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A B S T R A C T   

Atterberg limits are broadly used for engineering and geology purposes as well as in agricultural and environ-
mental applications. Laboratory methods used for their determination are, however, laborious, destructive and 
tool dependent. The aim of this study was to test the feasibility of using visible near-infrared spectroscopy 
(vis–NIRS) as a fast and accurate alternative to the conventional measurements of Atterberg limits (LL and PL) 
and the PI for 229 geographically diverse soil samples originating from 24 countries. Three types of calibration 
techniques including Partial Least Squares (PLS) regression, Artificial Neural Networks (ANN) and Support 
Vector Machines (SVM) were applied to the spectral data. The performance of the best vis–NIRS models was 
validated using 45 independent samples and compared with two existing and one newly developed pedotransfer 
functions (PTF). The application of SVM yielded marginally better predictive ability than PLS and ANN for all 
modelled properties. The SVM models estimated LL, PL, and PI with root mean squared error (RMSE) of 7%, 5% 
and 7%, respectively. The newly developed PTF gave slightly better estimations than the existing ones, with 
RMSE values of 8%, 6%, and 6%, respectively for LL, PL, and PI. Furthermore, in terms of the sample swelling 
class, the SVM model correctly classified 31 of the 45 samples, compared to 34 samples for the best PTF. The 
results indicate a great potential of vis–NIRS for reliable estimates of Atterberg limits for soil samples of large 
geographical and mineralogical diversity.   

1. Introduction 

Atterberg limits were introduced as measures of soil mechanical 
behaviour concerning the consistency limits of water content by Albert 
Atterberg (Atterberg, 1911). The limits include shrinkage limit (SL), 
plastic limit (PL), and liquid limit (LL) and define the transition of soil 
from solid to semisolid state, the point when the soil begins to act like 
plastic, and the transition from plastic to a liquid state, respectively. 
Additionally, the plasticity index (PI), calculated as a difference between 
LL and PL, is used as a measure of the plasticity of soil. Clayey soils tend 
to have a high PI whereas sandy soils are non-plastic (PI = 0). Atterberg 

limits are broadly used in the Unified Soil Classification System for en-
gineering and geology purposes as well as in agriculture (soil tillage, 
erosion) and environmental applications (Sivakumar et al., 2009; Keller 
and Dexter, 2012; Saikia et al., 2017; Obour et al., 2018). The limits can 
be employed in determining the soil shrink/swell potential, indicating 
the extent to which soils shrinks or swells when it dries or gets wet, 
respectively; useful for safe design, construction and maintenance of 
buildings on expansive soils. 

The conventional laboratory methods for determining LL include the 
percussion method with the Casagrande cup ASTM (2017) and the drop- 
cone penetration method (BS, 2018). For PL, the most commonly used 
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component analysis; PI, plasticity index; PL, plastic limit; PLS, partial least squares regression; RMSE, root mean square error; RMSECV, root mean square error of 
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SVM, support vector machine; vis–NIRS, visible near-infrared spectroscopy. 
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method is the hand thread rolling (ASTM, 2017), further upgraded to the 
motorized rolling device (Bobrowski and Griekspoor, 1992). These 
methods share a common disadvantage of being laborious and costly 
especially when many samples need to be analysed. Moreover, they are 
all destructive and tool/laboratory setup dependent (Houlsby, 1982; 
Haigh, 2012; Spagnoli, 2012; Kayabali et al., 2016). 

As alternatives to the above-mentioned laboratory methods, pedo-
transfer functions (PTFs) for the determination of Atterberg limits from 
easily measurable or available soil properties were developed. These 
functions utilize soil properties such as texture, organic matter and pH 
(de Jonge et al., 1990; Seybold et al., 2008; Keller and Dexter, 2012; 
Gupta et al., 2016; Stanchi et al., 2017), or other properties like cation 
exchange capacity, specific surface area of the soil, and hygroscopic 
water content (Smith et al., 1985; Yukselen-Aksoy and Kaya, 2010; 
Arthur et al., 2021). As the magnitude of Atterberg limits is significantly 
affected by the clay mineral type (Schmitz et al., 2004), the majority of 
the PTFs are site-dependent and exhibit lower accuracy when used for 
samples that are mineralogically different from the samples used to 
develop the PTFs (Arthur et al., 2021). Consequently, it is of significant 
interest to consider alternative, rapid and reliable approaches to esti-
mate the Atterberg limits, particularly for regional-scale studies. One 
potential approach is the application of visible near-infrared spectros-
copy (vis–NIRS). 

