Journal of Mining,

anNular diamond pointed rock drills.

although it is, of course, adapted to a variety of other work, so that the core or cylinder produced by a two inch drill (the such as shafting, draining, well-boring and surface-blasting. ordinary size for testing), is one and a quarter inches in diam Diamonds being the hardest of known substances, have It consists of a small, upright boiler, to one side of which is eter. Inside the bit, D, is placed a self-adjusting wedge been used from the carliest times for cutting other stones like firmly bolted the cast iron frame which supports the engine, which allows the core to pass up into the drill without hin the onyx, sapphire, etc., and more recently they have been swivel drill-head, gears and screw-sliaft, as shown in the en- drance, but which impinges upon and holds it fast when the found to be an efficient instrument for dressing burr mill- graving, Fig. 1. The engiae-an oscillator of from three to action of the drill is reversed-thus breaking it'off at the botstones, and for fashioning varions devices in stone. The dia- five horse-power-is shown at A. B is the screw-shaft tom, and bringing it to the surface when the drill is with monds used are those commonly known as black diamonds, with the drill passing through it. This shaft is made of hy- drawn. In order to withdraw the drill it is only necessary or borts, and being worthless for jewelry, are comparatively draulic pipe from five to seven feet in length, with a coarse to throw out the release gear, E, by sliding it up the feed cheap, varying in price from six to seven dollars per carat, thread cut on the outside. This thread, a portion of which shaft, F, to which it is feathered, when the drill runs up with gold. The first application of diamonds to rock-drilling and is shown in the cut, runs the entire length of the shaft, which the same motion of the engine which carried it down, but the miner's art was made in 1860, by M. Rodolphe Leschot, also carries a spline by which it is feathered to its upper with a velocity forty times greater; that is, the speed with a civil engineer, resident in Paris, France. He found, by ex- sleeve-gear. This gear is double and eonnects by its lower which the drill leaves the rock, is to the speed with which it periment, that a rotating drill, armed with diamond points, teeth with the beveled driving-gear, and by its upper teeth penetrates it as forty to one-the revolving velocity in both could be made to bore holes in rocks to great depths, and with with the release-gear, E. This reeasc-gear is feathered to cases being the same. The drill-rod may be extended to any a rapidity hitherto unknown, by forcibly injecting a stream of the feed shaft, F , at the bottom of which is a frictional gear desirable lengtl by simply adding fresh pieces of pipe. Com

Fig. 1.
water into the hole being bored, through the interior of the and maintains a uniform pressure upon the same. The which it escapes between the diamond teeth at the bottom of drill. The 1 stone, prevents the diamond points from heating, and effectually washes out and carries away all the borings as fast as they are produced. He also invented a mode of arranging the diamond teeth in an annular bit or boring head in such a manner that a large hole coald be produced with the detrition or cutting out of but very little rock, thus economizing both time and power as well as diminishing the cost of his drills. The general introduction of these drills was for some years retarded in this country, and their practical value lessened by serious defects in the mechanical appliances by which they were operated. Messrs. Severance \& Holt of Middlebury, Vermont, and 14 Wall street, New York, have, however, so far perfected the construction aud arrangement of these drills that they are enabled to present a really valuable tool. The
accompanying cuts represent the two styles of drill in most common use; Fig. 11 being a perspective view of the testing drill, and Fig. 2a similar view of the tunnel drill. The testing or prospecting drill is so called because of its extensive use in testing the character and, value of mines and quarries,
fitting the lower gear on the screwhaft, which has one or more teeth less解 inside coupling four inches long, with a hole through the tional gear is attached to the bottom of $\begin{aligned} & \text { place by the chuck at the bottom of the screw-shaft. The }\end{aligned}$ the feed-shaft, F, by a friction-nut, thus small steam pump, C C, is connected by rubber hose with any producing a combined differential and convenient stream or reservoir of water, and also with the frictional feed which renders the drill outer end of the drill-pipe by a similar hose having a swive perfectly sensitive to the character of joint, as secn in the picture. Through this hose a steady the rock through which it is passing, stream of water is forced by the pump into the drill from

tunnel. The drill-head also slides up and down this adjustatunnel. The drill-head also sides up and down this ar
ble frame E , e , enabling us to bore a perpendicular row of horizontal holes without incurring more than three or four minites delay in adjusting the drill to each successive hoi 0 ,
Then the drill itself with its feed-gears and sliding guide, 0 , may be turned completely round by simply loosening a nut
on the back of the swivel-head so that the point of the drill on the back of the swivel-head so that the point of the drill
shall describe a vertical circle at any angle of which it will shall describe a vertical circle at any angle of which it will
bore equally well. The two uprights, $G G$, are used to supbore equally well. The two uprights, $G \mathrm{G}$, are used to sup-
port the driving-shaft, F. They are made of common hydraulic pipe, and can be lengthened or shortenel at pleasure, has a sliding gear attaehed by feather and spline, adjustable at any position, as shown in the eut. The eliding brace just beneath the gear is used to steady the driving-shaft. Motion is communicated to this slaft by means of the cear, D. The
hollow frame posts, E E, are set frmly against the upper wall hollow frame posts, E E, are set firmly against the upper wal
by means of extension screws, NN which may be run u by means of extension sorews, NN, , which may be run up
two or tliree feet if desired. The engine, water-apparatus, feed gear and bit, are the samie as in the prospecting drill, and the mode of operation is essentially the same. When it is desired to produce holes less than one or one and a quarter inches di ameter, we usually set the diamonds so as to cut out all the rock, but other wise the annular bit is preferable. The stean canyenient distance and introduced into the engine hy pipe L. M is the exhaust pipe. The drill lutions per minute being a fair rate of speed. The feed may be varied at pleasure, and aecording to the hardness of the rock from sixty to two hundred and forty revolutions per
inch. that is from two to ten inches per minute. The same inch; that is from two to ten inches per minute. The same larger one. Only one man is required to operate it under larger one. Ony
ordinary circumstances. The whole thing is balaneed on its axle by depressing the handles, H, and trundied about like wheelbarrow.
The speed of boring depends, of course, upon the hardness of the rock. The maximum speed at which it is found both
safe and practicable to run a two inch testing drill in roek of safe and practicable to run a two inch testing drill in roek o than this is practicable but not economical, in view of the in creased wear of machinery.
creased wear of machinery.
Holes two and a half inches in diameter have been bored by this drill in North River blue stone and Vermont marble, at the niform rate of thirteen and one quarter inches per minute.
Thiree sets of feed.gears accompany each machine, the coarsest of which feeds the drill one-sixteenth of an inch at each
revolution, and the finest, one two hundred and fortietl of an inch. $. ~ F r o m ~ f o u r ~ h u n d r e d ~ t o ~ f i v e ~ h u n d r e d ~ r e v o-~$ lutions per minute is a fair rate of speed.
The gears are not changed except with deeided changes in the character of the roek-the frietional feed, before men-
tioned, allowing the drill to strike the hardest rock when tioned, allowing the drill to strike the hardest rock, when
boring at high speed, without injury. The finest feed is used boring at high speed, without injury. The finest feed is used
only for boring flint or rocks of greatest hardness. The same only or boring irnt or rocks or greatest hard ness. The same
machine will carry a drill of from one to five inehes in diamoter, as desired.
The depth to which holes may be bored is limited only lyy
Te strenth of the drille pipe and the power of the engine. the strength of the drill- pipe and the power of the engine. With light, steel pipe, und a five-horse power engine, a three-
inch hole one thousand feet deep may be bored with ease. inch hole one thousand feet deep may be bored with ease.
For holes rot over four bundred feet deep the ordinary y as pipe, and four
hardest rock.
The peculiar shape of the boring-bit prevents the drill from running out lof line; hence the hole bored, however deep it may be, is perfetly straiglt, and there is no friction of
the drill against the rock. By means of the swivel drill-head, the drill may be point-
ed in any direetion by simply loosening a nut, and it bores equally well at all angles. comes in contact wtth the rock, and their hardness is such that more than a thousand feet have been drilled by the same
points with but little appreciable wear. The cost of resetpoints with but hittle appreciable wear. The cost of reset-
ting the diamonds as as present new poits is very sllght,
and no siecial skill is required for the operation. operation, that any intelligent mechanic can easily learn to operate it and make all necessary repairs,
By means of this driil, mines and quarries may be thor-
oughly explored to auy depth, oughly explored to ayy depth, anda a contunuous core exhibited
showing plainly the character and showing plainly the character and value of the ore and other
deposits. deposits.
But it
of slafts, and the opriving and working of mines, the sinking this drill as a labor-saving machine is most apparent. Its adaptation also to submarine drilling, and its grea in clearing channels and liarbors caunot be overlooked. Spe cial machinery has been devised whereby submerged rocks
20 to 30 feet under water may be drilled and blasted without difficulty.

The Rivot Process.

Since some time in the fall of 1864 , experiments lave been going on for the perfection of the Rivot process, for the re-
duction of rebellious ore. The Pioneer Mill Co., at Markleeville Cal., expended several thousand dollars for the erec tion of one of the Rivot furnares, which promised such great
things for the Pacific coast. So far as their experience we. things for the Pacific coast. So far as their experience went
the whole thing was a failure. This furnace was erected under the immediate supervision of au expert, who was a graduate of the School of Mines of Paris, and from drawings said to have been furnished by Mr. Rivot. This was nothing more than an ordinary reverberatory farnace, such as used in
the Freiberg process, with the addition of a condensing the Freiberg process, with the addition of a condensing
chamber at the bottom of the chimney, about ten feet square, with which the flue of the furnance ec by means of , beate ated pipe, for the purpose of assisting in the oxidation of the base metals in the ore. Since that time parties in interest of that process have been steadily at work in Nevada
City for is perfection, and it is now announced that Mr. Rivot will visit this country next Fall, to personally superintend the operations connected therevith. It appears that
there has been a very material modification of the furnace
s denominated, a revolving roasting furnace for pyrites, being length and six feet in diameter, and weighing 21,600 pounds. This cylinder was cast on end, on New Year's day, at the Union Foundry. This cylinder is heated frem the outside, and the steam conducted into it at one end and through the centre by means of a perforated copper pipe, in such a manner
as to become mixed with the glowing ore, and decomposed as to bucrned dnring the process. Surely, if perseverance is and bnrned dnring the process. Surely, if perseverance is
deserving of reward, Prof. Rivot and assoeiates onglt to meet with suceess.-San Francisco Herald.

gractical 2 \&ettery

[whiten for the journal of mining.]

ventilation.

keply of mr. narden to mr. roth well.

(contincted

Passing by numerans criticisms, the unfairnes of which will be evident to any careful reader of my former letters but which the Editar of the Journal of Mining (very properly, no doubt) oljects to my exposing, by the only means in my power, namely, by quoting or repeating what have so fully set forth in these columns already, I will notice some more important points.
Mr. Rothwell "does not wisl to defend the accuracy of Mr. Woon's results," though he says "his experiments are nevertheless the most valualle on the English furnaces and jets." To defend that gentleman's results would have been to agree with me, and that he could not do. Yet, not to have shown some approval, would have heen im-
pugning all he liad said in former letters of that " emivent inining engineer" and liis experiments. In fact, some of Mr. Wood's results are trustworthy and other; are not. In June, 1852, Professor Hann showed to a British Parhamentary committee that Mr. Wood, in his evidence beore them in 1849, lad, in calculating results from an erroneous formula, underrated the drag on the mine, thereby viliating any evidence based on those calculations. But being made six months after this correction, do not involve that error, and, indeed, were carefully guarded against nll mistake. Mr. Rothwele talks of my comparison of the machines of France and Belgium, "or rather, he sllould say, those the late Mr. Mackworta las given." Yet, when
it suits his impulse lie turns again and says: "Tliese specimens of Mr. Harder's figuring, as applied to fans and furnaces, render it unnecessary for me to occupy further space in reviewing his examples." In point of fact, when
the figures given ly me are not the experimenter's own they are accuate deductions from the data given by the experimenter. Mr. R. deals heroically with the figures of others, but why has he not supported lis animadversions with examples of his own? He does not give us the glost of a liue of his own experience on any one point in the controversy, but prefers talking about "claracteristic modesty.
Mr. Combes, another French engineer, does not quite agree with Burat, since he puts the proportion of fuel erally lower, as will te seen in the following comparison

Temperatur of opend.

The last columin is Bcrat's proportion of fuel consune placed side by side with Combess', for ready comparison. That there is an economical limit to the working of the furnace, and an absolute limit under given conditions to its power, none of the readers of my first letters will have ailed to understand; the fact has been known since the furnace was first used. So lately as 1852, withcut experi-
meutal test, it was said and believed by some that 1,000 meutal test, it was s.id and believed by some that 1,000 utmost the furnace could reaclı under any circumstances but Mr. Wood's experiments in 1853 dissipated that idea The Tyne Main slaft (see Journal of Mrine Vol Vi, page 82,) passed per one foot area per ininute 2,976 feet of ir, rarefied to that bulk from 2,308 feet by a temperature of 262°. Falhr., and at a cost of one pound of coal for aclı 6,080 fret unrarefied,
To prove that to attain an absolute limit to the powe of the furnace, the temperature has only to be increased to from 420° to 600°, Falr. (as if that were an easy thing to do in the ordinary working of the furnace in all cases) He Drincta alludes to a "rough experiment" made a ing oflais iron works, and reported on at a late meet was foum South Wales Institute of Sngineers. By it, tained, that at $700^{\circ}{ }^{\circ}$ the largest volume of air sion of air producing a drag sufficient to overcome the power of the upward current." This only confirms what I have said ou the subject in former letters, "Nothing is
easier than by narroving the air returns_to produce a ligh
temperature of the upcast column, but this is accompanied by such an amount of friction as to procluce no ueful result in the mine." In the Doulais experiment, the air was so restricted; being made to pass tliroughtiberes of an area small enough to reduce the air to a given quantity, and increase the friction. Hera, then, we have a limit under the particular conditions-a limit to the power of the slaft, A larger sbaft, under the same resistance, would not have reached the limit of its power at 600°. Taking the "general average of furnace pits"at 170 degrees, as assumed Mr. Bates in mother "experiment" alludent to by Rotiwell, and to which we shall presently refer, there very wide margin of temperature.
Comparing the value of the work lone by the fun and the furuace at the Gethin Pit, Mr. Bates said that, with 100,800 feet at the fan, they got 95,888 feet of air in the recurns, by the consumption of 50 tons of coal a week; that the same quantity of coal gave them from 90,000 to 100,000 feet of air circulate I ly the furvace ; that the consumption of fuel in both cases was the sume, only that in the case of the fan $0-7$ of the coal was small; the difference in economy seing between the relative values of large and smal coal. Here, then, the difference in favor of the fan is not so gieat e were led to expect-especially considering the value of general statements in the absence of nccurate experi ment, not to speak of the wide interpretation to be given to the expression "small coal" close to the pit's mouth, and used for driving one's own engine.
We are told that "experiments, made by Mr. Bates on shaft in South Wales, showed that the depth of the upcast would have to lee about 800 feet, in order to realize the effective work of a Struve's ventilator utilizing only 38 per cent. of the power applied."
Turning to a report of these same experiments, we find That the slaft was 480 feet deep; that 43,856 cubic feet of air per minute was circulated by the ventilator, with a resistance of 2.31 incles of water pressure. On temporarily using the furnace, 34,088 cubic feet of air per minute was obtained, with a water pressure of 1.41 inches. The quantity of coals used in neither case is given, and it was regretted that the temperature of the upcast and downcast peratures were assumed, namely, 50°, Fallr, for the town (August, the lottest month of the yenr) and 170° for the up. By "the use of one of the usual formulas," the weight of the columns in ench slaft was obtaincd, when the dif ference was found to be 7.34 pounds per square foot over the slaft aren, equalling 1.41 inches water pressure ; with whiel supposititious figures and an operation in the rule of three, it was found that, as it took a slaft of 480 feet depth to produre a water pressure of 1.41 inclie3 with the furnace under the conditions given, so it would take a slaft of 785 feet depth to produce a water pressure of 2.31 inclies-that produced by the ventilator. And by the same rule, if it took a temperature of 170° to obtain a pressure of 1.41 inches, it would take 278° of temperature to produce 2.3 inches with the same slaft. And this is the "experiment" we are asked to receive as conclusive ; that to produce the same results as a Staveres ventilator, utilizing only 38 per ent. of the power applied, it would take alaf of abo 300 feet deep to utilize the same by the furnace. The aine report (January, 1868) tells us that Mr. Elliott, our friend's "rational mining engincer," at the same meeting aid: "He lad been working Struve's ventilator at one of his collieries for ten years. It had beeu of great service, because, although in its effects not equiralent to the furnace, it was a substitute for it when the application of the latter would have been attended with difficulty and danger.
Mr. R.'s theory that " while with most mechanical ve iilators the useful effect diminishes as the air becomes more arefied, an absolute limit has not been obtainel," is practi cally denied in the very report from which he quotes the rough" Doulais experiment, the observations of Mr. Wiis mars leading to the conclusion (expressed at the meeting at which the sulject was discussed) that "though meclanical ventilation might be capable of doing so, yet litherto it had not given a greater amount of cubic feet of a: per minute than the furnace
With reference to the Guibal fan at the Homer Hill Colliery, we are told that 50,000 cubic feet of a:r was moved in 20 secouds. Nabody knowing the extraordinary will be the roads in the thick coal of South Staflordshire will be surprised at a rapid movement of the air. Just so fast as the fan can receive and deliver the air, just so fast
can it obtaiu it; and that with no more resistuce than is occasioned in the passage of the air through the $351-2$ square feet area of conuecting tunnel. In the acconnts given of it, we read that with 65 revolutions a minute the an produced 37,500 cnlbic feet of air, with a water pres sure of 1.05 inches; and with 96 revolutions it disclarged 31,700 feet per minnte, with a water pressure of 1.7 find that 65 revolutions produced $6,029 \mathrm{cubic}$ feet, rezolut 308 fird atilized, proving incontestably that utilized, proving incontestably that the same principles apply to the fan in rentiation as to the furnace; in other
words, that there is an economical limit in the working of

AMERICAN-JOURNAL OF MINING.
195
the fan, and an "absolute limit" under given conditions to its power. Or, making use of the words of M. Glepin's theory, cited by our friend us applied to the furnace, "the atio of useful effect to heat expended in a shatt decreases as the temperature increases." So, as to the fan, the ratio of useful effect to power expended decr
lutions of the fan are made to increase.

to be concluded

danining ฐummany

GOLD AND SILVER.

Gleanings from Mr. Raymond's Report.

