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Abstract
Ramon Edgar Moore and Alexander M. Gofen introduced a generalization of
Joseph Liouville’s concept of elementary functions. Gofen even defined two vari-
ants of these, viz. scalar generalized elementary functions and vector generalized
elementary functions, and formulated a conjecture concerning them. We prove
that, for some modified conjectures, the two classes are different.
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1. Introduction

1.1. Liouville

Liouville1 proved that there are elementary functions which are not the derivative of
any elementary function. This is the origin of the present note.

A function f : Ω→ C, where Ω is an open subset of C, is said to be elementary in
the sense of Liouville if it is a sum, difference, product, quotient, or composition of
finitely many polynomials, rational functions, trigonometric and exponential functions,
and their inverses (thus including algebraic functions and logarithms).

1Joseph Liouville (1809–1882). For Liouville’s education, his work as a teacher, journal editor,
politician, and academician, as well as an analysis of his mathematical work in an historical perspective,
see Jesper Lützen’s book (1990), where more than seventy pages (pp. 351–422) are devoted to works
on elementary functions, most of it by Liouville himself.
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The rational function C r {0} 3 z 7→ 1/z can be extended to all of C by defining
it as ∞ for z = 0. We then obtain a continuous function with values in the Riemann
sphere C ∪ {∞}. But a rational functions of two variables, like (z1, z2) 7→ z2/z1,
typically does not have a limit as (z1, z2) → (0, 0), so it is problematic and deserves
special attention.

For any family F of holomorphic functions Ω→ C we define F ′ = {f ′; f ∈ F} as
the set of all derivatives of functions in F . If F is a vector space and F ′ is contained
in F , we can form the quotient space F/F ′. If F is the space of all polynomials of
degree 6 m, then F/F ′ is one-dimensional; if F = P is the space of all polynomials,
then F/F ′ is of dimension zero.

Liouville proved that the function L defined by

(1.1) L′(z) = ez2
, z ∈ C; L(0) = 0,

is not elementary, thus that any antiderivative of z 7→ ez2 is not elementary. So if we
denote by L the family of all elementary functions, the function t 7→ ez2 does not
belong to L ′. During the years 1833 through 1841 he published eleven papers on this
theme (Lützen 1990:351).

The theorem which is most important for us here was proved by Liouville in 1833
and was stated as follows by Ritt2 (1948:40). Let us say that u is algebraic in
functions v1, . . . , vp if u : Ω→ C solves an ordinary differential equation

amu
(m) + · · ·+ a1u

′ + a0u = 0,

where the coefficients aj are polynomials in the vj with constant coefficients. If the vj
satisfy differential equations

v′j = fj(v1, . . . , vp), j = 1, . . . , p,

where the fj are algebraic functions of the vj, and if u is algebraic in the vj and has
an antiderivative U which is elementary in the vj, then U has the form

U = w0 +
q∑
j=1

cj logwj

for some contants cj and some functions w0, . . . , wq which are algebraic in the vj.
Clearly this is so for an antiderivative L of L′; L′ is algebraic in v1 = L′. It is then
proved that L cannot be of this form.

1.2. Work before Liouville

Both Laplace3 and Abel4 worked on the problem of antiderivatives of elementary func-
tions before Liouville.

Lützen reports on Laplace’s efforts as follows:
Laplace’s sketch anticipated Liouville’s discoveries, and if Laplace had published rigorous
proofs of the theorems that he claimed to have found, he would certainly have been
acknowledged as the founder of the theory of integration in finite form. However, the
loose way in which Laplace formulated and proved that an integral can only contain

2Joseph Fels Ritt (1893–1951).
3Pierre-Simon Laplace (1749–1827).
4Niels Henrik Abel (1802–1829).
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the same radicals and exponentials as the integrand sounds more like Fontaine and
Condorcet than like a rigorous statement of the 19th century. (Lützen 1990:358)

Nevertheless, Laplace’s considerations, although vague, led Liouville to establish his
results, “and Liouville claimed for his method of proof the merit of following these
intuitive ideas.” (Ritt 1948:21).

Also Abel made important contributions to the theory (Ritt 1948:28, Lützen 1990:
358-369). Lützen concludes:

[. . . ] it was not the inspiration left by Abel that made Liouville interested in his theory,
but having learned of Abel’s contribution he made ample use of it. (Lützen 1990:369)

1.3. Work after Liouville

Among the literature after Liouville in this field of research, a most important book
is that by Ritt (1948), where he mentions five articles which he published in the years
1923–1929. Of other publications on this subject, let me mention the following.