Visible near-infrared spectroscopy utilizes the characteristic ab-
sorption spectral features (in the wavelength range between 400 and 
2500 nm) to identify the corresponding functional groups in a sample 
(Pasquini, 2003). The vis–NIRS method has been successfully applied to 
determine fundamental and functional soil properties such as organic 
matter (OM) and soil texture (Stenberg et al., 2010; Soriano-Disla et al., 
2014; Hermansen et al., 2016; Hermansen et al., 2017), structural 
(Katuwal et al., 2018a; Katuwal et al., 2018b), surface (Knadel et al., 
2018; Knadel et al., 2020) and hydraulic soil properties (Pittaki-Chrys-
odonta et al., 2018; Pittaki-Chrysodonta et al., 2019; Santra et al., 2009). 
It is rapid, cheap and does not destroy the sample, requiring only little to 
no sample processing or chemicals. Soil properties such as clay and OM 
content and quality and water retention dictate soil mechanical behav-
iour and consequently the Atterberg limits (de Jonge et al., 1990; Keller 
and Dexter, 2012; Sridharan, 2014; Stanchi et al., 2017). These con-
trolling properties (clay content, mineralogy, OM and water retention) 
have been successfully predicted using vis–NIRS (Rossel et al., 2009; 
Babaeian et al., 2015; Fang et al., 2018; Pittaki-Chrysodonta et al., 2019) 
thus, successful vis–NIRS estimations for the Atterberg limits can be 
expected. However, in comparison to the vast literature available on the 
vis–NIRS application to the determination of basic soil properties such as 
OM or texture, so far, only a few studies have investigated the possibility 

for estimating Atterberg limits from vis–NIRS (Table 1). These studies 
were based on local data sets, including one to three sites and were each 
conducted on soil samples from one country. For example, the study by 
Waruru et al. (2014) utilized the highest number of samples (N = 256), 
however, the soils originated from only two sites in Kenya. Thus, there is 
difficulty in generalising the presented results. For the majority of 
studies, partial least squares (PLS) regression was employed to correlate 
soil spectra with Atterberg limits. Only two studies additionally tested 
the application of other techniques such as neural networks or support 
vector regression (Gupta et al., 2016; Mousavi et al., 2020) with only 
one comparing the results with newly developed pedotransfer functions 
(Gupta et al., 2016). Despite the different performance of vis–NIRS in 
the afore-mentioned studies (Table 1), there is a great potential of 
spectroscopy to estimate the Atterberg limits. 

Considering the above-mentioned knowledge gaps, the objectives of 
this study were to (i) test and independently validate the capability of 
vis–NIRS for estimating Atterberg limits (PL and LL) and, PI for a dataset 
composed of different soil types and mineralogies representing diverse 
geographic origins, (ii) compare the performance of PLS regression to 
Artificial Neural Networks (ANN) and Support Vector Machines (SVM) 
techniques, and (iii) compare the vis–NIRS performance to existing 
pedotransfer functions (PTFs) from literature as well as one developed 
using the investigated dataset. 

2. Materials and methods 

2.1. Investigated soil samples 

A total of 229 soil samples (topsoil and subsoil) was investigated. The 
samples were from 24 countries distributed across four continents: Af-
rica (N = 47), Asia (N = 43) and Oceania (N = 12), Europe (N = 125) and 
South America (N = 2). The samples were selected to encompass a wide 
range of soil types (Vertisols, Chernozems, Luvisols, Oxisols, and Andi-
sols), mineralogy (illite, montmorillonite, kaolinite and traces of chlorite 
and vermiculite) and serve as a basis for more universal models and 
generalizable results. Further details for the samples are provided in 
Table S1. 

2.2. Data subdivision 

To subdivide the dataset into calibration and validation sets, first, 
principal component analysis was conducted on the spectral data 
(Martens and Næs, 1989). Next, Kennard Stone algorithm (Kennard and 
Stone, 1969) was applied to the first three principal components and was 
set to select 80% (184 samples from 24 countries) samples to constitute 

Table 1 
Review table of published studies on the application of visible near-infrared spectroscopy to Atterberg limits (liquid limit; LL, plastic limit; PL, plasticity index; PI). 
Presented statistics are for the validation results.  

Sample origin Sample number calibration/validation Property Property range (%) RMSEP (%) SRMSE R2 Reference 

Iran, Mount Alborz 45/15 LL 40–77 2 0.05  0.94 Mousavi et al. (2020) 
PL 25–31 3 0.50  0.55 
PI 12–46 3 0.09  0.75  

Turkey, Ankara 62/21 LL 43–78 5 0.15  0.71 Rehman et al. (2019) 
PL 24–37 3 0.23  0.48  

India, West Bengal & N Odisha 128/54 LL 12–79 8 0.12  0.63 Gupta et al. (2016) 
PL 9–27 3 0.17  0.62 
PI 0–47 9 0.20  0.32  

Kenya, Lake Victoria Basin 136/120 LL 22–97 10 0.13  0.74 Waruru et al. (2014) 
PL 11–45 NA NA  0.46 
PI 8–66 8 0.14  0.73  

Ethiopia, Addis Ababa NA LL NA 0.5 NA  0.87 Yitagesu et al. (2009) 
PL 0.6  0.71 
PI 0.5  0.81 

Where: RMSEP is root mean square error of prediction, SRMSE is RMSE/Range, NA indicates no information provided. 
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the calibration set. The remaining 20% (45 samples from 15 countries) 
was used for the independent validation of the generated calibration 
models. The application of Kennard-Stone algorithm enables a selection 
of representative samples spanning the widest range of their Euclidean 
distance within the spectral space (Kennard and Stone, 1969). 

