SNLAs 2D: Conceptos geométricos

Rafael Ramírez Ros

Clase SNL06

Outline

- 1 Introducción
- 2 Definiciones
- 3 Problemas

Introducción

Índice

- 1 Introducción
- 2 Definiciones
- 3 Problemas

Introducción

- Abreviaturas:
 - SNLA 2D = Sistema no lineal autónomo bidimensional
 - PEQ = Punto de equilibrio
 - CI = Curva invariante
 - 1a/2a isoclina = Primera/segunda isoclina
- Objetivo: Presentar las principales caracteríticas geométricas que tienen los croquis de SNLAs 2D.
- Conceptos geométricos básicos:
 - Campos de vectores;
 - PEQs (y sus cuatro tipos de estabilidad);
 - Ciclos límite;
 - Cls estables e inestables;
 - Regiones trampa;
 - Separatrices; y
 - 1a y 2a isoclinas.

- Un universo 2D (o sea, plano) impone importantes restricciones al movimiento de las partículas de SNLAs.
- Propiedad fundamental: Órbitas diferentes de un SNLA no pueden tocarse.
- Observación: Esto es cierto en cualquier dimensión, solo se necesita que el SNL sea autónomo.
- Consecuencia: Las trayectorias de un SNLA 2D se comportan como las motos de la película TRON: una partícula (moto) no puede tocar la órbita (estela) dejada por otra partícula (moto).
- Idea fundamental: Algunas órbitas son más importantes que otras, luego son las que conviene dibujar.

Índice

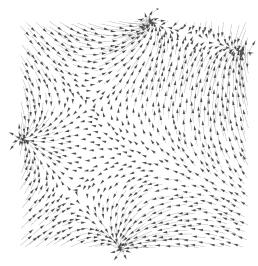
- 1 Introducción
- 2 Definiciones
- 3 Problemas

Campos de vectores: Definición

- Sea $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ un SNLA nD. Es decir, $\mathbf{x} \in \mathbf{R}^n$.
- El campo de vectores de este SNLA consiste en asignar el vector velocidad $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ a cada posición $\mathbf{x} \in \mathbf{R}^n$.
- Ejemplos físicos:
 - Espigas en un campo de trigo azotado por el viento (es un ejemplo no autónomo, pues las espigas se mueven); y
 - Veletas de hierro orientadas por un campo magnético.
- Las órbitas son curvas tangentes al campo de vectores:

$$O = \{ \mathbf{x}(t) : t \in I \}$$
 órbita $\Rightarrow \mathbf{x}(t)$ solución del SNLA $\Rightarrow \mathbf{x}'(t) = \mathbf{f}(\mathbf{x}(t)) \quad \forall t \in I$ $\Rightarrow O$ es tangente al campo $\mathbf{f}(\mathbf{x})$.

Campo de vectores: Ejemplo 2D

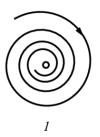


PEQs

- Definición: Puntos donde la velocidad es igual a cero.
- Un PEQ es:
 - Estable cuando todas las trayectorias que empiezan suficientemente cerca de x₀ se mantienen cerca de x₀;
 - Inestable cuando no es estable;
 - Atractor cuando es estable y, además, todas las trayectorias que empiezan suficientemente cerca de \mathbf{x}_0 cumplen que $\lim_{t\to+\infty} \mathbf{x}(t) = \mathbf{x}_0$;
 - Repulsor cuando se comporta como atractor al cambiar el tiempo (y, por tanto, las flechas) de sentido.
- En SNLs, estos conceptos solo tienen un carácter local. Es decir, suficientemente cerca de x_0 .
- La cuenca de atracción de un PEQ atractor es el conjunto de puntos que son atraídos por él.

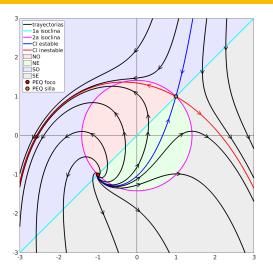
Ciclos límite

Trayectoria cerrada en el plano que es el límite de alguna otra trayectoria que espirala hacia ella cuando $t \to +\infty$ o $t \to -\infty$.



