 0 ... +1 ... 0 ... +3 -2

... ... ... ... ... ... ... ... ... ...

N-1 0 +1 ... +2 ... -3 ... 0 +1

N -1 -2 ... +3 ... +2 ... -1 0

Displacement matrix

Correlation Index Lag

Figure 3.11: The Correlation matrix (left) and Displacement matrix (right) are built by processing
all the movement combinations.

different (eq. 3.8a). Increasing the threshold level, both the similarity of regular
movements and the process selectivity increase as well. During the project, a CClim

equal to 0.7 has been used since it allows to discriminate regular movements in both
single-channel and multi-channel applications flexibly.
If a movement shows a low similarity with most of the others (eq. 3.8b), it is con-
sidered irregular, and it is neglected from the movements collection. The removal of
irregular movements is repeated iteratively until regular movements only remain in
the collection. Even the Correlation matrix and Displacement matrix are corrected
during the process, removing rows and columns related to irregular movements.

Low CI := {CI | CI < CClim} (3.8a)

Irregular movement : #Low CI ≥ N◦ Channels − 1
2 (3.8b)
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vs 1 2 3 4 5 6 7 8

1 1.00 0.88 0.93 0.61 0.92 0.91 0.48 0.84

2 0.88 1.00 0.92 0.58 0.85 0.91 0.50 0.81

3 0.93 0.92 1.00 0.57 0.91 0.94 0.48 0.84

4 0.61 0.58 0.57 1.00 0.62 0.54 0.84 0.50

5 0.92 0.85 0.91 0.62 1.00 0.90 0.52 0.79

6 0.91 0.91 0.94 0.54 0.90 1.00 0.46 0.84

7 0.48 0.50 0.48 0.84 0.52 0.46 1.00 0.40

8 0.84 0.81 0.84 0.50 0.79 0.84 0.40 1.00

Correlation matrix

# Low CI

2

2

2

6

2

2

6

2

Irregular movements: 4-7
< 0.7 ≥ 3.5

(a)

(b)

Figure 3.12: The collection of movements segmented in 3.6 are compared extracting the above
Correlation matrix (a). Here, Correlation indexes lower than CClim=0.7 are highlighted in red. If
the number of low correlation values in a row is higher or equal to most movements, the respective
movement is identified as irregular. The IMD algorithm has detected two irregular movements
indexed by 4 and 7. (b) shows the result of the IMD process, which has identified the two irregular
sequences.

3.1.4 Movements alignment and Profile extraction

After the IMD selection process, the remaining movements exhibit a high mutual
correlation. Among them, the movement with the higher correlation values is se-
lected as the reference. Before extracting the final profile, all the movements are

56



3.1 – Processing pipeline

aligned, stacking movements matrices into a 3-D array. Matrices are shifted along
rows to maximize their correlation with a reference movement (figure 3.13), and
equalized performing the zero-padding.
The resulting 3-D array is then used to extract the final profile statistically: the
median operation is performed along the third dimension of the array, generating
the final multichannel profile representative of origin movements.

0 0 2 1 1 2 ... 8 8 4 3 0 0

1 1 2 3 4 6 ... 2 3 3 2 0 0

0 0 0 0 1 3 ... 7 6 4 2 0 0

0 0 0 1 2 3 ... 3 5 7 4 0 0

0 1 2 1 0 0 ... 5 7 4 4 0 0

1 1 2 3 4 6 ... 2 3 3 2 1 0

0 0 0 0 1 3 ... 7 6 4 2 0 0

0 0 0 1 2 3 ... 3 5 7 4 2 0

0 0 0 0 0 2 ... 5 7 4 4 2 0

0 0 1 2 4 7 ... 0 1 1 3 2 1

0 0 0 0 0 0 ... 5 6 4 3 2 2

0 0 0 1 2 3 ... 3 5 7 4 2 0

0 0 1 1 0 2 ... 9 8 6 3 1 1

0 0 1 2 4 7 ... 0 1 1 3 2 0

0 0 0 0 0 0 ... 5 6 4 3 2 1

0 0 0 1 2 3 ... 3 5 7 4 2 1

0 0 0 1 0 1 ... 7 5 4 3 1 0

0 0 1 2 4 7 ... 0 1 1 3 2 0

0 0 0 0 0 0 ... 5 6 4 3 2 1

0 0 0 1 2 3 ... 3 5 7 4 2 0 m
ov
em

en
ts

ATC data

ch
a
n
n
e
ls

...