• Alexander M. Ostrowski’s5 article (1946), which generalizes Liouville’s result to
any field of meromorphic functions;

• Maxwell Rosenlicht’s6 papers (1968, 1972, 1976), of which the first is a purely
algebraic proof of the main theorem;

• R. H. Risch’s7 algorithm (1969, 1970, 1976, 1979) which is used to execute the
integration of elementary functions on a computer;

• Toni Kasper’s book (1980) with an historical account but no proofs;
• Manuel Bronstein’s8 book (1997), where he generalizes and extends the algorithm
due to Risch;

• The book by Marius van der Put and Michael F. Singer9 (2003), which is a general
survey, very well received according the reviewer in MathSciNet, Pedro Fortuny
Ayuso;

• Brian David Conrad’s notes (2005), where he establishes a criterion for proving
the impossibility result in special cases;

• two important papers by Alexander M. Gofen (2008, 2009), which inspired me to
begin the present study;

• the book by Teresa Crespo and Zbigniew Hajto (2011), who study ordinary dif-
ferential equations from an algebraic-geometric standpoint; and finally

• Askold Georgievich Khovanskii’s two papers (2019a, 2019b). In the first, he com-
ments extensively on Ritt’s book (1948). In (2019b), he proves a generalization of
Liouville’s theorem—this article contains all the algebraic background necessary
for understanding.

5Alexander M. Ostrowski (1893–1986).
6Maxwell Rosenlicht (1924–1999).
7Robert Henry Risch, PhD 1968, a student of Rosenlicht.
8Manuel Bronstein (1963–2005), PhD 1987, a student of Rosenlicht.
9Michael F. Singer, PhD 1974, a student of Rosenlicht.
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1.4. Generalizations of elementariness

Moore10 (1966:108) widened the definition of elementary functions by accepting solu-
tions to systems of ordinary differential equations of order one where the derivatives of
the unknown functions are rational functions of their values; see Definition 2.5.

Alexander Gofen (2008:642, 2009:826) distinguished among the solutions to systems
of ordinary differential equations of order m those functions that are solutions to a
scalar differential equation of order m or higher; see Definition 2.3. He also introduced
the condition on nonzero denominators, which Moore did not impose.

We shall study both scalar ordinary differential equations and systems of first-order
equations.

The scalar equations are of the form

(1.2) u(m)(z) = f(z, u(z), u′(z), . . . , u(m−1)(z)), z ∈ Ω ⊂ C, u : Ω→ C,

where f is a given function, f : Ω×Cm → C.
The systems of n first-order equations are vector-valued ordinary differential equa-

tions:

(1.3) v′(z) = g(z, v(z)), z ∈ Ω ⊂ C, v : Ω→ Cn,

where g : Ω×Cn → Cn.
Here the derivatives are to be understood as in classical complex analysis:

f ′ = ∂f

∂z
= 1

2

(
∂f

∂x
− i∂f

∂y

)
, z = x+ iy ∈ C, x, y ∈ R.

In particular, for f(z) = zm, m ∈ N, we have f ′(z) = mzm−1; with f(z) = eλz, we
have f ′ = λf .

If f is a function of n complex variables z1, . . . , zn, we shall write fzj
for ∂f/∂zj.

Occasionally we consider a real independent variable t. Then f ′ denotes the usual
derivative df/dt.

The function f in (1.2) can be a polynomial, rational function, a holomorphic or
meromorphic function satisfying certain conditions, or, in the real case, the restriction
of such functions to some real subspace. The same is true for g in (1.3), although with
vector values. As mentioned above, Moore (1966) studied only the family of rational
functions of complex variables.

2. Definitions

Definition 2.1. Let f : Ω×Cm → C be any function. We shall denote by U (f) the
set of all solutions u : Ω → C to the equation (1.2) (allowing for all possible initial
values), and, given a family F of functions, by U (F ) the union of all U (f) with
f ∈ F . Similarly for real-valued functions. We also define U0(f) as the solution (or
possibly the family of solutions) with initial values u(k−1)(0) = 0, k = 1, . . . ,m. �

Definition 2.2. We shall denote by V (g) the set of all solutions v : Ω → Cn to the
vector equation (1.3) (allowing for arbitrary initial values), and by V (G1 × · · · × Gn)

10Ramon Edgar (Ray) Moore (1929–2015).



