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Abstract

This paper relates to the technique of integrating a function in a purely transcendental regular ele-
mentary Liouville extension by prescribing degree bounds for the transcendentals and then solving linear
systems over the constants. The problem of finding such bounds explicitly remains yet to be solved due to
the so-called third possibilities in the estimates for the degrees given in R. Risch’s original algorithm.

We prove that in the basis case in which we have only exponentials of rational functions, the bounds
arising from the third possibilities are again degree bounds of the inputs. This result provides an algorithm
for solving the differential equation y′+f ′y = g in y where f , g and y are rational functions over an arbitrary
constant field. This new algorithm can be regarded as a direct generalization of the algorithm by E. Horowitz
for computing the rational part of the integral of a rational function (i.e. f ′ = 0), though its correctness
proof is quite different.

1. Introduction

The problem of finding an elementary integral of a function in a regular elementary Liouville
extension, that is a function composed recursively by the four basic arithmetic operations
and applications of logarithms and exponentials, but not algebraics, ultimately leads to
solving the differential equation y′ + f ′y = g in y, where f , g and y are elements in the
field of the integrand itself. (cf. Risch [9]; for further motivation, see also Rosenlicht [5,
p. 160]). It is at this stage of the decision procedure at which the size of the answer can
become unproportionally large compared to the integrand. An example, stated by several
authors, is

∫

exp(x+ 100 log x) dx, the closed form of which is a polynomial with 101 terms
in x times exp(x). This blow-up is accounted for in Risch’s original proof by the so-called
third possibilities in the estimates for the degrees of the answer. However, these bounds
can only be calculated if one has, in addition to just performing arithmetic in the constant
field C of the integrand including testing for equality to 0, some specialized routines for C.
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Risch’s original algorithm requires polynomial factorization over the constant field as well as
testing for integrality, but it has been shown by M. Rothstein [7, 8] that the computation of
integral roots of polynomials over C is sufficient.

It is the subject of the so-called parallel Risch algorithm to compute these bounds with-
out eliminating the exponentials or logarithms in succession (cf. Norman and Moore [4]).
Unfortunately, no complete algorithm is known though progress has been made in special
cases, e.g. by Davenport [1] who focuses on logarithmic extensions. In this note we will prove
that in the basis case the third possibilities for the degree estimates of y in y′ + f ′y = g,
f, g, y ∈ C(x), if they arise, have also bounds expressible in the degrees in f and g. An im-
mediate consequence of this result is, that for size blow-up to occur the nested logarithm in
the previous example is essential. It also eliminates the need for the special purpose routines
for C. The result may explain why the heuristic bounds (cf. Fitch [2]) appear so robust, in
practice.

Another interpretation of our result is possible. E. Horowitz [3] has given an algorithm
for finding the rational part of a rational function integral by solving a linear system without
performing the squarefree factorization of the integrands denominator. Our result leads to
an equivalent algorithm which by setting f ′ = 0, has Horowitz’ approach as a special case.

Our paper is arranged in the following way. Section 2 introduces some notation and
establishes preliminary facts needed for the proof. Section 3 contains the formulation and
proof of the main result as well as links this result to Horowitz’ algorithm.

2. Notation and Preliminary Results

The ring C[x] of polynomials with coefficients in the field C becomes a differential ring with
derivation ′ if we prescribe that c′ = 0 for any c ∈ C and x′ = 1. Its field of quotients,
C(x), is of course the field of rational functions over C. We always assume that C is a field
of characteristic 0. By ldcf (f) we denote the leading coefficient of a polynomial f ∈ C[x]
and we call f monic if ldcf (f) = 1. As is well known, every polynomial q ∈ C[x] can be
decomposed by GCD computations into a product q1q

2
2 · · · q

r
r of squarefree polynomials qi

with GCD (qi, qj) = 1 for i 6= j. This squarefree decomposition is also unique up to a scalar
factor in C. Furthermore, every rational function p/q, p, q ∈ C[x], q monic, can be uniquely
expanded into partial fractions with respect to the squarefree decomposition of q, viz.

p

q
= p0 +

r
∑

i=1

i
∑

j=1

pij

qji
, p0 , pij ∈ C[x] , deg(pij) < deg(qi) .

The following lemma will be applied in various places of our argument.

Lemma 1: Let u, v ∈ C[x], GCD (u, v) = 1 and let (u/v)′ = p/q, p, q ∈ C[x], GCD (p, q) = 1.
Assume that w ∈ C[x] is squarefree such that w divides q. Then w divides v and if r is the
multiplicity of w in v, wr+1 must divide q.