...

Figure 3.13: Example of Movements alignment: Movement matrices are aligned, maximizing the
mutual cross-correlation. Columns in blue represent are added by zero-padding, performed for
equalizing the dimension of matrices.
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(a)

(b)

Figure 3.14: After the IMD, the resulting list of movements (3.12a) contains only those sequences
which show high similarity. These movements are then aligned, maximizing their cross-correlations
(a), and the median operation is performed across aligned movements generating the final acti-
vation profile. The profile is a multichannel ATC array in which each row is associated with a
specific channel (b).
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3.2 Algorithm development and system integra-
tion

The Profile Extraction algorithm has been firstly developed in Matlab for testing
extraction performances on multichannel data recordings. Later, the algorithm was
implemented in Python to integrate the Profile Extraction technique into the ATC-
FES system. The implementation is based on two main classes: ProfileGenerator
and MovementSegmentation. Since the Profile extraction algorithm involves the
manipulation of multidimensional data, the classes exploit the NumPy library to
organize data in array objects and easily perform operations with specific routines
[10].

3.2.1 ProfileGenerator
This class is instantiated inside the object System each time that the ATCmax cal-
ibration is started and and contains a set of methods which allow the execution of
each stage of the Profile Extraction pipeline, except the movements segmentation,
which is performed by a dedicated class, called MovementSegmentation.

Main attributes

• window_width: It defines the width of the sliding window used in the
smoothing of raw ATC events

• cc_lim: It refers to the threshold value of Correlation Index used in the Ir-
regular Movements Detection process.

Class methods

• add_channel(channelName): When the ATCmax calibration is started, the
wireless communication with all the selected acquisition channels is progres-
sively opened. This method is called for each channel that successfully re-
sponds, initializing internal data structures of the class according to the cur-
rent number of channels.

• start_acquisition(): After that all the selected channels are started, this
method is called instantiating the object MovementSegmentation (Section 3.2.2)
and enabling the acquisition of ATC data from System.

• new_atc(channel_name, atc_raw): Each time that the object system re-
ceives a Bluetooth notification from an acquisition device, this method is called
to submit the ATC value to the ProfileGenerator object, specifying the channel
of origin. Then inside the object, the raw ATC undergoes a smoothing process
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by calling the method raw_atc_smoothing. Since the PE algorithm works
on all channels synchronously, processed ATC data are appended to an input
buffer, ensuring data synchronization without losing information. The buffer
consists of a dictionary of lists indexed by channel names. When all the buffer
channels contain at least an ATC value, first arrived data are grouped into a
vector and are sent to the segmentation object.

• raw_atc_smoothing(atc_raw, channel_name): This method implements
the smoothing process, described in section 3.1.1. A sliding window, repre-
sented by a dictionary of lists, is used for regularizing the raw ATC value with
the previous data. Specifically, the method appends the last received ATC
event to the end of the respective channel list and removes the first element in
order to maintain the number of elements in the list equal to window_width.
Then, the median operation is performed in the list, returning the smoothed
ATC value.

• end_acquisition(): This method is called at the end of the calibration and
triggers the interruption of the segmentation and the progression to the next
pipeline steps. The method retrieves the list of movements sequences from the
segmentation object, and then calls irregular_movement_detection and
movements_alignment to extract the final multichannel profile, expressed
as a 2-D array.

• max_cross_correlation(): This method takes the list of segmented move-
ments and computes the Correlation Index for each pair of movements, and
provides the set of Correlation and Displacement matrices to the Irregular
Movements Detection.

• irregular_movement_detection(): This method implements the Irregular
Movements Detection process (Section 3.1.3), detecting and removing irregular
sequences from the list of movements.

• movements_alignment(): This method organizes movements matrices 3-
D alignment array (Figure 3.13). It firstly selects the reference movement
associated with the row of the Correlation matrix, which shows higher values.
Other movements are mutually shifted using values of the Displacement matrix
related to the reference row and concatenated, equalizing the dimensions by
zero-padding.