Nevada

White Pine-Whitc Pine distriet was organized lu 180%, but
did not become the secen of sucessfnl operations until the fall and winter of 1887 , when the rich mines of Treasnre $I 1111$ were
loanted. Previous to that time a company, called the Monte Cristo, was engaged, with no very flattering prospects, in the de-
celopment of certain mincral veins on White Pine mountain,
 make known a place where there was plenty of such materlal, and gided a party to Treasure Hill, sixteen miles distant,
the Hidden Treasure mine was located September 14, 1867 . The White Pine monuian, so calier from the species of timof east from Austin, and 0 miles southest from Egan canyon,
a station on the orerland road. It sis said to be situated in latitude 39 deg. 10 min. north, and longitude 38 deg. 30 min. west.
The mountain is ten or twelve mlles long, and rises boldyy some 2,000 feet above thic level valleys, having a totan altitude of perhaps 30,000 fect above the sea. On the western slope are the
reins first discovered, some of whllel were worked by the Monte Cluristo Company above mentioncd. They are said to have been
tolerably rich, but small. Parallel with Whlte Pine mountaiu, on the east, is a ridge some 1,500 feet lower, and five or six
miles long, In whicl mineral veins oceur carrying orcs of sllver considerably contamlnated with baser metals. This is called the
Base Range. Still farther east is the monntain known as TreasBase Range. Sis comparatively bare of timber, about 9,000 feet abore the sea, and separated by deep canyons on every side from
surrounding ranges. All these monntains have a gencrally north and south course.
The geological formation of the district is extremely simple, re. sembling that or ine so critea meetrhe districts or Nerada.
uplearal of limestone strata by porphyry, and a subsequent aphorphosis of strueture by solfataric and thermal: aqueous action, is eridently indicated. My brief examination dld not extend to the minute local detains or the formation, but 1 beiliere this nelgh borhood, when thoroughy staied,
the gology of other distrets, where the effetet of these agencles
are more obscure and the exposures of rock less extensive and distinct.
Thic limestone strata of Treasure Hill have been tilled from the east, and have a general course north ane south, and a dip
of about 20 deg. west T The uppermost layers now reman from the extensive denudation whlch has degraded all the momn tains of Nevada from a ruggeed summit or inited area, whiel has
been (strangely enoughi) described as "irap," but consists of lighbcen (strangely enough1) deseribed as "irap,", "ut consists of hiyh-
Iy fossiliferous limestone, containing mainly crinoids. Below this is a thin stratum of ealcareous shales, colored yeliow aud
red with iron, and beneath these again is the limestone stratum in which the rieh deposits of silver ore ocenr. This limestone is highly siliceous, and contains littie or no traces of fossils so far preciptous, and exposes the outcrops of successive strata; an neath the metalliferous layers. It is believed by many that neecond stratum of ore-bearing rock will be found beneati the low er fossiliferous limestone, but this las not been proved. Across
the eanyon to the eastrard the precipitous face of a paralle range shows the continuations of the limestone strata; but the range is of inferior height, and the upper metailireous 1ayer de
consequently wanting, having probably been carried away by de nudation. This range dips east ward, and the eanyon
and Treasure Hill probably occuples an anticlinal axis.
and Treasure Hilil probably occupies an anticinam axis.
"The formation of the White Pine district," says an butierwise known laws and rnles of geology." This is the common expres.
 market. The truth is, there is nothing unusual in the formation of the district, except the enormons ralue of its ores. These tuln stratum of the limestone, and, fortunately for the minners,
 chaloride or silver, win some enargile and steteleathe and (if the deposits nothing can be sald at present. They are probably bounded above and below by the planes of stratiteation, but lat erally they seem scarcely to be separated from one another--
what las been consldered barren rock between them being main. 1y low-grade ore, which will hereanter be extele-spar. The co reser stains apon most of the ore show that this metal was a constituent of the orlginal deposits; and I conclude that the remark abie purity of the chloride ore of the Treasure Hill mines is the
result of chemlcal clanges subsequent to thelr ortcinal lormatlon in the conrse of which solnble chlorides, sulphates, and blcarore deposits of Treasurc Hiil have a common orlgin with those of the Base Range, and that the present differences are due to
the concentrating and purlfying action of thermal waters carrying chemical reagents in solution. There is no radical distinc in limestone. The metalliferous fllulds, whether solfataric gases, aqueous solutions, or molten masses, find their way wherever an
opening is offered, and leave their deposits wherever they are they meet wis en which prodnce in them insoin. ble precipitates. Experience has shown that upheavals of stratified limestone do not generally produce fissures so extensive and
well-defined as ocenr In some other klids of rock. The solubility of the limestone Itseif in carbonated waters, especlally under calc-spar and to open outlets from it into irregular cavities, and, innally, to canse a general alteration (silicification, often) of the
country rock, and its in pregnation with the metalic contents of country rock, and its inpregnation with the metalis contents of
mineral waters. Hence the miner's maxim, that lime is a "good

The ore deposits of Treasure Hill are richer than any that
have been discovered dnring the preseut century; but, according veius. That that have yet beeu collected, they are not inssure Ily incomplete, sline no shaft on the point is is deeper than 6o feet, and no horizontal drift fonger than 100 feet. meeting, at which they were strongly urged to adopt at once the systen of "square loeations,", and abandon the farce of staking
out clamms on ledges which do not exist. This proposition was
defeated. nud clery defeated; and every man on Treasure hill now claims so many
 body of ore. IThe gets down to the ore, all the better; he ean
then work night and day extrate alarye Luen work iight and day, extraet a large quantity or rich elior.
lde, and send it away, beore the neighbor, who has a prior lo.
cation, cation, can prove the Idently of the deposit. In the utter
absence of any real distinctive features of lodes, the principle las
aben becn set up by the White Piners, that proof of such identity
must consist in absolute continulty of eilioride of silver from the Working of the prior locato to tho ose of the alleged trespasser.
In one case, that of the E berrhardt and Blue Bell, thls demand was satisfied. A drift trom the Eberlardt openhng 30
fect to the Blue Beil shint, passed through a mass or horn-silver, sule as haman eyes shave rarely looked upon; and, as a conse-
quene, the Blue Bell was nuited to the Eberhardt. The Keythe Eberhardt. There is only a wall of two feet between them; but this wall is amieally let alone, aud the "two veins" are
therefore held by miner's law to be distinet! In another case which cane to our kzowledge, a elaimant was endeavoring to
proteet hlmself from robbery, by tracing the ore into the works Pro a new-omer, elose by, and had suncessfully arrived within a
yard or his obiect when the oceurreunee of a plece of calc:spar
 and carry away the ore, which was, under miners' law, in a dis. and carry away the ore, which was, under minerss law, in a dis,
tinet evin, separated from the other by a u wall., Alt the
"wals" thus far discoveret on treasure Hill are of this wholly Indeinite and untrustworthy claracter-mere seams of eale-spar such thing as security of itte. Exen If one liad a regnlar flssure vein, he might be cheated out of all but a few feet of it by some
aceidental shoot of calc-spar across it; and when we consider that calc and limestone are chemlcally the same, and that a little
trickling of water might deposit one of these so-called walls anyarere, we flaal see what prote etion 1s offered to cappital by siel
a rule as shas been adopted in White Pine. This is an instance of the danger of allowing the first miners please, governing the erights of property. This splendid district
is now suljected to two styjes of operations-grabbling on the spot, and gambling away fron it. A great many worthy, hon
est, and indnstrous men are at worls there; but they will aekknowiedge that they are merely putting of the evil day or lith.
gation and ehaos. 0 thers want to sell to coppitalists and and they may sincerely beliere theer tlonal decettion in the matter; it is only to te he lamented that the ing titles, Introduce order among confieting elaims. To thei credit te it spoken, there has been thus far little quarrelling
among them. White Pine has been notably a quile, industrious, and good-natured mining eamp. But that is beeause there was
rooun for all, and proftale work for all. Unless some radieal change, of whith I have no knowledge, las taken place since my
visit in September, White Pine is a good place for men who live Visit in September, White Pine is a good place for men whio ive custom-milis
months to eo different deposits; but I must again repeat that I eannot find in
the cire mmstances of tie case any protectlon for permanent lnvest ment of eapital. Some of the mines, as for instance the Hiddel crowd, aiready extensively worked, and having moreover a sem biance at least of definiteness in their deposits, are better off
than others : but they all suffer minder the absurd regulations of In mis the . natural tendency, when men with nothlilag but the
In Win industry to depend upon gather iu lu a new aistrict, thay When I was in White Pine, many a man with plek and shovel,
and now and then a litte gunpowder, was making good wages and now and then a little gunpowder, was making good wayes
out of his small prospecting shaft. The retall minnhg business suited hlm well enough; but capital must work on a larger seale
 tain basis for the investuent of its thousands in permanen
works. The only eure for this evil now possible, is that whicl the inhabitauts may themselves supply, by uniting conflicting daims, aud arranging amlcably thertions by general ayreemen and to adjust the claims for damages that may arise from sucla change by means of a eommission elected by the eitizens.
I adopt, with such alterations and additions as my personal observation suggest, the following account of dififeren
mines, \&c., from the letter of a San Francliso Alta California correspondent, who visted the dlstrifetin November, two month The mines
rodnce iong the broken edge of the dolomite formation, in a line run.
ing southwards from the town of Hamilton up to the summit of Trasure HIII, and thence in the same direction over the de-
clivity on the other side. The length of this lode or line of de-
 answering, for the purpose of iliugtantiton, for the Ophir and
Gould and Curry, and the Aurora, Keystone. and Eberhard ear the south, for the Crown Point, Kentuck, and Yellow deposits are located in successlon, as follows, conmencing the northern end: Virginia, Mammoth, Ellersly, north of the
crest of Treasure Hill ; Hidden Treasure, North Aurora, Sonth Anrora, Keystone, and Eberhardt. There are numerons other loce these are the principal claims opencd. There is an apparent oreak in the line of deposits, as evinced by the croppings at the
crest of the hill, soath of the Hidden Treasure and north of the Aurora; but from that poln sonth the deposits crop out so near Visginia. - Located at the northern end of the Treasure HIII eett, or line of deposits, halif a mile south of Hammen,
feet higher. This claim is situated on the eastern side of a ravine near the top of a ridge, running north and sonth. It Ineludes
600 feet north and south, and 200 feet in width from cast to west. It has been but.partially opened, but the ore crops out
nearly its whole length, at points from 40 to 60 feet apart, east
and west, and at a depth of 20 feet, solid rock, with a large,
well-defince pay streak of bonanza, has been exposed. On the top of the ridge, above the Virginia shaft, a claim was located, and called the Aladdin's Lamp. This claim ran directly acrose of Virghnia, and though the prior claim exhibited no evidence and lodye excavations on the Aladdin's Lamp ground soon diss
closed rich ore in detehed mases, and the whole hill a appears o be full of it The Vergina ore, though not so exceeding rlich as that of the Eberhardt and Keystone, whilh is so near pure sil-
ver as to be hardly deserlbable as ore, runs from $\$ 100$ to $\$ 2,000$ cr ton, the average being probably not under 8225 . Sisteen Hidden Treasure.- Thls mine was discoovered by an Indian, Who guided White men to it, September 14, 1867 . There was
cousidierable scercey malntalned for a time, but the facts which werc attempted to be suppressed soon leaked out, and the resalt posits, lower down the hill, on the south, and the sudden development of the whole distriet. The present owners are T.J. Mrrphy and J. E. Mareland. It concludes 600 feet. The line of depos.
its dias been stripped for nearly the entire length of the clasm, and in places to a depth of 20 feet. The lode if such 1 l may bo called, pitches west ward at an angle of 20 degrees, and lits tlick-ore-no rich specimens Included-hauled to the Monte Cristo mill, on the west side of White Pine mountain, 16 miles by the
road via Hamilton, yielded $\$ 160$ per ton. The cost t was 865 per ton. Next year it will not cost over 820 reducing of rednce the same ore. The owners now have 100 tons of ore
of superior quality out ready for crusling, and the lode is in work win richncess, The mine he entrely unco verea, and no spring. Picked spectmens show hoavy snows fall, until next worth 81,000 per ton and npwards.
Aurora-This mine is lo
Ausora- This mine is hocatea on the south of the crest of年t enst of the tow . This is properiy the mit of the hill, and being but littie developed. Work was commenced on it with two men, September 22,1888 ; 30 mmem are
now worked. One hundred and fifty tons of rock from thi inine, worked at the Newark mini, in the Dlamond range, 80 per ton-the highest being $\$ 202$ and the lowest 8155 . The of hauling was 820 per ton, and of working 833 . There ls mor Huartz here than lower down the hill on elither side, and the incationse. The shaft is 20 feet deen en eposit are better than else The entrance to the mine is roofed over, and work can be carried
Keystone. -Desecending the hill southward past a number of ome distance below the edre of the dolomite, cropningsitnated mastru face of the hill. Here the chloride deposit crops onit the ing. The eclain covers soo feet, and the deposits was discovereed by a party following "Hoat" ore np the hill from the ravinc
below. At the point where the shaft now is, one of the mere lad, named John Turner, struck a piek, into what seemed Io be a mass of drled putty. Thls proved to be pure chloride
of silver, worth $\$ 15,000$ to $\$ 25,000$ per ton, and noder it w found more of the same sort, and masses of almost pare metallic berliardt, but a compromise had been effected; a neutral lhe beyond which neither is to pass, has been agreed on, and on the resent Anghst next the two claims are to be consolidated. At At
porks its own ground. The annount al ceady taken ont of the Keystone lo not stated by the owners, but
is very large, and all came out of an opening ln the hill no ore than 50 feet long horizontally, and 20 feet deep. A shaf as been sunk 60 feet throngh successive layers of dolomite, at
the eutrance of tuls open cut, and ore is said to have been fonnd at the bottom. Much of the wealth of this mine conslists of
dull yellowish brown colored dust which is run throunh
 of silver. One piece of this chloride, shown me while at the mine, weighed 143 pounds, and was worth, as it lay on the lhieh will work $\$ 300$ per ton: in another, 150 tons, which wwll leld 8500 to $\$ 500$ per ton; in another, $\$ 600$ tons, which will teld \$100 and upwards; in another, 2 large pile of chiorlde
 Yancattan mill, at Austin, yielded an average of 81,000 per ton, Eberhardt
 mine, that its name has become alimothard synonomous with is that of the eave entered by Aladdin. The location was made In
Deeember, 1867 , and covers 800 feet north and sonth." At a in several directions firom the surface drifts have been run other ores of sllver for 20 to 50 feet, and the end is not yet
reached. The entrance of the tunnel has been ellosed, and adt mission to the mine can now onny be gasned by desending shaft on a rope, we found ourselves among men engaged in
breaking down silver by the ton. The light of our and breaking down silver by the ton. The light of our candles tie. The walls were silver, the roof orer our heads silver, and clothing was a gray coating of fine silver. Filven a chimney in the Eberhardt gronnd, 885,000 worth of compromised with the company, being allowed to hold all he in dispute. The silver is now piled nu in a cabin at Treasure Hill. The proprictors lave $\$ 50,000$ worth of similar specimens piled np in another place. One of the owners of the Eberhardt, presnme the others wonld refuse to sell for less money.
the Oasis mill, now owned and ruy the by the Eliver Spriags, where s situated. This is the oid Keystone mill, which was bnrned at Austiu last summer. Mr. Page, after setting with the nnderwriters, took tie machinery whis phace asd lehuit it. It hz6 chlorination, or other expensive process is employed; the wet process of crushing aud direct amalgamation, known as the
Washoe process, being found for the present suffciently remunerative. Mr. Page erected the mill on a contract to work the Eberlardt and other ores; but the company soon Tound it for
their advantage to purchase the estabisisment. The mill cost their advantage to purchase the estabishment. The mill cost
830,000 , and the mill aid contract were sold to the company for 875,000.
Chiloride Flat ls a slope comprising from five to ten acres on
the western side of the hill, adjoining the to wn of Treanare Hill.

It is perforated like a sieve with shafts, sunk often within from
10 to 30 feet of each other. The holders claim 700,600 , or 1,000 feet each, and the claims, being located on the old ledge theory run into each other, cross and interlace in every directlon. A present the lueky holders of clalms in while metal has been of the metal to quarrel with each other, bnt as soon as they
work ont the liorizontal deposits, and run into each others' claims, as they soon will, shooting and lawsuits will be the order of the day \ln what is now a peaceful and highly prosperous com-
munity. The great mistake of organizing the district on the perpend on ledge " with all his dips, spurs and angles," and the diseoverer 200 feet in addition-was made at the outset, and it is
now too late to remedy it. Had the locatlon been made by the square yard it wonld have been ald right, and many a lawsuit nd shooting affray saved. Already difflculties are arising in the
vicinity of the Eberhardt, and more mnst follow. From 10 to 30 feet throngh the limmestone brings the prospeetor on Chloride
Flat to his deposit of silver, or to the certainty that he has Flat to his deposit of silver, or to the certainty that he has
missed it and mnst seek eisewhere. The owners of the Robert Emmet mlne, on Cbloride Flat, who are taking out rich horn ing less than $\$ 50$ per ton. This deposit is at least seven feet
thlck, and not yet worked through. The Genesee, Stonewalt, Delmonieo and other mines in the vieinity, are among the richest
on the Flat. There are 1,500 locations recorded in this distriet, named mines.
Thereare three towns in the distriet, Hamilton, north of
Treasure Hill; Silver Springs or Shermantowa, sonth, of the hill, Treasure Hill; silver Springs or Shermantown, sonth of the hill, Hamilton, the town which lias grown up in the
entranee of the hills on the north, contains perhaps 600 lnhabitants. From thence a graded road winds up the hill to Treasure
Clty, whilch stands below the crest of Treasure Hill, within the west. Here the princlpal mining popniation is eongregated, the
inhabitants (regular and transitory) numbering from 800 to 1,000 . The distanee from Hamilton to Treasure City ls not over on and one-half miles in a direct line, though two and one-half by
the toil road, and the differenee in altitude is estimated at from 1,000 to 1,200 feet. The town of silver Springs, sonetimes
called Shermantown, is located at the southern end of the Base Metal Range, two miles soutliwest of Treasure Hill, the road
winding down a deep canyon to reach it. It is probably 1,500 winding down a deep canyon to reach it. It is probably 1,500
feet lower than the town of Treasure City, or 7,500 feet above the level of the sea, and containing 400 or 500 people.
Hamilton has a supply of water, and is the stage and express depot, and the primary depot for supplies for the district. Treas-
ure Hill is exposed to the fuli sweep of the winds on the sumnit of the mo from Hainilton or Silver Springs and sold at elght eents per gal-
lon, but 1 it is the heart of the inineral deposits, and must be an important place despite its unpleasant situation.
Silver Springs is shettered from the winds, and i e residence. Hamlltore wa Whilel the people first found shelter. It consists of board and cloth slianties, tents, and brush, rock and carth cabins. Treasure
Hill ditto. Silver Spring has two or three Hill ditto. Silver Spring has two or three good brick buillings,
and is generally better builit than elther of the others. There is a saw mill, quartz mill, brick yard (not now in operation), and
large slanghter-house, at Hamilton; two banks and several assay offlees at Treasure Hill; and a quartz mill, sinelting furnaces,
assay offiee, and saw mill at Siiver Springs. The entire population of the district may be put down at 2,500 or 3,000 at th mime, and ncreasing at way rate of per day. A very few wo-
men have found their way into the district, but as yet there ean
liardly be said to be anything like female soclety there. The wages pald in the mines are $\% 5$ per cay, eoin, and those not a disposed. Lots which sold at $\$ 25$ in Haunilton and Treasngre Hil two or three montbs sinee are now in many eases worth $\$ 600$ to
$\$ 1,200$, and "jumping" is as lively as in San Franciseo, tbougi attended as yet by no bloodshed. Nearly every building spo and down to silver Springs, is already elaimed by somebody, and bolders al ways ask an adrance on yesterday's prices.
The climato-Necessary outfit. The peenliarities of
White Pine are not so well known as they will be when the district shall have becn inhabited for a few years, instead of less
than a year. Treasure Holl is from 8,000 to 9,000 feet above the evel of the sca, and exposed to the full sweep of the winte Mountains and Sierra Nevada. Spring is late, eold and wet, pleasant, with fine days and cold, frosty, freezing nights. It is Range in winter, bnt this story is not well autheutieated, and the vegetation and general appearanee of the country would lead to
the belief that the annual fall is not extremely large. Up to the eak of the White Pine Mountains, and Only scattered patches, on Treasure Hiil and the Base Range. It was snowing on the 20ta and 21st on the Toiyabe and other ranges
sonth and southeast of Austin, and probably also at White Pine, but the storm did not appear to be of long duration. The winter, however, must be intensely eold, and those who propose to
remain there until spring must be well provided with good lieavy woollen underclothing, heavy pilot, beaver or blanket eloth outer clothing, and at least two pairs of the heaviest and best San end, and will always find ready sale.
It is difficult to get goods over the rallroad at this time
promptly, owing to the pressure of material for extending the inge, which mnst go forward whether or no; but parties intending wintering in the mines mnst either take over a stock of pro-
visions, and have them hauled from Argenta, or go provided with means to pnrebase them at Hamilton day by day for fonr low as the present ruling rates. The climate appears to be extry, and consequent rarefaction of the atmosphere, no person with weak lungs shonld attempt to winter there. Colds, rheupring, as the result of exposnre, neglect and carelessness. high-priced, but of good qnallty and abnndant. At Hamilton rably good meal may be obtained. The priee per meal is \$1, and board by the week is $\$ 12$. There is no hotel in the district, and price of a single bunk bed, with a mattrass and blankets, at the
siore of Waketield \& Wheeler, in which Wells, Fargo \& Co.s