Proof: Since
(u

v

)

′

=
u′v − uv′

v2
=

p

q
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it is clear that w must divide v. Assume now that v = wrŵ with GCD (w, ŵ) = 1. We
show that wr does not divide u′v − uv′. Suppose the contrary. Since wr divides u′v and
GCD (w, u) = 1, wr then would have to divide v′ = rwr−1w′ŵ + wrŵ′, hence w needed to
divide w′ŵ. But this is impossible since w is squarefree. Therefore wr+1 must remain in the
reduced denominator of (u/v)′. ♦

This very elementary lemma provides us with quite a powerful tool. To demonstrate
this, consider the rational integral

∫

p(x)

q(x)
dx , p, q ∈ C[x] , deg(p) < deg(q) .

Set q̄ = GCD(q, q′) and q∗ = q/q̄, i.e. q∗ is the largest squarefree factor of q. We can show
that there exist unique polynomials g, h ∈ C[x] such that

∫

p(x)

q(x)
dx =

g(x)

q̄(x)
+

∫

h(x)

q∗(x)
dx , deg(g) < deg(q̄) ,

deg(h) < deg(q∗) . (2.1)

For, differentiating (2.1) and multiplying by the common denominator q gives

p = q∗g′ −
q∗q̄′

q̄
g + q̄h (2.2)

where
q∗q̄′

q̄
=

q∗

q̄

(

q

q∗

)

′

=
q′

q̄
− q∗′ ∈ C[x] ,

since q̄ divides q′. Plugging unknown coefficients for g and h into (3.2) and equating the
coefficients of equal powers of xi, 0 ≤ i ≤ deg(q) − 1, we get a linear system in deg(q)
equations and deg(q) unknowns. This system has a unique solution if the only solution for
p = 0 is g = h = 0. This follows from lemma 1 since (g/q̄)′ = −h/q∗ has no non-trivial
solution because q∗ is squarefree. We have incidentally also shown that

∫

h/q∗ cannot be a
rational function.

Setting up and solving the linear system resulting from (2.2) is Horowitz’ algorithm. It
should be noted that neither the full squarefree factorization of q nor Hermite’s reduction is
needed in this method, the latter not even in the correctness proof.

3. Main Result

We now show how to solve the differential equation y′ + f ′y = g in y, where f, y, g ∈ C(x).
We first repeat Risch’s original argument, enhanced by Rothstein’s observations.

Theorem 3.3: Let C(x) be the transcendental extension of the constant field C with x′ = 1.
Assume that f and g ∈ C(x) are given. Then we can solve

y′ + fy = g , y ∈ C(x) (3.1)
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in a finite number of arithmetic operations in C, including computing integer roots of poly-
nomials over C.

Proof: We represent, by GCD computations,

f(x) =
F (x)

q1(x)k1 · · · qn(x)kn
, g(x) =

G(x)

q1(x)l1 · · · qn(x)ln

where F , G, q1, . . . , qn ∈ C[x], q1, . . . , qn monic, squarefree and pairwise relatively prime,
ki ≥ 0, li ≥ 0 for 1 ≤ i ≤ n. From lemma 1 we conclude that if y(x) solves (3.1) then

y(x) =
Y (x)

q1(x)j1 · · · qn(x)jn

with Y (x) ∈ C[x], ji ≥ 0 for 1 ≤ i ≤ n. We first compute a bound ̄i for ji, 1 ≤ i ≤ n, and
then a bound ᾱ for degx(Y ). Let

y(x) =
Ai,ji(x)

qi(x)ji
+ . . . , f(x) =

Bi,ki(x)

qi(x)ki
+ . . . , g(x) =

Di,li(x)

qi(x)li
+ . . . .

be the partial fraction expansion of y, f , and g with Ai,ji , Bi,li , Di,li ∈ C[x] non-zero and
degx(Ai,ji) < deg(qi) unless ji = 0, deg(Bi,ki) < deg(qi) unless ki = 0. Substituting these
expansions into (3.1) we get

−
jiq

′

iAi,ji

qji+1

i

+ . . .+
Bi,kiAi,ji

qji+ki
i

+ . . . =
Di,li

qlii
+ . . . .

We first observe that ji+1 ≤ li is equivalent to ji+ki ≤ li since otherwise one of the leading
terms could not cancel on the left-hand side. The third possibility is that ji+1 = ji+ki > li.
In this case,

ki = 1 and qi divides − jiq
′

iAi,ji + Bi,kiAi,ji ,

which implies that GCD (−jiq
′

i +Bi,ki , qi) 6= 1. Therefore, ji must be a root of the resultant

R(z) = resultantx(Bi,ki(x)− zq′i(x), qi(x)) ∈ C[z] .