• get(channel_name): This method allow the object System to interact with
ProfileGenerator and retrieve the ATC profile of a specified channel. If the
channel name provided as input is None, the method returns a zero vector
with the same length of the extracted profiles.
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3.2.2 MovementSegmentation
This class is responsible for the segmentation of multichannel ATC sequences, and
it is instantiated inside the ProfileGenerator object when the start_acquisition
method is called. The movement segmentation process outlined in section 3.1.2
is based on the assumption that acquisition channels are linked, producing coor-
dinated activations. This statement cannot be true for muscle groups located in
a different part of the body, i.e., muscles in opposite limbs. The main advantage
of implementing segmentation in a separated class is the possibility of performing
the profile extraction on different muscle groups that activate interdependently by
instantiating a segmentation object for each group investigated.

Main attributes

• min_len: The minimum number of consecutive ATC values checked to de-
termine the channel activation in the movements segmentation process.

• delay_min: It defines the minimum distance, expressed as the number of
consecutive ATC samples, between two different movements. It is crucial in
discontinuous channels activation, where a movement can contain a temporary
simultaneous inactivation in all acquisition channels.

• GF: This attribute refers to the Group Factor, which plays a crucial role in
the definition of the movement.

Class methods

• update(atc): This method is called by ProfileGenerator whenever it has a
new set of ATC values from all recording channels, updating the segmentation
object. ATC data are organized in a column vector provided as input and
appended to the ATC buffer. The buffer behaves like a sliding window with a
fixed dimension (min_len) and is used to progressively check the activity of
channels and then the presence of an ongoing movement each time that a new
set of ATC data is received. The Group Factor is used to stabilize the move-
ment detection when many recording channels are employed, fixing a minimum
number of active channels to define a movement activation and reducing the
influence of noisy channels. When a movement is detected, incoming ATC val-
ues are concatenated to a Movement matrix until the conditions introduced in
section 3.1.2 are no more satisfied. Here, the attribute delay_min is used to
check if the movement is definitively concluded, counting the number of consec-
utive iterations in which no relevant activity is detected. Once the movement
is terminated, the matrix is appended to the list of movements, and the object
is ready to detect a new movement.
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• stop(): This method stops the segmentation process and returns the complete
list of movements as output.

System Profile
Generator

Movement
Segmentation

add channel(”Ch1”)

add channel(”Ch2”)

start acquisition() init (2,3,10)

new atc(”Ch2”,3)

new atc(”Ch1”,5) update([5;3])

end acquisition() stop()

movement list

get(’Ch1’)

activation profile[’Ch1’]

Figure 3.15: Example of communication between PE objects: the object System receives data
from 2 acquisition channels (’Ch1’ and ’Ch2’), so ProfileGenerator must collect data from both
of them before updating the segmentation object. The MovementSegmentation is instantiated
by setting the number of channels (2), the minimum length of a movement (3 consecutive ATC
values), and the minimum distance between movements (10 ATC values). Thick lines represent
the method calls, whereas dashed lines refer to the method response.
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3.3 Preliminary tests

In order to test the segmentation and selection performances of the Profile Extrac-
tion algorithm, a preliminary investigating was conducted. Two healthy subjects
were involved in a series of experimental sessions consisting of the repetitive ex-
ecution of 4 daily life tasks. In each session, the muscle activity was measured
exploiting the g.HIamp system [32] made by g.tec GmbH, which is a professional
acquisition device designed explicitly for invasive and non-invasive biosignal record-
ings (figure 3.16). This system allowed the bipolar acquisition of the EMG signal
from 28 different channels.

Figure 3.16: g.HIAMP: high performance biosignal amplifier [32].