2.3. Laboratory measurements 

2.3.1. Soil sieving 
The samples were first crushed mechanically and sieved to 2-mm for 

the particle size fraction analyses. A part of the 2-mm sieved sample was 
crushed with a mortar and pestle to make them finer before subsequent 
sieving. The crushed samples were then sieved to 425 µm and used for 
the determination of the Atterberg limits and NIR scanning. 

2.3.2. Soil texture and organic carbon 
The clay, silt and sand contents were determined on the 2-mm sieved 

samples by a combination of wet sieving and pipette or hydrometer 
methods (Gee and Or, 2002). Before the analysis, organic matter and 
carbonates were removed for both groups. Soil organic carbon (SOC) 
was measured on ball-milled samples by oxidizing the carbon at 950 ◦C 
with an elemental analyzer coupled to a thermal conductivity detector 
(Thermo Fisher Scientific, Waltham, MA). 

2.3.3. Atterberg limits analysis 
The 425 µm-sieved sample was used to determine the Atterberg 

limits. In brief, LL was determined in triplicate with drop-cone pene-
trometer method as the water content at which a standard cone pene-
trated the soil to a depth of 20 mm in 5 s (BS, 2018). To determine PL, 
30 g of samples was mixed with water until the sample became plastic. 
The sample was rolled into two short threads of 5–10 mm thickness. The 
threads were placed on the device and rolled to 3 mm diameter and the 
gravimetric water content at the breaking point of the thread was 
considered the PL. For both LL and PL, the gravimetric water content of 
the samples was determined by oven drying at 105 ◦C for at least 48 h. 
Detailed description of the Atterberg limits measurements is provided by 
Arthur et al. (2021). 

The PI was calculated as a difference between LL and PL. 

2.3.4. Vis–NIRS measurements 
Spectral measurements were performed in a controlled laboratory. 

Both humidity and temperature were monitored with average values of 
23 ◦C and 48%, respectively. Air-dried samples (425 µm-sieved) were 
scanned using a vis–NIRS spectrophotometer. About 50 g of each soil 
was placed in a sample holder equipped with a quartz window. Each 
prepared sample was scanned in seven areas of the sample holder to 
account for sample variability. These readings (absorbance values; 
Abs = [log (1/R)], where R is reflectance) were averaged into one 
spectrum and used in further analysis. 

3. Modeling 

3.1. Vis–NIRS modelling 

Spectral models were developed using Matlab PLS Toolbox 8.7 
(Eigenvector Research). Before modelling, different types of pre-
processing methods, including 1st and 2nd derivative (Savitzky-Golay) 
and scatter corrections (multiplicative scatter correction and standard 
normal variate) were applied (Savitzky and Golay, 1964; Martens and 
Næs, 1989). However, only the results for the best preprocessing will be 
discussed further. Calibration models using PLS regression, ANN and 
SVM (segmented cross-validation; 20 randomly selected segments) were 
developed. The three methods are described in details elsewhere (Kna-
del et al., 2020) thus, only brief descriptions are given here. Among the 
linear regression techniques, PLS regression is most often applied to 
estimate soil properties from spectral data. It finds the latent variables in 

spectral data which best estimate the soil property of interest by com-
pressing and regressing the data. In this study, PLS regression with 
NIPALS algorithm was used (Martens and Næs, 1989; Wold et al., 2001). 
An ANN belongs to non-linear methods within machine-learning algo-
rithms, which are to imitate the processes in human brain. The artificial 
neurons represent interconnected nodes within three layers, namely: 
vis–NIR spectra, the property to be predicted and a hidden layer be-
tween the two (Goldshleger et al., 2012). A feedforward ANN with a 
backpropagation neural network and PLS regression compressed spectra 
with two nodes in the first layer of the PC scores was performed 
(Rumelhart et al., 1986). 

Support vector machines also represent a nonlinear method based on 
the kernel learning technique (here, Gaussian radial function was used) 
(Suykens and Vandewalle, 1999). 

Two parameters were adjusted ε (used values: 1.0, 0.1, 0.01) and C 
(11 values from 10− 3 to 100) representing the upper tolerance on pre-
diction errors, and the trade-off between the model complexity and the 
degree to which deviations larger than ε are tolerated (Hastie et al., 
2009). 

Calibration models were evaluated using the root mean squared 
error of cross-validation (RMSECV), the root mean squared error of 
prediction (RMSEP), and the square of the Pearson correlation coeffi-
cient; R2. The RMSECV and RMSEP are expressed in the same unit as the 
response variable y (here Atterberg limits or PI) and are calculated as 
follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
yp − ym

)2

n

√
√
√
√
√

(1)  

where yp is the average of the predicted values, ym is the measured 
response values, and n is the number of samples. 

Additionally, to enable the comparison of the results across the 
Atterberg limits and PI, the standardized RMSE was calculated as 
SRMSE = RMSE/Range (Arthur, 2017). 