ffice is kept, in Hamilton, is 81 per night. This is the general
resort of all new-comers, and a man who is in season to be book ed for a bunk is lookedd, npon as a man who is in meason morta. Others, , less fortunate, sleep in their blankets on the fioor of the store, in an eatch it. The prices of varions articles of food for man and beast are as follows: Flour, $\$ 16$ per hundred ponnds; potatoes,
(grown in Nevada and of superior quality, $121-2$ eents per pound;
onlons, 15 eents per pound ; sugar, (brown) 31 1-2 pounds for $\$ 1$; onlons, 15 eents per pound; crushed
poundes, (sides,
beef, fre
cents per per dozen; eggs, (fresh, $\$ 2$ per dozen; tes, $\$ 125$ per pound ;
eandles, 35 cents per pound; barley, 10 to 121.2 cents per
pound; hay, 8150 per ton; drinks, 25 cents eaeh, and no credlt pound; hay,
it the bar.
Wood of
Wood of good quality is abundant, and can be had for the
ost of cutting and liauling. All the woodland in the vicintty is being claimed by parties. who propose to eut wood for the mills and to supply the miners. Lumber costs $\$ 150$ per 1,000
feet for ordinary, $\$ 175$ per 1,000 feet for choice at Hamilton, where there is a little steam saw-mill with a single circular saw
eonstantly engaged in eutting lumber from the "bult pine," (or "nigger pine," as it wonld be ternned in the south,) which grows
on the White Pine mountain proper, in considerable cuantities and of sufficient size to afford saw logs 20 to 25 feet in length and two feet thick. At Treasure Hill $\$ 200$ and upwards per 1,000 feet is charged for boards, which are hanled from Hanilton or
Silver Springs, or from remote districts by heavy teans. Haif shanty of cedar posts chinked with stones and mud, and ruofed with cedar boughs and carth, whicil would afford eomparatively comfortable quarters for the party througb the winter. Those
erecting buildings of sawed lunber at present line them with erecting bulldings of sawed lunber at present line them with
cotton cloth to exelude the wind, then shingle or tin the roofs. A horse will "eat his head off" in a week or two, and parties
coming into the distriet at this time will do well to send them off to the lower valieys, 20 to 50 miles away, where they ean win
ter on-bunch grass and white sage in the open air, only requirorg the attention of a herder. Clothing and blankets cost about 0 per cent. more than In San Franciseo.
Tbere are, as yet, no agricultural developenents in the dishay and grain, and considerable eoarse hay is ent in the nex
valley eastward. Teams from Salt Lake via Egann canyon have Cond their way it great numbers to ahe White Pine cities, aut
their owners have done a flourisbing business in grain, vegetables, etc.
Mills a
a tamps, the White Pine mill (10 stamps,) and the Monte Cristo stainps), are, Sbelieve, all running, The old Butte mill
tamps), from San Franeisco eanyon, Reese River distriet, has been transported to White Pine, and will soon be in operation
There are also two smelting furnaces, which will start in the spring, for the treatinent of the richest ores, and of ores from the
base range. The product of White Pine for 1868 , ineluding the value of the ore extraeted, but not yet reduced, may fairly b estimated at a mililion of dollars, perlaps more.
At present there Is but one route by whieh the White Pin district ean be reached from San Franeisco, viz.: via the Centra pacific Railroad, Argenta and Austin. The distrnee from Sal
Franclseo in round gignres is about as follows: San Francisco to genta, by rall, 400 miles; Argenta to Austin, by stage, 97 miles
Anstin to Hamition, by stage, 120 mites-total, 717 miles. Th cost of the trip for passage alone, only 25 pounds of baggage
being allowed, is as follows : To Sacrauento 85, to Argenta $\$ 40$,
to Austin 815 , to 1 Iamilton $825-$ total, $\$ 85$, After passing Reno o Austin 815 , to lamitton $\$ 25$-total, 885 . After passing Reno Chowance for expense of cating on the way, which would bring no extra baggage, does notstop to sleep on the way, and indulges In
Cor Austin $\$ 10$ ean be saved on the above estimate, but the stag by which one engages passage from Argenta to Austin may be
filled in advance, in whieh case it may be neeessary to remain fo days at the former point. If no detention oceurs, and traveling
kept up nigbt and day, the trip through from San Francisco to
Hamilton may be made in five days. There are stage lines, Wells, Fargo \&\& Co.'s maii. line, and Miller, Wadleigh Austin. Between Austin and Hamilton there are two regular and Shannon's and half a dozen guerilla lines, which make about
half as good time as a man ean make on foot. Fare the same alt ound.
to reduce the staging ou the trip by one-half. From Hamilton o the enarest point at whitech the raiiroad can be reaehed - near
Fort Halieck, east of Gravely Fer Frt Halieck, east of Gravelly Fork-tbe distanee is not over 110
miles, possibly not more than 100 . The new road will leave country directly cau be constructed cheaply, and mnst be opened immediately. It and pass to the westward. There are now probably 3,000 people and dependent solely on Wells, Fargo \& Co. for theirletter papers, etc. A mail route should and probably will be opened
between the railroad, near Fort Halleck, and Hamilton, immeThe future productiveness and importanut
not now be forseen. but much may beexpected from thet canexploratlons of next season, in a broad belt of eonntry as yet
comparatively nuknown. As for the deposits of Treasnre Hill, they are certain to yield large amounts of silver before they are couraging but for the eonfusion and waste which an injodicious

Montana.

Our exclanges-which, by the way, have been delayed for a
week or more on the way by the snow blockade-come to us with an nnusnal amount of interesting mining news. We enl mill at Highland has been for some time and still is engaged in a run upon rock from Forest Queen lode, which gives promise of a good and satisfaetory yield. This work on the great tunnel,
perhaps the finest lu al: Montana, which is at present being run Three shifts of experieueed miners are at work in it, and the Monday morning until Saturday night. All tbese who own lodes in Highland are actively eugaged iu developing them, and
are as full of that abiding faith that is a corollary of a good quartz are as full of that abiding faith that is a corollary of a good quartz
lead....The flourishing. little burg of Siver Star from a few log
cabins, inhabited by the unwearying prospector, has grown into
thriving hamlet of some hnndred or more inhabitants, presentiful gardens. The Everett mill is day and night employed fo crushing roek from the Green Campbell lode, and as the past
clean-ups nave been very satisfactory, the present run is preg. ant with abnndant success. The Stevens \& Trivett mill is at ord of similiar runs predieate splendid results from the one now being earried on. The Broadway is a new lode, so far as reputation is coneerned, but it is sald that the quartz is very rieh. The
Iron Rod is firmly established as a firts-class lode. Numerons rastras are constantly in progress of operation during the snmmer months, when the brooks are running, and even from their feeble means of extraeting gold, reward the devoted and hardy niner. A large number of persons are busily engage by either of
upon their leads and getting out roek for trial rans by the two milis in constant operation. . .The Boulder diggings-the irst discovered in the Territory, and the eenter every year since
of a new excitement-again looms into importance. The bars originally diseovered (on the north side of the ereek, about eight ing from $\$ 8$ to $\$ 10$ a day to the hand, and good prospeetsthough not eonsidered paying-have been obtained on the oppo-
site side of the ereek. Then, five or six miles lower down, are several small gulehes prospecting weli for lyydranlie diggings, if
a supply of water could be got into them ; besides the bars on supply of water could be got into thiem; besides the bars on
Deputy Marshal Burkins' place, whith are to be developed the eoming spring. Now, it is reasonable to suppose, gold having been found in eneouraging quantities on both sides of the ereek, that its ehannel is fabulously rich. To eventually turn the stream from the upper bars aeross to the Little Boulder, thus
draining or turning off several miles of the Big Boulder that it may be prospected thoronghily, is, we believe, one of the projeets of Messrs. Burkin \& Co., in eonstrueting a ditch to cover the bars on Mr. B.'s ranche. The Big Boulder may prove another
Feather River in richness. We shall await resnlts witl interest. tion of a first-elass twenty-stamp quartz mill at Tueker Basin. Grominent annong the lodes in Tncker Basin are the Uncle Sann, son, Merritt and Winseott. The Holmes Mining Company have at a depth of 150 feet. The Granite Mountain Company have rum a tunnel over 300 feet in length on the Granite Mountain lode and extracted a large quantity of rieh pay quartz. Another tunnel 210 feet in length, has tapped the Levi Blossom at a depth of
70 feet. Shafts respectively 60 and 75 feet have been sunk in the Mermeonent seino and Merritt ledges, and developed true and ediy panned from a single panful of the erevice dirt. On the dis. overy elaim of the MeClelan lode a shaft and two tannelis have The vein exposed in their workings is 12 to
15 feet wide, with well-defined walls. Aetual milling results well as numerous assay returns have showu that every portion of the vein matter contains free gold in large payiug quantities.
Numerons runs made on the quartz from this distriet in the mill at Unionville have yielded as ligh as 87860 , and none less than Tueker Basin- None offer a more inviting field for the profitan mployment of capital... . It is a subject or mueh conyratulation o our eitizens that the attention of the 'solid' 'men of the eoun-
try is being ealled to this Territory. The gentlemen who have try is being ealled to this Territory. The gentlemen who have
united in the enterprise, wbich forms the 'Watseka Mining Company, are those who count their wealth by the hundreds of tho Judge M. G. Leonard, President; J. C. Wyman, Geo. Opdyke,
H. A. Sherreli, Secretaries ; - Smith, of Wall street, Treasurer, rosecution of work on the part of this company. For with wealth of the gentlemen eomposing it, the experienee, sagacity ock, nothing can retard the full and complete suecess of this ompany financially, and in a manner that will redound to the nust look for the capital to come for the working our mines. The Hendrie mill is busily eugared at work ernshhugy ore from the
Watseka lode. . . Messrs. Dance \& Stewart have beeome inter ested in that locality, and are busily engaged in prospeeting and supposed to be a continnation of the Watseka. It is their intenlion to loeate a mill upon this lead if it will warrant the enterMcAndrew \& Wann mill is also busily engaged erushing rock mportance as a gold producing one, the richness of whose quartz ustifies the most sanguine anticipations for its future prosperity. ... Mr. Cunningham, of the Lindsiey Mining Company, is sinkwork progresses.... Mr. Brookie is on his way to Argenta with odes owtion of immediately commeneing taking rock out of the which the Major is conneeted. This company intend running rock sufficient above ground to keep them in full blast till the

Cumregipondence.

To insure insertion of correspondence in our columns, the fall name and ad
dress of the wriver must be given.].
The Schoolmaster Abroad.
Editor Jocrval Mef York, March 10, 1869
Sir: Allow me to suggest the insertion of an editorial Joirsnal of Minisg: to regret that we were betrayed, quite inadvertently dorsement, or at least a complacent acquiescence in the me chanical theories of the inventor of a new system of propel-
ling vessels, by giving room to his views, and conspicuously illustrating his plans in a recent number. Fully aware that them, as n class, to be considered and recognized, to a qualify or less extent, as experts in mechanics, we honestly intend to exercise n wise discrimination in the admission of an ticles
describing new inventions, and setting forth the views and describing new inventions, and setting forth the views and ciaims of their promoters-and although it is not, of course new scheme, or the soundness of every inventor's of every as a prelimiuary to publication, we may venture premises, ise our intelligent constituents, that our columns will be re served for something better than a pictorial display of me-

contin he follo "Desi

snbvers
chanics,
of mec
avd orth
as the s_{0}
of the p
be ${ }^{\text {"A }}$
partie
partieul
number,
olic tole
opinion
ppinion
lon
pecessar
ion."
[Our
Bity

themi
and beco
ditimes
Uutury
Cilide
$\substack{\text { peide } \\ \text { tutan } \\ \text { tutan }}$

In
dation
damin

cis

lume
tumade

tat of
weice

$\substack{\text { mame } \\ \text { dame }}$
disem
[im

chanical follies, or the iteration of propositions or theories, which, like those of the article in question, defy all the laws of
sense." It is harely possible that you may have'promised some one of your deceased relatives never to make a retraction. In such a contingency, the shortest way out will be the insertion of the following at the top of the editorial column:
"Desirous of placing the Jorrys in
"Desirous of placing the Journal in the front wing of subversive, as opposed to what may be styled dogmatic mechanics, we have decided to pnt the first page at the service bave failed to gain a hearing in the papers of our more timid ard orthodox cotemporaries. To render a contribution eligible to this department of the paper, novelty will be regarded as the sole qualification. No writer need hesitate on account of the possible absurdity of his schemes, facts, or theories, i he believes in them himself
artieularly in view, we refer to an partieularly in view, we refer to a a article entitled "A New
Irethod of Propelling Vessels,", which appeared in a recent number, and from which may be inferred the kind of catholic tolerance which we are willing to extend to all shades of opinion and heresy. If anything more preposterous can be
found in the annals of mechanical literature, it will be only necessary to send a cepy to this office to insure its publication."
[Our sportive correspondent offers us the lively alternative of admitting that we were deceived by the claims of the invention to which he takes exception, or else proclaiming that we look for novelty only in the snbjects illustrated on our first page, and that merit is rather a drawback than otherwise. If he will reconsider his dilemma, he will find that there is an easy way out of it. We do not editorially endorse the claims of inventors who may desire to have those claims stated on the first psge of the Journal of Minina. Utterly absurd and impossible conceits we may indeed exclude, but we do not prononnce our own opinions except in our editorial columns. The articles on our first page, accompazied by illustrations, are almost invariably only impartial statements of the alleged merit
It is often cuite as interesting to our readers to see the drawings and read the claims of men who set up "preposterous meclanical theories," as to be confinod altogether to those well-known sulljects which experience has already trodden smooth. As for adding to our other editorial duties that of censorship over everybody's new inventions, we beg to be excused.
Concerning Mr. Pike's " new method of propelling vessels," we decline to express any opinion wbatever. If it ever strikes us as worthy of an editorial discussion,we shall examine its claims further. Otherwise, we shall leave it to the columns of other scientific journals, which have already publish ed some arguments in its favor.-ED.]

[written for the american journal of mining.]

COPPER AND ITS USES IN THE ARTS.

by dr. Lewis feuchtwanger.

Having explained the principal processes by which th: metal is obtained from its natural combinations, it may im well to describe a few interesting haloids and oxysalts ob tained therefrom.

1. The suboxide of copper, or red copper, which also occurs native, and which has already leen alluded to, is one of the most abundant and beautiful minerals distributed over the globe. It is prepared artificially, either by calcinfive parts of biack oxide of copper with six parts of copper filings in a close crucible. The result is a fine powder of brownjsh red color, which is a most valuable ingredi-
ent in the mauufacture of ruby glass, so much used for signal lanterns; the subozide of copper imparts to glass a deep, rich, ruby red color, equal to that obtained from the oxide of gold or purple of Cassius.
2. The black oxide of copper, which is also found na tive, and is called blsck copper, is abundant in the Lake Superior region. It is prepared artificially, either by heat ing in contact with air, to an intense heat, the colined rolling shect copper, or merely by ig. niting the carbonate, liydrate or nitrate to a moderate, or the sulphate to an intense heat. This oxide is easily soluble in acids, and forms all the usual salts of copper. It is likewisc much used in glass making, for obtaining : beautiful green color, and to make a peculiar greenis h brown color in combination with manganese.
3. The liydrated oxide of copper is formed by precipita ting a dissolved cupric salt in the cold, with a slight excess of dilute caustic potash, quickly washing the blne precipstate with cold water, and drying at the ordinary temperature of the air; when dry it remsins undecomposed, even at $100^{\circ} \mathrm{C}$., bitt at a somewhat higher temperature, it is converted into anhydrous black oxide. The blue verditer obtained by the gold and silver refiners, as a secondary product, and much used in common and fine painting, as also the Bremen green, are all hydrated oxides o copper, and are often purposely prepared by precipitating a solution of sulphate of copper with caustic potash of 15° Baume, washing the precipitate, and again treating it with
caustic potash of 15° Baume, and lastly, washing it tho The cugh drying it carefully.
The cupric oxygen salts have a strong arfinity for acids, dissolving in them easily and with evolution of heat, even after ignition. The anhydrous cupric salts are mostly white, the hydrated salts lave a blue or green color; are for the most part soluble in water, and the solutions have a me tallic taste and reddeu litmus.
The ammonio-cupric oxide.-The cupric oxide uuites witl ammonia in more than one proportion, but the ammoniacal sulphate of copper is the most important preparation and is formed by crystallizing a mixed solution of the two salts, which forms a light blue liquid, and when the satura tion is performed, by very concentrated solutions and gentle evaporation, or strong cooling, or by adding alcohol, the ammoniacal sulphatc of copper is found in deep blue prisms, which are soluble in 11-2 parts of water and decompose in the air, and if heated to 700 C . become apple grcen. The ammoniacal sulphate of copper is much used in pyrotechnic as a bluc color. Among the salts of black oxide of copper r oxy-salts, is to be mentioned sulphate of copper, or blu vitriol, which is also found native, but is manufactured
largely for use in the arts, and is chiefly obtained from the sulphuret of copper by roasting, and rarely by the combi nation of the metal with sulphurie acid.
By subjecting the copper matte, which was mentioned previously in the metallurgic treatment of copper ores, in reverberatory furnace to a moderate lieat, a sulphate o copper is formed, which is cxtracted by lixiviation, and then by adding oil of vitriol and lixiviating again more blue vitriol is obtained. The gold and silver smelters fur nish the tradc with it, obtained in the course of their operations. The chemist prepares the blue vitriol, by adding to each pound of copper scales, procured from the rolling mills, 3 pounds of oil vitriol, and allowing the solution to crystallize, which is easily effected, if the solution was con-
centrated. If it is important to liave the blne vitriol free from iron, which is more or less combined with it, the salts must be heated to redness in an iron vessel, by which process all the iron salt is left insoluble, together with a lit the of the copper, the rest of which may be extracted with boiling water. The insoluble residue, treated with sulphu ric acid, yields the residuc of the copper and much iron from which the copper may be thrown down either by ce mentation with iron, or may be added to a fresh portion of mixed vitriol. The blue vitriol is azure blue, and in ob lique rhombic crystals, and has a specific gravity of 2.274 it is much used in dyeing and calico printing, and of late years by the farmsers, who soak their ccreals in a solution to poison insects and destroy fungi.
The nitrate of copper is easily obtained by dissolving copper, its oxides, lyydrate or carbonate in uitric acid It is of greenish color, and deposits, at very low temperatures, crystals containing much water, and at high temper atures forms prisms with 3 equivalents of watcr. The crys tals deflagrate on ignited coals, and detonate when mixe wit! phosphorus and struck with a hammer. Whe powdered and rolled up in tin foil, spontancous iguitiou results after a short time; paper dipped into its solution
and dried, takes fire readily below a red heat and burns with a green flame.
The nitrate is used by calico printers, dyers and pyrotechnists, for preparing some copper salts. The chloride of cop per is a haloid salt, obtained by dipping oxide or car onate of copper in hydrochloric acid, or by mixing equal arts of blue vitriol and common salt with a little water a 25°; sulphate of soda will separate, on cooling by slow vaporation; the chloride separates in crystals, which are our-sided prisms. They are green, deliquescent, soluble in water, alcohol aud ether, and may also be sublimed. eelebrated green paint, called Brunswick green, is obtaine by digesting liydrated oxide of copper in a solution chloride of copper.
As the object of this article is to describe the practical uses of copper, and its application in the arts, the writer has ot entered upon the various theoretical explanations re garding the combinations of copper with all acids, etc and he will conclude this subject by enumerating the many igments obtained from the salts of copper.
The green pigments used largely in the arts, where coper forms the base, are the following
4. Bremer green is a beautiful pale green ; prepared by recipitating blue vitriol and sulphate of copper with car bonate of soda, or by precipitating a liydrated oxide of opper with caustic soda.
5. Brunswick green is prepared by exposing copper foi cid or sal-ammoniac. It is un oxychloride of copper
6. Paris green is an arsenite of copper, and is t山己 $\varepsilon . v o$ te grecn pigment used by painters in this country for linds, window shades and fine work; it is prepared by precipitating a solution of blue vitriol with a solution of White arsenic or arsenious acid
7. English green is likewise an arsenite of copper, with the addition of either sulphate of barytes, commonly known barytes or terra alba, ground sulphate of lime
8. Mineral green is synonymous with Scheele's green, a
arsenite of copper, but is also a mixture of 2 parts Scheele' green, 6 parts white lead, 3 parts malachite or carbonate copper and 1.2 part of verdigris.
9. Mitis or Vienna green, is an arsenite of copper prepared from sulphate of copper with the prepared arsenite of potassa or soda.
10. Mountain green is a carbonate of copper
11. Schweinfurth green is an aceto-arsenite of copper.
12. Veronese green is also an arsenite of copper.
13. Cendres bleues, verditer and Antwerp blue, are all precipitates from blue vitriol, with chalk or carbonate of soda.
14. Verdigris, or subacetate of copper.
15. Verdigris distilled, crystallized, a neutral acetate of Tper.
The common verdigris is mostly imported, and is prepared by exposing thin rolled copper to the fermenting marc of the grape, or wrapping it in cloths dipped in cetic acid. The manufacture of verdigris is practised in rance on a large scale, and may here be briefly described hus: In Grenoble, they merely moisten their copper plates 1-24th of an inch in thickness with vinegar; in Eng and, they form alternate layers of the copper sheets and coths, dipped in acetic acid, in wooden boxes ; the cloths are moistened with the acid every three days, and after twelve days small crystals appear. This operation lasts rom five to six weeks. In many countries the rolled sleet copper is put in pots costaining vinegar, as in the manuacture of white lead; the coat of verdigris is scraped off and kneaded into a mass and stuffed in leathern bags, dried in the sun, whereby they lose from 40 to 50 per cent. n weight.
The neutral acetate of copper, or distilled crystallized verdigris, is the above product, re-dissolved in boiling water, and left to crystallize on strings. Verdigris is much used by hatters, very extensively also, in dyeing and calico printing, as resist paste in the blue vat dyes. The crysallized verdigris which comes into market in oblique our-sided prisms, used by painters only as a fine pigment, was formerly used for preparing the glacial acetic acid.