The movements involved the upper and lower parts of the body separately: Two
reaching movements were studied, measuring the right arm’s muscle activity and
the torso. The former task is called Drinking (Section 4.1) and is represented by
the action of grabbing a glass and simulating the drinking action. The latter is
named Shoulder Scratching and is performed reaching the contralateral shoulder
with the right hand and reproducing the scratching movement. Regarding lower
limbs, they are involved in two basic exercises, standing up from the sit position and
later climbing a step with the right leg. Each session is composed of 5 movements
repetitions, separated by 10 seconds of rest. During a session recording, the EMG
signal was manually segmented in real-time by an operator, placing markers at the
beginning and the end of the movement execution. For each task, 4 sessions were
performed, for a total of 16 experimental trials per subject.
Later, experimental data were processed on Matlab, performing the ATC technique
via software and applying the Profile Extraction algorithm on resulting multichan-
nel sequences. Since the number of ATC sequences processed simultaneously is
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(a) (b)

Figure 3.17: Preliminary tests: sEMG Electrodes placement configurations. (a) the upper body
configuration. (b) the lower body configuration.

relatively high, at least one noisy channel can compromise the segmentation pro-
cess. The Group Factor (GF) parameter, described in section 3.1.2, was introduced
to increase the overall resistance of the PE algorithm to the presents of background
noise. So three different trials were performed to validate the use of the GF param-
eter and the IMD selection process: Firstly, the PE was run disabling both the GF
and IMD process (GF=0 - IMD=0). Then, the Group Factor was introduced in the
second trial, determining sequences segmentations if more than 2 out of the total
28 channels were simultaneously active (GF=0.1 - IMD=0). In the last trial, even
the selection process was enabled to remove irregular segments (GF=0.1 - IMD=1).
Three main parameters were computed in each trial to assess the performances of
the algorithm:

• Segmentation Lag: A segment is defined by two timing indices: the move-
ment’s beginning (onset) and ending (ending). This parameter is computed
by subtracting the algorithm’s segmentation to the closest manual segmenta-
tion, considered as the ground truth. The time lag is expressed in seconds and
is computed individually for the onset and ending indices. It is positive if the
index of the PE segmentation anticipates the respective of the manual one.

• Median Correlation (CC): This parameter measures the median similarity
among movements of the same experimental session. It is computed perform-
ing the median on the Correlation matrix (Section 3.1.3) of the session.

• Movements Difference: This parameter is the subtraction between the actual
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number of movements in each session and the number of segmented move-
ments, corrected by the IMD process if enabled. Positive values can be due
either to low segmentation performances or low inter-movements correlations.
On the other hand, this parameter is negative when the segmentation algo-
rithm shows poor selectivity, detecting additional spurious activations.

Results prove that the algorithm performances, in terms of segmentation accuracy
and segments similarity, can be increased by employing the Group Factor and the
Irregular Movements Detection. In the figure 3.18, the first trial (GF=0, IMD=0)
shows a lack of segmentation accuracy, since many outliers are present. The second
and especially the third (GF=0.1, IMD=1) exhibit a remarkable improvement,
reaching a median value of -0.91 s for the onset and 0.39 s of lag for the ending index.
This result indicates that statistically, the automatic segmentation is included inside
the manual one. The figure 3.19 shows the progressive increase of the similarity
of the movements, starting from the median value of 0.68 and reaching 0.79 after
the introduction of the IMD. The Movement Difference in all the three trials is
equal to zero (Figure 3.20), but increasing of the algorithm selectivity negative
values are removed, which means that the number of spurious activations is mostly
reduced. At the same time, the number of positive differences has increased since
the introduction of the IMD causes the general removal of low correlated activations.

Figure 3.18: Profile Extraction validation: Segmentation Lags
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Figure 3.19: Profile Extraction validation: Median Correlations

Figure 3.20: Profile Extraction validation: Movements Difference
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Chapter 4