3.2. Pedotransfer functions 

To compare the performance of the vis–NIRS to estimate the Atter-
berg limits and PI to PTFs, we selected two studies (de Jonge et al., 1990; 
Keller and Dexter, 2012) that utilized different combinations of clay, 
sand and organic carbon (OC), or OM contents. 

The PTFs (Eqs. (2) to (4)) by de Jong et al. (1990) were developed 
from 279 samples obtained from Saskatchewan, Canada. The equations 
are presented below: 

LL = 13.75+ 0.637 × clay+ 2.937 × OC (2)  

PL = 10.95+ 0.239 × clay+ 1.156 × OC (3)  

PI = 3.11+ 0.394 × clay+ 1.726 × OC (4) 

The PTFs (Eqs. (5) to (7)) by Keller and Dexter (2012) was based on 
89 samples from nine countries: 

LL = 6.65+ 0.626 × clay+ 0.007 × clay2 + 7.40 × OM − 0.128 × clay

× OM (5)  

PL = 14.22+ 0.005 × clay2 + 3.63 × OM − 0.048 × clay × OM (6)  

PI = − 0.056+ 0.432 × clay+ 0.005 × clay2 − 0.167 × sand + 2.79

× OM − clay × OM (7) 

Additionally, PTF functions using the calibration data set and basic 
soil properties were developed for comparison: 

LL = 10.64+ 0.86 × clay+ 0.16 × silt+ 3.25 × OC 
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adjusted R2 = 0.68; SEE = 10.9 (8)  

PL = 8.70+ 0.29 × clay+ 0.07 × silt+ 2.90 × OC  

adjusted R2 = 0.30; SEE = 10.1 (9)  

PI = 1.66+ 0.56 × clay+ 0.09 × silt+ 0.34 × OC  

adjusted R2 = 0.57; SEE = 8.53 (10)  

4. Results and discussion 

4.1. Description of dataset 

The investigated samples represented soils varying in both texture 
and OC content covering from clayey (up to 89% clay) to sandy (up to 
85% sand) and from mineral (average OC of 1.44%) to organic (average 
OC of 6.79%), thus representing all soil types in the USDA classification, 
except sand and silt (Fig. 1a and Table 2). 

The soil types included Andisols, Luvisols, Oxisols, Vertisols, Cher-
nozems etc, reflected by the different dominant clay minerals present (e. 
g., montmorillonite, kaolinite, illite, smectite – Table S1). This high 
variability of the data set was reflected in the wide range in the Atter-
berg limits and PI. Liquid limit covered a range from 20 to 106%, PL 
from 12 to 74% and PI from 3 to 59% (Table 2). Likewise, the samples 
comprised a wide range in swelling potential (according to the Casa-
grande plasticity chart) covering all five classes (low, medium, high, 
very high and few examples of extremely high) (Fig. 1 b). 

The selection of calibration samples using the Kennard-Stone algo-
rithm assured a full coverage of the ranges of the investigated soil 
properties including both Atterberg limits and PI (Fig. 1 and Table 2). 

Atterberg limits were individually correlated with clay, silt, sand and 
OC contents (Fig. 2 and Table 3). As expected they were correlated more 
strongly with clay. Clay content and clay mineralogy are among the 
most important factors controlling Atterberg limits. Thus, among the 
three basic properties, the liquid limit was highest and significantly 
correlated with clay content (r = 0.77) (Fig. 2 a). The plastic limit was 
also significantly correlated with clay content (r = 0.41), yet to a lower 
degree than LL. In general, for samples with PL values above 40%, no 
clear trend in respect to correlations with other soil properties was 
observed. For example, samples exhibiting high PL values had both low 
sand (some of the Turkish samples) and high sand (New Zealand and 
Japan) contents (Fig. 2 g). Both the LL and PL were significantly 
correlated with OC, obtaining r values of 0.30 and 0.40, respectively. 

Similar to LL, PI was strongly correlated with clay (r = 0.76) (Fig. 2 i), 
however, it was not significantly correlated with OC content (Fig. 2 l). 
Neither Atterberg limits, nor PI was significantly correlated with silt 
content for this data set (Fig. 2 b, f, and j). The results from this study are 
consistent with previous studies. A higher correlation between clay 
content and LL than with PL was found by for example Keller and Dexter 
(2012) and Stanchi et al. (2017). As suggested by Stanchi et al. (2017), 
PL is more controlled by the amount of organic C, whereas LL and PI are 
controlled by the clay fraction and the degree of aggregation resulting 
from interactions with soil OM. The authors explained this phenomenon 
by the interactions between clay and water during increasing water 
content. In the first stage of increasing water content (semisolid or 
plastic state, when all pores are filled with water) it is soil OM that re-
tains additional water. Further, in the transition phase from plastic to 
the liquid state, it is the clay minerals that absorb water and play a more 
important role in LL behaviour (Stanchi et al., 2017). 

