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Abstract— The contours, one of the most significant human
perceptual features, have a significant impact on point cloud
processing. In urban scenes, contour extraction is quite chal-
lenging due to the enormous number of unstructured and
irregular points (typically greater than 107 points). In this article,
we propose a large-scale 3-D point cloud contour extraction
network (LCE-NET) to generate contours consistent with human
perception of outdoor scenes. To our knowledge, it is the first
time that an end-to-end learning-based framework has been
proposed for contour extraction on point cloud at this scale.
The proposed LCE-Net is essentially a two-phase system. In the
first phase, potential vertexes are detected from the input point
cloud by the vertex detection module; then, in the second phase,
a designed overcomplete line proposal set is generated, and
invalid line segments are further suppressed by the line proposal
discrimination module. The two phases are jointly trained by a
uniform loss function to promote the information interchange,
thus leading to extraction results with satisfied accurate and
false alarm ratings. Since there is hardly any available dataset
with labeled contours for the large-scale outdoor scene, we open-
sourced SemanticLine, the first dataset for large-scale point
clouds with labeled contour information, based on reannotation
of previous mapping-level point cloud dataset semantic3D. The
experimental results demonstrate that LCE-NET can effectively
extract parametric contour lines from large-scale point clouds
of urban scenes. In addition, it outperforms the state-of-the-art
approaches. The code will be open-sourced on GitHub soon.

Index Terms— Contour extraction, point cloud.

I. INTRODUCTION

WITH the rapid development of light detection and
ranging (LiDAR) [1], structure from motion (SfM) [2],

and some other technologies, the acquisition of point clouds

Manuscript received 19 May 2023; revised 2 August 2023; accepted
11 September 2023. Date of publication 15 September 2023; date of current
version 6 October 2023. This work was supported in part by the National
Natural Science Foundation of China under Grant 61971363, in part by
the China Postdoctoral Science Foundation under Grant 2021M690094, and
in part by the FuXiaQuan National Independent Innovation Demonstration
Zone Collaborative Innovation Platform under Grant 3502ZCQXT2021003.
(Corresponding author: Weiquan Liu.)

Yu Zang, Binjie Chen, Yunzhou Xia, Hanyun Guo, Yunuo Yang,
Weiquan Liu, and Cheng Wang are with the Fujian Key Laboratory
of Sensing and Computing for Smart Cities and the Key Laboratory
of Multimedia Trusted Perception and Efficient Computing, Ministry of
Education of China, School of Informatics, Xiamen University, Xia-
men 361005, China (e-mail: zangyu7@126.com; chenbinjie@stu.xmu.edu.cn;
23020221154127@stu.xmu.edu.cn; hyguo@stu.xmu.edu.cn; yangyunuo555@
stu.xmu.edu.cn; wqliu@xmu.edu.cn; cwang@xmu.edu.cn).

Jonathan Li is with the GeoSTARS Laboratory, Department of Geog-
raphy and Environmental Management, University of Waterloo, Waterloo,
ON N2L 3G1, Canada (e-mail: junli@uwaterloo.ca).

Digital Object Identifier 10.1109/TGRS.2023.3315677

has become extremely easy. However, raw point clouds are
inconvenient to use directly due to their irregular and unstruc-
tured format in most applications.

To this end, a number of previous works [3], [4] focus
on point-based feature extraction for point clouds. After
the great success of PointNet [5] as the first point-based
deep learning point cloud processing method, the mainstream
method of point-based point cloud feature extraction gradually
shifted from traditional machine learning methods to deep
learning methods. The point-based learning methods quickly
swept other areas of point cloud processing and the network
structure became more sophisticated and specialized, such
as object completion [6] and place recognition and scene
localization [7].

Contours are widely used in graphics and mapping appli-
cations since they are one of the most essential features of
human and intermediate features of point clouds, but still
challenging to extract, especially for large-scale outdoor point
clouds. As pointed out by Hackel et al. [8], in real point
clouds, contours are almost impossible to extract by low-level
rules because of occlusions and incomplete data. The contours
can briefly describe the main structure of an object, are one
of the important features of an object, and are also the basic
features of an object that humans can directly perceive. In the
field of computer vision, contours are widely used in vehicle
positioning [9], road network extraction [10], 3-D reconstruc-
tion [11], shape matching [12], object recognition [13], and
other applications. Converting 3-D point clouds to contours
can achieve denoising and compression of point cloud data
while retaining the main features of the object. It is an ideal
and widely used intermediate feature.