Multichannel ATC-FES:
Calibration validation

The experimental validation was conducted to prove the effectiveness of the opti-
mization introduced in the ATC-FES system. Specifically, the test aims to demon-
strate that the employment of the Profile Extraction algorithm in the system cali-
bration phase can successfully stimulate a multichannel functional task. The valida-
tion is organized in sessions, in which a couple composed of a therapist and patient
performs the whole ATC-FES process, starting from system calibrations and ending
with the training phase. The training follows the master-slave approach, in which
the sequence of ATC events produced by the therapist during the execution of the
target movement is used to modulate the electrical stimulation of the patient. The
validation involved eight healthy subjects, four males and four females, aged be-
tween 24 and 27. Subjects are organized into eight therapist-patient couples, where
two subjects were identified as therapists, whereas the others were divided into two
groups of patients associated with respective therapists. The study involved two
types of FES calibrations: the former exploited the activation profile generated by
the Profile Extraction and was identified by the acronym PE. The latter was based
on the less specific pyramidal-shaped pattern (PYR).
Two exercises were selected to assess the system’s performances in both single-
channel and multichannel configurations. Thus, the Elbow Flexion was selected
as the single-channel reference movement, involving the contraction of the Biceps
Brachii. The second exercise was a reproduction of daily living multichannel move-
ment identified with the name of Drinking task. This exercise begins with the
subject sitting in front of a table on which a bottle is positioned. Then, the sub-
ject grabs the bottle by extending an arm and bringing the object to the mouth,
simulating the drinking action. The exercise ends with the return step, in which
the subject puts the bottle back on the table, returning to the initial rest position
(Figure 4.1). This task involves the action of two main muscles: The Anterior
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Deltoid (AD) controls the rotation of the glenohumeral joint, producing the elbow
elevation with its contraction. The Biceps Brachii (BB) is the second main muscle
responsible for the elbow joint’s flexion.

Figure 4.1: The Drinking task is composed of 4 main movement phases: the subject starts in a rest
phase, with both hands leaned on the table. Then, the activation of the Anterior Deltoid supports
the reaching of the bottle. After the bottle grabbing, the subject lifts the bottle until it reaches
the mouth. During this phase, both the Anterior Deltoid and Biceps Brachii operate together.
The drinking action ends by laying down the bottle and returning to the starting position.

4.1 Materials

The validation was conducted employing the Vicon Motion Capture System [72]
for tracing movement trajectories of therapist and patient during the FES training
execution. This tool is based on 12 cameras placed in a room in different positions
to provide multiple views of the internal space. Cameras detect the movements in
the 3-D space of specific reflective markers disposed on subjects in specific body
locations. Through a labeling process performed manually by an operator, the
Vicon system connects markers generating digital reproductions of the subjects’
body segments. Then, the system computes trajectories data from the relative
movement of segments and joints. In order to obtain reliable information from
Vicon recordings, reflective markers must be applied to subjects’ bodies following
the Plug-in Gait Reference Guide indications [71].
The ATC acquisition is performed employing a set of two devices, described in detail
previously (Section 2.4.1), equipped with Kendall™ H124SG pre-gelled Ag/AgCl
electrodes with a 24 mm diameter, produced by Covidien [50]. The two devices are
placed on the two muscles investigated, following the indications of the SENIAM
project [65] in order to ensure proper skin preparation.
The stimulation electrodes employed in this study are the re-usable PG470W model,
produced by Fiab [28], characterized by a contact area of a 3.5×4.5 cm size. Before
any electrodes application, a thin layer of conductive gel is applied on the active
surface to enhance the stimulation effect.
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Figure 4.2: Validation setup: Electrodes placement. Two stimulation channel were applied on
patient.

4.2 Methods
Each test session is organized in three main steps:

• ATCmax calibration: The therapist performs a series of 7 executions of a spe-
cific task, separated by a few seconds of rest. The system exploits the Profile
Extraction algorithm for generating the activation profile, representative of
the therapist’s muscle activity, and calibrating the maximum ATC level that
the therapist can produce.

• FES calibration: The patient is stimulated iteratively with a specific pattern,
selected between PE and PYR, increasing the maximal current intensity of
2 mA each time a new stimulation is delivered. A rest interval of 5 sec-
onds separates consecutive stimulations, allowing the patient to recover before
the subsequent stimulation and reducing muscle fatigue. In the case of mul-
tichannel stimulation, the two channels are stimulated simultaneously with
respective patterns, and current peak intensities can be selectively maintained
or increased according to the patient response. When all stimulated channels
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seem to produce an effective stimulation, the calibration is stopped without
causing the patient discomfort, setting the current intensity limits.

• Training phase: The therapist is asked to perform 3 series of 10 movement
repetitions, separated by 10s of rest, and the patient is stimulated according
to the therapist’s muscle activity. A rest interval of 5 minutes separates two
consecutive training series.