4.2. Vis–NIRS characteristics of the soils 

Visible near-infrared spectra of soils representing the five swelling 
potential classes (based on Casagrande’s plasticity chart) are shown in 
Fig. 3. As discussed above, the Atterberg limits are correlated with clay 
content but more specifically with spectrally active clay minerals. Thus, 
there is a clear trend between absorbance and the swelling potential for 
the first four classes. In the NIR region, absorbance increases with 
swelling potential. In the regions typically assigned to absorptions 
related to OH bonds (near 1400, 1900 and 2200) (Clark et al., 1990; Ben- 
Dor and Banin, 1995) there is an increase in absorbance with the in-
crease in the swelling potential class. The lowest absorption values for 
the samples with low swelling potential and vice versa can be also 
observed (Fig. 3). However, the spectra representing the soils with the 
extremely high swelling potential (marked in red in Fig. 3) behaved 
differently. Despite the very distinct absorptions related to OH bonds 
resulting from the extreme clay contents (above 80%), their total 
absorbance throughout the vis–NIR region was the lowest among all the 
classes and reflects their basic composition including very high clay 
content, mineralogy (dominated by montmorillonite) and very low OC 
content (mean OC of 0.11%). These soils are of a light grey colour and 
thus absorb comparatively less light than the remaining darker soils. In 
the visible part of the spectrum, similar trends to the NIR range can be 
observed. However, the spectrum of the soil with the high swelling 
potential shows higher absorbance values than that of a very high 
swelling class, due to the effects of high OC content in the first sample 
(3%) as opposed to the latter one (1.1%). 

Fig. 1. a). Distribution of the investigated samples in the USDA soil textural triangle and b) Distribution of the investigated samples in the Casagrande plasticity chart 
(calibration set; N = 184, validation set, N = 45). 
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4.3. Spectral calibration models 

Calibration results for LL were similar for the three (PLS, ANN and 
SVM) tested techniques (Fig. 4 a, d and g). Both ANN and SVM generated 
the same errors (RMSECV of 10%) that were only slightly lower than the 
one generated by PLS regression (11%). PLS regression coefficients (not 
showed) for the LL model indicated the highest contribution of wave-
lengths are located at ~1900, ~2300, and ~1440 nm, all of which can 
be assigned to OH bonds (Post and Noble, 1993; Clark, 1999; Bishop 
et al., 1994), ~500 nm and in a range between 660 and 860 nm which 
are related to the presence of iron oxides (Scheinost, 1998; Hunt, 1977). 

Likewise, small differences for PL estimations and between the 
techniques were observed. Here, PLS and ANN calibration models 
resulted in the same estimation error (7%) (Fig. 4 b and e) whereas, the 
RMSECV of the SVM model for PL was insignificantly lower (6%) (Fig. 4 

h). The important wavelengths for PL used in the PLS regression model 
were very similar to those from the LL model and included bands near 
1400, 1900 and 2300 nm. However, a slightly higher contribution of OH 
bonds around 1440 nm than in the LL model was found, and a negative 
regression coefficient around 500 nm. 

As in the case of LL estimations, machine learning algorithms (SVM 
and ANN) delivered the lowest error for PI (7%) (Fig. 4 f and i) which 
was only slightly better than that for PLS regression (6%) (Fig. 4 c). In 
the visible part of the spectral range, the high regression coefficient 
observed around 560 nm originate from iron oxides (Scheinost, 1998). 
Whereas, in the NIR range a broad band 960–1250 nm (corresponding to 
iron oxides and possible OM; Scheinost, 1998) and bands near 1400, 
1900 and 2300 nm (as in the case of LL and PL models) were present, and 
confirm an important role of clay content and mineralogy in the deter-
mination of the two Atterberg limits and PI. 

Table 2 
General statistics for the liquid limit (LL), plastic limit (PL), plasticity index (PI), soil texture and organic carbon (OC) (unit for all – %) for the entire data set, calibration 
and validation sets.  

Property Mean Max Min Range SD CV Variance Median 

LL 51 (52, 47) 106 (106, 90) 20 (20, 22) 86 (86, 68) 19 (19, 17) 0.37 (0.37, 0.35) 349 (367, 274) 46 (47, 42) 
PL 26 (26, 25) 74 (74, 50) 12 (12, 15) 62 (62, 36) 11 (12, 9) 0.44 (0.46, 0.35) 131 (145, 75) 23 (23, 21) 
PI 25 (26, 23) 59 (59, 56) 3 (3, 6) 56 (56, 50) 13 (13, 11) 0.51 (0.51, 0.50) 164 (171, 132) 22 (22, 20) 
Clay 36 (37, 32) 89 (89, 69) 9 (9, 10) 81 (81, 59) 17 (18, 14) 0.49 (0.49, 0.43) 299 (323, 189) 31 (32, 31) 
Silt 31 (30, 36) 85 (85, 75) 2 (2, 6) 83 (83, 69) 17 (17, 15) 0.55 (0.58, 0.42) 291 (299, 230) 28 (26, 31) 
Sand 33 (34, 32) 85 (85, 83) 0 (0, 0) 85 (85, 83) 22 (22, 20) 0.66 (0.66, 0.63) 479 (499, 402) 33 (33, 32) 
OC 1.56 (1.63, 1.26) 8.23 (8.23, 4.64) 0 (0, 0) 8.23 (8.23, 4.64) 1.39 (1.43, 1.2) 0.90 (0.88, 0.95) 1.95 (2.05, 1.44) 1.37 (1.44, 0.81) 

Note: the first value is for the entire data set (N = 229), the first value in the brackets is for the calibration dataset (N = 184), and the second value in the brackets is for 
the validation dataset (N = 45). SD, standard deviation, CV, coefficient of variation. 