First of all, R(z) 6= 0 because otherwise for some root β of qi(x), Bi,ki(β) − zq′i(β) = 0
meaning q′i(β) = 0 which contradicts the squarefreeness of qi. Let mi be the largest positive
integral root of R(z), if any, otherwise let mi = 0. Then

ji ≤ ̄i = max(min(li − 1, li − ki) , mi) .

We now set

y(x) =
Y (x)

q1(x)̄i · · · qn(x)̄n
=

Y (x)

q̄(x)

and substitute into (3.1). Multiplying out with a common denominator we get

uY ′ + vY = t (3.2)
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with
Y (x) = yαx

α + . . .+ y0 , u(x) = aβx
β + . . .+ a0 ∈ C[x] ,

v(x) = bγx
γ + . . .+ b0 and t(x) = dδx

δ + . . .+ d0 ∈ C[x] .

Again it behooves us to determine a bound for α. Substitution in (3.2) gives

(aβx
β + . . .)(αyαx

α−1 + . . .) + (bγx
γ + . . .)(yαx

α + . . .) = dδx
δ + . . . . (3.3)

Thus α + β − 1 ≤ δ if and only if α + γ ≤ δ or the third case α + β − 1 = α + γ > δ which
implies that αaβ + bγ = 0. Let ρ be −bγ/aβ if this is a positive integer, otherwise let ρ = 0.
Then

α ≤ ᾱ = max(min(δ − β − 1, δ − γ) , ρ) .

Multiplying (3.3) out and equating powers of xi we obtain a linear system in the yi’s with
coefficients in C. ♦

We now further inspect the third possibilities in the case that f is the derivative of a
rational function.

Theorem 2: If one applies the algorithm given in the proof of theorem 1 to the differential
equation y′ + f ′y = g, the third possibility for the bound ̄i can never occur and the only
time the third possibility for the bound ᾱ can happen is when ρ = deg(q̄).

Proof: Assume that ji+1 > li which implies that ki = 1. Thus the partial fraction expansion

f ′(x) =
bi,ki(x)

qi(x)
+ . . .

which is impossible as shown in lemma 1. Now let

y(x) =
Y (x)

q̄(x)
, f ′(x) =

p(x)

q̂(x)
, g(x) =

s(x)

q(x)
.

Notice that q̄(x) divides q(x). Substituting into our differential equation y′ + f ′y = g we get

Y ′(x)

q̄(x)
+

(

p(x)

q̂(x)
−

q̄′(x)

q̄(x)

)

Y (x)

q̄(x)
=

s(x)

q(x)
(3.4)

Since the bound ᾱ depends only on the difference δ − β and δ − γ as well as the quotient
bγ/aβ it does not matter for the determination of ᾱ if we multiply (3.4) with a larger than
the least common denominator. We get

(q̄q̂)Y ′ + q(pq̄ − q̂q̄′)Y = q̄2q̂s .

The third possibility implies that

β = deg(q̄q̂q) = γ + 1 = deg(q(pq̄ − q̂q̄′)) + 1 .

If deg(p) ≥ deg(q̂), this is clearly impossible. Thus deg(p) < deg(q̂) which, since

p

q̂
= f ′ =

(

d

e

)

′

=
d′e− de′

e2
, d, e ∈ C[x] ,
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implies that we may choose deg(d) < deg(e) and thus get deg(p) ≤ deg(q̂) − 2. Therefore,
aβ = ldcf (q̄q̂q) = 1, bγ = ldcf (q(pq̄ − q̂q̄′)) = ldcf (−q̄′) and thus −bγ/aβ = ρ = deg(q̄). ♦

We now present an example showing that the case deg(Y ) = deg(q̄) > max(0,min(δ −
β − 1, δ − γ)) can occur.

Example: Let f ′ = −1/x2, g = −(x + 1)/x4. Then q1 = x, k1 = 2, l1 = 4, ̄1 =
min(l1 − 1, l1 − k1) = 2 and

(

Y

x2

)

′

−
1

x2

Y

x2
=

−x+ 1

x4
withq̄(x) = x2 .

This leads to
x2Y ′ − (2x+ 1)Y = −x− 1 .

Thus, β = 2, γ = 1, δ = 1 and

ᾱ = max(min(δ − β − 1, δ − γ) , deg(q̄)) = max(min(−2,−1), 2) = 2 .