Using two different FES calibration strategies, differences in training performances
are expected since using a biomimetic stimulation pattern is supposed to provide
a stimulation similar to that generated by the therapist during the training execu-
tion. In order to prove the optimization involved by using the Profile Extraction
technique, each couple was asked to perform 4 sessions, differing in the task per-
formed and FES calibration type: the table 4.1 shows the different combinations of
task and calibration. In order to avoid that the execution order of sessions might
cause a bias in the results, PE and PYR sessions were performed on different days.

Session_ID Task FES Calibration type
MCH_PE Multichannel (MCH) Profile Extraction (PE)

MCH_PYR Multichannel (MCH) Pyramidal stimulation (PYR)
SCH_PE Single channel (SCH) Profile Extraction (PE)

SCH_PYR Single channel (SCH) Pyramidal stimulation (PYR)

Table 4.1: Validation sessions: Each session is characterized by the execution of a specific task
(MCH=Drinking, SCH=ELbow flexion) and the use of a stimulation profile type, selected between
PE and PYR, for performing the FES calibration. Sessions that employ different calibrations were
performed on different days.

Vicon trajectories represent the time evolution of joint angles and segments
positions in the 3-D space. It is possible to verify the effectiveness of the FES,
and consequently the calibration performances, by comparing angular and position
data of therapist and patient during the training sessions.
In order to evaluate the ability of the FES system to induce a correct movement
execution, two main trajectories are studied: The angle between the forearm and
the humerus segment was used for evaluating the elbow flexion execution, while the
translation of the elbow joint along the vertical z-axis was used for assessing the
activity of the anterior deltoid.
The data processing was performed in the Matlab environment and started with
the segmentation of trajectories to compare one-by-one movements of therapist
and patient. Thus, for each couple of movements, the shape similarity between
their trajectory segments is checked by computing the maximum of the normalized
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cross-correlation coefficient (ρ) 4.1.

ρ[m] = R̂x,y[m]ñ
R̂x,x[0]R̂y,y[0]

(4.1)

The delay between the therapist and patient movement represented a further eval-
uation parameter and was computed exploiting the trajectories segmentation, sub-
tracting the beginning timestamps of the two movement segments.

4.3 Results
The study of movement similarity has highlighted that the employment of a biomimetic
stimulation pattern in the patient calibration phase involves an overall improvement
in both the considered trajectories (Figures 4.5a, 4.5b).
In multichannel sessions, elbow angles generally showed a low correlation between
therapist and patient (Figure 4.5a), with a median value of 0.58 for PE sessions
and 0.51 for PYR. This outcome can be explained considering that the therapist’s
trajectory is the result of the complex cooperation of multiple muscle groups and
cannot be easily reproduced, stimulating only two muscles by FES (Figure 4.3).
Moreover, the stimulation is performed without any voluntary intervention of the
patient. Nevertheless, median correlation values higher than 0.93 were achieved
through the stimulation of the anterior deltoid, producing vertical elevations tra-
jectories of the elbow comparable to those of the therapist (Figures 4.5b, 4.4). The
boxplot in figure 4.7a shows the results of the similarity analysis in the case of
the single-channel task: the simplicity of the task performed is reflected by the
high correlation between therapist and patient, which was additionally increased
employing PE calibration strategy reaching a median value of 0.98.
As regards stimulation delays, their median values were not affected by the adop-
tion of the PE calibration technique and did not overcome 0.7 seconds (Figures
4.6a, 4.6b). PE sessions showed slightly higher time delays than PYR cases per-
forming the multichannel task, whereas the stimulation of the single-channel task
produced the opposite result (Figure 4.7b).
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Figure 4.3: Elbow Flexion angle: Multichannel task. The positive angle variations represent
the flexion movements. During each movement cycle, the therapist performs two low extensions
associated with the reaching movement, whereas high-intensity peaks correspond to the bottle
lifting phase.