Fig. 2. Correlation between plastic limit; PL, liquid limit; LL and plasticity index; PI with clay, silt, sand and OC content for the entire data set. ***, **, and * denote 
statistical significance of the correlation coefficients at P < 0.001, 0.01 and 0.05, respectively. 
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In general, the differences in model performance of the three 
modelling techniques and for each of the Atterberg limit were small and 
smallest for the error values and manifested mostly in the values of the 
coefficient of determination, which were consistently highest for the 
SVM technique. To test whether the estimations of Atterberg limits differ 
significantly among the modelling techniques, a one-way analysis of 
variance (ANOVA) on the residuals was additionally performed. The 
differences among the residual values from the three regression methods 
calculated for LL, PL and PI were not significant (P = 0.990, P = 0.366, 
and P = 0.913, respectively), indicating that using the commonly 
applied PLS regression produces similar results to that of more sophis-
ticated algorithms such as SVM. 

4.4. Validation results 

The independent validation of the three regression techniques, using 
45 samples, is presented in Fig. 5. For LL and PL, the SVM technique had 
the lowest prediction errors (RMSEP of 7 and 5%, respectively) and the 
highest R2 values (>0.64) among the three techniques. 

The application of ANN was nearly identical to that of PLS regression 
for LL and PL estimations (Fig. 5 a, d, b, e), generating the same pre-
diction errors (9% and 6%, respectively). 

The PI was estimated with the same prediction error (RMSEP of 7%) 
using ANN and SVM (Fig. 5 f and i), which was slightly lower than when 
using PLS (RMSEP = 8%) (Fig. 5 c). Moreover, the SVM model for PI had 

the highest R2 value (0.69). Additionally, the PI values estimated 
directly by SVM were compared to the PI calculated from the SVM- 
predicted LL and PL values. The slope of the equation 
(y = 0.9674x + 0.7283) and high correlation (r = 0.98) between the two 
PI estimations indicates stable results regardless of the approach. 

A few of the samples were consistently under-predicted by the 
models. These samples represent special samples in terms of basic soil 
properties and mineralogy and as a consequence the Atterberg limits. 
They were identified and discussed previously in Fig. 2 g (some of the 
samples from New Zealand, had large amounts of amorphous minerals 
(e.g., volcanic glass) and had very high values for the Atterberg limits) 
and in Fig. 3 (the red spectra represent the extremely high swelling 
montmorillonite-rich samples from Turkey). Moreover, one of the 
Croatian samples with the lowest LL and PL tended to be significantly 
overestimated by all the models. However, no clear reasons for these 
overestimations were found. These samples were not removed from the 
modelling as they were not outliers per se but soil samples that have 
markedly different characteristics. 

Despite some differences in models performance, the ANOVA test 
indicated that there is no statistically significant difference among the 
applied regression techniques to predict LL (P = 0.868), PL (P = 0.980) 
and PI (P = 0.970). However, to compare model performance among the 
three estimated properties the output of SVM modelling was chosen as it 
consistently generated the highest R2 values. 

To enable comparison of the three properties that have a different 
range in values, the SRMSE values were used. The LL estimations yielded 
the lowest SRMSE value of 0.10, compared to 0.14 for both PL and PI. 
These results can be explained by the correlations of Atterberg limits 
with spectrally active soil components as well as by the variability of 
Atterberg limits. For the validation dataset, LL is strongly correlated 
with clay content (r = 0.80) and OC content (r = 0.51). Both clay and OC 
in turn, are spectrally active in the visible and NIR range, leading to 
better estimation of LL. Conversely, PL was not as strongly correlated 
with clay (r = 0.45) as LL or PI, but was significantly correlated with OC 
(r = 0.68), whereas, PI was not correlated with OC at all (Table 3). 
Moreover, the accuracy of the models can be a result of data set vari-
ability, the higher the variability the lower accuracy (Brunet et al., 2007; 
Stenberg et al., 2010). When investigating the coefficient of variation 
(CV) for the three properties, LL had the lowest variability (37%) of 
them all (Table 2). This low variability, together with the significant 
correlation between LL with clay and OC could have led to better pre-
dictions for LL, compared to PL and PI. 