Solving for Y = y2x
2 + y1x+ y0 we get y2 = 1, y1 = −1, y0 = 1. Hence
∫

x+ 1

x4
exp

(

1

x

)

= −
x2 − x+ 1

x2
exp

(

1

x

)

. ♦

It is surprisingly easy to show that the solution to y′ + f ′y = g, f ′ 6= 0, is unique.
Suppose the contrary that is y1 and y2 ∈ C[x] solve the differential equation. Then with
ȳ = y1 − y2 6= 0 we must have ȳ′/ȳ = −f ′. It is easy to see from

∫

ȳ′/ȳ = log(ȳ) that ȳ′/ȳ
can be written as h/q∗ with h, q∗ ∈ C[x] and q∗ squarefree. But as mentioned in section 1,
∫

h/q∗ cannot be the rational function −f .

We now derive from theorem 2 an algorithm for solving

y′ + f ′y = g , f ′ =
p

q̂
∈ C[x] , g =

s

q
∈ C(x)

equivalent to Horowitz’ rational function integration algorithm. We choose q̄ = GCD(q, q′)
as the denominator of y. This choice is equivalent to setting ̄i = li − 1, which is not
necessarily the sharpest bound but which avoids computing the full squarefree factorization
of q̂ and q. Then we calculate the bound ᾱ for degree of the numerator of y and solve the
resulting linear system as discussed in the proof of theorem 1. One upper bound for ᾱ is

ᾱ ≤ max(deg(q̄)− deg(q) + deg(s)− 1, deg(q̄))

which is slightly pessimistic but which, we hope, exhibits the similarity to Horowitz’ algo-
rithm.

Due to M. Rothstein [7, 8], the degree bound ᾱ for Y in uY ′+vY = t can also be reduced
in the following way. If GCD (u, v) 6= 1 then we divide u, v and t by this GCD. Obviously, if
the division of t leaves a remainder then the differential equation has no solution. Thus we
may assume that GCD (u, v) = 1 and we can find unique polynomials d, e ∈ C[x] with

ud+ ve = t , deg(e) < deg(u) .

6



Now Y = Ȳ u+ r, deg(r) < deg(u), if and only if

r = e and uȲ ′ + (u′ + v)Ȳ = d− e′ .

Thus solving for Ȳ with deg(Ȳ ) = ᾱ− β is sufficient. Of course, we can repeat this process
until either deg(Ȳ ) < β or deg(u) = 0. In the first case uȲ ′ + vȲ = t implies Ȳ ≡ tv−1

(mod u). Thus we only need to invert v modulo u. The second case must be handled by
solving linear systems as discussed above.

One could argue that so far we have only shown that no exponent blow-up due to “third
possibilities” occurs when integrating elements in C(x, exp f(x)), f(x) ∈ C(x). It is relatively
easy to show that this remains true when integrating elements in

C(x)[exp f1(x), . . . , exp fn(x)], fi(x) ∈ C(x). (4.1)

We assume that the exp fi are algebraically independent over C(x) and introduce no new
constants. An element in (4.1) can be written as

∑

ge1,...,en(x) exp(e1f1(x) + · · ·+ enfn(x)), ge1,...,en(x) ∈ C(x), ei ∈ Z. (4.2)

By our assumption, the arguments to the exponentials in (4.2) cannot differ by just a con-
stant. It is now an old result by Liouville (cf. Rosenlicht [6, p.295]) that the integral of (4.2)
is elementary if and only if each

∫

ge1,...,en(x) exp(e1f1(x) + · · ·+ enfn(x))

is elementary. This integral leads, of course, to solving a differential equation of type (3.1).
Therefore, theorem 2 implies that the exponents in the integral of an integrand in (4.1)
depend only on the exponents in the integrand.

Our conclusions partially generalize in the case in which C is replaced by a regular
elementary purely transcendental Liouville extension of C(x) and x is replaced by a logarithm
or exponential. However, as we have already exemplified in the introduction, bounds for the
third possibilities cannot be derived from the input degrees alone, in general.

4. Conclusion

The complexity of R. Risch’s algorithm for deciding whether a function in an elementary
purely transcendental Liouville extension field possesses an elementary integral is little un-
derstood. The fact that one seems to need the closed form solution for just recognizing
elementary integrals indicates that the given decision procedure might not even be elemen-
tary recursive. Here we have settled two questions. Firstly, we have shown that even in the
basis case third possibilities can arise. Secondly, however, we have put this basis case into
the class of polynomial-time problems.
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