Aluminum.

Forty years ago a few grains of this metal were prepared ealed the little pellets in a glass ty of and itgen. He clought that the metal conld ever have any useful applicaions. The discovery rested dormant for thirty years, when attention was called to it by the eminent French chemist, Deville.
The circumstances were as follows: The Emperor Naappropriated fitty thousand francs to defray the expenses pesearches into the properties and uses of aluminum, and Henry St. Claire Deville was authorized to make the experiments. We lappened to be in Paris when this took place, and were one day invited by Professor Deville to witness the preparation of the metal in the presence of the Minister of
War, Professor Dumas, and of other celebrities. Deville, who is the most genial, popular, and successful of the French chemists, received his guests with great cordialty, and explained, in the clearest possible manner, every step of the operation. He extracted a silver-white metal from a lump of clay. The way he did it was very simple. Chlorine gas was passed over heated clay mixed with charcoal, and the chloride of aluminum thus produced was driven over melted
sodium. The chlorine first extracted the metal from the clay, and was in turn decomposed by the sodium. In chemistry, might makes right, and every compound can be attacked and forced to capitulate, if the proper weapons are
brought to bear upon it. The aluminum was first seduced brought to bear uponit. The aluminum was first seduced
from its strong citadel of clay by the calorine, and was then from its strong citadel of clay by the
attacked and captured by the sodium.
The experiments, in a small way, having proved snccessful, The experiments, in a small way, having proved snccessful,
extensive works were established in the neighborhood of Paris, where aluminum was manufactured on a large scale. At the Paris exhibition of 1867 , Mr. Paul Morin exhibited numerous object
from its alloys.
The specific gravity of the metal is 2.67. It is tin-white, fusible at a red heat, briliiant, malleable, ductile, sonorous, an excellent conductor of electricity, inseluble in dilute sul-
phuric acid, and in concentrated nitric acid ; easily soluble in bydro-cloric acid and the alkalies. It does not decompose water, as was at first supposed, and does not oxidize materally in the air.
Professor Henry Wurtz, of New York, has recently discov-
red that if it be rubbed with mercury it ered that if it be rubbed with mercury it oxidizes so rapidly as to produce great heat. It was at first found impossible
to solder the metal, but this difficulty has been at length to solder the metal, but this difficulty has been at length
overcome. When fused with iron it forms a crystalline mass not malleable. Mixed with copper in the proportions of ten parts of aluminum, and ninety parts of copper, it forms a beautiful alloy, possessed of the color and many of the properties of gold. This alloy is called aluminum bronze, and is now frequently employed for the manufacture of watch cases, watch chains, and imitation jewelry. Nearly all the loy and the interest in it which at one time began to flan is oy and tored and several now establisments have arisen or its manufacture.
Four hundred pounds a month are now manufactured in France, and sold at twelve dollars a ponnd. It is largely produced in England.
Aluminum is one of the most abnndant metals on the
earth. It is found in brick and porcelain clay, in earth. It is fousd in brick and porcelain clay, in feldspar,
in cryolite, in granite, in slate rocks, in the ruby and sap. in cryolite, in granite, in slate rocks, in the ruby and sap-
phire. When iron rusts, it turns to a red powder, which can be washed away. When aluminum rusts, or is fused at
a great heat among the crgstalline rocks，it gives to us the precious stones called the ruby and sapphire method will be devised for producing it at a cheap rate；and when that time arrives we shall not have to fit out expeditions to go and search for the ore in remote regions，but we can dig for it under our feet，
The beautiful tone of the metal has suggested its use in the manufacture of bells，and a successful application of for this purpose has been made．
Aluminum has been employed by chemists as a reducing agent iu the preparatiou of some of the rare metals，and we may
pose．
There have mall now alloys of aluminum．The first is called alumiuum sil－ ver，or third silver（tiers argent），and is composed of one－
third silver and＇two－thiras aluminum．It is chiefly employ－ ed for forks，spoons，and tea service，and is liarder than silver and more casily engraved．The second is called minargent， and is made of one hundred parts copper，seventy part nickel，five parts antimony，and two parts aluminum．It is a very beautiful，permanent，and bilver for many purposes． repla mo hor many pu posthe in the arts ar cot so numerous as was at first predicted and its manuficturg as compared with other metals，can，at the present time hardy be called a metalhurgical one．The metal is so light that＇a little of it will go mrgreat way．A
cubic foot of it waighs one hundred and sif \ddagger yeght pounds， cubic foot of it weighs one hundred and sixyreaght pounds，
whereas a cubic foot of gold weighs twelve hundred pounds， and silver weighs six hundred and fifty－six pourds，iron four hundred and fifty pounds，and even granite weiglis one hundred and eighty－six pounds to the cubic foot．
still be much cheaper，as only onc－fifth as much would be rc－ quired to cover the same space
So abundant is this metal，that it is safe to predict that the stead of brieks，and we shall use it for many purposes now unknown－Prof．Jor，in the New World．

MARKET REVIEW

old and Silver Stocke－To
 ilthugh said to be held nt 8100 ，is considered by huyers worth only 8_{2} 2． ine especilly in Consolidated Gregory and smith and Parrmelee．The fol
 Copper and Other Stocks．－As the stock Boards were not in session
 10se，and sight
ct $105!$ d 105 t． Gold 181！（4131．

Canal not open this time lnst year．
Receitst for tho week ending March 23
Exports for the week ending March 23.

From Boston ．．．．．．．．．．．．．．．．．．．．．．gnlı，	1589. 615.62	${ }^{1968}$
From Phostideliphiia ．．．．．．．．．．．．．．．．．．．．．．．．．．．．	8，108，808	4．224，128
Baltimore．	81，77\％	256，957
Portiand．		6，500
Cleveland．		
Total． Total exports from the United States Saine time in 1867	4，406，942	737
	14，08	${ }_{\text {14，}}^{14,81,1034} 9$
		11，418，249

 tation today．For
inen meld at 2 e．
The English market io steady at $£ 7210$ for Chill Bars．
Tin－The London market is frm at $£ 180$ for Straits．
Spelter is dull at 6 cc ．gold，for Sllesian．
Lead－－At
g 60 to $\$ 6 \mathrm{f}$ for ordinary fore

THE IRON TRADE

Thie American Pig Iron Market remains quiet．with but，March litte inguiry ；pris

 terms．Rails remain quiet，inquiry smsil and stood light，now held at ase gold．
Froun store，most descriptions are reduced abount $t 5$ ．．．ton．Bar by the
involce is rery dull，dealers offering less than cost，laid down． The market for Pig Iren，says the Commercial Buztetin，is very frm demand for immediate consumption is very moderate．This Is owing to the Foct that the iate adrance in ply metal，not having been foliowed by y corres

and harted pricees fron of all descriptlons，is Armer in sympathy with the ris

 Nalils are anlet and st
Iron 18 sare and
for Wrought Serap．

New Yonk，March $26,1860$.
per 100 lhs．；boller and plate

R．R．Iron，For，fin Siock
gold

THE COAL TRADE．
 Cuing in thic way or coal has been bought up－ 20 to 25 cents ad anace eisery
offered by purchnser，but no argocs are to be had．There are said to be
ofere

 thousand cons or coal are to be sold or the usual sizes．If the presentstaty
of the market siold
will bempin untit

The wholosale market is dull，aud prices for domestics，says the Commer
cial Bulletin，euntinue to shde．Foreign descriptions

 size und unality．
The following to
week ending March 20，1860，and for the Beason to that date．\triangle compariso is also made with the amount transported the corresponding，week in 1 1Sfs，

	1868.		869.		$\frac{\text { ixc. on pect }}{\text { wex. . y witad }}$	
cospanies，	ERk．	rot	wEkE．	rot		
Phil．\＆Read．R．P．	56,1	64， 80	63.548	${ }^{615}, 4269$	T，441	
	37，izi	\＄9\％186	38．842	$611,924 \mathrm{~d}$		
Leligh \＆Sus， 1 R．P	9，475	61，579	16，879	189，670 1	1，904	\％ 6000
Scranton North		52．3si	gii9	10s．138	8，1354	5
Scranton south	19，261	${ }_{29}^{218,715}$	27，665	327，387	8，106，	
Penn．Coal co．		${ }^{99,115}$		149，5：5		
\＆Hud＇n Can．						
mokin．	5，815	71.958	5.581	70.788 d		
Tresorton．		3，961		4.3		
ars Valle	1，699	8，980	${ }_{1}^{1,729}$	5．93		
tignd B		${ }_{27}^{2 T} 4$	1，29	56,935		
yoming sonth．						
Oeming worth	3，071	2，658	3.623	29，238		
1868 ．．．．．．．．．．．．			140，666	1，764，167		
			84，8	1 14，4		

Report of Coal Transported over Lehigh Valley Railroad For the week elding March 20th， 1869 ，and previonsly this selison，coss：－
parce with sume time last year：

Same timo Increase． Decrease．．．

Urper ixilin reili．．．
Upper Lehigh Coal Co．．．．
Same time
Increase．
Decrease．

Decrease	55715	\％${ }^{\text {a }}$
Honey Brook	${ }_{1}^{1,676} \mathbf{1} 1117$	
－${ }_{\text {German }}^{\text {Spa，}}$		
coler	1，8415	59903
${ }_{\text {B }}{ }^{\text {B．Mn }}$		

B．Meadow，D．W
Jobh Coner．．
Lehigh Zlue
Sto．
Letigh Ziuc C．
stafford W．
Other Shippers