Results from this study are comparable with the results published 
previously (Table 1). In the recent study by Mousavi et al. (2020) 60 
samples from an experimental forest in Mount Alborz, Tehran were 
investigated. Atterberg limits were correlated with vis–NIR spectra 
using PLS regression, a PLS with back propagation neural networks as 
well as spectral indices. To validate models’ performance a small set of 
15 samples was used. Out of the three tested techniques, PLS BPNN 
generated the most accurate models for LL, PI (SRMSEP of 0.05 and 
0.09, respectively) indicating a higher predictive ability than in the 
present study. However, they reported more than three times lower 
accuracy for the estimation of PL (SRMSEP = 0.5) than it was obtained 
here (SRMSEP = 0.14). Rehman et al. (2019) estimated Atterberg limits 
using vis–NIRS and compared two conventional methods for each 
Atterberg limit using a set of 83 Turkish samples. They obtained suc-
cessful estimations of LL (SRMSEP = 0.15) and less robust PL models 
(SRMSEP = 0.22), both representing higher errors than in the present 
study. Several approaches to Atterberg limits’ estimation using vis–NIRS 
and mid-infrared (MIR) regions and a set of 182 soil samples originating 
from India were reported by Gupta et al. (2016). The authors compared 
the performance of PLS, PLS with a feature selection, stepwise multiple 
regression (SMLR) and support vector regression (SVR). To test gener-
ated models 30% of the entire data set was used. The lower predictive 
ability for vis–NIRS than for MIR was obtained and the results for PLS 
and SVR were very similar generating nearly identical results, for both 

Table 3 
Performance of three pedotransfer functions; two from the literature (de Jonge 
et al. (1990) and Keller and Dexter, 2012) and one developed using the inves-
tigated data set (current PFT) and visible near-infrared spectroscopy estimations 
using support vector machine (vis–NIRSSVM) for the liquid limit; LL, plastic limit; 
PL, and plasticity index; PI for the validation data set (N = 45).  

Property Estimation method RMSEP SRMSEP R2 

LL (%) de Jonge et al. (1990) 13  0.19  0.79 
Keller and Dexter (2012) 9  0.13  0.75 
Current PTF 8  0.12  0.79 
vis–NIRSSVM 7  0.10  0.80  

PL (%) de Jonge et al. (1990) 8  0.22  0.36 
Keller and Dexter (2012) 6  0.17  0.57 
Current PTF 6  0.17  0.48 
vis–NIRSSVM 5  0.14  0.64  

PI (%) de Jonge et al. (1990) 7  0.14  0.73 
Keller and Dexter (2012) 9  0.18  0.67 
Current PTF 6  0.12  0.73 
vis–NIRSSVM 7  0.14  0.69 

RMSEP, root mean square error of prediction, SRMSEP, standardized RMSEP. 

Fig. 3. Average visible near-infrared spectra per swelling class.  
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errors and coefficient of determination, resulting in SRMSEP of 0.12, 
0.17, and 0.20 for LL, PL and PI, respectively, thus less accurate than in 
this study. As the authors did not provide the ranges for the validation 
data set separately but for the entire data set only, we estimated the 
ranges from the provided predicted vs measured plots to calculate the 
SRMSEP values. The predictive ability for LL and PI models (SRMSEP of 
0.13 and 0.14, respectively) generated for some Kenyan soils (Waruru 
et al., 2014) was lower for LL and the same for PI as generated by the 
SVM in this study. As no ranges for PL were given it was not possible to 
calculate the SRMSEP for the estimations on Kenyan soils, but the co-
efficient of determination for PL was much lower (0.44) than for LL 
(0.74) and PI (0.73), thus a less robust model than for the two properties 
is expected. A direct comparison, using SRMSEP, with the study by 
Yitagesu et al. (2009) is not possible as the authors did not provide in-
formation on the sample number or ranges of Atterberg limits and PI, 
and listed correlation coefficients only. 

4.5. Comparison with pedotransfer functions 

The prediction of LL, PL, and PI from two existing pedotransfer 
functions (PTFs) and a newly developed PTF based on the calibration 
dataset are presented in Table 3. The selected PTFs included clay, OC or 
OM and sand contents, whereas the new PTF included clay, silt and OC 
contents. These results were compared further with the vis–NIRSSVM 
results (Table 3). 

Among the three PTFs, the newly developed one had the best results 
(RMSEP = 8%; R2 = 0.79) for LL estimation. However, this result was 
similar to the one obtained by Keller and Dexter (2012) PTF 
(RMSEP = 9%). Likewise, Keller and Dexter (2012) PTF had a lower 
error for PL estimation (RMSEP = 6%) than the PTF of de Jonge et al. 
(1990) (8%) and the same error as the newly developed PTF. 

Conversely, the de Jonge et al. (1990) PTF had a higher accuracy 
(RMSEP = 7%) than the Keller and Dexter (2012) PTF (RMSEP = 9%) 
and was similar to the newly developed PTF (RMSEP = 6%) for the 
estimation of PI. 

Gupta et al. (2016) calculated also PTFs for the set of Indian samples 
and including available information on soil texture, pH and OC. They 
obtained SRMSEP of 0.11, 0.16, and 0.18 for LL, PL and PI, respectively 
(Table 1). Thus, a comparable accuracy for LL and PL and a lower ac-
curacy for PI, than obtained by the PTFs used in this study (0.12, 0.17, 
0.12, respectively) (Table 3). 