Generalized elementary functions � 2021 March 05 5

the union of all V (g) = V (g1, . . . , gn) for gj ∈ Gj, j = 1, . . . , n. We also define V0(g)
as the family of solutions with initial values vk(0) = 0, k = 1, . . . , n. �

As we see in Remark 2.7 below it may happen that we have non-uniqueness in the two
initial-value problems studied.

Definition 2.3. We shall say that a function u : Ω → C is scalar generalized
elementary with respect to a family F of functions if it belongs to U (F ).

�

Example 2.4. The function L defined by (1.1) satisfies L′′(z) = 2zez2 = 2zL′(z), thus
L′′(z) = f(z, L(z), L′(z)) with f as the polynomial defined by f(s1, s2, s3) = 2s1s3.
So it is scalar generalized elementary in the sense of Definition 2.3 with F = P, the
family of polynomials. �

Definition 2.5. We shall say that a vector-valued function v : Ω → Cn is vector
generalized elementary with respect to a family G1 × · · · × Gn of n-tuples of
functions if it belongs to V (G1 × · · · × Gn). �

Definition 2.6. We shall say that a function v1 : Ω → C is vector generalized
elementary with respect to a family G1× · · · × Gn of n-tuples of functions if
there exists a function (v2, . . . , vn) : Ω→ Cn−1 such that the n-tuple (v1, v2, . . . , vn) is
vector generalized elementary with respect to G1 × · · · × Gn in the sense of Definition
2.5. �

Moore and Gofen usually take F = Gj = R, the family of rational functions.

Remark 2.7. Given initial conditions u(0) and u′(0), there may exist several solutions
to the equation (1.2). A simple example is to define, given any a > 0, u(t) = 0 for
t 6 a and u(t) = (t− a)3 for t > a. This function is of class C2(R) and satisfies

u′ = 3u2/3, u′′ = 6u1/3, u′′ = 2
√

3(u′)1/2, u(0) = 0, u′(0) = 0.

So here u satisfies

u′(t) = f1(t, u(t)) with f1(s1, s2) = 3s2/3
2 ,

u′′(t) = f2(t, u(t), u′(t)) with f2(s1, s2, s3) = 6s1/3
2 , as well as

u′′(t) = f3(t, u(t), u′(t)) with f3(s1, s2, s3) = 2
√

3 s1/2
3 ,

where (s1, s2, s3) ∈ R3. (There are similar examples with u of class C∞.)
For complex z we can take a > 0 and u(z) = 0 for Re z 6 a; u(z) = (Re z − a)3

for Re z > a, yielding u′(z) = 3
2u

2/3 and u′′(z) = 3
2u

1/3. So also here we can have
non-uniqueness. �

We note that in this example the functions f1, f2 and f3 are not Lipschitz continu-
ous. Well-known theorems guarantee that a Lipschitz condition, even a local Lipschitz
condition, implies uniqueness.

It is easy to see that scalar elementariness implies vector elementariness (Lemma
7.1). Can we go in the opposite direction? The answer depends of course on which
families of functions we consider.
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3. Alexander Gofen’s conjecture

Alexander Gofen published a conjecture in an article (2008:642). The reader is kindly
asked to consult the original formulation in this article. See also his web site (2020).
Here I state the conjecture with my notation and how I have understood it.
Conjecture 3.1. Let a system of first-order ordinary differential equations (1.3) be
given with a vector-valued rational function g = (g1, . . . , gn). Fix a (1 + n)-tuple

(z0, a1, a2, . . . , an) ∈ C×Cn

and assume that the problem satisfies the following condition with respect to this element
of C×Cn.

Condition (g). The functions gj = pj/qj are quotients of polynomials pj and
qj. The denominators qj are all nonzero at (z0, a1, . . . , an).11

Then the first component v1 of the vector which solves equation (1.3) satisfies an ordi-
nary differential equation (1.2) with m = n+ 1, where f = p/q is a quotient of polyno-
mials p and q, where the denominator q is nonzero at the point (z0, a1, . . . , an+1), and
where v1 has the initial values v(k−1)

1 (z0) = ak, k = 1, . . . , n+ 1. �

Example 3.2. The system of type (1.3) with n = 2

v′1(z) = v2(z), v′2(z) = v2(z)
z

,

thus with g(s1, s2, s3) = (s3, s3/s1), has for z0 6= 0 the solution

v1(z) = a1 −
a2z0

2 + a2z
2

2z0
, v2(z) = a2z

z0
,

with prescribed initial values vj(z0) = aj. This is an example of a legitimate situation
for the conjecture.