Although humans can easily “see” contours in point clouds,
it is quite challenge to achieve contour extraction for large-
scale 3-D point clouds. First, the definition of contours is
ambiguous and difficult to formalize. The contours perceived
by humans may appear where there is a sudden change in
surface curvature or it may be related to factors such as
the length of the line structure and local direction changes.
Second, due to the acquisition method of the 3-D point cloud
itself, the point cloud data have the characteristics of irreg-
ularity, incomplete objects, and uneven density. Handcrafted
features [14], [15] were used most commonly in the early
days of 3-D point cloud contour extraction, but these methods
only extracted line-like features rather than actual contours.
As a result of such predefined rules, they have a limited ability
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Fig. 1. Given a 3-D point cloud, our proposed LCE-NET detects vertices
first. Then, line proposals are generated by connecting every two vertices.
The final output contours are produced by suppressing invalid line proposals.
(a) Input point cloud. (b) Vertices. (c) Line proposals. (d) Output contours.

to generalize. Recently, Hackel et al. [8] employed machine
learning to extract real contours using a learning-based method
for the first time. Inspired by the success of deep neural
networks in point clouds feature extraction [5], many recent
approaches [16], [17] applied deep learning to contour extrac-
tion. However, these deep learning-based approaches mainly
focus on object-level point clouds, which feed the entire point
clouds into the network directly, resulting in a significant
amount of memory consumption. Since outdoor point clouds
typically consist of greater than 107 points and the scene is
more complex. It can hardly obtain a good detection accuracy
by directly processing the complete point cloud, and it is easy
to generate a large number of false positive contours. Hence,
it is not feasible for previous deep learning-based approaches
to effectively handle them.

In this article, we present an end-to-end deep learning-
based large-scale 3-D point cloud contour extraction network
(LCE-NET). Our framework avoids feeding the entire point
cloud into the deep learning network for processing large-scale
point clouds. In our LCE-NET, contour extraction is treated as
a two-stage proposal and discrimination process. In the first
stage, the input points are divided into small voxels. Then,
the network predicts the potential vertex in each voxel. In the
second stage, the network produces the final output by forming
line segments from every two vertices and suppressing invalid
line segments. The pipeline of our proposed LCE-NET is
shown in Fig. 1.

The main contribution of this article can be described as
follows.

1) We present a novel end-to-end contour extraction
framework, which is the first deep learning-based
method for large-scale point cloud contour extraction.

Our framework avoids inputting the complete point
cloud scene into the neural network directly and real-
izes the contour extraction for large-scale point clouds
through a deep learning framework.

2) We propose a two-stage proposal and a discrimination
scheme, to make our framework able to generate accu-
rate parametric contour lines. The proposed method can
extract concise parametric contours in line with human
perception from point clouds of different scenes and
different degrees of sparsity.

3) The experimental results on semantic3D.net show that
our LCE-NET can extract contours from large-scale
point clouds effectively and outperforms the state-of-
the-art methods with higher generalization and better
performance.

II. RELATED WORKS

Contour extraction is an important task that has been
studied for a long time, especially for 2-D images. Tradi-
tional approaches mostly rely on priors for contour extraction
of images [18], [19], [20], [21], [22]. Recently, some
learning-based methods provided more precise results [23],
[24], [25], [26], [27]. Compared with 2-D images, contour
extraction on 3-D point clouds is more complicated, and
most of these works can be divided into three categories:
image-based methods, plane-based methods, and point-based
methods.

A. Image-Based Methods
The image-based methods make full use of the relatively

mature 2-D image edge extraction method. After the edge
is extracted in two dimensions, it is backprojected back
to 3-D to obtain the 3-D edge. Taylor and Kriegman [28]
defined the objective function according to the total square
distance of the projection of the edge line segment in the
image plane to the reconstructed line segment, extracted the
line structure on the 2-D image by optimizing the objective
function, and reconstructed the 3-D wireframe. Jain et al. [29]
obtained better wireframe detection results than local geomet-
ric constraints by constraining the global topological features
of the wireframe. At the same time, by not requiring clear
line segment correspondence in the 3-D reconstruction stage,
it was avoided due to other views. Line segments are missing
due to occlusion. Ceylan et al. [11] proposed a method for
3-D reconstruction of urban buildings based on symmetric
priors, performing edge detection on 2-D images and using
multiview stereo matching on 2-D line segments to obtain 3-D
wireframes. Based on the 3-D point cloud data, Lin et al. [15]
converted the point cloud into a set of 2-D grayscale images
and then used the LSD algorithm [30] to extract the wireframe
on the 2-D image and backproject the wireframe back to the
point cloud and after a series of processing to generate the final
3-D wireframe. Lu et al. [31] segmented the 3-D point cloud
into planes through region growing and region merging, then
obtained the 2-D contour line segment through 2-D contour
extraction and least squares fitting and backprojected to 3-D,
and finally removed it through postprocessing redundant line
segments and merge adjacent line segments to get the final 3-D
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contour line segment. Meng et al. [32] used a deep learning
network to extract 2-D line segments and planes from a series
of RGBD images and then generated 3-D wireframes based
on the consistency of 2-D and 3-D as well as line segments
and planes.

