Formal Definition of DFA
Described by a 5-tuple:

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

$Q=$ Set of States
Finite Number of states

$\sum=$ Alphabet, a Finite Set of Symbols
by default, function means "total" function!
$\delta=$ The TRANSITION FUNCTION:

$$
\delta: Q \times \Sigma \rightarrow Q
$$

$q_{0}=$ The STARTING STATE
\qquad

$$
\begin{aligned}
q_{0}= & \text { The STARTING STATE } \\
& q_{0} \in Q \text { (or "INITIAL "STATE) } \\
F= & \text { The set of ACCEPT states } \\
& \text { (or "FINAL" STATES) } F \subseteq Q
\end{aligned}
$$

Alternative Definition of Transition

if we change the transition function δ from a total function to a partial function then we don't need to include trap state because whenever $\delta(\mathrm{s}, \mathrm{a})$ is undefined, it goes to the trap state.
note that the definition of computation remains unchanged.
FORMALLY, must be defined

$$
\delta(c, 1)=?
$$

If some transitions are missing,

partial

total

Formal Definition of Computation
Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Let $\omega=w_{1} w_{2} \ldots w_{N}$ be a string
where $w_{i} \in \sum$
M accepts w of. there is a sequence of states
$r_{0}, r_{1}, r_{2}, \cdots, r_{N}$ in Q
such that

$$
\begin{aligned}
& r_{0}=q_{0} \\
& \delta\left(r_{i}, w_{i+1}\right)=r_{i+1} \quad \text { for } 0 \leqslant i \leqslant N \\
& r_{N} \in F
\end{aligned}
$$

We say...
M "recognizes" Language A if $A=\{w \mid M$ accepts $w\}$

Redefine computation: Extend δ to $\delta *$

Defining the computation of an $F A M=\left(Q, \Sigma, q_{0}, A, \delta\right)$.

Extended transition function $\left.\delta^{*}: Q \times \Sigma^{*}\right) \rightarrow \mathbf{Q}$:

1) For every $q \in Q$, let $\delta^{*}(q, \Lambda)=q$
2) For every $q \in Q, y \in \Sigma^{*}$, and $\sigma \in \Sigma$, let $\delta^{*}(q, y \sigma)$

$$
\begin{aligned}
& \delta^{*}\left(q_{0}, I 0\right)=q_{3} \\
& \delta^{*}\left(q_{3}, I I\right)=q_{2} \\
& \delta^{*}\left(q_{2}, \varepsilon\right)=q_{2} \\
& \delta^{*}\left(q_{1}, I\right)=q_{0}
\end{aligned}
$$

We say that a string $x \in \Sigma^{*}$ is accepted by M iff $\delta^{*}\left(q_{0}, x\right) \in A$
$\delta^{*}(q, w)= \begin{cases}\delta\left(\delta^{*}(q, x), a\right) & \text { where } w=x a \text { and } x \in \Sigma^{*}, a \in \Sigma \\ q & \text { where } w=\epsilon\end{cases}$
$L\left(\left(Q, \Sigma, \delta, q_{0}, F\right)\right)=\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \in F\right\}$
Q1: what about decomposing $w=a x$ or even $w=x y$?
Q2: what about partial function δ ?
δ^{*} is not defined in Sipser, but is in all other textbooks. This is probably one of the biggest flaws of Sipser book.

Language, String, Machine
The EMPTY STRING $\epsilon($ epsilon, $\varepsilon)$
does M accept any string?
does M accept empty string?
The Empty language

$$
\varnothing=\{ \}
$$

Note:

C then it recognizes
\because the EMPTY LANGUAGE

What's the language of ...

Divisible by 3

QI: language over $\{a, b, c\}$ s.t. the \# of a's is divisible by 3
hint: need 3 states:
state 0: (\#a's) \% $3==0$
state I: (\#a's) \% $3==1$
state 2: (\#a's) \% $3==2$
wait... what about b/c?

Q2: language over $\{a, b, c\}$ s.t. (the \# of a's) - (the \# of b's) is divisible by 3
hint: still 3 states:
state 0: ((\#a's) - (\#b's)) \% $3=0$ state I: ((\#a's) - (\#b's)) \% 3 == I state 2: ((\#a's) - (\#b's)) \% $3=2$

Binary Number Divisible by 3

Binary Numbers that are divisible by 3 .

$$
\Sigma=\{0,1\} \quad L=\left\{\begin{array}{c}
0,11,110,1001,1100,1111 \ldots \\
0, \ldots \\
0
\end{array}\right.
$$

As we scan a binary number, What does each bit do to the value? 101101010110001 $\begin{cases}0 & \longrightarrow 2(x) \\ 1 \longrightarrow 2(x)+1\end{cases}$
$3 x \leftarrow$ Divisible by 3

if we $\left\{\begin{array}{l}2(3 \times A)+1=3(2 x)+1 \quad B \\ 2(3 x+3)+1=3(2 x+1) \\ 2(3 x+2)+1=3(2 x+1)+2 C\end{array}\right.$

Remainder 0 3()

Remainder 1 3()$+1$

- still just need 3 states
- decimal mum divisible by 3 ?
- again, 3 states
- general strategy in base d
- divisible by $n=>n$ states
- [0] [I] ... [n-I]
- $[i]=\{x \mid x \% n=i\}$
- at state [q], on digit i
- goto state $[(q \times d+i) \% n]$
- but it's possible to use less than n states!