The results of the best PTFs (newly developed functions) were 
comparable to these of the vis–NIRSSVM models. For the LL and PL es-
timations, the prediction errors were lowest when using spectroscopy 
(RMSEP of 7 and 5%, respectively). Whereas, the prediction error for PI 
was slightly lower when using the PTF to that generated by the 
vis–NIRSSVM model (RMSEP = 7%). 

Additional t-tests of the residuals indicated no significant difference 
between vis–NIRSSVM and the PTFs for LL, PL as well as PI estimations 
(with reported P values of 0.508, 0.790, and 0.072, respectively). 

Gupta et al. (2016) compared also the performance of pedotransfer 
functions to, among others, spectral models. The authors concluded that 
models based on spectral data were better for Atterberg limits than PTFs 
utilizing the information from the basic properties only. However, the 
differences were small and it was not tested whether they were 
significant. 

4.6. Swelling potential classification 

In the final analysis, the Casagrande plasticity chart was used to 
classify the swelling potential of the soils and the percentage of the 
samples classified into the correct swelling class using vis–NIRSSVM and 

Fig. 4. Visible near-infrared spectroscopy calibration results (N = 184) for the Atterberg limits presented as predicted vs. measured for the liquid limit; LL (a, d, g), 
plastic limit; PL (b, e, h), and plasticity index; PI (c, f, I) generated using partial least squares (PLS), artificial neural networks (ANN), and support vector machine 
(SVM) regression techniques. RMSECV is the root mean square error of cross-validation. 
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newly developed PTF estimated LL was calculated and compared 
(Table 4). The values of the reference, vis–NIRSSVM and PTF predicted LL 
were plotted also in the Casagrande plasticity chart including the clas-
sification of swelling classes (Fig. 6). 

The percentage of samples that were classified into the correct class 
for vis–NIRSSVM was the highest for the medium (88%) and high classes 
(67%) and decreased substantially for the low swelling potential class 
(55%). 

The samples classified with the lowest accuracy were soils of some of 
the lowest and the highest LL values representing soils from Croatia, and 
Turkey, respectively (Fig. 6). Turkish soils were discussed previously as 
samples with very different colouration (Fig. 3). The classification of 
swelling potential according to the PTF estimates showed higher accu-
racy for the low class (64%), but lower for the medium and very low for 
the very high class (with only one sample out of five that was classified 
correctly). In turn, the PTF was able to correctly classify all samples 
within the high class (Table 4, Fig. 6). 

In summary, 69 and 76% of the validation data set were correctly 

classified by vis–NIRSSVM and the PTF, respectively. This corresponded 
to a small difference of three samples only (PTF correctly classified 34 
whereas vis–NIRSSVM 31 samples) thus, very comparable results for the 
two approaches. 

5. Conclusions 

In this study, vis–NIRS and PTFs were applied for Atterberg limits 
and PI estimation for a set of soils representing large geographical and 

Fig. 5. Visible near-infrared spectroscopy independent validation (N = 45) for the Atterberg limits presented as predicted vs. measured for the liquid limit; LL (a, d, 
g), plastic limit; PL (b, e, h), and plasticity index; PI (c, f, I) generated using partial least squares (PLS), artificial neural networks (ANN), and support vector machine 
(SVM) regression techniques. RMSEP is the root mean square error of prediction. 

Table 4 
Percentage of the samples classified into the correct swelling class after esti-
mation of liquid limit (LL) using the visible near-infrared spectroscopy and the 
pedotransfer function for the validation set (N = 45).  

Swelling class based 
on LL 

Percent vis–NIRSSVM correctly 
classified 

Percent PTFs correctly 
classified 

Low [11] 55 64 
Medium [16] 88 81 
High [12] 67 100 
Very high [5] 60 20 

Note: In the square brackets is the number of samples classified based on the 
reference method. 

Fig. 6. Distribution of the reference samples (black triangles), the samples 
predicted by the visible near-infrared spectroscopy (grey triangles) and by the 
PTF (opened triangles) in the Casagrande plasticity chart. 
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clay mineralogical diversity. Three types of calibration techniques were 
compared for spectral modelling and included PLS regression, ANN and 
SVM. In general, the three regression techniques had statistically similar 
prediction accuracy. However, based on the R2 and prediction errors, 
the SVM tended to have a better predictive ability for both Atterberg 
limits and PI. Additionally, it was found that PI directly estimated by 
vis–NIRS was similar to that computed from vis–NIRS estimated LL and 
PL. 

Three pedotransfer functions including two available from the 
literature and one newly developed were further utilized and compared. 
The newly developed PTF outperformed the PTF available from the 
literature for LL and PI, and for PL, it had the same prediction error as 
the Keller and Dexter (2012) PTF. 

When comparing the performance of vis–NIRS and the newly 
developed PTFs to predict LL, PL, and PI, as well as for the classification 
of the samples into swelling classes, there were no significant differ-
ences. Thus, taking into account the high variability of investigated 
soils, encompassing wide ranges of soil texture, clay mineralogy and OC 
content, the vis–NIRS models were as reliable as the best PTFs. More-
over, vis–NIRS can provide an alternative method to the estimation of 
several soil properties, which can be simultaneously derived from the 
same spectral measurement. 
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