B. Plane-Based Methods

The plane-based methods regard the contour segment as the
intersection of two 3-D planes and perform 3-D edge extrac-
tion by dividing the 3-D model into a set of facets and finding
the intersection. Ohtake et al. [33] extracted ridge-valley lines
defined by the first- and second-order curvatures on dense
triangular mesh surfaces and realized high-order surface
derivatives by combining finite differences and multilevel
implicit surface fitting methods approximate calculation. Sam-
path and Shan [34] divided the point cloud into plane points
and nonplane points through feature analysis, calculated the
surface normal, then clustered them into planes according to
the surface normal of the plane points, and finally obtained the
contour line segment according to the plane intersection line.
Borges et al. [9] calculated the eigenvalues of the covariance
matrix in the local point cloud to determine the local shape to
extract the facets, merged the planes according to the surface
normal of the facets, and finally obtained the 3-D by detecting
the intersection of the planes edge segment. In addition, the
modified method also extracts the edges that are not on the
plane intersection through the discontinuity of the point cloud
depth. Moghadam et al. [35] also adopted a similar method,
calculating the local surface normal through the characteristic
analysis of the second-order moment matrix, and merging the
planes through the region growing algorithm, and finally calcu-
lating the intersection line of the plane containing a sufficient
number of points to get 3-D edges. Lin et al. [36] first roughly
divided the point cloud into facets through region growth, then
further determined the boundaries of the facets through local
k-means clustering, and finally detected the boundary points
on the facets and extracted line segments. Xu and Stilla [37]
used supervoxel structure and global graph-based optimization
to segment the point cloud into facets and then extracted the
boundary points of the facets through the α-shape algorithm
and clustered them into line segments.

C. Point-Based Methods

Point-based methods detect boundary points in point clouds
directly and then fit for the 3-D line segment. Weber et al. [14]
first computed a Gauss map clustering on local neighborhoods
and then applied a more precise iterative selection to the
remaining feature candidates. Ioannou et al. [38] proposed
a multiscale operator called difference of normals (DoN).
Bazazian et al. [39] detected edge features by analyzing the
eigenvalues of the covariance matrix that each point’s k-
nearest neighbors defined. Himeur et al. [40] used a scale
space matrix to encode local geometric features around each
point and detect edge points through a lightweight neural
network.

The aforementioned 3-D contour extraction methods are
mostly feature-based, but as mentioned by Hackel et al. [8],

the higher complexity of point clouds makes it infeasible to
design and tune such methods. To this end, Hackel et al. [8]
proposed a learning-based 3-D contour extraction approach,
which first computed pointwise contour scores with a binary
classifier, then linked points with high contour score into a
graph of candidate contours, and finally selected an opti-
mal subset of those candidates via Markov random field.
Yu et al. [16] presented the first deep learning-based edge-
aware technique. Zhang et al. [41] refined the extracted con-
tours via a generative adversarial network. Meng et al. [32]
presented a multimodal line segment classification technique
for extracting 3-D wireframes. Wang et al. [17] applied a deep
neural network to extract parameter inference of feature edges
over 3-D point clouds.

III. METHOD

In this article, we propose a deep learning-based 3-D point
cloud contour extraction framework, LCE-NET, which can
directly extract contour from raw large-scale outdoor point
clouds. As shown in Fig. 2, our network mainly consists of
two modules, vertex detection module (see Section III-A1) and
line proposal discrimination module (see Section III-A2).

A. Network Architecture

Since all point clouds of outdoor scenes are usually greater
than 10 million points, most networks are not able to pro-
cess these points on such a significant scale. Therefore, the
LCE-NET is able to extract contours from large point clouds
by avoiding directly feeding them into the network. More
specifically, our LCE-NET divides the points in a point cloud
into small voxels. Next, the vertex detection module detects the
vertices in each voxel. Finally, line proposals formed by every
two vertices are filtered using the line proposal discrimination
module to generate the final output.

1) Vertex Detection Module: Our vertex detection module
is designed to accurately detect potential vertex in each voxel.
Each voxel of the input point clouds is fed separately into
the vertex detection module after voxelization. As shown in
Fig. 2(b), the vertex detection module has two branches that
have a similar architecture, and the upper branch predicts the
probability that the voxel contains a vertex, while the lower
branch predicts the position of the vertex in the voxel.