nehanna region B			${ }^{5 \times 2}$,	
Tratu br ruil and canal:					Georrgee Cok of Cumber: and f o ob, at LDecent Point for sulppling. Grace, Ma.	
........................						
```Forwarded east from M. Chunk by r'l game time last year. Increase.```	${ }_{87,060}^{86,107}$		${ }^{39}$,701 08			
Forwarded east from M. Chunk by ril Delvered at Mauch Chunk.   Del. ab. M. C. for use of I. Ok ...   To Lo \& B. r'd at Penn Haven for rail Do. for shipm't   At M. Chunk for shipmens by canal.   To N. C. P. R., at Mt. Carmel						
				sla		
			08115		(ex	
			$\xrightarrow{\text { forn } 1 .}$			
				$\begin{gathered} \text { Prices of Foreign Coals. } \\ \text { March. } \\ \text { Duty, } \$ 125 \text { per ton. } \end{gathered}$		
			${ }_{8}^{3,579} 801$			
				Per ton 2000 lb ., dellvered.   Coal Freights.		
			30,226 0s			
				Freights on Coal Sea-borne from Port Richmond, Philadelphia,   Mal 18, 100 From Philalphis and Peading P P Wharyes, Phlle to		
H. H. . 11.1 man d						
Wyoring						
			8,993 16			
y yorrise					come	
				New Bedford		
			201			
			34,93103		saag liarbor	
					New	
Total Upper						
			${ }^{165}$			
					East $\mathrm{G}_{\text {r }}$	
			${ }^{11}$			
Mouthe				Nahant....................... aud towing 2 2 50Weymouth.........		
Astarton Coas C						
Pratee Brothers						
				Litte Gisee Baj.................	Port Calidionil.........	
$\mathrm{gh} \mathrm{Coal}^{\text {d }}$.			${ }_{6}^{40,991} 17$			
mit Mins.						
Otherstipper						
Total Mauch Cha		3,14	46,356 1		Norwich.................. 180 - 130Pawtucket and towing ..P	
"، Maych Chuak						
			$\underset{\substack{68.559 \\ 128,090 \\ 15}}{15}$			
				Foreign Freights.   New Castle and Purts on Tyne........................................... 15 . $£ 18$ keel.   Ilverpool.  		
Forwarded Sonth from Mauch Chunk by Rail...     						
		16,378	199,670 $0_{8}$			
			$\dot{x}_{4}^{4} \frac{75}{6}$	[CORRECTED WREKLT.]		
Schay Mikiliestrut....			$\begin{aligned} & 474 \\ & \hline \end{aligned}$			



Prices for Pittston Coei at Newburgh, March, 1869 . $\underset{\substack{\text { Lump, per ton, } \\ \text { Steaterer } \\ \text { Grate }}}{\substack{\text { 2 } \\ \hline}}$

## 70e. Freght to New York.


Lehigh Coal at Manch Chunk.
March 1s 8 .
Letign Lip and St
Broken apd Egb.
${ }_{8}^{53} 501$ Sol

## Lump.....ehigh Coal at Elizab bethport, Mareh, 1869 , <br>  <br> soo. Freilight to New Fork.




 Freights on Coan Sea-borne from Port Riohmond, Philadelphia.
March 18 , $1809 .-$ From Phildelppha and Reading R. R. Wharres Phla, to


Aris's Gazette says: " Some time ngo, we noticel, from In Anerican paper, the manufacture of the largest rope in the world. If we rememiser rightity, that rope weighed hast twenty tons. A rope is now being manufictured a hirminglnm and Loudon, whiels connpletely eclipses nlt previous achieveluents, literally speaking, in the same line. It is round wire rope, 5 1-4 incles in circumference, 11,000 yards long, and weighing upwards of sixty tons. The each wire measuring 12,100 yards. The whole length of wire is 726,000 yurds, or 4121.2 miles; the six strands sur-
rounding a liemip centre of 27 threads of rope yarn being manding in henpe eentre of 27 threads of rope yarn being
nade from Petersburgh clean lhemp, each thread measuring 15,000 yards, or a little over 230 miles. On the completion of the manyfucture the rope finally receives a good coat of composition of Stockholm tar and boiled linseed
The rope is madie from Messis. Webster and Horsfaliis patent chareonl wire, manufuctured at Hay Mill, wear Bir-
minglann. The wire is all tested, and is gunrunteed coniract not to strectcl more than six per cent at finthest, withont breakage. truin, samples which we saw tested, after a tremendon of the $F$, facture by the sume firrn, Mr. Horsfall supplying a large portion of the iron wire.

- Baer, an eminent German physician and oculist, saya hat llue eyes are capable of supporting a much longe ud duration of the sight denend on the sfengoth re eyes, and that depends upon a greater or less degree of carness of the pupil, as the defects of she sight depend It results that in this point of view blue eycs are infiitely better than black. The former, therefore, possesse adapted to their functions. The same author perfections marked that black ejes are more subject to cataracts; and eyes, you find not one that is perfectly satisfied with them In this particular, then, it must be admitted that blue eyes are better adapted to their pmrpose than black ones. Baer we think, must be blue-eyed.
-The La Salle Press says: Messrs. Mathieson \& Hege ery twathe, Ininoss, consume one hundred tons of coar tand that these gentlemen intend to sink a coal slaft for their own express use. They are enlarging their works by
building new furnaces, and will scon put nu a foundry machine shope, mend other buildings, which nre needed to ac commodate them in the immense business they are carrying on. The zine works of these gentlemen are destined Vest.
- When writing ly common ink has become fided i,y ge so as to be nearly or quite illegible, it may be restored penct or fealher dipped in a tincture of canls, hair -o ution of ferro-eganitic of potassium, sighly acidnlated ery eatrochoricac d. Either of these wables should bo - A gond va with for maps, h rts, eagravinys, etc., is made trm two parts of spirits of turpentine with one p.rt of Cinala lmam, when the paper has been sized over with triking through.
-The largest school of applied scitnce in the world is the
Ecole Centrate des des Arts et Manufactures, in Ecole Centrale des des Arts et Munufactures, In
Paris. It has 500 pupils, and the number of applications is alParis. It has 500 pupils, and the number of applications is al-
ways twiec as large as the number of vaeaneies. The period of study oeeupies three years. It is thoroughly adapted to industrial science. The heads of the subjeets of the first and seeond years are applied mechanies; the construction and ereetion of
machinery ; analytical Industrial, and acricultural ehemiztry; natural philosophy in applieation to the arts: metallurgy, mineralogy, geology and mining. Among 2,000 young men who have left this school, the carecr
of 1,394 has been reeently traced, and the issue was this : 247 of 1,394 has becn reeently traced, and the issue was
had died, while of the others 480 were engineers or superior offtcers of railroads; 54 were mechanical engineers; 124 were iron ron masters; 280 manuactures of consierable eninence;
arehiteets ; 35 contractors for public works; 42 professors of the applied seiences. The rest filled honorable posts in trade or in
the serviec of the Frenel or foreign governments.


## Fprcial extoticre.

## Globe Gold and Silver Mining Company.

The reader will find published elsewhere the advertisement of this company, offering a portion of its stock for sale. The mines
of Alpine County, Culifornia, have attracted considerable attenof Anine Coundy, California, have attracted considerable the most recent
tion of late, and the Globe Company-one of organizations in that locality-is partleularly distlnguished for the enterprise of its management.
We see by the Alpine Miner, pui
We see by the Alpine M/iner, published in that locality, that
the work is being vigorously pushed at the mine, and definite
results may soon be expected.

## Ifonnal of Elfining.

WESTERN \& OOMPANY, Proprietora ROSSITER W. RAYMOND, Editor.
OFFICE, 87 PARK ROW, NEW YORK. By publublag contributions, the JorikxLL of Mrrixa does not

## Publishod Every Saturday Morning.



NEW YORK, SATURDAY, MARCH 27, 1869.
CONTENTS OF THIS NUMBER.


## notice to correspondents.

In consequence of a new regulation reecntly adopted by the Postmaster of this city to facilitate the early delivery of mail mat ter, we have to requeet our correspondents, in addressing us, to give the uumber of our post-office box, No. 5,969 , in lien of, or in connectiou with our business offlee address.

## special notice.

We learn from the publishers of the private cition of Mr . Ramsond's Report to the Secretary of the Treasury on the Mines of the West that the price of the book is $\$ 175$, instead of $\$ 150$, per copy, as was erroneously announced in our editorial columns last week. We aro ready to send the report, post-paid, to any part of the country, on receipt of the above price. Western \& Company,

37 Park Row, N. Y.

## PERPETUAL MOTION-FORCE, ENERGY, ETC.

We remarked lately, in speaking of the proper use of the words weight, foree and power, that the majority of all attempts at perpetual motion originated in the coufusion of pressure with force, and the consequent conclusion that simple pressure could produce a force which could be used to drive machiuery. A correspoudent (A. F., of N. Y.) in a letter published in a recent number, protests against this
remark, and zays that " people who have studied and wloo remark, and zays that "people who have studied and whoo
understand the works of RaNKINE, will never be led into understand the works of Rankise, will never be led into
sucl an error as the one quoted, and will uot be caught in sucl an error as the one quoted, and will uot be caught in
search of perpetual motion." To this we reply that the search of perpetual motion:" To this we reply that the seekers alter perpetual motion do not belong to the class of people who have thoroughly studied mechanics. The by the improper use not be so foolish as to be misied even accustomed; but it is the ignorant who take words for things, and on the supposed authority of Rankine and others, imagine that a certain number of pounds, or a spring, because they exert a pressure, really constitute a force -in other words, that they can drive machinery by simple pressure. We have been personally consulted, during the last ten years, by eleven different persons, who supposed they had discovered perpetual motion; and, of these eleven, no less than nine had based their inventions on his fundamental error, imagining that simple pressure or
attraction would produce the perpetual force. Our state attraction would produce the perpetual force.
ment was, therefore, founded on experience.
What we desire is simply that the word force should always be used in the same sense. As the matter now stands, this word is employed in books on mechanics in two very different significations: first, in its common acceptation, as, for instance, "force driving machinery;" and secondly, as synonomous with pressure, as our correspondent uses it when he says: "the force most convenient for measuring other forces is gravity. A pressure, the tension of a spring or rope, the attraction of a magnet, etc., are not 'matter,' although they can be expressed and measured in pounds." To this we reply that pressure, tension of springs or magnetic attractions, strictly speaking, cannot ie numerically expressed and measured in terms of matter, but rather in terms of the pressure exerted by a certain amount of matter, acted upon by gravitation. We have then either to drop the use of the word force in the common acceptation of the word, and speak no more of "force driving maclinery," or we have to drop its use as a measure of simple pressure and speak no more of a "force of 20 pounds." We have closen the latter alternative.
Our correspondent further gives an illustration of " work," instancing 500 bags of flour to be lifted 40 feet, as a "fixed amount ot work, which may be expressed in foot-pounds, independent of time." Accordiug to his previous commu nication, he prefers, with Rankise, the term energy for foot-pounds, and therefore he would say, "I have some energy to do, 500 bags of flour to carry up 40 feet high." Now, we maintain that time is a necessary element here, its amount may be undefined, left ad lilitum, but it enters in the idea of work performed, and cannot be made infinitely long. Therefore, the "eminent Professor" we mentioned would decidedly say : "I lave some work to do," or "I want a certain pover to do the job."
It may be useless to argue about words, but when words convey idens not well defined, it is very useful to settle once for all, what we have to understand by them. The existing books on meclanics were mostly written before the late discoveries of the conservation of force (or, as per haps our correspondent would prefer, "conservation of energies,") and this defective use of language is therefore re tained in them. We are not "attempting to overtlirow a a perfectly consistent systen; ;" we wish ouly that in eases where the word "force" is used in another than its ordinary sense, the words "weight, pressure," or any other whiel more correctly expresses the idea to be conveyed, might be substituted. We would retain the expression "paralellogram of forces" as correct; but the expression "mechanieal powers" should be rejected, as we shall show meclanieal powe

## roasting and suelting ores in cakes.

The Societe Coignet of Paris has patented in France and England a process for treating ores which have to be roast ed or smelted, by reducing them to powder and moulding them, together with the necessary carbon, lime, fluxes, etc. into blocks or cakes, by a method similar to that employed in the manufacture of Corenet's well-known beton or conrete blocks.
We doubt the originality of this idea. There is nothing new in the general plan, though there would be something very new in its economical, not to say metallurgical, success. For the purpose of roasting ores, similar attempts lave been made both in Germany aud in this country. An inventor by the name of McCellocir, if we remember rightly, introduced'something of the kind ten or twelve
years ago in California. More recently, Prof. Kent's pro years ago in California. More recently, Prof. Kents pro-
cess for desulphurizing ores was based upon a similar idea and the same thing was tried and rejected in Germany. I seems to be well settled that nothing is more effectual in roasting than a free supply of air; and this is not secured by caking the mineral. Kernel roasting is notoriously imperfect; and the only advantage it can claim is the saving effected in the avoidance of puiverization and the substitu tion of cheap kilns or heaps for the more expensive rever beratory and skilled labor. But when au ore is once pulverized, the reverberutory, or, still betier, the terrace fur ace, would be preferable to a process which deliberately sacrifices the advantage of the pulverized coudition by re-
coustructing the lumps which lave been laboriously de stroyed. Tle plea that in this way an intimate mixtur with fluxes, etc., may be effected, is not sound. The mixture of materials used in roasting is already intimate enough in the reverberatory, and in such cliloridizing furaaces as Stetefeldt's.
For purposes of actual smelting, this process may be Found useful, though we must deny it the merit of novelty unless there is some origival feature in the furnace pro posed, of which we have at present no knowledge. But very practical metallurgist will doubt the economy o crushing ores simply to have the pleasure of sticking the pieces together again, wheu the leat of a smelting furnace will secure, under the management of average skill, all the mechanuical objects_desired.

## the ellershausen process.

This new method of reducing iron ore to pigs, withour puddling, is attracting considerable attention in westem New York and Penusylvania. The Messrs, Shoemberagr of Pittsburgh, Pa., have arranged for the treatment of the product of their two furnaces on the Ellershausen plan, and expect great improvement in the quality of their iron The iron is run from the blast furnace into a large ladeo of "shank," the capacity of which varies from eight twelve tons. After the iron ceases to flow from the furnaces, the contents of the ladle are run out iuto moulde, situated on the outer edge of a circular revolving table During the running of the iron into the moulds, pulve ized iron ore (Port Henry, Lake Clamplain ore is used is mixed with the iron in layers, alternately of ore and iron, until the moulds are full. The result is that the iron becomes generally decarbonized, and ouly requires heating to prepare it for the squeezer or hammer, previous to being rolled iuto bars.
We incline to the opinion that whatever there may be o economy or practieability in the Ellershausen process, will depend largely, if not entirely, upon the quality of the ore used. The ore of Lake Clamplain is magnetic, aud per. haps quite pure in comparison witi others that we might name. The separation of the component ingredients of the ore, its decarbonizstion, the effeets of sulphur and plosphorus in its texture, are matters which, in the absence of the puddling furnace, it may become difficult to manage; out if the experiment of the Shoenbergers shall demonstrate the practicability of the new method, it will be good news to iron-masters. Meanwhiile, we should be glad to hear of experimeuts with the Iron Mountain, Lake Superior, or Herkimer (N. Y.) orcs.

## White pine.

Our private advices confirm the frequent statements in the public press, that the "White Pine fever" is on the increase. The coming summer is to witness a mining excitement far surpassing that which attended the discovery of Washoe, of Frazer's River, or anything save the original rush to Califor nia in the days of the first gold diggings. It will be of no use for us to cry, "Keep cool !" How can people keep cool when other people are getting rich? Thousands upon thousands will crowd into the White Plne country ; there will be some dazzling successes and many brilliant failures. Probably every adventurer will come a way either a "made" "busted" man. The enormous richness of the White Pin deposits is ascertained and abundantly confirmed; but the size of Treasure Hill, on which they occur, is ludicrously inadequate to the population which is hastening to mine upon
The probable result will be a seattering of thousands of hardy and experienced prospectors over the vast belt of virgin territory of which this distriet forms but a small part If the explorations of this summer result in the discovery of one or two more Treasure Hills-and there is a fair chance of such a result-the impulse given to the now somewhat languishing mining industry of the Pacific slope will be incalculable.

## SULPHUR AND MERCURY.

Our ueighbor, the Scientific American, in speaking under this head of the well-known fact that sulphur is an antidote to mercurial vapors, and will, when present, absorb them from any atmosphere in which they may exist, forming on its surface a cont of sulphide of mercury, looking like iron, recommends the casting of "statuettes, friezes, mouldings, flowers and so forth of sulphur, and the exposure of them to the vapor of mercury, and so obtain a umber of articles, all wearing a metallic appearance, which may be found useful for ornamental purposes." This nggestion is unfortunately rendered useless by practical faets, as it is well known that sulphur casts can serve but a temporary purpose, as moulds for electrotyping, etc. The strongly crystalline structure adopted by the sulphur in cooling makes sulphur casts so very brittle that sooner or later they fall to pieces by the natural clanges of tenperature. Often the simple touch of the warm hand is sulicieut to cause a statuette of sulphur to fall in fifty pieces. This may be obviated to a slight degree by careful annealing, but even theu the material is exceedingly fragile.

## Tribute to Science,

The nomination of Professor Charles W. Elliott, of the Massachusetts Institute of Teclinology, to the Presidency of Harvard is a strong proof of the power of the ew movement for the introduction of natural cience iuto the currictlum of a "liberal education. Prof. Elliotr, being a young man, should be all the better qualified to command the sympathy aud arouse, the entliusiasm of the young men under his clarge. Yet, after all, this uomination strikes us as a strange one. We are nol aware that Professor Elliotr's eminence, either among the scientific men of the country or among those of his own State, is such as to entirely justify this great distinc-
tion; and, corporation he belongs, we cannot 1 states, or many rotar
education, natural.
many anotl many anot
cess. The cess. The
M. Bout by means severely and as wa
We liave We lave
we note we note w
monstrati about to b from the course nei viaduct $\mathbf{w}$ plete anal point mo
tion; and, while we cordially rejoice that the choice of the corporation has fallen on a member of the class to which he belongs, and congratulate him upon his nomination, we cannot help feeling that the world, or even the United States, or even Massachusetts, or even Boston, contains many votarics of science and masters of the philosophy of education, whose appointment would have seemed more natural. Perhaps the future will prove that this, like many another "irregular promotion," is ju-tified by success. The responsibility of final choice now rests upon the overseers.

## The Channel Bridge.

M. Boutet's plan for connecting Europe and England by means of a bridge across the British Channel has been severely criticised by Engineering and other papers, and as warmly defended by the friends of the inventor We have not meddled hitherto with the discussion; bu we note with interest the statement that a practical de monstration of the sounduess of M. Boutet's theory is about to be undertaken in the construction of a viaduct from the French coast to the insular town of St. Malo. Of course neither the depth of the water nor the lengtlo of the riaduet would be such in this case as to present a comlete analogy to the Channel Bridge ; but we believe the point most vehemently assailed in M. Boutet's plan is the mode of construction ; and this might be very well illus trated by the enterprise now proposed.

## new publications.

The Mineralogy of Nova scotia. A Report to the Piovincial Government, by Hexse How, D. C. L., Professor of Chemistry and
Natural Histery, University of $K^{*}$ 'ugs College, Windsor, N. S., etc., etc. Halliax: Crarles Ansann, 1869 .
This report contains in $21 \pi$ oetavo pages much clearly arranged and valthe inclidentai benefits conforred upon the werld by the Paris Exposition must be incloded the great number of works on speclal scientific or practical subjects to which it has given rise. The Commissleners of the United
States have presented a series of valuable papers as the result of their obsorstates have presented a series of valuable papers as the result of their obsor
vations abroadi ; and this report of Professor How to the Nova Seotla Gov ernment may be cited as an exanple of the opposite class, being, wa
record of observations at home, called forth hy the interest awakened ahroad The Honorable Mention awarded to the Professor's "Sketch of the Mineraiogy of Novn Scotia, ns illustrated by the specinens sent to the Paris Exnibition," aroused the bone government to emplioy hius in a more exteaded work, of
which this volume is the very acceptable result. The report bears date. Tune 1, 166s, and constitutes the most recent trustworthy exhibit of the subject. Van Nostrand's Eclectic Engineering Magazine, for Yarch, is fully equal to the numbers that preceded. Mr. Howlev siows him.
self no less skillful in his editorinl work than in hils original puhlleations. Net every one has the gift to select, condense and arrange with judgment the materials of an interesting and viluable magazine. Mr. Houlev's suocess in his new sphere is well deser
is fanciful, hut not effective.
Treatise on tie Power of Water as Applied to Drive Flour


It is a pleasure to see an old and valued frienc., like tiis little work hy Mr
GLyss, maintuining its well deserved popularity, and reaching a third GLyss, maintnining its well deserved popularity, and reascbing a third edltion besides an $\mathbf{A}$ merican reprint. The range of subjects trated in this
volume is very wide, and almost all the data required in calcuiations reiating to the flow of wnter; sources of supply of water; horizontal water wheels; to the flow of water; sources of supply or water, horizontal water whels,
turbines; undershot, overshot and hrenst wheels ; water-pressuro engines,
snd water-ram etc, are given very fulif, and in such a shape that they can and water-rams, etc., are given very fully, and in such a shape that they can
be readily used by the practical man. The publishers have certainly laid both students and practical men under deep obligations hy thls reprint.

## ANSWERS TO CORRESPONDENTS

'W. S. T., of ILL.--Superintendent of works employlug steam power, says he has tried every nd vertised means or suhstance to prevent in
crustations in his hoilers (the water being limey) without avail until he used while oak hark, or rather poles of that wood, and since that time he has had
no trouble. He advises others using water impregnated with lime to do likewise. The connection is evildent. The oak bark contains tannin and quercitic acld, which acids are well understood to combine with ilme as an
base, when lime is put in solution, and this compound will not attach itseil base, when lime is put in solution, and this eompound will not attach itsel
to the boller, or scaie as the lime does, but remains in suspenslon, mnd may be blown of fas mud. It ncts on the same princippe ns the gum, catechy
which enjops great reputation for the same quality, also due to an acid which which enjoys great reputation for the sane quality, also due to an neid which
it contains. This acid, by bolling, is converted into tannic acid, and forms in hard water n tannate of lime which does not adhere to the vessels.
T. W. H., OF Iows-Asks " What is the expansive foree of stean when cut off at halifstroke, the pressure being 80 pounds per square
inch $\%$ When cut off nt half stroke the pressure at tbe end of the stroke
would be to lhs. (ns the steann has doulfel its volnme), but ns expansion cools the steam the reduction in pressure is more than that, and leaves only the second half of the stroke one-half of 50 by 30 or 55 pounds; and this com
then bined with that of the first half gives one haif of 50 by 55 or 67.5 pounds. This
iseludes the attenuntion of the stean : this number, however, must be furiseludes the attenuntion of the stean: : this number, however, must be fur
ther reduced for reasons explained in some of our editorials, on the cnt-off ther reduced for reasons explained
valves in former numbers of this paper.
J. W. H., or Minv.-Asks if a belt running at a speed o 1,600 feet per minute? We suppose that you mean that this greater velocity is ohtained by ysing a larger pulley in the ratio of $2: 3$; in this casee, the power
transmitted will be iess, namely, the power of your wnter engine, minus the transmitted will be less, namely, the power of your water engine, minus the
increase of resistance due to the grenter velocity ; but as thls increase of reincrease of resistance due to the grenter velocity; but as thls increase of re
sistance is but small, the power transmitted will be practically about the locity by rnnning your engine more rapldly, of course yon nse more powe and transmit more power. In generail , a belt transmits the power of the
engine, whatever that power be, and it is best that puileys, etc. should be so engine, whatever that power be, and it is best that pulleys,
arranged that the engine may run at a moderate speed.
W. M., or Cons.-Asks if we know of any steam engine without "dead points," (single engine referred to) and if constructed elmple in its parts and certain in working, would it be valuable? We have often seen such engines. Many rotary engines are without dead points, but if you ca
bulld such an engine, reciprocating as you suggest, "simple" and "certsin" otc., do so by all meape,
M. E. H., of Iows - Says he has " 4,000 feet of two-inch pipe
om a spring which is 30 feet bigher than the delivery end, but the water Ises at that polnt 15 feet. The pipe runs in a stra'ght line, having a descent
of 18 feet the first 1,000 , the remainder level to the upright deliver y." If of 18 feet the first 1,000 , the remainder level to the upright deliver y." If your measures of heights are correct, and your pipe without leakage,attach
suctien pump to your defivery pipe to start the water to the level of your supply. This will remove all alr whlch may be entrapped In acciden tal hends
f the pipe, which is the usual cause of the trouble of which yeu complain. When once it has reached this ievel you may remove your suctlon pump, as he level will be maintained when all alr is removed.
J. H., or N. Y.-You cannot brown yourgun-barrel well with diluted nitric or sulphuric acid. The first acld will simply produce an unequai rnsting; the second will not affect it nt all, except that when your barrel
is not clenu it will merely remove the rust. The best material for browning gun-barrels is butter of zinc. It is made hy dissolving zine in hydroehlorie gun-barrels is butter of zinc. . 1 is made hy dissolving zine in hydroehiorie
acid, and evaporating till a drop soidififes on cooling. Three parts of this
and chloride of zine is mixed with two parts of olive oil, nnd, nfthr the harrel bas
been cleaned and warmed, it is rubbed with this ointment. Or, a mixture is male of chloride of zinc, suiphats of copper, water
acid, and this is repeatedly rubbed on the barrel.
J. B., or PA.-Asks how many horse-powers are required to rive an 8 or 10-Inch circular saw, running entirely in wood? That depends with which you wish to do the work. It inay be done with a fraction of one horse-power, and it may require ten horse-power. We have seen a calorie
engine, which successfully drove several printing presses and turnlng lathes, entirely stopped by the throwing on of one circular saw. This fact illusother mechanicai machines.
ether sand with an alkali, as sand is not in excess of the aikaili; when there is mere aikali than sand, it is readily soluble in 5 to 6 times its weight of beiling water, and is entire iy
unfit fer lining cisterns. A good so-called water-glass must contain an exass of siica or sand, and be enly soluble in water under high pressure in a
steam boiler ; hut exen then It bas never fulfilled the high expectations one entertained concerning it.