Construct Finite Automaton for

- any string that does not contain 001 in it
- try simpler problem: a string that does contain 001

this reminds you of KMP string matching

Construct Finite Automaton for

- any string that does contain 101 II in it
(2)

general strategy for "contains pattern $a_{0} a_{\mid} . . a_{n-1} ":$ backbone: at state i on a_{i} goto state $i+1 \quad(n+\mid$ states $)$ deviations: at state i, on any input $b!=a_{i}$ go back to the rightmost such state j, where prefix $a_{0} a_{\mid \ldots} a_{j-1}==$ suffix $a_{i-j+1} \ldots a_{i-1} b$ because we can reuse such suffix and don't need to restart from the very beginning

Complement Language
Notation
$L\left(M_{1}\right)=$ The language that M_{1} recognizes.
$=$ The set of strings over $\{0,1\}^{*}$ that contain 0011 as a substring.
$L\left(M_{2}\right)=$ The set of strings over $\{0,1\}^{*}$ that do not contain 0011 .
Complimenting a Language $\bar{L} \triangleq \Sigma^{*} \backslash L=\left\{x \mid x \in \Sigma^{*}, x \notin L\right\}$
They are sets, after all. if $L=L(M)$ and $M=(Q, \Sigma, \delta, q, F)$ then

$$
L\left(M_{1}\right)=L\left(M_{2}\right)
$$

$$
\bar{L}=L(\bar{M}) \text { where } \bar{M}=(Q, \Sigma, \delta, q, \bar{F})
$$

where $\bar{F}=Q \backslash F$
The "Universe"
All possible strings made with
$\Sigma=\{0,1\} \quad$ Universe $=\{0,1\}^{*} \quad$ just flip final and non-final! Set compliment is always relative to some Universe; (implicitly).

Prove: Complement of Regular is Regular

Proof: For every regular language L, by definition of regular language, there must be a DFA M s.t. $L(M)=L$. let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where δ is a total function, let us construct another DFA $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, \bar{F}\right)$ where $\bar{F}=Q \backslash F$.

For every string $w \in L$, it will end up in a state $q \in F$ in M, and it will end up in the same state in \bar{M} which rejects w since $q \notin \bar{F}$; similarly, for every string w^{\prime} in the complement language, i.e., $w \in \Sigma^{*} \backslash \underline{F}$, it will end up in a state $q^{\prime} \notin F$ in M, and it will end up in the same state in \bar{M} which accepts w since $q^{\prime} \in \bar{F}$. So \bar{M} accepts all strings in $\Sigma^{*} \backslash L$ and only those, which means the complement language $\Sigma^{*} \backslash L$ is recognized by DFA \bar{M}, thus regular.

Note, however, that if δ is a partial function (i.e., trap state omitted), this proof does not work (why?). You would have to add a trap state and all trap transitions to make δ a total function first.

Rewrite/Simplify using δ^{*} notation

Proof: For every regular language L, by the definition of regular language, there must be a DFA M s.t. $L(M)=L$. let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where δ is a total function, we construct another DFA $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, \bar{F}\right)$ where $\bar{F}=Q \backslash F$.

For every string $w \in L$, there exists $q \in Q$ s.t. $\delta^{*}\left(q_{0}, w\right)=q \in F$ in M, and $\delta^{*}\left(q_{0}, w\right)=q \notin \bar{F}$ in \bar{M} which rejects w; similarly, for every string w^{\prime} in the complement language, i.e., $w^{\prime} \in \Sigma^{*} \backslash F$, there exists $q^{\prime} \in Q$ s.t. $\delta^{*}\left(q_{0}, w^{\prime}\right)=q^{\prime} \notin F$ in M, and $\delta^{*}\left(q_{0}, w^{\prime}\right)=q^{\prime} \in \bar{F}$ in \bar{M} which accepts w. So \bar{M} accepts all strings in $\Sigma^{*} \backslash L$ and nothing else, which means the complement language $\Sigma^{*} \backslash L$ is recognized by DFA \bar{M}, thus regular.