A relatively complex network architecture can be used to
improve prediction accuracy without taking too long as the
large-scale point clouds are already divided into small vox-
els. Vertex detection is accomplished using feature extraction
encoder and decoder. The feature extraction network structure
includes a four-layer EdgeConv [42] module for extracting
local structural features of voxels, and the output feature
vectors of the four-layer EdgeConv [42] module are aggre-
gated to generate feature vectors of voxels after multilayer
perceptron and pooling. The voxel feature vectors predicted
by the two branches output voxel classification predictions
and vertex position predictions through different multilayer
perceptrons. Among them, the voxel classification prediction
outputs whether the voxel contains vertices in a binary classi-
fication manner, and the vertex position prediction outputs the
coordinates of the vertices in the voxel.
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Fig. 2. Network architecture. In the first stage, the input points are divided into small voxels. Then, the network predicts the potential vertex in each voxel
using the vertex detection module. In the second stage, the network produces the final output by forming line segments from every two vertices and suppressing
invalid line segments using the line proposal discrimination module. (a) Framework. (b) Vertex detection module. (c) Line proposal discrimination module.

Fig. 3. Ground-truth contour after voxelization. (a)–(c) Ground-truth contour,
ground-truth contour after voxelization, and the comparison between them,
respectively. The red lines indicate the ground-truth contour and the blue
lines indicate the ground-truth contour after voxelization.

Here, the vertex detection in the first stage contains an
assumption that each voxel contains only one vertex. Since
the vertex prediction is used to generate subsequent candidate
contour line segments, if the size of the voxel is small enough,
the distance between multiple vertices in the voxel is also small
enough, which is regarded as the accuracy of a vertex to the
subsequently generated contour line segment. The impact is
negligible, as shown in Fig. 3. Also, if the voxel size is too
small, it will also lead to too few point clouds in the voxel,
and the amount of information contained is not enough for
the network to extract features and accurately detect vertices.
Through extensive experiments, the final voxel side length is
determined to be 0.5 m.

2) Line Proposal Discrimination Module: After detecting
the vertices of the point clouds, we connect every two vertices
to form line proposals (see Section III-A4) and suppress
invalid line proposals through the line proposal discrimination
module. The line proposal contains two vertices and all these
neighbors. The line proposal discrimination module predicts
the likelihood that a line proposal is valid or invalid by
splitting each proposal into segments and feeding them into it
separately.

As shown in Fig. 2(c), we treat line proposal discrimination
as a binary classification task. The input of the module is
sampled neighbors of each segment of each line proposal.
Similar to the vertex detection module, the feature extraction
structure of the network includes a four-layer EdgeConv [42]
module for extracting features of different scales, where m
represents the number of unit line segments split by the line
proposal and n represents the size of the neighborhood of
the unit line segments. After aggregation of the four sets
of feature vectors, the feature vector of the line proposal
segment is generated through the multilayer perceptron and
the pooling layer. The feature vector of the line proposal
segment is generated by the multilayer perceptron to predict
the contour line segment of the binary classification, and the
final module uses the average pooling layer to generate the
final line proposal segment discriminant prediction. The set

Authorized licensed use limited to: Jonathan Li. Downloaded on October 08,2023 at 00:37:38 UTC from IEEE Xplore.  Restrictions apply. 



ZANG et al.: LCE-NET: CONTOUR EXTRACTION FOR LARGE-SCALE 3-D POINT CLOUDS 5704413

of all line proposals judged to be true is the point cloud
parameterized contour prediction output by our method.

3) Voxelization: Voxelization is performed before the input
point clouds are fed into the vertex detection module, allowing
us to employ a more complex network architecture to obtain
predicted vertices accurately. Using too small voxels will result
in the network being unable to predict vertices correctly, while
using too large voxels will result in multiple potential vertices
within one voxel, affecting contour extraction accuracy. After
extensive experiments, we divide point clouds into voxels with
a side length of 0.5 m.

4) Line Proposal Generation: As mentioned before, every
two vertices generate a line proposal. In this context, a line
proposal refers to a set of points that includes the two vertices
of the line and the points nearby. More formally, the definition
of line proposal is shown as follows:

LPi, j =

p

∣∣∣∣∣∣∣∣
∥p − p∗∥

2
≤ r

p ∈ P
p∗

= kpi + (1 − k)p j

k ∈ [0, 1]

 (1)

where P is the input point cloud and pi and p j are the two
vertices that form the line proposal.

B. Loss Functions

Our LCE-NET is trained by two different loss functions.
1) Vertex Detection Module: There are two branches in the

vertex detection module. The first branch predicts the probabil-
ity that a voxel contains a vertex. We employ a cross-entropy
loss in this branch since it is a binary classification task. Our
second branch minimizes the distance between the predicted
vertex and the actual vertex by using the mean squared error
loss. The loss function of the vertex detection module is
defined as follows:

Lvertex =
1
N

N∑
i=1

(
CE

(
Vi , V̂i

)
+ V̂i mse

(
Pi , P̂i

))
(2)

where N represents the number of voxels, Vi and V̂i are the
predicted probability and ground truth of the i th voxel contains
a vertex, Pi and P̂i are the predicted and ground truth of the
coordinate of the vertex in the i th voxel, respectively, and
CE(·) and mse(·) are the cross-entropy loss and mean squared
error loss, respectively.