E. M. S., or La.-Common blue ink is simply a solution of Prussian hlue in water, to whleh about one-tenth part of oxalic acid has heen
added to prevent Its setting. Anlline colors of different shades of hlue, dlssolved in vinegar or water and alcehol, produce divers ether blue inks, which are preferable, as ter
hlue and oxalic acid inks.
C. H. P., of Ill.-Aleohol does not answer to preserve mueilge made of gum, starcl or glue, as it is soon iost hy evaporation. If you
ase acid, it is hy no means immaterial what acid you employ. Most minera use acdi, it is hy no neans immaterial what acid you employ. Most mineral
acids destroy the mucilage: acetic acld is the kind most cemmoniy used, but
carbolic acid is the best. If the odor is objectionable, any ethereal oll, as that ot cioves, berganot, etc., is effective and more reliable than alcohol. T. T., or N. Y.-There are now $\tau 0$ substances known which are positively simple or elementary. Every new discovery in chemistry
tends to prove more and more that the noble metais are elementary as wel as columon metals, mad that none of them can
nation of otber known or unknown elements.
J. E. B., of Ind--Steam engines weighing only 16 pounds per horse-power have never yet been heard of. Such mechines could drlve
fying machine and carry doubly their own weight. If you have such a ma chine, bring it out. You have solved the great problem of flying through T. B., or I
more inflammale of sucia oils nad the . Fiere of this city, has published these facts in regard to petroleum oils in the
transactlons of the American Institute, and in the Scientific American. N. O. H., or Minn.-Aceording to Dr. Stenhocise, the deo saturating it with a very diluted solution of sait of platinum, and igniting it nfterwards. The plat
I. D. S., of Ind.-It is easy to find the aetual horse-power or a turbine wheel, by slimply multiplying the weight of water in pound
falling every minute witi, the height through which it falls in feet, divding falling every minute witit the height through which it falls in feet, dividing
the product hy 33,000 , and suhbstracting froon 10 to 15 per cent. for loss.

## (Original gaparz.

[Written for the american journal of mining.] THE OHEMICAL OPERATIONS-XII.
by prof. G. hinrichs, of the iowa state university.

## 19. combestion

There are many bodies whieh burn when exposed to more or less intense heat in the atmosphere. This proces is called combustion.
The combustion of illuminating gas, oils, tallow, wood, coal, etc., is familiar to all; so is the combustion of sulphur and of phosphorus. But that even most metals burn is not so well known. Of those, the now common metal, nagnesium, is particularly noted for the dazzling white light which it emits wheu burning. It is sold in the shape fribbons or flat wires. A piece of it held by an iron wire in the flame of au alcolol lamp, or a candle, or even a sinle malch, very quickly commences to burn. If this light is to be used for the illumination of skating ponds or pubic squares, the wire is, by means of a clock-work, C B, reg. alarly pushed forward from its coils in the vessel, G, through the tube, A, where it burns in the focus of the reflector, $\mathbf{E}$; the white metallic ash (or oxide) produced drops into the basin, F. Even irou burns with great splendor in powerful galvanic current; the scales flying off from the white-hot iron under the hammer of the blacksmith are ikewise burning iron ; and steel fwatch-springs are burnt in the ox-liydrogen flame (which see).
98. If the magnesium is burnt very carefully, all the ashes eing collected, it will be found that the ash (oxide) produced weighs two-thirds more than the metal burned; or three grammes of magnesium gives exactly five grammes
of the oxide. Hence we see that in the combustion of this of the oxide. Hence we see that in the combustion of this
metal something is added to the same; and as the combustion takes place !in the air, it cannot be anything but a
part of the air which unites with the metal. The iron shes likewise weigh more than the metal consumed. In the combustion of coal and snlphur the result of the combustion is a gas. We shall show afterwards that the combustion in these cases is also a synthesis, an addition of part of the air to the carbon or sulphur.* We shall vers soon investigate this process a little closer (see Lavoisier's Experiments).
99. Lead, when heated in a current of air, is converted into a yellow substance called litharge, or, if it has been fused, massicot. This product must, therefore, be consided as burnt lead or lead oxide. The heating is performed in large flame furnaces (Fig. -) or reverberatories, $i$, . furnaces in which the flame passes from the fireplace, F over an elevation, $G$, called the bridge, to the substance on the hearth, m m , and finally out at K . Through the openings, AA a powerful blast is thrown in the hearth by means of bellows.
100. Silver and gold do not burn in the air-this is one of the reasons why they are called noble metals.
Much of the lead smelted from lead ores contains a small amount of silver; a few hundreths of one per cent. This argentiferous lead is heated as described above and subjected to a strong blast; it is thereby slowly converted into litharge, which fuses and runs off, or sinks into the porous hearth. But the silver contained in the lead, being not combustible, remains finally perfeetly pure on the hearth This process of extracting the silver from argentiferous lead is called cupellation; it is evidently similar to the combus tion of wood-the remaining non-combustible aslies corres ponding to the remaining non-combustible silver.
101. This very same operation is performed on a small scale for the purpose of ascertaining tite amount of silve in ores and coins. These are first smelted for lead, or, if coins, smelted with pure lead, and the resulting mass heated on a porous bone-ash cupel (Fig, 46) in a so-ealled muffle. The weight of the silver bullion remaining and the known weight of the ore or coin taken gives the perentage of silver in these bodies.

## 20. deflagration.

102. Combustion may also be produced by heating the combustible with certain solids, like uitre. Since in this case the action usually is much more energetic than when he combustible is heated in air, being mostly attended with noise or detonation, this peculiar mode of combustion is called deflagration. The simplest case of this kind is observed when small fragments of nitre are thrown upon a red hot piece of charcoal.
103. One case of deflagration is made use of in our modern firearms and for blasting ; it is the ignition of gunpowder, which is even attended with most powerful explosion when taking place in a confined space.
Gunpowder is usually an intimate mixture of one part of sulphur and one part of soft chareoal with six parts of nitre. 'Ihe mixture of sulphur and chareoal would burn gently in the air; but mixed with nitre, so as to constitu gunpowder, the combustion takes place with the wellknown evolution of sudden force.
104. In the laboratory, deflagration is often performed for the peaceful purpose of converting an insoluble substance into a soluble one, and for several tests.
105. reduction.
106. This is the reverse of combustion, or the reproduction of the metal from its oxide (the buint metal). It will be remembered that reduction in the wet way was produced by the insertion of a more soluble substance into the metallic solution ; here we will similarly have to mix the metallic oxide with some substance being more combustible than the metal. Clicapness and the formation of a gaseous product of combustion make carbon (charcoal or coal) the most universal agent of reduction in the dry way. Still it cannot reduce all metallic oxides; for example, since magnesium is more eombustible than charcoal, the latter cannot reduce the white magnesium oxide to metallic magcisum.
Fig. - (omitted) represents the so-called blast-furnace used for the reduction of iron from those ores which corespond more or less to the product obtained by burning ron (and which will be described under the head of the native oxides). The iron blast-furnace is a double cone 18 feet in diameter at the widest part, B, and 50 feet high, built of the best fire-brick. The ore and charcoal are thrown in at the top, D , so as to form alternate layers in the furnace; a powerful blast is blown into the mixture through the tuyeres, $\mathbf{C}$, in order to produce the necessary eat. On the hearth, $G$, the metal and slag collect. The er the ore and a proper flux (sec operation 1s) added with the ore, produce an easibly fusible slag, winch is continually flowing off. The heavier metal being under the slag, is at intervals tapped from near the bottom of the hearth. Here the carbon (coal) reduces the iron oxide (ore) to iron.

The iron thus obtained contains about five per cent. of

The ashes remaining anter the combustion of coal are morely the lacom-
uatible impurities of the coal
carbon, and is called pig or cast iron, being used for casting purposes.
106. That iron really is much less combustible than car bon is now practically demonstrated on au immense scale ia the Bessemer process for the manufacture of steel.
Steel is iron containing about two per cent. of carbo Hence, in order to convert the cheap pig iron into the ex pensive steel, we need only to remove about three per cent. of its carbon. For this purpose, Beseemer smelts severa tons of pig iron (ofteu taken directly from the blast-furnace) in large iron retorts, A , called converters. Wheu molten, he forces air throngli the fused iron from a pipe, $P$; at the high temperature of the fused iron, the air will burn al the carbon and also a part of the iron, together with an of the impurities. When all the curbon is burnt out, enough of the same pig iron is added to introduce again suffieient of carbon to make steel of the proper quality. By mears of machinery the converter is now turned over in the diree tion of the arrow, the steel poured into an iron bucket, B and cast into the forms desired. By this process six tons ot cast iron cau at one operation be converted into excellen steel in about twenty minutes, making steel sufficiently cheap to be applied for rails on railways, for boiler-plates, bridges, ete.
[wbitten for the american journal of mining.]
THE EFFEOT OF LIGHT ON MINERAL OILS.

## y de. A. ott

Herr Grotowsky, of Halle, on the Saale, contributes some interesting communications to a German periodical an a new property of hydro carbon oils, which he has dis covered. Exposing various kinds of oils in glass fasks to nvariably that they absorbed oxygen aud converted it int zone. The air was ozonized even in well corkel vessel the effeet being, however, to some degree dependent upon the color of the glass. The respective results were notei fter the lapse of three months. Belore enumeratin them, it is perhaps uppropriate to remark, that by the erm " photogen," oils from peat or lituminous coals ar and possess a speeific graviny of from 0.795 tu 0.805 . The erm"solar oil" is given by the Germans to oils having speeific gravity of from 0.830 to 0.835 , nud distilling above the temperature of 550 degrees Fahr. The former is bu:ne in lamps adapted for that object, while the latter is burned in Argand or Carcel lamps
The observations of Hear Gitorowsky are as follows

1. Plotogen and solar oil stored in barrels and cisterns which were lined inside with iron, remained free from ozone and burued faultle:sly
2. Photogen and solar oil which lad been kept in balloons of white glass wrapped in straw, showed tuces of ozone, but otherwise burned well. In this case, both the olor of the ail
slightly ehanged.
3. Piotngen and solar oil in balloons of white glass an zone. The oils were still less changed thau in experi ment No: $/ 2$. The corks were not bleaclied.
4. Solar oil aid photogen, which lad been kept out of doors in unwrapped white glass balloons, gave strong indications of ozone. They burnel very badly, charres the ieks and nearly extinguished the flame af en hurning for ix or eight Lums. The whir wil was strongly colored 5. Solar wil which had been exposed to the light in unwrapped balloons of green glase, gave also stron:: indi cations of oz ne. Nevertheless, though the wich was clarred it burued well. The color has been but little changed.
5. Solar oil, kept in green balloons, paintel black, was found to contain some ozoue. It burned, however, perfectly well.
6. Solar oil iu green balloons, whupped iu straw, showe only traces of ozone. It burned like the fosegoing. Color slightly changcd.
7. American kerosene, froun petroleum, which has beeu exposed to ligit in white unwrapped glass balloous, had become strongly ozouized, so much so, that it scarcely burned. The originally bluish white oil had assumed a vivid yellow color, und the specific gravity was fouud to have increased 0.005
8. American keroseue, whiel had been kept in the dark or three months, did not show any ozone at all, and burned satisfactorily.
The oils were exposed from April to July, 1868. Those which had become strougly ozonized, had also suffered a distinet change in odor, and the corks were bleached as if ttacked hy chlorine, while the other oils had remained nchatiged iu these particulars.

## AMERICAN INSTITUTE.

## Proceedings of the Polytechnic Association

## prof. s. d. thlman, in the chair.

deodorizers, disinfectants and insect destroters. Mr. Mason was introduced by the chair and gave a minute de cription of the modern compound of earbolle aeid and eamphor preparation is: 2 oz. eamphor; 1 oz. carbolie acid in crystals. The misture becomes liquid, and in order to produce a dry power 13 oz . of prepared chalk are mixed with the above quantity of the other lngredients. One pound of dry powder is thus pro-
duced. Thls powder is a very efficient deodorizeriand disinfectant, and is also valuable as being destruetlve to insects. It might be ased by ladies for preserving furs, and a little of it mlght be ults.
Several that they could stlu pereeive the odor of material, and though bolic acid. The chalr remarked, however, that both were very much diluted.
Dr. Pa RMELEEE wished to cantion the meeting agaiust too free
anse of camphor. It is rather a dangerous substance. He could nse of camptor. in usis rather a dangerous lic acid. Wiy the expense of first redueing the carbolle acid to erystals and then dissolving It. Why uot use a solation at once ?
Mr. Sterson asked if there was
Mr. STETsos asked if there was any known substauce which
was poisonons to noxious insects, and yet did not harm the e have frequently heard of poison for bugs, cte., which is harmless to man, and also of poison for rats which
will not destroy our domestic anlmals. Does any one know if here is anything true in this ?
Mr. Pain.-In regard to ordinary poisons, we believe it is
pretty well settled that what whll kill a rat will kill any other pretty well settled that what whll kill a rat will kill any other
animal of its size. The phosphorus paste used for poisoning rats, and said to be harmless to domestic auimals, is well known o be a most virulent poisou. Seareely a year passes that we do not hacar of the poisoning of some poor child by the minute
quantity of phosphorus sueked from the ends of lueifer matches. quantity of phosphorus suiked fom the ends of lucifer matches.
There is, however, a substance which seens to be virulently poisonous to the lower orders of animals and yet is beneficial to the higher elasses. This is sulphur, whleh ls a substance not at
all prejudielial to man and the higher animale, but it is death the ith insect, aud fungl, such as grape mildew, etc. Peas well known to be a specifie for malldew of the grape vine. It has been said by Dr. Grast and others that sulphur aets on mildew ecanse it combines slowly with the air, forming sniphurous this view. Suiphur does not nndergo slow combustiou, but it volatilizes at ordinary temperatures, and it is probable that it is the vapor of sulphnr which is the aetive agent.
Mr. STETsos called attentlon to
Mr. Sterson called attention to the action of charcoal as a dis
infectant. It is used with infectant. It is used with great suceess by those who keep pigs.
Such persous are in the habit of feediug chareoal to the auimals. Dr. Edwards thought the fact of sulphur's being a poison, proportion to the size of the avimal. proportion to the size of the auimal. Au amount of
which would kill a mouse might do good to a horse. The Cases af a disinfectant. Sulphite of soda had reeacid with suggested as a preventive of scarlet ferer. If this is true it is a most valuable diseovery, as searlet fever is uuquestionably th
greatest scourge of the younger portlon of the huuau race.
preseivation or steam bollers.
Mr. Gtrrond read an and of a boiler. It consisted of zabstance de of zine and fatty acids. Mr. Emory described the origiu of this matter. It wis found adheriug to a mass of zine which had becn suspended in a The ziue was suspeuded iu the water of the boiler by means of wire attached to the iron of the boiler. A galvanic battery was thus formed, and the ziuc was gradually destroyed while the
boiler was protected. It was with a view to deternine the I
the patent office and patents
Alr. Stersox Low addressed the association on the suljeet of
patents aud patent laws. It had been amounced that he was to read a paper, but he remarked that the ouly papers he was iu the
habit of reading were sich as he composed ou the spot, so he outeuted himself with anzextempore address. His remark many present, thicy were such as our readers cau easily find in publications relating to the subject. Mr. Stetsos had brought variety of patents of different countries with him, and used them for the purpose of illustrating hils lecture. There was the
ponderous antair lisued by the British Government-letters of hige slze, and having a seal atteched io it weighing some pounds. lereat, and possessing marked characteristics. The chief polint
dwelt upon by Mr. Stersos was the simplieity, efficiency and eonomy of our Americau patent system when compared with the systems of Europeau countries. Mr. STETsos's remarks were
listened to with marked attention aud evideut pleasure. tue production or laght by combestion.
Dr. Vasder Wexde now took the floor, and explained the operation aud wode of action of the lime light, and also of the
Argaud burner. His remarks were illustrated by several beautiful experiments, performed by means of very superior apparatns. Ie first called attention to the fact that wheu a jet of common gas, proceediug from an annular hole, is iguited, it gives considerable light. When a jet of oxygeu is passed through the
ceuter of snch a flame the light almost disappears, but the heat ceuter of snch a tlame the light almost disappears, but the heat
is wouderfully intensified. So intensely hot does the flame now become that platina melts in it; iron burns and is consumedpassing away in sparks, and melted globules of oxide, whieh fall
to the ground and then divide into myriads of little spheres, Which are dispersed all over the floor. The Doctor then called sary to int ot the faet that, in order to obtain light, it was necessary to introduce some solid uatter into this intenscly hot flame.
When platiua is iutroduced it becomes inteusely hot, and as it fuses only as a very high temperature it gives out a great deal of way, viz., by surrounding the hot, but nou-lnminous, flame of the Bunsen jet with a cage of platinum Wire. But the highest
degree of illumination is obtained when the flame is made to play on some infusible sarface, such as lime, magnesia or zirconia. The Doetor then introduced a small mass of lime, aud the light the well-known lime light-was developed with great powercalled the calcumm light, but erroneonsly. A ealeinm light would
be produced by the combustion of the metal calcium, just as the
magnesium light is produced by the combnstion of the metal
magnesinm. (To illustrate this point, the Doetor exhibited a magnesinm. (To illustrate this point, the Doetor exhibited a
piece of maguesium ribbon, aud lgnited it. The light was very prece of ma
brilliant.)
In order to still further illastrate the point that when too much air is supplied to a jet of gas, or when pure oxygen is sug
stituted for common air, the 1 lght is diminished, the Doctor hibited the Bunsen burner-an instrument in common nse ln laboratories for prodncing lntense heat. When no air is allowed
to mix with the gas there is considerable light. When air mixes freely with the gas the light is diminished, and ulitmately redue. ed to nothing. The Argand lamp was theu so arranged that the upply of air could be entirely cut off or regulated at pleasure. When no air was admitted the flame was smoky and dull. Too ame effect as a superabund of light, and pure oxygen had the produced the greatest amount of light was that in whlch the sup. ply of air and gas were so adjus
was prevented from smoking.
At the close of Dr. Vander Weyde's remarks, Mr. Phis was saying: As was noted last Tuesday evening, this question is not one whilh can be deeided by any experiments whilel may be performed by Dr. Vasder Werde or myself. The question-
What was the Bude light? Is simply one of history. That Mr. What was the Bude light? Is simply one of history. That Mr.
GCRNEY used au Argand lamp, and that Argand lamps have been ased for this purpose does not admit of doubt. In Dr. Ure's distiouary of Arts, under the head "Bude Light,"
discussed, and also in APPLETON's New Cyelopedia
ing is too far adranced to allow of any extended discussion of the subject, but a very few minutes will, I think, suffice to set this
matter at rest. In the gas lights now burning before you the light is produced by intensely heated particles of carbon-at least that is the old theory. To heat this earbon to the required tem. perature a portion of the gas is burned, and gives very little
llght, as you will see if you examine the surface of a eandle,
where a thin layer of intensely heated gas will be found. In this lighly heated part of the flame platinum readily fuses, and yet this part of the flame gives no light, but serves merely to heat the earbon. Now I think Dr. Vasider Weyde will agree
with me that the higher the temperature of this carbon the with me that the higher the temperature of this earbon the more Dr. Vander Werde. - That is
Dr. Ther Thght is produced in greatest intensity by slow com-
differ
bustiou. When the lieat is very bustion. When the heat is very intense the carbon is consumed oo rapidly, and has not time to give out any libht. The little light that is given out is very intense but the quantity is very
mall. Dr. VANDER Weyde then repeatedfseveral of the experiments previously mentioned, which seemed to prove to the satis-
faetion of the audience that his views were correct. The meet faction of the audience that his views were correct. The me

## Glacial Scratches at Fair Haven.

Prof. Dana, discoursing in the College Courant of his xcursious about New Haven, makes the following intercsting statements conceruing the traces of ghat action
the viciuity of Fair Haven. A fine display of the sandstone formation and some aresting views mny be had by taking a collss diree
across Perkins \& Clatfield's quarry to the hil a quarter a mile eastward, until the ligharry to point is reached, and then turning northward toward Fair Haven again. Along the route over the hills, the lelges of sandstone are very numerous; and a third of a mile east of the Perkins \& Son. The leages have all a nearly north-and-south direetiou. As elsewhere, the dip of the strata is uniformly the castward, with but little variation in the angle. Fro the plains of East Haven, Beicon Hill, and the Sound fat southeast.
A grand exhibition of glacier scratches is to be seen in a few rods only from Prospeet st. When the roeks were
first laid open, a rounded surface of saidstone, 20 to feet wide, and extending the whole length of the quarry, about 300 feet, was exposed to view, bearing evidence throughout of having been shaped, planed und grooved by ghacier action. The central portion, as well as the two fine display of the planing und plougling effects of moving ice. Along the west side of this romindet if ridet especially in the more sourthern part, the ice cut a dee
trencl, slrowing that its under surlace was very med had bold projections. Its nbrading power was main, Iy due to the masses of rock with whicl, it was nrmed be low. The strutches lave the direction N. $15^{\circ}$ E. (N. $71-2^{\circ}$
E., true course), corresponding closely with the E., true coirse), corresponding closely with the tread of
the Connectieut valley. The drection shows that these are some of the taacks of the gre it continental glacier that moved over this region from the north, during the ghacial
period, tilling the valleys and covering all the hills with period
ice.
Fro

From the Landeralt quarry, a roall leads across the hills and fields, northward, aud atter passiug a brick powderhouse, enters Prospect strect just south of Brown street, a short distance from Fair Haveu. Near the powder-house (which is in sight from Prospeot streer), along the almost nificent specimeu of sandstoue moulling, its dimensions commeusurate with the ice-tool with which it was made. Another large mass, a little to the uorth, shows well the glacier scratches. At the top of the ridge, above the Babcoek quarry, in a line with the house of Mr. Babcock, and just south of the first feuce, there is another long rounded surface of sandstoue, north-and-south in trend, bearing gla-
eier markings ; but the seratclies lave been mostly obliterated by the action of the weather. Direetly above the quarry, aud ouly forty yards clistant, there is still another exposure of glacier-marked sandstone.
The north-and-south directiou of the projecting ledges sandstone over the country is probably owing to the ploughing actiou of the glacier.
The lelges themselves, as they have long been bare have no distinct seratches, because of weur from weatherlug; but if the hills could be swept of their soil, the sur-
face of the harder rocks would beyond doubt be found to be everywhere rounded and furrowed in Alpine style.
$\operatorname{SABCO} 2$

## Secretary of the Treasury.

Belang faul statisteal Aecount of the Mineral Deevel
pomeat of the $P$ Pecific 5 States for the year 166 , with
Sixteen Illustrations,

ROSSITER W. RAYMOND, Ph. D.

- Commissloner of Mining statistice, and Editor
extra cloth, alizs.
Hures WESTERN $\&$ Co. ${ }^{3 T}$ T Park Row, N.


## LESCHOT'S

Patent Diamond Drills, with
MMPROVED MACHINEEY,



## anefactured b

SEVERANCE \& HOLT Middlebury, Vt.,
vos. 14 IND 16 W.ale street, marr? 3 m is is NEW YORK.
TO MINING COMPANIES.

 man? er: is

## GLOBE

GOLD AND SLLUER MINING
COMPANY.
CAPITAL, 8650,000 , in shares of $\$ 10$ each. subscription price, 85. unassessable.
 one milie arst of the main Carson iniver, forty miles south



 on the Pacifice coast. The
ADVANTAGES OF INVESTMENT
 levolpment and protatahe working, the ahruptness of cor opening the w
of ony
soo fiot.







IT $A$ portion of the stock (vanacosestio) in now of.


T. WINCHESTES
moberdt
NO, 86 JOMs $\mathrm{ST}_{7} 8$


THE MINES

## COLORADO:

BY OVANDO J. HOLLISTER


 un under which the prod nution of the procionos mematal

 m
m or

## PATENTS

## w. f. mcNamara,

Counsellor at Law and Sillictor of Patents.

## PATENTS PROCURED





El Corpeo Hispano-Americano,
(Spanish-American Journal, Deroted to

## Commerce,

## Railroads,

## Manufactures,

Mining, \&c., \&c.
The ouly representative of American inerests in the Spanish Language in Mexico Cuba, Spain and South America
Published on the First of every Month.
$\qquad$
$\qquad$
Cers in our own, and the consumers in the spanish
American covntries. This is cffected by describing and
Iustrating machines of Amerrean masuffacture, and 1 tho dissemlaation of nseffit luforrustion upon the sub
jects to which it is deroted. Our manuactures wib and it greatly to their odrantage to nakks use of its ad vertising columns.
Terms--81.50 per Year, Gold; 15 Cents per Copy.

WESTERN de Co., Publisherw, sep19.ts $\quad$ Bi Park Rew, New York
$\mathbf{A}^{\text {DELBERG \& RAYMOND }}$,
Mining Engineers \& Metallurgists,
of BROADWAY, N. y.
Mines. Mreeral Land, Machinery and Metallurgical or
Chemical Worke examinied and reported upon. Advice
 companice or indiriduale.

## Wood Engraving

 executed at theOffice of the American Journal of Mining,
37 PARK ROW, NEW YORK CITY.

## M

\$o. $532 \pm \$ 504$ West 28 th Street, Now York

 FILE-COVERS. FILE-COVERS. FILE-OQVERS. FILE-COVERS. FILE-COVERS. FILE-COVERS.

For preserfiag the numbers of the $\Delta x$ xarican Jotrax








 ation


 $\stackrel{\text { CONTENTS. }}{ }$
chapter l.




preaptrr if.




 Laws Adopted

 Winter in the Mines ; Quarta Milla ; Wagoll


 slation; Miseellaneons. CIARTE

## 















CHAPTRE XII.


Mmult Countyi. Chididit Park XIMper Bue River;


 do ; Improvements Ketth's Desulpharizer, Cros.
 Makligg of Regulus cec.ien Xiv. mportant Mising Leplitation:" Geology and Deeingical History CHM PTRE
 ${ }^{\text {Priseo }}$ 和, to a points within the United statee. Ad


MANUFACTURERS, ATTENTION :

## [1. Corme Hispana-Americano,

(spanish-american journal)
DEVOTED TO
Commerce,
Manufactures,
Mining,
Railroads, etc.
And the Introduction of American Manufaenexico,
south america
the west india islands,
and spain
Published on the First of every Month.
EL CORREO HISPANO-AMERICANO














 superseded in polnt of anlversal cir
advertising, snd economy of terms.

## Read this and Judge.












 CaNO are to be addressed to
WESTERN \& CO., Proprietors,
37 PARE RCW, NEW YORE.

Forney's Philadelphia Press thus Recom. mends Our Paver:








Send for Specimen Copy.

COAL SHIPPERS. sole miners and shippers

## POWELTON

Semi-Bituminous Gas and Anthracite Coals.
104 walnet street, philadelphia.
BRANCH OFFICES

G. B. Linderman \& Co., MINERS, sugar loaf,
office: LEHIGH COAL.
so TRINITY BUILDING, may 23-1y

SAMUEL BONNELL, JR., Ofers for sale his
SUGAR CREEK

## HONEY BROOK

Lehigh Coals,
office-43 AND 45 "trinity buliding,"
111 broadway, n. y.
H PAEY BROOK COAL COMExduasivo
HONEY BROOK LEIIGH COAL, No. 111 broadway, new york. JAS. H. LYLES, Agent, Wharvees Por
