
CS 321 - TOC

Formal Definition of DFA

27

by default, function means “total” function!

CS 321 - TOC
Harry%H.%Porter%%III% Theory%of%Computation5Chapter%1a% Page%11%of%79%

!

Alternative Definition of Transition

28

if we change the transition function ẟ
from a total function to a partial function
then we don’t need to include trap state
because whenever ẟ(s, a) is undefined, it
goes to the trap state.

note that the definition of computation
remains unchanged.(total)

totalpartial
https://en.wikipedia.org/wiki/Partial_function

CS 321 - TOC

Harry%H.%Porter%%III% Theory%of%Computation5Chapter%1a% Page%12%of%79%
!

f.

Formal Definition of Computation

29

CS 321 - TOC 30

ε

�

⇤(q, w) =

(
�(�⇤(q, x), a) where w = xa and x 2 ⌃⇤

, a 2 ⌃

q where w = ✏

L((Q,⌃, �, q0, F)) = {w 2 ⌃⇤ | �⇤(q0, w) 2 F}

Finite Automata

Defining the computation of an FA M=(Q,Σ,q0,A,δ).

Extended transition function δ* : Q×Σ* → Q :

1) For every q ∈ Q, let δ*(q,Λ) =

2) For every q ∈ Q, y ∈ Σ*, and σ ∈ Σ, let δ*(q,yσ) =

We say that a string x ∈ Σ* is accepted by M if __________.

A string which is not accepted by M is rejected by M.

The language accepted by M, denoted by L(M) is the set of
all strings accepted by M.

[Sections 3.2, 3.3]Redefine computation: Extend δ to δ*

Q1: what about decomposing w = ax or even w = xy?
Q2: what about partial function δ?

δ*(q0, 10) = q3

δ*(q3, 111) = q2

δ*(q2, ε) = q2

δ*(q1, 1) = q0

δ* is not defined in Sipser,
but is in all other textbooks.
This is probably one of the
biggest flaws of Sipser book.

f.

CS 321 - TOC
Harry%H.%Porter%%III% Theory%of%Computation5Chapter%1a% Page%7%of%79%

!

Language, String, Machine

31

does M accept any string?

does M accept empty string?

does M recognizes the
empty language?

CS 321 - TOC

What’s the language of ...

32

trap state

trap state

CS 321 - TOC

Divisible by 3

33

Q1: language over {a,b,c} s.t.
the # of a’s is divisible by 3

hint: need 3 states:
state 0: (#a’s) % 3 == 0
state 1: (#a’s) % 3 == 1
state 2: (#a’s) % 3 == 2

wait... what about b/c?

Q2: language over {a,b,c} s.t.
(the # of a’s) - (the # of b’s)
is divisible by 3

hint: still 3 states:
state 0: ((#a’s) - (#b’s)) % 3 == 0
state 1: ((#a’s) - (#b’s)) % 3 == 1
state 2: ((#a’s) - (#b’s)) % 3 == 2

CS 321 - TOC

Harry%H.%Porter%%III% Theory%of%Computation5Chapter%1a% Page%14%of%79%
!

Binary Number Divisible by 3
• still just need 3 states

• decimal num divisible by 3?

• again, 3 states

• general strategy in base d

• divisible by n => n states

• [0] [1] ... [n-1]

• [i] = { x | x % n = i }

• at state [q], on digit i

• goto state [(q x d + i) % n]

• but it’s possible to use less
than n states!

34

CS 321 - TOC

Construct Finite Automaton for ...

• any string that does not contain 001 in it

• try simpler problem: a string that does contain 001

35

this reminds you of KMP string matching

https://www.ics.uci.edu/~eppstein/161/960222.html

CS 321 - TOC

Construct Finite Automaton for ...

36

general strategy for “contains pattern a0a1...an-1”:
backbone: at state i on ai goto state i+1 (n+1 states)
deviations: at state i, on any input b != ai

go back to the rightmost such state j,
where prefix a0a1...aj-1 == suffix ai-j+1...ai-1b
because we can reuse such suffix and
don’t need to restart from the very beginning

• any string that does contain 10111 in it

https://www.ics.uci.edu/~eppstein/161/960222.html

CS 321 - TOC

Harry%H.%Porter%%III% Theory%of%Computation5Chapter%1a% Page%9%of%79%
!

Complement Language

37

just flip final and non-final!