2) Line Proposal Discrimination Module: In contrast to
the previous module, line proposal discrimination can also
be regarded as a binary classification task. However, as all
line proposals are generated by connecting every two vertices
directly, the number of negative samples is much larger than
the number of positive samples, so it cannot be used as a loss
function based on cross entropy. Here, we use a focal loss [43],
defined as follows:

L line =
1
M

M∑
i=1

FL
(

Di , D̂i
)

(3)

where M represents the number of line proposals, Di and D̂i

are the predicted probability and ground truth of the i th line
proposal, respectively, and FL(·) is focal loss.

Fig. 4. Evaluation of the vertex detection module. From left to right are the
input point clouds, ground truth, and our results for each set. (a), (d), (g), (j),
and (m) Input point clouds. (b), (e), (h), (k), and (n) Ground truth. (c), (f),
(i), (l), and (o) Our results. The red points indicate the correct vertex and the
blue points indicate the wrong ones.

Thus, the joint loss function of the proposed LCE-NET is
defined as follows:

L = Lvertex + L line. (4)

IV. EXPERIMENTS

To evaluate the proposed framework, we conduct exper-
iments on semantic3D.net [47] with contour ground-truth
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TABLE I
EVALUATION OF THE VERTEX DETECTION MODULE ON SEMANTIC3D WITH CONTOUR GROUND-TRUTH REANNOTATED

TABLE II

EVALUATION OF THE KEYPOINT DETECTION NETWORK USIP [44] ON SEMANTIC3D WITH CONTOUR GROUND-TRUTH REANNOTATED

Fig. 5. Evaluation of the keypoint detection network USIP [44]. (a) Ground truth points of point cloud bildstein_station1_0, (b) keypoints detected by
USIP [44] of point cloud bildstein_station1_0, (c) ground truth points of point cloud bildstein_station3_0, (d) keypoints detected by USIP [44] of point cloud
bildstein_station3_0. The red points indicate the ground truth points and the keypoints detected by USIP [44].

reannotation. In the first stage, we conduct an independent
evaluation of each module of the proposed LCE-NET. Fur-
thermore, we compare our approach not only with traditional
methods but also with learning-based methods in a separate
set of experiments to comprehensively assess its performance.

A. Dataset and Implementation Details

1) Dataset: We evaluate our LCE-NET on seman-
tic3D.net [47] with contour ground-truth reannotated, which
contains 40 large-scale outdoor scene point clouds. The con-
tour ground truth was labeled with 3-D lines represented as
parameters, and we extract the endpoints of each 3-D line as
the vertex ground truth for the training and evaluation of the
vertex detection module. The training phase of the study was
conducted using 28 out of the 40 available point clouds. The
remaining 12 point clouds were reserved for the evaluation
phase. It is important to note that this approach was used in
all of our experiments conducted during this article.

2) Implementation Details: In this work, we use PyTorch
to build our LCE-NET on a Ubuntu PC with two Intel Xeon
Silver 4216 CPUs and one Nvidia GeForce RTX 3090 GPU.
As for the network and training settings, the Adam optimizer

with initial learning rate of 0.0001 is used for training, and
the learning rate is reduced by half every 20 epochs. The total
training epochs are set to 200.

B. Analyses of the Network Architecture

We treat contour extraction as a two-stage proposal and
discrimination task. Our proposed model LCE-NET comprises
two distinct modules that together accomplish the detection of
vertices and the differentiation of line proposals. This section
includes five sets of experiments that aim to fully evaluate
the efficacy, necessity, intrinsic connectivity, and robustness
of these two modules within the LCE-NET framework.

1) Vertex Detection Module: The results of the first group
of experiments evaluating the vertex detection module are
shown in Fig. 4. The first column of Fig. 4 is the input
point cloud, and the second column is the ground truth.
The vertex detection module produces the results that are
presented in the final column. The correct vertex is denoted
by red points, while the incorrect one is denoted by blue
points. It can be seen from Fig. 4(c) and (i) that some false
vertices appear in the detection results, but this does not affect
the subsequent contour extraction. The module designed for
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proposing lines can efficiently mitigate the presence of line
proposals stemming from inaccurate vertices, thereby reducing
discrimination against false vertices.