Wainut Street.
appo ily
J. B. McCREARY, President.
WILKESBARRE COAL

The Wilkesbarre Coal and Iron Co. and lehigif coal and navigat
HOBOKEN AND JERSEY CITY. office-no. 80 broadway,
Aprll $1-1 \mathrm{y}$
new york.
Successors to JOHN WHITE \& CO.,
Wilkesbarre and Lehigh Coal,
for steam and family use.
ROOM No. Ts, $\begin{gathered}\text { Orncz, } \\ \left.\begin{array}{l}111 \\ \text { Building. }\end{array}\right)\end{gathered}$ Building.)

$\mathrm{D}^{\text {AY, HUDDELL \& CO., }}$ miners and shippers of HARLEIGH LEHIGH COAL,
hickory, broad mountain, excelsior, ICEORY, BROAD MOUNTAN, EXCEESIO
SIIAMOLIN and NEW ENGLAND RED ASH. OFFICES,
ROOM 51, TRINITY BUILDING, 111 Broadway. P Philadelphia, - Boston, yo9 Walnut street. it doane street
$\mathbf{R}^{\text {ANDOLPH BROTHERS, }}$
sole agents of tiie origival.
SPRING MOUNTAIN LEHIGH COAL,
Extensively Used for Smelting Iron. rooms, 25 and 30 , TRINITY building, app-ts

NEW YORK.

## Coxe bro's \& co.

Cross Creek Colliery,
minkrs and buippres
Free Burning Lehigh Red Ash Coal, from the buck mountain vein. offices:



## COAL SHIPPERS.

Pier No. 14 North Pt. Richmond.
C. J. \& J. H. EASTWICK \& CO., shippers of
WHITE AND RED ASH COAL. No. 2es DOCK STREET, PHILADELPHIA, and
No. 19 DOANE ETREET, BOSTON.
LBCRSSIDE RED ASH
SHAMOKIN WHIE ASH,

THE DESPARD COAL COMPANY
DESPARD COAL


 BANGW Yorkigrov, No. 31 Doane street, Boston.



WEST FAIRMONT GAS COAL









## THE NEWBURGH

ORREL COAL COMPANY.
Mines at Newburgh, Preston $\mathrm{Co}_{0}$, W. va.
 This Company offer their very suyerior Gas Coal at
iowest marken tirieces





 $\mathrm{E}^{\text {NGLISH COAL AND CANNEL }}$ DESPARD COAL, from Baltimore PROVINCIAL COAL, anthracite coal.
Yor sale in lots to sult.
ARMELE BROS..
Agency of Oscar I. Vas Wart, Liverpool,
Office, No. 32 Pine Street, New York. Cob27.1y ard, West 22d Street, near 10th Avenue.

VAN WICKLE \& STOUT,
Miners and shipperis
FULTON \& STOUT
LEHIGR COALS.
OFFICE 119 BROADWAY, ROOM 18, NEW YORK Oirs. Fuiton Lump is a Superior Articief for foundry
A TTENTION, ENGGNEERS, Lamson's Patent Stone Channeling








THE WHITLOCK
EXPOSITION
A Perpetual Fair,
35 and 37 Park Place.
 interest to erery Inventor,
eulturta and Ho insekeeper.

Circulation Quarterly 100,000 .

$\frac{\text { MTSCELLANEOUS. }}{\mathrm{D}^{\text {UNCAN, SHERMAN \& CO., }}}$ BANKERS, Corner of Pine and Nassau Streets, N.Y.
 (POR TRAVELERS, AVALLABE IN ALL THE
PRINCIPLL CITIES or THE WORLD: MERCANTILE CREDITS For Use in Europr, China, etc. Also make Transfers of Money to Europe and the Pacific Coast by Telegraph.

## B. KREISCHER,

 New York Fire Brick STATENDISLANDCLAV RETORT WORKS. ESTABLISHED 1845. OFFICE, 858 GOERCK STREET, mar23-1y-8 NEW YORK

THE defiance low water Endorsed by the bighest authority as the
simplest and most reliable
Low Water Indicator ever invented.
No Plugs, Springs or Floast to gee out of order
CHARLES
K General Agent for the 747 Broadway, NEW York. Send for Circular. mUTUAL FRIEND
COOKING STOVE.
 a perfect stove. The Best and the Cheapesto of Also a rariety of other Cook ing and Ileating Stoves adapted New York Fire-Place Heater, Sanford Challenge Heater, and Challenge Ranges.
manufactured by the
octs $1-6 \mathrm{mim}$
ATIONAL STOVE WORKS,
E. \& H. T. ANTHONY \& CO s01 broadway, new york.
Manufacturers of Photographic Materials and Albums. extensive dealers in and manupactu-

A Most Useful Invention. Water-palls, Buekets,
mpittoons, Wash-basins, den,
 Warranted not to break, shrink, rust, leakk, water-soak or
rot. call and see specimens at the rome of the
American Papier Mache Manufacturing Company, 11 pine street, new yore oity.

## Post oflce Box, 5,24 .

## Charles L. Perkins

 General Commission Broker, Treasure city, Nevada. buy and sell real estate, Mili and Mining Property. Wood Ranches, etc.Procura Pate Procure Patents for Mining Ground.
Furnish Certicates of Incorporation, Trust Deeds and
Mining Blanks. Mining Bianks.
Trnatcen
 White Pine Mines; progress, of developments, indics
tions, new discoeries, strikes, transactions in real estate

Translations from and Correspondence in foreign languages
ceurately and neatiy done byl
CHAS. R. DESILLES, editorial rooms of thei
JOURNAL OF MINING, NEW YORE CITY.

H. R. WORTHINGTON'S


PATENT WATER-METER, This Meter is also Used for the Measure. ment of Oil. it commings
 DURABILITT,
with such ease and certainty of motion, ast to offer no sp.
preciabie obstruetions to the flow of water in the pipos. preciabie obstruetions to the flow of water in the pipas
which it
is connected, as it runs and registers upon three
 sive adoption hy corporations and individuals, it many of
our larger cities.
HENRY R wOPT sept18-1y HENRY R. WORTHINGTON ${ }_{\text {No. }} 61$ Beekman street, N.

The Sampson Scale Company
No. 240 Broadway, N. Y. MANUFACTUR
and have constantly on hand for sale
weigh-lock, railroad track, hay, coal CATTLE, WAREHOUSE, and every variety of SMALL. er scales.
No scale before the public possesses the sensitiveness simplicity, rigtdity, accuracy, durability, compaatness
facelity and exactness of adjustment and adaptability to raclity and exactness of adjustment and adaptability to any location which belong to the dec5-sm-ls sampson combination.

OLMSTED'S IMPROVED OILER.
always right side up.
Oifer made. The most durablo

and Copper, and are sin, bras bey the
trade everywhere. Address
J. H. WHITE,

Newark, N:J
Manffactnrer of sHEET and
CAST METAL
small wares Stationers' and Trunk maker
Hard ware
notions,
Arucles, ace.,
Mies and Toois, Faney Hard
ware, doc., made to order.
Daddow's New Map
of THE
ANTHRACHTE COAL REGIONS.
This Map is the latest published of the $\Delta$ nthracite Coal from other Maps published, becanse it gives the forma
fion and nnthracite Coai Regions, dec, de. Price on Roliers....
In case for Pocket.

Those in Pocket form will be sent free by mail on re 87 Park Row, New York, omice of the Jotranal or
mehtishef

## ED. SEARS'

Wood Engraving Establishment. Engraving designing and



STEAM ENGINES.


TODD\&RAFFERTY,
yachinery merchants, engineers and Machinists.
Yandactenrers of Stationary and Portable Eteam Engines nod Bolers; a also Flax, Hemp, Tow, Oakum, and rope machinery, mill gearing, shafting.
Lathes, Planers, Drilla, Chucks, see. Iron and Brass casthrss. Judson's \& Snow's Patent Governors con. tuanly on hand.
office and warerooms, no 4 dey STREET, N. Y.
Offce and Works, Patterson N. J.
Jospre C. Tond. octri:em Paile Rarreatr
PORTABLE AND STATIONARY
STEAM ENGINES.
oilers, circular saw mills, mil WORKS, COTTON GINS, COTTON GIN materials.
Manafactured by the

Albertson \& Douglass Machine Co., new london, conn.


## ANDREWS'

 patent engines, , OSCCLLLATING ENGINES, run at great speed. SMOKE-BURNING AND SUPER-HEATING CENTRIFUGAL PUMPS, pass Sand, Coal, 40,000 galls. per min ALL COMPACT, Light and
ALL COMPACT, LIGHT and durable.

WM. D. ANDREWS \& BRO julyl-1y 414 WATER STREET, NEW YORK. $\mathrm{A}^{\text {TLantic }}$
STEAM ENCINE WORKS,
iron and brass founders. mancfacterers of
an Engines, Bollers, Sugar Milis, Tanks, LInseed and Cotton seed Oill Prossces, and Machinery used in the Arts
acd Mannfectures
CORNER WATER aND ADAMS STREETS
BROOKLYN, N. Y.
R. B. DUYCKINCK, Treas

WM. ARTHUR, Pres.
tans.ly
PORTABLE STEAM ENGINES,
C Combining the Maximum of effliency, durablity The are widely and fivorabhly known, woire than price.
 J. O. HoADIVE Adroen

## nor $10-\mathrm{Emporis}$

J. O. HOADLEY \& Co

A reliable timé-keeper is now an articlo of necessity to every one, and as such the


 the county, at greaty y. duagod Sriceer. and
allow the purchaser to open the package and examine the Watch before paying. and if afterward it dhes no Bro satisfaction, we will exchange if or refnd the money. Solid Silver Hunting Walthes, $\$ 18$; Gold Hunt. ing Watches, $\$ 70$. Every Watch warranted by special certiticate from the American
Watch Co. We send our Price List, which Watch $C$. We send our Price List, which
expl tns tite tiffeent kints, [ives $\$ wof and aqay do of the dakes with prices of each Do $10+$ brdy ra Wa cel till you have serf fora in what paper you saw this notice. Address in full, HOWARD \& CO. Jewelers and Silversmiths, No. 612 Broad way: New York,

MACHINERY.

TUBAL CAIN IRON WORKs,   $115 \& 117$ Water gtreet, brooklyn, N. y   manufacture   Machinery for making Lead Pipe, Hydranlic Presses fo Engines, Sugar Mills, Shalting. Pulleys, Gebring, Pump Roling Mills, and ail kinds of Machinery in reneral Estimates furnished for ali kinds of Machine work. Drawings and Patterns made to order.   :Jobbleg Promptly Attended to. [Oct81-6m



SMITH \& SAYRE
! manupacturing co,
PROPRIETORS AND
manufacturers.

Mackenzie Patent
bLower and cupoLa and smelting fubnace. Also, Mackenzle's Patent compenhauster and smith \& satre Masurycturing Coupany,
$95 . h b e r t y ~ s t r e e t, ~ N . ~ Y . ~ S e n d ~$ $\substack{\text { for ilitustratal } \\ \text { marrecity }}$

SCOVILL MANUFACTURING CO manueacturers of
SHEET BRASS, GERMAN SILVER, PLATED METAL,

## BRASS BUTT HINGES,

 Glit, Lasting, Rrocale and Fancy Dress Buttons, Kerosene oil burners, and Lamp Trimmings. And importers and dealers in every description of

Photographic Goods, No. 4 Beekman street and 86 Park Row, New York.
Manwactory, Waterbury, Conn.
septa1-ly

HYDRAULIC WORKS. MANUFACTORY,
BROKKLIN, N. Y Steam Pumping Engines, Single, and Duplex, Worth-
ington's Patent for ali purposes, such as Water Work Enines, Condensing or Nonecondensing; Alr and Cir-
culating Pnmps, for Marine Engines; Blowing Engines
cit
 Mining Pum,

Water Meters, Onl Meters; Water Pressure Engines;
Stamp Mills for Gold, silver and Copper Ore ; Eaton'
 Send for circular. WORTHINGTON,
febl-1y R. W1 Beekman street, New York.

## HRYER'S

AIR PUMP
Compresses Air or Gas to any Required |Pressure.
Fryer's Improved Water Pump. manuractured and bold by
FRYER BROS. AE CO.,
Ian16.1y No. 10 WALL gTREET, ROOM \& \& , N. Y.
$\mathrm{C}^{\text {LINTON IRON FOUNDRY, }}$
502 and 504 Water, and 239 and 241 Cherry Streets,

## Between Pike a DER PIPES,

PULLEYS, Hangers,
MACHNERY PATTERNS
OF ALL KINDS. ALs
LOAM AND DRY SAND CASTINGS
or every descriptlon, for minling parpones, made to order
at the biortest notico and on reasonabie terms. Witacly.

MACHINERY.

jNEW AND SECOND HAND Steay boilers,

STEAM PUMPS,
steam gavges,
SAEETY VALVES,
rock-up and Safety Valves,
Belting, Machinists' Tools,
WOOD WORKING MACHINERY, \&
Particular attention pald to the location of Machinery,
with view to Economy. Address
KELLOGG H. LOOMIS,
ept5-1 y 117 Liberty street, N. Y. Clity
$H^{\text {EWES \& PHILLIPS, }}$
IRON WORES,
Corner of Orange and Ogden Streets, Newark, N. J.
High and Low Pressure, Stationary,
Portable and Marine
Steam Engines and Boilers, Mechanics' Tools of all Descriptions, anid
all Kinds of Genebal. Machinery. Large asssortment of Steam Engines and Mechanic

The Novelty Iron Works. Foot of East 12th, 13th and 14th Streets. BRANCH OFYICE............79 Liberty Street. Steam Engines and Bollers,

Cotton, Sugar and Rice Machinery,
of the most limproved kinds. All kinds of brass and Copper Work,

Indicators, Clocks, Steam Gauges.
Large stock of patterns of SPUR, BEVEL, and MITRE WHEELS, PULLIES, and all sorts of MILL WORK.
Norwalk Iron Works, south norwalk, conn.
Sole Proprietors and Manufacturers


Earle Steam Pump \& Fire Engine, (Patrented in the United States, France, England and Air and Vacuum Pumps, steam and blowing engines,
Pumping Engines for Water Works. Horizontal and
Tumbling Beam Englnes, Mining, Wrecking and Supply

> Tumt Pump IROA IRON AND BRASS CASTINGS, of every Desoription.

SITUATION WANTED.-A GEND TLEMAN of extensive practical experienee in Goli
and Silver Mining and Metalury, desires the charge of

SITUATION WANTED.-AN EX desires a situantion. First ciass references. Address


STEAM PUMPS.
THE WOODWARD
Steam Pump Manufacturing Co., manuracturers of the
Woodward Patent Improved Safety Steam Pump and Fire Engine.


Niagara steam PUMP FIRST PREMIUM AT FAIR. AMERICAN INSTITUTE 1867.


CHARLES B. HARDICK,
successor to

CAMPBELL \& HARDICK, BROTHERS, NO. 9 ADAMS STREET BROOKLYN, N. Y
Send for circular. Send for circular.

KNOWLES PATENT STEAM PUMP.


FACTORIES AT WARREN, MASS. WAREHOUSE NO. 126 LIBERTY STREET, NEW YORK.
Alr Pamps, Blowing Engines, Hydraulle Pressure
 Oil and Wrecking Pumps.
Improved Horiontan and Verticel
Working with Plunges and especially arranged for pump-

Knowles' Patent Safety Boiler Feeder. Send for an Illustrated Cirenlar.
jly10-1y
J. CLAYTON'S

Patent Fly Wheel \& Direct Action


HAND PUMP AND STEAM ENGINE COMBINED.
 in the market.
All sizes mad hort notice.


Welocipedes.
 HOWARD'S SECTIONAL BOLLED

## Illustrated in the American Journal or Misive of January 16th, 1869.



## $\Lambda$ treatise on the CONCENTRATION

## All Kinds of Ores，

ancluding tie
Chlorination Process for Gold－Bearing Sulphureta，Etc． by guido kustel，





 ms．
Among the con contratite mand mes．the preference has
 power requirowt shitene．m，the amount of water nad of


 spending time and money，ns h．






Th Ahe treatise on the Chluring cton or Gom and siliver ores on the Dresting of ores，It thas however，been written nad putitheded ins the concludidig portion of thisw work to


Contents．
1．Introdection
1．The Presing．
3．Rotary Sisers．
in．rediction．


6．The Feeding of Ratteries
3．Prinas with Phne Muliers．

iil．concentration
1．Coneeatration of Rednead Ore

R．Coary Macestines．
Fiserting of Cande
Ftairator．
Stationary Concentrat ors

iv．apecial concentration．

Concentration of Gold Orec．
Concentration of siler Ores． v．chlorination． Methods of Disooiviag and Preceipitating the Gold from

Chlorination at Reichenstel

This great work should be in the hands of every min．
ing easioer in the country．
It is the ouly manal


 platees so that every intellisean enginere cate

PRICE，$\$ 750$.
FOR SALE BY
WESTERN \＆COMPANY，
37 Park Row，N Y．
Sole Ageatio for the Athantic Statee．

BLAKE＇S STONE BREAKER


The ofifce of thls Machine is to break $O$
 Mustrated circulare，fully deecribing the machine，with ample testimonials to its effictency and ntillty，will be
farnisbel The The Patents obbained for this machine in the United States and in England having been fully anstained 4y the courts，after weli contested suits in both countries，all persons are hereby cabtioned not to tiolate
them ；nd they are informed that every machine now in use or offered for saie，not made by ua，in which the ores


METALLURGY．
R．P．ROTHWELL，
Mining and Civil Engineer and MEFALILRGIST，
From the IImperial school of Minines，Paris，Member of the
Geoiog ical society of $F$ Franoe，dice．
office，wilkesbarre，pa．
Having had a large practical experience in Earope an


Laboratory of techni－ Offior 37 Pakr Row，Agrachax Jotrand or
 （W）


## ELECTRICAL AMALGAMATOR

Three Patents Issued to J．H．RAE． The process of estracting Gold and silver by Electrictis
is now compiete，hnving been thoroughy proved at thi
 easy，Cheap，and the most produc TIVE ONE IN THE WORLD． Coss of working by the Eliectical A maigamator nbout
 melis．tf
benjamin smith lyman，
MINING ENGINEER， geologist and topographer No． 135 South Fitth Street，Philadelphia．

（seccebsor to henby kraft，） analytical and consulting chemist su3．tt

SCHOOL OF MINES，COLUM








## P．H．VAN DER WEYDE，M．D．，

Professor of Chemistry and Metallurgy， N．Y．DENTAL COLLEGE，

avalyticaland consulting
CHEMIST AND ENGINEER．
RESTDENCE－78 Seventh stret．${ }^{\text {Lis }}$ LABORATORY－T wenty


METALLURGY．
New York Steam Engine Company


STEAM STAMPING MILLS， Stationary and Portable Engines， Engine Lathee，Planers，Boolt Cutters，Upright Drills OFFICE AND WAREROONS， Snn？ 1 ylis Xos． 126 and 128 Chambers St．，x．y． Mining Machinery and Supplies


CALIFORNIA STAMP MILLS， WHEELER \＆RANDALL＇S patent excelsior
GRINDER AND AMALGAMATOR
Conoidal Separator and Tabular Concentrator
HEPBURN PAN AND SEPARATOR． Shook Breakers．Retorts．Engines．Bollers and sharting． Plans Drawigs and spectications for poarth Givils Amplamamang and Concortrating Gold and Silver Ores Agents for UNIow iron works，San Francisco． MORET，SPERRY
95 Lbberty Street，
New Nonky

IMPORTANT TO MINERS．
Every description or Analysis and Assays carefully nt
tendeal to，and returns promptiy made，by WESTERN \＆COMPANY

[^0]Valuable Works
Mining，

## Metallurgy

Mineralogy， Geology，Etc．

Any of the following Works can be obtained of the

WHSTHRTN \＆CO
St PARK ROW，NEW YORK，
Fuclosing the
charge for Postage．
BARSTOW．Sulpharets；what they are；how
concentrated；

BAUERMAN．A treatise ou the Metallurgy of
Hron．By H．Bauerman． 1 voi．post．，fovo．
 BLOEDE．The Gold and Silver Worker＇s Man－



Brard．Exploitation des Mines． 1 vol 8 vo ．．
BROWNE．Report of J．Ross Browne on the
Mineral Resonrces of the States nad Territo－ Mineral Resonces of the states and Territo－
ries Weet of the Mocky M Mountains．Wash－
ington， 1868 ． 1 vol． ．so，cioth．．．．．．．．．．．
BUDGE．The Practical Miners＇Guide；with n Treatise on the Art and Practice of $A$ ssaying
Silver，Copper，Lend and Iron；together with

BYRNE（Oliver）．The Practical Metal．Workers
 Coys：with the Application of the Art of Elec．
tro．itallurgy to Mandacturing Processes．
With 592 engravings． daddow and ban
 selopment．With numerous maps and ee－
vravings．By S．H．Daddow and Bend Bn－

ANA．A system of Mineralogy．Descriptive Mineralogy，emprising the most recent Dis－
coreries．，Prot Prot ．Di Dana，aided by Prof
Geo．J．Brash．5th edition，rewritten and en
 NA．Manual of Geology，treating of the Prin－
cipice of the Science，with speciai ieference to ciples of the Seience，with speciai reference to
ADericica GGeological History．By Prof．J．
D．Dana．Plates． DANA．Text－Book of Geology．I vol．12mo．By DANA．Manual of Mineralogy，inclnding Obser－
vations on Mines，Rocks Reduction of Ores， vations on Mines，Rocks，Reduction of Ores，
and the A Aplicatiou of the Bcence to the
Arts．By ATof．J．D．Dana． ERNI．MIneralogy Simplifed．A short method
of Determiong and
Translated from the German of of Mon Kobelid． Translated from the German of Von Kobell
by H．Erni． 1 vol．12mo，cioth．．．．．．．．．．． FAIRBAIRN
Propertios，and（Willam）．Iron；Proceses of Mts Mistory，
Nanufacture． KERL A Practical Treatise on Metallurgy Katopted from the last German edition of
Krtis Metallurgy，by Wm．Crookes．F．R．．
and Ernst Robrig．
vois．Fro，cloth．Yol $\underset{\text { LAMBORN（R．H．）Metallurgy of Copper．}}{\text {（Weaie＇s serles）．}}$

 MUSHET．Papers on Irou and Steel，Practics）
and Experimental．
vol．
varce）．thick 8 soo．（Very PHILLIPs．Gulde to Geology．By Prof．J．
Phillips．Sth edition． 1 vol．cloth． PIIILLIPs．Mining and Metallurgy of Gold and neef． 1 vol．royal 8vo．Hilustrated．．．．．．．．．
Philips．Elementary Introdnction to Miner－ PHILLIPS．Manual of Metallirgy．2d edition． PHILLIPS AND DARLINGGON．Records of GGOTT（A．S．）The Cbemistry and Metallur－
gy of Copper．The Art of Mining and Pre－ paring Ores for Market．12mo．．．．．．．．．．．．
 inperial 8vo，paper，with ine Engravings，
color．d Maps and ppates of Metals，Gems，de． WHitNEY（J．）Metallic Wealth of the United
States，Described and Compared with that WHTNEY．Colorado；Schedule of Ores con Cributed to the Paris Universal Exposition of
1867，with some information about the Re．


## MACHINERY.

## Krom's ORE CONCENTRATOR.

Concentration by means of Air
 chines which coaceentrate the varions
than can be done hy any other means.
The Mechanical Combinations are extremely sim

 d one man is sulficlent to ope
Parties Interested in Mining aro onvited to call at
No. 40 West Elghteenth street, Newr Yors, whore they Yous se a machinine in operation, and dave samples of the
owi ores crushed and concentrated.
Illustrated Creculars may he had on application
STEPHEN $R$ RROM
jani0-3mos-18
STEPHEN R KROM
No. 40 West 1 1sth street, N.
JOHN P. GRUBER'S


182, 184,186 and 188 Chatham Square Corner or Mott Street, NEW YORK.


LINDSAY, WALTTON \& COCCesors to WALTON \& LEONARD,
Machinists' and Railroad Supplies, METALS, TOOLS AND HARDWARE, NO. 58 JOHN STREET, NEW YORK.

Sturterantss Pressure Biowers, artits smich shs Shenrs,

Wreanes.
Dodideen's Patent Hydranlice Jacks and Tube Ex-
Cloth.
Iron Pully Blocks, Twilat Drilla, Portalle Forg
Stubb's Tools and Files and Supplies for Railroads, Engineers, Manufacturers and Machinists.
$\begin{array}{lll}\substack{\text { J.P. Linpear. } \\ \text { deeliz: }} & \text { J. H. Lylegs, } & \text { Jos. J. Waltox. }\end{array}$
MERRICK \& SONs, SOUTHWARK FOUNDERY,
No. 420 Washington Avenue, Philadelphia.



LINDSAY'S PATENT.

HEN
The merits of this Wrench are too well known to need comment. Go to the nearest hndwwre store and Loook AT IT BEFORE PURCLIASING ANY OTHER, or
send for illustrated circhar to
MANYEL \& LINDSAY CO MANVEL \& LINDSAY CO.

## MOTIVE POWER.

THE Greatest Hand-Power Machine pown which is in exisence, and can be ned wherever



\$O. 211 Canal Street, Now York.

## CIRCULAR SAWS <br> with

emersons patent movable teeth.


These aws are meeting with unprecedented succeas
nd thelir creat superiority over every ofther kind bot
Emerson's Patent Perforated Circular and Long Saws.
(AlG Gumming arolided.) And
EMERSON'S
PATENT
SWAGE
Sor spreading, Sharpening, and shaping the teeth of ail
Opluting Saws.
Prico 5 .




INCRUSTATIONS prevented hy WITAN's BoLiER Pow
 ter steam, an


$\mathbf{A}_{\text {der alara gavge, }}^{\text {LLYN'S PATENT SALAMAN }}$
For the Prevention of Steam Boiler Explosions.
ALLYN, FERGUSON \& CO
Oet71-6m
${ }_{41}$ Pine Street, New York Cly.

## IRON \& WOOD WORKING MACHINERY

 TURBINE WATER-WHEELS Lncius w. Pond, NO. 98 LIBERTY \$TREET, NEW YORK and worcester, mass.
## MISCELLANEOUS.

GERMAN REDUCTION WORKS
Huepeden, Wolters \& Company, oeorgetown, colorad





IABORATORY

## ATLANTIC QUARTZ CO.

3045 AND 3047 CHESTNUT st, pHiladelphia. Under the Direction of
CHARLES P. WILLIAMS,

 cal. Experimentan and Technical Chemistry.
$A^{\text {GENTS and Canvassers Wanted }}$ in every city and town in the united states,
ror the
American Journal of Mining.

## Ten Cenarts. Inducements.

western ac company,
97 pare bown

## PUBLICATIONS.

$\mathrm{S}^{\text {UBSCRIBE }} \underset{\text { TFER IN THE }}{\text { FOR }}$ AND ADVER Americall Jommal of Mining, the bess and largest pafer of the
IN the untris siates, now in its third year.



 Published every Eatuluay in New York City. Only $\& 4$
a year.













> dealers agents.
the A. Merican news company, 121 :assau at
THE NEW York news $\mathrm{Co}_{0}, 10$ spruce Stree ${ }_{\text {H }}$ N.Y.
$\$ 1.00$
$\$ 1.00$
Househol D





COAL, IRON AND OIL,
The Great Work on our National Resourses.
sames , with upwasds of 200 Maps sind Engravings.

 dit of conld ecarcely he desired. * ** * It may








## THE WORKSHOP

An' Industrial Monthly Periodical,





## Detalis.


meh183m 22 and 24 Frank kort street, New N
The Annual of Scientific Discovery. FOR 1869.
For sale by WESTERN \& Co. Sent on reeelpt a proe, Two dollars.

## Dr, RAB'S

Ore and Earth Washer. and simple, cheap, and EFfective Metho
RECOVERY OF QUICKSILVER
from any
AMALGAMATING MACHINERY
patented janvary, 156 .

MISCELLANEOUS.
Now ready,
hird fition, seventi thóvsand, revised, malarged, and improfid,
Hoptop's Conversations on Mines,
FATHER AND SON.
enlarged fron 112 to 192 pages.
The Following are the Contents Ar, why intis propelled.down, into, and argand the work.



One enrrent of (plans)
One eurrent of (and how
(pan) adopt sparaste currento Diviling of hnt not into "separato and distinct"



Rnsh off into each divisilin
Quantity p prod noce hy hy nural ventulation


Bricks, how to to ind Bricks
Bidaw
haw to find
tho

mothods of workng it it ont, and why may





Diameter of start
Dip of mine. how to
Explosion, the pow int and lay on plan
At Lund -bilk , th what part of the nine it was


$\substack{\text { Enntating eurrent } \\ \text { Remarks } \\ \text { Rof ground floor, froat and back view }}$
(Cartonink socid) compositlon of



The welght of
TTe natare and qualty of
Wr

Why yome mines geenrate a mixtare of



Regulutions see A on n गline )
saty raving of ohy thame will not peaetrate throngh en


Table or welghts and meas
年堲perature in mines
hieedoiltee for mine surveyng




## Testimonials, Reviews, \&c.

 i: The book cannor collin, ib well reetved hy all conneted with coiliteries, "Mining Journol. country" - 3 Siner sicont frence inat do not contain the


 WESTERN \& CO.,
sole Agents for the United States.



## $\mathbf{N}^{\text {OTICE. }}$

G Wokks, whintendent of mines and mix.


 Industrial Laboratory,
"THE MANUFACTURER AND BUILDER." A Practical Journal of Industrial Progress. Published Monthly.
Every Manufacturer ana Builder should have it. Lvery Operative and Mechanic shouldhave it. Every Arehitect and Mason should have it. Every Painter and Plumber should haveit. Livery Carpenter and Blacksmith should have it. Every Reading-room and Library should have it PRICE WITHIN THE REACH OF ALL.
Subscription only $\$ 1.50$ per year. 4 Copies, $\$ 5$; 10 Copies, $\$ 12$; 15 Copies, $\$ 16$. clubs of more than thenty, \$1.00 per year. 32 Large Quarto Pages for 15 c .

384 Large Quarto Pages for $\$ 1.50$. Filled with Valuable Matter,

It Costs Less Than Three Cents per Week. a single hint in this paper may be
WORTH HUNDREDS OF DOLLARS, or prove a fortune to many.
"THE MANUFACTURER AND BUILDER" Is Splendidly Illustrated with

Engravings of Everything New relative to manufactubing and building. Get Your Clubs Together., PREMIUMS.
We are induced to offer the following Casi Premiums to those who will work to get up these clubs ! $\$ 5.00, \$ 10.00, \$ 15.00, \$ 20.00$ made in as many minutes 1 Read 1 Read 1 Read

 uoney be forwarded to us with a list of names, hhe amount of premium may be deducted from the same. PUSH THE GOOD WORK, and HOW TO GET UP CLUPS

UP CLUBS
If you are employed in a FACTORY, SHIP-YARD, MACHINE-SHOP, FOUNDERY, or MANUFACTUR1st. Send to our oftico and get a specimen Copy. Frec, with Clrculars setting forth the objects of the paper.
2. At the nd o the circular you will find roonn to write a notice that you will meet your fellew-workmen aken, and your employer will readily grant the privillcrieers. They will thank you kindly for the trouble you have sid Send on the iisco of naines, endorsed as correct by the firm, and to onr address, and we will arrange with the CLUBS IN VILLAGES AND TOWNS

WESTERN \& COMPANY, Publishers, P. O. Box, 5969

37 Park Row, New York.
american news company, 119 and 121 Nassau Street, New York, $\}$ Dealcrs' $A$ gents.

## ADVERTISEMENTS

 Ad Adertisennents will be admitted on this pageat the rate of 40 cents per line. No extra charge fos The Ambrican Journal of Minisg has a larger cirthe United States. It goes into the princlpal citles and lowns of every State and Territory in the American Unlon, as well as in Mexico, the South American States the West India Islands and Europe.

## GUANO.

No. 1 PERUVIAN GUANO, $\$ 61$ per ton, in BRUCE'S CONCENTRATED FERTILIZER PURE GROUND BONE, in barrels, per ton BONE AND MEAT, in barrels, per ton, $\$ 38$. FISH GUANO, in barrels.
alta vela guano, §25.
ALTA VELA PHOSPHATE, in bags, $\$ 56$ GROUND PLASTER, per barrel, 8175. SWAN ISLAND GUANO, in bags or barrels, SULPHATE OF SODA, in barrels, per ton, $\$ 30$ SOLUBLE PACIFIC GUANO, 860 . BEST SUPERPHOSPHATE, containing ten per cent. solubie phosphoric accid, and three per cent.
ammonia, put up in bags or barrels. Price $\$ 55$ per
ton CUBAN GUANO, from caves containing-beto six per cent. of nitrato of potash. An excellent ap.
plication for . plication for potas
SOUTH CAROLINA PHOSPHATE, ground NAVASSA GUANO, by the cargo, in lump, or
for sale by

No. 150 Front street, N. Y.

[^1] Player's Patent Hot Blast Stoves, Player's Patent Blowing Process, Henderson's Puddling Process.

## GEO. E. WHITE,

- 

GTHM FIEाTH:
FROM 4 TO 200 HORSE POWER

 WOOD \& MANN Steam Engine Co. Ware Rooms, 89 Liberty Street, New York, and 201 and 203 South Water Street, Chicago, In. Novz-1y-o8

NEW PACKING COMPANY. BELTING AND The oldest and largest manufacturers in the United
States of VULCANIZED RUBBER FABRICS, ADAPTED TO MEEHANICAL PURPOSES,
Invite the attentlon of all who are interested ln the sale
or use of such articles to the high standard guality and low


MACHINE BELTING, STEAM PACKING, SUCTION HOSE, CAR SPRINGS, WAGON SPRINGS, BILLIARD CUSHIONSGRAIN DRILL TUBE

"TEST" HOSE
made expressly for the que of Stream Fire Engines, and
 ats much superior in strength ano quality to any other.
PATENT
SOLID EMERY VULCANITE WHEELS A compositon of rubber and emery. making a very hard.
uniforin substance of the nature of stone throughout. These, wheels for grinding and polishing metals, "gumWools that can be used.
Warehouse, 37 \& 38 Park Row, N. Y. PT Pricellists and further Information may be ob-

Player \& Henderson, CONSULTING ENGINEERS:
Iron Metallurgists, NO. 30 BROADWAY, NEW YORK.
R. HOE \& CO.,


## EXTRA CAST STEEL SAWS,

Single and Double Cylinder and Type Revolving PRINTING MACHINES.


Circular Saws with Movable or Inserted Teeth.
The aceompanying engraving represents a new and improved Circular Saw with inserted teeth,
manufaetured by us, and construeted on a plan in which in embracing all the requirements of inserted teeth in whieh is combined a mechanical arrangemen embracing all the requirements of inserted teeth without an objeetionable feature.
These saws possess great advantages over all others. The teeth are comprise considerably more than half a cirele; eonsequently when they are turned into the sockets they become as firmly fixed as if they were a part of the plate itself. These saws can be run any cause. There are no rivets required. In these and orm ver cause. There are no rivets required. In these and other respects they have an advantage Circulars and priee lists will be sent on application.
R. HOE \& Co.,

31 Gold Street, New York.

JOHN F. WERNER,
Model Maker and Machinist, Corner of Centre and Franklin Streets, New York. Par
ticular attention given to Working Model/ sman Ma
chinery. TTols made order
Aly $22-1$ yos

## B.ESTURTRUANT'S <br> vinnsume Bowers <br> 

## FARMER'S

Patent Blower, Exhauster \& Pump
intended for foundries,
Forges, Steamboats, Gas \& Water Works. $\Delta$ ddress, for purchase of Right, WILLIAM FARMER manhattan gas works,


JOHN A. ROEBLING. Trenton, N. J.
inOLINED PLANES, MiNiNG,
standina ship rigaing,
suspension bridges, ferries. stays and guts on bridges, Cranes \& SHEARS, DERRICES, tillers, de.