For z0 = 0 the solution is

v1(z) = a1 + γz2, v2(z) = 2γz,

thus as before a family with two parameters a1 and γ. But the initial values are now
v1(0) = a1, v2(0) = 0; we can no longer prescribe the initial value for v2. This situation
is not allowed in the formulation of the conjecture.

The system mentioned here corresponds to the differential equation u′′(z) = u′(z)/z
or zu′′(z)− u′(z) = 0, thus an equation of the type (1.2) with the problematic rational
function f(s1, s2, s3) = s3/s1. �

Example 3.3. The function E defined as E(z) = (ez − 1)/z for z ∈ C r {0} and
E(0) = 1, satisfies the equation

(3.1) E ′(z) = E(z)− E(z)− 1
z

, z ∈ C r {0}, E ′(0) = 1
2 .

In his article (2008) Alexander Gofen studies in detail this function, also briefly men-
tioned in (2009:847). It satisfies differential equations but only with denominators
vanishing for z = 0.

11As is well known, this implies that the problem has a unique solution at least in some neighborhood
of z0.
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Other functions worth of study are z 7→ cos
√
z and z 7→ z−1 sin z.

See also (Flanders 2007) for similar results. �

4. Modified conjectures

Since Alexander Gofen’s conjecture is not yet proved or disproved, it might be of
interest to study some modifications of it. Such modified conventions could lead to
ideas about what can occur.

So we take g in a class G1×· · ·×Gn of functions and ask whether a solution v solves
a scalar ordinary differential equation (1.2) with f ∈ G1. In such situations, Condition
(g) could be replaced by a suitable condition guaranteeing the existence of a unique
solution—or we can just drop it.

We can for instance weaken the conditions by removing the requirement that the
denominators be nonzero. In this situation, Gofen (2020: Appendix 1) proved that
this weakened kind of vector elementariness implies the weakened property of scalar
elementariness.

4.1. The case of polynomials

A special case of the conjecture is when f is a polynomial and g a vector-valued
polynomial. This has the advantage that the initial-value problems satisfy Condition
(g) for all initial values (z0, a1, . . . , an). Such is the situation for the function L defined
by (1.1): the solution with initial values a1 and a2 is

La1,a2(z) = A+Bz + L(z), z ∈ C,

where
A = a1 −

(
a2 − ez2

0
)
z0 − L(z0) and B = a2 − ez2

0 .

4.2. Other modified conjectures

In Subsection 7.1 we shall look at entire functions which are bounded on the real axis,
and in Subsection 7.2 on an initial-value problem on the real axis.

5. The set of solutions to an equation determines the equation

Given a function f we have defined the set of solutions U (f), and similary V (g) for
n-tuples of functions. Is the equation determined by its set of solutions? The answer
turns out to be in the affirmative.

Proposition 5.1. Let us assume that solutions to (1.2) and (1.3) are unique and well
posed for all complex times z0.

If two function f and F are given and U (f) ⊂ U (F ), then f = F .
If two vector-valued functions g and G are given and V (g) is a subset of V (G),

then g = G.

Proof. Let (z0, a1, . . . , am) be any point in C × Cm. Then the equation (1.2) has a
unique solution with initial conditions u(k−1)(z0) = ak, k = 1, . . . ,m, thus belonging
to U (f). By hypothesis it also belongs to U (F ), so that it solves the equation with
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f replaced by F . Thus u(m)(z0) = f(z0, a1, . . . , am) = F (z0, a1, . . . , am). Since the
(1 +m)-tuple (z0, a1, . . . , am) is arbitrary, this means that f is determined by u.

The proof in the vector case is similar. �

So the mappings f 7→ U (f) and g 7→ V (g) if restricted to a suitable space of locally
Lipschitz functions are injective. This is not so with U0(f) and V0(g) as the next
examples show.

Example 5.2. The equation u′′ = u, thus with f(s1, s2, s3) = s2, has the solutions
u(z) = Aez + Be−z, which thus describes U (f). We see that U0(f) consists of the
function which is identically equal to zero.