L

�
= ⌃⇤ \ L = {x | x 2 ⌃⇤

, x /2 L}
if L = L(M) and M = (Q,⌃, �, q, F) then

L = L(M) where M = (Q,⌃, �, q, F)

where F = Q \ F

CS 321 - TOC

Prove: Complement of Regular is Regular

38

Proof: For every regular language L, by definition of regular language, there

must be a DFA M s.t. L(M) = L. let M = (Q,⌃, �, q0, F) where � is a to-

tal function, let us construct another DFAM = (Q,⌃, �, q0, F) where F = Q\F .

For every string w 2 L, it will end up in a state q 2 F in M , and it will end up

in the same state in M which rejects w since q /2 F ; similarly, for every string w0

in the complement language, i.e., w 2 ⌃

⇤ \F , it will end up in a state q0 /2 F in

M , and it will end up in the same state in M which accepts w since q0 2 F . So

M accepts all strings in ⌃

⇤ \L and only those, which means the complement

language ⌃

⇤ \ L is recognized by DFA M , thus regular.

Note, however, that if � is a partial function (i.e., trap state omitted), this

proof does not work (why?). You would have to add a trap state and all trap

transitions to make � a total function first.

CS 321 - TOC

Rewrite/Simplify using δ* notation

39

Proof: For every regular language L, by the definition of regular language,

there must be a DFA M s.t. L(M) = L. let M = (Q,⌃, �, q0, F) where � is a

total function, we construct another DFAM = (Q,⌃, �, q0, F) where F = Q\F .

For every string w 2 L, there exists q 2 Q s.t. �⇤(q0, w) = q 2 F in M , and

�⇤(q0, w) = q /2 F inM which rejects w; similarly, for every string w0
in the com-

plement language, i.e., w0 2 ⌃

⇤ \ F , there exists q0 2 Q s.t. �⇤(q0, w0
) = q0 /2 F

in M , and �⇤(q0, w0
) = q0 2 F in M which accepts w. So M accepts all strings

in ⌃

⇤ \ L and nothing else, which means the complement language ⌃

⇤ \ L is

recognized by DFA M , thus regular.

�

⇤(q, w) =

(
�(�⇤(q, x), a) where w = xa and x 2 ⌃⇤

, a 2 ⌃

q where w = ✏

L((Q,⌃, �, q0, F)) = {w 2 ⌃⇤ | �⇤(q0, w) 2 F}

CS 321 - TOC

Binary Number Divisible by 4
• 4-state solution (trivial)

• 3-state solution (merge q1 w/ q3)

• in general, how do you:

• reduce a DFA to a smaller but equivalent DFA?

• see Linz 2.4 or Sipser problem 7.42 (p. 327)

• will discuss later after NFA

• test if two DFAs are equivalent?

• follow pairs of states, check if all visited state-pairs
agree on finality (both accept or both reject)

• O(n2 Σ) time and space

40

 https://www.cse.iitb.ac.in/~trivedi/courses/cs208-spring14/lec05.pdf

CS 321 - TOC

Test if two DFAs are equivalent
• traverse all state-pairs and make sure each pair agrees

on “finality” (both accept or both reject)

41

pair final? on 0 on 1

(A, A) (y, y) (B, B) (A, C)

(B, B) (n, n) (A, C) (B, B)

(A, C) (y, y) (B, B) (A, A)

no new pairs foundno new pairs foundno new pairs foundno new pairs found

CS 321 - TOC

Proof by Induction (Linz 1.1-1.2, Sipser 0.4)

• Theorem to prove: |uv| = |u| + |v|

• first define string length rigorously and inductively:

• |a| = 1, |ε| = 0, |wa| = |w| + 1

• now prove the Theorem by induction on |v|

• base case: |v| = 0, then v = ε, so |uv|=|u|=|u|+0=|u|+|v|

• inductive case: assume Theorem holds for any |v| of length 0...n
Now take any v of length n+1. Let v = wa, then |v| = |w|+1 (by def.)

• then |uv| = |uwa| = |uw|+1 (by definition)

• by induction hypothesis (applicable to any w of length n)

• |uw| = |u|+|w|, so that |uv| = |u|+|w|+1 = |u|+|v|

42
HW: prove by induction on |u|

CS 321 - TOC

What’s wrong with this proof?

43

CS 321 - TOC

Quiz 1 scores and Projected Final Grade

44

543210
AA-B+BB-C+

4.53.52.51.50.5
F

• mean: 2.0, median: 2

projected
final grade C/C-

CS 321 - TOC
Harry%H.%Porter%%III% Theory%of%Computation5Chapter%1a% Page%13%of%79%

!

Regular Language

45

CS 321 - TOC

Harry%H.%Porter%%III% Theory%of%Computation5Chapter%1a% Page%15%of%79%

Regular Operations

46

• other operations:

• intersection

• complement

• difference

• regular languages
are closed under all
these operations