- Sin ciclos límite
- 2 Ciclo límite atractor por el exterior y repulsor por el interior
- 3 Dos ciclos límite: el interior/exterior es repulsor/atractor

Cls estables e inestables



- Definición: Las CIs estables/inestables de un PEQ silla son las órbitas que tienden al PEQ silla cuando $t \to +\infty/-\infty$.
- Ejemplo:

■ SNLA 2D:

$$\begin{cases} x' = x - y \\ y' = 2 - x^2 - y^2 \end{cases}$$

■ (1,1) ~> PEQ silla

 \blacksquare $(-1,-1) \rightsquigarrow PEQ foco$

Regiones trampa: Definición & búsqueda

- Definición: Regiones del plano de las cuales ninguna partícula interior puede escapar.
- Formas de encontrarlas:
 - Construir regiones cuya frontera esté formada por órbitas; y
 - Buscar regiones tales que la velocidad apunta hacia el interior de la región en cada punto de su frontera.
- Ejemplos:
 - El interior de un ciclo límite:
 - La región anular comprendida entre dos ciclos límite; y
 - El cuadrado R de la siguiente página.

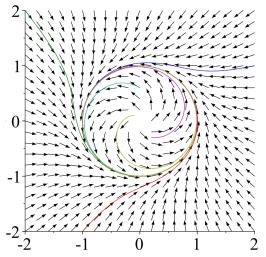
Regiones trampa: Ejemplo 2D

■ El cuadrado $R = [-2, 2]^2$ es una región-trampa del SNLA

$$\begin{cases} x' = -(y + xy^2) + x - x^3 \\ y' = x - yx^2 + y - y^3 \end{cases}$$

- Preliminares:
 - La gráfica de $f(x) = x 2x^2$ es una parábola con el vértice en x = 1/4, luego $f(x) \le f(1/4) = 1/8 \ \forall x \in \mathbf{R}$.
 - La gráfica de $g(x) = x + 2x^2$ es una parábola con el vértice en x = -1/4, luego $g(x) \ge g(-1/4) = -1/8 \ \forall x \in \mathbf{R}$.
- Estudio de los cuatro lados del cuadrado R:
 - $y = 2 \Rightarrow y' = f(x) 6 \le 1/8 6 < 0, \forall x \in [-2, 2].$
 - $y = -2 \Rightarrow y' = g(x) + 6 \ge 6 1/8 > 0, \forall x \in [-2, 2].$
 - $x = 2 \Rightarrow x' = -g(y) 6 \le 1/8 6 < 0, \forall y \in [-2, 2].$
 - $x = -2 \Rightarrow x' = 6 f(y) \ge 6 1/8 > 0, \forall y \in [-2, 2].$

Regiones trampa: Figura



Separatrices

- Definición: Curvas que separan regiones del plano con comportamientos cualitativamente (¿?) diferentes.
- Ejemplos:
 - Vimos en la clase [SNL3] que la recta vertical $\{x = 1/2\}$ es una separatriz del SNLA 2D desacoplado

$$\begin{cases} x' = -x + 3x^2 - 2x^3 \\ y' = -2y. \end{cases}$$

- La separatriz del péndulo simple sin fricción separa la regiones de oscilación y rotación.
- Si observamos el PEQ tipo silla (1,1) de la página 11, vemos que su CI inestable de divide al plano en puntos que tienden al PEQ repulsor (-1,-1) y puntos que escapan a infinito (cuando $t \to -\infty$).

1a/2a isoclinas: Definiciones & propiedades

Curvas donde se anula una componente de la velocidad:

$$J = \{(x,y) \in \mathbf{R}^2 : x' = 0\}, \quad K = \{(x,y) \in \mathbf{R}^2 : y' = 0\}.$$

- La velocidad en *J* (*K*) es vertical (horizontal).
- Dividen el espacio de fases 2D en cuatro regiones:

$$NE = \{(x, y) \in \mathbf{R}^2 : x' > 0, \ y' > 0\},$$

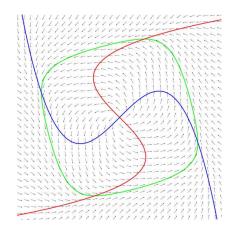
$$NO = \{(x, y) \in \mathbf{R}^2 : x' < 0, \ y' > 0\},$$

$$SE = \{(x, y) \in \mathbf{R}^2 : x' > 0, \ y' < 0\},$$

$$SO = \{(x, y) \in \mathbf{R}^2 : x' < 0, \ y' < 0\},$$

donde la partícula avanza en dirección noreste: \nearrow , noroeste: \searrow , sudeste: \searrow , respectivamente.