Figure 4.4: Elbow vertical elevation: Multichannel task.
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(a)

(b)

Figure 4.5: Similarity analysis boxplots: Multichannel task. (a) median values: PE = 0.58, PYR
= 0.51; (b) median values: PE = 0.94, PYR = 0.93.
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(a)

(b)

Figure 4.6: Movement delays boxplots: Multichannel task. (a) median values: PE = 0.54, PYR
= 0.5; (b) median values: PE = 0.7, PYR = 0.59.
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(a)

(b)

Figure 4.7: Single channel boxplots: Analysis of the similarity and delays. (a) max(ρ) median
values: PE = 0.98, PYR = 0.96; (b) Delays median values: PE = 0.54, PYR = 0.62.
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Chapter 5

Conclusion

In an ATC-controlled FES system, the conversion of the muscle activity, expressed
as Average Threshold Crossing values, into proper stimulation parameter represents
the crucial step for effectively modulating the functional electrical stimulation. In
a master-slave stimulation approach, the system calibration plays a crucial role,
adapting the maximum stimulation intensity to the peak of muscle activity that
the therapist can produce during the execution of a specific movement. The calibra-
tion is divided into two processes that operate individually: The ATC calibration
process is oriented to the input stage of the system, analyzing the therapist’s muscle
activity and extracting max ATC value. The FES calibration works on the output
stage and allows the operator to find the most effective stimulation settings. In the
previous version of the ATC-FES system, calibration phases were limited since it
could not manage more than a single channel at a time, and the stimulation profile
used for setting the FES parameter did not represent the physiological muscle acti-
vation. Moreover, daily functional tasks are often the result of complex activation
patterns involving different muscle groups. Hence, for extending the application
scope of the ATC-FES system to the rehabilitation of functional tasks, an opti-
mization of the whole calibration phase was necessary.
In this context, this thesis project aims to optimize an embedded ATC-controlled
FES system, starting to approach new multichannel applications. A new calibra-
tion approach based on the custom-designed Profile Extraction algorithm has been
proposed. This process allows the simultaneous calibration of multiple acquisi-
tion/stimulation channels, extending the system application to functional move-
ments based on the synergic activation of multiple muscles. Moreover, the algo-
rithm allows the extraction of a multichannel ATC sequence highly correlated with
the voluntary activation pattern of the therapist’s muscles. This information is
then used to calibrate the maximum ATC value of each channel and to produce a
biomimetic stimulation of the patient even during the FES calibration. Moreover,
extracted profiles can be stored and used to deliver fully automated FES therapies,
performing offline training sessions.
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Conclusion

The Profile Extraction (PE) algorithm is implemented inside the ATC calibra-
tion phase. ATC sequences associated with the therapist action are segmented in
real-time and undergo a processing pipeline during the signal acquisition, which re-
moves irregular segments and extracts the statistical profile. The designing phase
was followed by preliminary tests, which proved the effectiveness of the main blocks
of the processing pipeline applying the algorithm to signal generated during the ex-
ecution of four different tasks.
In the last part of the project, an experimental protocol was designed to validate
the optimization solution introduced during this work. Specifically, eight therapist-
patient couples were involved in structured experimental trials, in which whole
ATC-FES sessions were conducted. Two different tasks involving one and two
channels were analyzed to validate the system performances with different channel
configurations. The second validation target was the comparison between the new
FES calibration strategy, based on the Profile Extraction technique, and a second
based on the generic pyramidal stimulation. Movement trajectories were used to
assess stimulation performances and are collected using the Vicon motion tracking
system.
Even though experimental trails differ only for the calibration strategy employed,
the similarity comparison highlighted higher median cross-correlation in those trails
which exploited the PE technique. In the multichannel task, median correlation
values higher than 0.93 were achieved through the stimulation of the Anterior Del-
toid, producing vertical elevations trajectories of the elbow comparable to those of
the therapist. The simplicity of the Elbow Flexion task is reflected by the high
correlation between therapist and patient, which was additionally increased em-
ploying PE calibration strategy reaching a median value of 0.98. The analysis of
time delays between patient and therapist movements showed similar median val-
ues that were not affected by the adoption of the PE calibration technique and
did not overcome 0.7 seconds. These results prove the effectiveness of the Profile
Extraction algorithm applied to the calibration phase of an embedded ATC-FES
system.

Starting from this work, it takes to further multichannel application: The Pro-
file Extraction algorithm proved to successfully manage the processing of up to 28
channels simultaneously, offering the possibility to increase the number of controlled
channels further. Future works should also focus on studying the co-modulation of
multiple stimulation parameters to improve the stimulation response and manage
the fatigue occurrence.
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