For the quantitative measurement of the vertex detection
module, we employ Precision and Recall to evaluate the
accuracy of voxel classification. Precision is a performance
metric used in classification tasks, particularly in binary clas-
sification, to measure the accuracy of positive predictions
made by a model. It quantifies the proportion of correctly
predicted positive instances out of all instances that the model
predicted as positive. Recall is a performance metric used in
classification tasks to measure a model’s ability to correctly
identify all relevant instances of the positive class. In other
words, it quantifies the proportion of true positive instances
that the model correctly predicted out of all actual positive
instances. The metrics are defined as

Precision =
TP

TP + FP

Recall =
TP

TP + FN
. (5)

Also, for all voxels that contain a vertex, we also calculate the
mean distance mDis between the ground true and predicted
vertices, in meters. Table I shows the results of experiments
on the vertex detection module. The first five lines in Table I
correspond to the five point clouds shown in Fig. 4, and
the last line is the evaluation of all 12 test point clouds.
Based on the results of the experiments, it is evident that
the 0.8754 recall metrics of the test point clouds exhibit
satisfactory performance. The objective is to identify and
detect as many vertices as possible, as this would facilitate
the generation of line proposals. In turn, this would enable
subsequent modules to receive inputs comprising nearly all
the contour segments. In addition, a mean distance of less than
0.15 also ensures the accuracy of the position of line proposals.

We further use the deep learning-based keypoint detection
network USIP [44] to replace the vertex detection module for
contour point detection. Table II shows the quantitative results
of experiments on USIP [44]. Compared to the vertex detection
module, USIP [44] performs extremely poorly, mainly because
the points detected by USIP [44] with well-defined positions
that are highly repeatable on 3-D point clouds under arbitrary
SE(3) transformations are actually not contour endpoints. This
problem is magnified in large-scale 3-D point clouds, where
the detected keypoints are more spread out on the surface as
well as in the middle of the contour, rather than appearing
exactly at the endpoint locations, as shown in Fig. 5.

2) Line Proposal Discrimination Module: To evaluate the
performance of the line proposal discrimination module,
we take the vertex ground truth as input to generate line
proposals for training and evaluation. The results are shown in
Fig. 6. The first column of Fig. 6 is the input point cloud, and
the second column is the ground truth. The outputs of the line
proposal discrimination module are shown in the last column
in which the correct vertex is denoted by red lines, while the
incorrect one is denoted by blue lines.

Table III shows the quantitative results of experiments on
the line proposal discrimination module. We measure the

Fig. 6. Evaluation of the line proposal discrimination module. From left to
right are the input point clouds, ground truth, and our results for each set.
(a), (d), (g), (j), and (m) Input point clouds. (b), (e), (h), (k), and (n) Ground
truth. (c), (f), (i), (l), and (o) Our results. The red lines indicate the correct
ones and the blue lines indicate the wrong ones.

classification accuracy of line proposals using mean accuracy
(mAcc) and mean IoU (intersection over union) (mIoU). mAcc
is a common metric used to evaluate the performance of
classification models, it measures the proportion of correctly
classified instances or data points in a classification problem.
mIoU is a metric commonly used to evaluate the performance
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TABLE III
EVALUATION OF THE LINE PROPOSAL DISCRIMINATION MODULE ON SEMANTIC3D WITH CONTOUR GROUND-TRUTH REANNOTATED

TABLE IV
INTRINSIC CONNECTION BETWEEN TWO MODULES ON SEMANTIC3D WITH CONTOUR GROUND-TRUTH REANNOTATED

TABLE V
ROBUSTNESS ANALYSIS OF LCE-NET ON SEMANTIC3D WITH CONTOUR GROUND-TRUTH REANNOTATED

of computer vision models, particularly in tasks like image
segmentation and object detection. It measures the overlap
between the predicted and ground truth regions in an image.
mIoU is a value between 0 and 1, with higher values indicating
better model performance. The metrics are defined as

mAcc =
TP + TN

TP + FP + TN + FN

mIoU =
TP

TP + FP + FN
. (6)

The first five lines in Table III correspond to the five point
clouds shown in Fig. 6, and the last line is the evaluation of
all 12 test point clouds. Based on the accuracy metric, our line
proposal discrimination module achieves 0.9987 in mAcc and
0.6963 in mIoU, which can efficiently eliminate a significant
number of noncontour line segments. This assertion is further
supported by the visualization results, which demonstrates that
only a small number of false contours are retained.

3) Intrinsic Connection Between Two Modules: LCE-NET
is a framework consisting of two modules. Theoretically,
if all voxels are considered as contour vertices in the first
stage, LCE-NET only needs the line proposal discrimination
module. To validate the necessity of the vertex detection
module and explore how its performance affects the final
results of LCE-NET, additional experiments were done and
the quantitative results are shown in Table IV.