The equation u′′ = u′, thus with f(s1, s2, s3) = s3, has the solutions u(z) = A+Bez,
which is different from the set of solutions of the first equation. But U0(f) is equal to
the U0(f) of the first equation, so the two equations have the same U0(f). �

Example 5.3. The function u(t) = − log(T − t), t ∈ R, t < T , where T > 0 is a given
time, satisfies both the equation u′′(t) = u′(t)2 and the equation u′′(t) = (T − t)−2.
The initial values are u(0) = − log T and u′(0) = 1/T . If we look for general initial
values u(0) = a and u′(0) = b, we find that the general solution to the first equation is

u(t) = − log(b−1 − t) + a− log b, t < 1/b;

and
u(t) = − log(T − t) + (b− 1/T )t+ a+ log T, t < T,

to the second equation. �

A similar but more complicated example is the following.

Example 5.4. Define f(s1, s2, s3) = 1/ cos2 s1 and F (s1, s2, s3) = s2
3 + 1. Then the func-

tion u defined by u(z) = − log cos z satisfies u′(z) = tan z and u′′(z) = 1/ cos2 z with
the initial values u(0) = u′(0) = 0, so that u′′(z) = f(z, u(z), u′(z)) = F (z, u(z), u′(z)),
two different equations. �

6. Independence of the family of solutions of the initial values

The initial-value problem (1.2) with arbitrary initial values u(k−1)(0) = ak for k =
1, . . . ,m, is equivalent to the special case with initial values ak = 0:

Proposition 6.1. A function u solves the equation (1.2) with initial values u(k−1)(0) =
ak if and only if the function defined by

U(z) = u(z)−
m∑
k=1

ak
zk−1

(k − 1)!

solves the equation
U (m)(z) = F (z, U(z), . . . , U (m−1)(z))

with initial values U (k−1)(0) = 0, k = 1, . . . ,m, where

F (s) = f(s1, s2 + a1, . . . , sm+1 + am), z = (s1, . . . , sm+1) ∈ Ω×Cm.

Similarly for the vector equations (1.3).
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Proof. We have U(0) = u(0)−a1 and U ′(0) = u′(0)−a2 and so on. A simple calculation
gives the result. �

Provided that the class F we consider is invariant under translations of the type used
in the proof, we see that the concept of elementariness with respect to F is preserved.
So this is in particular true if F is the family of all polynomials or the family of all
entire functions that are bounded on the real axis.

7. Comparing scalar generalized elementariness and vector
generalized elementariness

Lemma 7.1. If u solves the equation (1.2) for a given function f , then

v = (u, u′, . . . , u(m−1))

solves (1.3) for an easily found vector-valued function g. Explicitly: if f belongs to F ,
then

(u, u′, . . . , u(m−1))
belongs to G1 × · · · × Gm, where Gj = {prj+1}, j = 1, . . . ,m − 1 and Gm = {f}. Here
prj denotes the mapping (s1, . . . , sm) 7→ sj.

Proof. We define vj = u(j−1), j = 1, . . . ,m. Then v′j = vj+1 for j = 1, . . . ,m − 1
while v′m(z) = u(m)(z) = f(z, v1(z), . . . , vm(z)), so that v solves (1.3) with n = m and
gj(s) = sj+1 for j = 1, . . . ,m − 1 and gm(s) = f(s). So gm belongs to the same class
as f while the gj, j = 1, . . . ,m− 1 take the special form gj = prj+1. �

Proposition 7.2. If the pair (v1, v2) solves (1.3), then the function u = v1 solves the
scalar equation

(7.1) u′′(z) = G(z, u(z), u′(z), v2(z)) = H(z, u(z), u′(z), v2(z), v′2(z)),

where we have defined

(7.2) G(s) = gs1(s1, s2, s4) + gs2(s1, s2, s4)s3 + gs3(s1, s2, s4)h(s1, s2, s3),

for s = (s1, s2, s3, s4), and

(7.3) H(s) = gs1(s1, s2, s4) + gs2(s1, s2, s4)s3 + gs3(s1, s2, s4)s5

for s = (s1, s2, s3, s4, s5).

Proof. A simple application of the chain rule. �

We note what the conclusion of the last proposition looks like in several special cases.