$$
\begin{gathered}
\hline \delta^{*}(q, w)= \begin{cases}\delta\left(\delta^{*}(q, x), a\right) & \text { where } w=x a \text { and } x \in \Sigma^{*}, a \in \Sigma \\
q & \text { where } w=\epsilon\end{cases} \\
L\left(\left(Q, \Sigma, \delta, q_{0}, F\right)\right)=\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \in F\right\}
\end{gathered}
$$

Binary Number Divisible by 4

- 4-state solution (trivial)
- 3-state solution (merge ql w/ q3)
- in general, how do you:
- reduce a DFA to a smaller but equivalent DFA?
- see Linz 2.4 or Sipser problem 7.42 (p. 327)
- will discuss later after NFA
- test if two DFAs are equivalent?
- follow pairs of states, check if all visited state-pairs
 agree on finality (both accept or both reject)
- $\mathrm{O}\left(\mathrm{n}^{2} \Sigma\right)$ time and space
https://www.cse.iitb.ac.in/~trivedi/courses/cs208-spring14/lec05.pdf

Test if two DFAs are equivalent

- traverse all state-pairs and make sure each pair agrees on "finality" (both accept or both reject)

pair	final?	on O	on I
(A, A)	(y, y)	(B, B)	(A, C)
(B, B)	(n, n)	(A, C)	(B, B)
(A, C)	(y, y)	(B, B)	(A, A)
no new pairs found			

Proof by Induction (Linz I.I-I.2, Sipser 0.4)

- Theorem to prove: $|u v|=|u|+|v|$
- first define string length rigorously and inductively:
- $|a|=1,|\varepsilon|=0,|w a|=|w|+1$
- now prove the Theorem by induction on $|v|$
- base case: $|v|=0$, then $v=\varepsilon$, so $|u v|=|u|=|u|+0=|u|+|v|$
- inductive case: assume Theorem holds for any $|v|$ of length 0 ...n Now take any v of length $n+l$. Let $v=w a$, then $|v|=|w|+1$ (by def.)
- then $|u v|=|u w a|=|u w|+1$ (by definition)
- by induction hypothesis (applicable to any w of length n)
- $|u w|=|u|+|w|$, so that $|u v|=|u|+|w|+1=|u|+|v|$

What's wrong with this proof?

Theorem(?!): All horses are the same color.
Proof: Let $P(n)$ be the predicate "in all non-empty collections of n horses, all the horses are the same color." We show that $P(n)$ holds for all n by induction on n (using 1 as the base case).
Base case: Clearly, $P(1)$ holds.
Induction case: Given $P(n)$, we must show $P(n+1)$.
Consider an arbitrary collection of $n+1$ horses. Remove one horse temporarily. Now we have n horses and hence, by the induction hypothesis, these n horses are all the same color. Now call the exiled horse back and send a different horse away. Again, we have a collection of n horses, which, by the induction hypothesis, are all the same color. Moreover, these n horses are the same color as the first collection. Thus, the horse we brought back was the same color as the second horse we sent away, and all the $n+1$ horses are the same color.

Quiz I scores and Projected Final Grade

- mean: 2.0, median: 2
projected
final grade CS 321-TOC

Regular Language
DEFINITION
A language is a REGULAR LANGUAGE iff some Finite State Machine recognizes it.

What languages are NOT regular?
Anything that requires memory.
The F.S.M. memory is very limited Cannot store the string.
Carnot "count."
Not Regular:

$$
\begin{array}{ll}
\text { ww } & \frac{01101,01101}{w} \\
0 N 1 & \frac{000000111111}{6}
\end{array}
$$

Imagine a String from ${ }^{6}$ here to ${ }^{6}$ the Moon. You are trying to recognize.
it. Your only memory. (is, \# of states,

$$
\begin{aligned}
& \text { state } \\
& =85
\end{aligned}
$$

Regular Operations

$$
\underset{A \cup B I O N}{U N}=\{x \mid x \in A \text { or } x \in B\}
$$

CONCATENATION

$$
\begin{aligned}
& \text { ONCATENATION } \\
& A \circ B=\{x y \mid x \in A \text { and } y \in B\} \\
& \text { "closure" }
\end{aligned}
$$

STAR "closure"

$$
\begin{aligned}
& \text { STAR "closure" } \\
& A^{*}=\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0 \text { and each } x_{i} \in A\right\}
\end{aligned}
$$

EXAMPLE

$$
\begin{aligned}
& \sum=\{a, b, c, \ldots z\} \\
& A=\{a a, b\} \\
& B=\{x, y y\} \\
& A \cup B=\{a a, b, x, y y\} \\
& A \circ B=\{a a x, a a y y, b x, b y y\} \\
& A^{*}=\left\{\begin{array}{l}
\{, a a, b, a a a a, a a b, b r a, b b, \\
\quad a a a a a a, a a a a b, a a b a a, a a b b, \cdots
\end{array} .\right.
\end{aligned}
$$

- other operations:
- intersection
- complement
- difference
- regular languages are closed under all these operations