We use different checkpoints to make the vertex detection
module differ in metrics and choose one point cloud from the
test set for the experiment to better demonstrate the impact

TABLE VI
COMPARISONS OF LCE-NET WITH PREVIOUS MODELS ON SEMANTIC3D

WITH CONTOUR GROUND-TRUTH REANNOTATED

of the vertex detection module metrics on the line proposal
discrimination module. The first three lines in Table IV illus-
trate that Recall is the main factor affecting the performance
of LCE-NET after Precision has reached a certain level, due
to the fact that the line proposals generated by FP point are
suppressed by the line proposal discrimination module. The
second line and the fourth line in Table IV illustrate that
even though Recall is high, the performance of LCE-NET
still deteriorates as Precision decreases, which suggests that
the vertex detection module actually shares a large portion of
the discriminative pressure of the line proposal discrimination
module and is necessary for LCE-NET. We recommend that
the Precision should be at least around 0.8.

4) Robustness Analysis of LCE-NET: To analyze the robust-
ness of LCE-NET, we use the random sampling method to
retain 100%, 70%, 40%, and 10% points of the test set point
cloud and then input them into LCE-NET for the experiment.
Table V shows the performance of LCE-NET under different
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Fig. 7. Comparisons to previous works on point cloud bildstein_station3_0. (a) Ground truth. (b) LCE-NET. (c) Lin et al. [36]. (d) Lu et al. [31]. (e) VCM
[45]. (f) EC-Net [16].

input point cloud densities. Basically, the performance of
LCE-NET shows a linear decreasing trend as the density of
the point cloud decreases, which is mainly due to the fact
that the decrease in the number of points reduces the local
neighborhood information of the point cloud, thus increasing
the difficulty of the network’s discrimination. We recommend
that the density of the input point cloud should not be less
than 70% of the original point cloud.

C. Comparing With Other Methods

Previous learning-based point cloud contour extraction
methods, such as PIE-NET [17], are mainly focused on
small-scale point clouds. Thus, it is nearly impossible
for those methods to deal with large-scale point clouds
with more than 107 points. In this section, we compare
our LCE-NET with state-of-the-art feature-based methods,
VCM [45], Lin et al. [36], and Lu et al. [31], and learning-
based methods, EC-Net [16] and PIE-NET [17]. In addition,
we also conduct experiments on RandLA-Net [46] to demon-
strate the performance of semantic segmentation network on
this task.

We train our LCE-NET and other learning-based methods
on the same 28 point clouds and the other 12 point clouds are
used for evaluation. Furthermore, we compute VCM [45] for
each point with 0.2 offset radius and 0.1 convolution radius,
which are the same parameters used by Wang et al. [17]. For
the experiments on Lin et al.’s [36] and Lu et al.’s [31]
methods, we use the default parameters provided by them.
As for RandLA-Net [46], we treat contour extraction as
a semantic segmentation task containing only two classes,

contour and noncontour points, and then use the same dataset
for training.

To enable quantitative comparison, we adopted a sampling
strategy for determining the ground-truth contour points within
a 5-cm radius of each contour line segment, as an integral
part of our dataset. In addition, for evaluating the precision
and recall of line segments, we also implemented a sampling
method, which captures all points within a 5-cm proximity of
each segment.

Table VI shows the quantitative results of the comparison.
Here, we use the metrics commonly used in other contour
extraction methods [17]. Specifically, the metrics are defined as

Precision =
TP

TP + FP

Recall =
TP

TP + FN

mIoU =
TP

TP + FP + FN
. (7)

It can be seen that LCE-NET outperforms other methods in
all evaluation metrics. Here, we list the results of RandLA-Net
[46] when treating contour extraction as a point cloud semantic
segmentation task. From the results, RandLA-Net [46] has an
extremely low recall value, indicating that there are a large
number of contours that cannot be detected. RandLA-Net [46]
is a network designed for point cloud semantic segmentation
tasks. The data features of the point cloud contour extraction
dataset we use are quite different from the semantic segmen-
tation tasks. Such a comparison is unfair to RandLA-Net [46].
To adapt to large-scale point clouds (greater than 107 points),
semantic segmentation networks are commonly designed with
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Fig. 8. Comparisons to previous works on point cloud bildstein_station5_1. (a) Point cloud. (b) LCE-NET. (c) Lin et al. [36]. (d) Lu et al. [31]. (e) VCM
[45]. (f) EC-Net [16].

a special downsampling strategy, which is able to retain the
effective semantic features in the point cloud neighborhood
after multiple downsampling but inevitably destroys the origi-
nal geometric structure of the point cloud. Unlike the semantic
segmentation task, the class of points will change frequently
over a very small region of the point cloud in the contour
extraction task, which makes the features extracted by the
semantic segmentation methods unable to be adapted so that
contour extraction cannot simply be achieved using point cloud
semantic segmentation networks.