Corollary 7.3. Suppose that (v1, v2) satisfies the equation (1.3) with n = 2.
(α′). If g = pr3, then we are in the situation of Lemma 7.1 so that u = v satisfies (1.2).
(β′). More generally, if w(z) = ψ(z, v(z), v′(z)), either globally or in a specific domain,

then we can substitute the latter expression for w(z) in g(z, u(z), w(z)) and get an
expression without w and w′, so that u satisfies

u′′(z) = G(z, u(z), u′(z), ψ(z, u(z), u′(z))).
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(γ′). If g is independent of s3, then

G(s1, s2, s3, s4) = H(s1, s2, s3, s4, s5) = gs1(s1, s2, 0) + gs2(s1, s2, 0)s3,

thus independent of s4 and s5, making the equation for v′ into the equation u′(z) =
v′(z) = g(z, u(z), 0) with only one unknown function. This can be solved, and then
u is a known function in the equation for w′, viz. w′(z) = h(z, u(z), w(z)).

Proof. (α′). If g(s1, s2, s3) = s3, then w = v′.
(β′). Also here w(z) can be expressed in terms of known quantities z, v(z) and

v′(z).
(γ′). Clearly u is known in this case. �

So to find an example proving that vector elementariness does not imply scalar elemen-
tariness, we must avoid taking g and h as in one of the cases mentioned in Corollary
7.3. We note that in case (β′), the substitution might lead to a larger class of func-
tions. For example, if we start with polynomials, then the inverse used in (β′) can be
algebraic, and in a strictly larger class.

7.1. An initial-value problem for an entire function

Let us define

(7.4) u(z) = sin z2

z
, z ∈ C r {0}, u(0) = 0.

This is an entire function of order 2. It is bounded on the real axis: for real z = x we
have |u(x)| 6 min(|x|, 1/|x|) 6 1.

Also its first derivative is bounded on the real axis:

u′(z) = 2 cos z2 − sin z2

z2 , z ∈ C r {0}, u′(0) = 1,

satisfying |u′| 6 3 on R.
The second derivative is

(7.5) u′′(z) = −4z sin z2 + 2 sin z2 − 2z2 cos z2

z3 , z ∈ C r {0}, u′′(0) = 0,

also an entire function, but unbounded on the real axis. This implies that if u′′(z) =
f(z, u(z), u′(z)), z ∈ C, then f cannot be bounded on R3, not even on the subset
R × [−1, 1]× [−3, 3] of R3.

7.1.1. Prescribing initial values

We shall now check that we can prescribe initial values arbitrarily at any point z0
for equations like (7.5), just modified a little. This means that the problem satisfies
Condition (g) in Conjecture 3.1.

7.1.1.1. Prescribing at z0 = 0

For z0 = 0, we define

ua,b(z) = sin z2

z
+ a+ (b− 1) sin z, z ∈ C r {0}, ua,b(0) = a.
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Then

u′a,b(z) = 2 cos z2 − sin z2

z2 + (b− 1) cos z, z ∈ C r {0}, u′a,b(0) = b,

and

u′′a,b(z) = −4z sin z2 + 2 sin z2 − 2z2 cos z2

z3 −(b−1) sin z, z ∈ Cr{0}, u′′a,b(0) = 0.

7.1.1.2. Prescribing at z0 6= 0

For z0 6= 0 we define

ua,b(z) = sin z2

z
+ A+B sin γz, z ∈ C r {0}, ua,b(0) = A,

where the constants A and B are to be determined and where we take γ = π/(3z0),
so that cos γz0 = 1

2 . We see that ua,b(z0) = a if we take A = a − z−1
0 sin z2

0 . The first
derivative is

u′a,b(z) = 2 cos z2 − sin z2

z2 +Bγ cos γz, z ∈ C r {0}, ua,b(0) = 1 +Bγ.

We have u′a,b(z0) = b if we take

B = 2b− 4 cos z2
0 + 2z−2

0 sin z2
0

γ
= 2b− 2 + 2z−2 sin z2

0
γ

.

The second derivative is

u′′a,b(z) = −4t sin z2 + 2 sin z2 − 2z2 cos z2

z3 −Bγ2 sin γz, z ∈ Cr {0}, u′′a,b(0) = 0.

For z0 = 0 as well as for z0 6= 0, ua,b and u′a,b are bounded on the real axis while
u′′a,b is unbounded there.

For vector-valued equations we can proceed as follows.