1as/2as isoclinas: Ejemplo



SNLA 2D:

$$\begin{cases} x' = x - y - x^3 \\ y' = x + y - y^3 \end{cases}$$

- \blacksquare $R = [-2, 2]^2$ región-trampa
- **■** (0,0) *→* PEQ foco

$$J = \{(x,y) : y = x - x^3\}$$

$$K = \{(x, y) : x = y^3 - y\}$$

■ ∃ ciclo límite atractor

Ecuación de las órbitas

Consideramos el SNLA 2D

$$\begin{cases} \frac{dx}{dt} = x' = f(x, y) \\ \frac{dy}{dt} = y' = g(x, y) \end{cases}$$

Su ecuación de las órbitas es la EDO no autónoma

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{g(x,y)}{f(x,y)},$$

donde x es la variable independiente e y = y(x) es la variable dependiente (o función incógnita).

- Resolviendo esta ecuación, obtenemos órbitas no trayectorias, pues hemos eliminado el tiempo *t*.
- Otra opción: Escribir $\frac{dx}{dy} = \frac{f(x,y)}{g(x,y)}$, donde y es la variable independiente y x = x(y) es la incógnita.

Índice

- 1 Introducción
- 2 Definiciones
- 3 Problemas

Plaga de gusanos: Enunciado

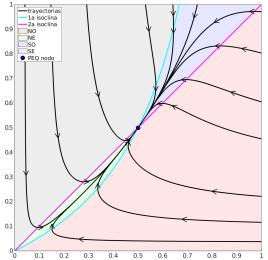
Consideramos el SNLA 2D

$$\begin{cases} x' = x(1 - x - ax/y) \\ y' = y(1 - y/x) \end{cases}$$

donde $a \in (0,1)$ es un parámetro. Solo estudiamos lo que pasa en el primer cuadrante $C_1 = \{(x,y) \in \mathbf{R}^2 : x,y > 0\}.$

- a) Calcular el único PEQ del SNLA en C₁.
- b) Calcular y dibujar en C_1 la 1a y 2a isoclinas.
- c) Marcar las regiones NE, NO, SE y SO en C_1 .
- d) Justificar que las regiones NE y SO son regiones-trampa.
 ¿Cómo se comportan sus trayectorias?

Plaga de gusanos: Croquis para a = 1/2



Brusselator: Enunciado

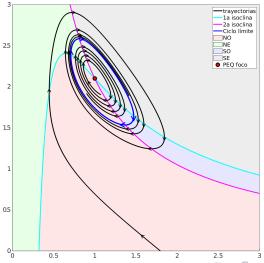
Consideramos el SNLA 2D

$$\begin{cases} x' = 1 - (b+1)x + ax^2y \\ y' = bx - ax^2y \end{cases}$$

donde a, b > 0 son parámetros. Solo estudiamos lo que pasa en el primer cuadrante $C_1 = \{(x, y) \in \mathbb{R}^2 : x, y > 0\}.$

- a) Calcular el único PEQ del SNLA en C₁.
- b) Calcular y dibujar en C_1 la 1a y 2a isoclinas.
- c) Marcar las regiones NE, NO, SE y SO en C_1 .
- d) [Díficil] Probar que si b > 1, existen valores $\alpha, \beta > 0$ tales que el pentágono de vértices A = (1/(b+1), 0), $B = (\alpha, 0)$, $C = (\alpha, \beta)$, D = (2, b(b+1)/a) y E = (1/(b+1), b(b+1)/a) es una región-trampa.

Brusselator: Croquis para a = 1 y b = 2.1



Depredador-presa: Enunciado

Consideramos el SNLA 2D

$$\begin{cases} x' = x(a - by) \\ y' = y(dx - c) \end{cases}$$

donde a,b,c,d>0 son parámetros. Estudiamos el primer cuadrante abierto: $C_1=\left\{(x,y)\in\mathbf{R}^2:x,y>0\right\}$ y cerrado $\bar{C}_1=\left\{(x,y)\in\mathbf{R}^2:x,y\geq0\right\}$.

- a) Calcular los dos PEQs del SNLA en \bar{C}_1 .
- b) Calcular y dibujar en C_1 la 1a y 2a isoclinas.
- c) Probar que las ecuaciónes implícitas de las órbitas son

$$c \ln x + a \ln y - dx - by \equiv \text{ctte}.$$

Indicación: La EDO de las órbitas es separable.

d) [Díficil] Probar que todas las órbitas de C_1 son curvas cerradas recorridas en sentido antihorario.

Depredador-presa: Croquis para a = b = c = d = 1