```
A large stock of
```

fir For strength, size and cost see elrecular, whel will
de $\begin{aligned} & \text { den:tr }\end{aligned}$
be sent on applcatlon.?

Railroad Irou for Mines.
Stock Constantly on Hand Stock of any weight and pattern, and sold in lots to


25 水ice Tons per Mite: LIGHT LOCOMOTIVES, FOR USE IN COLLIERIES, MINES, ETC.


MATHEMATICAL Instruments
Mechanical and Architectural Drawing. DIVIDERS, BOW PENS, TRIANGLES, T SQUARES, SCALES, Etc., Etc.
T. H. McALLISTER, Optician,

VoLUKE

Our illu
98 Liberty
to centre o
spindle.
built, and
sufficiently
por the ax
trasslate
[Friedr
ied mining
in 1798 ;
quite twe
he name

After so
to a villag
hill that
and pleasa
lills had a
and willin
partly tr
had come
room and
Our tra
and joine
tice of $t$
foreign ga
good-natu
prying pu
eign parts
careful ses
abg count
the day.
treasure d
modestly
modestly
the stamp
ty. He
Bohemia.
what was
tains, and
the spring
were fonn
precious
to themse
He lind
boring clo
and slirin
so as to
times hea
he had
treasures
mountain
strongly
sometime
tains. H
able pleas
length th
ought to
thirst for


[^0]:    

[^1]:    A MERICAN PHOTO-L IT HO Broad vRAPHIC COMPANY's Omice, Herald Bullding