7.1.1.3. Vector equations

Let us now define v(z) = ua,b(z) and v2(z) = b. With z0 = 0 they satisfy a system of
type (1.3), thus with

(7.6) g1(s1, s2, s3) = 2 cos s2
1 −

sin s2
1

s2
1

+ (b− 1) cos s1,

g2(s1, s2, s3) = 0.

These are two entire functions, both bounded for s1 real. The initial conditions are
v1(0) = a, v2(0) = b. Similar pairs can be defined for t0 6= 0.

7.1.1.4. Other vector equations

But we can also find other vector equations of type (1.3) with v1(z) = ua,b(z) and
v2(z) = cos z2, satisfying

(7.7)
g1(s1, s2, s3) = 2s3 − s−2

1 sin s2
1,

g2(s1, s2, s3) = −2s1 sin s2
1,
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also entire functions of order 2.

7.1.1.5. Other scalar differential equations

The function u defined in (7.4) satisfies also other differential equations, like

u′′(z) = −4z2u(z) + u(z)
z2 −

u′(z)
z

, z ∈ C r {0}.

This initial-value problem satisfies Condition (g) for z0 6= 0 but not for (z0, a1, a2) =
(0, 0, 1). Here f(s1, s2, s3) contains the problematic rational functions s2/s

2
1 and s3/s1;

cf. Example 3.2.

7.2. An initial-value problem for a function defined on the real axis

An important property of the functions ua,b defined in Subsection 7.1 that ua,b and
u′a,b are bounded on the real axis while u′′a,b is unbounded. This observation leads us
to a more general method of constructing examples. More precisely, we construct a
sequence of waves which shrink both horizontally and vertically as we go to +∞. This
change of scale does not alter the slope of the wave but increases its curvature. We
now formulate such a result for functions of a real variable.

Proposition 7.4. Let ϕ ∈ C2(R) be a real-valued nonzero function with support con-
tained in [0, 1], and take a sequence (αj)j∈N of numbers αj > 1 with lim supj→+∞ αj =
+∞. Define

u(t) =
∑

α−1
j ϕ(αj(t− j)), t ∈ R.

If u satisfies the differential equation (1.2), then f must be unbounded on

R × [−c0, c0]× [−c1, c1], where c0 = sup |ϕ| and c1 = sup |ϕ′|.

Proof. We have

u′(t) =
∑

ϕ′(αj(t− j)) and u′′(t) =
∑

αjϕ
′′(αj(t− j)).

Since the terms in the sum defining u consists at each point of a single nonzero term, we
get the estimates |u| 6 c0 and |u′| 6 c1. But u′′(j + b/αj) = αjϕ

′′(b), thus unbounded,
when we take as b a point such that ϕ′′(b) is nonzero. So if u satisfies (1.2), then the
sequence j 7→ f(j + b/αj, u(j + b/αj), u′(j + b/αj)) must be unbounded.

On the other hand, (v, w) = (u, 0) satisfies (1.3) with n = 2, g1(s1, s2, s3) = u′(s1)
and g2(s1, s2, s3) = 0, both bounded for (s1, s2, s3) ∈ R3. �

8. Conclusion

Theorem 8.1. There exist pairs (v1, v2) of functions that are vector generalized el-
ementary with respect to G1 × G2 but the first components of which are not scalar gen-
eralized elementary with respect to G1. This is true both when the independent variable
is complex and when it is real.

Proof. We have seen in Subsections 7.1 and 7.2 classes that satisfy the requirements
in the theorem.

There may be others . . . �
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approximation/elementaryR2

Remark added on 2022 February 18. This version is the one I submitted on 2021 March
05 and which was accepted on 2022 January 03.

I used, and always use, the Harvard system of references, indicating author name
and year, like Ritt (1948). In Section 1.3, I listed work after Liouville, mentioning
Alexander M. Ostrowski (1946) and several others.

In a referee report, I received praise for this list of historically important work.
The editors replaced the years with meaningless numbers, like [3], thus making the

chronology invisible.
I then asked the editors to add the year, after the meaningless number, like [3]

(1946). This simple addition was not implemented. To add the years “is against
the journal style,” according to a message from Vasudevan of 2022 February 18. To
suppress useful information like an indication of the publication years is thus the “style”
of this journal.

If you are aware of this “style,” you might still get the years to be published by
writing “In the year 1859 AD, Charles Darwin published his book On the Origin of
Species [17].” Just might.
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