The visualization results are shown in Figs. 7–10. The first
column is the input point clouds. The remaining columns show
the results of our approach, Lin et al. [36], Lu et al. [31],
VCM [45], and EC-Net [16].

As we can see from Fig. 7(c), some false line segments
appear on curved walls. Lin et al. [36] segmented point cloud
into facets, resulting in their method not getting good results
on the curved surface. Fig. 8(c) also shows similar results.
When the structure of the wall is relatively complex, the
plane-based method will have very obvious false contours.
In the scene in Fig. 9(c), the density of the point cloud
gradually decreases from right to left. Since Lin et al.’s [36]
method is feature-based, it is difficult to adapt to different

densities without tuning the parameters. Therefore, it can be
seen from Fig. 9(c) that the contours of the point cloud on the
left with low density cannot be detected. The top of Fig. 10(c)
is also the case where the point cloud density is not uniform.
Lin et al.’s [36] method also has the same problem that the
contour is not detected.

As can be seen from Fig. 7(d), Lu et al.’s [31] method
performs slightly better than Fig. 7(c) on curved walls, but
still significantly worse than Fig. 7(b) and (e). Because
Lu et al. [31] needed to project the point cloud to a 2-D
plane for contour extraction, it still cannot achieve good
performance on curved surfaces. It can be seen in Fig. 8(d) that
Lu et al. [31] tended to generate too many contours, which
leads to multiple line segments appearing in a single contour.
On the left of Fig. 9(d), although it is located on a flat and
regular surface, Lu et al.’s method [31] has not completely
detected all the contours. This shows that the density of the
point cloud has a great influence on Lu et al.’s method [31].
The results in Fig. 10(d) also well verify this conclusion.

The performance of the VCM [45] in Fig. 7(e) is acceptable,
with only a few false contours appearing in a few places.
However, in Fig. 8(e), some less dense areas appear on the
right side of the point cloud, and VCM [45] starts to have a
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Fig. 9. Comparisons to previous works on point cloud marketplacefeldkirch_station4_2. (a) Point Cloud. (b) LCE-NET. (c) Lin et al. [36]. (d) Lu et al. [31].
(e) VCM [45]. (f) EC-Net [16].

Fig. 10. Comparisons to previous works on point cloud stgallencathedral_station3_9. (a) Point Cloud. (b) LCE-NET. (c) Lin et al. [36]. (d) Lu et al. [31].
(e) VCM [45]. (f) EC-Net [16].

lot of false contours. The results in Fig. 9(e) further prove this
situation, and VCM [45] has the most false contours of all
methods.

EC-Net [16], as a learning-based method, significantly
outperforms other feature-based methods in the results in
Fig. 7(f). However, in Fig. 8(f), EC-Net [16] also has some
false contour points in the top left of the result. In addition,
on the right side of the result, where the point cloud density
is low, a large number of edges have not been successfully
extracted. Such performance is significantly worse than the
proposed method. In the scene in Fig. 9(f), the density of the
point cloud is low and not uniform. EC-Net [16] performed
poorly and could barely extract contours. Fig. 10(f) also shows
almost the same situation, which shows that the generalization
performance of EC-Net [16] is poor when the point cloud
density changes.

Overall, it is feasible for feature-based techniques to gen-
erate inaccurate outlines when the density of the point clouds
they operate on is not uniform. Conversely, our approach based

on machine learning can handle point clouds with varying
densities effectively without requiring parameter adjustments.
Lin et al. [36] faced challenges in obtaining satisfactory out-
comes on intricate walls and curved surfaces with complex
architectures. Lu et al.’s method [31] also performs poorly on
curved surfaces and tends to generate multiple line segments
on a single contour. VCM [45] can detect suitable contours
when the parameter settings are appropriate and the density
of the point cloud does not change much, but it performs the
worst on the point cloud with uneven density. EC-Net [16],
as a learning-based method, exhibits better performance than
feature-based methods but falls short of our method in terms
of generalization. Overall, the LCE-NET exhibits the most
optimal results for contour detection, with only a limited
number of occurrences of false contours. The incorporation
of a learning-based method within LCE-NET enables the
identification of contours that align with human perception
and can effectively adjust to point clouds featuring varying
densities.
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V. CONCLUSION

This article proposes an LCE-NET, which is the first end-
to-end deep learning-based method to extract contours from
large-scale point clouds. Based on a two-stage network, our
LCE-NET is capable of producing accurate parameterized
contour predictions. Several experiments have shown that
the proposed method outperforms state-of-the-art methods in
terms of generalization and performance when the density
of the point clouds is uneven. Besides, we open-sourced
SemanticLine, the first dataset for large-scale point clouds with
labeled contours, based on reannotation of semantic3D.
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